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Introduction 

In this paper we study branched cyclic covers of manifolds with open book 
decomposition. Such a decomposition splits a manifold M in a binding K and a 
complement which fibres over S ~ with as fibre the page F such that the fibration is 
trivial in a neighbourhood of K. For  example, if M is a sphere, we get a fibered knot 
K. Open book decompositions also arise in singularity theory: i fX is a smoothing 
of the germ of an isolated complex singularity, i.e. a one-parameter deformation for 
which the general fibre is smooth, then the link M of the singular point in X has an 
open book decomposition with binding the link of the smoothed germ, while the 
fibration is the same as the Milnor fibration. The cyclic k-fold cover of M, 
branched along K, is induced from the k-fold cover of S 1 over S 1. We study these 
k-fold covers in terms of the monodromy h : F~F of the fibration and the topology 
of K. 

There is a close connection between the topology of M and F if M has odd 
dimension 2n + 1 and F has the homotopy type of a n-dimensional CW-complex; 
the homology of F is then determined by M and vice versa except in the middle 
dimension, where we have the variation exact sequence: 

O~Hn+,(M)-'+Hn(F, aF) Var~ Hn(F)~Hn(M)~O. (1) 

This sequence is the basis of our periodicity results. The map Var(h) is defined by 
assocating to a representative of a relative homology class z the class of h(z)-z. 
We first compare the homology of the branched cyclic covers M k of k for different 
values of k; we suppose that the eigenvalues of the monodromy are d 'h roots of 
unity for some d, which is always the case for smoothings of singularities. We find 
that M k and M k+n have the same rational homology. For  periodicity in integral 
homology it is a necessary and sufficient condition that Var(h a) =0.  

In [2] Durfee and Kauffman prove homology periodicity for simple fibered 
knots [open book decompositions of S z"+~ with (n-2)-connected  binding and 
(n-1)-connected page] under the assumption that the monodromy has finite 
order d and that the binding K is a rational homology sphere. For  simple fibered 
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knots this condition is equivalent to Var(ha)=0. They prove also that M k and 
M k§ are homeomorphic for odd n@1,3,7 and they have results on the 
diffeomorphism type. 

In our situation we can also use the classification of highly connected 
manifolds. To be able to apply such theorems we assume that M is ( n - 1 ) -  
connected and bounds a paraUelizable manifold. For  odd n we can express the 
invariants determining the homeomorphism type of M k by means of the variation 
exact sequence; the diffeomorphism type has a period depending also on the 
signature of M d and the group of homotopy spheres in an appropriate dimension. 
For  n even we are able to prove homeomorphism periodicity with period 2d and 
diffeomorphism periodicity with period 4d. 

We conclude this paper with some examples of smoothings of singularities for 
which the relevant invariants are reasonably easy to calculate: smoothings of the 
A2-singularity for n odd and Brieskorn complete intersections I-4]. 

Unless otherwise stated all homology groups in this paper have integer 
coefficients. 

1. Open Book Decompositions 

In this section we discuss the exact sequence, describing the homology of open 
book decompositions, which will be the main tool in our study of periodicity of 
branched cyclic covers. A good reference for open book decompositions is a paper 
of Quinn [9]. 

Definition. An open book decomposition on a smooth m-dimensional manifold M 
is an isomorphism M ~ E u r ( K  x D), where E is a m-manifold with boundary 
fibering over the circle and r is an isomorphism r: O E ~ K  x S 1, S 1 = OD, such that 
the fibration corresponds to the projection on the second factor. The fibre F is 
called the page and 0F ~ K the binding. 

All odd dimensional manifolds and many even dimensional manifolds have 
open book decompositions; each fibered knot gives one of the m-sphere. Other 
examples are given by links of smoothings of isolated singularities. 

Definition. Let (Xo, p) be the germ of a complex-analytic space of dimension n with 
an isolated singularity at p. A smoothing of (X o, p) is the germ of a flat morphism 
f :  (X,p)~(~,O) ,  together with an isomorphism f - l (0 )~_Xo,  such that f l(t) is 
nonsingular for t 4: 0. 

If f :  ~"+ 1 ---,IE has an isolated critical point at the origin, then f is a smoothing 
of the hypersurface { f=0} .  Similar to this case there is a Milnor fibration for 
general smoothings. 

There are two ways to describe the Milnor fibration [3]. Choose a representa- 
tive of the germ X, also called X, embedded in IE N with the singular point p at the 
origin. Let S~ be the boundary of a small open ball B~ in C N with center 0 and radius 
e,~ 1. The link ofp  in X is M : = X n S ,  and K : = X o n S  ~ is the link ofp  in X o. The 
complement of K in M fibres over the circle: the map f / l f l :  M \ K  ~ S I  (S ~ is the 
unit circle in the complex plane) defines a fibre bundle. 
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To define the second bundle, let S~(ct) be a small circle in the complex plane 
with radius 7 ~ e. The bundle 

~b: = (l/a) . f : f -  t(SI(~))nB~S1 

is fibre preserving diffeomorphic to the first bundle. In the second setting it is more 
natural to consider a fibering of manifolds with boundary: 

~: f -  l(Sl(ct))nB ~S1 " 

We will call the fibre F = ~-  1(1) of ffthe (closed) Milnor fibre. The boundary OF of 
F is diffeomorphic to K. The fibre F has the homotopy type of a finite CW-complex 
of dimension n [3, Satz 1.7; 7, (5.6)]. The second description shows that M has an 
open book decomposition with page F and binding K. 

In an open book decomposition of a manifold M the manifold E is the 
suspension ofa  diffeomorphism h : F ~ F ,  i.e. E~-F x [0, 1]/(x, 0) ~ ( h -  l(x), 1). We 
call h the geometric monodromy; the induced map h.:Hq(F)~Hq(F) is the 
(algebraic) monodromy. Because the restriction of h to OF is the identity there exists 
a variation homomorphism Var(h):Hq(F, OF)~Hq(F), defined by the formula 
Var(h)([z])=[h(z)-z], where [z] denotes the homology class of a q-cycle z 
[6, 3.1]. This map fits into an exact sequence: 

... ~nq+ I(M)~Hq(F, O F ) ~  Hq(F)--*Hq(M)--* ... 

which arises from the exact sequence for the pair (M, F) with the isomorphisms 

nq( M, F) ~ nq(M, Fw(t3F x O)) -~ H~(F x I / ~ ,  Fw(OF x S~)) 

~- Hq(F x I, (F x t3l)w(gF x l))~- Hq_ ~(F, OF). 

This sequence is especially useful if M is a (2n + 1)-manifold and F has the 
homotopy type of a C W-complex of dimension n; the page F is then called almost 
canonical [9]. All odd dimensional manifolds have book decompositions of this 
type and smoothings of singularities lead to them. In this situation we have: 

Proposition 1. Let M be a (2n + 1)-dimensional manifold with open book decompo- 
sition with almost canonical paye F. Then the followin9 sequence is exact: 

O~H.+ ,(M)~H.(F,  OF) Var(h)) H.(F)~H.(M)~O.  (1) 

Furthermore, Hq( M) -~ Hq(F), q < n, and Hq( F, OF) ~- Hq + 1 (M), q > n. 

Remark. If M = S z"+ 1, then Var(h) is an isomorphism in the middle dimension 
I-3, 3.3]. In fact, in a suitable basis the matrix for Var (h) is up to sign the inverse of 
the matrix for the Seifert form [2, Sect. 4]. In [2] open book decompositions of 
S 2" + ~ with almost canonical page F, F simply connected if n > 1, are called simple 
fibered knots. 

2. Branched Cyclic Covers and Homology Periodicity 

In this section we ~eneralize results of Durfee and Kauffman [2] on homology 
periodicity of simple fibered knots and we discuss the conditions for periodicity. 
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The k-fold cyclic c o v e r  M k of M, branched along K, is the manifold with open 
book decomposition (F x I/(x, O) .., (h -k(x), 1))u,(K x D), so the monodromy is h k. 

I f X ~ D  is a smoothing of Xo, we get a new smoothing X k by the following base 
change: 

x k =  X x ~ , X 

1 ,  ~,k l 
, D  

The link M R of the singular point p in X* is the smooth k-fold cyclic cover of the 
link M ofp in X, branched along the link K ofp in X o. This can be proved along the 
following lines: embed X k in IE N x I12 [which has coordinates (x, t)] such that the 
map X k ~ D  coincides with the restriction of the projection (x, t)~--~t. Define the link 
M k by means of the function rk(X, t )=  IIx II 2 +  i t12~. The link of the origin in X* can 
be defined as 0-t(e) c~X* where 0:IE N x IE~[0, oo) is any real-analytic function 
with 0 - 1(0) = (0, 0) and the diffeomorphism type of this link does not depend on the 
particular choice [7, Proposition 2.5]. The map (x, t)~-*(x, t k) exhibits M k as 
branched cover of M. 

We are interested in the relations between the homology of M* for different k. 
To obtain periodic behaviour we assume that the eigenvalues of h,  are roots of 
unity; then there exists a natural number d such that h~ is unipotent, i.e. (hd, --id) N 
= 0 for some N. 

Theorem 2. Let the (2n+ 1)-manifold M have an open book decomposition with 
almost canonical page and suppose that h~, is unipotent. Then H,(Mk,  II~) 
~n , (Mk+d ,  ~)  and for k <d, H,(Mk,  ff~)_~H,(Md-k, ll)). 

Proof. We want to use the exact sequence (1), so we have to compare Var(h k) and 
Var(hk+d). In general, if g, h: (F, OF)--*(F, OF) are continuous maps with glOF 
=h laF= id ,  then [6, 3.1.4]: 

Var(h o g) = Var (h) + Var (g) + Var (h) o j ,  o Var(g), (2) 

where j ,  is given by the inclusionj : (F, 0 )~ (F ,  OF). From the definition of Var we 
also have: 

Var (h) o j ,  = h,  - id. (3) 

Therefore 

Var(h o g) = Var(h) + h,  o Var(g). (4) 

By Proposition 1 and duality we have to check the statements of the theorem 
only for Hn + r Therefore we look at the kernels of the variation maps involved. 
From (4) we obtain 

Var(h k+d) = Var(h k) + hk, o Var(hd), (5) 

Var (h a) = Var (h*) + hk, o Var (h d - k) . (6) 

We claim that KerVar(hk)fiKer Var(h d) for all k; then 

Ker Var (h k) = Ker Var (h k+ a) 
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and for k < d, Ker Var(h k) = hk,(Ker Var(hd-k)). TO prove the claim we observe that 

Ker Var(h k) C Ker(id + hk, + ... + (hk,) d- 1) o Var(h k) = Ker Var(h ka) 

= Ker(id + ha, + ... + (ha*) k - 1) o Var(h d) = Ker Var (ha), 

where the first two equalities follow from (4) and the last holds because ha* is 
unipotent and H,(F, 7Z) is free. [] 

Proposition 3, Let M be as in Theorem 2 with ha, unipotent. Then H,(Mk,~O 
~H,(MR+a,Z) for all k > 0  if and only if Var(hd)=0. Moreover, if Var(ha)=0, 
then a �9 h, = ld and H, (M a) "~ H,(F) and for 0 < k < d, H , ( M  a- k) ~ H,(mk).  

Proof If Var(h d) = 0, then ha, = id by (3) and the isomorphisms follow immediately 
from (1), (5), and (6). Conversely, periodicity implies in particular that 
Coker Var(h rod) ~_ Coker Var(h a) for all m. We write 9 instead of h a. By induction 
on m we find from Var(g m) = Var(g)+Var(g m- 1).~_ Var(9)o j ,  o Var(9 m- 1) that 
ImVar(gm)CImVar(9); the isomorphism of the cokernels gives ImVar(9 m) 
=ImVar(g).  Because 9,  is unipotent we can choose an odd prime p with 
(g , - id)P-1  =0. The binomial expansion of this gives a formula for g~- l+ id ,  
which can be substituted in the expression Var(g v) 
= (id + g,  + ... + gP,- 1) o Vat(g); so 

Var(gV)=(po ,+ ... + ( 1 - ( - 1 ) ' ( P ~ l ) ) g , +  ... +pgP,-Z)oVar(g). 

All the coefficients are divisible by p because the first one is and the difference of 

two consecutive ones is a binomial coefficient (P) .  So ImVar (g )=ImVar (g  p) 
CImpVar(g) and therefore Var(g)=0. [] 

Durfee and Kauffman prove periodicity for the integral homology of simple 
fibered knots under the assumption that K is a rational homology sphere and 
ha* = id [2, Corollary 3.2]. This implies our condition Var(h a) = 0, because j ,  is then 
a rational isomorphism, so Var(h d) = (ha*- i d )o j ,~=  0 over the rationals and, as 
H,(F) is free, also over •. In fact the two conditions are equivalent: by the remark 
following Proposition 1, Var(h) is an isomorphism, so by (3) we have that Ker j ,  
= Ker (h, - id ) ;  let Var (h) (y) = z ~ Kerj , ,  then 0 = Var(h d) (y) 
= (id + ... + ha*- 1) o Var(h) (y) = dz; therefore j ,  is a rational isomorphism in the 
middle dimension. For simple fibered knots this implies that K is a rational 
homology sphere. 

In the general case the conditions" a �9 , . . . . .  h,  = ld and j ,  is a rational isomorphism in 
the middle dimension" still imply that Var(h d) = 0, but the converse is no longer 
true: take e.g. an open book for which the geometric monodromy is the identity 
and j ,  arbitrary. Such an example cannot occur as the link of a singularity: 

Lemma 4. Let M be the link of a smoothing of an isolated singularity and let 
Var(h d) = 0. Then j ,  is a rational isomorphism. 

Proof In this case the cohomology of the Milnor fibre F carries a mixed Hodge 
structure [12]. The weight filtration W is determined by j* and a map 

V: H"(F ; ~ ) ~  Hn(F, OF; ~-'). 
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For  k > 0  the map V o(j*o V) k-~ induces an isomorphism from GrW+RH"(F) 
to GrW_kH"(F, OF) and for k > 0  the map (j*o V)koj  * induces an isomorphism 
from GrW+kH"(F, OF) to GrW_kH"(F) [12, (2.6)]. The map V is defined as 

Vat (g) + ~ ( -  1) k Var (9) o (9* - id)k/k + 1, 

where 9 is the monodromy of a semistable smoothing [12, (2.1)]; then 9* is 
unipotent. We may take g as some power ofh d. If Var(h d) = 0, then also Var(9) = 0, 
so V= 0, GrW/-/" = H" and j* is an isomorphism over ~. Therefore j ,  is a rational 
isomorphism. [] 

3. Diffeomorphism Periodicity for Odd n 

In the previous section we proved homology periodicity for branched cyclic covers 
of open books with almost canonical page. These results can be extended to 
periodicity in k of the homeomorphism type and the diffeomorphism type of M k, 
using the classification of highly connected manifolds [-15, 1]. We assume from 
now on that the (2n + 1)-manifold M and the page F are (n - 1)-connected and that 
M bounds a parallelizable manifold. We call such an open book decomposition a 
simple open book decomposition. Examples are the simple fibered knots of [-2] and 
links of smoothings of isolated complete intersection singularities [7, (5.8) and 
(2.11)]. Branched cyclic covers of simple open books have simple open book 
decompositions (Lemma 5 below), so we can apply the classification of highly 
connected manifolds. Here we have to distinguish the cases n is odd or even. In this 
section we prove that for odd n homology periodicity implies homeomorphism 
periodicity, generalizing the result for simple fibered knots in ~2, Theorem 4.5]. 

Lemma 5. Branched cyclic covers o f  simple open books have simple open book 
decompositions. 

Proof. Ifn > 1, Van Kampen's theorem gives that M R is simply connected; from the 
homology statements of Proposition 1 it follows then that M R is (n - 1)-connected. 
Let M be the boundary ofa  parallelizable manifold N. We construct a manifold N k 
with boundary M k as follows [5, p. 149]. We can push a copy of the page F into N 
keeping the boundary fixed: we obtain U C N with F" • M  = OU = OF. Then N k is 
the k-fold cyclic cover of N, branched along F'. The manifold N k is parallelizable: 
choose a trivialisation of the tangent bundle of N, which is a product on a tubular 
neighbourhood F' • D of F'  (this is possible because F' itself is parallelizable); by 
pull-back we obtain a trivialization of the tangent bundle of the complement N~ of 
F'  x D in N k. After a suitable rotation of the trivialization on F'  x S ~ , depending 
only on S 1, the trivialisation can be extended over F'  • D; the rotation extends 
over N~ because of the existence of a map a" Nko~S ~ such that alF' x S ~ is the 
projection on the second factor [-5, p. 150] (this map arises in the construction of 
N~o). [] 

For  odd n # 1, 3 or 7 stably-parallelizable ( n -  1)-connected (2n + 1)-manifolds 
are classified by the n th homology group and a linking pairing and quadratic form 
on the torsion part of this group [-1, Theorem 6.4]. We will express these invariants 
by means of the exact sequence (1). 
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Let M have a book decomposition with page F. Let x, y ~ H, (M)  be torsion 
elements with rx = sy = 0. Then there are ~, q ~ H.(F) with i.~ = x and i . t /= y and 
there is a ~'~H,(F,  OF) with Var(h)(~')=r~.  Let ( . , . )  denote the intersection 
pairing between H.(F, 8F) and H,(F). 

Lemma 6. The linking pairing can be computed by the formula: 

lk(x, y) = (1/r)(~', ~/) mod 1 

and the quadratic form by 

q(x) = (l/r)  (~', ~) + S(r mod2,  

where S(~) depends only on H,(F) and not on h. 

Proof i) We recall the geometric definition of the linking pairing [10, Sect. 77]: 
represent x and y by chains A and B. There exists an A' with OA' = rA. Then Ik(x, y) 
= (1/r)~(A', B )mod  I where ~(A', B) is the geometric intersection number of A' 
and B. In our case we may choose the chains in F. Under the isomorphism 
H,(F, 8F) ~- H,  + 1 (M, F) ~" corresponds to a relative cycle 4' • c with boundary r~, 
and (~', t/) = ~(~' x c, t/). 

ii) There is also a geometric description of the quadratic form [ 15, VI, p. 274]: 
represent x by an embedded sphere S. Let B be a tubular neighbourhood of S: this 
is a disc bundle over S. Let $1 be a section of the associated sphere bundle and $2 a 
fibre. Let 2 be the geometric linking number of the cycles S and rS 1. The normal 
bundle of S~ in the sphere bundle CB determines a characteristic class 

~ 7r,_ ~(SO,). Sections of the sphere bundle are in (i - l)-correspondence with the 
integers. Changing the section S~ to S] • S~ + mS z has the effect of changing 2 and 

to: 2 ' = 2 + m r  

~'= ~ + O(m) , 

where 0 : n , ( S " ) ~ r , _  ~(SO,). If n+3 ,  7 is odd, then there is a homomorphism 
(~:rc,_ a (SO. )~Z/2Z and we require that ~b(a)=0. This determines the number 
q(x) = 2'/r modulo 2. 

In our situation we can represent x by an embedded sphere S in F and there is a 
natural choice for the section S~, by transporting S to a nearby fibre. The geometric 
linking of rS~ and S is given by (~', 4). The condition ~b(a')=0 can be satisfied in 
a neighbourhood of S, so the correction term S(~) depends only on 

~ H.(F). [] 

Remark. For simple fibered knots S(~) is the reduction mod2 of the linking in 
M = S  z"+~. Because q = 0  for k=  1, the quadratic form qk on M k is given by the 
following formula, which is essentially the same as the one on p. 168 of [2]: 

qk(X) = (l/r) (~', ~) - (Var(h)-  ~(~), ~) mod2.  

Theorem 7. Let M k be the k-fold branched cyclic cover of a (2n + l)-manifold M with 
simple open book decomposition, n + 1, 3 or 7 odd. I f  Var(h d) = 0, then M k and M k +d 
are (orientation preserving) homeomorphic, while M k and M a-k (k<d)  are 
orientation reversing homeomorphic. 

Proof The invariants H,, lk, and q classify the manifolds under consideration up to 
orientation preserving homeomorphism [ 1, Theorem 6.4]. If Var(h d) = 0, then M k 
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a n d  M k+d agree in these invariants by Proposition 3 and Lemma 6. Orientation 
reversal changes the sign of the linking pairing and the quadratic form, so we have 
to show that the linking lk k and the form qk of Mk are the negative oflka_k and qa-k 
of M d-k. From the definition of the variation homomorphism it follows that 
j o Var(h) = h.  - id, where now h.  denotes the monodromy on H,(F, OF). With this 
formula instead of (3) and the analogue of (6) we find that 

Var (h a - k )  = _ Var (h k) o ha, - k 

if Var(h a) = 0. Now let Var(h k-a) (4') = r~. Then lk k_d(x, y) = (l/r)  (~', q).  So: 

lkk(X, y) = -- (l /r)  (hd,-k~ ", ~I) 

= -- (l /r)  (~', r/) -- (l/r) (hd-k~  ' -  ~', r]) - -  - -  (l/r) (~', r/) 

for (l/r) (hd,-k~ ' -  ~', r/) = (l/r) ( j ,  o Var(h a-k) (~,), t/) = ( j ,~ ,  1/) ~ Z. Further- 
more, ( j ,~ ,  ~ ) = 0  (n is odd) so qk(X)= --qa-k(x)mod2. [] 

Remark. In the case n = 3, 7 Theorem 7 probably still holds, If H,  contains no 
2-torsion, then M is determined by the homology and the linking pairing [17]. In 
particular, for all n > 3  odd, M ka is homeomorphic to the connected sum 
(S" x S" + 1) 4~ ... 4~ (S" x S" + x), where the number of factors is equal to the rank of 
H.(F). 

There is also a periodicity in the diffeomorphism type of the manifolds M k with 
a period depending on the order of the finite group bPz. + 2 of homotopy (2n + 1)- 
spheres that bound parallelizable manifolds. Let 27 denote the generator of this 
group, mS the connected sum of m copies of 27 and Ok the signature of the manifold 
N k, constructed in the proof of Lemma 5. 

Proposition 8. In the situation of Theorem 7, M k +d is diffeomorphic to (0d/8)27 ~ M k. 

Proof. By [1, Theorem 6.4] M k+a is diffeomorphic to l/8(Ok+a--ak)S#eM k. TO 
calculate Ok+a--O k we use a cut and paste description of N k+a [5, p. 150]. In the 
process of pushing F into N, as in the proof of Lemma 5, we obtain a codimension 
one submanifold W with boundary FuF' ,  along which N can be cut open: this 
results in a No with boundary W§ u W_ wMo, where Mo denotes M cut open along 
F. Let Wo=W+wW_, then OWo=WonMo=OMo=F+wF_ and F+~F_  =OF. 
Then N k is obtained by pasting k copies of N0 together, identifying I41 of one copy 
with W+ of the next one. In the same way N k and N d can be cut open, so N k+a is 
made by pasting N k and a ,, No together along W. After straightening the angle" N k is 
diffeomorphic to N k, so we can apply Wall's "non-additivity of the signature" 
formula [ 16]: Ok + a = Ok "Jr- Od - -  o ' ( V ;  A, B, C), where the last term is the signature of a 
form on a certain subquotient of V= H,(OWo). The spaces M k, 141o, and M~ have 
F+ as deformation retract and they have the same boundary F§ wF_ = 014'o. The 
inclusion of the boundary induces three maps a, b, c : V ~ H . ( F  +) with kernels A, B, 
and C. Using the exact sequence for (OWo, F+) to identify V with 
H,(F +)0 H,(F_, OF_) we may write a(x, y) = x + Var (h k) ( y ) ,  b(x, y) = x and 
c ( x , y ) = x - h ,  aVar(ha)(y)=x. The subquotient of V is Bc~(C+A)/((Bc~C) 
+(Bc~A))=O, so ak+a-o~=o a. [] 

Remarks. 1. Let M ~ be the manifold with same page F as M k, but for which the 
geometric monodromy is the identity. We have M ~ = O(F x D), so Oo = 0 and the 
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periodicity of the proposition extends to k=0 ;  M ~ is diffeomorphic to 
(sn • S "+ 1) # ... # (S" • S "+ 1). 2. It follows from a general signature periodicity 
theorem of Neumann [-8] that ak + d--ak is a constant whenever the eigenvalues of 
the monodromy are d th roots of unity. 

4. The Case n is Even 

Homeomorphism periodicity for branched cyclic covers is more complicated if n is 
even than the case of the previous section. We start with an example, showing 
that the period is not the period of the monodromy. 

Example [2, Sect. 6]. Consider smoothings of the ordinary double point. The 
monodromy has order 2. Let M k be the link of z 2 + ... + z 2 + t k = 0. Then M k + 8 is 
diffeomorphic to (notation: ~)  M k and: M I ~  S 2"+1, M 2--- T, the tangent sphere 
bundle of S" +1, M 3=~ ,  the (2n+l)-dimensional Kervaire sphere, 
M4"~(S n • Sn+I)~Z, ,  M 5 ~ Z ,  M 6 ~  T # Z ~  T, M 7 r~--s2n+ 1, and M 8 ---S" x S "+ 1. If 
n+2,  6 then T is not equal to S" • S "+ 1. 

This example does however show homeomorphism periodicity with period 2d 
and diffeomorphism periodicity with period 4d. 

In the classification of ( n -  1)-connected (2n + 1)-manifold with n even a new 
invariant enters, a class ~ in H , ( M ) |  [15, VI, p. 284]. It is this O~ that 
distinguishes between T and S" x S" + 1. 

From the example we see that we cannot express ~ in terms of the variation 
map. Nevertheless, without explicitly determining q~, we are able to prove: 

Theorem 9. 1f for  branched cyclic covers M k of  a (2n + 1)-manifold M with simple 
open book decomposition Vat (h d) = O, then M k and M k + 2a are homeomorphic and M k 

and M k+4a are diffeomorphic. Moreover, if n = 2  or 6, then M k and M k+a are 

diffeomorphic. 

Proof. The last assertion follows immediately from the fact that in these 
dimensions highly connected manifolds (that bound parallelizable manifolds) are 
already determined by their homology [11]. 

For the general case we will examine Wall's proof of the classification of highly 
connected manifolds [15, Sect. 13, I0, 11, 5] more closely. 

Let M be a closed ( n -  1)-connected (2n + 1)-manifold with n > 4. If H , ( M )  is 
generated by # elements, then there exists a handle decomposition of M with one 
zero-handle, # n-handles,/~ (n + 1)-handles and one (2n + 1)-handle. The union N 
of the zero handle and the n-handles is diffeomorphic to the union N' of the (n + 1)- 
handles and the (2n + 1)-handle. Attaching N' to N by means ofa  diffeomorphism 
g:ON'=SN--*ON gives M. This decomposition of M is essentially unique; g is 
determined up to multiplication on the left and on the right by diffeomorphisms 
which extend to ones of N [15, VI, Sect. 13]. Now consider two manifolds M1 
and M2, constructed from N by diffeomorphism 91 and g2- Then M 1 and M2 are 
diffeomorphic if g~ can be obtained by multiplying 92 by diffeomorphisms of ON 
that extend to N. 

We can describe an open book M in the above way by a modification of the 
construction in Sect. 1. In the same notations as there, let N be (F x [0, 1/2]) 
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w,(OF x D+), where D + is the upper half of the discD. Similarly N ' = ( F  x [�89 1]) 
wr(OF x D - ) .  The boundary of N consists of two copies of F, glued together 
along their boundary by OF x [0, 1]. The attaching map 9:ON'- - ,ON is the 
identity on one copy of F and on OF x [0, 1], and the geometric monodromy h 
on the other copy of F. Remark that the fibre F is a deformation retract of N. 

Because the diffeomorphism classification of closed manifolds is rather subtle, 
we will first consider almost closed manifolds, i.e. manifolds whose boundary is a 
homotopy sphere. We can make a closed manifold M almost closed by removing 
an open (2n+ 1)-disc, which we put back on the end. As before we can split an 
almost closed manifold M in two diffeomorphic handle-bodies N and N'  with an 
essential unique attaching diffeomorphism given on ON with the interior of a 
2n-disc removed; we will denote t?N\Int(D 2") by L. 

So the problem is to decide when 91 and 92 are the same up to multiplication by 
diffeomorphisms of L that extend to N. According to the proof of [15, Theorem 7, 
Sect. 13] there are two types of obstructions. Firstly, if 91 and 92 agree in the 
invariants given in Lemma 31, which can be determined from homology invariants 
o f M  1 and M2, then g2 can be modified by multiplication to achieve that gl and g2 
are homotopic. Secondly there are certain obstructions which by the proof  of [15, 
Theorem 6, Sect. 11] are precisely the obstructions for 91 and g2 to be pseudo- 
isotopic, as given in Lemma 23: a homomorphism S f l : H , ( L ) ~ S n . ( S O , ) ,  which 
may be simplified to a class fi ~ H" + 1 (M; n,(SO)) and a class ~ ~ H" + I(M; 7~,2). This 
is the ~ mention before. 

The invariant Sfl appears in the following way: a pseudo-isotopy between 91 
and g• is a diffeomorphism G: L x [0, 1 ] ~ L  • [0, 1] where G restricted to L x {0} 
is 91 and restricted to L{1} is 92. The extension of 91 and 92, given on L • {1} to a 
diffeomorphism of L • [0, 1] is achieved in five steps [15, Sect. 5]. In step 4 a 
diffeomorphism is given on the product of the interval with a disc and the core of 
the n-handles. Let D] be such a core and x the corresponding generator of H.(L) .  
To extend the diffeomorphism over a tubular neighbourhood of D~ • [0, 1] (the 
objective of step 4), we need a trivialisation of the normal bundle. It is already given 
on the boundary of D~• [0,1] [15, II, p. 267], so we find an obstruction 
fl(x) ~ ft,(SO,). The indeterminacy in these obstructions can be eliminated by using 
the suspension S : n . ( S O . ) ~ n . ( S O , + I ) ;  we get a map S f l :H . (L) -+Sn , (SO. ) .  If 
n + 2, 6 and even, then S: Src,(SO.)~rc,(SO. + 2) is a split surjection with kernel of 
order 2 ([15, Sect. 12B], where this is erroneously claimed for even n 4: 2, 4 or 8). 

We are now going to compare the attaching maps 9 k and 9 k+zd for the 
manifolds M k and M k + za. In our case the first type of obstruction reduces to the 
bilinear form on the torsion. From Var(h a) = 0 it follows that 9 k and O k +d agree in 
these invariants. 

We may then try to extend 9 k, given on L • {0}, and 9 k+ 2a, given on L • {2}, to 
a diffeomorphism of L • [0, 2]. We first give 9 k + d on L • { 1 }, but this map may be 
changed during the construction. We may consider L x [ 1, 2] as L x [0, 1 ], shifted 
by O n. The obstruction fl2n(x) in L x [0, 2] is the sum of fin(x) in L x [0, 1] and 
fla((Oa).(x)) in L • [1,2].  But (9d). = id on homology so fl2d(x)= 2fla(x ) and Sfl2 d 
= 2Sfla. The image of S2fl in 7t.(SO, + 2) = 7t,(SO) is zero because our manifolds are 
stably parallelizable. So the obstruction lies in a group of order two, so it vanishes. 
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Thus Mk\disc is diffeomorphic to Mk+2d\disc and therefore M k a n d  M k+2`/ are 
homeomorphic.  

From the above discussion we see that M k+2d is diffeomorphic to Mk~-~,  for 
some homotopy  sphere Z; moreover, M k + 4 ` / _ ~ M k ~  2Z. We have to identify the 
homotopy sphere X. The manifolds M k and M k + 2,l bound parallelizable manifolds 
Nt  and N 2. We form a new manifold N by identifying the boundaries minus a disc 
of N1 and .N2, using the diffeomorphism between Mk\disc and M k + 2`/\disc; N is a 
n-connected (2n + 2)-manifold with boundary Z. From the classification of such 
manifolds [14] we see that for n not divisible by 8 the only possibilities for X are the 
standard S 2" + ~ and the Kervaire sphere, an element of order two in the group of 
homotopy spheres. The same conclusion holds if n - 0  (mod 8), provided another 
invariant X = 0 (mod 2) [ 14]. Finding representatives of the homology of N with a 
Mayer-Vietoris argument from N~, N2, and Mk\disc ,  we see that this condition is 
fulfilled because N1 and N2 are parallelizable, while the fact that Sfl2`/= 0 gives the 
right answer across Mk\disc. [] 

5. Some Examples 

Smoothings of the Cusp Singularity A 2 

We consider smoothings of the singularity 3 2 z 0 + z I + ... + z 2 = 0 with n odd. After a 
change of co-ordinates we can write such a smoothing as g(z,y,t)  
+ z~ + ... + z, 2 -- 0, where 9(z, y, t) is a smoothing of the plane curve singularity 
z 3 + y2 = 0; the function on the total space of the smoothing is the restriction of the 
projection on the t co-ordinate. The invariants of the smoothings with n > 1 are the 
same as those of the smoothings 9(z, y, t), so we can do all our calculations with 
surfaces. 

The link ofz 3 + y2 = 0 is a 1-sphere, so j ,  is an isomorphism. The total space of a 
smoothing of the plane cusp has either a simple singularity or an elliptic Kulikov 
singularity, as studied in [13]. With such a singularity we can associate a 
degenerating family of elliptic curves and the monodromy of the smoothing is the 
same as that of the family of curves. The minimal resolution of the singularity has 
as exceptional divisor the curves in the special fibre of the family and a chain of 
c -  1 rational ( -2)-curves ,  intersecting the other configuration in a component  
with multiplicity one; this component  has self-intersection one less in the 
exceptional divisor than in the special fibre of the family of elliptic curves. We 
denote this exceptional divisor by Kodaira 's  symbol for the fibre, followed by (c); 
e.g. I0(I)  is an elliptic curve with self-intersection - 1. In this dimension there is no 
homeomorphism periodicity, but we may say that the resolution is periodic, in the 
following sense: the special fibre of the family of curves associated to X k+d is the 
same as that for X k, but the chain of ( - 2)-curves is one longer. The signature can 
be computed from the resolution with a formula of Durfee [12, 2.27]: a =  - 8 p g  
- K Z - b 2 ( E ) .  For the singularities under consideration pg=c and KZ+bz(E) 
-= b - 1, where b is the number of components of the special fibre of the associated 
family of elliptic curves [13, Sect. 4]. 

We now describe some smoothings with their branched covers. Let fk be 
y2 + z 3 + t k. The monodromy of f l  has order 6. For  2 < k < 5 we obtain the simple 
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singularities A2, D4, E6, and E8 with signatures - 2, - 4, - 6, and - 8. For  f6 we 
get 10(1 ) with tr = - 8. Furthermore, f6n+ 1 gives II(d), f6a+ 2 :IV(d), f6d+ 3 : I~(d), 
f6d+4 : IV*(d), f6d+5 : II*(d), and f6d gives Io(d). 

Let 9k be y2+z3+ztk.  The monodromy of 91=A~ has order4;  92=94, 
93=E7, g4d=Io(d), g4d+l=III(d), 94a+z=I*(d), and g4d+a=III*(d). So the 
signatures are - 1, - 4, - 7, - 8, - 1 - 8 . . . .  for k = 1 ,2 , . . . .  

As final example we consider smoothings with monodromy of infinite order. 
Let p > l  and hk=y2-'~-Z3-i-zZt3k-'~-t9k+pk. We have hz,,=Iz,,p(3m ) and h2m+l 
=I~2m+l)p(3m+l). We see here the periodic behaviour of the signature, for 
trk= -- (12+p)k if k is odd and trk= - - (12+p)k+  1 if k is even. 

Brieskorn Complete Intersections 

In general it is difficult to determine the monodromy of a smoothing, but for quasi- 
homogeneous smoothings it has always finite order. The computations are rather 
easy in the special case of Brieskorn complete intersections. We recall some results 
from [4]. Let a - - (a l  . . . . .  a. +p) be a collection of natural numbers. The Brieskorn 
complete intersection Xp(_a) is the singularity defined by f:l~n+P---~(l~P with 
fi(zl . . . . .  z,+p)=ci, lz~'+ ... +Ci,,+pza"++/, i=1  . . . .  ,p, with all minors of the 
p • (n + p)-matrix (cij) non-zero. This is an isolated complete intersection singular- 
ity because all maximal minors are non-zero. 

There is a simple criterion to decide whether the link K(_a) of X(_a) is a rational 
homology sphere: construct the weighted graph G(_a) with n+p vertices 
Pl, .-., P,+p with weights a 1 . . . . .  a,+p. The points Pi and pj are to be joined by an 
edge if and only if the greatest common divisor (a~, a j) of a~ and aj is bigger than 
one. Let N(_a) be the number of connected components of G(_a) consisting of an odd 
number of vertices and for which (a~, a j )=  2 for every pair of different vertices in it. 

If N(a) > p, then K(a) is a rational homology sphere and if N(a) > p, then K(_a) is 
an integral homology sphere. Furthermore, ifp < n + 2 the converse statements are 
true. 

For  odd n > 3 the link K(_a) is diffeomorphic to the Kervaire sphere when G(_a) 
has precisely p +  1 connected components and the number of components, 
consisting of one point with a~-- _+ 3 mod8, is odd; in all other cases a homology 
sphere K(_a) is diffeomorphic to the standard sphere. For  n even the signature can 
be determined with a formula of Hirzebruch [-4, Satz 1.4]. 

We consider the smoothing fp : Xp_ ~(_a )~  of Xp(a). Hamm has determined 
the characteristic polynomial of the monodromy:  if d = LCM (ai), then ha, = id. As 
before we can consider the graph offp and write this smoothing as pr : Xp(a_, 1 ) ~ ,  
where pr is the projection on the last co-ordinate. The branched covers are given by 
Xp(_a, k). 

Let a = (5, 3, 2 . . . .  ,2) and consider such smoothings of X2(a ). If n is even, K(a) is 
a rational homology sphere and the link M k = K(a, k) is never diffeomorphic to the 
Kervaire sphere. From the discussion in Sect. 4 we see that there is at least 
diffeomorphism periodicity with period 60. If n is odd, K(a) is a topological sphere 
and there is homeomorphism periodicity with period 30. 
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