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Preface to the First Edition

In recent years, many students have been introduced to topology in high
school mathematics. Having met the Mdbius band, the seven bridges of
Konigsberg, Euler’s polyhedron formula, and knots, the student is led to
expect that these picturesque ideas will come to full flower in university
topology courses. What a disappointment “undergraduate topology” proves
to be! In most institutions it is either a service course for analysts, on abstract
spaces, or else an introduction to homological algebra in which the only
geometric activity is the completion of commutative diagrams. Pictures are
kept to a minimum, and at the end the student still does nct understand the
simplest topological facts, such as the reason why knots exist.

In my opinion, a well-balanced introduction to topology should stress its
intuitive geometric aspect, while admitting the legitimate interest that analysts
and algebraists have in the subject. At any rate, this is the aim of the present
book. In support of this view, I have followed the historical development
where practicabie, since it clearly shows the influence of geometric thought
at all stages. This is not to claim that topology received its main impetus
from geometric recreations like the seven bridges; rather, it resulted from the
visualization of problems from other parts of mdthematics—»»complex analysis
(Riemann), mechanics (Poincaré), and group theory (Dehn). It is these connec-
tions to other parts of mathematics which make topology an important as
well as a beautiful subject.

Another outcome of the historical approach is that one learns that classi-
cal (prior to 1914) ideas are still alive, and still being worked out. In-fact,
many simply stated problems in 2 and 3 dimensions remain unsolved. The
development of topology in directions of greater generality, complexity, and
abstractness in recent decades has tended to obscure this fact.

Attention is restricted to dimensions < 3 in this book for the following
reasons. *

(1) The subject matter is closc to concrete, physical experience.

(2) There is ample scope for analytic, geometric, and algebraic ideas.
(3) A variety of interesting problems can be constructively solved.
(4) Some equally interesting problems are still open.

(5) The combinatorial viewpoint is known to be completely general.
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The significance of (5) is the following. Topology is ostensibly the study of
arbitrary continuous functions. In reality, however, we can comprehend and
manipulate only functions which relate finite “chunks” of space in a simple
combinatorial manner, and topology originally developed on this basis. It
turns out that for figures built from such chunks (simplexes) of dimension < 3,
the combinatorial relationships reflect all relationships which are topologi-
cally possible. Continuity is therefore a concept which can (and perhaps
should) be eliminated, though of course some hard foundational work is
required to achieve this.

1 have not taken the purely combinatorial route in this book, since it
would be difficult to improve on Reidemeister’s classic Einfiilhrung in die
Kombinatorische Topologie (1932), and in any case the relationship between
the continuous and the discrete is extremely interesting. I have chosen the
middle course of placing one combinatorial concept—the fundamental group
—on a rigorous foundation, and using others such as the Euler characteristic
only descriptively. Experts will note that this means abandoning most of
homology theory, but this is easily justified by the saving of space and the
relative uselessness of homology theory in dimensions < 3. (Furthermore,
textbooks on homology theory are already plentiful, compared with those on
the fundamental group.)

Another reason for the emphasis on the fundamental group is that it
is a two-way street between topology and algebra. Not only does group
theory help to solve topological problems, but topology is of genuine help
in group theory. This has to do with the fact that there is an underlying
computational basis to both combinatorial topology and combinatorial group
theory. The details are too intricate to be presented in this book, but the
relevance of computation can be grasped by looking at topological problems
from an algorithmic point of view. This was a key concern of early topologists
and in recent times we have learned of the nonexistence of algorithms for
certain topological problems, so it seems timely for a topology text to present
what is known in this department.

The book has developed from a one-semester course given to fourth year
students at Monash University, expanded to two-semester length. A purely
combinatorial course in surface topology and group theory, similar to the one
1 originally gave, can be extracted from Chapters 1and 2 and Sections 4.3,
5.2, 5.3, and 6.1. It would then be perfectly reasonable to spend a second
semester deepening the foundations with Chapters 0 and 3 and going on to
3-manifolds in Chapters 6, 7, and 8. Certainly the reader is not obliged to
master Chapter 0 before reading the rest of the book. Rather, it should be
skimmed once and then referred to when needed later. Students who have had
a conventional first course in topology may not need 0.1-0.3 at all.

The only prerequisites are some familiarity with elementary set theory,
coordinate geometry and linear algebra, e-8 arguments as in rigorous calculus,
and the group concept.



Preface to the Second Edition ix

The text has been divided into numbered sections which are small enough,
it is hoped, to be easily digestible. This has also made it possible to dispense
with some of the ceremony which usually surrounds definitions, theorems, and
proofs. Definitions are signalled simply by italicizing the terms being defined,
and they and proofs are not numbered, since the section number will serve to
locate them and the section title indicates their content. Unless a result already
has a name (for example, the Seifert-Van Kampen theorem) I have not given
it one, but have just stated it and followed with the proof, which ends with
the symbol [].

Because of the emphasis on historical development, there are frequent
citations of both author and date, in the form: Poincaré 1904, Since either the
author or the date may be operative in the sentence, the result is sometimes
grammatically curious, but I hope the reader will excuse this in the interests
of brevity. The frequency of citations is also the result of trying to give credit
where credit is due, which I believe is just as appropriate in a textbook as in
a research paper. Among the references which I would recommend as parallel
or subsequent reading are Giblin 1977 (homology theory for surfaces), Moise
1977 {foundations for combinatorial 2- and 3-manifold theory), and Rolfsen
1976 (knot theory and 3-manifolds).

Exercises have been inserted in most sections, rather than being collected
at the ends of chapters, in the hope that the reader will do an exercise more
readily while his mind is still on the right track. If this is not sufficient prodding,
some of the results from exercises are used in proofs.

The text has been improved by the remarks of my students and from
suggestions by Wilhelm Magnus and Raymond Lickorish, who read parts of
earlier drafts and pointed out errors. I hope that few errors remain, but any
that do are certainly my fault. I am also indebted to Anne-Marie Vandenberg
for outstanding typing and layout of the original manuscript.

October 1980 JOHN C. STILLWELL

Preface to the Second Edition

There have been several big developments in topology since the first edition
of this book. Most of them are too difficult to include here, or else, well written
up elsewhere, so I shall merely mention below what they are and where they
may be found. The main new inclusion in this edition is a proof of the
unsolvability of the word problem for groups, and some of its consequences.
This is made possible by a new approach to the word problem discovered by
Cohen and Aanderaa around 1980. Their approach makes it feasible to prove
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a series of unsolvability results we previously mentioned without proof, and
thus to tie up several loose ends in the first edition. A new Chapter 9 has been
added to incorporate these results. It is particularly pleasing to be able to give
a proof of the unsolvability of the homeomorphism problem, which has not
previously appeared ina textbook.

What are the other big developments? They would have to include the
proof by Freedman in 1982 of the 4-dimensional Poincaré conjecture, and the
related work of Donaldson on 4-manifolds. These difficult results may be
found in Freedman and Quinn’s The Topology of 4-manifolds (Princeton
University Press, 1990) and Donaldson and Kronheimer’s The Geometry of
Four-Manifolds (Oxford University Press, 1990). With Freedman’s proof, only
the original (3-dimensional) Poincaré conjecture remains open. In fact, the
main problems of 3-dimensional topology seem to be just as stubborn as they
were in 1980. There is still no algorithm for deciding when 3-manifolds are
homeomorphic, or even for recognizing the 3-sphere. Since the first printing
of the second edition, the latter problem has been solved by Hyam Rubinstein.
However, there has been important progress in knot theory, most of which
stems from the Jones polynomial, a new knot invariant found by Jones in
1983. For a sampling of this rapidiy growing field, and its mysterious con-
nections with physics, see Kauffman’s Knots and Physics (World Scientific,
1991).

Recent developments in combinatorial group theory are a natural continu-
ation of two themes in the present book—the tree structure behind free groups
and the tessellation structure behind Dehn'’s algorithm. The main results on
tree structure and its generalizations may be found in Dicks and Dunwoody’s
Groups Acting on Graphs (Cambridge University Press, 1989). Dehn’s algo-
rithm has been generalized to many other groups which act on tessellations
with combinatorial properties like those discovered by Dehn in the hyperbolic
plane (see Group Theory from a Geometrical Viewpoint, edited by Ghys,
Haefliger and Verjovsky, World Scientific, 1991). Both these lines of research
should be accessible to readers of the present book, though a little more
preparation is advisable. I recommend Serre’s Trees (Springer-Verlag, 1980)
and Dehn’s Papers in Group Theory and Topology (Springer-Verlag, 1987). My
own Geometry of Surfaces (Springer-Verlag, 1992) may also serve as a source
for hyperbolic geometry, and as a replacement for the very sketchy account
of geometric methods given in 6.2 below.

Finally, I should mention that this edition includes numerous corrections
sent to me by readers. I am particularly grateful to Peter Landweber, who
contributed the most thorough critique, as well as encouragement for a second
edition.

Clayton, November 1992 JOHN C. STILLWELL
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2 0 Introduction and Foundations

0.1 The Fundamental Concepts and Problems of
Topology

0.1.1 The Homeomorphism Problem

Topology is the branch of geometry which studies the properties of figures
under arbitrary continuous transformations. Just as ordinary geometry
considers two figures to be the same if each can be carried into the other by
a rigid motion, topology considers two figures to be the same if each can be
mapped onto the other by a one-to-one continuous function. Such figures
are called topologically equivalent, or homeomorphic, and the problem of
deciding whether two figures are homeomorphic is called the homeomorphism
problem.

One may consider a geometric figure to be an arbitrary point set, and in
fact the homeomorphism problem was first stated in this form, by Hurwitz
1897. However, this degree of generality makes the problem completely
intractable, for reasons which belong more to set theory than geometry,
namely the impossibility of describing or enumerating all point sets. To
discuss the problem sensibly we abandon the elusive “ arbitrary point set”
and deal only with finitely describable figures, so that a solution to the
homeomorphism problem can be regarded as an algorithm (0.4) which
operates on descriptions and produces an answer to each homeomorphism
question in a finite number of steps.

The most convenient building blocks for constructing figures are the
simplest euclidean space elements in each dimension:

dimension 0: point

dimension 1: line segment

dimension 2: triangle

dimension 3: tetrahedron

We call the simplest space element in n-dimensional euclidean space R’ the
n-simplex A" Tt is constructed by taking » + 1 points P, ..., P,., in R
which do not lie in the same (n — 1)-dimensional hyperplane, and forming
their convex hull; that is, closing the set under the operation which fills in
the line segment between any two points. In algebraic terms, we taken + 1
linearly independent vectors OPy,..., OP,,, (where OP; denotes the
vector from the origin O to P;) and let A" consist of the endpoints of the
vectors

x;OPy + - + X0 1 OPyy g,
where x; + +++ + X, = 1 and x; > 0. It is now an casy exercise (0.1.1.1

below) to show that any two n-simplexes are homeomorphic, so we are
entitled to speak of the n-simplex A"
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Each subset of m + 1 points from {P,, ..., P,,} similarly determines
an m-dimensional face A™ of A". The union of the (n — 1)-dimensional faces
is called the boundary of A" so all lower-dimensional faces lie in the boun-
dary. We shall build figures, called simplicial complexes, by pasting together
simplexes so that faces of a given dimension are either disjoint or coincide
completely. This method of construction, which is due to Poincaré 1899,
will be studied more thoroughly in 0.2. For the moment we wish to claim
that all “natural™ geometric figures are either simplicial complexes or
homeomorphic to them, which is just as good for topological purposes.

This claim is supported by some figures which play a prominent role in
this book—surfaces and knots. Surfaces may be constructed by pasting
triangles together, so they are simplicial complexes of dimension 2. For
example, the surface of a tetrahedron (which is homeomorphic to a sphere)
is a simplicial complex of four triangles as shown in Figure 1. The torus
surface (Figure 2) can be represented as a simplicial complex as shown in
Figure 3. The representation is of course not unique, and from this one begins
to see the combinatorial core of the homeomorphism problem, which remains
after the point set difficulties have been set aside. Given a description of a
surface as a list of triangles and their edges, how does one assess its global
form? In particular, are the sphere and the torus topologically different?
In fact we know how to solve this problem (by the classification theorem of
1.3, and 5.3.3), but not the corresponding 3-dimensional problem.

Much of the difficulty in dimension 3 is due to the existence of knots.
We could define a knot to be any simple closed curve 2" in R, but any such

Figure 1

Figure 2



4 0 Introduction and Foundations

Figure 3

A is homeomorphic to a circle and its “ knottednessl” actually resides in the
complement space R® — . This space is not finitely describable in terms
of simplexes, so we replace R® by, say, a cube and drill a thin tube out of it
following the “knotted part” of £ (see Figure 4).

This figure can be divided into small tetrahedra and hence is a finite
simplicial complex representing the knot. The homeomorphism problem for
such figures is extraordinarily difficult; Riemann was perhaps the first to
think about it seriously (see Weil 1979), and it has been solved only recently
(see Hemion 1979, Waldhausen 1978). The solution extends to more general
“knot spaces” obtained by drilling any number of tubes out of cubes, but
not as yet to all the figures which result from pasting knot spaces together.

:

=

Figure 4
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It seems very gratifying that the three dimensions provided by nature pose
such a strong mathematical challenge. Moreover, it is known (Markov
1958) that the homeomorphism problem cannot be solved in dimensions
>4, so we have every reason to concentrate our efforts in dimensions <3.
This is the motivation for the present book. Our aim has been to give solu-
tions to the main problems in dimension 2, and to select results in dimension
3 which illuminate the homeomorphism problem and seem likely to remain
of interest if and when it is solved.

Like other fundamental problems in mathematics, the homeomorphism
problem turns out not to be accessible directly, but requires various detours,
some apparently technical and others of intrinsic interest. The first technical
detour, which is typical, takes us away from the relation “is homeomorphic
t0” to the functions which relate homeomorphic figures. Thus we define a
homeomorphism f: s/ — & to be a one-to-one continuous function with a
continuous inverse f ~': B — & (in particular, f is a bijection). Then to say
of and & are homeomorphic is to say that there is a homeomorphism
i =B

This point of view enables us to draw on general facts about continuous
functions, which are reviewed in 0.1.2. We wish to avoid specific functions
as far as possible, since topological properties by their nature do not reside
in single functions so much as in classes of functions which are “qualitatively
the same” in some sense. When we claim that there is a continuous function
with particular qualitative features, it will always be straightforward to
construct one by elementary means, such as piecing together finitely many
linear functions. Readers should reassure themselves of this fact before
proceeding too far, perhaps by working out explicit formulae for some of the
examples in 0.1.3 (but not the “map of the Western Europe™!).

Exercist 0.1.1.1. Show that any two n-simplexes are homeomorphic.

ExErCISE 0.1.1.2. Construct a homeomorphism between the surface of a tetrahedron
and the sphere.

0.1.2 Continuous Functions, Open and Closed Sets

The definition of a continuous function on R, the real line, is probably familiar.
We shall phrase this definition so that it applies to any space & for which
there is a distance function |P — Q| defined for all points P, Q. If & = R",
which is the most general case we shall ultimately need, and if

P=(xh“~sxn)3
Q=(y1,°":yn)a

we have

[P —Ql= 0y =y + -+ G — )™
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Then f is continuous at P if for each & > 0 there is a ¢ such that

IP-Ql<d = [fP)—f@DI<e ™
The function f is simply called continuous if it is continuous at each point P
in its domain. '

Informally, we say that a continuous function sends neighbouring points
to neighbouring points. In fact, if we define the g-neighbourhood of a point
X tobe

N(X)={Yes:|X —Y|<e},

then (*) says that any neighbourhood of f(P) has all sufficiently small
neighbourhoods of P mapped into it by £. (An g-neighbourhood of a point is
often called a ball neighbourhood because this is the actual form of the
above set in the “typical” space R®. One can generalize A4/, to any figure
in an obvious way. We later consider e-neighbourhoods of curves, which are
“strips” in R? and “tubes” in R, and ¢-neighbourhoods of surfaces, which
are “plates.”)

A set @ = & in which each point X has an A" (X) < @ is called open (in
&). Thus any space & is an open subset of itself, and the empty set F is
open for the silly reason that it has no elements to contradict the definition.
More important examples arc open intervals {xeR:a <x < b} in the
line R, and cartesian products of them in higher dimensions (rectangles
in R?, “hyperrectangles” in R"). .

The complement ¢ = & — 0 of an open set O is called closed (in &).
The key property of a closed set is that it contains all its limit points. X is a
limit point of a set @ if every 4 ,(X) contains a point of @ other than X
itself, It is immediate that a limit point X of € cannot lie in the open set
& — % If X is a limit point of both @ and & — 2 then X is called a frontier
point of @ and & — 9, and the set of frontier points is called the frontier
(of @ and & — D). For example, the frontier of an n-simplex A” in R"is
its boundary, while the frontier of a A™ in R", m < n, is A™ itself.

For every set & there is a smallest closed set s containing it, and called
its closure, and a largest open set int(s/) contained in it, and called its
interior.

We now review some important properties of continuous functions,
open sets, and closed sets.

(1) (Bolzano-Weierstrass theorem). A closed set € < R" is bounded if and
only if every infinite subset @ of € has a limit point (in é).

If ¢ is bounded, enclose it in a hyperrectangle and bisect repeatedly,
each time choosing a half containing infinitely many points of 2. Doing this
so that all edge lengths of the hyperrectangle — 0 defines a point X which isa
limit point of & by construction.

Conversely, if € is unbounded it contains a set & = {P;} of points such
that P, is at distance >1 from Py, ..., P;_, for each i, so 2 has no limit
point. O
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(2) Two disjoint bounded closed sets %, ¥, have a non-zero distance
d(% 1, €,) where

d(%y, %,) = inf{|P, — P,|: Py €%, P,€%,}

If d(%,, €,) = 0 choose PP’ € %, PP € %, for each n so that | P{” — PP
< 1/n. If %,, €, are disjoint this distance is always >0, hence the sets P
and {P9) are infinite and have limit points P;, P, (by the Bolzano-
Weierstrass Theorem) which are in €, ¥, respectively since the sets are
closed. But then |P; — P,| > 0, which contradicts the fact that Py, P,
are approached arbitrarily closely by P{", P§’ which are arbitrarily close
to each other. O

A bounded closed set in R" is called compact. (By (1), an equivalent
definition is that a compact set contains a limit point of each of its infinite
subsets.) In many circumstances compact figures are equivalent to finite
ones in the sense of 0.1.1, and this allows combinatorial arguments to be
applied to rather general figures. Two propositions crucial to this “finitiza-
tion” process are:

(3) The continuous image of a compact set is compact.

Let f be a function continuous.on a compact set €. By (1) it will suffice
to show that every infinite 2 < f(%) has a limit point in %. If not, there is an
infinite set {f(X,)} of points in f(%) with no limit point in f(%). But {X;}
has a limit point X €€ by (1), and every neighbourhood of f(X) contains
points f(X;) by the continuity of £, so f(X) is a limit point of {f(X)} and
we have a contradiction. 0O

(4) A continuous function f on a compact set € < R" is uniformly continuous,
that is, for any & > O there is a 6 > 0 such that )

X -Y|<d = |fX)—-f(NI<e
regardless of the choice of X, Y€ €.

Suppose on the contrary that there is no such J for some fixed & Then
there are X, X,,...€% such that #'(X,) does not map into A (f(X,))
unless 8 < 1/n. Let X € € be a limit point of {X, X,, ...}, using (1). Since f
is continuous there is a § > 0 such that 4" (X) maps into A",,(f(X)).

Now for n sufficiently large we have not only X, € A4 5(X), but also
N (X ) = A5(X), since X, approaches arbitrarily -close to X. Thus
N (X)) maps mto A p(f(X)), and in particular f(X,) € A (f(X)).
But then A",,(f(X)) < #, (f(X,)) and hence A", ,(X ;) maps into A" (X)),
contrary to the choice of X,. |

For example, a curve ¢ is a continuous map of the compact interval
[0, 1, so by (4) we can divide [0, 1] into a finite number of subintervals (of
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Figure 5

length < &) whose images (subarcs of ¢) lie in e-neighbourhoods. If ¢ liesin a
figure with reasonable e-neighbourhoods (say e-balls, for ¢ sufficiently
small), these subarcs can be deformed into line segments as in Figure 5.
Thus ¢ is equivalent to a polygonal curve, up to deformation. The notion of
deformation required for this finitization process will be defined precisely
in 0.1.9.

Exgraisk 0.1.2.1. If f is one-to-one consider the ordering of points on the curve f(%)
induced by the natural order on the line interval %. Show that if f(%) meets a closed
set o then it has a first point of intersection with #".

Exercisg 0.1.2.2. The proofs of (1), (2), (3), (4) above use the Axiom of choice (where?).
This can be avoided by giving an explicit rule for choosing a point P(%) from a closed
set @ = R™. Devise such a rule, starting in R".

Exercise 0.1.2.3. Construct a countable set of ball neighbourhoods in R”, from which
any open set is obtainable as the union of a subset. Deduce a rule for choosing a point
from an open set.

Exercise 0.1.2.4. Show that a continuous one-to-one function on a bounded closed set
has a continuous inverse (and hence is a homeomorphism).

ExercisE 0.1.2.5. Show that an m-simplex is closed in any R", n = m.
ExerCisE 0.1.2.6. Show that &7 = & L {limit points of #/} and int(«/) = S — (S — A).

Exercisk 0.1.2.7 (intermediate-value theorem). If f:[a,b] =R is continuous, prove
that f takes every value between f(a) and f(b).

0.1.3 Examples of Continuous Maps

Although it is superfluous to introduce another name for functions, we often
call them maps, to emphasize the idea of a function as an image-forming
process. This is particularly appropriate in topology, which owes its existence
to the fact that some visual information is preserved even by arbitrary
homeomorphisms. Homeomorphisms, or topological maps, can be called



0.1 The Fundamental Concepts and Problems of Topology 9

“maps” with some justice, and we extend the usage by courtesy to other
continuous functions (though the continuous function which sends every-
thing to the same point is a poor sort of “map™!).

Interestingly, modern geography has expanded its concept of “map”
to virtually coincide with the general homeomorphism concept. One now
sees maps in which each country is represenied by a polygon, with area
proportional not to its actual area, but to some other quantity such as
population. The region being mapped nevertheless remains recognizable,
mainly by the boundary relations between different countries, which are
topologically invariant. Western Europe, for example, is shown in Figure 6.

However, we should not push the geographic analogy too far, as this
can lead to the misconception that topology is just rubber sheet geometry,
in other words, that all homeomorphisms are deformations (defined precisely
as isotopies in 0.1.9). Once we leave the plane most of them are not—it is
quite in order to cut a figure, deform it, and then rejoin, provided that rejoin-
ing restores the neighbourhood of each point on the cut. The torus provides
a good illustration of this cut and paste method. In Figure 7 we cut the torus
along a meridian a, twist one edge of the cut through 2= relative to the other,
then rejoin. A small disc neighbourhood of any point on the cut is separated
into semidiscs at the first step, but reunited after the twist of 2z, so for any
e-neighbourhood on the final torus we can find a §-neighbourhood on the
initial torus which maps into it. The transformation therefore defines a
continuous one-to-one function, as does its inverse, so we have a homeo-
morphism f. It is intuitively clear that f cannot be realized by deformation
alone, in particular b cannot be deformed onto f(b). In fact, when one
studies homeomorphisms of the torus algebraically (6.4) the deformations
are factored out as trivial.

Continuous maps which are not necessarily one-to-one are also important.
For example, a curve is nothing but a continuous map of a line segment. If

o

]

Figure 6
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Figure 7 |

the endpoints have distinct images it is an arc, otherwise a closed curve,
which is also the continuous map of a circle. Points on the arc or closed
curve which are images of more than one point on the line scgment or circle
respectively are called multiple points or singularities. For example (see
Figure 8), there is an obvious map of the circle S! into R? which realizes
the figure eight. The figure eight has a double point which in this case is the
image of the two points 7/2, 37/2 on S*. We refer to a topological map of §'
as a topological S*, otherwise a singular S'. Similarly, one can speak of a
topological disc and singular disc, etc.

An important class of many-to-one maps ate covering maps, the paradigm
of which is the covering of S* by R*. This is defined by the function f R! - S!
which maps successive segments of length 2z onto the circumference of the
unit circle, in other words

f(x) = xmod 2rx,

where the right-hand side denotes the mumber ), 0 <y < 2=n such that
x =-y + 2nn for some integer n. Covering maps have the property of being
local homeomorphisms, that is, their restrictions to sufficiently small neigh-
bourhoods are homeomorphisms. In particular, the covering of 8* by R!
is a homeomorphism on any interval of length <2r. Coverings of 1- and

[

3n
2

HR
d

Figure 8
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2-dimensional complexes will be defined precisely later (2.2.1 and 4.3.2);
they turn out to have an elegant group-theoretic interpretation.

0.1.4 Identification Spaces

Every simplicial complex can be embedded in some R" (0.2), however, it is
not always necessary or natural to do this. The dimension of the ambient
space R is usually higher than that of the embedded figure, and this leads to
confusion between properties of the embedding and properties of the figure
itself. The problem is that construction inside a given space may involve
bending or intertwining parts in rather arbitrary ways, and to avoid the bias
of a particular method of assembly one should simply list the parts and say
which are to be made equal.

For example, the torus can be constructed from a unit square by joining
opposite sides according to the plan shown in Figure 9. In other words,
points on the perimeter which differ by unit vertical or horizontal translations
become equal. Actually joining opposite sides in R leads for example to the
torus shown in Figure 10 which treats the curves a and b quite differently,
whereas the original plan is completely symmetrical with respect to g and b.

The process of “saying points are equal when they’re not” can be formal-
ized by the construction of an identification space whose points are the sets
X = {X,, X,,...} of points X,, X,,... which we want to be equal and

0 b 0
a a
0 0
b
Figure 9

Figure 10
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whose neighbourhoods .4",(X) consist of the pointsin A" (X YU A (X)) U+,
for sufficiently small &. X is called the result of identifying X, X,,....

When the torus is constructed as an identification space of the square
the sets X are either (i) one-element sets (interior points of the square), (ii)
two-element sets (corresponding interior points of opposite sides), or (iii) a
four-element set (corners). The neighbourhoods of these three types of point
are respectively (i) discs, (ii) unions of two semidiscs (=discs), and (iii) the
union of four quarter discs (=disc) which confirms the fact that the torus is
homogeneous—every point has a disc neighbourhood.

A related, but more elegant, construction of the torus isthe “plane mod 1.”
One identifies any two points in R*> whose x- and y-coordinates differ
by integers. The homogeneity of this space is clear, but it is also clear that
every point is identified with some point in the unit square, from which we
recover the above representation. The map which sends (x, y) € R? to its
equivalence class mod 1 is a covering of the torus by the plane, which we
shall investigate further in 1.4.1 and 6.2.2.

Exercisk 0.1.4.1. What is the identification space of R? obtained by identifying points
with the same y-coordinate whose x-coordinates differ by an integer?

0.1.5 The n-ball and the n-sphere

The n-ball is usually defined to be the set
B"= {(Xn-.-,x,,)eR”:xf 4o F X,% < 1}

or any set homeomorphic to it, such as an n-simplex. The frontier of this set is
the (n — 1)-sphere

$" = {(x4,...,x )R x} + .-+ x2 =1}

In particular, B is represented by the line segment [~1, 13, and S* by the
unit circle in R2. §? is then the point pair { — 1, 1}. This equatorial pair divides
S into upper and lower hemi-1-spheres, which are seen to be homeomorphic
to B! by projection onto the x; axis. Thus St is an identification space of
two B'’s,-obtained by identifying corresponding points on their frontier
S§%s (see Figure 11). This construction easily generalizes to n-dimensions
(try it for n = 2), so we have the result that S” is the identification space of
two B™s, obtained by identifying corresponding points on their frontiers.

aq

Figure 11
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Exercise 0.1.5.1. Find a homeomorphism between A” and B", and show that it maps
the boundary of A" onto the frontier of B” in R™.

0.1.6 Manifolds

The most attractive figures from the topological point of view are those which
are homogeneous, in the sense that each point has a neighbourhood homeo-
morphic to the interior of a B" (an open ball) for some fixed n. These are
called the n-dimensional manifolds, or n-manifolds for short.

The simplest examples are R” and S”, whose homogeneity is obvious.
Other examples arise as spaces whose elements are not points (at least, not
in the initial interpretation) but other geometric objects or phases of mech-
anical systems.

A good example is given in Figure 12 which shows the system of two rigid
rods free to rotate about P (which is fixed) and Q, and constrained to move
in a vertical plane. The space of positions of this system is clearly 2-dimen-
sional and homogeneous, but it comes as a surprise to find it is the torus!
The reason is simply that position is uniquely determined by values 0 < 6

< 2mand 0 < ¢ < 2m, as is position on the torus if we interpret 6 and ¢ as
longitude and latitude (see Figure 13).

An example from geometry is the space of all unit tangents to the unit
sphere. Using any reasonable measure of the distance between two tangents,
the space is clearly homogeneous and locally 3-dimensional (for example,
use two coordinates to fix the point of contact with the sphere, one for the
direction of the tangent), hence a 3-manifold. However, there is no obvious
coordinate system for the whole space. In fact this is a manifold we have not
seen before, and it will be identified only in 8.3.4.

Figure 12
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Figure 13

It is less easy to tell, in general, when a figure constructed as an identifica-
tion space is a manifold, and the neighbourhoods of individual points may
have to be checked, as we did for the identification space of the square in
0.1.4. The check in that case revealed a 2-manifold (the torus). On the other
hand, if we identify all three sides of a triangle as in Figure 14, the result ¥
is not a manifold, because & point P on one of the sides has a “book with three
leaves” as neighbourhood (Figure 15) and presumably no neighbourhood
homeomorphic to a disc. We shall not prove this, however, it is possible to
show this complex is not a 2-manifold by computing its fundamental group
(see Chapter 4) and showing that it is unequal to the group of any 2-manifold
by the methods of Chapter 5.

ExeRrcisE 0.1.6.1. What is the dimension of the space of all straight lines through the
origin in R3? Describe this manifold as an identification space of §2.

Figure 14

Figure 15



0.1- The Fundamental Concepts and Problems of Topology 15

Figure 16

Exercise 0.1.6.2. Show-that the complex ¥ above may also be obtained by pasting a
disc onto the figure obtained by identifying the ends of Figure 16 after a twist of 27/3.

ExERCISE 0.1.6.3. Show that the only 1-manifolds are R* and S'.

0.1.7. Bounded Manifolds

The n-simplex does not appear to be a manifold because we cannot find
open ball neighbourhoods for points on its boundary. Instead, the boundary
points have “half-n-ball” neighbourhoods, homeomorphic to the open n-
ball minus the open half-space determined by a hyperplane through its
centre. A figure in which every point has either an open n-ball or half-n-ball
neighbourhood is called a bounded n-manifold or n-manifold with boundary.
Tf ‘we were to prove that the open n-ball and half-n-ball were really not
homcomorphlc then we could define the boundary of a bounded n-manifold
in a topologically invariant way as the set of points with half-n-ball neigh-
bourhoods; it would coincide with the boundary we have already defined
for the n-simplex (0.1.1), and we would also know that boundéd manifolds
are not manifolds. .

These results are correct, however they are not as useful as they seem. In
dimension 2 we can distinguish manifolds from bounded manifolds by the
- fundamental group (4.2.1 and 5.3.3), while in dimension 3 the problem is to
- distinguish manifolds from each other rather than from bounded manifolds.
We shall therefore adopt the easier course of using “boundary™ as a term
which is useful in the discussion of simplicial complexes, without appealing
to its topological invariance, just as we use genuinely nontopological terms
such as “length” and “straight:line.” The same applies to “dlmenszon
‘which is in fact intimately related to “boundary.”

The nontopological definitions of these terms are as follows.

The dimension n of a simplicial complex is the maximum dimension
among its simplexes. (Thus n exists automatically for a finite complex. For
an infinite complex its existence is made part of the definition, see 0.2.1). The
boundary 0% of an n-dimensional simplicial complex % is the “mod 2 union”
of the (n — 1)-simplexes occurring as faces in €. That is, one counts the
number of occurrences (assumed finite, 0.2.1) of a given (n — 1)-simplex as a
face among the simplexes of %, reduces it mod 2, and takes the union of the
(n — 1)-simplexes which are counted once, An example is given in Figure 17.
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Figure 17

If € is the complex shown on the left, then 0% is given by the figure on the
right because a, b, ¢, d occur twice and e, f, g, h occur once.

i

0.1.8 Embedding Problems

Next to the homeomorphism problem, the most important type of topo-
logical problem is that of distinguishing different embeddings of one figure in
another. An embedding of %, in %, is a one-to-one continuous map

[1€, > €,.

Given %, and %, the first question is whether an embedding exists, and then
if there is one, how many? The latter question of course assumes that we only
distinguish embeddings which differ in a topologically significant way.
This will be clarified further in 0.1.9, for the moment we shall illustrate the
kind of results available by looking at embeddings of S' in R, R?, and R®.

(1) S! cannot be embedded in RY. An embedding of S' is equivalent to a
- continuous map

f:[0,1] - R

which is one-to-one except that £(0) = f(1). This is impossible by the
intermediate-value theorem (Exercise 0.1.2.7).

(2) An embedding of S! in R? is a simple closed curve in the plane. By the
Jordan-Schoenflies theorem (0.3.9) any such curve may be mapped
onto the unit circle by a homeomorphism of R?. Presumably we should
not distinguish embeddings which are equivalent up to homeomorphism
of R2, hence there is only one embedding of S* in R?.

(3) It is intuitively clear that there are different embeddings of Stin R3,
namely, different knots. We shall prove in Chapter 4 that there are
infinitely many embeddings, by finding knots 4", #',,... such that
R® — #; and R® — ; are nonhomeomorphic for i # j. Then there
certainly cannot be any homeomorphism of R? which maps '; onto ;.

Exercisk 0.1.8.1. Use an embedding argument to show that R' is not homeomorphic
to R
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Exercise 0.1.8.2. Use the Jordan-Schoenflies theorem to show that there are only
finitely many ways to embed a finite graph (I-dimensional simplicial complex) in R%
If A", denotes the graph with n vertices 1,2, ..., n and edges {i, j} for each i # j <
show that 2”5 does not embed in R?, but that "5, 44, and ", embed in the torus.

0.1.9 Homotopy and Isotopy

The homotopy concept captures the notion of deformation of a map. Two
maps f: €, —» %, and g: €; — ¥, are called homotopic if there is a continuous
map

h:[0,1] x ¢, -~ %,
such that 4(0, x) = f(x) and h(1, x) = g(x). We can think of  as a deforma-
tion process over the time interval [0, 1], and the section h,(x) = h(t, x) at
time ¢ as the map into which f has been deformed by time ¢.

The most important case is where 4, = S?, so that f and g are closed
curves in €,. For a picture illustrating this case see Figure 133 in 3.1.5. It
turns out that the study of homotopic curves is the most important tool in
the classification of manifolds of dimension < 3. Not surprisingly, a manifold
of small dimension is determined to a large extent by the behaviour of curves
inside it; in particular we can distinguish the sphere and the torus in this way
(see Figure 18). Any curve c on S? is null-homotopic, that is, homotopic to
a point, whereas we can prove that the curve a on the torus is not. The pro-
perty of being null-homotopic is obviously preserved by homeomorphisms,
whence it follows that $? and the torus are not homeomorphic.

A space in which every closed curve is null-homotopic is called simply
connected; so the difference between S* and the torus can also be expressed
by saying that $? is simply connected but the torus is not.

This type of reasoning would not be very useful if each case required an
ad hoc argument that certain curves are not null-homotopic. The power of
" the homotopy concept lies in algebraic properties which ultimately permit
us to compute a fundamental group for each complex (0.5.1) and systematically
reduce homotopy questions-to group theory.

The group properties depend crucially on the fact that the curve is not
required to be simple at any stage, and in fact the deformation may create
more singularities than were present at the beginning. Only then can one
introduce a product of closed curves, and cancel a closed curve by its inverse.

Figure 18
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Figure 19

The natural product of two curves p, g which begin at P—their concatenation
—will obviously have a multiple point at P (as shown in Figure 19) and the
natural inverse p~ ! of p will lie on top of p but with the opposite orientation
(pp~! is then null-homotopic). These ideas are formalized in 3.1.4-3.1.6.

If homotopy is the applied notion of deformation in topology, there is
nevertheless a pure notion, which we call isotopy. An isotopy is a homotopy
h for which every section h, is a homeomorphism (onto its image). In particu-
lar, during an isotopy of a simple closed curve the image remains simple at
every stage.

Isotopy seems to be a more natural notion of deformation, but it is not
algebraically tractable. In the case of simple curves on a 2-manifold the
situation is saved by a theorem of Baer 1928 (6.2.5) which says that simple
curves are isotopic if and only if they are homotopic. This enables us to
classify the embeddings of $! in a 2-manifold by computations in the funda-
mental group.

Isotopy is a suitable equivalence relation for classifying embeddings of
S! in surfaces, but definitely not in R?, since a knot can be isotopic to circle.
The “knotted part” can be shrunk to nothing without acquiring a singu-
larity at any stage. Figure 20 shows an example (Alexander 1932). A better
notion in this case is that of ambient isotopy: two curves in R? are ambient
isotopic if one is mapped onto the other by a homeomorphism of R3 isotopic
to the identity map. In particular, ambient isotopic curves must have homeo-
morphic complements, which is not the case for a knot and the circle, as
we-shall see in 4.2.5.

Exercisk 0.1.9.1. Show that any homeomorphism of R! is isotopic either to the identity
or the map x — —x. What is the situation in R and R*?

3
Figure 20
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0.2 Simplicial Complexes

0.2.1 Definition and Basic Properties

Recalling the definition of a simplex and its faces in 0.1.1, we define an
n-dimensional simplicial complex (n-complex) A to be a union of simplexes
of dimension <n satisfying the following conditions:

(i) Each simplex meets only finitely many others.
(ii) Two simplexes are either disjoint or their intersection is a common face.

It is best to think of cutting the n-simplexes out of R, then assembling
the complex as an identification space, as in 0.1.4. Nevertheless it is also
possible to embed the whole complex in a suitable R™ as we shall see in 0.2.3.

Since an n-simplex is determined by its vertices, an n-complex is determined
by a list of its vertices, together with those subsets of the vertices which cor-
respond to simplexes. Since any face of a simplex is itself in the complex, it
follows that any subset of an element of the list is itselfin the list. In particular,
the vertices are listed as the singleton subsets. It is not necessary to give co-
ordinates for the vertices, merely distinct names, since different choices of
coordinates give homeomorphic simplexes and hence homeomorphic
complexes. This description, called a schema, is therefore combinatorial in
the strictest sense of the word.

As an example we write down the schema for the 2-complex shown in
Figure 21, consisting of a triangle with an attached line segment, It is a
consequence of the triangulation and Hauptvermutung results of 0.2.5 that
all homeomorphism questions for 2- and 3-manifolds reduce to combina-
torial questions about schemata.

Condition (i) in the definition of simplicial complex is the local finiteness
condition. It is automatically satisfied when there are only finitely many
simplexes, in which case we call the complex finite. It is clear that a finite
complex is compact, and similarly local finiteness implies local compactness,

{Pli PZ! PS}
{PI’PZ}x {PZ’PS}l {P37Pi}l {POiPI}
{Po}, {Pi}, {P2}, {P3}

Figure 21
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that is, a neighbourhood with compact closure for each point. More im-
portantly, local finiteness implies every point has a simply connected (0.1.9)
neighbourhood, that is, one in which every closed curve is null-homotopic.

A simplex A is simply connected because it is convex (0.1.1). This allows
any curve ¢ in A to be contracted to one of its points P by moving each point
on ¢ along the ray from P so that its distance from P at time ¢, 0<txg1,
is a fraction (1 — ) of its initial distance. With local finiteness one can find
an e-neighbourhood of any point P which contains only simplexes Ay, ..., Ay
containing P, and then any curve in this neighbourhood can be contracted
to a point by sliding it down rays to a common point of A,,..., A in the
same way.

The union of the simplexes containing a given vertex P in a complex € is
called the neighbourhood star of P. Typical neighbourhood stars are shown
in Figure 22. The neighbourhood star is a suitable combinatorial notion of
aneighbourhood, because it is homeomorphic to the closure of any sufficiently
small e-neighbourhood of P. A homeomorphism is obtained by mapping
each line segment from P to the frontier of the e-neighbourhood linearly
onto its prolongation to the boundary of the simplex in which it lies.

It follows that if % is an n-manifold then each of its neighbourhood stars is
a topological B".

(1-complex) (2-manifold)
Figure 22

Exercisi 0.2.1.1. Show that an inﬁnitevcomplcx is not compact. 7

Exercise 0.2.1.2. Construct a figure in R? which is not locally simply connected.
Exercist 0.2.1.3. In a simplicial n-manifold, show that the faces not containing P in the
neighbourhood star of P constitute a topological 87~ L

0.2.2 Orientation

A 1-simplex A! has a natural orientation as the topological image of the unit
interval [0, 1]. Namely, if f:[0,1]— A! is a topological map we let

f) < fMifx < p. ¥ Py = f(0), Py = f(1) we can describe the orientation
combinatorially by the ordered pair (P, P;) and pictorially by

P, P,
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In general, we interpret the ordered (n + 1)-tuple (P, ..., P,.;) as an
orientation of the n-simplex A" with vertices P, ..., P, ;. Orientations are
equivalent if they differ by an even permutation of the vertices, so there are
in fact two possible orientations, +(Py,..., P,,,) which is just (Py, ...,
P,y and —(Py, ..., P,,,), obtained by an odd number of exchanges of
vertices.

In a 2-simplex the orientation can be indicated by a circular arrow as
shown in Figure 23. An orientation of an n-simplex induces an orientation
in each face, simply by omitting the vertices not in that face.

An orientation of an n-complex is an assignment of orientations to its
simplexes. The orientation is coherent if n-simplexes which share an (n— 1)-
dimensional face induce opposite orientations in that face. An example of
what a coherent orientation for a 2-manifold looks like is given in Figure 24.
Intuitively, one can slide a circular arrow all over the surface and match it

Py
@ (Po’Pan)':(PleuPo):(PZsPo,Pl)
P, P
Py

2

@ (Po, P2, Py} = (Py, Py, Po) = (Py, Py, Py)
P, P

2

<

Figure 23

Figure 24
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Figure 25

with the circular arrow drawn in each triangle. A complex is called orientable
if it has a coherent orientation.

The classic nonorientable figure is the Mobius band (Figure 25). The
reader is invited to triangulate this surface and see why it cannot be oriented
coherently.

0.2.3 Realization in Euclidean Space

Any n-complex can be embedded in R+ 1,

To motivate the proof, first consider how to embed a 1-complex in R
A topological embedding is certainly possible if we simply bend the edges to
avoid collisions, but a rectilinear embedding is also possible if we place the
vertices on a suitable twisted curve. There arc many curves with the property
that no four points on them are coplanar, so chords meet only when they
have a common endpoint, and hence can serve as edges for the 1-complex.
One such curve is given by the parametric equations

x=t y=t, z=¢t
for if distinct points ¢y, £, £3, tq lic 0n the plane
ax + by +cz=4d,
they are four distinct roots of the cubic equation
at + bt* + ct® = d

which is impossible.

The argument readily generalizes to embed an n-complex in R**!, We
put vertices on the curve

Xy = t Xz = tla sy Xon+1 = t2n+1

and then no 2n + 2 distinct vertices lie in a common hyperplane, as this
would imply an equation of degree 2n + 1 with 2n + 2 distinct roots. It
follows that two n-simplexes (each determined by n + 1 vertices) meet only
if they have vertices in common. Since the simplex determined by the com-
mon vertices is itself in the complex, we have an embedding.
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The above proof was found by Leigh Samphier. Other proofs use only
linear algebra (one using the above curve may be found in Giblin 1977),
but they are slightly longer. In any case, the result that an mth degree equa-
tion has <m roots may be proved using the mean-value theorem of calculus,
and hence is quite elementary.

The dimension 2n + 1 cannot be lowered. We saw this for n =1 in
Exercise 0.1.8.2. Van Kampen 1932 proved the generalization of this fact
for the “complete n-complex” on 2n + 3 vertices.

Exercise 0.2.3.1, Show that one turn of the helix x = cos t, y=sint, z = t also has
the property that no four points are coplanar.

0.2.4 Cell Complexes

Viewing a figure as a simplicial complex is one way to assemble it from
cells, in this case simplexes. Taking a cell to be any figure homeomorphic to a
simplex, we can also consider more complicated methods of assembly,
perhaps involving identification of the boundary of a cell with itself. For
example, the construction of the torus by identifying sides of the square may
be viewed as a 2-dimensional cell structure with one 0-cell (the vertex 0), two
1-cells (the edges a and b) and one 2-cell (the square) as shown in Figure 26.
In general, a cell complex is constructed by first assembling the O-cells;
then attaching the I-cells by identifying their boundaries with O-cells to form
the 1-skeleton; then attaching the 2-cells by mapping their boundaries onto
the 1-skeleton to form the 2-skeleton; and so on. These stages for the above
cell structure for the torus are shown in Figure 27. If the attaching maps are

0 0
a a
0 0
b
Figure 26

(1 @

Figure 27
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Figure 28
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sufficiently simple, as they will be in all the cases we consider, it is possible
to reduce a cell decomposition to a simplicial decomposition by elementary
subdivision. An elementary subdivision of a 1-cell is the introduction of a
new interior O-cell, an elementary subdivision of a 2-cell is the introduction
of an interior 1-cell connecting 0-cells, and in general one m-cell is divided
into two by the introduction of a new interior (m — 1)-cell spanning an
(m — 2)-sphere in its boundary.

For example, the cell decomposition of $? into two hemispheres can be
made simplicial by the series of elementary subdivisions of 1-cells and 2-
cells shown in Figure 28. Conversely, one can view the initial cell decom-
position as the result of amalgamating certain cells in a simplicial decom-
position (reverse the arrows). Since all the cell decompositions we use can be
viewed in this way, it will not be necessary to make our definitions of cell
complex and elementary subdivision any more formal, since in the last
resort one can always view cells and the dividing cells inside them as unions
of simplexes in a simplicial decomposition. The point of considering cell
complexes at all is to minimize the number of cells, which usually helps to
shorten computations,

Exercisk 0.2.4.1. Obtain the two decompositions of the torus in Figure 29 by elementary
subdivision of the square cell structure. Which of them is simplicial?

Figure 29
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EXErCISE 0.2.4.2. The barvcentric subdivision of a simplex A" is obtained by introducing
anew vertex at the centre of mass (the barycentre) of each face, and then introducing all
simplexes of dimension <n determined by the enlarged set of vertices. Why is this a
subdivision? (Hint: Generalize the theorem that the medians of a triangle are con-
current.)

Show that by repeating barycentric subdivision a sufficient number of times in a
finite n-complex, the diameter of all simplexes may be made less than a given ¢ > 0.

Exercise 0.2.4.3. Making the obvious interpretation of barycentric subdivision for
arbitrary 1-cells, not necessarily straight, show that the second barycentric subdivision
of a 1-dimensional cell complex is simplicial.

EXERCISE 0.2.44. Show that the boundary and orientability character of a simplicial
complex are invariant under elementary subdivision.

0.2.5 Triangulation and Hauptvermutung

Our definition of a manifold in 0.1.6 depended on the notions of neighbour-
hood and homeomorphism, and it is by no means clear that every n-manifold
is a simplicial complex. However, this is true for n < 3. For n = 1'it is clear,
since the only 1-manifolds are R' and S!; for n = 2 it was proved by Rado
1924; and for n = 3 by Moise 1952. A simplicial decomposition of a manifold
is also called a triangulation, and proofs that 2- and 3-manifolds possess
triangulations may be found in Moise 1977.

We shall bypass these theorems by confining our attention to figures which
are simplicial complexes. As pointed out in 0.1.1, we shall certainly not miss
any reasonable figures with this approach. It is also possible to give purely
combinatorial criteria for 2- and 3-complexes to be manifolds. For 2-
manifolds these are given in 1.3.1, and for 3-manifolds in 8.2..1 and 8.2.2.

Finally, one can-give a combinatorial definition of homeomorphism
using the notion of elementary subdivision. Two simplicial complexes are
certainly homeomorphic if they possess isomorphic schemata (schemata
which are identical up to renaming of vertices). More generally, they are
homeomorphic if their schemata become isomorphic after finite sequences of
elementary subdivisions, in other words, if they have a common simplicial
refinement. We say that two complexes are combinatorially homeomorphic
if this is the case. We might naively expect a common simplicial refinement
to follow from superimposing the two simplicial decompositions of the
manifold, if indeed the two manifolds are the same. However, one must
bear in mind that in mapping one decomposition onto the other rectilinearity
may be lost, so that two edges, for example, may intersect in infinitely many
points. (The superimposition error has a distinguished history, being first
committed by Riemann 1851 in discussing the connectivity of surfaces.)

The Hauptvermutung (main conjecture) of Steinitz 1908 states that
homeomorphic manifolds are combinatorially homeomorphic. It is known
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to be correct for manifolds of dimension <3, in fact it is a rather easy con-
sequence of the triangulation theorems. We shall derive the Hauptvermutung
for triangulated 2-manifolds as a consequence of the classification theorem in
1.3.7 and 5.3.3.

With the proofs of triangulation and Hauptvermutung we are entitled to
say that the homeomorphism problems for 2- and 3-manifolds are purely
combinatorial questions. To answer them, however, we need combinatorial
tools from group theory, and it turns out to be easier to develop these tools
directly, without appeal to Hauptvermutung. This is the route we shall take
in this book, particularly for 3-manifolds. The theory of 2-manifolds under
elementary subdivisions is presented in Chapter I, but before it can be
completed we need the group theory of Chapters 2 and 3, which also serves

for higher dimensions. (

0.3 The Jordan Curve Theorem

0.3.1 Connectedness and Separation

The statement, as a theorem, that every simple closed curve in R? separates
it into two regions (Jordan 1887) was important in the history of topology
as the first moment when an “obvious” fact was seen to require proof. As
is well-known, Jordan’s own proof was faulty, and this has only added to the
theorem’s reputation for subtlety. The first rigorous proof was' given by
Veblen 1905, and a variety of lengthy proofs have been reproduced in
textbooks. A very short and transparent proof is given in Moise 1977, and
we reproduce it below, stightly modified. Little use will actually be made of
the theorein, but it is an excellent example of the process of reducing general
topology to combinatorial topology. )

“The first step is to reduce the general notion of connectedness to one in
terms of polygonal curves. This reduces questions about general curves to
questions about polygonal curves, for which the separation properties are
casily proved.

The key proposition is the following:

Let P, Q€ 0, an open set in R". Then the following statements are equivalent.
(i) P, Q are the endpoints of a polygonal are <0. '
(i) P, O are the endpoints of an arc <0.

(iii) P, Q lie in an open set @' = O which is not the union of two disjoint non-
empty open seLs.

(jii) = (i). Consider the set of all points R which are connected to P by a
finite chain of open balls %, ..., %, < 0. That is

Pe%,, Re®,, and B, B # -
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These points R obviously constitute an open set 0p < O. If 0p # 0, then
@ — Oy is also open, because any ball = @ which is partly in Op is entirely in
Op, hence any S € @ — 0 has its ball neighbourhoods in ¢ — 0p.

Then if Q ¢ 05 the set ¢" decomposes into disjoint nonempty open sets
' N Op and O ~ (0 — Op), which is a contradiction. Thus @ is connected
to P by a finite chain of open balls, and hence by a polygonal arc.

(i) = (ii) is trivial.

(ii) = (iii). Let 4 be an arc connecting P and Q, and let ¢’ be an open set
o g, obtained as the union of ball neighbourhoods in @ of all the points in a.
If @' decomposes into disjoint open sets ¢, 0", ..., let X be the first point of
a not in ¢ (Exercise 0.1.2.1). Then X lies on the frontier of ¢ and cannot
belong to any open set disjoint from ©”, so we have a contradiction. O

In general topology an open set @ is called connected if it is not a disjoint
union of nonempty open sets. This is also expressed by saying @ has only
one component, the component containing a given point P being the ¢y con-
structed above. Thus we have just proved that a connected open set & < R”
has the stronger property of being arc connected, that is, any two points in ¢
are the endpoints of an arc in ¢; and furthermore the arc can be assumed
polygonal. ‘

A set & contained in a set @ separates points P, Qe 9 — & if any arc
from P to Q in @ meets . If @2 — & is open (as it will be if 2 is open and &
is a closed set, such as a curve), then an equivalent statement (by the above
proposition) is that P and Q lie in distinct components of 9 — &,

From now on we refer to a simple closed curve in R? as a Jordan curve.

Exercise0.3.1.1. Show that ¢p = {Qe@: P, Q are the endpoints of an arc =0} =
{Q e ®: P, Q are the endpoints of a polygonal arc =0}.

0.3.2 The Polygonal Jordan Curve Theorem

A polygonal Jordan curve p separates R? into two components.

The open set R* — p has at most two components, determined by the
components of /" — p, where ., is a strip neighbourhood of p in R?. For
any point PeR? is connected to one “side” of /" by a line segment, and
any point in A" — p is connected to either P, or Q, by a polygonal arc in
A" — p (see Figure 30).

We now prove that R? — p has at least two components.

Consider a family of parallel lines / in a direction different from that of
any segment of p. Intuitively, P is outside p if it lies on an unbounded segment
ofan! — p, or in general if one crosses p an even number of times in order to
reach P from an unbounded segment of an I — p (see Figure 31). (Touching
a vertex as shown does not count as a crossing.) The points PeR? — p
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Figure 30

Figure 31

with this property obviously constitute an open set 0, and the points with the
contrary property constitute an open set # (the “inside™). Since 0 and S
are disjoint by definition, R? — phas at least two components, and therefore
exactly two. |

We define a polygon 2 to be a region in R? consisting of a polygonal
curve p and its inside. The next section deals with separation in polygons.

ExercisE 0.3.2.1. Show that the polygon & determined by a polygonal Jordan curve p
may be triangulated, by first dividing it into convex polygons. Deduce that

p = 0% = frontier of #

and that the inside of p is the interior of 2.
Exercisk 0.3.2.2. Show that a polygonal arc does not separate RZ

Exercise 0.3.2.3. Show that a semidisc (half 2-ball, cf. 0.1.7) may be separated by an arc.

0.3.3 O-graphs

A figure 7 consisting of a polygonal Jordan curve p and a simple polygonal
arc p; connecting points @, S on p, and elsewhere lying in the interior of the
polygon # determined by p, is called a 0-graph.

If 7 is a 6-graph and py, p, denote the arcs into which p is divided by Q, S,
then p, separates an interior point P, of p, from an interior point P of p; in 2.
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Asin 0.3.2, the components of R* — 7 are determined by the components
of &' — F, where A" is a strip neighbourhood of 7 in R2, The latter com-
ponents are

(i) astrip 473 around the “outside” of p
(ii) a strip 4", commencing on the “inside” of p,
(iii) a strip 4", commencing on the “inside” of p,.

Strips (ii) and (iii) continue up the sides of p, (see Figure 32) and either close
into separate strips or (somehow!) join into one. In fact there must be three
separate strips by 0.3.2, since they are pairwise separated from each other by
polygonal Jordan curves p; U p;.

Now extend p, to the outer frontier of 43 by transverse segments at
each end, to become pj (see Figure 33). Then (2 U A"3) — p5 consists of two

Figure 32

Figure 33
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components, determined by 4", and .4",, which contain P, and P, res-
pectively. Thus there is no arc from Py to P, in (# U A"3) — p3, and a
Jortiori none in & — p,.

In other words, p, separates P, from P, in 2. O

0.3.4 Arcs Across a Polygon

If P, Q, R, S are points in cyclic order on the boundary p of a polygon 2, and
a is a simple arc from P to R which elsewhere lies in int(Z), then a separates
Q from S in 2.

Since p is polygonal, points @', §' € int(#) sufficiently close to Q, S res-
pectively can be connected to them by line segments in int(#?). Furthermore,
these line segments will miss a if they are sufficiently short, since the closed
sets Q, S, a are nonzero distances apart by 0.1.2(2). Thus if Q, § are not separa-
ted by a, neither are @', §’ and they then lie in the same component of the
open set # — (p U a). It follows from 0.3.1 that @', §" are connected by a
polygonal arc in 2 — (p L a), so @, S are connected by a polygonal arc p,
in # — g, which meets p only at Q, S. We can assume p; is simple, since loops
can be omitted, so we have a G-graph (see Figure 34).

Then, by 0.3.3, p; separates P from R in &, contrary to the existence of
the arc a connecting them. [

Corollary; If ay, a, are two simple arcs from P to R in int(P), disjoint except
at P, R, and if a, is the first arc encountered on an arc p from Q to S in int(%),
then a, is the last encountered.

Suppose on the contrary that the first and last points encountered (which
exist by exercise 0.1.2.1) X, Y both lie on a, as in Figure 35. Let p; be the
subarc of p from Q to X; let a be the subarc of a; from X to Y; and let p, be
the subarc of p from Yto S. Then p; U a U p, is an arc in # — a, connecting
O to S, contrary to the fact that a, separates these points. 1

S
Figure 34
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Figure 35

0.3.5 The Jordan Sepafation Theorem

If ¢ is a Jordan curve in R?, then R* — ¢ is not connected.

Since ¢ is compact by 0.1.2(3), we can assume it lies in the interior of a
square ABCD < R2 Let A'D’ be the left-most vertical in the square which
meets ¢, and B'C’ the rightmost. They exist, otherwise there would be
vertical disjoint from ¢ but at zero distance from it, contrary to 0.1.2(2).
Now choose points P, R where ¢ meets A'D’, B'C’' respectively, and con-
struct the hexagon APDCRB (see Figure 36). This polygon contains ¢ in its
interior except at P and R.

We now define a point Z which intuitively lies “inside” ¢, and prove that
¢ separates it from 8(4ABCD).

Let ¢y, c, be the two arcs into which ¢ is divided by P, R, where ¢, is the
first encountered on a vertical from Qeint(4'B’) to Seint(D'C’). Let X
be the last point at which this vertical meets ¢,, and Y the first point below
X at which it meets ¢,. X, Y exist by the corollary in 0.3.4. Then let Z be any
point in int(X Y) (see Figure 37).

Now if Z lies in the same component of R? — c as any point on d(ABCD)
~ there is a polygonal arc connecting them by 0.3.1; and hence a polygonal

A A’ B’ B
4
R
P
D D' C C

Figure 36
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Figure 37

Ikt

Figure 38

simple arc a between Z and a point W s P, R on the boundary of the hexagon.
P, R divide this boundary into upper and lower parts. If, say, W is on. the
upper part we construct the 6-graph shown in Figure 38 by uniting a with
ZS. By hypothesis a does not meet ¢, and ZS does not meet c,, 50 a U ZS
does not meet ¢,. But by 0.3.3, a U ZS separates P from R, contrary to the
existence of the arc ¢; connecting them.

The argument is completely analogous when W is on the lower part. [

0.3.6 Arcsin a Polygon

Let P,Q, R, S be points in cyclic order on the boundary of a polygon & and
let a,, a, be disjoint simple arcs which lie in int(P) except that a, begins at P
and a, ends at R. Then Q and § are not separated by a, U a, in 2.

Since @, S, a,, a, are disjoint closed sets, there is some minimum distance
& > 0 between them, by 0.1.2(2). We now pave R* with rectangular “bricks”
of diameter <8/2 in the pattern shown in Figure 39. This paving has the
property that any finite (arc) connected union &/ of bricks has a boundary
consisting of disjoint Jordan cprves, and by paving so that 0% does not pass
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Figure 40

through a corner or touch (as distinct from cross) an edge of a brick, the same
is true for o/ N 2.

Now let &/ consist of the bricks which meet a,, or meet bricks which meet
ay. Then g, < int(e/,) but &/, does not meet a,, since the distance between
ay, a, is >0 (see Figure 40). The Jordan curves which constitute 6(of, N )
do not meet a, except for a segment X Y containing P in 82. The boundary
arc.a of o/, N #_complementary to. XY therefore runs in £ from the point
X between Q and P to the point Y between P and S. Thus if p, is the subarc of
0% from Q to X and if p, is the subarc of 07 from Y to S, then the arc
Py avp,connects Qto Sin# — (a, U ay). O

By moving p;, p, into int(#) by a sufficiently small distance, and removing
any loops, we can connect Q, S by a simple polygonal arc which is in int(#)
— (a, U a,) except at its endpoints.

0.3.7 No Simple Arc Separates R?
If a is a simple arc in R?, then R* — a has only one unbounded component
because a is bounded. We show that R?* — a has no bounded component.

If there is a bounded component 2 of RZ — a its frontier is a closed subset
of a. The minimal subarc of a containing the frontier of # therefore has its
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endpoints on the frontier. This subarc will then also separate R?, so we may
as well assume that the endpoints T, T" of a are on the frontier of # to begin
with.

Since T, T" are limit points of the connected set % they cannot be separated
by any curve disjoint from %. We now derive a contradiction by constructing
such a curve.

We use the method of 0.3.5 to enclose a in a polygon 2 whose boundary
meets g at exactly two points P, R, not necessarily the endpoints T, T” of a.
By the concluding remark of 0.3.6 there is a polygonal arc p from Q to § in
int(#) which misses the subarcs a,, az of g from P to T and R to T’ res-
pectively (see Figure 41).

Figure 41

Let a; be the subarc of a from P to R, and let ¥ and W be the first and last
points of p on a;. Let p, be the subarc of p from Q to V; let a’ be the subarc
of a; from V to W; and let p, be the subarc of p from W to S. Then by 0.3.4
p1 U @ L p, separates P from R in £, and hence T from T, since T is con-
nected to P and T to R. However, p, U a' U p, does not meet 2, since p;, p,
lie in the unbounded component of R? and o' < a, so we have a contra-
diction. O

The above theorem depends crucially on the fact that a simple arc is
the topological image of a closed interval, and hence has endpoints. The
topological image of an open interval can obviously separate RZ—for
example, an infinite straight line.

Exercisk 0.3.7.1. Give an example of the topological image of an open interval which is
bounded and separates R2.

EXERCISE 0.3.7.2. Show that an open disc cannot be separated by a simple arc and deduce
that the boundary of a bounded 2-manifold is topologically invariant (cf. 0.1.7 and
Exercise 0.3.2.3.).

EXERCISE 0.3.7.3. Where does the above proof assume that a is simple?
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0.3.8 The Jordan Curve Theorem

If ¢ is a Jordan curve in R?, then R* — ¢ has exactly two components.

Since we know from 0.3.5 that R? — ¢ has at least two components, one
of which is unbounded, it will suffice to show that there is only one bounded
component. ‘

Enclose ¢ in a polygon £ as in 0.3.5, so that ¢ meets 02 at exactly two
points P and R, and let ¢y, ¢, 0, S, p = QS, X, Y, Z also be as in 0.3.5 (see
Figure 42). In addition, let U be the first point at which p meets ¢ (on ¢,, by
definition of ¢;) and V the last (on ¢,, by 0.3.4). Let p, = QU let a, be the
subarc of ¢; from U to X; let p, = XY; let a, be the subarc of ¢, from Y to
V; and let p, = V5. Then if there is any bounded component #' of R? — ¢
other than the one % containing Z, a = p; U a4, U p, U a, U p3 does not
meet it. However, a separates P from R by 0.3.4, so the frontier of #' cannot
contain both P and R. But then the frontier of £’ lies in an arc of ¢, which is
impossible by 0.3.7. O

Figure 42

Exercisk 0.3.8.1. Show that a simple closed curve on §? separates it into two com-
ponents, and that a simple curve in R? which goes to infinity at both ends (make a
suitable definition of this) separates R? into two components.

0.3.9 The Jordan-Schoenflies Theorem

To strengthen the Jordan curve theorem we might ask whether the inside of
a Jordan curve c is in fact a topological disc. This was already suggested by
the Riemann mapping theorem of Riemann 1851, though not actually proved
until Schoenflies 1906, 1908. In fact one has the even stronger result that a
Jordan curve can be mapped onto a circle by a homeomorphism of the
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whole of R2, and any homeomorphism of R? is isotopic to either the identity
or a reflection. Thus there is only one way to embed an S* in R? from the
topological point of view.

The proofs of these theorems can be obtained with machinery similar to
that used above, but rather than take up more space we simply refer the
reader to Moise 1977.

In higher dimensions this extension of the Jordan curve theorem breaks
down, in particular for an S? in R®, It remains true that the sphere separates
the space into two components, but neither need be homeomorphic to the
components obtained with the standard embedding. Thus there are topo
logically distinct embeddings of S? in R>. Some of these will be studied in
4.2.6.

0.4 Algorithms

0.4.1 Algorithmic Problems

Strictly speaking, it is more logical to define the notion of “algorithm”
before we do anything else, but to understand the purpose of algorithms one
needs to know the kind of problems they are intended to solve. Typical
algorithmic problems are

(i) Decide whether a natural number # is prime.
(if) Decide whether an algebraic function f is integrable in terms of ele-
mentary functions
(iii) Decide whether two schemata X, Z, define homeomorphic simplicial
complexes.

Each of these problems consists of an infinite set of questions which can be
effectively enumerated as finite expressions (words) in some ﬁmte alphabet.
For example (i) is .

{Is 1 prime?, Is 2 prime?, Is 3 prime?,...}

and its questions, like those of the other two, can be expressed in the alphabet
of the ordinary typewriter keyboard. The purpose of an algorithm is to
answer the questions in a systematic, mechanical way.

An algorithm is therefore a computer, the first general definition of which
was given by Turing 1936 (and independently by Post 1936). The Turing
formulation, now known as the Turing machine, illustrated in Figure 43,
involves a finite alphabet .o/ = {blank,S,,..., S,}, a finite set of internal
states 2 = {qy,..., q,}, @ read/write head and a tape. The tape is infinite
and divided into squares, each of which can carry a single alphabet symbol.
Only finitely many squares are nonblank at any time, and the initial tape
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Figure 43

expression (input) represents the question being asked. The read/write head
begins on the leftmost symbol of the question, and it is directed to perform a
sequence of atomic acts at unit time intervals by the internal control, which is
initially in state ¢,. An atomic act is uniquely determined by the pair

(g:, S;) = (current internal state, scanned symbol)
and it is of three possible types:

(a) Replace S; by S, move one square to the right, go into state g, or
(b) Replace S; by S,, move one square to the left, go into state g;, or
(c) Halt.

The set & of responses to the (g;, S;) situations possible for a given o/
and 2 therefore completely determines the behaviour of the machine, and
we may identify a machine- M with a list of such responses, or more precisely
with a triple (#, 2, &) where &: &/ x 2 — o x {left, right} x 2 v {halt}
is the response function.

M answers the input question after a finite number of atomic acts by.
halting on some specified expression, say 1 for “yes” and 0 for “no.” M solves
a problem by correctly answering all questions in it.

Experience and certain theoretical arguments (Turing 1936) suggest that
Turing machines precisely capture the notion of algorithm, but there is no
question of proof since we are trying to formalize an informal notion. Thus
when we claim that a problem is unsolvable, the statement actually proved
is that no Turing machine solves the problem.

The formal notion was slow to appear because until the twentieth century
it was taken for granted that algorithms existed, the only problem was to
find them. As Hilbert put it: “ We must know! We shall know!” If one expects
to find an algorithm there is no need to define the class of all algorithms—
this is necessary only if nonexistence is to be proved.

Perhaps the first to claim nonexistence of an algorithm was Tietze
(Tietze 1908, p. 80), who said of finitely presented groups: “Die Frage, ob
zwei Gruppen isomorph sein, [ist] nicht allgemein losbar” (The question
whether two groups are isomorphic is not generally solvable). This problem,
which arose from the homeomorphism problem (see 0.5.1) was eventually
proved unsolvable by Rabin 1958.
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The main objective of the present book is to find algorithms to solve
topological problems, so the formal theory of unsolvability is left to the final
chapter. However, along the way we shall point out where algorithms are
unknown, or known to be nonexistent, and also indicate the reasons why
unsolvability occurs in topology.

0.4.2 Recursively Enumerable Sets

The Turing machine concept formalizes all computational notions, including
the notion of effective enumeration we used to define algorithmic problems,
The most convenient procedure is to subsume all notions undeér that of the
partial recursive function (p.r. function): viewing the input to a machine M
as the argument x of a function, the expression on the tape when (and if)
M halts is taken as the function value ¢, (x). Since M need not halt for all
inputs, ¢y, is generally only a “partial” function.

An algorithm may then be defined as a p.r. function ¢,; whose domain is
a set of questions @, and such that

Q) = {

1 if the answer to Q is “yes,”
0 if the answer to Q is “no.”

Thus a-problem is just the domain of a-p.r. function.

This glib definition does not seem to be what we originally had in mind,
so let us see why the domain of a p.r. function ¢;; can indeed be effectively
enumerated. Observe first of all that the words in the alphabet of M can be
effectively enumerated as wy, w,,...; first list the one-letter words, then
the two-letter words, and so on. We can similarly enumerate all computations
of M first the one-step computations on input words of length 1, then the
two-step computations on input words of length < 2, and so on; and whenever
aw, is found to lead to a halting computation, we place it on another list 2.
Then .Z is an effective enumeration of the domain of ¢,,. The domain of a p.r.
function is called a recursively enumerable set (r.e. set).

Although the complement of an r.. set with respect to the set of all words
is enumerable, it need not be recursively enumerable. This remarkable fact
can even be illustrated by a natural example—the homeomorphism problem
for finite complexes. !

The set of all pairs (Z;, %;) of combinatorially homeomorphic schemata
can be recursively enumerated by a machine which systematically tries all
elementary subdivisions, halting when isomorphic refinements of Zn I
are obtained. However, we cannot recursively enumerate the complement
of this set, as this would yield a recursive enumeration of non-combinatorially
homeomorphic pairs. Such an enumeration is unknown, and with good
reason—by enumerating both the-set and its complement until we found a
given pair (Z;, £;) we could decide whether Z;, X; were combinatorially
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homeomorphic, whereas this problem is known to be unsolvable (Markov
1958).

0.4.3 The Diagonal Argument

The diagonal argument was first used by du Bois-Reymond 1874 and Cantor
1891 to show that certain collections of objects could not be enumerated.
Despite the negative conclusions drawn from the argument, it is in fact highly
constructive, and this makes it equally suitable for proving nonexistence of
effective enumerations.

For example, Cantor proves that one cannot enumerate all sets & of
natural numbers. Namely, any enumeration &, %, %, ... fails to include
the “diagonal set”

D ={n:n¢ 5}

because @ differs from the set &, with respect to the number n (n€ ¥, =
n¢D,n¢ d,=>neP).

Cantor needs 9 only as a counterexample to an assumed enumeration
of all &, but. its nature becomes more interesting when we have a specific
list of sets %, %, I3, ... . In particular, we can obtain an effective enumera-
tion of the r.e. sets by effectively enumerating the descriptions of Turing
machines, and @ is then a specific non-r.e. set. The surprise is that

A = complement of Z = {n:ne ¥}

is r.e.! One performs a giant computation which looks at each step of each
Turing machine compijtation, and whenever a number # is found in ¥, it
‘is placed in A", .

Thus the effectivized diagonal argument yields an r.e. set 4 of natural
Aumbers whose complement is not r.e.. Then there is no algorithm for deciding
membership of ¢, since any algorithm would immediately yield a recursive
enumeration of the complement of ",

A" is the direct source of all known unsolvability results in mathematics.
Such results are obtained by showing that Turing machines can be simulated
by various mathematical systems, and then showing that solutions of certain
problems in these systems would imply algorithms for deciding membership
of 2. The first, and most direct simulation was obtained by Post 1947 by
means of finitely presented semigroups. Post was able to conclude from this
that the word problem for semigroups (see 0.5.7) was unsolvable. Novikov
1955 did the same for groups, and this paved the way for the unsolvability of
the homeomorphism problem proved by Markov 1958. See Chapter 9.

All these problems inherit the asymmetric character of # —the “yes”
answers can be effectively enumerated, but not the “no” answers. The process
of enumerating the “yes” cases is sometimes called a semidecision procedure,
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and it invariably consists of searching systematically through computations
until one with the desired result is found. The enumeration of homeomorphic
pairs (£;, £;) in 0.4.2 is an example, and others will be mentioned in 0.5.8.

0.5 Combinatorial Group Theory

0.5.1 The Fundamental Group

In 0.1.9 we sketched the ideas of product and inverse for closed curves in a
complex ¥. Given a fixed origin P for the curves (the choice of which is
arbitrary if € is arc connected), we call curves p, p’ equivalent if there is a
homotopy between them which leaves P fixed. The equivalence class of p is
denoted by [p]. Then the natural product - for curves (concatenation) extends
in a well-defined way to equivalence classes by

{11 [p2] = [pyp2]

and this product inherits the obvious associativity of concatenation. There
is an identity element 1, represented by the “point path” P, and most im-
portantly

Pl 1=[p'l1=1
so that {p~!] is the inverse [p]~' of [p]. The homotopy between pp~!
and P which proves this is suggested by Figure 44.

Thus we have a group =,(%) of equivalence classes of closed paths in %,
called the fundamental group (Poincaré 1895). A rigorous construction of
7, is given in 3.1. It is clear that the fundamental group is invariant under
homeomorphisms, so one way to prove €, and €, are nonhomeomorphic is
to prove (%) # n,(%,).

This idea is made feasible by the fact that we can read off a “finite presenta-
tion” of (%) from a finite cell decomposition of ¥. The method is to use
the finitization process sketched in 0.1.2 to deform all paths onto the 1-
skeleton of ¥. All paths in the 1-skeleton are homotopic to products of
finitely many generating paths ay, ..., a,; hence a,,...,a, generate all

7

Figure 44
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paths in %, up to homotopy. Any homotopy between paths then reduces to a
series of elementary deformations across the cells A,, ..., A, in the 2-skeleton
of €. If we let rfa;) denote the null homotopic path which runs from P to
A;, round dA; and back to P, then the relations

rfap) =1

completely determine 7,(%). The details of this construction are carried out
rigorously in 3.2-3.4 and 4.1.

Exercise 0.5.1.1. Show that any closed edge path with origin P in the l-complex

N

P

is homotopic to a product of af !, a3 !, where

0.5.2 Generators, Words, and Relations

The above sketch of the fundamental group is intended to suggest that the
proper way to view groups in combinatorial topology is in terms of “genera-
tors” and “relations.” We shall now drop the topological interpretation and
discuss generators and relations in purely combinatorial terms.

A generator is a letter a;, and it has a formal inverse a; 1. A word is any
finite sequence

E1982 ... gfx
a;, a;, aj,

of generators or their inverses, so that each ¢; = 1, where ¢;" ! denotes a;.

The product w,w, of words wy, w, is the concatenation of the correspond-
ing sequences, in other words, the result of writing w,, then w,. Since con-
catenation is trivially associative, this is an associative product.

We abbreviate the product a;a; - - - g; (n factors) by af. The empty word is
denoted by 1, so that lw = wl = w for any word w.

A relation is an equation r = 1 where r is a word (called a relator in this
context), and words w, w' are called equivalent with respect to relations
r; = lifwis convertible to w’ by a finite sequence of operations of the following

types

(i) insertion or deletion of a subword r;,

(i) insertion or deletion of a subword a;a; ' or a;"*

a;.

The relations a;a; ' = a; 'a; = 1 implicit in (ii) are called trivial relations,
and words equivalent by trivial relations alone are called freely equivalent.
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The equivalence class of w (with respect to a fixed set of relations) is
denoted by [w], and we extend the product operation to equivalence classes
by setting

[wi]-Twz] = [wiw,]

This product is well-defined, for if w] is equivalent to w,, then w}w, is equiv-
alent to w,w,, since the operations which convert w, to w) are indifferent to
the presence of w, concatenated on the right. Thus the product is independent
of the choice of representative for the first factor, and similarly for the second
factor.

0.5.3 Group Presentations

The structure {ay, a,, ...; ¥y, 5. ...> of equivalence classes of words in the a;
with respect to the relations r;, under the product operation, is a group G.

The product in G inherits associativity from the associativity of con-
catenation:

Dwi1([w21TwsD) = [wi1[wawsl = [wywaws] = ([wy1[w, 1) [ws].
The identity element is [1] because
[13w] = [1w] = [w] = [w][1]
and the inverse of [w] exists, because if

w=a- - aj

and we set w™! = g % .- g;* it is clear that ww™! is freely equivalent to
1, so '

wilw™ '] = [ww™ '] = [1]

and we can let [w]™! = [w™1]. 0

We usually drop the equivalence class brackets and simply speak of the
element w of G. This has the same advantages as speaking of the “rational
number 3” when we really mean the rational number {1,2, 2,...}.

The expression {ay, @z, ... 31y, 7a5...p 18 called a presentation of G. Of
course, a group G has many presentations, but we do not distinguish a
presentation from G itself except to point out properties of G which are
evident from some presentations but not from others. For example, G is
finitely presented if it has a presentation in which the sets {a;} and {r;} are
finite. Some finite presentations of well-known groups are

Z={a;—>
2, = {a; d*)
Z, x Zy = {a,b;a%, b3 aba~ b~ '),
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When a refation r; = 1 is written more naturally as some other equation
¥; = rj we sometimes write this equation in the presentation in place of r;.
For example, Z, x Z5 is better expressed as <a, b; a%, b, ab = ba).

The theory of groups in terms of generators and relations is largely self-
contained, however it is sometimes useful to interpret relations more con-
ventionally in terms of normal subgroups and quotients. We now review
these notions,

Exercisk 0.5.3.1. Does the trivial group {1} have a presentation? Does every group have
a presentation?

0.5.4 Coset Decomposition, Normal Subgroups

If H is a subgroup of G the sets
Hg = {hg:he H}

for g € G are called right cosets of G modulo H. They constitute a partition
of G, called the right coset decomposition, because if Hg ,, Hg, have a common
element

hig; = hag,
then
9297 = h;'h €H
in which case
H = Hg,g7*
and
Hg, = Hg,.

Thus cosets are either equal or disjoint,
H is called normal if

gHg ' =H foreachgegG,

where gH and gHg™*! are defined in the obvious analogy to Hg. Normal
subgroups are characterised by the following proposition.

Any normal subgroup N of G is of the form N(v,, v,, .. .) consisting of elements
expressible by words

4
*) ) T guvfear ! g VG
k=1

and called the normal subgroup generated by vy, v,, ... €G.
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N(vy,v,,...) is a subgroup because products and inverses of words of
the form (*) are again of this form. To show normality, let

x = g, v5g

Jre
so

gxg~' = g(Ng, gy Ng™*
= Tg(g, viigx g ~*
= I(ggviagn)” YeN(vy, v,...)
Hence gNg~! < N and by repeating the argument with g~ ! in place of G
we get g"!Ng < N. But
g 'N9gc N = NgcgN = NcgNg™!

which is the reverse containment, hence gNg™* = N. '

Conversely, any normal subgroup N of G is of the form N(vy, v5,...).
Namely, let vy, v,, ... be all the elements of N. Then vi'e N = g, v¥g; '€ N
(by normality) = Ig,vig, * € N since N is a subgroup, and any element v;e N
is a trivial product of this form.

The proposition may be interpreted as saying that the operations required
to generate a normal subgroup N of G from an arbitrary set {vy, v;,...} & G
are inverses, products, and conjugates by arbitrary elements of G. Thus when
we speak of generating a normal subgroup we include the operation of con-
jugation, in contrast to generating a group which requires only inverses and
products.

0.5.5 Quotient Groups and Homomorphisms

The cosets of G modulo a normal subgroup N are made into a group. G/N
by setting '
Ng,-Ng, = Ng,g,.

The group properties are inherited from G and we only have to show that-
the product is well-defined. Any representative of Ng, has the form xg, for
some x € N, and if we use xg, instead of g, the product is

N(xg)g, = (Nx)g19,
= Ng19,
since Nx = N because x € N. If we use another representative xg, of Ng,
we get
Ngi(xg,) = g:Nxg, by normality
=g,Ng, since Nx=N
= Ng.g, by normality.

Thus the product is independent of the choice of representatives. 0



0.5 Combinatorial Group Theory 45

¢:G— G/N defined by ¢(g) = Ng is an example of a homomorphism,
that is,

&(g192) = d(g.)(g,)
(1) = 1.

It is called the canonical homomorphism of G onto G/N. The kernel of ¢,
ker(¢) = {g: ¢(g) = 1}, is equal to N.

Conversely, if ¢ is any homomorphism of G onto a group G, then ker(¢) is a
normal subgroup N of G and G' = G/N.

If x e ker(¢), then gxg~* e ker(¢) also, because

blgxg™") = d@ld(g™") = dlgg™") = #(1) = L
Thus gNg~! < N, and by the argument of 0.5.4, N is normal. Now
Dx1) = ¢(x2) = Plx)p(xy) ' =1

< Plxx; ) =1
< x;x;'eN
< x;€Nx,

if and only if x,, x, are in the same coset of G mod N. Thus distinct elements
of G’ correspond to distinct cosets of G modulo N, in fact ¢(x) eorresponds
to Nx, s0 ¢ can be identified with the canonical homomorphism: G — G/N,
and hence G’ with G/N.

This proposition yields the standard test for ¢ to be an isomorphism (one-
to-one homomorphism), namely ker(¢) = {1}. We have constructed an
isomorphism between G’ and G/N in effect by setting N, the kernel of ¢,
equal to 1. ] o

Unless we are interested in the isomorphism itself we do not distinguish
between corresponding elements in isomorphic groups. For example, if
there is an isomorphism of G into G’ (a monomorphism or embedding) we
are likely to say G is a subgroup of G'. The kind of isomorphism most likely
to interest us is one from a group onto itself, called an automorphism (see
for example 7.1). The automorphisms of a group G themselves constitute a
group, under composition, called the.automorphism group of G.

0.5.6 Dyck’s Theorem (Dyck 1882)

G =<{ay, ay,...;11,3,...) is the quotient of F = {ay, a,,...; —> (called
the free group on generators ay, a,, .. .) by its normal subgroup N(r,, r,, .. .).

Since the function ¢: F — G which sends an element of F to its equivalence
class in G is clearly a homomorphism, with kernel equal to the set of words
equivalent to 1, it will suffice to show that the kernel equals N(ry, 7,,...).
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Certainly, any I1g,r%g; ' € N is equal to 1 in G, since each r; = 1. Con-

versely, suppose a word w = 1 in G. We shall show that each insertion or
deletion of r¥! in w can be accomplished by multiplying w by gi 'ri'g.
for some g,.

Note firstly that deletion of rf* can always be accomplished by insertion of
rf ! next to it, followed by cancellation (which is valid in F). Thus it remains
to deal with insertions.

Let w = uv — ur;v be the insertion of r; between the factors u, v of w.
We can obtain the same result by multiplying w by v~ 'r;v, since ur;v is
freely equivalent to uv - v~ 'r;v.

Repetition of this process for each insertion in the sequence required to

convert w to 1 gives a word

— 1.8

wllgy 'rigy |
which is freely equivalent to 1, and therefore
w = Ig,ri%gi! inF

so that w € N(ry, 73, .+ )- 1

Dyck’s 1882 paper is the beginning of combinatorial group theory as a
subject, and the first to recognize the fundamental role of free groups. Dyck
viewed free groups as the most general groups, since any other group is
obtainable by imposing relations on them. The explanation of relations in
terms of normal subgroups and quotients suggests a reconstruction of
combinatorial group theory in more conventional algebraic terms. This can
indeed be done, including the definition of free groups themselves, but it
proves to be an object lesson in the impotence of abstract algebra. All sub-
stantial theorems in combinatorial group theory still require honest toil with
words and relations, and the best labour-saving device turns out to be the
topological interpretation of 0.5.1, rather than algebra.

Exercise 0.5.6.1. If G is any group show that the result of adding relations v; = I,
v, =1,...,t0 Gis G/N(vy, v, .. ).

0.5.7 The Word Problem and Cayley Diagrams

When a group G arises as a fundamental group, as in 0.5.1, null-homotopic
paths correspond to words w which equal 1 in G. Thus the problem of
deciding null-homotopy (contractibility to a point) is reduced to deciding
whether a given word w = 1 in G. Even though we can compute a presenta-
tion of G, this problem is not trivial, and its fundamental importance for
topology and group theory was first recognized by Dehn 1910, who called it
the word problem.
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Early topologists, such as Poincaré, Tietze, and Reidemeister, frequently
commented on the difficulty of group-theoretic problems in topology, on
- occasion (Reidemeister) saying that the fundamental group seemed merely to
" “translate hard topological problems into hard group-theoretic problems.
- This pessimism was vindicated when Novikov 1955 proved that the word
¢ problem (for specific, finitely presented G) was unsolvable. Novikov’s proof
- is based on the idea of Post 1947 of simulating Turing machines by systems
. of generators and relations, A word corresponds (roughly) to the tape
~ expression on a Turing machine M, and the relations permit the word to be
changed to reflect the atomic acts of M. (The technical difficulty, which is
.~ absent in the semigroup case, is the presence of relations gt =a g, =1
which do not correspond to acts of M. See Chapter 9.)
Solution of the word problem for G is equivalent to the construction of
a figure € called the Cayley diagram of G, introduced for finite groups by
Cayley 1878 and for infinite groups by Dehn 1910. If G is generated by
ay, 2, . .., then ¥ is a graph with a vertex P, for each distinct g € G and an
oriented edge labelled g; from P, to P,,, for each generator a;. It follows that
each vertex has exactly one outgoing, and one incoming, edge for each
generator. Examples (labelling each vertex g instead of P, for simplicity) are
given in Figure 45. The last example is constructed by noting that there are
six distinct elements g = 1, b, b?, q, ab, ab?, then multiplying each of these
by a, b and using the defining relations to reduce each product to one of the
six forms already chosen.

Figure 45
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Each word

w=aqfl - aj*

determines a path from P, to P, by following the labels a;,...,a; in
succession, with or against the arrow according as the exponent ¢is +1 or
—1. 1t follows that w = 1 if and only if the path is closed.

Thus if %4 can be effectively constructed we have a solution of the word
problem for G. ’

Conversely, if the word problem for G can be solved, we can construct 4.

Effectively list the words of G as wy, w, ... and as each w; appears, use
the solution of the word problem to decide whether w; = any w; earlier on
the list (see if w,wj'! = 1). If not, put w; on a second ljst. The second list is
then an effective enumeration of the distinct elements of G, which we use as
labels for the vertices of %4.

As each vertex P, is constructed, we again use the solution of the word
problem to find which of the words w;a; is equivalent to a w, already on the
second list (if an equivalent is not found, one will be found later by repeated
checking as the second list grows). For each such word we construct an
oriented edge labelled g; from P,, to P, , = P,, . This is an effective process
which eventually gives each vertex and edge in %g. O

Since G has many different presentations, % is not unique. However,
if there is a solution to the word problem for one finite presentation of G
there is a solution for any other finite presentation of G, hence the effective
constructibility of €; does not depend on the presentation chosen.

EXERCISE 0.5.7.1. Prove the last remark.
Exercise 0.5.7.2. Show that {w: w = 1 in G} is r.e. when G is finitely presented.
ExErcise 0.5.7.3. Sketch the Cayley diagram of the free group F, = {a, b; —).

Exercisg 0.5.7.4. Describe the Cayley diagrams of the free abelian groups Z x Z x ... x
Z=Aay,...,a; aa; = a (i, j < m)) as figures in R™.

Exercise 0.5.7.5. Figure 46 shows the Cayley diagram of a group. Why is this group
nonabelian?

Show that the group is the group of symmetries of an equilateral triangle.

0.5.8 Tietze Transformations

Tietze transformations are simply the obvious ways of transforming a finite
presentation {ay, ..., Gy Py o vy Py
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Figure 46

T,: Add a relation r,, (=1) which is a consequence of r,, ..., r,. (That
is, r,41 is equivalent to 1 with respect to the relations ry = --- =r, = 1.
We write this 7y, ..., 7, = 7y 1)

T,: Add a generator a,,, , together with a relation

. A+ 1 =w(a19-v-’am/
which defines it as a word in the old generators.

The inverse transformations, which we denote by T7!, T3 !, can also be
applied when meaningful.

Tietze’s Theorem. Any two finite presentations of a group G are convertible
into each other by a finite sequence of Tietze transformations.

Suppose G has presentations {ay,..., @y, ..., Fyy and <dl, ..., G
Yis ..., T, which we abbreviate to {a;; r(a;)> and {ai; ri(a})). We use the
notation w(x;) to express the fact that w is a word in the letters x;, and denote
the result of substituting a word y; for x; in w(x;) by w(y,).

Since both presentations denote the same group, there are words #; in
as, a4z, . .. tepresenting the a; and hence satisfying the relations ri(e;). Then
the {a;) => the r){o;) since all relations in the a; are consequences of the
r{a;). Similarly there are words o; in 4}, a3, ..., representing the a;, and the
7i(a;) = the r{a;).

‘We can therefore make the following modifications of the group presenta-
tion by Tietze transformations:
{ag; ra)y
- Lag ria, rifen)> by T, since the rfa;) = the ri{«})
> Capy ais @), T, @ = o) byT,
- <ai’ a:» rj(ai)9 r}(a:‘)> rj(a;)y a:' = (X:> by Tl
- {a;, ai; ri(a), rifap, a; = o> by Ty
= La;, ais ria), ri{@), g = a, a; = oy by T, ™
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since the relations a; = o; are true in the group and hence consequences
of the relations already present. But (*) is symmetric with respect to
primed and unprimed symbols, so it could equally well be obtained from
<aj; ri{a)>. By reversing the latter derivation we obtain

az; ra)y = (*) = {ai; rifa))- O

Since we can effectively enumerate all consequences of a given finite set of
relations, and hence all possible sequences of Tietze transformations which
can be applied to a given presentation, Tietze’s theorem shows that we can
effectively enumerate all finite presentations of a given group. Thus the
problem of deciding when two presentations are the same, the isomorphism
problem of Tietze 1908, is similar to the word problem—in both cases we can
effectively enumerate the pairs of equal objects, and the difficulty is to find
the pairs of unequal objects. It actually foliows from basic results of recursive
function theory (see Rogers 1967) that the two problems are of the same
degree of unsolvability, that is, a solution of one would effectively yield a
solution of the other. (In particular, the isomorphism problem is unsolvable.)
In individual cases, however, the isomorphism problem is usually harder to
solve than the word problem.

On the positive side, the Tietze theorem is ofteni a slick way to prove
existence of algorithms or semidecision procedures. For example, if G has a
property that can be recognized from one of its presentations we can eventu-
ally verify this property by enumerating all the presentations of G. Examples
of such properties are:

(i) being abelian (all generators commute)

(i) being finite (all relations of the form g;a; = ay)
(iii) being a specific finite group (relations given by multiplication table)
(iv) being free (no relations).

ExgrcisE 0.5.8.1. Show that (a, b; abab™'> = {c, d; *d*>. ~

Exercise 0.5.8.2. Suppose that infinitely many consequence relations or new generators
can be added in a transformation of type T, or T, respectively. Deduce that any two
presentations of the same group are then convertible to each other by a finite sequence
of Tietze transformations.

ExercisE 0.5.8.3. Give an algorithm for finding «; and o from two presentations
{a;; rfa)y and {a;; r{a})> of the same group. (This gives a “uniform” solution to
Exercise 0.5.7.1.)
ExeRcisE 0.5.8.4. If G has a finite presentation, show that in any presentation

G=Aay, .., 83T, 7250

all but a finite number of relations are superfluous.
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0.5.9 Coset Enumeration

As a final example of the way finiteness can be discovered by systematically
enumerating words, consider the case of a subgroup H of a finitely presented
group G. If the set of cosets Hg for g € G is finite, H is said to be of finite index
in G. In this case there is a finite set {g,, ..., gi} of coset representatives such
that

G = Hg, v--- U Hg,.
‘We now show how to find such a set, if one exists.

G = Hg, v ---u Hyg, if and only if the set {Hg;, ..., Hg,} is closed under
right multiplication by the generators of G and their inverses. That is

Hyg;a; = some Hy;, Hg;a[ ' = some Hg;.

for each generator ay, ..., a,, of G. Now assuming H is effectively enumer-
able, we can verify the equality of two cosets by enumerating their members,
along with an enumeration of equal words in G, until we find a common
element.

It therefore suffices to enumerate all the finite sets {g,, ..., g,} in G, and
for each one try to verify that {Hg,, ..., Hg,} is closed under right multi-
plication by looking for equal pairs Hg;a;, Hg; and Hg;a; *, Hg;. Eventu-
ally such a verification will succeed. 0

A more practical version of the above idea is known as the Todd-Coxeter
coset enumeration method (Todd, Coxeter 1936).
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1.1 Riemann Surfaces

1.1.1 Introduction

Topology may have had its tentative beginnings in isolated thoughts of
Descartes, Leibniz, and Euler, but it was Riemann who brought the subject
into the mainstream of mathematics with his inaugural dissertation in
Géttingen in 1851. His introduction of the Riemann surface in that year
showed the indispensable rdle of topology in questions of analysis, and thus
ensured the future cultivation of the subject by the mathematical community,
if only for the service of analysis. In fact, of course, Riemann surfaces were
quickly seen to be of interest in themselves, and were the source of two ideas
of profound significance in later topology—connectivity and covering spaces.

It hardly does Riemann justice to present only the topological aspects of
his theory, however, limitations of space aside, it may be worthwhile to-avoid
the heavy burden of analysis found in texts on Riemann surfaces. The next
section therefore presents a purely topological notion of Riemann surface,
the branched covering of the sphere. Just a few words of motivation may be of
value before we start.

In complex function theory it is convenient to treat the value co as just
another number, as far as possible, and one therefore completes the complex
number plane by a point at infinity. The completed plane may be viewed as a
sphere, since stereographic projection from the north pole N of a sphere
resting on the plane at the origin O establishes a continuous one-to-one
correspondénce between the finite points P’ of the plane and the points
P # N on the sphere. The point N itself is naturaily reckoned to correspond
to oo (Figure 47).

A complex function w(z) can then be viewed as a map of the sphere onto
itself, but of course the map need not be one-to-one, even for algebraic
functions such as z2. In a natural sense, w(z) = z> maps the sphere twice onto
itself except at O and oo, since any other vatue of w is the square of two distinct
values +\/v_v and ~\/v_v.'1n fact, if we divide the z-sphere into hemispheres

Figure 47
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0
z-sphere w-sphere

Figure 48

by any meridian (say, the one corresponding to the imaginary axis) then
both are mapped onto the whole z-sphere by squaring (Figure 48).

If we were to place the z-sphere so that each point lay above its image
on the w-sphere the result would be what we call a 2-sheeted cover of the
‘w-sphere with branch points O and . We cover the w-sphere with two
spheres, each slit along a meridian, and identify the edges according to the
labels a and b shown in Figure 49. The slit spheres are the sheets. The points
O and oo have the property that a small circuit around them on the covering
surface is not closed—it passes from one sheet to the other as if on a ramp—
nevertheless each of these points has a disc neighbourhood, the perimeter of
which is obtained by making two circuits around the branch point (Figure 50).

Thus the covering surface is a genuine surface from the topological point
of view; unfortunately our psychological need to force the identified edges to-
gether in ordinary space, causing a line of intersection, tends to obscure this
fact.

A
R
Ve

>

Figure 49

Figure 50
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The “two-valued function” z = \/W can be viewed as a single-valued
function if its domain is taken to be the covering surface instead of the w-
sphere-—the values in each hemisphere of the z-sphere occur as w moves
over each sheet. The general purpose of Riemann surfaces in function theory
is to provide domains on which all algebraic functions become single-valued.

1.1.2 Branched Coverings of the 2-sphere

It is easy to see that the Riemann surface for w = z2, and in fact any example
with only two branch points, is topologically a sphere. The interest in the
theory stems from the fact that topologically different surfaces occur when
there are more branch points.

In general a branched covering of the 2-sphere is dgtermined by a finite
set of branch points Py, ..., P, a sheet number n, and specification of the
way the sheets join up around the branch points. To do this, each branch
point P; is associated with a permutation

= (ky, kyy ... k)

of the integers 1, 2, ..., n, the interpretation of which is that an anticlockwise
circuit of P; starting on sheet j ends on sheet k;. These permutations must
satisfy a consistency condition which is obtained as follows.

Take a point P # P, ..., P, and not on the same great circle as any pair
P, P,(when P, P;are antipodal choose the great circle joining them arbitrarily)
and connect it to P, ..., P, by great circle arcs a,, ..., a,, (Figure 51).

We cut the sheets along these arcs and identify their edges according to
the permutations ; in order to form the covering. Then since P is not a branch
point, any circuit around P must begin and end on the same sheet. Assuming
the subscripts are chosen so that Py, ..., P, is the order of branch points
around P, the permutation determined by a circuit around P is m;7, - - - m,,,
and hence the consistency condition is

Wy Ty = 1

where 1 denotes the identity permutation.

P

Figure 51
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(This equation says that =,, ..., =, are arbitrary, which corresponds
to the fact that loops around P, ..., P, are not related by any nontrivial
homotopies on 8> — {P,,..., P,}. In the language of Chapter 4, such loops
freely generate the fundamental group of §% — {P,, ..., P,}.)

If the surface is to be connected we need =, ..., m,, to generate a permuta-
tion which sends i to j for each i, j < n—in other words, to generate a
transitive permutation group—since this says that any sheet is connected
to any other. The group generated by =y, . ., m,, is called the monodromy group
of the covering. This term was originally introduced by Hermite 1851 to
denote the group of substitutions of the corresponding algebraic function
induced by circuits around its branch points.

Now to see that the construction does produce non-spherical surfaces it
suffices to look at 2-sheeted coverings with an even number of branch points
(> 2). We shall place ail branch points on a meridian and permute the sheets
along arcs which connect the branch points in pairs. Thus with four branch
points we have Figure 52.

To see the topological form of this surface more clearly we peel off the outer
sphere and place it opposite the inner sphere (Figure 53). Then when the
identified edges are pasted together we get a surface homeomorphic to the
torus (Figure 54). It is easy to see how to construct any surface of the form in
Figure 55 by this method. The more surprising fact is that any Riemann sur-
face is homeomorphic to one of these forms—a result which was proved by
Clifford 1877—indeed it is far from clear that any arbltrary Riemann surface
can even be embedded in R3.

Figure 53
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(=)-&

Figure 54

Figure 55

We shall deduce Clifford’s result as a corollary of the general classification
of surfaces in 1.3, a result first proved rigorously by Dehn and Heegaard
1907. Before doing so, it is of interest to look at some earlier attempts to
classify surfaces.

EXERCISE 1.1.2.1. Show that the Riemann surface for
wr=(1—22)1—k%*%) k*#£0,1

is topologically a torus.

Exercise 1.1.2.2. Is there a 2-sheeted cover with an odd number of branch points?

1.1.3 Connectivity and Genus

The property which distinguishes a torus topologically from the sphere
is the presence of a nonseparating closed curve a (Figure 56). Any points P, 0
outside a on the torus can be connected by an arc which does not meet
a, whereas any closed curve separates the sphere by the Jordan curve theorem.
In general the connectivity of a surface can be measured by the maximum
number of disjoint closed curves which can be drawn on the surface without
separating it. This number is called the genus of the surface (German:
Geschlecht), a term introduced by Clebsch. Surfaces of different genus

Figure 56
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genus 2 genus 3

Figure 57

(Figure 57) are necessarily nonhomeomorphic and Riemann satisfied him-
self that the converse is also true. A somewhat unsatisfactory proof was offered
by Jordan 1866a.

A similar result had already been obtained by Mabius 1863;in fact Mbius
was the first to classify surfaces into normal forms. Despite his discovery of
the famous one-sided surface which bears his name, Mobius’s classification
deals only with two-sided surfaces. He takes the surface to be smoothly em-
bedded in R®*—an assumption which now strikes us as rather restrictive—
and slices it into thin pieces by-a family of parallel planes. He then argues that
if the planes are suitably inclined and sufficiently close together the pieces
will be three possible forms of perforated sphere (Figure 58), which he denotes
(), (ab), and (abc) respectively, where a, b, ¢ are the boundary curves. The
surface is then represented as a formal sum of such terms, for example
Figure 59 is (a) + (ab) + (c) + (bed) + (d). By introducing the symbol
(abcd ...) for the sphere with perforations bounded by a4, b, ¢, 4, ... and

a
b b ¢

Figure 58

Figure 59
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computation rules which reflect permissible ways of pasting or cutting
perforated spheres, Mébius is able to bring any surface into the form

(@10, a,) + (a,a; - )

which is the normal form surface of genus n — 1 shown in Figure 60.

The normal form for Riemann surfaces obtained by Clifford 1877 is similar
to the Mobius form, but obtained by joining together two copies of the per-
forated disc (Figure 61), along corresponding boundaries. The final variation
of the surface, due to Klein 1882a, is the sphere with handles, Figure 62.
This picturesque term has now become standard.

Figure 60

Figure 61

Figure 62

Exercis 1.1.3.1. Mobius’s rules are
(xa,a,...) + (xbib,...) = (ayay...byb, . ..),

where x, ay, a3, ..., by, by, ... are all different and elements may be permuted inside
their brackets.

(1) Interpret the transformations LHS (left-hand side) - RHS and RHS — LHS
geometrically.
(2) Use the rules to show that the surface in Figure 63 has genus 4.
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Figure 63

1.1.4 Branched Coverings of Higher Dimension

Potential theory in three dimensions gives rise to branching phenomena
like those encountered in complex function theory (indeed the latter is related
to 2-dimensional potential theory, as is well known). Instead of branch points
one has branch curves, and if R? is completed by a point at infinity the result
is the 3-sphere, S3. Appell 1887 gave an example from potential theory of a
covering of R® branched over a circle, and Sommerfeld 1897, also working
in potential theory, introduced the term “Riemann spaces” for branched
coverings of R,

Branched coverings of R® (or $3) were first studied for their own sake in
Heegaard 1898, where they were used as a means of constructing 3-dimen-
sional manifolds. Proceeding by analogy with the 2-dimensional case,
Heegaard takes a point P not on the branch curves, and connects it to each
branch curve by a conical surface. Since the branch curves may be linked
or knotted it is not generally possible to prevent these cones intersecting
themselves or each other. The best one can do is to position P and the
branch curves so that, when viewed from P, no crossing point of the curves is
more than double, in which case the intersection lines on the cones will also
be double (Figure 64). For each piece of a cone, a curve which pierces it and

P
Figure 64
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loops around its edge defines a permutation of the sheets, where each sheet is
a copy of R® or 83,

The typical 3-dimensional sheet minus its branch curves is far more
complicated topologically than the 2-sphere minus a finite set of points,
and one cannot formulate consistency conditions on the permutations until
the relations between loops in the complement of a linked system of curves
are known. The problem in effect is to determine the fundamental group of
such a space.

This problem was solved by Wirtinger around 1904 and it was the first
significant result in the mathematical theory of knots (see 4.2.3). Knowing
the relations which the permutations had to satisfy, Wirtinger was able to
give a procedure for finding all n-sheeted covers over a given system of branch
curves. Namely, enumerate all finite sets of permutations on n letters, check
whether they satisfy the consistency relations when ‘associated with cone
pieces, then see if they generate a transitive permutation group. The first
exposition of Wirtinger’s method, and its analogy with the determination of
Riemann surfaces, is in Tietze 1908,

(Wirtinger was led to branched coverings in studying the singularities
of functions of two complex variables. In fact, he arrived at a 3-sheeted
covering branched over the trefoil knot, with permutations (12), (23), (31)
associated with the three pieces of the cone from, of all things, Cardan’s
formula for the solution of cubic equations! An account of this example
appears in Brauner 1928.)

While it is possible to enumerate the branched covers of the 3-sphere,
there is no obvious method for deciding when two are the same, as one can
do for Riemann surfaces by computing the genus (see 1.3.7, 1.3.8).

We shall see in 1.3 that the spheres with handles include all orientable
closed surfaces, so branched covers of the 2-sphere (indeed, 2-sheeted covers
alone) are a completely general method of constructing orientable surfaces.
Branched covers of the 3-sphere attained a similar significance when
Alexander 1919b proved that they include all orientable closed 3-manifolds.
(He also proved the generalization to n dimensions.) An interesting recent
result, found independently by Hilden 1974 and Montesinos 1976, is that
3-sheeted covers suffice and that the branch set can be a single (knotted)
curve.

1.2 Nonorientable Surfaces

1.2.1 The Mébius Band

This surface appears to be the independent discovery of Listing and M&bius,
both of whom mentioned it in unpublished manuscripts in 1858. Its para-
doxical properties—one side and one edge—ncver fail to astonish those
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Figure 65

meeting it for the first time; nevertheless it is hard to see why such a simple
surface (Figure 65) was not discovered until 1858. Twisted bands occur
frequently as decorative borders in Roman mosaics and searches have been
made for Mébius bands among them, without success (of course any band
with an odd number of half twists is topologically a Mdbius band). One
might also look at the history of belt-driven machinery, since at some stage
it was realized that a belt with a half twist wears evenly on “both” sides.

The property of one-sidedness seems to assume that the surface is em-
bedded in ordinary space, however, an intrinsic counterpart to this property
was found by Klein 1876. Klein imagines a small oriented circle (the
indicatrix) placed on the surface, then transported round an arbitrary closed
curve. If there is a curve which brings the indicatrix back with its orientation
reversed then the surface is called nonorientable. The M&bius band has this
property, see Figure 66, as does any surface containing a Mobius band.
Conversely, any nonorientable surface contains a Mobius band, namely,
a strip neighbourhood of a curve which reverses the indicatrix.

Figure 66
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1.2.2 The Projective Plane

The plane of projective geometry is constructed by adding a line at infinity
to the ordinary plane, with the property that each ordinary line has one
point on the line at infinity. This surface can be realized topologically by
resting a hemisphere on the plane and considering projection from the centre
of the sphere (Figure 67). This establishes a continuous one-to-one corre-
spondence between the finite points P’ of the plane and the interior points P
of the hemisphere. Lines in the plane correspond to great semicircles on the
hemisphere, so the requirement that each line have exactly one point at
infinity forces diametrically opposite points on the boundary of the hemi-
sphere (which represents the line at infinity) to be identified.

‘Then by projecting the hemisphere vertically onto \the plane we obtain
the projective plane in the form of a disc with boundary divided into two
halves identified as in Figure 68. This will be called the canonical polygon
(in this case a 2-gon) for the projective plane.

Returning to the construction using the hemisphere, we can derive an
elegant realization of the projective plane due to Klein and Schlifli 1874,
Namely, identify all diametrically opposite points of the sphere. Since every
point above the equator is identified with one below, we can omit the points
above the equator, in which case we have precisely the original construction.
Klein and Schlifli’s construction shows the complete homogeneity of the
projective plane, in particular the line at infinity (the equator) is no different
from any other line. It also exhibits the sphere as a 2-sheeted unbranched
cover of the projective plane (see 1.4).

1t is intuitively plausible that the projective plane cannot be embedded in
R3, though a rigorous proof of this was not available until the Alexander

Figure 67

Figure 68
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Figure 69

duality theorem appeared in Alexander 1923a. The best one can do in R?
is to divide the boundary of the canonical polygon into four equal arcs a’,
a’, a/, @", then join the identified arcs along a single line of intersection
(Figure 69).

The top part of this surface is called a crosscap, and we often describe the
surface as a sphere with crosscap, meaning that a disc has been removed
from the sphere and replaced by a crosscap. '

EXERCISE 1.2.2.1. Show that if a disc is removed from the projective plane the result
is a Mébius band. (In other words, a crosscap is a Mbius band.)

1.2.3 The Klein Bottle

This surface, introduced by Klein 1882a, is the easiest to visualize among the
closed nonorientable surfaces. However, like the others, it cannot be realized
in R® without intersecting itself. One begins with a cylinder whose ends
are identified with opposite orientations, and joins them together as in Figure
70. If we slit the cylinder along a line b parallel to the axis we obtain the Klein
bottle as a rectangle with the edge identifications of Figure 71. This is a more
impartial representation of the surface, since it is easily converted to other

Figure 70
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ba \h

a

Figure 71

Figure 72

forms which look quite different when we attempt to realize them in. R®,
For example, see Figure 72. This is called the two-crosscaps form and it is
taken as the canonical polygon for the Klein bottle. The physical realization
of the two crosscaps is achieved as in Figure 73. If we now paste along @’
we get the crosscaps in Figure 74, in the same way the crosscap was produced
for the projective plane.

a

a a’ a”’ a a b«

b by — b ¢ bh—=Ab cyyc b d
a a a a” a' b ¢
-

Figure 73
Aol A4
b 4 A JB
[y

Figure 74
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Exercise 1.2.3.1 (Hilbert and Cohn-Vossen 1932). Show that the Klein bottle can be
constructed by diametric point identification of a (centrally symmetric) torus.

Exercise 1.2.3.2 (Dyck 1888). Show that the surface in Figure 75 is also a Klein bottle.

(@b

Figure 75

Exercist 1.2.3.3. Find a curve on the Klein bottle which separates it into two Mobius
bands. '

EXERCISE 1.2.3.4. Show that the Klein bottle minus a disc is a “nonorientable handle”
(Figure 76) and that this figure can be deformed isotopically in R? into that shown in
Figure 77.

Figure 77
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1.2.4 Dyck’s Classification of Nonorientable Surfaces

Dyck 1888 gave a classification of nonorientable surfaces analogous to the
classification of orientable surfaces, in which crosscaps take the place of
handles. His proof is not really satisfactory; however, it introduces the
important result

crosscap + handle = 3 crosscaps.

Recalling that a crosscap is just a Mobius band (Exercise 1.2.2.1). Dyck’s
result can be explained intuitively by attaching a handle to a Mdbius band,
then dragging one end of it round the band to make a nonorientable handle
(Figure 78). The nonorientable handle is just a perforated Klein bottle, joined
to the Mébius band along its boundary; in other words, we have two cross-
caps joined to a third,

Figure 78

It follows that for any surface on which handles and crosscaps both appear
we can remove the handles in favour of crosscaps. The hard part is to show
that these are the only features a surface can have.

The formal version of Dyck’s theorem, which we prove in the next section,
is that any closed nonorientable surface can be represented as a polygon with
edges identified as in Figure 79. The successive pairs a;, a; with the same
orientation are interpreted as crosscaps, as is understandable from the
construction of the two-crosscap form of the Klein bottle in 1.2.3.

Figure 79
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1.3 The Classification Theorem for Surfaces

1.3.1 Combinatorial Definition of a Surface

The precise definition and classification of surfaces from a combinatorial
point of view was first given by Dehn and Heegaard 1907. They define a
closed surface to be a finite 2-dimensional simplicial complex in which each
edge is incident with two triangles and the set of triangles incident with a given
vertex P can be ordered A}, A,, ..., A, so that A; has exactly one edge ¢; in
common with A, |, A, has exactly one edge ¢, in common with A, and these
are the only common edges. Such a neighbourhood complex, the com-
binatorial equivalent of a disc, is called an umbreila by Lefschetz 1975. (See
Figure 80.)

Figure 80
This definition obviously includes all the surfaces we have considered so
far. In particular, the branch points on a triangulated Riemann surface have

umbrella neighbourhoods, so Riemann surfaces will be included in our
classification.

1.3.2 Schemata

It will be convenient to build surfaces from polygons other than triangles,
so we now go to an alternative definition. A (finite) closed surface is a (finite)
set of polygons with oriented edges identified in pairs. Such a system is called
a schema. This definition is equivalent to the former, for if the polygons are
given sufficiently fine simplicial decompositions, which are compatible on
identified edges, then each edge in the decomposition will be either an
interior edge on a polygon, hence incident with two triangles, or else a pair
of subedges identified by the schema, hence also incident with two triangles.
Similarly, vertices P’ introduced by the decomposition will automatically
have umbrella neighbourhoods when they lie in the interior of polygons, and
they will get them as the result of pasting “half-umbrella” neighbourhoods
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when they lie on a polygon edge (Figure 81). Vertices P in the original schema
also get umbrella neighbourhoods since the “corners” of the schema which
come together at P can be arranged in a cyclic sequence in which each has one
edge in common with its successor (Figure 82). This is because each edge in
the schema is identified with exactly one other.

A portion of the boundary of a polygon with the form in Figure 83, which
we shall represent symbolically by aba™ b~ ! (reading labels and orientations
clockwise), will be called a handle. The reason for this becomes clear when we
cut it from the rest of the polygon and paste the identified edges (Figure 84).

Similarly, a portion like that in Figure 85, which we shall represent
symbolically by aa or a®, will be called a crosscap (cf. 1.2.2).

Figure 81

€

Figure 83
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b
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Figure 84

Figure 85

1.3.3 Reduction to a Single Polygon with a Single Vertex

Assuming the polygons in the schema define a connected surface, it will be
possible to amalgamate them all into a single polygon by a sequence of
pastings along identified edges of separate polygons. We say the resulting
polygon has a single vertex if its edge identifications bring all vertices into
coincidence. For example, the standard schemata for the torus and Klein
bottle have this property (Figure 86). On the other hand, the schema for the
sphere has two distinct vertices P, Q (Figure 87). This schema is exceptional
in having only a “cancelling pair” of edges, aa~*. In any other schema with

bA b b b

4 a

Figure 86

P

Q
Figure 87
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more than one pair of identified edges and more than one vertex it is possible
to reduce the number of vertices as follows.

Divide the apparent vertices of the polygon into equivalence classes
of vertices which are identified with each other, then, assuming there are
2 2 equivalence classes, consider an edge a whose endpoints P, Q belong to
different classes. Then the construction in Figure 88 reduces the number
of vertices in the equivalence class of Q by 1 (assuming there are at least 2)
and by repeating we can reduce the class of Q to one member, at which time
Q will be the endpoint of a cancelling pair, which can be closed up, eliminating
this class entirely (Figure 89). We similarly eliminate other equivalence classes
until only one remains.

0 i
b
a C .,
P ¢ ’ /
B cut along ¢ ]
0 paste along a . " 0
] b
P P ¢
Figure 88
o it 0
Figure 89

When we have only one vertex, it continues to be the only one when the
polygon is cut from vertex to vertex and pasted along some identified edges.
All the constructions which follow involve only operations of this type, so
we can assume there is only one vertex throughout the remainder of the
construction.

1.3.4 Crosscap Normalization

All identified pairs of like-oriented edges can be replaced by adjacent pairs
(crosscaps) by the operation in Figure 90. Notice that any adjacent pairs
already present (on the dotted lines) remain adjacent after this operation,
so all pairs of like-oriented edges can be replaced by adjacent pairs if the
operation is repeated.
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cut along ¢

Figure 90

1.3.5 Handle Normalization

£ et (!
paste along ¢

73

If any pairs of oppositely oriented edges remain after 1.3.4 they must occur

as “crossed pairs”

in the boundary of the polygon. For if, say, ...a...
by any other pair of oppositely oriented edges we have Figure 91, where
each edge in o is identified with another edge in &, and each edge in f is
identified with another edge in 8. This is because all like-oriented edges were
made adjacent in 1.3.4. But then it is impossible for the two ends of a to be

.a...b...at..

identified, contrary to 1.3.3.
We now replace two crossed pairs by a handle as in Figure 92. It is easily

verified that any other oppositely oriented pairs in the boundary remain
oppositely oriented under this operation, so if all pairs in the original polygon
are oppositely oriented the result of repeating the operation as long as

N L

possible is a sphere with » handles (Figure 93).

Figure 91
b
cut along ¢ a
c
at paste along b
)

¢ /

Figure 92

b
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a
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a~!...is not separated
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Figure 93

1.3.6 Metamorphosis of Handles into Crosscaps

In the general case, crosscap normalization followed by handle normalization
yields a boundary consisting of both crosscaps and handles. The boundary
must then contain a sequence

..aabch™ i1, ..

which we convert to three crosscaps as follows. First do as shown in Figure
94, then replace the three like-oriented pairs by adjacent pairs as in 1.3.4.

cut along d ¢ b
paste along a . -
d
Figure 94

This will not disturb the dotted part of the boundary, and the handle will
not reappear if crosscaps are normalized in the right order. One order which
works is: b, ¢, d

It follows that if the ongmal polygon contains any like-oriented edges
in its boundary it can be converted into a sphere with n crosscaps (Figure 95).

Figure 95
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1.3.7 The Normal Forms for Classification

The procedure of 1.3.3-1.3.6, which is due to Brahana 1921, reduces any
finite closed surface to one of the forms in Figure 96, called the sphere with n
handles, sphere with n crosscaps and sphere respectively, and denoted sym-
bolically by a,b,a7*b*- - a,b,a; b Y, a?a} - .- a? and aa™ ' We shall later
(4.2.1 and 5.3.3) prove rigorously that these surfaces are topologically distinct.
The proof develops the group theory which one can sense lurking behind the
above construction and its symbolism. In the meantime we shall use the
classical invariants for distinguishing surfaces, without attempting more than
an intuitive proof of their topological invariance.

0] (i)

a S ()

8

Figure 96

1.3.8 Euler Characteristic and Orientability

The Euler polyhedron formula (Euler 1752)
- V—-E+F=2

where V, E, F are the numbers of vertices, edges, and faces, is valid for any
schema which represents the sphere. One proves this by observing that the
quantity ¥V — E + F is invariant under elementary subdivisions

(a) division of an edge into two by a new vertex
(b) division of a face into two by a new edge
‘and their inverses.

{Namely, in (a) V and E both increase by 1, in (b) E and F both increase by 1.)
It follows that any schema equivalent to the sphere schema (iii) by these
operations has the same value of ¥ — E + F,namely2 — 1 + 1 = 2.

The value of V' — E + F, which we call the Euler characteristic, for the
schemata (1} and (i) is

() V-E+F=1-2n+1=2-2n
({) V-E+F=1-n+1=2—-n



76 1 Complex Analysis and Surface Topology

so none of these surfaces is equivalent to the sphere under elementary sub-
divisions. In fact the Euler characteristic distinguishes the individual
schemata in (i) by their different handle numbers n, and the individual
schemata in (ii) by their different crosscap numbers n.

To distinguish the schemata in (i) from those in (ii) we need a means of
computing the orientability character of the surface from a schema. The
method is to triangulate the schema, then oriefit each triangle with a
circular arrow. The oriented triangle induces orientations in its edges, as
shown in Figure 97. The orientation of the whole surface is called coherent if
cach edge receives opposite orientations from the two triangles incident with
it, and the surface is called orientable if it has a coherent orientation. A co-
herent orientation carries over to a triangulation obtained by elementary
subdivision in the obvious way, for example see Figure 98, and thus the
orientability character, like the Euler characteristic, is an invariant of
schemata under elementary subdivisions.

Figure 97

Figure 98

Now it is not difficult to find coherent orientations for the spheres with
handles, and likewise one finds triangulations of the spheres with crosscaps
which cannot be coherently oriented. The sphere itself is of course orientable.
Thus all the normal forms can be distinguished by Euler characteristic and
orientability character, as far as equivalence under elementary subdivisions is
concerned. Since the normal form of any schema is obtained using only
elementary subdivisions, it follows in particular that the normal form of any
schema can be read directly from its Euler characteristic and orientability
character.

To prove the topological invariance of these combinatorial invariants
one needs a way to move from one triangulation of the surface to another.
The difficulty is that triangulations are not necessarily “straight,” so if two
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triangulations are superimposed we may have edges which intersect at
infinitely many points (think of x sin 1/x and the x-axis). It seems reasonable
to expect that the intersections could be reduced to a finite number by de-
formation of one of the triangulations, but this is awkward to prove. (It is
done in Kerekjarto 1923.) When it is done, however, one gets a decomposition
of the surface obtainable from both the given triangulations by elementary
subdivision, and hence with the same Euler characteristic and orientability
character as both. This proves that Euler characteristic and orientability
character are independent of the triangulation initially chosen.

Exercisg 1.3.8.1. Identify the surfaces with schemata a,a,---a,a; 'a; ' - a;! and
a1y Ay 8,07 M0y - 0

EXERCISE 1.3.8.2. Let # be an actual euclidean polyhedral surface. Define the curvature
k(P) of # at a vertex P to be (27 minus the sum of the face angles incident with P),
Then show that

Y Kk(P) = 2rn x (Buler characteristic of ).

vertices P .
(For polyhedra homeomorphic to the sphere, this is Descartes’s version of the Euler
polyhedron formula; known in 1639 but not published until the 1850s.)

1.3.9 Bounded Surfaces

A bounded surface is a finite 2-dimensional simplicial complex in which each
edge is incident with one or two triangles and the triangles incident with a
vertex form either an umbrella or a half-umbrella, that is, a sequence
Ay, A,, ..., Ay in which each A, has exactly one edge in common with A, ,,
and these are the only common edges. It is easily seen that the free edges—
those incident with only one triangle—form one or more closed curves, which
we call the boundary curves of the surface.

The corresponding notion of schemad is one in which each edge of a
polygon is identified with at most one other, and it follows by simplicial
decomposition of the schema that the free polygon edges likewise form one
or more closed curves. In fact, by making the simplicial decomposition
sufficiently fine one obtains a thin annulus from the triangles incident with a
given boundary curve (it cannot be a Mbius band, since it has two edges).
Starting with these annuli, and amalgamating disjoint pieces of the schema
along identified edges, one obtains a schema consisting of a single polygon
with “holes” bounded by the boundary curves, and an outer boundary
consisting of edges identified in pairs.

We can then repeat the construction of 1.3.3-1.3.7, taking care that all
cuts in the polygon avoid the holes, and obtain one of the normal forms in
Figure 99, called the sphere with handles and holes, sphere with crosscaps
and holes, and sphere with holes respectively.
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Figure 99

Thus any bounded surface can be regarded as a closed surface with
perforations. An interesting property of the perforated surfaces is that
they are all embeddable in R3. To see this, take a canonical polygon without
holes and perforate it in the neighbourhood of its single vertex by cutting off
the corners. The corners cut off form a disc, like slices of a pie, and the portions
of edges which remain can be physically pasted together in R? to form bands
attached to the body of the polygon. Examples are shown in Figure 100.

Figure 100
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As these examples show, handles yield double bands, crosscaps yield
Mébbius bands, and of course any extra perforations yield single untwisted
bands. These forms of the perforated surfaces were used by Dehn and
Heegaard 1907 in their proof of the classification theorem.

If the perforated surface is thought of as lying in the hyperplane x = 0
of (x, y, z, t)-space, one can close it by a cone of line segments from any point P
off x = 0 to the boundary curve of the surface, thus realizing the closed sur-
face without self~intersections in R*,

Exercise 1.3.9.1. Show that the normal forms of bounded surfaces are distinguished
from each other by Euler characteristic, orientability character, and number of boundary
curves.

Exercise 1.3.9.2. By suitable cuts in the perforated polygons show that the normal
forms can be expressed

. 4 _ —ip— —ip—

(B wewi ' Wy Wy taybiar by - ayb,ay by

() wieywr e Wl wy taf - al,
(i) wieywr - wyc,wr

where ¢y, ..., ¢, are the boundary curves.

ExercisE 1.3.9.3. If & denotes the “standard” sphere with handles in R®, with one
perforation (Figure 101), show that & can be isotopically deformed into its disc-with-
bands form (Figure 102). (Hint: Stretch the perforation so that it sends a “tentacle”
into each of the handles.) Deduce that # can be turned inside-out in R3.

Figure 101

o

Figure 102
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EXERCISE 1.3.9.4. Show how the models of nonorientable surfaces with self-intersections
in R3 can be viewed as embeddings in R*if a fourth coordinate is introduced by applying
colour, with varying intensity, to the surface.

1.4 Covering Surfaces

1.4.1 The Universal Covering Surface

An interesting consequence of the representation of a surface # by a polygon
was discovered by Schwarz in 1882. Schwarz observed that if one takes
infinitely many copies of £ and joins them to each other (rather than to
themselves) along the identified edges then the result is a simply-connected
surface & which is an unbranched covering of #. In fact, if # is not the sphere
or projective plane then 4 is homeomorphic to the plane.

b
ad \a
b
Figure 103
b b b\
N
a a o a
b b b,
N N
a a a a
b, b b
N 4
a o a a
b b b,

Figure 104
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& is called the universal covering surface of %, and its construction is
most easily seen in the case of the torus. In this case it is possible to imagine
the plane covering the surface quite literally (Hilbert and Cohn-Vossen
1932). We take the canonical polygon for the torus (Figure 103) then paste
infinitely many copies together along the like-labelled edges to form a plane
(Figure 104). Now to cover the torus with the plane we first roll up the plane
into an infinite cylinder with circumference a (Figure 103) then wrap the
cylinder round a torus of axis b like an infinite snake swallowing its tail
infinitely often (Figure 106). The result is an infinite-sheeted covering of the
torus without any branch points (Figure 107). Each sheet is a copy of the
canonical polygon for the torus, namely one of the squares from which we
originally assembled the plane.

Figure 105

Figure 107

ExERCISE 1.4.1.1. Associate each sheet in the obvious way with an ordered pair <m, n>
of integers m, n € Z. Then describe the permutations of the sheets induced by crossing
the lines a, b on the torus as permutations of Z x Z.
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1.4.2 The Universal Cover of an Orientable Surface of Genus >1

1t will suffice to construct the universal cover of the orientable surface 4,
of genus 2, whose canonical polygon #, is the octagon (Figure 108), which
folds up into the closed surface as shown in Figure 109. &, is not only
sufficient to illustrate the difficulties of the general case, it is also sufficient
in a technical sense, because any orientable surface of higher genus is a (finite-
sheeted) cover of #, and the universal covering surface covers any other
covering surface—hence the name “universal.” These technical points are
explored in the exercises below.

Figure 109

We now construct the universal cover of & ,.

Sinée the eight corners of the octagon meet at a single point on %,
eight octagons must meet at each vertex of the tessellation which represents
the universal covering surface. Furthermore, the labelling of edges at a vertex
must be the same as on & ;, namely Figure 110.

It is certainly possible to produce this cycle of edges by putting eight °
copies of 2, together, since the eight wedges at the vertex correspond to the
different corners of #,. In fact, assuming we cannot flip the 2,’s over, this
is the only way eight 22,’s can be joined at a vertex. Because each label g; or
b; occurs only twice in the boundary of 2,, once with the interior of 2,
on its left and once with the interior of 2, on its right; so there is exactly one
way to attach one 2, to another along a given edge.
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Figure 110

Thus if we begin with a single 2, , with vertices on a circle %, say, thereisa
topologically unique way to complete the neighbourhood of each vertex of
2, with further (noncongruent!) copies of 2,, whose new vertices we can
assume to lie on a larger circle %, concentric with ¢, (Figure 111). (We
interpolate vertices on %,, too close together to show in the diagram, so as
to make each polygon an octagon.) We then proceed to complete the neigh-
bourhood of all vertices on %, similarly, with the new vertices lying on a
circle %3, and so on. By choosing the radius of %, to tend to oo as # — co we
obtain a tessellation with the required vertex neighbourhoods covering the
whole plane.

Figure 111

The covering of &, by the plane is then defined by mapping each octagon
in the tessellation onto &, by a continuous function which is one-to-one
except where it is required to identify boundary points, and making the
functions for adjacent polygons agree on the common edges. O

Naturally we cannot use regular octagons in the euclidean plane for this
construction, but in any case we need only the topological properties of the
tessellation, and irregular octagons in the euclidean plane are the most
direct means of demonstrating its existence. In the noneuclidean plane of
hyperbolic geometry there are regular octagons with corner angles of size
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n/4 (in fact of any size < the value for euclidean regular octagons) so it is
possible for these regular octagons to meet eight at each vertex, and hence
to tessellate the hyperbolic plane. This observation was made by Poincaré
after he learned of the universal covering surface in a letter from Klein (Klein
1882b), and he developed it into a powerful tool with this model of the hyper-
bolic plane as the open unit disc with circles orthogonal to the boundary as
“straight lines.”

The work of Poincaré and Klein in this period was devoted to automorphic
functions and Fuchsian groups, to which we briefly turn in the next section,
but it contained implicitly some fundamental results of surface topology.

EXERCISE 1.4.2.1. The n-shected cyclic cover of 7, is defined by taking n coaxial copies of
F,. cutting them through one of the handles (Figure 112), then identifying the
boundaries of the cuts cyclically (ith on the left with (i + 1)th on the right, nth on the
left with first on the right). By computing the Euler characteristic of the cover, show that
it can be an orientable surface of arbitrary genus > 1, if n is suitably chosen.

Figure 112

Exercise 1.4.2.2. Give an alternative description of the n-sheeted cyclic cover of &,
as n copies of 2, joined together, and hence show how it is covered by the universal
covering surface of #,.

1.4.3 Fuchsian Groups

The monodromy group was the first group to appear in topology, as a means
of specifying the way the sheets of a Riemann surface permute around the
branch points. We can also speak of the monodromy group of an unbranched
covering, the generating permutations now being the permutations of the
sheets induced by crossing one of the canonical curves on the surface, that is,
one of the edges of its canonical polygon. This permutation can be viewed
as an automorphism of the tessellation of the covering surface. For example,
the two generating automorphisms of the rectangular tessellation of the
plane which covers the torus are simply vertical and horizontal translatiods
of lengths @ and b respectively (Figure 113), and the monodromy group is
therefore the free abelian group of rank 2. The automorphisms of the uni-
versal covers of surfaces of higher genus can also be viewed as (noneuclidean)
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[

Figure 113

translations if one uses regular tessellations of the hyperbolic plane. Other-
wise, one can define an automorphism to be a one-to-one continuous
map of the tessellation onto itself which preserves labels and orientations.

Such groups of automorphisms were first studied in complex function
theory, notably by Poincaré and Klein from 1882 onwards after their initial
discovery by Fuchs. Thus the terms automorphic functions and Fuchsian
groups. Space does not permit us to give an account of this vast and interesting
theory (see Magnus 1974, or Fricke and Klein 1897, 1912) except to say that it
arises naturally from algebraic functions so a connection with surface
topology is to be expected. This connection was emphasized by Klein
from the beginning, though in the then immature state of topology one did not
pursue theorems about surfaces for their own sake, but only as a tool of
function theory. Consequently, the first group-theoretic results about
surfaces appear only as special cases of results on Fuchsian groups.

Since our interest is only in this special case, we shall immediately
specialize the methods of Fuchsian groups to deal just with the tessellations
obtained from universal coverings of orientable surfaces.

Let &, denote the orientable surface of genus n whose canonical polygon
is 2, (Figure 114). The universal cover of &, is obtained by tessellating the
plane with copies of the 4n-gon 2, so that 4n of them meet at each vertex.
As we observed for n = 2 in 1.4.2, there is a unique way of doing this. In
anticipation of Chapters 3 and 4 we shall-denote the automorphism group
of the universal cover by n,(#,). We now show that

T (F,) = {ag, by, ..., a,, by abiay byt -+ - a,b,a; by Y.

Figure 114
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To discuss automorphisms of the tessellation we introduce the notion
of an edge path. An edge path is a finite sequence of oriented edges of the
tessellation d,, d,, ..., d, such that

final point of d; = initial point of d;, ;.

It can be uniquely determined relative to its initial vertex by the corre-
sponding sequence of edge labels a; or b;, provided with exponents +1or —1
to indicate whether the edge is traversed according to, or against, its given
orientation, This is because each vertex has exactly one incoming and one
outgoing edge for each label. We shall consider edge paths in this relative
sense so they can be identified with elements in the free group generated by
the a;’s and b;’s.

If we fix a vertex P of the tessellation, an automorphism is determined by
the vertex P’ to which P is sent. For any vertex Q is determined relative to P
by an edge path g from P to Q, and since any automorphism preserves labels
and orientations the image Q' of Q is found at the end of the same edge path
g from P’. But P’ in turn is determined by an edge path p’ from P, so the auto-
morphism group is naturally isomorphic to the group of edge paths p’
modulo closed paths.

This group is generated by the single edge paths a,, b4, .., a,, b, which are
automatically subject to the relations

ga ' =a gy =1 and bbi'=b71b =1 6))]

saying that a path out and back along an edge returns to its starting point,
and also to the relation

alblarlbl_l"'anbnar;'.lbrrl =1 (2)

the left-hand side of which, r,, is a circuit round #,. To show that (2) is in
fact the defining relation of the group we have to show that any closed edge
path is equivalent to the trivial path under the relations (1) and (2).

But it is clear that any closed path can be contracted to its initial point
by a finite sequence of operations.

(a) Pulling out portions of the form pp~! (Figure 115), where the inverse
p~!is p written backwards with all exponents reversed. This is obtainable
from the relations (1).

Figure 115
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Figure 116

(b) Pulling a portion of the path from one side of a polygon to the other
(Figure 116). This means replacing the portion p by pr¥, where r¥ is a
cyclic permutation of r,, and hence it is obtainable by application of

). J

This result was obtained independently by Poincaré 1882 and Klein
1882c as a special case of the presentation of Fuchsian groups. Its first explicit
application to surface topology was made by Poincaré 1904, in a study of
curves on surfaces. We lay the foundations for this study in Chapters 3 and 4,
and carry it out in Chapter 6. In the meantime, Exercise 1.4.3.2 will serve to
explain the connection.

EXERCISE 1.4.3.1. Show that the edge complex of the tessellation forming the universal
cover of #, can also be interpreted as the Cayley diagram of « W(F).

ExErcisg 1.4.3.2. Show that a path on %, covered by an edge path p in the tessellation
contracts to a point on &, just in case p is closed.

1.4.4 The 2-sheeted Cover of a Nonorientable Surface

Every nonorientable surface has an orientable surface as a 2-sheeted cover.

The most intuitive way to see this is to take the perforated form of the
sphere with n crosscaps, namely the disc with » Mobius strips attached
(Figure 117). This surface has the 2-sheeted cover # shown in Figure 118,
which is evidently orientable because of its “two-sidedness.” Then to cover
the closed surface one attaches two discs along the boundary curves of #,

_covering the single disc needed to close the nonorientabile surface. ]

Figure 117
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Figure 118

It follows that the universal covers of the orientable surfaces alse cover
the nonorientable surfaces. The universal covering surfaces are therefore the
sphere (for the sphere itself, and the projective plane) and the plane. All the
covers we have discussed in this section are unbranched, and indeed this will
be the predominant type from now on. Unbranched covers came to the fore
in the 1920s when Reidemeister discovered important group-theoretic
applications (see 4.3) and since then the word “covering” has been taken to
refer to them.

The combinatorial definition of an unbranched covering will be given in
4.3. The idea is that the covering surface must project continuously onto
the underlying surface in a way which is locally one-to-one. That is, the
projection is one-to-one when restricted to sufficiently small neighbourhoods
on the covering surface. It is precisely in the neighbourhoods of branch
points where this condition fails for Riemann surfaces—if a small disc is
removed around each branch point one obtains an unbranched covering of
the perforated sphere by a perforated orientable surface.

ExErcise 1.4.4.1. Show that any nonorientable surface can be obtained by diametric
point identification of either a sphere with handles or a torus with handles.
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2.1 Realization of Free Groups by Graphs

2.1.1 Introduction

Free groups first appeared in mathematics as subgroups of the modular
group in complex function theory. When Dyck 1882 pointed out the funda-
mental role of free groups in combinatorial group theory, as the most
general groups from the point of view of generators and relations, his picture
of them remained the function-theoretic one—a tessellation of the unit disc
by curvilinear triangles whose sides were circular arcs orthogonal to the disc
boundary. The first mathematician to study free groups in their own right
and discover significant theorems about them was Jakob Nielsen {(see Nielsen
1918, 1919, 1921), in fact the term “free group ™ did not appear until Nielsen
1924a. Nielsen’s technique is partly geometric (based on the length of words
and “cancellation,” see exercise 2.2.4.1 below), however, it suppresses the
natural geometric structure of a free group by imposing a “linear” appearance
on the elements as strings of letters.

The appropriate geometric framework for describing free groups, the
“two-dimensional” one of graphs, was first exploited in unpublished work of
Max Dehn. According to Magnus and Moufang 1954, Dehn used this method
to obtain the first proof that subgroups of free groups are free. When Schreier
1927 published his algebraic proof of the theorem he concluded the paper
by describing the graph-theoretic interpretation of his construction. Schreier
had been influenced by ideas of Reidemeister, who published the first full
treatment of free groups on a graph-theoretic basis in Reidemeister 1932.

Reidemeister’s treatment has influenced ours, however we have used
the graph-theoretic framework even in the elementary stages to explain
the notion of reduced word and to solve the word problem. This not only
serves to unify the exposition, but vividly illustrates the dual view of a group
as fundamental group of a space and automorphism group of a covering
space, which will be a continuing theme in the chapters to follow.

It should be emphasized that the fundamental group is needed only in
a combinatorial sense for the results on free groups below. Indeed the proofs
could be viewed as mere translations of arguments about letters, words,
and cancellation if it were not for the fact that the graph-theoretic form is
more natural. However, since the topological invariance of certain groups will
be needed later, the next chapter contains a topologically invariant con-
struction of the fundamental group and its computation for graphs.

2.1.2 Graphs, Paths, and Trees

We shall interpret a graph in its broadest sense as an arbitrary coliection of
points (vertices) joined by lines (edges). Thus we admit examples such as
those in Figure 119, in which more than one line may connect a given pair
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Figure 119

of points, and the two endpoints of a line may coincide. In the latter case,
the two directions in which a line may be traversed cannot be distinguished
by the order of the endpoints, so it is necessary to adjoin a notion of orienta-
tion in order to fully describe the concept of path in a graph.

Accordingly, the formalization of these concepts is as follows: A graph
consists of two sets {P;} and {e;} of elements called vertices and edges
respectively, subject to certain incidence relations. Each edge e; is a pair
{e/ ', ej '} of oriented edges called the positive and negative orxentatlon of
e;, and e, is incident with two vertices X ; and Y; called respectively the initial
point and final point of ]! (and referred to collectively as endpoints). The
vertices X; and Y; can also be described as the final point and initial point,
respectively, of e *. When we write an edge without a superscript the orienta-
tion is understood to be positive, ‘

A path pin a graph ¢ is a finite sequence d,, d,, ..., d,, of oriented edges of
% such that

final point of d; = initial point of d;, ,

fori=1,2,...,m — 1. Wewrite p = dd, - -- d,, and also write p; = p,p, if

pr=4di - dy, pp=4dy---dyand py=d, ---d,dy---d,. The number of
oriented edges in the sequence is called the length of the path A path p =
dyd, - d, is closed if

final point of d,, = initial point of d,

and reduced if no two successive oriented edges are opposite orientations of
the same edge. Such a subpath ¢} 'ej * or ¢; 'e/ ! is called a spur. For con-
venience we also admit a single vertex to be a closed path (which is therefore
reduced). The inverse of a path p=dd,---d,, is the path p™' =d_ ! ..
d;y 'dy?, where d ! denotes the result of reversing the exponent of ;.

A graph is connected if there is a path between any two of its vertices. A
tree is a connected graph containing no reduced closed paths other than
vertices. If one looks at a typical tree, such as Figure 120, then the proposition
which follows is obvious; however we give a careful proof, in view of its

fundamental importance.

Path Uniqueness Property of Trees. Any two vertices in a tree are connected
by a unigue reduced path.

If there are vertices P, Q connected by different reduced paths p,, p, in a
tree J we can assume that one of these paths is a path of minimal length
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Figure 120

between P and Q, and that no other pair of vertices are connected by a non-
unique reduced path of smaller length.

Since p,, p, contain no spurs by hypothesis, whereas the closed path
p.p; ' must, since 7 is a tree, the spur can only occur as the last oriented
edgein p, and the first in p; !, that is, if the last oriented edge in both p, and p,
is the same; or similarly if the first oriented edge in both p,, p, is the same. In
the former case we can omit this last edge d from both paths p,, p,, obtaining
shorter nonunique reduced paths p}, p; from P to the initial point of d,
contrary to hypothesis. In the latter case, omission of the first edge of both
D1, P, leads to a similar contradiction, O

The converse of this proposition is immediate, hence the path uniqueness
property can also be used to define trees. Two important equivalents of this
property can be derived with the help of the notion of path equivalence.
Paths p, p’ are called equivalent if p' results from p by a finite number of in-
sertions or removals of spurs between successive oriented edges or at the end-
points. In particular, the reduced form of p is equivalent to p, so since path
uniqueness says that two paths p, p’ between the same endpoints have the
same reduced form we have

(1) Paths in a tree with the same initial and final point are equivalent. In
particular
(2) Any closed path is equivalent to its initial vertex.

But (2) in turn implies that the graph is a tree, because if the reduced form
of the closed path is not a single vertex we have a contradiction to the de-
finition of a tree. Thus all three properties are equivalent.

2.1.3 The Cayley Diagram of a Free Group

Given a free group F with free generators a,, d, . . . We can construct a tree 7
which is the Cayley diagram of F. The edges of 7 are assigned orientations
and labels a,, a5, ... so that each g; occurs exactly twice at a given vertex,
once on an incoming edge and once on an outgoing edge. The typical vertex
of 7 will be imagined to look like Figure 121, though this picture cannot be
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taken quite literally if there is more than a countable infinity of generators,
An explicit construction of 7, which at the same time shows it to be a tree,
is as follows:

Step 1. Draw the typical vertex and its neighbouring edges (Figure 121),
with the free endpoints lying on a circle ¢,.

Step k + 1. Assuming all the free endpoints of the graph constructed up
to the stage k lie on a circle ¥, attach edges to each free vertex so as to com-
plete its neighbourhood star to the form (Figure 121), but so that all new
free endpoints lic on a circle %, . ; outside %,. Figure 122 shows the construc-
tion when the vertex on %, is the initial point of an outgoing g;, the construc-
tion is similar for an incoming q;.

Figure 122

Assuming that there is no nontrivial reduced closed path inside %,
(which is certainly true for k = 1), the same is true inside %, .. ,, since any path
inside . ; is separated by &, into paths inside €, and single edges or spurs
between €, and %, . ;. Thus it follows by induction on k that no %, contains
a nontrivial reduced closed path, and hence the graph 7 obtained by uniting
all graphs within the %,’s is a tree, since any path in 4 must lie in some
%,. a

The paths in  which emanate from some fixed vertex correspond
naturally to elements of F. The word corresponding to a given path is read
by taken the labels on successive edges in the path and giving them ex-
ponents + 1 or — 1 according as the edge is traversed with the assigned orien-
tation or its opposite. Conversely, there is exactly one path from a given vertex
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corresponding to a given word, since there is exactly one edge at each vertex
for each of the generators a;"*, a; *. A product p,p, of paths p,, p, corre-
sponds to the product of words read from p,, p, respectively. In particular,
the paths which correspond to the trivial products a;*a;* and a; 'a;!
are exactly the spurs, so the notion of equivalence of words in a free group
(0.5.2) agrees with that for paths (2.1.2).

The paths which correspond to the identity element 1 are the closed
paths, since it is exactly these which reduce to a single vertex. (These include
the paths of the form pp~?, so the group element corresponding to p~ ! is the
inverse of the element corresponding to p.) It follows that once a particular
vertex is chosen to represent 1, all the other vertices represent distinct
elements of F, so 7 is indeed its Cayley diagram.

Exercist 2.1.3.1. If the cardinality of the set {a,, a,, ...} is too large for the graph to be
actually embedded in the plane, how should “inside €, and “outside ¥, ” be interpreted
so as to retain the property that %, separates paths inside %, . into paths inside %;
and single edges and spurs?

EXERrcisg 2.1.3.2. In the noneuclidean geometry of the hyperbolic plane (see also 6.2)
equilatéral triangles exist with (equal) angles of arbitrary size < n/3. In particular, there
is an equilateral triangle A whose angles are n/4, so the hyperbolic plane can be paved
with copies of A, eight of which surround each vertex in the tessellation. 1f we' select
any vertex P, take alternate edges emanating from Py, ending at Py, Py, P3, P, say,
again take alternate édges emanating from these P; (starting with those which lead back
to P,) then repeat the process at the free endpoints of the new edges, etc., then the
resulting graph is a tree. Prove this, and deduce that there is a pair of rigid motions of
the hyperbolic plane which generate the free group F, on two generators.
Generalize the construction to obtain the free group on n generators F,,.

2.1.4 Solution of the Word Problem for Free Groups

The construction of the Cayley diagram in 2.1.3 is effective (relative to the
generating set, at any rate), hence it yields an algorithm for the solution of the
word problem. Namely, trace the path in J corresponding to a given word
in F and see if it is closed. More generally, one can compute a normal form
equivalent of a given word w, the reduced word p(w), by constructing the path
p corresponding to w and finding its reduced form by removing spurs.
Because of the uniqueness of reduced paths (2.1.2), the result is independent
of the order-in which spurs are removed. The corresponding algebraic pro-
cess, cancellation of terms a;a; ! or a;” 'a;, therefore leads to a unique reduced
word regardless of the order of operations, and w = 1 in F if and only if
p(w) = L.

Thus simple cancellation (in any order) is an algebraic algorithm for
the solution of the word problem in F. This confirms the commonsense im-
pression that one decides whether a given element equals 1 in F simply by
cancelling as much as possible.
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EXERCISE 2.1.4.1. If paths are taken to emanate from the centre of the circle %, in 2.1.3,
show that the reduced form of a path p has length equal to the index k of the circle %,
containing p’s final point.

2.1.5 Spanning Trees

A spanning tree 7 of a graph % is a tree contained in % which includes all the
vertices of %.

Every connected graph % contains a spanning tree.

To give a constructive proof we shall assume that % has at most a countable
infinity of edges 44, %,, ... .

Step 1. Select any vertex P,, and for each vertex P; of % which is one edge
distant from P, choose one edge (say, the one with least index) between P,
and P; to put in 7. The result is a star we call 7.

Step k + 1. Let 77, be the tree constructed up to the end of step k. For
each vertex P; of ¥ which is not in 7, and which is one edge distant from a
vertex of 7, choose the edge of least index connecting P; to 9, and add this
edge to 7. The resulting graph 7, ., is also a tree, by the argument used
in 2.1.3.

The tree J~ is the union of the 7, for k = 1,2, 3, ... 7, contains all
vertices connected to P, by a path of length <k, so every vertex of # is in
some 7, (by connectedness) and hence in 7. O

The above proof can be repeated verbatim for any graph whose edges are
indexed by a well-ordered set, hence the result is true for an arbitrary graph,
assuming the axiom of choice.

ExBRCISE 2.1.5.1. (For readers familiar with the axiom of choice). Prove that the existence
of a spanning tree in an arbitrary graph implies the axiom of choice.

Exercise 2.1.5.2. Show that the two-dimensional lattice graph (Figure 123) has a
spanning tree homeomorphic to the real line (that is, every vertex meets two edges).

Figure 123



96 2 Graphs and Free Groups

2.1.6 The Fundamental Group of a Graph

The fundamental group (%) of a graph ¢ is defined combinatorially
in terms of the relation of path equivalence given in 2.1.2: we choose a vertex
P of & and consider the equivalence classes of closed paths which begin and
end at P. If [ p] denotes the equivalence class of such a path p, we define the
product of equivalence classes by

£pd-[p21 = [p1p2]

This product is well-defined on equivalence classes, since changing the
representative of one factor by insertion or removal of spurs merely changes
the representative of the product by insertion or removal of spurs.

It is clear that [p]~* = [p~'] and that the identity element 1 is the class
of paths whose reduced form is P itself. Thus n,(%) is indeed a group.

EXERCISE 2.1.6.1. Show that we are entitled to omit mention of P in the notation for the
fundamental group of a connected graph by proving that choice of any other vertex P’
as the origin for closed paths leads to an isomorphic group.

2.1.7 Generators for the Fundamental Group

We use a spanning tree 7 of & to find a canonical equivalent of each closed
path p from P.

For each vertex P, of 4 we construct an approach path w;, namely the
unique reduced path in & from P to P;. Then for each edge ¢; = P;P, of 4
consider the closed path

a; = wie;wy !

Any closed path p from P is equivalent to a product of the a;’s or their inverses,
in fact if

p = ettef---efr (whereeachg; = +1)
is such a path then p is equivalent to

a;:ll a:‘: ceogin

in

because the approach paths to and from e, e respectively are just P
itself (= 1) and the approach paths between successive edges cancel.

Notice that if ¢; is in J then g; is a closed path in the tree 7 and hence
equivalent to P. We can therefore omit these a; and take the generators for

7,(%) to be just the [4;] which correspond to edges ¢; not in 7. &

Exerciss 2.1.7.1. Show that the number of edges not in a spanning tree 7 of % is inde-
pendent of the choice of 7.
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2.1.8 Freeness of the Generators

To prove that the generators [¢;] just obtained for #,(¥) are free we first

simplify the graph by shrinking the spanning tree J to a single vertex P,

. Only the edges e; not in .7 then remain, as loops attached to P, and we call the
. resulting graph a bougquet of circles, % (Figure 124).

Figure 124

A given product p(q;) of a’s in % becomes the corresponding product
ple) of es in &, and p(e;) = 1in & if and only if p(a;) = 1 in &, for any spur
e;e ! ore; le; in p(e;) corresponds to a;a; ! or a7 ‘a; in p(a;), which can like-
wise be cancelled, and any spur in % maps to either the vertex of %, or to a
spur in 4. But the only spurs in & are of the form ¢;e; * or ¢; e;, s0 a product
p(e;) equals 1 only if p(e;) = 1 in the free group generated by ey, e5, ... . In
other words, [e,], [e,],... are free generators for n,(4), and hence
[a,]1, [a,], ... are free generators for n,(%). . O

The shrinking process we have just used is an instance of collapsing, a
method of trimming unnecessary fat from a space without changing its funda-
mental group (for a general definition, see 3.3). The simpler form of the
collapsed space makes the fundamental group easier to survey.

2.1.9 The Tree as the Universal Covering Graph of the Bouquet of
Circles

In the above we have found realizations of the free group F in terms of two
graphs which represent opposite extremes in structure—the tree and the
bouquet of circles. The Cayley diagram of F is a tree, while the bouquet
realizes F as the group of equivalence classes of closed paths.

The geometric relationship between these two can be grasped if one
observes that the neighbourhood of the single vertex in the bouquet looks like
a typical vertex in the Cayley diagram 4 (Figure 125). Relative to a given
vertex of 7, we shall let &*! and & ! respectively denote the outgoing and
incoming edges labelled e;, and they will be said to cover the ¢! and ¢;’
respectively in the bouquet 4. Thus for a given vertex Pin 7 there is a unique
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Figure 125

gt covermg a given ef ! in . In turn, an e ! which follows e ! in a path p
in & is covered by a unique & re]at1ve to the final point of the &!
covering ef!. Continuing in thxs way we obtain a unique path j from
Pin g which will be said to cover the path p in 4. Conversely, a given path §
emanating from P covers a unique path p in 4.

In short, 7 exhibits all the paths of 4 in “unrolled” form. 7 is called the
universal covering graph of 4, and it may be compared with the universal
covering surface of 1.4. A universal covering is always simply connected, and
therefore easier to survey, provided it can be effectively constructed at all.
However its construction is equivalent to solving the word problem for the
fundamental group (in this case via the Cayley diagram), so it is possible
only when the solution to the word problem exists.

The paths j and p are of course just Cayley diagram and fundamental
group realizations of the same group element from F. We can also interpret
P more abstractly as the “rigid motion” of 7 which sends a given vertex
P® at the end of the path p, from P to the end of the path jp; from P. F can
therefore also be realized as a group of motions or automorphisms of 7
and in this context we describe it as the covering motion group (German:
Deckbewegungsgruppe). The “motion” terminology is an extrapolation from
the situation with the universal covering surface, where the automorphisms
can be realized by genuine rigid motions in the sense of euclidean or non-
euclidean geometry. (Exercise 2.1.3.2 shows that this interpretation is also
possible for finitely generated free groups.)

The most elementary, but nevertheless instructive, example of a universal
covering graph is the covering of the circle by the line (Figure 126). In this
case the motions of 7 are translations by an integer multiple of the generating
translation, which conforms with the fact that F is isomorphic to the additive
group of integers.

4
@ 7 _e‘._.e‘_.._.i._._ .

Figure 126
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ExercisE 2.1.9.1. Show that an automorphism of  in the above sense can be char-
acterized as a one-to-one map of 7 onto itself which

(i) preserves endpoints (combinatorial equivalent of continuity),
(if) preserves labels (including oriem_ation).

2.2 Realization of Subgroups

2.2.1 Covering Graphs

A graph 7 is said to cover a graph & if there is a map ¢: ¢ — ¥ (called the
covering map or projection) from the vertices and oriented edges of & onto
the vertices and oriented edges, respectively, of ¥ with the following
properties:

(1) ¢ preserves endpomts that is, if an oriented edge ¢; in @ has initial point
X and final point ¥;, then ¢(&) has initial point qS(X ;) and final point
¢(Y)

@) ($@)" = o).

(3) If ¢(P) =P, and ¢, &,, ... are the oriented edges with initial point
P;, and if e; i €igs -+ ATE the oriented edges with initial point P;, then
¢ maps the collection {&, } one-to-one onto the collection {e; }.

Condition (3) is a “local homeomorphism” condition which says that
the neighbourhoods of corresponding vertices look alike.

When we speak of a graph & covering a graph % we have in mind a
particular covering map ¢: & — %, but in practice this map can be adequately
represented by labelling and orienting the edges in &, as we have done with
the universal covering graph in 2.1.9. Each edge labelled.e; in & is.mapped
to the single edge labelled e;in %, with preservation of endpoints and orienta-
tion. Another example is shown in Figure 127. This & is called the universal
abelian cover of %, for reasons which will becomie more apparent later.

Figure 127
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The local homeomorphism condition (3) implies that a path p in ¢ is
covered by a unique path fin & starting from a given vertex P, The proofis by
“lifting the successive oriented edges e;, e;, . .. of p to covering edges exactly
as in 2.1.9. If % is a connected graph and p is a path between an arbitrary
pair of vertices P;, P; then the paths j which cover p set up a one-to-one
correspondence between the vertices PO, PDand PV, PP, ... in 4
which cover P; and P; respectively. Thus the number of vertlces in g Wthh
cover a given vertex in % (and similarly the number of edges which cover a
given edge) is a constant, called the sheet number of the covering (another
carryover from the theory of covering surfaces).

It will be convenient to use the following notational convention in dis-
cussing coverings: X will denote any element in & which covers the particular
element X of ¥. Particular instances of X will be dlstmgulshed if they have
to be, as XV, X@, ...

2.2.2 The Subgroup Property

The definition of covering in 2.2.1 is geometrically motivated, in particular
by the example of covering surfaces, however it is also significant from the
viewpoint of the fundamental group.

Condition (3) implies that the paths covering spurs in ¥ are exactly the
spurs in &, therefore equivalent paths in & are covered by equivalent paths
in & and conversely. If we choose a vertex P in ¢ as the initial point for closed
paths p, we then have a one-to-one correspondence between the elements
[p] of n,;(%) and the equivalence classes [§] of (not necessarily closed)
covering paths 7 in 4 which emanate from some fixed vertex P covering P.

Conditions (1) and (2) respectively say that ¢ sends products to products
and inverses to inverses, so the correspondence between path classes is in
fact a monomorphism

by 751((2) — 7,(%)

when restricted to the closed path classes in . In other words, 7,(%) is
isomorphic to a subgroup of ,(%). We shall not distinguish between 7,(%)
and the image of ¢,,.

The classes of closed paths p in % which lift to nonclosed paths from
P in  can be classified according to the final point PY of the covering
path p. This classification is in fact the right coset decomposition of (%)
modulo 7,(%). It follows that the number of cosets, by definition the index
of (%) in 7,(%), is the sheet number of the covering.

1f [ 7], [p'] are in the same coset we have gp = p’ for some [g] € 7,(9).
But then §' = §p, where § runs from P to P by hypothesis; hence
and p have the same initial point P®, and the same final point P which
must cover P since p, p’ have final point P.
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~

Conversely, if §, 7 run from P© to the same vertex PY covering P, then
pard p’ end at P, so [p], [p'] are elements of n,(%), and [p'][p]~" is the
projection of the closed path p'p~*, hence an element of =,(¥). Thus

[PIEp1™" = [gl e ni(%), or [p] = [g]llp], which means [p], [p'] are
in the same right coset. d

Consider the example of the universal abelian cover in 2.2.1 (Figure 128).
The closed paths from P in & are exactly those for which the sum of the
exponents on both e, and e, is zero. Such terms do indeed constitute a
subgroup of the free group F, generated by e,, e, known as the commutator
subgroup K,. Thus K, = n,(%) and since any spanning tree for Z omits

€3 €
e ey 4
- A » o
G: - 2 ‘2
€y € €
3 & 4 e o
> >
P
Figure 128

\inﬁnitely many edges, 2.1.7 and 2.1.8 tell us that the commutator subgroup
of°F, is an infinitely generated free group (an unpublished result of Artin
from the 1920s). The vertices of  are determined by paths e7e} as {(m, n)
runs through all ordered pairs of integers, which confirms the fact that the
elements el are a set of right coset representatives for F, modulo K.

Exercise 2.2.2.1. Prove that K, is the normal subgroup generated by the commutator
e,e ey ‘e L. (The geometric equivalent of this statement is that any closed path in &
is equivalent to a product of paths of the form shown in Figure 129, or their inverses.)

€

Figure 129 ~
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2.2.3 Realization of an Arbitrary Subgroup of a Free Group

Given a free group F, we realize it as 7,(%) where ¥ is a bouquet of circles
with vertex P, as in 2.1.8. Then if G is a subgroup of F, 2.2.2 tells us that a
realization of G as n,(%) where & covers % must have a vertex P covering
P for each right coset of F modulo G, one of which, P, corresponds to G
itself.

Since 4 is a covering, each vertex PU will have exactly one out-going
and one incoming edge labelled ¢; for each generating circle e; in %. But this
means a connected & is uniquely determined, because the outgoing edge ¢;
from the vertex corresponding to the coset G[p] must end at the vertex
corresponding to the coset G[ pe;].

The & we have just described is indeed such that (%) = G.

A path § from P® in & which covers p in % leads to the vertex P? corre-
sponding to the coset G[ p]. Thus p is cloged just in case G[ p] = G, that is,
if [p] € G, and 2.2.2 then tells us that #,(%) is isomorphic to G. O

Just as we speak of a “covering ” when a covering map ¢: % — ¥ is
actually meant, we shall also speak of a subgroup G of F being realized by
& when we really mean that ¢: 4 — ¢ induces a monomorphism ¢, : 7,(%) -
7,(%), where 7,(%) = G and n,(%) = F.

The example in Figure 130 is the covering ¢: 7 — % which realizes the
subgroup F, (generator ¢,) of F, (generators e,, e,): It is clear that the powers
of e, are exactly the closed paths in ¢ covered by closed paths from F© in
&. This 7 has no nontrivial automorphisms, so a covering graph need not be
at all “homogeneous,” as the universal cover and universal abelian cover
may have tended to suggest. We shall see in 2.2.7 that a normal subgroup G
yields a cover whose automorphism group is F/G.

Figure 130

EXERCISE 2.2.3.1. Generalize the construction of & to the case where F is realized by an
arbitrary graph 4.
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2.2.4 The Nielsen—Schreier Theorem

Every subgroup of a free grouj) is free.

This follows immediately from 2.2.3. Given any subgroup G of a free
group F, we realize G as n,(9) for some graph &. G is then a free group, since
the fundamental group of any graph is free (2.1.8).

The above proof is so slick it seems almost like magic. Perhaps the best
way to explain how the result falls out is that when a group is realized as the
fundamental group of a space, the notion of subgroup is exactly what is
realized by the notion of covering space. This general fact (given the

" appropriate general notion of covering) was first observed by Reidemeister
1928, and we shall apply it to groups which are not necessarily free in
Chapter 4.

Nevertheless, the cleverness of the covering space proof has some inbuilt
disadvantages. Firstly, it requires the coset decomposition of F modulo G.
It is not clear how to effectively construct this when G is given, say, by a set
of generators. Without it, the proof does not supply a set of free generators for
G. Secondly, it obscures the fact which one feels to be the intuitively correct
basis of the Nielsen—Schreier theorem, namely, that elements gy, g5, ... of a
free'group F generate a free subgroup because they cannot cancel except for
trivial reasons.

These disadvantages are absent from Nielsen’s proof (Nielsen 1921),
which tackles the problem head-on in a way which is delightfully free of
abstract technicalities. The reader does not even have to know what a group
is, since the problem is posed as one of computation with products of non-
commuting factors da,, . . ., 4,,each one of which has an inverse a; ! satisfying
a;a; ! = a7 'a; = 1. The following exercise breaks down Nielsen’s proof
into simple steps.

Exercise 2.2.4.1. Consider the free group F and a subgroup G generated by elements
Uy, ,. ., of F. For convenience we shall assume that whenever a word w is a member of

» asetof generatorssoisw™ !, A product of generators will be called proper if no generators
w, w™ ! occur as adjacent terms. A transformation of #; into a proper product

Up = Wy OF U= Uy
is called a Nielsen transformation.

(1) If uy, ..., u, generatc G and u; results from u; by a Nielsen transformation, prove
that uy, ..., 4, 4}, U4 4, - - -, Uy, also generate G. The length I(w) of a word w is the
number of letters (with exponent + 1 or — 1) in the reduced word p (w). A Nielsen
transformation is called length-reducing when

i(u) < iuy).

(2) Describe how a finite sequence of length-reducing Nielsen transformations can be
used to obtain a set of generators vy, ..., v, (p <n) for G with the property

lv;v)) = i(v;) for a proper product v;v; *
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so that no generator cancels more than half of another. The possibility remains
that a generator v; of even length may have both left and right halves cancelled ina
proper product v,v;v;. Let v; = l;#; be the decomposition into halves and suppose
that

g1 _ a1
v = X170, vy =1 i

(3) Show that the [;"! in v, can be replaced by r;, and the r;"* in v; by 4, by Nielsen
transformations. The latter transformations, which obviously \preserve length,
may be called cancellation-reducing, because \

(@) If v, = x;7; then v} does not cancel the left half of v;. Why? (Slmﬂdrky v; =Ly
does not cancel the right half.)

(5) Order the words in the letters of G so that each has only finitely many predecessors,
and do not admit a cancellation-reducing Nielsen transformation unless the word
removed (I ! or r;') is replaced by a word (; or l; respectively) earlier in the
ordering. :

(6) Show that by suitably interweaving finite sequences of cancellation-reducing
and length-reducing Niclsen transformations one can obtain a set of generators
Wy, ..., W, (g < p) for G with the properties (*) and

lwewyw)) > l(wy) + lw;) — Kw;) = for a proper product W W W **)
v

(7) Deduce that G is freely generated by wy, ..., w,.

EXERCISE 2.2.4.2. Assuming a well-ordering of the words in the letters of G, extend the
above argument to the infinitely generated case.

ExXERCISE 2.2.4.3 (Nielsen 1921). If G = F show that the generators wy, ..., w, found in
2.2.4.1 must all be single letters. Deduce that g is independent of the initial choice of
generators uy, . .., u, (¢ is called the rank of F. Its invariance can also be proved by linear
algebra if F is first “abelianized,” see 5.3.2).

EXERCISE 2.2.4.4. Give an algorithm which decides whether the generators of a subgroup
generate freely.

EXERCISE 2,2.4,5 (Nielsen 1921). The generalized word problem for a free group F is to
decide, given words u,, . .., u, and w, whether w is in the subgroup G of F generated by
uy, ..., u,. Derive an algorithm for the generalized word problem using the generators
wy, ..., w, found for G in 2.24.1. (It follows that the elements of F can be effectively
divided into cosets modulo G.)

2.2.5 The Schreier Index Formula

Suppose that F has rank ry and G has index i in F. Then the rank of G is given by
rg =irp —i+ L

Since F has rank ry it is realized as 7, of a bouquet & of rpcirclesey, ..., ¢, .
This means that there are ry outgoing edges (labelled ey, ..., e,.) from each
vertex in the covering graph 4 which realizes G. Since G has index i in F
there are i vertices in % and hence iry edges.
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Now a spanning tree for a graph with i vertices has (i — 1) edges (since the
first edge takes two vertices and each subsequent edge takes one more)
hence there are

irg —(— 1) =irp —i+1
edges of @ not in the spanning tree. By 2.1.7 and 2.1.8 this is the nquer, rg,of
free generators of n,(%) = G. ' |

The Schreier formula can be rewritten i = (rg — 1)/(7y — 1). Then if
rp is given, the fact that i must be an integer > 0 excludes certain values of ry
from being the ranks of subgroups of finite index in F (in particular, all values
re¢ < rg). A subgroup G whose rank is one of the excluded values must there-
fore be of infinite index, so the covering graph method for finding free
generators of G involves an unnecessary detour into the infinite when com-
pared with the Nielsen method, quite apart from the problem of finding coset
representatives in the first place. This should be kept in mind when reading
the next section.

Exercise 2.2.5.1. To what extent can the Schreier formula-be considered valid for
infinite values of ry, rg, or i?

2.2.6 Schreier Transversals

The proof of the Nielsen—-Schreier theorem in Schreier 1927 is a little more
searching than the one given in 2.2.4. Schreier also finds free generators for
the subgroup G by means of a special system of coset representatives. His
method refines the use of coset representatives for determining subgroups
in Reidemeister 1927, but it begs to be interpreted in terms of spanning trees.
In fact, the method is simply an algebraic translation of the method used for
finding generators of 7,(%) in 2.1.7, as Schreier himself points out.

Let F again be realized as n,(%), where ¢ is a bouquet of circles, and let
& be the covering which realizes the subgroup G of F. As we saw in 2.2.2,
the vertices of @ correspond to the right cosets of G in F. Thus if we choose
a spanning tree F of & the coset corresponding to a given vertex PY can be
associated with the unique reduced path §in . from P to P, and if p is the
(closed) path in ¢ covered by p, its equivalence class [ p] is a representative
of the coset in question. Because of the fact that an initial segment of a reduced
path in & from P© is itself such a path (ending at a different vertex),
the system of coset representatives [p], taken as reduced words, has the
property that any initial segment of a member of the system is another
member of the system. Such a system of coset representatives is called a
Schreier transversal.

Conversely, any Schreier transversal corresponds to a spanning tree 7 of F.

7 is found by lifting the reduced form, p say, of each coset representative
[ p] to its covering path f from P in 4. The paths p must constitute a tree,
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because any nontrivial closed path would involve two different initial
segments p; and p, ending at the same vertex P, and then the initial segments
py and p, would give two different representatives of the same coset, The
tree spans because each vertex corresponds to a distinct coset. O

Now let us adapt the construction of free generators from 2.1.7 to the
situation where a Schreier transversal is known. We shall assume reduced
words are used throughout, so that equivalence class brackets [ ] can be
dropped. The coset representative of an element x of F will be denoted X,
and the elements of F which are themselves coset representatives will be
denoted wy, w,, ... (s0 W; = w,). The free generators of F will be ey, e,, ...
so that each vertex of 4 has outgoing edges labelled e,, e,, ... . If the edge
& from PY to P® is not in the spanning tree 5 determmed by the Schreier
transversal then it yields a generator

a; = W;EWw ',
where W, is the unig 2 reduced pathin 7 from P to PY, and hence covering
some e]ement w; 0 he Schreier transversal, and W, is the unique reduced

path in 7 from P(”’ to P, the final point of W;&;, hence covering the element
(w;e;) of the Schreier transversal. Thus a;; can be expressed

a; = wie(w;e)”!
as an element of F,

We therefore obtain all the free generators of G by letting w; run through
Wi, Wy, ... and e; through ey, e,, ... . In doing so, of course, we produce
expressions w;e(w;e;) ! corresponding to edges &, in the spanning tree 7
Such an expression represents a closed path in 7 and therefore has reduced
form 1, so it may be immediately discarded.

Exercise 2.2.6.1. Use the Schreier method to find free generators for the commutator
subgroup K, of F,.

2.2.7 Normal Subgroups and Cayley Diagrams

If F is realized as n, of a bougquet of circles %, the covering & which realizes
a normal subgroup G of F is the Cayley diagram of F/G, and F/G is also the
covering motion group. Thus any group H can be realized as a covering motion
group.

We saw in 0.5 that any H with generators ey, e,, ... has the form F/G
where F is the free group generated by ey, e,, ... and G is a normal subgroup
of F. Now it is immediate from the definition and elementary properties of
Cayley diagrams that
(1) The Cayley diagram of F/G is a covering & of the bouquet %.

(2) The subgroup of F realized by the covering is G (closed paths in the
Cayley diagram are just the elements of G).
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(3) The automorphism group of the Cayley diagram of any group H is H
itself.

On the other hand, we know from 2.2.3 that the covering Z of ¢ which
realizes a given subgroup G of F is unique, hence if we construct the covering
4 for a normal subgroup G we must get the Cayley diagram of H = F /G,
so H is also the covering motion group. 1

This theorem is illustrated by the covering € in 2.2.2 which realizes the
commutator subgroup K, of F,. It is obvious that 4 is the Cayley diagram
of the free abelian group on two generators, which is indeed equal to F,/K,.

. The interpretation of Cayley diagrams brought to light by the theorem
suggests we should regard graph coverings in general (at least when % is a
bouquet of circles) as generalized Cayley diagrams. In fact, some authors
call coverings of the bouquet of circles Schreier coset diagrams, since they
were first used in Schreier 1927, Exercise 2.2.7.1 below yields a geometric
characterization of the coset diagrams which are Cayley diagrams.

In 2.2.4 we pointed out that the nonconstructiveness of the Schreier
method for finding free generators via a set of coset representatives could be
overcome by the Nielsen method when the subgroup G was finitely generated.
When G is also normal (but #{1}) then F/G is in fact finite (see Exercise
227.2), and we can proceed more directly to make Schreier'’s method
effective. Namely, if F/G is defined by relators we use the method of 0.5.7 to
effectively construct the Cayley diagram # of F/G, then construct a tree 7
spanning & by the method of 2.1.5. The Schreier generators w; e,(w e) *
can then be read from the edges of % which are not in 7

This is the situation where Schreier’s method is most often useful. Of
course, it can also be applied to subgroups G of infinite index when the
coset diagram is apparent and easy to survey, as is the case with the com-
mutator subgroup.

EXERCISE2.2.7.1. A covermg & of @ is called regular if the paths in & wh1ch cover a given
closed path p in % are either all closed or all nonclosed. Show that this property is
cquivalent to the normality of the subgroup realized by the covering.

EXERCISE 2.2.7.2. Show that a Cayley diagram ¢ is finite if and only if (%) is finitely
generated,

Exercise2.2.7.3. Identify the normal subgroup G of F, realized by the covering in Figure
131 and the quotient F,/G. Give a set of free generators for G.

0000 o<

Figure 131
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110 3 Foundations for the Fundamental Group
3.1 The Fundamental Group

3.1.1 Introduction

The fundamental group was introduced by Poincaré 1892 (though antici-
pated to some extent by the study of curves on surfaces in Jordan 1866b).
Poincaré defined the group in function-theoretic terms by considering
analytic continuation of a many-valued function ¢ around a closed path p
in a manifold. Since the value obtained after completing p may differ from the
initial value, p may be considered to define a transformation of ¢, and since
any path p’ which is deformable into p defines the same transformation,
the group of transformations of the “most general” function ¢ is naturally
isomorphic to the group of equivalence classes of closed paths, where
“equivalent” means mutually deformable.

The inconvenience of this definition for actual computation is obvious,
and Poincaré quickly moved to a combinatorial notion of the fundamental
group (Poincaré 1893), in which all paths are polygonal and deformations
result from pulling a polygonal path from one side of a cell to the other (the
simplest case, where the cell is 1-dimensional, being insertion or removal of a
spur). Such a definition makes the computation of generators and relations
routine, but it is open to the objection that the group is not obviously a
topological invariant. Since the topologists of the time pinned their hopes
on the Hauptvermutung, they could be satisfied with a proof that the funda-
mental group was invariant under combinatorial homeomorphisms, which
was supplied by Tietze 1908.

A new approach opened up with the proof of Alexander 1915 that the
Betti and torsion numbers (see Chapter 5) are topological invariants.
Alexander’s proof is based on the simple observation that uniform continuity
allows us to divide a curve p (or the continuous image of any simplex) in a
complex % into a finite number of pieces which individually lie in arbitrarily
small regions of %. Such a region # can therefore be treated as a ball, and the
piece of p in # deformed into a “straight” segment. In other words, there is
no loss of generality in replacing p by a polygon p', and the numbers and
other objects computed from polygonal paths are therefore the same as those
defined, in a topologically invariant way, from arbitrary continuous paths.
This applied in particular to the fundamental group, so the groups which
had earlier been computed on a combinatorial basis were now placed on a
topologically secure footing. This was first done in the textbook Veblen
1922.

The method of computing generators and relations from a simplicial
decomposition, while routine (see 4.1.6), is clumsy, and in practice many
ad hoc arguments were used to find simpler presentations. Seifert 1931
proved a theorem which greatly simplified the process by showing that the
fundamental group of a complex which is the union of suitable sets & and #
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with a connected intersection arises in a canonical way from the groups of
o, B, and o ~ B. Seifert’s proof assumed that these groups were already
realized combinatorially by a simplicial decomposition of .« U &, but a
more general proof by Van Kampen 1933 led to a complete emancipation
from simplicial decompositions.

The following remarks concern the exposition in this chapter. In defining
the fundamental group and proving that it is a group (3.1.2-3.1.6) we have
tried to avoid unnatural functions as far as possible. This involved defining
a path to be an equivalence class of maps rather than a single one (an ap-
proach also adopted by de Rham 1969) and allowing arbitrary intervals and
* rectangles as the domains of functions. The only group which has to be
derived from first principles is that of the circle (3.2); all the other fundamental
groups we need are then obtained by combining the simple technique of
deformation retraction (3.3) with the Seifert-Van Kampen theorem (3.4).

3.1.2 Paths

The intuitive idea of a path p is a curve with orientation indicated by arrows,
for example Figure 132. However, this view is inadequate in some respects:
for example, a picture of a circle with an arrow on it does not distinguish
between the path which runs once round the circle and the path which runs
round twice.

final point

initial point

Figure 132

We arrive at a formal definition by considering the idea of a “journey”
along the path. A journey in the complex % is a continuous map f: % - %
where J is a closed interval. We think of .# as a time interval, so f(¢) is the
position at time t. The image of f is the curve itself while the orientation is
induced by the natural (time) order on . In particular, if .# = [g, b] then
f(a) = initial point of p, f(b) = final point of p.

Another journey f': #’ — % may be held to cover the same pathif f' = f¢
where ¢:.#'— .# is a continuous order-preserving bijection. (We can think of
¢ as a “time-warp.”) The relation between f and f* which holds when there is
such a ¢ is clearly an equivalence relation, so we can give the following

Definition. A path p is an equivalence class of continuous functions from
closed intervals into %, where f: .# — € and f": #' ~ & are called equivalent
if f* = f¢ for some continuous order-preserving bijection ¢: #' — #.
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The inverse (or oppositely oriented) path to p, p~* is defined to be the
equivalence class of fi: # — % where ¢ is a continuous order-reversing
bijection. In intuitive terms, f and fi are journeys along the same curve in
opposite directions.

3.1.3 Notation

In what follows it will be convenient to have a notation which reflects the
fact that one interval or function is a “continuation” of another. We call .,
a continuation of £, if #, = [a, b] and #, = [b, ¢] and just in this case use
F,, to denote £, U £,. In analogous circuinstances £,3 = S, U S3,
Fla3 =F1 0 I, U Fy, and so on.

A funiction f,: £, — € is a continuation of f;: ¥, — & provided

() 4 =[a,b]land #, = [b,c] and
(i) fi(B) = fo(b)

and just in this case we use f,: ., — € to denote f; U f,. The idea extends
similarly to f53, fi23, and so on.

We shall also consider functions of two variables hy: #; x S, » €
where #,, .4, are intervals. In this case h, can be continued to an h, in two
ways—by continuation of #, to #, or continuation of .#, to .#,. In either
case we use h, , to denote h; U h, (though of course its domain is ¢, x 5,
in the first case, #; X £, in the second).

3.1.4 Products of Paths

The trouble involved in finding a natural formalization of the notion of path
is worthwhile because it gives a natural notion of the product p,p, which
results from successive journeys along paths p,, p, where

final point of p; = initial point of p,.
Namely, choose journeys f;: #, — %, f,: #, — % along p,, p, where 7,
is a continuation of .#; then

f122F12 €

is a journey along py, p, in succession and hence a natural representative of

PiP2-

This product is well defined on equivalence classes, for if f: 47 — %,
f4: # — % are other journeys along py, p, where .4} is a continuation of
Syand [ = fiy, 5 = frdy, then f1,:.87, — G equals fi, ¢y, and hence
is equivalent to f;,.

The product is associative too, for if p;, p,, p; are paths such that

final point of p, = initial point of p,,

final point of p, = initial point of p;,
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we can choose journeys along them, f;: £y —» €, f,: %, %, 3.5, F
such that each is a continuation of its predecessor. But then p,(p,p;) and
(p1p2)ps are both represented by the journey fi,3: F 1,3 = %.

3.1.5 Homotopy

We are not really interested in individual paths, only in paths which differ
in a topologically interesting way. Paths will be considered equivalent if
one can be deformed into the other within €, an idea which is formalized by
the notion of homotopy.

A homotopy between journeys f: . — % and g: # — & is a continuous
function h: £ x % — € where ¢ = [c, d], h(c, t) = f(t) and h(d, 1) = g(t).
If one now thinks of _# as a time interval, the functions h,(t) = h(x, 1) for
x € # represent a series of journeys in a process of deformation from f to g,
for example Figure 133. As the example shows, the image curve may retrace
previous positions and even cross itself under deformation. Accordingly,
the image of # x # under A, called the deformation rectangle, is in general a
“crumpled” or singular rectangle, with various possible types of singularity
arising from failure of & to be one-to-one. Just as in the definition of path it is
important to think dynamically—in terms of the map rather than its image.

I

—

[
—_—X 4 g

Figure 133

By a slight abuse of language, we also use the word “homotopy” to
denote the relation “there is a homotopy between f and g.” We now wish to
show that this relation is well-defined on paths and that it is in fact an
equivalence relation. These results are obtained by exploiting the arbitrari-
ness of # and ¢ respectively.

Suppose h: # x F - is a homotopy between journeys f: # —% and
g: # — €. The bijections ¢ which establish a correspondence between the
journeys f* = f¢ equivalent to f and the journeys g’ = g¢ equivalent to g
also provide homotopies between them, namely A'(x, ) = h(x, ¢(t)), so
any journey equivalent to f is homotopic to a journey equivalent to g.

Similar application of ¢ to the x variable enables us to convert a homotopy
between f and g over the interval # to one over any other interval #'. In
particular, if

hy: £ x £ — % is a homotopy between f; and f;
hy: #, x F — % is a homotopy between f; and f,
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we can assume ¢, is a continuation of .#; and hence obtain the homotopy
hiz: F12 X F — € between f; and f;.

Thus the homotopy relation is transitive, and since it is obviously reflexive
and symmetric, it is an equivalence relation, which from now on we denote
by ~. The ~ equivalence class of a path p is denoted by [p], and it will be
called the path class of p.

ExERCIsk 3.1.5.1. If p is homotopic to a point show that p js the image of the boundary
of a disc @ which maps continuously into % (the image of 2 is called a singular disc).

ExERCISE 3.1.5.2. Construct a complex % and a simple curve p which bounds a singular
disc in % but not a topological disc.

3.1.6 The Group Properties

It is easy to see that the product operation on paths induces one on path
classes, in other words we can define

[pi]-[p23tobe [pyp,]

Namely, suppose f; ~ g; and f, ~ g, are homotopic pairs of journeys along
paths p,, p, respectively, where

. final point of p; = initial point of p,.
We can assume
hy: # x £, — & is a homotopy between f; and g,
hy: # x S, — € is a homotopy between f, and g,
and that 4, is a continuation of .# . Then
hiy: Fx Iy, %€

is a homotopy between fy, and g,,-

Associativity for the product of path classes then follows immediately
from associativity of the product of paths.

However, the path classes have a decidedly more pleasant algebraic
structure under product than do paths. The classes of closed paths emanating
from a fixed point P form a group, called the fundamental group of €, n,(%).
(It will turn out that, up to isomorphism, the group does not depend on P
when % is arc connected.) P is called a basepoint. .

The identity element of the group is the class of the “point path” P
represented by a function with constant value P. (The paths in this class are
also called null-homotopic.)

To see how this works, let f:.#, — % be a journey along an arbitrary
closed path p, from P and let f,:.#, — % be a constant journey along p,
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(=the point path P) where .#, is a continuation of .#;, of unit length for
simplicity. Since p,p, is represented by f,: .#,, » ¥ we are looking for a
homotopy which “stretches” f; until its domain is all of ., , and at the same
time “compresses” f, until its domain is just the final point of # ;.

Let ¢F be the linear function whose inverse leaves the initial point of
#, fixed and increases the final point by x, ¢3 the linear function whose
inverse leaves the final point of .#, fixed and increases the initial point by x.
Then

f3 = f, ¢7 is the “stretched” f;
13 = fo¢% is the “compressed” f,

and h(x, t) = f,(t) for x from 0 to 1 is the required homotopy.

(Intuitively, one deforms the journey across p,p, in the time interval .,
so thdt the time spent on p, increases and the time spent on p, tends to 0.
This is possible without discontinuity only when p, is the point path, since
at the end one must be everywhere on p, at the same instant.)

The above argument shows that [P] is an identity for multiplication on the
right, and a similar argument shows that it is also an identity for multiplica-
tion on the left.

Finally we show that [p]™%, the inverse of [ p], exists and equals [p~'].
Choose a journey f;: .#; — % along p so that .#, = [0, 1] and let the journey
along p~1 be f,: £, —» €, where 4, = [1,2] and

L +8 = fil — ).

To show [pl[p~*1= [pp~'] = [P] we seek a homotopy between the
journey f,,: #,;, — % along pp~* and the journey with constant value P.
Let

fi(® 0<t<1l-x
i) =10 -0)=f0+x) 1-x=<t<1+x,
£ 1+x<t<2

(This describes a journey which stops x time units before reaching the end of
p, waits for 2x units, then retraces p back to the beginning.) Then h(x, 1) =
f3,(0) for 0 < x < 1 is the required homotopy.

3.1.7 Independence from the Basepoint P and Topological
Invariance

If € is an arc connected complex then the group of closed path classes
emanating from P is isomorphic to the group of closed path classes emanating
from any other point Q, hence we are entitled to speak of the fundamental
group of €, and omit mention of the basepoint.
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Figure 134

Choose a path w between P and Q and associate each closed path class {g]
emanating from Q with the closed path class [wgw™ '] emanating from P
(Figure 134). Since any path class [p] from P can be written in this form,
namely

[wow ™ 'pwyw™ ']

we have a one-to-one correspondence ® between the closed path classes
based at Q and P respectively. ® is also a group homomorphism, since

®([q:1[q,)) = [wag:q,w™"']
= [wg,w™'wg,w™ ']
= [wg,w ' [wgw™ ']
= ®([q, DP([q. ]

and hence @ is an isomorphism, as required. O

Since P is irrelevant to the structure of 7,(%) we now denote the identity
element simply by 1.

The topological invariance of (%) is an immediate consequence of
the arbitrariness of the continuous functions which define paths. A homeo-
morphism : € — %' maps a closed path p based at P to a closed path y(p)
based at y(P), and since y is one-to-one and continuous it induces a one-to-
one correspondence Y, between the path classes based .at P and Y(P)
respectively. Since ¥ also sends products to products, it follows that Y, isan
isomorphism between =, (¥) and =,(%’).

From now on we shall deal only with arc connected complexes, and we
shall also describe them by the equivalent term: path-connected.

3.2 The Fundamental Group of the Circle

3.2.1 The Réle of Compactness

The combinatorial notion of path equivalence used in 2.1 and 2.2 seems a
drastic simplification of the general notion of homotopy for paths. In fact
this is not so, and the underlying reason is compactness. A path p, being the
continuous image of a closed interval, is compact and therefore can be
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decomposed into finitely many subpaths p,, ..., p, lying in “small” regions
of the complex in question. In a “small” region, a path p; can be tightened
by an obvious homotopy to the “straight line” p; between its endpoints, and
one can then operate combinatorially with the “straight” paths p; to compute
certain discrete objects, such as the element corresponding to p in the
(combinatorial) fundamental group.

Then in order to prove the invariance of these objects under homotopy,
one makes a further application of compactness to decompose a given
homotopy into “small” homotopies. Because of the discrete nature of the
objects, small homotopies cannot change them, and hence they are un-
changed under all homotopies.

In the present section we carry out this program for the fundamental
group of the circle (see also 3.4.2, 3.4.3). We expect of course that any closed
path p in the circle can be tightened by a homotopy into the product of n
copies of the standard circular path e,, for some integer n. This will show
that e, generates the group. However, the technical difficulty in the tightening
process is to know in advance what the value of n is. Consider for example
the problem of tightening the portion of p between two neighbouring points
P, and P, on the circle (Figure 135). The tightened form is not necessarily
the short arc a,, it could be the complementary (and oppositely oriented)
arc a,, or a complete circuit of the circle, e,, plus a,, and so on.

Py

Figure 135

To overcome this problem we shall perform the tightening in two stages.
Stage 1 will divide the path into finitely many subpaths which are so small
that the tightened form of each is just the short arc between its endpoints,
and Stage 2 will reduce the resulting product of arcs to e} by removal of
spurs.

3.2.2 Tightening a Path

Any closed path is homotopic to a power of e;.

Stage 1. Let f:.# — S! be a journey along a closed path p in the unit
circle S'. Since f is a continuous function and .# is a closed interval,
f is uniformly continuous and we can partition .# into subintervals
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S, Fay ..., Sy which are so small that d(f(1), f() <= for t, ' € Sy,
where the distance function d( , ) is the length of the shorter arc between
the two points.

Suppose £, = [, ty+1] and let f: #, — S! denote the subjourney of f
restricted to #. Since the image of f, is confined to an arc &/, which is less
than half the circle we can view .o, as an interval. Then it is evident from a
glance at its graph (typified by Figure 136) that f; can be deformed into the
function f4:.#, — S' which runs linearly between f(t,) and f(fx.,). An
explicit homotopy which does this is obtained by letting

hy(x, 1) = fi(0),

where f3(t) results from f,(t) by shrinking the distance between f(t) and
f(®) by a factor 1 — x (x running from 0 to 1).

}

St /\
i
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Figure 136

Stage 2. The homotopy h;,..., deforms p into the product of m circular
arcs ay, ..., d,, ¢ach less than a semicircle. If ay, ..., a,, all have the same
orientation then it is clear from the fact that a,a, - - - a,, is closed that it must
be e} for some integer n. If the orientations vary, simplify the product by
cancellation as follows: let ay, a,, ..., a; have the same orientation and
suppose that a;, ; has the opposite orientation. If a;, ; is shorter than a; we
have

P ’
a; = aiaryy and @48y - Gliey ~ Ayl GG
if not
R d ’
Ay = G Gpq ANA Aydp -0 QG g ~ Gqdo " B3 Git g

In either case we get a homotopic path with a smaller number of factors. If all
factors now have the same orientation we are finished; if not, we repeat the
process until they do. O

We have now shown that e, generates ,(S'), however it is not clear that
it does so freely. We have to prove that p is homotopic to ¢} for only one value
of n, but as yet it is not even clear that the value of » just computed is in-
dependent of the partition of # into subintervals.
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EXerCiSE 3.2.2.1. Show that any closed path from the vertex of a bouquet of circles
ey, €,, ... is homotopic to a finite product of paths e} or ¢; !. (Actually, this is not
generally true. For example, there is a single closed path which traverses every circle
in the family

N2, 1
—_—— +y =-3 (n=1,2,3,,..)
n, n

in Figure 137, This space, sometimes called the Hawaiian earring, was shown to have a
nonfree fundamental group by Griffiths 1956. One must therefore make an assumption
which excludes this pathology—for example, let every circle have length greater than
one—then find a suitable notion of “small” subpath.)

Figure 137

3.2.3 Brouwer Degree

The number n determined from f:% — S' by means of the partition
F, Iy oo, Sy is independent of the partition chosen and hence can be
regarded as a function of f, n(f), called its Brouwer degree.

To show the invariance of n under different partitions it will suffice to
show that n does not change when a refinement of #,, .#,, ..., #, is made,
since any two partitions have a common refinement. In turn, it will suffice to
look at the effect of a single subdivision of £, = [, t,+ (] into [, t*] and
[t*, t,+,]). Figure 138 compares the new situation to the original (3.2.2).

Ser) p /\ .
Ji .
Ji Vs d,
f) ‘_/‘",,";; -------------------
I— r vy
Y
i

Figure 138
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The tightening homotopy of Stage 1 now produces two linear functions f§
and f¥ in place of f}, and obviously the sum of the lengths of the corre-
sponding subarcs of &7, (signed according to orientation) equals the length of
the arc corresponding to f’%. But n arises from Stage 2 simply as the sum of the
arc lengths divided by 27, so it is unchanged and we are justified in writing

it as n(f). O

The degree of a map was introduced by Brouwer 1912a, who showed that
this invariant is meaningful for a mapping of any manifold into itself. In this
case we are essentially dealing with a map of the manifold S into itself,
since f is required to give the endpoints of # the same image.

EXERCISE 3.2.3.1. Show that the product of terms e** obtained according to Exercise
3.2.2.1 is independent of the decomposition of p into small subpaths, and that it is a
reduced word.

3.2.4 Invariance of the Brouwer Degree under Homotopy

We first show that

An arbitrary homotopy f ~ g can be decomposed into a sequence of homotopies
f~fi~fo~ o~ fp~g which are “small” in the sense that, for each
i, D(fi, fi+1) < & where the distance D between functions defined on the interval
S is the usual sup norm:

D(fi, fp) = sup d(f(0), f1D)).

A homotopy h: # x . — S! is a uniformly continuous function, so for
any ¢ > 0 there is a § > 0 such that

(e, ) — (%, £)| < & implies  d(h(x, t), h(x', 1)} < &,
where | | denotes the usual distance in the plane. Then if we divide ¢ by

points x;,.. ., x, into subintervals of length < § the functions fi(t) = h(x;, £)
have the property that D(f;, fi+1) <e.

Now in order to show that n(f) = n{g) when [ ~ g it will suffice to find
an g such that D(f, ¢) < & implies n(f) = n{g). In fact, ¢ = n/4 suffices.

Given f:.# — S! we find a partition &, #,, ..., #, of # such that
a(f (), f)) < n/2 for any ¢, ¢’ € £, and use it to determine n(f) as in 3.2.2.
This partition can also be used to determine n(g) for any g such that
D(f, g) < mn/4 because in any %, we have

d(g(e), g(t)) < dg (1), (1)) + dA(F (), F()) + d(f (), g())

<3TyTETm
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Now n(f) = (1/2n)(ay + a, + --- + a,), where a, = (signed) length of
short arc between f(t,) and f(t.,,) and n(g) = (1/2n)(b; + by + -+ + b,,),
where b, = (signed) length of short arc between g{t,) and g(t,. ), and the
condition D(f, g) < 7/4 imposes the constraints
T
la; — b} < 3 for each i,

iand for each k, [(a; + -+ + &) — (b, + -~ + by)| differs from a multiple
of 2r by < n/4. It then follows easily by induction on k that in fact

@y + - a) = by + -+ bl < for cach k

and in particular

1 = 1
In(f) — n(g)} < W AT®
But since n(f) and n(g) are integers, they must be equal. J

We have now proved that paths e}' and €% cannot be homotopic when
ny # n, and hence that e, freely generates the fundamental group of the
circle 8'. Thus 7,(S?) is the infinite cyclic group.

EXERCISE 3.2.4.1. Show that the product of terms ef* associated with a closed path p
in the bouquet of circles in Exercises 3.2.2.1 and 3.2.3.1 is invariant under homotopy.
Deduce that the e/’s freely generate the fundamental group of the bouquet.

3.3 Deformation Retracts

3.3.1 Retracts

A complex # = % is called a retract of % if there is a continuous map
p: € — % (called the retraction) such that p(P) = P for each P € 4.

A retraction p induces a homomorphism p, of n,(%) onto n,(#). (Borsuk
1933).

Since p is continuous, it sends each closed path in € to a closed path in 2,
and it also sends homotopic paths to homotopic paths, since the continuous
image of a deformation rectangle (3.1.5) is again a deformation rectangle.
Thus p induces a map

Py T (%) > 7 (R)
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which is 2 homomorphism because p obviously sends products to products
and inverses to inverses. Finally, since p is the identity on £, every closed path
in  is the image of a closed path (namely itself) in €, and hence p, is onto.

A trivial example of a retraction is the map which sends every point of ¢
to some particular point P € . Retractions of ¥ onto more complicated
subspaces # are constrained by the group-theoretic proposition above —%
cannot be so complicated that =;(%) is not a homomorphic image of ,(%).
For example, the disc 2 has 7,(2) = {1} (we shall prove this below, however
it is easy to see directly that each closed path is null homotopic), while its
boundary circle S* has m,(S!) = infinite cyclic group. There is no homo-
morphism of the trivial group onto the infinite cyclic group, and hence no
retraction of the disc onto its boundary circle.

EXERCISE 3.3.1.1. Suppose that there is a continuous map ¢:2 — @ of the disc into itself
with no fixed points, that is $(P) # P for each P-€ 2. Use the pair (P, ¢(P)) to define
a point P’ on the boundary circle S' such that p(P) = P’ is a retraction, thus proving
the nonexistence of ¢. (This is the famous fixed-point theorem of Brouwer 1912a. In
this paper Brouwer actually proved that any continuous map of the n-dimensional ball
onto itself has a fixed point.)

3.3.2 Deformation Retracts and Collapsing

A complex # < % is a deformation retract of € if there isa retraction p: 4 - #
which is homotopic to the identity map: % — € in the following sense: there
is a continuous function

0,11 xF-%
such that
(i) ForallPe¥,
O, P)= P and h(1, P)= p(P).
(ii) Whenever P € &, h(t, P) = P for all't € [0, 1].

A deformation retraction p induces an isomorphism
P (B) = 7y (R). (Borsuk 1933)

We have a homomorphism p,: 7,(%¥) — n;(#) as in 3.3.1. The homotopy
h now guarantees that p maps any closed path in % based at a pointin Ztoa
homotopic path in £, so p, does not change path classes, and hence is an
isomorphism. O
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As examples of deformation retracts we mention

(1) The centre point of a disc is a deformation retract of the disc. Thus
wy(disc) = {1}.

(2) The circle is a deformation retract of the annulus, and the solid torus.
Thus 7, of both these objects is the infinite cyclic group.

It is not hard to give explicit analytic formulae for & in these examples.
In the next example (which is important for computing knot groups, see
4.2.4) we shall be content with a series of pictures (Figure 139).

=)

==y

Figure 139
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(3) A cube with vertical holes drilled through it has a deformation retraction
to a bouquet of circles.

If % is a subcomplex of a complex 2 then a deformation retraction p: ¢ — R
extends to a map p of @ by letting p be the identity map outside €. This
extended map p induces a continuous map p’ of & onto the identification
space 2’ obtained by identifying all elements of & with the same p-image. We
call p': @ — @' a collapse of & onto &', and the proof of the theorem above
generalises easily to show that the induced map of fundamental groups,
Py @ — 2’ is an isomorphism.

Anexample of a collapse is that of an arbitrary graph to a bouquet of circles
(cf. 2.1.8 and-Exercise 3.3.2.1.)

The more complicated collapses we need (such as example (3) above) can be
given a combinatorial form. An elementary collapse of a simplex I across a
face I' is a deformation retraction of X onto (boundary of X)-T'. For example, a
1-simplex collapses to a point, a 2-simplex to a V-shaped pair of 1-simplexes,
a 3-simplex to a “cone” made of three 2-simplexes, and so on. An elementary
collapse can be made across any boundary face T in a simplicial complex €,
and a collapse in general is a finite sequence of elementary collapses. In the
examples we shall use it is only a matter of patience to find a suitable simplicial
decomposition and the right sequence of elementary collapses.

Deformation retraction is a good tool for computing fundamental groups
because it simplifies the space without changing the group. When combined
with the Seifert-Van Kampen theorem of the next section, which permits the
fundamental group to be computed when complexes with known funda-
mental groups are glued together, we shall have a method powerful enough
to compute the fundamental groups of all finite complexes.
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EXERCISE 3.3.2.1. Show that any vertex of a tree is a deformation retract of the whole
tree, and hence that any graph has a bouquet of circles as a collapse. Deduce from
Exercise 3.2.4.1 that the fundamental group of any graph is free.

Exercise3.3.2.2. Use collapsing to show that the bouquet of two circles is a deformation
retract of the perforated torus, Figure 140, and hence deduce that the fundamental group
of the perforated torus is the free group of rank 2.

Figure 140

3.4 The Seifert-Van Kampen Theorem

3.4.1 Introduction

So far we know the fundamental groups only of spaces which possess
deformation retracts of a particularly simple form, namely a point or a
bouquet of circles, for which the group is either {1} or a free group. However,
many other spaces can be obtained simply by glueing such spaces together.
Consider the decomposition of the torus surface in Figure 141. o/ has the
bouquet of two circles as an obvious deformation retract and hence n,(#) =
{a,, a,; —) (free group of rank 2), while £ is a topological disc and hence
n,(#B) = {1}. of and & meet along a simple closed curve ¥ (Figure 142)

Figure 142
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which represents the element a,a,a7 'a; ! in x,(), while in 7,(#) it = 1.
It therefore secems that attaching & to &/ will add the relation

ayaya;ta;t =1

so that n,(of U B) = {ay, ay; a1a,a7 *a; ) = {a,a,; a,a;, = a,a,).

More generally, we should be able to realize an arbitrary finitely presented
group {dy, ..., am; "y, . .., I,y by taking a bouquet o7 of m circles to represent
ay,. .., a,and for each relator r;, taking a disc 4, and identifying its boundary
with the path in &/ which realizes the word r;. This was pointed out by
Dehn 1910. However, while it is clear that the relations r; = 1 hold in the
resulting complex, it is not clear that only they hold (or more precisely, that
any relation is a consequence of them). To prove this type of result we shall
use the following theorem (Seifert—Van Kampen theorem):

Suppose € is a space which can be expressed as the union of path-connected
open sets sf, B such that o N & is path-connected and such that =,(/) and
7,(#) have respective presentations

[TV TS P Y
[CTT R PR
while n,(of N B) is finitely generated. Then 7,(%) has the presentation
gy eees Oy By oo s Bps Prs e Ty S1a ey S Uy = Dy ey Uy = Up),

where u;, v; (i =1, ..., t) are expressions for the generators of n(& N &)
in terms of the generators of n,(sf), n,(%&) respectively.

The assumption that &/ and # are open, so that &/ ~ % is also, is not what
we originally had in mind, but it greatly facilitates the proof. In practice it
can easily be accommodated by attaching small neighbourhoods to the
boundaries of closed components of ¥. For example, the components </, &
of the torus above can be enlarged to open sets &', ' by adding points of
the torus distant < ¢ from their boundaries. &/’ N ' is then an open annulus
instead of a single curve, however deformation retraction shows that none
of the fundamental groups has changed, so our previous computation will be
a consequence of the Seifert-Van Kampen theorem.

3.4.2 Generators

Given € = of L B, with the above assumptions, we choose the base point P for
closed paths in € to lie in o/ n B. Then any closed path p from P is homotopic
to a product of the paths a; and b, (or their inverses) which generate n,(<f)
and 1,(%) respectively.

Let f: # — % be a journey along the path p. Since o/, # are open and . is
compact we can find a partition £ = £, U £, U--- U .S, such that the
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subjourney f;on each .#; = [t;, ¢, ] lies entirely within s/ or entirely within
2. Let p; be the path represented by this subjourney. (We get the partition
by uniform continuity, after observing that there is an ¢ > 0 such that
HAX) o A or /' (X) < & for each X ep. If there is no such e, points
X,ep with A, (X,) & o/, # have a limit X ep, by compactness, but
X¢oA, B)

We now construct an approach path w; from P to the initial point fi(t;)
of each p; (w; ! will then be a path from the final point of pj-1 to P)in such
a way that if f{z)) lies in &/ N 4 then so does w;. This is possible because
o N % is path-connected. Otherwise, if f(z;) lies in &/ so does w;, and if
S{t;) lies in 4 so does w;, similarly using the path-connectedness of o7 and 2.
The result is that the closed path w;p;w;}, either lies entirely in & or entirely
in 4, and hence can be expressed in terms of the generators a; or b; re-
spectively. The same is true of the closed paths p,w; ! and w, p,.

But

—1 -1 —1
P PiWa oWy Pa Wyt e Wi P Wi Wi Py

and hence p is homotopic to a product of a;s and b;s. 0

3.4.3 Relations

We can now assume that any path p in &/ U # is written as a product of
@y, ... @y, by, ..., by. The relations

r1=...:rH=51=...=qu]
must hold, since they are already true in <7, #; likewise the relations
Uy = vy, Y, =0,

since they are true in o/ M #. Our task is to show that any.other relation
follows from these. This means showing that if p is any null-homotopic path
in of U 4, then p = 1 can be derived by means of the above relations.

Since p is null-homotopic there is a continuous map h: Z — €, where
is a rectangle and h maps the top edge of Z onto p, the other three edges into
the basepoint P. It will be convenient to discuss the image of # under £ in
terms of a diagram of £ itself. One need only bear in mind that the diagram
of Z in & is “crumpled ” to the extent that the top edge becomes p and the
other three edges collapse to the point P, then the distinction between %
and its image may be suppressed.

By compactness, there is a subdivision of % by vertical and horizontal
lines into subrectangles &;; so small that (the image of) each 2, lies entirely
in &/ or entirely in 48. This suggests a way of contracting p to the point P in
& U & by “small” steps which individually take place within o/ or 4,
namely pulling portions of p across (the image of) one %;; at a time (Figure
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143). To describe the process in more detail we introduce the notation for
the vertices and edges of £;; in Figure 144. The initial position is the top
edge of &, p = ¢p €y 1.1, and we want to reach the final position
CooC10 * * - €k~ 1,0 Which is just P. It will suffice to pull p downwards across the
typical horizontal strip. shown in Figure 145. The typical step illustrated
in Figure 143 is represented by the equation

dijci._i+1 = Cijdi+ 1.j 0Y)
and special steps at the ends, as in Figure 146 (which are valid because the

vertical sides of # collapse to the point P in %), are represented by the
equations

Coje1 = Copdy; and di_y ;o1 ju1 = Chonje - 2
The problem is that the c;;, d;; are not closed paths, so Equations (1), (2)
cannot be considered as relations in n;(7) or 7,(4). The solution is to take
an approach path w;; from P to each vertex P;;. We can then define closed
paths
Yij = wijcijwi—+11,1'

- -1
Oy = wisdyWi j1 4

——
Figure 143
¢ ;
Py bt Piiyjsr
di'] ‘/”ii diu,j
R‘J’ Pi+ 1,
iy
Figure 144
€o,j+1 N Clj+l o Chmt,j+1 R
> > g
do, 4 di; A da; A N EEY ¥ di; N
> > >
Coi Cy Ce-1,5
Figure 145
and — R, j
: '

Figure 146
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which behave formally like ¢;;, d;; (as will be seen). The crucial point is to
construct w;; so that it lies in .o N # if P;; does, which is possible because
o ~ A is path-connected, and otherwise let w;; lie in &/ if P;; does, in #
if P;; does. Then all four closed paths y;;, 8;;, ¥, j+1» 0i4 1, @ssociated with
#,;;liein of, or else all in 4, so it is to be expected that the relations analogous

to (1), (@)
5ij)’i.j+1 = ?ijéiﬂ,j )
Y0,j+1 = ”/Oj‘slj and 5k—1,j')’k—1,j+1 = V-1, 2)

are valid in whichever of n (), n,(%) their elements belong to. We verify
(1) by performing homotopies on §;;7; j+ 16+, ;7 *» which for definiteness
we shall assume to lie in .«/. A homotopy in & will be denoted by ~ ;.

5ij7’i,j+ 15i_+11.j?z; !
= Wijdijwfjl+x 'Wi.j+tci.j+1wi:»]1.j+1
‘(WH-1,jdi+1,jwi_+11,j+1)*l '(wijcijwi_ﬂ»ll‘j)_l
~ g Widijci e dDYy e twii ! (since the cancelled paths lie in o)
~ 4 wywi;!  (contracting the perimeter d;;c; ;. dizy, ;e
of &;;, which lies in 7, to a point)
~ L

Thus 6;;7; ;416544 ;y5 " = 1 is valid in n,(«#) and hence a consequence of
the relations of n,(=). Similarly for the relations (2'), which are in fact de-
generate cases of (1), since

Og; = O, ; = 1

as a result of the collapse of the vertical sides of # to the point P. (Incidentally,
Yoo = V10 = '+ = Vx—1,0 = I for the same reason.)
We now observe that

P = YorV1ir V-1,

(assuming that we have chosen w,, and w,, to coincide with the point path P)
so we can reduce this expression to

P ="%o0%10 " Yi-1,0 =1

by manipulating the y’s and &’s as we previously manipulated the ¢’s and ds,
using the relations (1') and (2') which are valid in n,(s#) or n;(#). The
relations u; = v; will enter when we wish to apply a relation of n,(«/) to an
expression which, as a result of previous manipulations, is expressed in terms
of the generators of #,(#) (or vice versa). This will only happen when the
curve in question lies in &/ N %, in which case expressions for it in terms of
either set of generators exist, and are intertranslatable via the relations
U; = ;. D



3.4 The Seifert-Van Kampen Theorem 129

3.4.4 Realization of Finitely Presented Groups by Surface
Complexes

We are now able to justify the claim that the group

<a1:~~"am;rb --"rn>
can be realized by taking a bouquet of m circles for the generators ay, ..., a,
and identifying each path r; with the boundary of a disc 2,.

First we confirm independently that if
&/ = bouquet of m circles ay, ..., a,
then TC;(.M) = <a1’ ces Ay _>

The method of proof may be illustrated with m = 2 (Figure 147). Since a,, a,
are not open sets we enlarge them to
o = —{x,} and &, = — {x{}

respectively. Then g, is a deformation retraction of &/ |, so 7, (o) = {a;;—>
and a, is a deformation retraction of &,, so #,(«,) = {a,; —). Also,
ANty = A — {x,,x,} which is a tree, so it has a deformation retraction
to a point and n,(.o/; N &Z,) has only the trivial generator 1. Thus by the
Seifert—Van Kampen theorem

ny(f) = m(od | U o y) = <ay, az; —>

Similarly, if & is the bouquet of m circles, then =,(/) is the free group of
rank m.

Now if r, is a path in the bouquet & and we want to identify it with the
boundary of a disc @, the result can be obtained by first adding a neighbour-
hood A", of r; to form the open set &/ U A", then adding the interior
int(?,) of #,. A", will consist of points distant < ¢ from the boundary of @,
together with “whiskers”—small half-open segments from the circles which
meet r; at the vertex of the bouquet (Figure 148). We take the basepoint for

Figure 148
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the fundamental group to ke in the intersection (& U A"{) N int(@,), which
is the open annulus of points distant > 0 but < & from the boundary of 2.
o/ is a deformation retract of the open set &/ U A"y, 50
a (A O N) =m ()= Ay, e s Qs —D
int(2,) has a deformation retraction to a point, so
ny(int@,)) = {1}

and n,((of U A")) Nint(@,)) is the infinite cyclic group generated by the
centerline of the annulus, which is equal to the element ry in 7;(o/ U A";)
and 1 in 7,(int(@,)). The openness of the various sets permits the Seifert—
Van Kampen theorem to be applied and we have

(A VD) = my (4 U A}) U int(@)))
=Agy.eey Opy Ty = 1.

Successive attachment of discs 2; to the paths r; fori = 2 adds the relations
r, = 1 by a similar argument (using the obvious neighbourhood 4 of r;
ind VDU UD;og) ]

Of course the discs @; must all be disjoint and free of self-intersections
except for points on their boundaries which are identified with the same
point of . As a result, it is not usually possible to embed the complex which
realizes a given group in ordinary space. The simplest example is the cyclic
group of order 2, {a,; a?). The process of sewing the boundary of 2, twice
around a, (Figure 149) catinot be completed in R? since the result is a

projective plane.

Figure 149

EXERCISE 3.4.4.1. Give a criterion for a relator r; to yield a closed surface when the above
construction is applied.

EXERCISE 3.4.4.2. Show that 7,(S%) = {1}. Generalise the argument to $"* .

3.4.5 Free Products

The Seifert-Van Kampen theorem gives a natural interpretation to the
free product construction for finitely presented groups. Given

G=Lay, .oy OusTiseees Ty
H=<by,....,by;81,...,8
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then
GxH =4ay,...,00,b15... ;b7 00 Py Spyenes S0

> Yp> »9q
is called the free product of G and H.

The free product is well defined, because if we choose another presentation
Ay oovy Qs Py ooy Ty fOr G, there is a finite sequence of Tietze trans-
formations (0.5.8) which convert it to {ay, ..., ap; 1, - .., ¥, and the same
transformations will convert a3, ..., @, by,. o, By, oo T sy, ., 50 tO
s vy Qs by ooy Bys ey oy 1y 815 14, 5,0 if Ome takes care not to give
different generators the same name at any stage. Thus G = H does not depend
on the presentation of G, nor on the presentation of H (similarly).

Using the infinite Tietze transformations of Exercise 0.5.8.2 one can extend
this argument to define free products of infinitely presented groups, and even
the free product *;G; of an infinite collection {G,} of groups, by taking
the union of presentations of the G; on disjoint sets of generators.

G = H has a natural realization in terms of surface complexes &7, # such
that n,(&f) = G, n(#) = H. Namely, one identifies a vertex of &/ with a
vertex of 4. (To apply the Seifert—Van Kampen theorem enlarge <7, % to
open sets /', &’ by adding a small simply connected neighbourhood of the
vertex.) This yields the following group-theoretic result:

There are natural embeddings of G and H in G « H

Let G = H be realized as #,(s7 U &), where &7, # are complexes, with a
single common point P, such that n,(s/) = G, n,(#) =

Consider a path p in & for which there is a homotopy h: # - S U H#
which sends the top edge of the rectangle # to p and the other three edges to
the point P. If we compose h with the retraction

prd OB~ A

which is the identity on =/ and maps all & to P then we get a homotopy
ph: & — of which again sends the top edge to p and the other three edges to P.
In other words, if [p] € n,(«f) and [ p] = 1 in n (& U %), then, in fact [ p]
= 1 in m;(s#), so the homotopy classes of paths in &/ represent a natural
embedding of #,(«) in (' U B).

In group-theoretic terms, the subgroup of elements of G * H generated by
the generators of G is isomorphic to G. Similarly for the subgroup generated
by the generators of H.

EXERCISE 3.4.5.1. Give a combinatorial proof that G, H embed in G x H by finding a
group-theoretic equivalent of the retraction map p.

ExercisE 34.5.2. Let G; = {a;q, Gip, - . § Fiys Tiz» - .. De realized by a surface complex
;. Let € be the complex formed by attaching each «7; by an edge ¢; to a new vertex P
(Figure 150). Prove a special case of an infinite Seifert-Van Kampen theorem to show
that )

ERCH RN CTIN TP TP TO RIS SETS SPTUNS PETS 5P SO &
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Figure 150

(The edges ¢ are not strictly necessary, but they make it impossible for a path to enter
infinitely many <#;.)

3.5 Direct Products

3.5.1 Product Spaces

The cartesian product (or simply, product) of two spaces ¢, and €, %; x %
is defined as a topological space by letting its points be the ordered pairs
{x,, x,) such that x, € %, and x, € %, and letting the neighbourhoods of
{x1, X, be unions of the sets

Ny x Ny =y Y0y €4 and y, € 45},

where 4", is a neighbourhood of x, and A", a neighbourhood of x,.

The best known example of a product is the torus, which can be viewed as
S! x S If we let 0, ¢ be the angular coordinates on the two circles, the
ordered pair <8, ¢> fixes a point on the torus by “longitude” and “latitude.”
With small arcs as a basis for the neighbourhoods on S' we get small
“square” patches, homeomorphic to the disc, as neighbourhoods on the
torus (Figure 151). Finitely many such patches exhaust the whole torus
surface and, when divided by their diagonals, yield a triangulation which
reaffirms the identity of the torus as a simplicial complex.

Figure 151
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A similar argument shows that the product of any two simplicial com-
plexes is a simplicial complex.

More importantly, the product .#; x .#, of manifolds .#, .# , is itself
a manifold. By hypothesis, each point in .# has a neighbourhood homeo-
morphic to the open m-dimensional ball, which in turn is homeomorphic
to R™, while each point in .#, has a neighbourhood homeomorphic to R".
Each point in .#, x ., therefore has a neighbourhood homeomorphic
to R™ x R" = R™*" which is homeomorphic to the (m + n)-dimensional
ball. Thus #, x 4, is an (m + n)-dimensional manifold.

3.5.2 The Direct Product of Groups

The direct product G x H of groups G, H is defined by cbmponentwise
multiplication:

g1 h1) - (ga2» hod = £g192, hiha)
on the set of ordered pairs {g, h) such that g € G, h € H. A convenient fact is:

7, (%, x ¥,) = n,(€,) x 7 (%)

It suffices to observe that a path p in %, x %, can be viewed as a pair
{p1» p2), Where p; « €, and p, = %,. This is because a continuous map
f:F =€, x €, sends cach t € # to an ordered pair {fi(¢), fa(t)), where
fi: £ > %, and f,: F - ¥, are also continuous.

Thus each journey fin €, x %, decomposes into a pair of journeys in the
two factors, paths and path classes decompose in turn, and products are
formed componentwise. The elements of 7,(¥, x %) are therefore ordered
pairs ({p,1, [P, 1), where [ p;] € #,(€,) and [ p,] € n4(%,), with component-
wise multiplication, which means that the group is precisely 7,(%;) x
7,(%).

This theorem gives an independent computation of the fundamental
group of the torus, since

7 (S* x 81 = my(8') x 71,(8)
= (infinite cyclic) x (infinite cyclic)
= free abelian of rank 2.

The theorem is not generally useful for computing fundamental groups,
since most complexes are not nontrivial products, however it provides a
very quick computation for those that are.

For example, S' x S$2, St x S3, ... all have infinite cyclic fundamental
group, like S!, because

my(S?) = 1y(8%) = -+ = {1}.
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The fact that the 4-dimensional manifold S! x S2 has infinite cyclic funda-
mental group will be useful later in constructing 4-dimensional manifolds
with prescribed fundamental groups.

EXERCISE 3.5.2.1. Show that G x H results from G « H by adding relations gh = hg
for each generator g € G, he H.



CHAPTER 4

Fundamental Groups of Complexes
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4.1 Poincaré’s Method for Computing Presentations

4.1.1 Introduction

What we describe as Poincaré’s method for computing the fundamental
group was given by Poincaré 1895 only in terms of a few special examples.
These examples were mainly 3-dimensional manifolds obtained from a solid
cube by identifying its faces in various ways. However, they clearly exposed
the fact that one finds generators from the 1-dimensional cells of the complex,
and relations from the 2-dimensional cells. Let us take Poincaré’s example of
the cube in which each face is identified with its opposite by translation
(Figure 152). !

(3 a
a4y

a, ay

a; a;

dy

o a,
Figure 152

It is easily checked that all eight vertices become identified with 0, the
neighbourhood of which is filled in by eight “corner chips” of the cube to
become a topological ball. Similarly, each edge becomes identified with the
three other like-labelled edges, and the neighbourhood of a point on the
edge is filled in by four “edge chips” to become a topological ball also. It is
obvious that points in the faces and interior of the cube also have 3-dimen-
sional ball neighbourhoods, so this complex is indeed a 3-dimensional
manifold.

Poincaré then assumes that any closed curve can be deformed onto the
edges, so the curves ay, a;, a; (which, one notes, are closed) are generators
of the fundamental group. Likewise, any deformation is based on elementary
deformations which consist of pulling the curve from one side of a face to
the other. Formally, this means equating the perimeter of each face to the
identity, that is,

aaatayt =1, aazaztast=1  aaaztei’ =L
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These relations simply say that all generators commute with each other, so
we have the free abelian group of rank 3.

Tietze 1908 gave a more formal discussion of Poincaré’s method, general-
ising it to n dimensions and allowing for more than one cell in the complex.
Tietze takes care of the possible multiplicity of vertices by using an approach
path w; from the chosen basepoint P to each vertex P;. Bach edge P, P; is
then associated with the closed path w; PlPJwJ ! and these paths suffice
to generate the group. Tietze observes that in thlS general setting it is the
2-dimensional cells alone which determine the relations of the group.

The purpose of this section is to prove, using the Seifert-Van Kampen
theorem, that the generators and relations obtained by the Poincaré method
indeed determine the fundamental group as we have defined it in 3.1.6. This
result is mainly of theoretical interest, showing that any finite simplicial
complex has a finitely presented fundamental group. It would be tedious in
practice to actually use a simplicial decomposition to compute a presenta-
tion, and the reader who wishes to see examples of direct computation may
wish to skip ahead to Section 4.2.

EXERCISE 4.1.1.1. Show that the manifold discussed above is homeomorphic to
S! x 8' x 8%,

4.1.2 1-complexes (Graphs)

We already know (from Exercise 3.3.2.1) that any graph has a collapse
to a bouquet of circles, via a deformation retraction of a spanning tree,
and hence that its fundamental group is free. However, in order to find
explicit generators in the original graph, we sketch a fresh approach from
first principles.

Given a graph %, construct a spanning tree &, and for each edge ¢; =
P;P, construct a path

-1
a; = WiepWwy -,

where w; is the unique reduced path in & from P to P; , and wy is the unique
reduced path in  from P to P,, where P is the chosen basepoint. We can
now show by an argument like that in 3.2 that any path p in % is homotopic
to a product of e’s and their inverses, whence any closed path is homotopic
to the corresponding product of a;’s (cf. 2.1.7). The a;’s therefore generate
nl(g) and we obtain a subset which freely generates by taking only those
a;’s which correspond to ¢;’s not in 7 (the remaining a;’s can be set equal to
1 since they are in fact closed paths in 7). [
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4.1.3 2-complexes (Surface Complexes)

We now study the result of attaching discs & to a graph %. The construction is
like 3.4.4 except that the boundary of 2 is no longer an element of n,(%)
necessarily, but may be an arbitrary closed path given by a product of
edges

- pfipf2 | oEn
r=ejle---en

This adds the relation

21052 oo gt =
a,»la,»z 4

in

to the group.

1

The only departure from the construction in 3.4.4 is to take an approach
path w from P to r, namely the unique reduced path % from P to the initial
point of r. As in 3.4.4, we first attach a neighbourhood A" of r to %, then add
the interior of 2, int(%). The intersection of these two open sets is an open
annulus whose centreline is homotopic to r, so if we take the basepoint
to lie in the annulus the relation r = I will be added to the group.

When we shift the basepoint back to its original position P, at the initial
point of w, » will be replaced by wrw ™. But

-1 1

wrw™ ! = weflef? - efrw”

— gflg82 ... gin
= di 45 a;,

since ej'ef’ -+ e;" is closed and w is the unique reduced path in J from P

to its initial point. Hence with P as basepoint the relation added to the
group is

£1 L2 o . i
aila? - afr = 1. 1

The argument is the same (except for suitable reinterptretation of the
“neighbourhood of r”) when % is already a surface complex instead of a
graph, hence successive attachment of discs adds the relations which corres-
pond to their boundary paths in the above manner.

4.1.4 The n-sphere for n > 2

We know that the n-sphere S” is obtained from two n-balls B" by identifying
their boundaries, which are S"~!. But B" has a deformation retraction to a
point, so w(B") = {1}, and since §"! is path-connected for n > 2, the
Seifert—-Van Kampen theorem gives n,(S") = {1}. (Expand the two B™s
slightly to open sets which intersect in a neighbourhood of $7~1)



4.1 Poincaré’s Method for Computing Presentations 139

4.1.5 Attaching an n-ball to a Complex forn = 3

When the boundary S" ! of the n-ball B" is identified with part of a complex
%,

7 (€ v B") = n,(%).

The construction is exactly the same as the special case B2 = & treated
in 4.1.3. We find open sets whose union is ¥ v B", which have deformation
retractions to % and a point respectively, and whose intersection is a neigh-
bourhood 4" of wu 8", where w is an approach path to the boundary
8"~ ! of B"~ !, But then .#" has a deformation retraction to S"~! which,
unlike S!, has trivial fundamental group, so the Seifert-Van Kampen
theorem gives

(B U B") = n,(%). 0O

4.1.6 The Method

Any simplicial complex can be constructed by first assembling the I-sim-
plexes (giving the 1l-skeleton), then attaching the 2-simplexes (giving the
2-skeleton), then attaching the 3-simplexes, and so on. The result of 4.1.5
shows that the fundamental group is already determined by the 2-skeleton.
By 4.1.2 and 4.1.3, the manner of determination is the following: construct a
spanning tree 7 of the 1-skeleton by the method of 2.1.5, and for each vertex
P, construct an approach path w, from the basepoint P to P;, namely the
unique reduced path in 7. For each edge e; = P; P, there is then a.generator

a; = wie;w; !

which can be set = 1 when e; is in 7. And for each face in the 2-skeleton,
with boundary ejle? - - - ¢ we have a relation
al?;a]?; e af: =
Furthermore, the same is true for cell decompositions which are not
necessarily simplicial, since we made no assumption about the way the
boundary of B" was mapped continuously onto the complex. In particular,
if one can find a one-cell decomposition with a single vertex—as in the

Poincaré example—then the generators are just the edges and the relators
are the perimeters of the faces.

EXERCISE 4.1.6.1. i # ; and .#, are n-dimensional manifolds, the connected sum M ; #
4 , is constructed by removing a small open n-ball &; from each . #; and then identifying
(M~ &) and (M, — &,) along their boundary (n — 1)-spheres. When n = 3 show
that

(M # M) = 7y (M) % T (M ).
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4.1.7 Infinite Complexes

If € is an infinite simplicial complex then the above construction is also valid
for obtaining a presentation of 7,(%).

Let G be the group whose presentation is obtained by applying the con-
struction of 4.1.6 to the complex 4. We first show that there are connected
finite complexes

C b, b3
such that
¢=%,

n

and that there are “nested” presentations of m,(%¢,), n;(%3),... whose
“unijon” is the presentation of G.

Let 7 be a spanning tree of the 1-skeleton of %, obtained, as in 2.1.5, as
the union of

T,cT,c T3¢,

where any vertex one edge away from 7, is in ;. Then since % is locally
finite, 7, is finite and hence so is

%, = union of simplexes of ¥ incident with 7.

F .41 is a spanning tree of the 1-skeleton of €,, so %, is connected, and
Un®, =%

Taking P as the vertex of 7 |, the approach paths in Z to vertices of €,
are in 7, , so the generators g; of n,(%,) obtained by using &, as its
spanning tree are among the generators of G. These a; correspond to edges
¢, in the 1-skeleton of %,, and since any face in %, bounded by these ¢; is a
fortiori in %, the relations of n,(%,) are among those of G. Conversely, any
edge or face of % is in some %, so each generator and relation of G eventually
appears in some 7,(%,).

Now a closed path p based at P is compact and hence must lie in some
%,. It can then be expressed in terms of the generators of #,(%,) and hence
in the generators of G. Thus the generators of G generate n,(%). If p is also
null-homotopic then its deformation rectangle, being compact, also lies in
some %,,. In that case p = 1 in n,(%,,) and hence in G, so the relations of G
imply ‘all relations of 7,(%). The relations of G are certainly true in =(%).
therefore :

G = n,(6). O
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4.2 Examples

4.2.1 Finite Surfaces

The classification theorem of 1.3 can be interpreted as giving the following
constructions for closed finite surfaces:

(i) Orientable surjace of genus n. Take a bouquet of circles a, , b4, ..., a,, b,
and attach a disc with boundary identified with the path a,b,a; by ---
a,b,a; byt

(ii) Nonorientable surface of genus n. Take a bouquet of circles ay, ..., a,
and attach a disc with boundary identified with the path a? --- a2,

(iii) Sphere. Attach two discs to a circle a.

It is then an immediate consequence of 3.4.4 that their fundamental groups

arc

(1) <Cl;, bl’ cons Gy hn; alblal_lbl_1 e anbna;lb;l>
(i) <ay,...,a,al--a)
(iii) {13.

The topological distinctness of these surfaces can now be proved rigor-
ously by showing that the groups are all different. This is not difficult to do,
but we shall postpone it until it can be placed in its true setting (homology
theory and abelianization, Chapter 5, in particular 5.3.3).

We also saw in 1.3 that any bounded finite surface is homeomorphic to
a disc with strips attached-—double strips corresponding to handles, Mobius
strips to crosscaps, and single strips for any extra perforations. Such a
surface (Figure 153) obviously has a deformation retraction onto a bouquet
of circles passing through the strips, hence its fundamental group is free,
of rank equal to the number of strips. A more general result, which does not
depend on normal forms, is given in the following exercise.

Figure 153

EXERCISE 4.2.1.1. Let % be a connected subcomplex of a triangulated finite surface &.
If % # & show that ¥ collapses onto a graph, so that 7,(%¥) is free.
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4.2.2 Infinite Surfaces

The fundamental group of an infinite surface is free (Johansson 1931).

To find free generators for 7,(F), where & is an infinite surface, we shall
refine the idea of 4.1.7 so as to get finite bounded surfaces

FicF,cFyc
such that
F =), Fa

and such that the free generators of m,(# ,.,) include those of n(F ).

First, enumerate the triangles A, A,, A;, ... in a simplicial decomposition
of & in such a way that A, , is incident with one of Ay, ..., A, for each n.
This can be done by first enumerating the triangles in the neighbourhood
star of P cyclically, then the triangles one edge distant from P, then those
two edges distant from P, and so on. If we now take a small disc neighbour-
hood A7(P,) of each vertex P, in the triangulation and let

A)/'l = A"U ‘/V(Pnl)u “/V(PHZ)U ‘/V(PnB):
where P,, P,,, P, are the vertices of A,, then
AU-UA =%,

is a bounded surface for each n. : :

In general, if a union. % of triangles A; is connected then the union %’ of
the corresponding A is a surface. % is a subcomplex of the surface &, so
any of its edges is incident with at most two surface pieces: A vertex P, of
% has a disc neighbourhood, namely A°(P,) while a vertex P, not of %
has a disc or semidisc neighbourhood according as it meets two or one of
the triangles A; (Figure 154). '

It follows that & is a union [ J, %, of finite surfaces -

F1C972c:.?3c:---

Figure 154
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however, to ensure that the free generators of 7, (%) remain free in T (Fpi1)
we have to control the construction as follows, to prevent the appearance
of curves which contract in & but not in &,

Step 1. Set #, = A{. Because # — A is an infinite surface it contains no
disc spanning the boundary of A}.

Stepn + 1. Assume inductively that &, has been constructed as a connec-
ted union of elements A} which include all of A}, ..., A/, and so that there is
no disc in # — &, spanning any of its boundary curves. If A, , is already
contained in &,, then #,, | = #,. Otherwise, &, , is constructed by first
attaching A, ; to &, (they have a common point by hypothesis on the
enumeration of A;, A,, ...} then, if any of the new boundary curves which
result is spanned by a disc Z in F — (£, U A, ), attaching & also.

& is attached by taking the union with the minimal set of A which suffice
to cover &, and it then follows by induction that &,,, has properties
analogous to those assumed for #,. Since A, = &, we have

F =),

To prove the claim about 7,(#,. ) we examine the six possible ways
that A, ., can be aitached to #, (Figure 155). The polygon represents an
arbitrary boundary curve of #,, with bumps corresponding to the A(P,)
neighbourhoods, and the shaded triangle is A, ;. The case of all three edges
of A, 4 lying on %, is excluded by the induction hypothesis.

In Cases (1), (2), (3) the new boundary curve cannot be spanned by a
discm F — (#,u A, ), otherwise the old one would be spanned by a disc
in & — #,. So in these cases the construction of &, , is complete and the

Figure 155
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free generators of 7,(%,) are also free generators for 7;(% .+ 1) for in each
case there is a deformation retraction of # .., onto F .

In Cases (4), (5), (6) the old boundary curve is replaced by two or three
new ones, some of which may be spanned by discs in & — (T, 0N
When these discs are added the result is replacement of the old boundary
curve by (a) one, (b) two, or (¢) three new ones. In Case (a) the free generators
of 7,(#,) are also free generators for m,(F 4 1) by the same argument as
above.

In Case (b) we get one new generator. Recall that free generators for
7,(F ) are found by collapsing &, onto a bouquet of circles #,. It is clear
that #,., can be collapsed onto 4, plus one new edge (corresponding
to AL, ), hence the free generators of n,(F ;) will serve as free generators for
7,(F a4 1) in conjunction with one new generator which passes through
Al . In Case (c), which can only arise from (6), we get two new generators
passing through A, ;.

This completes the proof of the claim.

It follows that there are nested free presentations of (F ), 7 (F ),
7, (F3),..., and hence a free presentation of m;(¥), by the concluding
argument of 4.1.7. . O

Exsreise 4.2.2.1. Construct surfaces to realize the free grbups on 1,2,3,... and a
countable infinity of generators.

4.2.3 Wirtinger Presentation of Knot Groups

A knot " is a simple closed polygonal curve in R3, o of course need not be
an actual polygon, but only the image of one under a homeomorphism of all
R3 (this is to exclude wild embeddings, see 4.2.6). During the nineteenth
century the study of knots and their classification was pursued -on an ex-
perimental basis, but with the advent of the fundamental group decisive
results could be obtained for the first time. The key observation is that when
4 is a trivial knot (isotopic to the circle in R?) the group of its complement is
infinite cyclic. Thus if we can show that the knot group m(R*> — #’) is not
infinite cyclic for a particular knot %~ we have a topologically sound proof
that A is not trivial.

The first method for computing knot groups was introduced by Wirtinger
around 1904 in his lectures in Vienna, but not given wide circulation until
its publication in Tietze 1908. We begin with intuitive explanation of the
method.

Any knot 2" can be given by a projection on the plane with no multiple
points which are more than double, and with indication being given, at
cach double point, which branch of A" is uppermost. Figure 156 shows a
projection of the trefoil knot. The double points are called crossings. If we
break the lower branch at each crossing we obtain a finite set of arcs o,
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Figure 156

and it is intuitively clear that n(R® — &) is generated by loops a; which
pass around these arcs. Thus we have as many generators as there are
crossings. We choose an orientation for the knot X, and then orient the
generators g; around the arcs «; by the right-hand screw convention (Figure
157). It is also convenient to order the subscripts to follow a circuit round
A, so that the lower arc «; into a crossing is followed by the arc «;,; out of
the crossing. Referring to Figure 158, we see that for the crossing of type (1)
the curve a;a; 'a;} a; contracts to a point, hence we have the relation

=1 =1 —
a;a; “aiyvia; =1 or aja; = a;4,a;
For the crossing of type (2) we have
-1 -1 __ 1 —
4;a;ai0a; T = or a;a; = d;a;4 4.

(The other two possibilities correspond to the opposite orientation of 7,
and hence give relations of one of these two forms.)

Figure 158
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4.2.4 Proof of the Wirtinger Presentation

We now give a rigorous derivation of the presentation using the Seifert—Van
Kampen theorem.

We can assume that each arc «; of the knot # lies in the plane z = 1
except for a vertical segment at each end which goes down to z = 0. The
final point of o; can then be joined to the initial point of a;, ; by a segment
B; in the plane z = 0 passing under the upper arc of the crossing o;, to
complete the knot 2. We now remove from R? the “tunnel” neighbourhood
A of A swept out by a cube of side & which travels with its midpoint on
A" and faces parallel to the axes, where ¢ is small enough to ensure that
R® — A is a deformation retract of R® — % (Figure 159). R®> — ./ can
now be expressed as the union of open sets . and % which reflect the genera-
tors and relations, respectively, of 7, (R> — A4").

.27/

Figure 159

o = {z >0} — A has a deformation retraction onto a bouquet of
circles ay, ..., a,, where a; is a loop passing under the tunnel #7; containing
a;. The reader may become more convinced of this by first deforming &/
so that the “hollows” &%; containing the f; are pressed down to z = 0,
then pulling the tunnels .oZ; into parallel with each other, as in Figure 160
(cf. the cube with holes in 3.3.2).
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ay

a;

o o,

Figure 160

Hence 7,(#) = {ay, ..., a,; —>.

# = {z <2} —~ .4 is an open half-space with “trenches” containing
the segments %, dug out of it. It is clearly simply connected, so 7,(%#) ={1}.

A N#=1{0<z<g?2} — A is an infinite plate with n holes in it (the
upper halves of the trenches), hence

7y (o N &) = free group of rank n.

The typical generator of m,(«/ n %), a circuit round a trench (Figure
161), has the form a;a; ‘a;}a; in ny () (or a;a;a7'a;? for the second
type of crossing) and 1 in m,(%). Thus the Seifert-Van Kampen theorem
gives precisely the Wirtinger relations for

(U B) = my(R® — ) = my(R? — ). |

!

1%~

oAy — l I s —>

~d L

Figure 161

EXERCISE 4.24.1. Show that any one Wirtinger relation is a consequence of the re-
mainder. (Suggestion: Instead of using 4 to seal the tunnels %; at the bottom of &,
use a separate open set 6, to seal each %;, where %; is an open cube with %, removed
from its top. Then show

TR — A =m(LVE, U UE)

=n(AVE VUG UE i VU E))
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Exercist 4.2.4.2. Generalize the Wirtinger method to compute 7 (R?® — %), where 4 is
any graph embedded in R3. Show in particular that the relation at a vertex of degree

n has the form
a8, 4, =1

n

whena;,, ¢ ., o, is the clockwise sequence of edges into the vertex.

Q22 e

4.2.5 The Simplest Knot and Link

We now compute the groups for the trefoil knot and the two-crossing link.
(i) The two-crossing link (Figure 162). At X we read off the relation

aaa;ta;t=1 or aa; = a,4

Figure 162

and at Y we find the same relation. Thus the group of the two-crossing
link is
ay, 833 A1y = G201
or the free abelian group of rank 2. The group of (R3-two unlinked circles)
is the free group of rank 2 (why?) and hence we have a proof of the non-
triviality of the link.
(i) The trefoil knot (Figure 163). At X we read off
a.a3 tay tay = 1. @

AtY

asa;taitay = 1. @
At Z

aaitazla; =1 (3)
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Figure 163

Solving (1) for a, and substituting the result in (2) and (3) we find that each
yields the equation

Q3083 = AzQ34;. )
It follows that
(a,a3a,)* = (asazas)azaza;) = (a3 a,)?

which we write
aZ = b.’l (5)

by setting a = ayasa,, b = aza,. But a, =ab™ ', a; =h%"' so a, b
are in fact generators and (4) is a consequence of (5). Thus we have the
presentation

G2'3 = <a, b; a2 = b3>

for the group of the trefoil knot.

We now investigate whether G, ; is infinite cyclic. Notice that the group
S of permutations on three symbols is also a model of the relation a® = b3,
namely, take

a=(12), b=(@123)

Hence any relation in G, 5 is also valid in S; under this interpretation of
a, b. It follows that ab = ba is not a relation of G, 3, since ab # ba in S;,
and therefore G, 5 is not infinite cyclic because all elements commute in
the infinite cyclic group. (The representation of G,_ 3 by S is due to Wirtinger,
who used it to construct a covering of S* branched over the trefoil knot, see
1.1.4. The same covering had already been considered by Heegaard 1898,
who made the surprising discovery that the covering manifold is also S3.)
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Figure 164

EXERCISE 4.2.5.1. Show that the cube with holes shown in Figure 164 has a deformation
retraction onto the torus, and hence gives an alternative derivation of the group of

the two-crossing link.

4.2.6 The Fox—Artin Wild Arc

A simple polygonal arc & in R3 has the property that m,(R® — o) = {1}.
Fox and Artin 1948 call a simple arc & in R? wild if there is no homeomor-
phism of R® which maps .« onto a polygon, in particular if n(RY — &) #
{1}. Figure 165 shows an example of a wild arc (the limit points P and Q are
included in the arc).

The generators we shall use for m,(R® — o) are loops a,, b,, ¢, for all in-
tegers n, placed as shown in Figure 166. R? — 4 is the union of sets €,
obtained by removing cubes centred on P, Q at the positions shown in

Figure 165
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P Lﬂ—n .....-_,lan Q
[ e
[b_, b,
Figure 167

Figure 167. The generators of ,(%,) are a,,, b, ¢, for —n < m < nand the
relations are

Gt = Crmt 1CmCris 1 Wirtinger relations at the crossings;
b, = Cm_-ilamcm«)- 1
Cot1 = by by by —~—n<m<n
together with relations
Coyly=b_,, C,a, = b,

at the ends (shrinking the cubes to points and using Exercise 4.2.4.2).

By removing a small tunnel neighbourhood of the arc (of diameter which
tends to 0 as n — co) we can replace %, by a finite simplicial complex, so it
follows from 4.1.7 that the generators of 7, (R® — <) are a,, b,, ¢, as claimed,
and the relations are (for all integers n)

Catly = b, 6
Gps1 = i 1CCriy @

by = ;1 Cus 1 (3
C1 = by by by @

Substituting (2) in (1) and (3) gives
CuCn 'Cyo1Cy = b,, thatis, b, =c,.c, (5)
and
bn = Cn_-i-llcn_ lcn——lcncn+1- (6)
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Substituting (5) in (4) gives
D P g .
Chr1 = Cn cn~15ncn+lcnvlcn
or
Ca-1CnCa+1 = Cncn-rlcn-—lcn (7)

which is the same as the result of eliminating b, between (5) and (6). Thus
we can use the ¢’s as generators, with the defining relations (7).

It can then be verified that these relations hold in the nontrivial group
generated by the permutations (12345)and (14235)whenc, is interpreted
as (1234 5)for nodd and (1 42 3 5) for n even, hence 1;1(R3 —o)# {13 0

In constructing the wild arc & we have also constructed a wild ball (the
tunnel neighbourhood of /) and wild sphere (the boundary of the wild
ball). The first examples of such objects were given by Antoine 1921, based
on an even more paradoxical object, a wild Cantor set in R®. The ordinary
Cantor set, obtained by the «middle-third” construction on the unit interval,
has a simply connected complement in R®. However, a wide variety of
descending sequence constructions lead to homeomorphic images of the
Cantor set; the one used by Antoine iterates the construction of linked solid
tori inside a solid torus (Figure 168). Four linked tori are constructed again
within each inner torus, and so on. The intersection of all these tori is a
Cantor set in R3 called Antoine’s necklace. Antoine showed geometrically
that its complement is not simply connected, and this was confirmed by
calculation of the fundamental group by Blankenship and Fox 1950.

Figure 168

Fox and Artin 1948 also showed the wildness of the arc &/’ obtained by
altering . so that the crossings are alternately over and under. of' is in
fact the “chain stitch” of knitting, infinitely extended in both directions. Its
group is calculated similarly, but turns out to be slightly more complicated
than that of . It is interesting to note that the infinite chain stitch was
pictured in the first ever paper on knot theory, Vandermonde 1771.
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\

Figure 169

Exercise4.2.6.1 (Fox 1949). Show that the group of the simple closed curve in Figure
169 is generated by by, by, b,, ... subject to the relations

bibobi® = bybibs ! = bybybyl = -

and find a permutation representation which shows it is nonabelian.

4.2.7 Torus Knots

Consider a solid cylinder % with m line segments on its curved face, equally
spaced and parallel to the axis. If the ends of % are identified after a twist of
2n(n/m), where n is an integer relatively prime to m, we obtain a single curve
A . on the surface of a solid torus J (Figure 170). Assuming that 7 lies

Figure 170
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in R® in the “standard” way, which means among other things that
7, (R® — ) is infinite cyclic, the curve H . 15 called the (m, n) torus knot.
We now compute 7,(R® — A, ,), following the method of Seifert and
Threlfall 1934

If we drill out a thin tubular neighbourhood A~ of ', , from R3, the
effect on 7 is to gouge out a narrow channel from its surface, and similarly
on the surface of R? — 7. T — A4 and (R* — J) — A then meet along an
annulus &, , which, like A, ,, results from m parallel strips on the cylin-
der being joined up after a twist of 2n(n/m) (Figure 171). n,(&,,. ») is infinite
cyclic and generated by the centre line by Of Lopne 1T — A7) is also
infinite cyclic and generated by the axis « of 7. Since /,, , results from m
circuits of 7 we have ?

Lpw=a"

in n(F — A Similarly, 7,(R* — 7) — A) is infinite cyclic, generated
by a loop b through the “hole” in 7, and
by ="b"

inm (R — ) — A).

Then if we expand J — 4 and (R® — ) — 4 slightly across &£, ,
to open sets ./, & which intersect in a neighbourhood of &, ,, the Seifert-
Van Kampen theorem becomes applicable, and we obtain the presentation

Gpn=<abd" =b"

for the group of the (m, n) torus knot. O

Figure 171
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ExERcCISE 4.2.7.1. Show that the (m, n) torus knot is the same as the (n,m) torus knot.

EXERCISE 4.2.7.2. Let 3, be the solid body (handlebody) bounded by an orientable
surface of genus n which is standardly embedded in R® so that =,(R® — #,) is the
free group of rank n. Show that if %" is a simple curve on the surface of #, then
7, (R® — ") has a presentation with n + 1 generators and n relations. (Hint: Attach a
thin handle 2 to s, which follows % just above the surface of S, and has its ends
at neighbouring points on #. Show that 3, U # is a standardly embedded handle-
body 4, , |, then cut 2, , so as to obtain a body whose complement is homeomorphic
to R® — 47)

4.2.8 Lens Spaces

The (m, n) lens space is a 3-dimensional manifold introduced by Tietze
1908, by means of the following construction. On the surface of a solid ball B
one draws an equatorial circle and m equally spaced meridians, dividing
the upper hemisphere into triangles Ay, ..., A, and the lower hemisphere
into triangles Al, ..., A,,, where A} is below A; (Figure 172). The upper
hemisphere is then identified with the lower after twisting it through 2a(n/m),
that is, a point P with latitude and longitude (6, ¢) is identified with the point
P’ with latitude and longitude (—0, ¢ + 2n(n/m)), where ¢ + 2r(n/m) is
reduced mod 2xn. Thus A, is identified with Aj},, after inversion (i + n
reduced mod m).

Figure 172

It is evident that if m, n have a common divisor d then the result is ex-
pressible more simply as the (m/d, n/d) lens space, so we may as well assume
that m, n are relatively prime. Likewise, there is no point in takingn > m.

Many properties of the (m, n) lens space will come to light in Chapter 8, in
particular the fact that it is a manifold and the reason for the name “lens
space.” For the moment we wish only to compute its fundamental group.

By virtue of 4.1.5, we can forget about the interior of B3, and just compute
7, of the surface complex which results from identification of the two
hemispheres. Since each point below the equator is identified with a point
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Figure 173

above, it suffices in turn to find out what becomes of the upper hemisphere
when the identifications on its boundary, the equator, are carried out.
Since m, n are relatively prime, the numbers

L, 1+mn 1420 ..

run through all values 1,2,...,m when reduced mod m. This means that
corresponding points on the bases of any two triangles are identified (Figure
173) or that the equator is wrapped m times round a circle corresponding
to the base of a triangle. Thus our surface complex is a disc with boundary
identified with the path a™ round a circle a. Its fundamental group is therefore
{a; a™, the cyclic group of order m, by 3.4.4. O

4.3 Surface Complexes and Subgroup Theorems

4.3.1 Surface Complexes and Groups

A surface complex & consists of three sets {P}, {e;}, and {A,} of elements
called vertices, edges, and faces respectively, subject to certain incidence
relations. The vertices and edges constitute a graph & (see 2.1.2) called the
1-skeleton of #, and each face A, is incident with a certain closed path b,
in ¥ called its boundary path.

There is no harm in thinking of & being realized by actual points, line
segments, and discs embedded in some euclidean space, where A, is a disc
with its boundary identified with a closed path b, and different edges and
discs are disjoint except where identifications force boundary points into
coincidence. Comparison with 4.1.3 will then show that the group we are
about to define combinatorially is the familiar fundamental group of #.
However, the purely combinatorial approach will suffice for the results
we wish to derive, and no appeal will be made to general continuity con-
siderations. Thus the situation is comparable with Chapter 2; the geometric
language could in principle be dispensed with, but it seems to convey the
most natural explanation of certain group-theoretic results. Indeed, it
could be said that those resuits follow from viewing groups themselves as
surface complexes.
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The (combinatorial) fundamental group of ¥, n,(F) is the group defined
by extending the path product operation to equivalence classes of closed
edge paths from some vertex P. Paths p, p’ are equivalent if one can be con-
verted to the other by a finite sequence of operations of the following types:

(i) insertion or removal of spurs;
(ii) insertion or removal of boundary paths of faces.

Paths which are equivalent by operations (i) above will be called freely
equivalent. The equivalence class of p will be denoted [p].

We know from 2.1.7 that generators for all edge paths based at P can be
found by constructing a spanning tree 5 of %, and for each edge ¢; = P,, P,
taking the closed path

-~ 1
a; = Wypew, -,

where w, denotes the unique reduced path in 4 from P to P,. In fact, any
closed path p(e;) from P is freely equivalent to the corresponding product of
the a;s, p(a)).

For each boundary path

bile) = efjei; -~ efr (wheree; = £1)
of a face A, we have a relation
bia) = afjai; - afy = (k)

because by(a;) is freely equivalent to the path wh,(e,)w ™!, where w is the unique
reduced path from P to the initial point of b,(e;). Conversely, any relation in
7, (F) is a consequence of the relations (k), because the result of insertion
(deletion) of b,(e;) in a closed path p(e;) from P is freely equivalent to the
result of insertion (deletion) of b,(a;) in the path p(a;).

It follows immediately that any group % can be realized as the combina-
torial fundamental group of a surface complex #, by taking a bouquet of
circles ay, a,, ... and attaching a face A, with boundary b, for each relation
bi(a;)) = 1 of G. Furthermore, some of the useful topological properties of
the (topological) fundamental group have combinatorial counterparts. We

_now establish some for use in later sections.

(a) 7,(F) does not change under elementary subdivisions of F or their
inverses (1.3.8).

Subdivision of an edge means replacing some e; by ejef and a; by aja!
accordingly. But if we extend the spanning tree 7 to reach the new vertex
it must include exactly one of ¢}, ef, say e/. Then g/ = 1 and all we have
done to m,(#) is to change the presentation by replacing g; by a;.

When a face is subdivided we can assume that the new edge ¢, begins at
the initial vertex of the boundary path r, (since a defining relator can be

7o

replaced by a cyclic permutation of itself). Then if r, = r 7y is the subdivision
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effected by ¢, the boundary paths of the new faces are e * and e,ry, so that
the original relation

rla) =1
is replaced by two relations
rdada; b =1, arila) =1
But the latter are equivalent to the former in conjunction with the definition
a; = ¥i{a;) of the new generator, so we have the same group. O

This is the essence of the theorem of Tietze 1908 that the combinatorial
fundamental group is invariant under combinatorial homeomorphisms.
It implies in particular that the fundamental group of a finite surface is equal
to that ofits standard form (1.3.7), a fact we shall use in 4.3.7.

(b) An elementary collapse across a free edge e; corresponds Lo elimination
of the generator a; (so collapsing preserves the fundamental group).

Since the edge e; is free it occurs in only one face A, and only once in
the boundary r, of A,. By cyclic permutation, if necessary, we car express
the relation corresponding to #, as

a;pla;) = L
where p(a;) does not involve a;. Hence we can eliminate a;, since it equals

(p(a)))” !, and with it the relation r{a;) = 1. But this is precisely what happens
when we collapse the face A, across the edge e;. O

4.3.2 Coverings of Surface Complexes

A surface complex & is said 10 cover a surface complex & if there is a map
¢: F — F from the vertices, oriented edges, and faces of Z onto the vertices,
oriented edges, and faces of F respectively, with the following properties:

(1) The restriction of ¢ to the 1-skeleton & of  is-a covering $%:%-%
of the 1-skeleton % of # (cf. 2.2.1).

(2) ¢ preserves boundaries, that is, if b, is the boundary path of A, in F then
&(b,) is the boundary path of ¢(&,). :

(3) For each distinct pair <A, b>, where A is a face of & and b covers the
boundary path b of A there is a distinct face A with boundary bin &,
covering A, and all faces of & arise in this way.

Condition (3) is stronger than we need to prove the subgroup property
(4.3.5), which requires only (3'): boundary paths lift to boundary paths. It
is designed to secure a local homeomorphism property for topological
applications. The motivating example is the covering of the projective plane
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pog

Figure 174

by the sphere: suppose we realize the projective plane & by a vertex P,
edge g, and face A with boundary path 4. Then if we cover the 1-skeleton
of & by the graph with vertices P, P and edges ab, 4@, as shown in
Figure 174, there are two distinct paths covering a’, namely aa® and
a@®a"v, We therefore need .two faces AV and A"" in & with V3 and
a@®aY as their respective boundary paths. Thus & is the sphere.

The above definition of covering is essentially that given by Reidemeister
1932 in the first systematic treatment of covering complexes. Reidemeister
does not explicitly say that faces of & arise only as required by (3), however
he uses this assumption in proving that a covering of a closed surface is
itself a closed surface (cf. 4.3.4).

We continue with the notational convention of using X to denote any
element of % which covers a partlcular element X in &, adding super-
scripts if different instances X*, ¥@, ... have to be distinguished.

4.3.3 Neighbourhoods

To extend our geometric language to a concept of neighbourhood we imagine
the face A with boundary

p— £1,62 &,
b=e¢flefr - e

. (=10
divided into sectors A(ef!), Alef?), ..., Alefr) associated with the successive
oriented edges in b. The same edge e; (possibly with different exponents)
may of course have several different sectors associated with it. The sectors,
from all faces, incident with e; constitute the neighbourhood of e, (also the
neighbourhood of ¢; ') and they may be visualized as a “book” with n
triangular “leaves,” where n is the number of times e; occurs, positively or
negatively, in boundary paths of faces (counting an occurrence in a boundary
path b as many times as there are faces bounded by b). See Figure 175,

We define the neighbourhood of a vertex P by considering all pairs
{e:, e;} such that

P = final point of ¢; = initial point of e;.
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These may include {¢;} if ¢; is a loop at P, in which case we take the neighbour-
hood of {e;} to be that of e;, just defined. The neighbourhood of a proper pair
{e;, e;}; which is also the neighbourhood of {e; ', e; '}, is the set of sector
pairs corresponding to occurrences of e;e; in boundary paths of faces
(Figure 176), where boundary paths are written cyclically and, as above, an
occurrence in a given boundary path b is counted as many times as there are
faces bounded by b.

Because we assume that distinct faces do not meet except along common
edges, it‘is reasonable to say that the neighbourhoods of all edge pairs
incident with P determine the neighbourhood of P.

We then define neighbourhoods of edges to be homeomorphic, in the com-
binatorial sense, when they have the same number of leaves, and define
neighbourhoods of vertices to be homeomorphic if there is a one-to-one
correspondence between their incident edges such that corresponding
pairs have neighbourhoods of the same number of leaves.

o P

Figure 176
4.3.4 The Local Homeomorphism Property
It is now possible to prove that
If ¢:F — F is a covering, then the neighbourhood of an edge &; covering e;

is homeomorphic to the neighbourhood of e;, and the neighbourhood of a vertex
P covering P is homeomorphic to the neighbourhood of P.
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Suppose an edge ¢; has a neighbourhood of n leaves, so that there are n
occurrences of e; in boundary paths of faces in #. We want to match these
occurrences with the occurrences of a covering edge é; in the boundary
paths of faces of &.

First consider a boundary path b in & which bounds only a single face
A. Let BV, 6@, be the paths in & which cover b and contain the edge
&;. By (3), these are exactly the boundary paths of faces which cover A and
are incident with &;. We characterize each occurrence of ¢; in b by its position,
that is, by the number of letters in the initial segment of the word for b ending
at the occurrence in question; then the correspondmg positions in 51,
B®, ... have the following properties:

(i) & does not fill the same position in two different paths b,
(ii) Each position filled by e; in b is filled by &; in some b, and conversely.

Both of these are immediate consequences of the unique lifting of paths
in graph coverings (see (1) of 4.3.2 and 2.2.1). (i) holds because if & is in the
same position in 59, 5%, then b = 5® since both cover b, and (ii) is ob-
tained by lifting the cyclic permutation of b which starts at the position in
question, with ¢; being chosen as the initial edge. Then applying the inverse
permutation to the covering path yields a 5 with &; in the required position.
Projection by ¢ gives the converse.

Since b1, B, ... are exactly the boundary paths of faces A which cover
A, (i) and {ii) give a one-to-one correspondence between the occurrences of
e; in the boundary path of A and the occurrences of its cover &; in the bound-
ary paths of faces which cover A.

If b bounds several faces in %, then each multiple occurrence of ¢; in b
is matched by an occurrence of &; of equal multiplicity in some 59, Finally,
adding the contributions from different boundary paths by, b,, ... we reach
the same number of occurrences for both ¢; and &;, hence these edges have
homeomorphic neighbourhoods.

The argument is completely analogous when one considers neighbour-
hoods of a pair {e;, e}, hence we likewise find that each vertex of # has a
neighbourhood homeomorphic to that of the vertex it covers (bearing in
mind that there is already a one-to-one correspondence between the incident
edge sets by (1) and 2.2.1). D

The most important consequence of this result is that a covering of a
closed surface is itself a closed surface, since a closed surface is simply a
surface complex in which each edge has a two-leaved neighbourhood and
each vertex has an umbrella neighbourhood (1.3.1). It is easily verified that a
neighbourhood homeomorphic to an umbrella is itself an umbrella.

Another consequence is that the sheet number, which can be defined for
the covering of the 1-skeleton by 2.2.1, is also equal to the number of faces
in & which cover a given face in &.
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Exercise 4.3.4.1. Show that a cover of a bounded surface is itself a bounded surface.

EXERCISE 4.3.4.2. Show that for cach positive integer i the closed orientable surface of
genus n > | has an i-sheeted cover, and that any such cover is a closed orientable
surface of genus i(n — 1) + L.

EXERCISE 4.3.4.3. Show that a closed finite nonorientable surface has a unique 2-sheeted
covering surface.

4.3.5 The Subgroup Property

A covering ¢:F — F induces a monomorphism ¢ 7,(F) = 1 (F).
Furthermore, the classification of closed path classes based at P in & according
to the final points of the covering paths from a fixed Pin F is exactly the right
coset decomposition of 7,(F) modulo 7,(F), so that the sheet number of the
covering equals the index of n,(F) in n(F).

Equivalent closed paths p, p’ based at P lift to equivalent paths p,
based at P, since spurs lift to spurs by (1) and 2.2.2, and boundary paths of
faces lift to boundary paths of faces by (3). Conversely, spurs and boundary
paths in & project to spurs and boundary paths in &, by (1) and (2), so
there is indeed a one-to-one correspondence ¢, induced by ¢ between the
closed path classes based at P and certain closed path classes based at P.

Since ¢ maps products to products and inverses to inverses by (1), ¢,
is a homomorphism, and hence a monomorphism

Gy T (F) = Ty (F).

The coset decomposition now follows exactly as in the case of graph
coverings, 2.2.2. (]

4.3.6 Realization of Subgroups

Given a group
G={ ey ey, ...; Py Fa, .

we realize it as n,(F), where F is a surface complex consisting of a single
vertex P, edges e, e, ... and faces Ay, A,, ... bounded by the closed paths
Fi»T2,.... Then any subgrnup H of G can be realized as n,(F), where &

a surface complex covering F

The 1-skeleton of & is a graph & covering the bouquet of circles e, ey, ...
which is the 1-skeleton of #. We take a vertex PY covering P for each right
coset of G modulo H then, as in 2.2.3, & is uniquely determined by the
condition that the outgoing edge labelled e; from the vertex corresponding
to H[p] must end at the vertex corresponding to H[pe;]. # is completed
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by adding a face A, bounded by 7, for each path 7, which covers an r, in %.
(Observe that an r, always lifts to a closed path, because H[p] and H[pr,]
are the same coset for any p.)

The closed paths f based at some fixed P in % are exactly those which
cover elements of H, since H{p] = H just in case [p] € H. Thus the canonical
monomorphism

¢, (F) - 7 (F)is onto H. |

The above construction is readily generalized to the case where % is
an arbitrary surface complex realizing G if one first proves the corresponding
generalization for graph coverings (Exercise 2.2.3.1). Then one has that the
coverings of an arbitrary surface complex % realize exactly the subgroups
of n,(#), which gives the full force of the parallel between coverings and
subgroups discovered by Reidemeister 1928. Reidemeister first proved the
result in terms of coverings of manifolds (three or more dimensions), then
rephrased it in terms of surface complexes for his book Reidemeister 1932.

It is also possible to show this parallel in a theory of covering spaces
based on general continuous maps rather than the combinatorial maps ¢
used above. Thé local homeomorphism property is then part of the definition
of covering, and effort must instead be applied to prove that paths lift
uniquely and that homotopic paths lift to homotopic paths. This is not
difficult to do using the methods of chapter 3 and may be seen in many texts,
for example Massey 1967. It is certainly the best approach when covering
spaces are being studied for their own sake, however one does not want to
make inessential use of continuity in deriving purely combinatorial results,
especially when there is no appreciable gain in simplicity.

In this book we deal only with the combinatorial consequences of cover-
ing space theory, notably the results in the three sections which follow. |

To illustrate the construction of 4 in the theorem we realize the com-
mutator subgroup H of the modular group G = {a, b; a®,b®>. H consists
of all elements for which the exponent sum of 2 = 0 mod 2 and the exponent
sum of b = 0 mod 3.

There are six right cosets of G modulo H, represented by the elements
1, b, b2, a, ab, ab®. The 1-skeleton of  is then easily seen to be the graph
(1) in Figure 177, which is in fact the Cayley diagram of G/H. We have
labelled the vertices by the corresponding coset representatives.

To show how the faces of & fit on we view a 3-dimensional form of the
graph (2). The vertical faces cover the face bounded by a* in &, and are
double, while the horizontal faces cover the face bounded by b* in & and
are triple. It will not affect 7,(F) if the multiple faces are replaced by single
ones, then a collapse of the faces to lines yields the graph (3), whose fundamen-
tal group is the free group of rank 2. Hence by 4.3.1(b)

H = n,(%) = free group of rank 2. [
This result was first proved algebraically, by Magnus 1931.
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ab?

Figure 177

EXERCISE 4.3.6.1. Show that a subgroup H of index i in a group
G="Lep s s Tyseees )

has a presentation with im — i + 1 generators and in relations.

EXERCISE 4.3.6.2. Define a suitable notion of rigid motion for surface complexes and
show that if & realizes a normal subgroup H of G then the covering motion group is
G/H (cf. 2.2.7). What is the 1-skeleton of & in this case?

Exercise 4.3.6.3. The covering & of & corresponding to the subgroup {1} of n,(#) is
called the universal cover of #. Show that it covers any other cover of #.

4.3.7 Subgroups of Surface Groups

We say that G is a surface group if G = =,(#), where & is a closed surface.
Thus the surface groups are those whose presentations are given in 4.2.1
and the free groups on 1,2, 3,..., or a countable infinity of generators (by
exercise 4.2.2.1). Then we have the result:

Every subgroup of a surface group is itself a surface group.

If G = 7,(¥) and & is a finite surface, then & is in fact the surface complex
realization of the standard presentation of G (4.2.1). But any covering of a
closed surface is itself a closed surface (4.3.4); in particular the & constructed
in 4.3.6 to realize an arbitrary subgroup of G is a closed surface.

If & is not finite, then G = n,(F) is a free group of at most countable
rank by 4.2.2. Then so is any subgroup H of G by the proof of the Nielsen-
Schreier theorem (2.2.4), which means H is also a surface group. O

More exhaustive results detailing the possible subgroups of individual
surface groups, and their relations with genus and orientability are easily
derived by simple arguments about covering surfaces (for example, in Reide-
meister 1928). The remarkable fact is that this geometrically transparent
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theorem, known to Fricke and Klein 1897, was not given a purely algebraic
proof until 1971 (Hoare, Karrass, and Solitar 1971), and then only by means
of the Reidemeister—Schreier process which, as the next section will show, is
merely the covering complex construction stripped of its geometric garb.

4.3.8 The Reidemeister-Schreier Process

Exercise 4.3.6.1 shows that a subgroup H of finite index in a finitely presented
group G is also finitely presented. If H is “given” in the sense that the corres-
ponding covering is obtainable, then generators and relations for H can
be computed by the method of 4.3.1. Like its special case, the Schreier method
for finding free generators for a subgroup of a free group (2.2.6), the method
can be given a purely algebraic formulation.

We realize G as ,(F), where & is a surface complex with a single vertex
Pand H as n,(F), where & is a covering of &, with basepoint P9 covering
P. We can use the same letter p to denote a path in & from P and its
projection in %, since the covering path is uniquely determined by p and
P Finally, we let p denote the unique reduced path from PO to the final
point of p in some fixed spanning trec 7 of &, and let w; be the path so
determined from P to a given vertex P9,

Then for each edge from P labelled e; we have a Schreier generator
wjew;e;)” ", and the rule for expressing a closed path

. pB1,82 L. gEn
p=e¢e; ey

in terms of Schreier generators is to replace each ef} by the corresponding
Schreier generator, namely

Ei-1
LIRS

£y 82 E1f 81 82 £1—1 8y~ 1
ejle;l - eflZ leiier e e len) .

In particular, the relations of 7,(F) result from writing the boundary
b, of cach face of & in this way. But the resulting path is freely equivalent
to w;rwy 1 where r, is the boundary path in & (that is, the relator of T (F))
which lifts to b, and w; is the approach path to the initial vertex of b,. Thus we
obtain the relations of m,(%) from the expressions

wrw;

as r, runs through the relators of n,(%) and w; runs through the reduced
paths from P in &, by rewriting them in terms of the Schreier generators.

Recalling that the w; can be interpreted as Schreier coset representatives
(2.2.6), and ~ as the function which sends an element of G to its coset repre-
sentative, the above process for obtaining generators and relations of H
becomes purely algebraic. O
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The first process for computing presentations of subgroups was given by
Reidemeister 1927, where it was used to compute invariants which dis-
tinguish certain knots. His process was essentially that described above
except that the coset representatives were more arbitrary. Schreier’s special
coset representatives appeared in Schreier 1927, where the spanning tree
interpretation was also given, The following year, as was pointed out in
4.3.6, Reidemeister became aware of the full parallel between covering
spaces and subgroups, and the corresponding interpretation of the Reide-
meister—Schreier process. It was then apparent that what had first appeared
to be a contribution of group theory to topology was equally a contribution
of topology to group theory. (Ironically, when Reidemeister wrote his 1927
paper he was unaware that the same results on knots had already been
obtained by Alexander in 1920, by direct consideration of covering spaces.
See also 5.3.4 and 7.2.)

The method is clearly effective when H is given as the kernel of a homo-
morphism of G onto a finite group, because if one knows the images of the
generators of G the coset of any element can be computed immediately,
and coset representatives selected. This in fact was Reidemeister’s assump-
tion. The more challenging case where H is known to be of finite index, but
is given by generators only, can be handied by the Todd-Coxeter coset
enumeration algorithm (0,5.9).

4.3.9 The Kurosh Subgroup Theorem

If the reader reviews the brief introduction to free products in 3.4.5 it will be
evident that subgroups H; of groups G, yield a subgroup % H; of the free
product % ,G;. We wish to know to what extent the converse holds. The
commutator subgroup of the modular group (4.3.6) shows that free sub-
groups can arise even though none of the factors G; in the free product
contain an infinite cyclic group. It is also evident that a subgroup H,; of
G; can appear in #*; G; conjugated by an arbitrary element g of %, G;,
that is, as gH;g~!. However, this is as far as it goes, because the Kurosh
theorem states:

If G = %, G; and H is a subgroup of G, then H is the free prodict of a free
group (possibly trivial) with a free product of conjugates of subgroups of the G;.

Let «; be a surface complex with a single vertex P; which realizes G;.
Then *; G; is realized by the complex F obtained by joining each P; to a
new vertex P by an edge e; (Figure 178). Let & be a covering of # which
realizes the subgroup H. & consists of disjoint pieces 7% which cover the
o, together with edges &; covering the ¢;. We take some P© covering P as
the base point for n,(%).

We construct a spanning tree 7 for & by first taking a spanning tree
T in each #, then adding just enough of the edges & to connect these
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Figure 178

trees into one. The point in 7 which is then connected to P® by the
shortest reduced path in  will be called PY. Note that the reduced path
from P9 to any other vertex in .27 passes through P, otherwise 7~ would
not be a tree.

The Schreier generators of 7,(%) divide into sets A corresponding to
edges in ¥ and a set E corresponding to the edges &. Since none of the
generators in E corresponds to an edge in the boundary of a face, they
generate a free group.

The edges corresponding to generators in A% bound faces in <7 only
and the relations involving these generators are therefore

wrw =1,

where w is an approach path to a face and r, the boundary. We can factor
w into wPw’, where w{” is the reduced path in  from P to P and w' is
the approach path in <7/ itself. The generators in AY? can similarly be written
as Schreier generators within .27, conjugated by w{.

Thus if we take out the conjugating factor w{? we have precisely the
generators and relations derived from the covering % of 7;, in other words,
a subgroup of G;. The subgroup actually determined by the generators in
A is therefore conjugate to a subgroup of G;, with wi? as the conjugating
factor. o

Since the generating sets E and A} are disjoint and satisfy only relations
among themselves, the group they generate collectively is equal to the free
product of the groups they generate individually, by 3.4.5. ]

The first proof of this theorem, by Kurosh 1934, used a cancellation
argument. The proof by covering a surface complex is due to Baer and Levi
1936.

ExXERCISE 4.3.9.1. Use a suitable form of the Axiom of choice to justify the construction
of the spanning tree 7 of & by first taking a spanning tree 7 ¥ in each &7{", then adding
just enough of the edges ¢; to connect these trees into one.
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Homology Theory and Abelianization
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5.1 Homology Theory

5.1.1 Introduction

With hindsight, one can say that homology theory began with the Descartes—
Euler polyhedron formula (1.3.8). It took a further step with Riemann’s
definition. of the connectivity of a surface, and the generalization to higher-
dimensional connectivities by Betti 1871. All these results have to do with
the computation of numerical invariants of a manifold by means of decom-
position into “cells”; the computations involve only the numbers of cells
and the incidence relations between them, and it is shown that certain
numbers are independent of the particular cellular subdivision chosen.

However, these results remained isolated until they were forged into a
theory of homology by Poincaré 1895. Poincaré felt that many branches of
mathematics were clamouring for such a theory, but his immediate objec-
tives were to generalize a duality relation observed by Betti, and to give a
completely general version of the Euler formula. The Betti numbers, as
they have been called since Poincaré introduced the term, generalize the
notion of connectivity number (genus) for an orientable surface. If n is the
maximum number of closed cuts which can be made in a surface without
separating it, then such a maximal system of curves ay, ..., a, constitutes a
basis in the sense that for any other curve p some “sum” of ay, ..., @, bounds
a piece of surface in combination with p. The latter property of n, made
precise, is meaningful for manifolds .4 of possibly higher dimension than
2, and it serves to define the one-dimensional Betti number B;. One imme-
diately generalizes to the k-dimensional Betti number B, when curves are
replaced by suitable k-dimensional submanifolds of .#. Betti had observed
that B, = B, when the dimension m of .# was 3.

The appropriate notions of “sum™ and “boundary,” and the correct
choice of k-dimensional manifolds admissible as basis elements, were found
only after considerable trial and error. “Appropriate” initially meant
satisfying the relation B, = B,,,, since this was the relation Poincaré
tried to prove in his 1895 paper. Heegaard 1898 showed this work to be in
error by constructing a counterexample. Poincaré then changed the definition
and proved the theorem again in Poincaré 1899, inventing the tool of
simplicial decomposition for the-purpose. He also made a thorough analysis
of his error, uncovering the important concept of torsion in Poincaré 1900, and
exposing the breakdown of his earlier proof as failure to observe torsion.

Torsion is present when an element a does not form a boundary taken
once, but does when taken more ‘than once. An example is the curve ¢ in
the projective plane 2 which generates n,(#). Then a® is the boundary of
a disc, though a itself does not separate 2. Poincaré justified the term
“torsion” by showing that (m — 1)-dimensional torsion is present only in
an m-manifold which is nonorientable, and hence twisted onto itself in
some sense.
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In his first topology paper, Poincaré 1892 showed that the Betti numbers
alone did not determine a manifold up to homeomorphism. By 1900 he
was hoping that torsion numbers would supply the missing information,
and his paper of that year contains a decomposition of the homology in-
formation in each dimension k into the Betti number B, and a finite set of
numbers called k-dimensional torsion coefficients. Since Noether 1926 it
has been customary to encode this information in an abelian group H,
called the k-dimensional homology group, and Poincaré€’s construction can
in fact be seen as the decomposition of a finitely generated abelian group
into cyclic factors (see the structure theorem 5.2). The word “torsion,”
which appears so inexplicably in most algebra texts, entered the theory of
abelian groups as a result of the derivation of the one-dimensional torsion
coefficients by abelianization of the fundamental group in Tietze 1908 (see
5.1.3. and 5.3).

The insufficiency of homology theory to solve the main problems of
topology became evident when Poincaré 1904, in the climax to his brilliant
series of papers on topology, showed that the Betti and torsion numbers
do not suffice to determine even the 3-sphere. He then conjectured that the
3-sphere is characterized, among finite 3-manifolds, by having a trivial
fundamental group. This question, now known as the Poincaré conjecture,
is still open. It must be admitted that the fundamental group is also an in-
adequate invariant (even for 3-manifolds, as was proved by Alexander
1919a), however, it is far more discriminating than H,, and for manifolds
of dimension <3 it contains essentially all the information available from
homology.

This fact is one reason for the short shrift given to homology theory in
this book. The other reason is that, as history shows, homology theory is
loaded with subtleties, and an inordinate amount of preparation is required
for correct definitions and the desired theorems. This preparation is largely
wasted in the low dimensions which are our main concern, since most of the
results can be derived rigorously from the fundamental group with far less
preparation. (We have the classification of surfaces particularly in mind,
see 5.3.3) :

For further information on the history of homology theory the reader is
referred to Bollinger 1972. Among the texts which deal with homology
theory, a reasonably concrete one is Cairns 1961, and Giblin 1977 may be
recommended to readers who wish to encounter homology theory in the
familiar context of surfaces.

5.1.2 Foundational Questions

One of the difficulties of homology theory above dimension 1 lies in its
intimate relationship with foundational questions, namely, the very nature
of dimension, boundary, and separation. We have already noted the difficulty
involved in proving that a simple closed curve separates the plane into two
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regions (the Jordan curve theorem). Another theorem we omit with regret is
the result that nonorientable closed surfaces do not embed in R*.

It is not difficult to see that a surface which bounds a polyhedral sub-
region # of R? receives a coherent orientation from one of %, and £ is
certainly orientable as a triangulated subset of R®, Thus a polyhedral
surface which separates R® must be orientable. But proving that any closed
surface in R? separates it is a generalization of the Jordan curve theorem
(due to Brouwer 1912b), difficult to prove even in the polyhedral case.

Such results are best proved in a comprehensive treatment which deals
with foundations and homology theory simultaneously (for example, the
book of Cairns 1961), The separation and nonembedding theorems then
fall out of a result known as the Alexander duality theorem (Alexander
1923a), while the topological invariance of dimension (Brouwer 1911) and
boundary also occur naturally in the development.

5.1.3 The First Homology Group

We shall define the first homology group of a complex 4, H,(%), as the
abelianization of 7,(%), that is, the result of adding relations a;a; = a;a, for
all generators a;, a; of m,(%¥). We postpone until 5.3 the proof that the
abelianization is independent of the presentation of n,(%). In the normal
development of homology theory

H (%) = abelianization of n,(%) ®

is a theorem (first proved by Poincaré 1895) rather than a definition, but
since we are using the fundamental group as our foundation, we shall merely
sketch the intuitive connection between homology and homotopy to show
that the definition is reasonable. With a little refinement, the argument
which follows will serve as a proof of (*) when H (%) is defined independently.

A l-chain c is a sum e;, + e;, + - ¢; of oriented edges in %, where +
is a purely formal commutative operation. Since we are now using additive
notation the two orientations of e; will be denoted +e¢; and —e;. The bound-
ary 8(+e;) of the oriented edge +e; from P; to P, is the formal sum P, — P;,
0(—e) = —0(+¢), and

Oey, + e, + - + ¢,) = dey,) + dey,) + -+ + dley,)

A 1-chain c is called closed, or a 1-cycle, if dc = 0. Thus dc = 01if ¢ is the sum
of oriented edges in a closed path, and it is not hard to see in general that a
1-cycle ¢ can be decomposed into

[ N R R

where each ¢; is the sum of edges in a closed path p;. The p; do not necessarily
all emanate from the same vertex P, however we can replace each p; by
wipiw; ! where w; is an approach path from P to p;, without changing the
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formal sum of edges, so each 1-cycle ¢ daes in fact correspond to a closed
path p. Because the formal + is commutative, all paths p’ which result from
p by allowing generators of n,(%) to commute yield the same 1-cycle c.

A l-cycle ¢ is called null-homologous or bounding if there is a 2-chain T
whose boundary is c. A 2-chain T is a formal sum A;, + A, + --- + A;, of
faces, the boundary dA of a A is the formal sum of oriented edges in its
boundary path, and

OAj, + Ajy 4+ -+ D) = 0A;, + 0, + -+ + 3A,,.
Thus if ¢ is null homologous it can be decomposed into
c;+Cy+ o 4 Cns

where each ¢; = 8A;, so the product of the corresponding closed paths
w;p;w; ! based at P is null-homotopic, since each p; is the boundary path
of a face. It follows that a closed path p based at P corresponds to a null-
homologous 1-cycle just in case it can be converted to a null-homotopic
path by allowing the generators of 7,(%) to commute.

The first homology group is the quotient of the free abelian group of 1-
cycles by the subgroup of null-homologous 1-cycles. From what we have
just said, the same group is obtained from the free group on the generators
of m,(¥) by allowing these generators to commute and equating null-
homotopic elements to the identity—that is, by abelianizing the fundamental
group.

5.1.4 Geometric Interpretation of Null-homologous Paths

If p is a null-homologous path in a complex €, then p is the boundary of a
singular perforated orientable surface in €. That is, there is an. orientable
surface F, with a single perforation bounded by a curve ¢, and a continuous
map f. F — € such that f(c) = p.

To avoid cumbersome notation we suppress the distinction between a
path p and its homotopy class [p]. If p is null-homologous then by definition
p is in the commutator subgroup of n,(%). This is the normal subgroup
generated by the commutators aba™ 1671, where a, b € n,(%), and hence by
0.5.4 p is expressible as

n
ITwiabia tb; twi .
i=1

Then the closed path p~'[] wa;b,a;7'b;'w; ! is null-homotopic and
hence the boundary of a singular disc in % (by Exercise 3.1.5.1.).

More precisely, there is a disc 2 with boundary divided into successive
segments labelled

~1 -1 p-1 -1 ~1 -1 -1
p ,Wl’al,blaal 5b1 s Wy ,...,W,,,a,,,b,,,a,, :bn s Wy
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and a continuous map h: 2 — € such that the like-labelled segments become
identified by h with observation of orientation. (Of course k may have to
make more identifications than these since, for example, different a;’s and
b;s may actually stand for the same curve in %.)

But there is already a continuous map g of 2 onto a perforated orientable
surface & whose boundary is the image of the segment labelled p, namely
the map which identifies like-labelled segments with observation of orienta-
tion. For we have seen in 1.3 that a schema in which each edge label occurs
twice, with opposite exponents, is always an orientable surface. Hence it
will suffice to factor h: 2 — % into g: 2 — % and a continuous map
[T -4

If x is a point on & we let g~ 1(x) denote the set of its preimage points in
9. 1t is then meaningful to define

S = hlg™"(x))

because h identifies all points identified by g. A sufficiently small é-disc
neighbourhood of x is the g-image of a é-disc neighbourhood of g Yx)
when g~ !(x) is a point in the interior of & (necessarily single), and the g-
image of a (finite) union of §-semidisc neighbourhoods when g~ !(x) consists
of points on the boundary of 2. Continuity of » implies that h maps these
neighbourhoods into a given e-disc neighbourhood of h(g™'(x)) in € for
& sufficiently small, which means that f(x) = h(g ™ '(x)) defines a continuous
function f.

(Readers who have not done Exercise 3.1.5.1 should note that it can be
done by similarly factoring the continuous map h: rectangle — % into
g: rectangle — disc, where g identifies three sides of the rectangle to a point,
and f: disc — &, where f(x) = h(g~ (x)).) -

4

This theorem appeared in Seifert and Threlfall 1934, Their proof makes
use of the fact that any element in the commutator subgroup is a product of
commutators (sce Exercise 5.1.4.1).

An example of a null-homologous path which is not nuli-homotopic is
the boundary path p of the “handle” 5# (Figure 179). In terms of the genera-
tors of n, (),

p=aba”th™!

Q\\

Figure 179
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so pis certainly null-homologous, however, this element does not equal 1
in 7, (o), since n,(H) is the free group generated by a, b.

EXERCISE 5.1.4.1. Show that waba™'b~'w™! is freely equivalent to a product of com-
mutators, so that the commutator subgroup of a group G is in fact generated by the
commutators of G.

Give an example to show that the commutators of generators of G do not in general
suffice to generate its commutator subgroup.

EXERCISE 5.1.4.2. If p is the boundary of a singular perforated orientable surface in €
prove that [p] is in the commutator subgroup of 7,(%).

5.2 The Structure Theorem for Finitely Generated
Abelian Groups

5.2.1 Introduction

The fundamental theorem for finite abelian groups appears in Kronecker
1870. In this paper, Kronecker gives what we would recognize as the abstract
definition of a finite abelian group—a finite set closed under a commutative,
associative binary operation f, with the property that a' # 4" implies
f(a, a') # f(a, a")—then proves that such a group is a direct product of
cyclic groups. Kronecker’s proof is so brief and lucid we shall reproduce it
almost verbatim below.

A different proof, using matrices, was discovered by Poincaré 1900.
Poincaré’s method is actually intended to compute the Betti number and
torsion coefficients (of given dimension) of a complex, but this is tantamount
to decomposing a finitely generated abelian group into certain cyclic factors,
the number of infinite cyclic factors being the Betti number, and the orders
of the finite factors being the torsion coeflicients. His result is therefore a
generalization of Kronecker’s—what we now know as the structure theorem
for finitely generated abelian groups—however, we shall see how Kronecker’s
proof can be augmented to deal with elements of infinite order. (This seems
to have first been done by Noether 1926.)

Kronecker’s proof begins with the following remarks.

(1) The exponents k of all powers a* equal to 1 for a fixed element a
are integer multiples of some positive integer n called the period of a.

(2) If nis a period, so is any divisor of n.

(3) If a', a” have periods n', n” which are relatively prime, then a'a” has
period n'n".

(4) If n, is the lowest common multiple of the periods of elements in
the group, then there is in fact an element of period n,. For if

ny = p"‘qBrV can
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is the prime factorization of ny, there must be periods n containing
p% ¢, r", ... as factors, and hence by (2), clements a,a",a”,...of
o_n 1

periods p ¢®, 7, ... respectively. Then by (3) the element a'a"a” - -
has period p*g®r” -+ = n;.

It will be seen from the proof which follows that Kronecker is implicitly
using coset decompositions and coset representatives, however, the direct-
ness of his argument is more obvious if these terms are not mentioned.

5.2.2 Kronecker’s Theorem

If A is a finite abelian group, then A = Ay X Ay X -+« X1 4, where Ay, Az, ...
are cyclic groups of orders ny, ny, ... and each ;. is a divisor of n;.

Let n, denote, as in (4), the maximal period among elements of 4. Then
n, is a multiple of the period of each element a, and we have

a" =1

for an arbitrary a € A.
If a, is an element with period n,, we shall call elements ', a” equivalent
relative to ay if

aat =a" forsomek.

This is indeed an equivalence relation, and the equivalence classes form
a finite abelian group under the obvious multiplication (it is, of course, the
quotient of 4 by the cyclic subgroup generated by a;). The propertics (H~-4)
relativize to corresponding properties of equivalence. In particular, there is
an equivalence class of maximal period n,, which means that for any repre-
sentative:a* of the class, (a*)™ is the least of its powers equivalent to 1.
Since (a*)" equals 1 and is a fortiori equivalent to it, the relativized version
of (1) says that n, is a divisor of n,.

Now if (a*)"”? = a¥ and one raises both sides to the power n,/n, then

1= (a*)"‘ — a}i"l/"z
so when k/n, is set equal to m we have
af™ =1

from which it follows, since n, is the period of a,, that m is an integer.
The equation

a,ap = a*

then defines an element a, equivalent to a* whose n,th power is not merely
equivalent to 1, but equal to it.
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We now call elements «', a” equivalent relative to a,, a, if
addids = a” forsome h, k

and similarly obtain a group of equivalence classes whose maximal period,
ns, divides n,, and a representative a; of the class of maximal period such
that a% = 1.

The procedure terminates when we have a set of elements a,, a,, ..., a,
such that any a is equivalent to 1 relative to a;, a,, ..., ay, that is, when any
a is expressible as

a=gbd? - a*  (0<h<n)

It also follows that the expression is unique, for the equivalence classes
relative to a,, ..., a,.., must constitute a cyclic group with g, as a representa-
tive generator. An element a is therefore uniquely determined by the in-
tegers hy, ..., hy_y, which determine it relative to an equivalence class
representative, and the integer A, which determines the equivalence class
representative itself, a’,

Thus A is the direct product 4, x A, x -+ x A, where A; is the cyclic
group generated by g;, and the order n; of 4, is such that n;, , divides n;.

O

Note that the orders ny, n,, ..., 1, of factors in a representation of 4 as a
direct product of cyclic groups are uniquely determined by the require-
ment that »;, ; divides n;. For in a group 4; x 4, x --- x A, in which the
orders n; of A; have this property, n, is indeed the maximal period of an
clement, n, the maximal period in the quotient modulo the subgroup
gencrated by an element of order n,, etc.

One can actually factor further into cyclic subgroups whose orders are
prime powers—for example, the cyclic group of order 6 is the direct product
of cyclic groups of orders 2 and 3—however, the numbers ny, 1y, ..., n,
are those most suitable to describe the “torsion” in the group. If A is the
first homology group of a complex, n, represents the maximum number of
times a nonbounding curve has to be traversed before it becomes bounding,
n, is the maximum when curves are considered “relative to a curve of period
1y, and so on.

5.2.3 A Factorization Theorem
If A is an abelian group and B a subgroup such that A/B is free abelian, then

A=Bx 4
B
(Note: in what follows we understand “free generators,” “nontrivial relation,”
and so on in the context of abelian groups. For example, a,a,a7 'a; ' = 1is
now a trivial relation.)

.
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Let x,, x;, ... be free generators of 4/B and for each i choose a ¢;€ 4
such that ¢(c;) = x;, where ¢: A — A/B is the canonical homomorphism.
Then the ¢, freely generate a subgroup C of A, isomorphic to 4/B, since any
nontrivial relation between the ¢;’s would yield the corresponding relation
between the x;’s under the map ¢.

It follows that any a € A has a unique factorization a = bc, where b € B,
c € C. For ¢ must satisfy ¢(c) = ¢(a), and there is exactly one such c by the
construction and freeness of C; and b is then uniquely determined as ac™ 1
The latter is indeed an element of B, since ¢(ac™!) = d(a)(d(e)) ™.

Now if a; = bjcy, a; = byc, we have aya, = (b1b;)(ci¢,), so multiplica-
tion takes place componentwise on the B and C factors. In other words,
A= B x CorB x A/B, since C is isomorphic to 4/B. O

5.2.4 Free Abelian Groups of Finite Rank

If Z" denotes the abelian group freely generated by a, ..., a,, then any set
of free generators for Z" has n elements. Also, any subgroup of Z" is free abelian,
with <n generators.

The typical element a = a%'as*--- gk of Z" can be represented by the
integer vector a = (ky, ks, ..., k,) and the product operation in Z" then
corresponds to vector sum.

By elementary linear algebra, a set of > nsuch vectors s linearly dependent
with rational, and hence in fact integer, coefficients (multiplying through by
a common denominator). This means there is a nontrivial relation between
any set of >n members of Z"; so.any set of frec generators has <n members.
Conversely, if by, ..., b,, generate Z", then the elements aj, ..., a, in par-
ticular must be products of them. In other words, the vectors a,, ..., a, are
linear combinations of the by, ..., b,,. Since a,, ..., a, are linearly indepen-
dent, m > n by the same argument, Hence m = n.

The number n is the number of factors in the decomposition of Z" into
the direct product of infinite cyclic groups, so we have now shown that this
decomposition is unique.

To show the second part of the theorem, suppose that Cis a subgroup
of 7, We observe that a subgroup of Z* is certainly free, on < one generator,
and continue by induction on n as follows.

The projection 7: Z" — Z* which sends each g; to a, maps C onto a free
subgroup C, of Z!. Then by the factorization theorem

C=8B, xC,,

where B is the kernel of the projection C — C,, that is, a subgroup of the
free abelian group generated by a,, ..., 4,. By induction we can assume that
B, is free abelian on <n — 1 generators, that is, the direct product of £n — 1
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infinite cyclic groups, and then C is the direct product of <n infinite cyclic
groups. O

ExERCISE 5.2.4.1. Prove that finitely generated abelian groups are finitely presented.
(Of course, this result will follow from the structure theorem, but it is of interest to see
what it really depends on.)

5.2.5 Torsion-free Abelian Groups

An abelian group A is called torsion-free if it has no elements of finite order.
A finitely-generated torsion-free abelian group is free.

Letay, ..., a, be a maximal subset of the generators of A4 which generate
freely. Then for each i > n the generator g; enters a nontrivial relation with
ay, ..., a,, which we may assume to be

wlay, ..., a,) = at.

Thus if B denotes the free abelian group generated by a,, ..., s, we have
¥ € B for each i > n. Let k be a common multiple of the ks and consider
the homomorphism ¢: 4 - B which sends each g; to 4. Since no g, has
finite order the kernel is trivial and hence we have a monomorphism. The
image subgroup of B is free by 5.2.4, so A itself is free. O

We mention in passing that an infinitely-generated torsion-free abelian
group may not be free—an interesting example is the group D of rationals
of the form p/2? (p, q integers) under addition. Exercise 5.2.5.1 develops
some of the properties of this group, which actually occurs in topology (see
Rolfsen 1976, p. 186).

For the theory of infinitely-generated abelian groups, which is quite well
developed, see Fuchs 1960.

EXERCISE 5.2.5.1. (1) Show that any finite st of elements p, /2%, ..., p,/2% of D withgq, <
-+ £ ¢, generate an infinite cyclic subgroup containing no element < 1/2%. Deduce
that D is not finitely generated and that any finite set of > 2 elements satisfy a nontrivial
relation.

(2) Show that D has a presentation
ay, az, a3, ...;a1 = aj, a; = al, a3 = a,...).
(3) Show that every proper subgroup # {1} and containing the element a, of D
is infinite cyclic.
(4) Show that D/Z, the result of adding the relation a, = 1 to D, is an infinite group
whose proper subgroups are all finite cyclic.

EXeRCISE 5.2.5.2. Show that the positive rationals under multiplication constitute an
infinitely generated free abelian group.
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5.2.6 The Torsion Subgroup

Suppose A is any finitely-generated abelian group, and let T be the subgroup
of elements of finite order. T is called the torsion subgroup. Then T is a
finite abelian group and A = F x T where F is a free abelian group.

Let Z* be the free abelian group on the generators of A and let B be the
subgroup of Z* which maps onto T under the canonical homomorphism
¢:ZF — A. By 5.2.4, B is finitely generated, so the images of its generators
give a finite set of generators for T. But a finitely generated abelian group in
which every element has finite order is obviously finite, hence T is a finite
abelian group.

Now consider the coset decomposition of 4 modulo T. If any coset is
of order m this means x™ & T for any of its representatives x. But then x™ is
of finite order, hence so is x and the coset in question can only be T itself.
Thus A/T is torsion-free and hence free by 5.2.5.

It then follows by the factorization theorem that 4 = F x T where F
is the free abelian group A/T. O

The proof of the structure theorem is now complete. We have decomposed
the given finitely generated abelian group 4 into the direct product of a free
abelian group 4/T and a finite abelian group T. This decomposition is
unique because in any abelian group F x T, where F is free and T is finite the
torsion subgroup is obviously T. The free abelian group A/T decomposes
uniquely into the direct product of n infinite cyclic groups by 5.2.4, while
T decomposes uniquely into cyclic groups of orders ny, ..., iy, Where ;4
divides n;, by Kronecker’s theorem and the remark following it in 5.2.2.
A is therefore uniquely determined by the number n (Betti number) and
the numbers ny, . .., i, (torsion coefficients).

5.2.7 Computability of the Betti Number and Torsion Coefficients

The above proof of the structure theorem does not make clear how to
actually compute the decomposition of a given finitely-generated abelian
group A into cyclic factors. The proof using matrices is quite explicit in
this respect (see for example Cairns 1961), however, we can also obtain an
algorithm for computing the decomposition from its mere existence by the
following cheap trick:

Given a presentation of A, systematically apply all possible Tietze trans-
formations until an abelian presentation of the form

<(11,..., Ay, bla ~'-abs; bT& LR | b:s>1

where each n;,, divides n;, is obtained. Then n is the Betti number of 4
and ny, ..., n, are its torsion coefficients. The structure theorem implies the
existence of such a presentation, so we must be able to reach it in a finite
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sequence of Tietze transformations by the Tietze theorem (0.5.8). The unique-
ness of n, ny, ..., n, guarantees that the first presentation found to have the
required form will give the correct numbers.

EXERCISE 5.2.7.1. Use the connected sum (Exercise 4.1.6.1) to construct a 3-dimensional
manifold 4 with

Ro(l) = @y ey Gy by e, by b7, B

and hence with arbitrary finitely generated first homology group. (r,(.#) is not required
to be abelian.)

5.3 Abelianization

5.3.1 Presentation Invariance

The group which results from
G ="l eeesuiTisees Py

by addition of the relations a;a; = a;a,—the abelianization of G--is indepen-
dent of the presentation of G.

The resulting group will be the same if we add relations gh = hg for all ele-
ments g, h € G, since all elements commute if the generators do. But then 0.5.6
tells us we are factoring G by the normal subgroup [G, G] generated by all
commutators ghg~*h~! in G (the commutator subgroup), and the latter
definition is independent of the presentation. |

In future we shall use G/{G, G] to denote the abelianization of G. The
notation [G, G] for the commutator subgroup is an extrapolation of the
notation [g, k] often used for the commutator ghg™1h™ 1.

EXERCISE 5.3.1.1. Use Tietze transformations to give an alternative proof that the result
of adding relations g;a; = a;a; is independent of the presentation. (Tietze 1908 actually
introduced his transformations for this purpose, though his version of the proof was
to show that Betti numbers and torsion coefficients were invariant.)

5.3.2 Rank of a Free Group

The rank of a finitely generated free group is independent of the choice of free
generators.

IfG = <ay, ..., an; —, then G/[G, G] is the free abelian group of rank m.
But rank is presentation invariant for free abelian groups (5.2.4), hence it is
invariant for G also. D
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This is the proof of invariance of rank given by Schreier 1927.* Compari-
son with the proof of Nielsen 1921 (Exercises 2.2.4.1-2.2.4.3) shows the power
of elementary linear algebra in this context. Abelianization erases justenough
of the group’s structure to simplify the problem, while preserving the in-
formation necessary for its solution. A similar example is given in the follow-
ing exercise.

EXERCISE 5.3.2.1. Show that if G has a presentation with m generators and <m relations,
then G is infinite.

5.3.3 Surface Groups

If G = n,(F), where & is a closed finite surface, then we know from 4.2.1
that 7,(%) has one of the following forms, according as # is orientable
or nonorientable of genus n > 1.

(1) G= <a1’ bl: caes Oy bn; albla.i_lbl_1 e anbna;lbn_1>!
(i) G =<ay,...,a,; atad - al>.

Tt follows that the respective abelianizations are

()Y G/[G, G] = free abelian of rank 2n,
(iiy G/[G, G] = (free abelian of rank n — 1) x (cyclic of order 2),

For (iy we observe that a,bjay’bi'---a,b,a; by =1 is true in
any abelian group, hence G/[G, G] is free abelian on the 2n free generators
agy, by, e, ay by

For (iiy we first make the following Tietze transformations to obtain a
more convenient presentation:

G/LG, Gl = {ay, ..., ay; af - a2 = 1, aya; = a;a;)
=dy, . s (ay @) = 1, a5 = a;00
= <a17 s Oy an+1;a3+l =1 Ay = Oy = U1, 44 = ajai>
=gy ey Oy, yp g Gory = 1, a0 = a0,
Any element can now be represented uniquely in the form
X2

Xnaxn+l
az’ - G

These forms multiply componentwise, with the a,,..., a, components
being free, while g, , is of order, 2, hence G/[G, G] is the direct product of

* On the other hand, the rank of an infinitely-generated free group is invariant on purely set-
theoretic grounds, since the cardinality of any set of free generators is equal to the cardinality
of the set of all words. This implies that the number of edges omitted from a spanning tree 7
in a graph of infinite connectivity is independent of 7~ (cf. 2.1.7, 2.1.8)-a result which does not
seem to have a direct graph-theoretic proof.
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the free abelian group of rank n — 1 generated by a,, ..., a, with the cyclic
group of order 2 generated by a,. ;. ]

Thus the orientable surfaces are topologically distinguished from each
other by first homology groups of different rank (Betti number), while the
nonorientable surfaces are likewise distinguished from each other by dif-
ferent Betti numbers, and from the orientable surfaces by the presence of a
torsion coefficient 2.

This completes the topological classification of surfaces which was begun
in 1.3. We note that the one-dimensional homology invariants suffice to
distinguish the different normal forms obtained in 1.3, and that the 2-sphere
is characterized as the only closed finite surface with Betti number 0 and no
torsion.

We also have a proof of the Hauptvermutung for finite triangulated 2-
manifolds, since the classification theorem of 1.3.7 reduces these to normal
forms by elementary subdivisions and amalgamations, and we now know
that the normal forms are topologically distinct. Thus if two finite triangula-
ted surfaces are homeomorphic, they have the same normal form, and
hence a common simplicial refinement. It also follows that the Euler charac-
teristic (1.3.8) and orientability character are topological invariants of these
manifolds, since we already know that they are combinatorial invariants.

Exercise 5.3.3.1. What is the relationship between Betti number and Euler charac-
teristic?

ExERrcise 5.3.3.2. Prove that the surface groups (i) and (ii) are not free.

5.3.4 Knot Groups

Since abelianization destroys some of the structure of the group (unless it
is already abelian) we should not expect it to always be a source of informa-
tion. Its most conspicuous failure occurs in the case of knot groups, where
abelianization always collapses the group to an infinite cyclic group.

We know from the Wirtinger presentation (4.2.3, 4.2.4) that any knot
group can be given by generators a,, ..., a,, and relations of the form either

a;0; = G;,44; fori=1,..., mand indices reduced mod m
or
4;0; = a;0;4q
Under abelianization, these relations simply say that
a; = Qi+

so all the generators become one, with no relations, and we have an infinite
cyclic group. O
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It was this difficulty which stimulated Reidemeister 1927 to find a pro-
cedure for finding presentations of subgroups (4.3.8) which, as he pointed
out, marked the first step beyond abelianization as a means of extracting
information from group presentations. When abelianization is applied to
the subgroups obtained, the result is not always trivial and it can in fact be
used to distinguish a large number of knots. Abelianization of a subgroup
of course corresponds to the one-dimensional homology of a covering space,
and Alexander’s anticipation of Reidemeister’s results was obtained by this
direct route (see 7.2).

The groups of infinite knots such as the Fox-Artin wild arc (4.2.6) also
collapse under abelianization. If &/ denotes the Fox—Artin arc the relations
of n,(R® — of) are

Cp—1CnCne1 = CnCr+1Cn—16n
so we simply get ¢, = 1 by abelianization, and hence
H(R? — o) = {1}.

It is actually a consequence of the Alexander duality theorem that the com-
plement of a simple arc has trivial homology, so homology groups are not
sensitive enough to detect wildness.

ExErCISE 5.3.4.1. If G is the group of a link of m curves, show that G/[G, G] is free abelian
of rank m.
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6.1 Dehn’s Algorithm

6.1.1 Introduction

The fundamental problem in the topological classification of curves on sur-
faces is to decide whether a given closed curve contracts to a point. We shall
call this the contractibility problem. Jordan 1866b recognized that the
problem could be-expressed in algebraic terms, but his work contained
errors. He showed that each curve could be deformed into a product of
certain canonical curves—essentially the generators of the fundamental
group—and realized that the canonical curves satisfied certain relations.
However, he seemed not to notice that he actually had a group (surprisingly,
in view of the subsequent appearance of his pioneering treatise on group
theory, Jordan 1870), and failed to get the right relations.

The problem was solved, at least from a geometric point of view, with
the introduction of the universal covering surface in the 1880s. If a curve p
on the surface & is kifted to a curve § in the universal covering surface &
then p contracts to a point on & if and only if p is closed. The reason is
simple: if p can be contracted to a point it can be contracted with its base-
point fixed; this contraction lifts to a contraction of fj to a point with both its
endpoints fixed, which is possible only if the endpoints coincide. Conversely,
if fis closed, it contractsto a point, since F is the plane or sphere. By perform-
ing the contraction in one polygon of Z at a time, it can be projected to a
contraction of p to a point on #.

If p is “given” in an effective way, say as a sequence of edges in the canon-
ical polygon for &, then one can effectively construct the lift § of p by building
a large enough portion of Z, and then see whether p is closed. Bearing in
mind that the polygons which tessellate F do not have to be congruent, this
algorithm is perfectly concrete and combinatorial. It is admittedly not very
convenient because of the very dense packing of polygons required even for
genus 2 (see Figure 111). Nevertheless, around the turn of the century the
algorithm was considered sufficiently obvious not to require more than a
passing mention (for example, in Poincaré 1904 and Dehn 1910).

‘It was Dehn who first appreciated the algebraic significance of the prob-
lem and found a practical solution. He observed that the labelled net of
polygons on the universal covering surface was in fact the Cayley diagram of
7,(%), and that the contractibility problem was therefore the same as the
word problem for my(#). Furthermore, geometric properties entailed an
algebraic process for solving the word problem without actual construction
of the net. This process is now known as Dehn’s algorithm. His first proof
depended on the metric in the hyperbolic plane (Dehn 1912a), but he then
saw how the algorithm could be justified by purely topological properties
of the net (Dehn 1912b).
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The topological argument of Dehn 1912b is actually designed to solve
the more difficult conjugacy problem (deciding whether two elements are
conjugate) and a far less intricate argument suffices for the word problem.
We present this argument in 6.1.3, 6.1.4 after dealing with the trivially
solvable cases of the word problem in 6.1.2.

6.1.2 Some Special Cases

To free ourselves from distractions in the proof of Dehn’s algorithm, we
first deal with the “small” surfaces to which it does not apply.

(1) The sphere S%. 7,(S?) = {1}, so every word = 1.

(2) The projective plane 2. n,(#) = {a; a?> so the word a™ is 1 just in case
m is even.

(3) The torus . n,(F) = {a, b; ab = ba). It is immediate from the Cayley
diagram (Figure 180) that each word has a normal form a™b", and that
a™b" = ljustincase m = n = 0.

(4) The Klein bottle 8. n,(%) = {a, b; abab™'). The Cayley diagram is
Figure 181 (obtained by constructing the universal covering surface
from copies of the rectangle in Figure 182 so that the neighbourhood of

) ) b
a as [y g
b b b
a A (A 7 N
1 h b b
Figure 180
b b b
a uY a4t a
b b b
a a ap a
1 b B b

Figure 181
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each vertex has a, b both incoming and outgoing.) Then the most con-
venient way to solve the word problem is to actually trace the path in the
Cayley diagram, though an algebraic algorithm is not hard to find.

EXERCISE 6.1.2.1. Formulate an algebraic algorithm which solves the word problem in
the Klein bottle group.

EXERCISE 6.1.2.2. Show that there are no nontrivial elements of finite order in the Klein
bottle group.

6.1.3 The Subpath Property

We can now assume that our surface % has a canonical polygon with
2n sides, where n > 3. The Cayley diagram of m,(#) is therefore a planar
net of 2n-gons which meet 2n at each vertex (cf. the construction of the
universal covering surface in 1.4.2).

Then if p is any closed path in the net, p contains either a spur or a subpath
consisting of more than half the edges in the boundary of a polygon in succession.

We construct the net in the euclidean plane as in 1.4.2, using concentric
circles of increasing radius €;, €,, €, .... Each circle will be subdivided
into arcs called circumferential edges of the net, and all other edges in the
net will be line segments between €, and €, ,, called radial edges. )

Thus %, will be subdivided into 2n arcs to form the first canonical polygon.
Each vertex P on %, will emit 2rn — 2 radial edges to €, so as to arrange
that 2n polygons meet at P.

These radial edges divide %, into 2n(2n — 2) arcs, each of which is further
subdivided by new vertices so as to convert each region between %, and €,
into a 2n-gon. (A region with one vertex on ¢, therefore requires 2n — 3
new vertices, a region with two vertices on %, requires 2n — 4.)

Each vertex on &, then emits radial edges to %;; 2n — 3 if it is the end-
point of a radial edge from %, 2n — 2 otherwise, and so on. See Figure 183.

Now consider a closed edge path p in the net starting at a vertex on %;.
Assume all spurs have been removed from p and let ¢ be its outermost cir-
cumferential portion, on %, say. This portion must then be a “turning
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s
Figure 183

point” of p, where p reaches %, on a radial edge e from %, _;, runs along
%) for some distance, then returns to %, on another radial edge as in Figure
184 (leaving aside the trivial case k = 1). But then some initial segment of
ec traverses the perimeter of some polygon 2 with the exception of at most two
edges, sinceZ can have at most two vertices on %, ;. Since we assume that #
has at least six edges, p has therefore traversed more than half the edges of
2 in succession. O

Despite appearances, the above proof is purely topological, because we
can define the ordering of the discs bounded by %, %,, 5, ... by set inclu-
sion, rather than in terms of the lengths of their radii.

x

73
et

Figure 184
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6.1.4 Dehn’s Algorithm

It is immediate from the subpath property that if w is a word in 7,(#) which
equals 1 then w can be shortened either by cancellation (removal of a spur)
or by replacing a subword p, which is more than half some cyclic permuta-
tior #* of the defining relator by the complementary word py !, where
p1p; = r*. (This corresponds to pulling the subpath p, across the polygon
2 1o the position p; ! on the other side, cf. 1.4.3.)

Then any w which equals 1 in 7,(#) will actually be reduced to 1 in a
finite number of steps by this process, while a w # 1 will have a reduced
form # 1 which cannot be shortened. This is Dehn’s algorithm for the word
problem in 7;(F). As we have seen, it applies to any & whose canonical
polygon has > 6 sides, and hence to all but the small surfaces already dealt
with in 6.1.2. ' ‘

6.2 Simple Curves on Surfaces

6.2.1 Poincaré’s Model of the Hyperbolic Plane

We mentioned in 1.4.2 that Poincaré used the hyperbolic plane in order to
obtain a tessellation of the universal covering of an orientable surface #
of genus g > 1 by congruent canonical polygons. Furthermore, Poincaré
1883 introduced a particular model of the hyperbolic plane which permits a
convenient euclidean interpretation of noneuclidean “polygons.” The
“plane” is the open unit disc 2, “lines” are circular (or straight) arcs in &
orthogonal to its boundary, and “points” are points of &. It can be verified
that there is exactly one line between any two points, and a distance is
definable so that the line is the shortest curve between -any two- peints.
It turns out that “angle” coincides with the euclidean angle (between
curves) so a polygon with given angles is determined by circular arcs ortho-
gonal to the boundary of @ which meet each other at the given angles.

All the axioms of plane geometry, except of course the parallel axiom,
are satisfied in this model. For further details, see for example Magnus
1974.

Regular tessellations in the Poincaré model are well-known in complex
function theory, and had in fact been introduced by Schwarz 1872. Schwarz’s
example was the tessellation by the triangle with angles n/S, n/4, ©/2, shown
in Figure 185. However, it was Poincaré who first observed that the polygons
in such tessellations could be regarded as congruent when a suitable metric
was introduced.

EXERCISE 6.2.1.1. Give a straight-edge-and-compass construction of the right-angled
pentagon in the centre of the Schwarz tessellation.
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6.2.2 Simple Curves on the Torus

To provide some guidance in the use of the hyperbolic plane as universal
covering surface, we first explain what happens when # is covered by the
euclidean plane, that is, when # is the torus and the covering tessellation
consists of rectangles. We then find that the closed simple curves are just the
(m, 1) torus curves with m, n relatively prime (cf. 4.2.7).

Let a curve p be given as a product of the canonical curves a, b and let §
be the covering path from a fixed P, ending at P* say (Figure 186). Then
the straight line #© P is homotopic to P and covers a path p(p) homotopic
to p. In a natural sense p(p) is a geometrically reduced form of p, and we shall
now show that it serves as a test case for the existence of simple curves
homotopic to p.

The totality of paths covering p(p) is obtained by drawing lines / equal
to. P9 P in length and direction out of each vertex in the tessellation. If
any of these lines meet at a point O other than an endpoint, then the under-
lying point Q on & is a point where p(p) meets itself; thus p(p) is simple just

pl
P )

=S X

S0
P()

Figure 186
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in case this does not happen. Equivalently, the only vertices on PO P are
PO P themselves, which means that if

p=a",

then m, n are relatively prime, and p(p) is the (m, n) torus curve of 4.2.7.

Conversely, if another vertex P falls on P©@P® we have to show that
any curve p’ homotopic to p intersects itself. Assume for simplicity that P is
fixed under the homotopy and let 7% be an infinite path in the plane con-
structed by first lifting p’ to a F'@ beginning at P (and hence ending at
P) and attaching further lifts successively at each end. Let 5% be the infinite
covering path constructed in the same way but beginning at P®. It will suf-
fice to show that p' intersects f2) .

Consider the infinite straight line & through P, P, Translation along
this line through distance P@PY maps p* onto itself while translation
through distance PP maps 5 onto p. It follows that 1, p2’ both
have the same maximum distances to left and right of & (the distances
are well-defined since they are determined by the compact sets 7® and
PPy and hence they must intersect. For 12 cannot lie to the left of
79 at a point where 5 achieves its maximum distance to the left of £, nor
to the right of 5/’ at a point where §?’ achieves its maximum distance to the
right, yet by the Jordan curve theorem ' must lie on just one side of §iy’
if they do not meet.

Exactly the same argument applies if the homotopy shifts the basepoint
of p, since a shift of the basepoint from P to @ corresponds to a translation
of the whole plane by the vector B J©, O

An equivalent condition for p to be homotopic to a simple curve is that
p # ¢ for any s > 1. Poincaré 1904 showed that this is the condition for
the homology class of p to contain a simple curve, whatever the genus of
F (see 6.4.7). However, for genus > 1, where homology and homotopy no
longer coincide, the condition for the homotopy class to contain a simple
closed curve is more complicated, as we shall see.

EXEeRCISE 6.2.2.1. Show that the homology class of a curve p on the perforated torus
contains a simple curve iff p # ¢’, 5 > 1.

EXERCISE 6.2.2.2. What is the minimum number of double points of a curve homotopic
to @™b", when m, n are arbitrary integers?

6.2.3 Poincaré’s Algorithm

Given a curve p on an orientable surface & of genus g > 1 we construct the
tessellation of the unit disc by 4g-gons which meet 4g at each vertex and are
regular and congruent in the Poincaré metric. We interpret the tessellated
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Aiecin the natural way as the universal covering surface &, and lift the curve
ptoacurve fon & from vertex P to PV say. Then replace j by the “straight
line” B Pt1 (that is, the arc of the unique circle through P, P} which is
orthogonal to the boundary circle.) A similar straight line ! is constructed
for each lift 5 of p to #. Then p is homotopic to a simple curve just in
case none of these lines meet, except at endpoints (Poincaré 1904).

Since the line PP has the same endpoints as p it is homotopic to
on Z and covers a path p(p) homotopic to p on &. The totality of lines [
then comprise all the lifts of p(p), and any double point of p(p) will lift to a
point where two of these I's meet (not counting meetings at endpoints).
Thus if none of the I's meet, p is homotopic to the simple curve p(p).

Conversely, if two of the I's, say {, and [,, meet they must either overlap or
cross (Figure 187). In Case (1), where I, I, overlap, we consider the infinite
(in the Poincaré metric) line % which is their common prolongation. By
considering translations along the line .% one shows exactly as for the torus
that any curve p’ homotopic to p must intersect itself.

Figure 187

In Case (2) we consider the infinite prolongations &, £, of Iy, I, respec-
tively. Since I, and I, cross, the limit points 4,, B, of £, on the boundary
circle separate the limit points 4,, B, of Z,.

Now let p’ be any curve homotopic to p on %, with the initial point P
fixed for 51mp11c1ty Let 51 be the infinite covering path constructed by
first lifting p’ from the mmai point PV of [, then attaching further lifts
successively at each end. Clearly all the endpoints of successive lifts lie on
., 50 P has the same limit points 4, and By, on the boundary circle as.
&Z,. Let /D be constructed similarly by first lifting p’ from the initial point
P2 of 1,5 then 5 has the same limit points, 4, and B,, on the boundary
circle as &,. Smce A,, B, separate A,, B, it follows from the Jordan curve
theorem that p{1 intersects i<, and since the point of intersection cannot
be the endpomt of lifts of p’ on both £, &, (otherwise £, &£, would be
identical) it must cover a point where p’ intersects itself.

The same argument applies when the homotopy shifts P to another point
0, since this corresponds to a translation of the whole hyperbolic plane.

O
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ExXERCISE 6.2.3.1. Give an algorithm for deciding whether two curves on & are homo-
topic to disjoint curves.

6.2.4 Effectiveness of Poincaré’s Algorithm

There are two problems to be resolved before Poincaré’s algorithm can be
considered fully effective. Firstly, we cannot actually construct infinitely
many lines . However, as Poincaré points out, every polygon # in the
tessellation carries a similar, finite, set of arcs p(p;) (corresponding to segments
of the curve p(p) cut off by the canonical curves on &), so it suffices to con-
struct them for just one &. Then p(p) is simple just in case none of the arcs
p(p;) intersect.

The second problem is that our dependence on the metric seems to
require an infinitely accurate geometric construction. However, translation
into analytic geometry shows that the coordinates of all points of inter-
section are algebraic numbers (we have in fact a straight-edge and compass
construction), so we can use known theorems about the solution of poly-
nomial equations to decide in a finite number of steps whether two arcs
actually intersect. Dehn 1912a made this observation in a similar context,
and Calugareanu 1966 salvaged Poincaré’s algorithm by working out the
algebra explicitly. The algorithm can also be extended to nonorientable
and bounded surfaces incidentally, as was shown by Reinhart 1962.

Complete removal of the metric from the algorithm, in the spirit of
Dehn’s solution of the word problem, was first achieved by Zieschang 1965.
Zieschang’s argument depends on a deep theorem of Whitehead 1936 on
antomorphisms of free groups, and a simple approach has not yet been
found. Poincaré’s approach remains the most intuitively transparent and
serves to remind us that topology has a lot to gain from nontopological
methods.

The methods of Poincaré, in particular the use of the unit disc and the
characterization of homotopy classes by limit points on the disc boundary,
were perfected by Nielsen in the 1920s and 1930s. His results on mappings
of surfaces (see for example Nielsen 1927) remain among the deepest we
know in combinatorial topology, and in some cases nonmetric proofs have
still not been found.

EXERCISE 6.2.4.1. Show that there are two nontrivial simple closed curves on the Mébius
band, up to homotopy.

EXERCISE 6.2.4.2. Show that a, b, ab, b? are the only nontrivial simple closed curves on
the Klein bottle, up to homotopy (without fixed basepoint).
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6.2.5 Baer’s Theorem

If p and q are homotopic (without a fixed basepoint) simple curves on an
orientable surface F, then p and q are isotopic on % (Baer 1928).

To avoid Hauptvermutung-type problems, we assume p, g are polygonal,
that is, edge paths in a simplicial decomposition of #. Any overlapping of
p, g can then be removed by small isotopies, so that p, g have only finitely
many points of intersection.

The result is obvious if & is the sphere, otherwise we lift p, ¢ to paths
7O, p, . and §®, Y, ... in the universal covering plane. The p unite
into disjoint simple curves Py, py, ... each of which consists of infinitely
many 7®’s joined end to end. Similarly, the §® unite into disjoint infinite
simple curves do, i, --.. A f; may meet a §, however, namely at points lying
over the points of intersection of p and q.

Special case: p and g do not meet, or have only a single point P in common.
If the former, deform p isotopically until p, g just touch at a point P. Now
let fo, d, be infinite covering curves which pass through some point F(©
over P, meeting again at other points PY over P (since p, g are homotopic,
lifts of them beginning at P® both end at PY* 1), as shown in Figure 188). No
other p; or §; enters the shaded region between f, and §o, as this would
imply further points of intersection between p, g on &. Therefore, an isotopic
deformation of f, into §, which is periodic with respect to the tessellation
of the universal covering plane (as can easily be arranged) projects to an
isotopy between p and ¢ on &.

Figure 188

General case: p and g have more than one point of intersection. We
again take a f, and g, which pass through a P® over P, and hence meet at
other points P® over P. Since p, g meet at points other than P, §, may have
intersections with f, other than the P, and other p;’s may also meet gy.
Since we assume p, g have only finitely many points in common, there are
only finitely many intersections in the interval between a P® and PU*1),
and hence one which is “innermost” in the following sense: either the p; in
question just touches g, (Figure 189) or else p; accounts for two successive
points of intersection on g, (Figure 190). In either case, an isotopy of P;,
which projects to an isotopy of p, reduces the number of points of inter-
section (Figure 191), so after a finite sequence of such isotopies we return to
the special case. [
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The special case shows that a simple curve which is null-homotopic on
& in fact bounds a (nonsingular) disc—a nice demonstration of the way the
universal covering surface can make facts leap to the eye.

The idea of finding a place where the nature of the intersection between
two figures can be simplified by an isotopy has also been applied to surfaces
in 3-manifolds, and some similar theorems have been obtained. For further
information, see Laudenbach 1974.

EXERCISE 6.2.5.1. Extend the proof of Baer’s theorem to nonorientable, Bounded, and
infinite surfaces.

6.3 Simplification of Simple Curves by
Homeomorphisms

6.3.1 Introduction

In this section we study simple closed curves on a closed orientable surface
Z. (Some suggestions on extending the results to nonorientable surfaces
are contained in the exercises). If such a curve p is nonseparating then it is a
consequence of the classification of bounded surfaces (1.3.9) that there is a
homeomorphism h: # - % which maps p onto a canonical nonseparating
curve h(p). For example we can take h(p) to be a “meridian” curve m on
one of the handles of # (Figure 192).

]



6.3 Simplification of Simple Curves by Homeomorphisms 197

Figure 192

Simply observe that when we cut & alongp the result #* has the same
number of boundary curves (two), Euler characteristic, and orientability
as the surface #" obtained by cutting  along the meridian m. Since these
invariants define a bounded surface up to homeomorphism we have a homeo-
morphism f: #' — F".

Now if we identify the two edges p* and p~ of the cut p by any homeo-
morphism g: p* — p~, and the edges m* and m~ of m by the corresponding
map fgf ':m* — m~, then the identification spaces of # “and " both
become F, and the homeomorphism h: & — & induced by f: &' — F"
maps p onto m.

Since we depend on triangulations to define Euler characteristic and
orientability, and to prove the classification theorem (which can be viewed
as the construction of a homeomorphism between triangulated surfaces
with the same invariants), the above proof requires p to be polygonal. The
result is in fact true in general, but we need it only for polygonal curves, and
these will be our only concern in this section. Thus until further notice a
curve will be an edge path in some simplicial decomposition of the surface.

A similar proof shows that if p is a simple, separating curve, then we can
map it onto a canonical separating curve h(p) by a homeomorphism, the
curve in question being determined by the Euler characteristics of the two
components into which p divides #. The obvious choice for canonical
separating curves on an orientable & are those shown in Figure 193. Of
course, having proved these theorems we can see that there is no preferred
decomposition of & into “sphere” plus “handles,” and that any simple
curve is just as “canonical” as another. Any set of closed curves ay, by, ...,
a,, b, which produce the canonical polygon for # (1.3.7) when cut may be
called @ canonical curve system, and the process of cutting along them is
called a handle decomposition of .

Figure 193
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EXERCISE 6.3.1.1. Verify that the separating curves shown above do in fact partition &
in all possible ways, as far as the Euler characteristic is concerned.

Exercise 6.3.1.2. Find canonical separating and nonseparating curves on the sphere
with n crosscaps.

6.3.2 Twist Homeomorphisms

For applications to 3-manifolds in Chapter 8 it is convenient to be able to
map simple curves onto canonical curves by homeomorphisms which
affect the surface less radically than the cut- and-paste homeomorphisms
used in proving the classification theorem. The twist homeomorphisms of
Max Dehn are suitable for this purpose. 3

A twist homeomorphism relative to a simple closed curve ¢ on & is
determined by taking an annular neighbourhood A" . of ¢ (always possible
since # is orientable), cutting A4, from & as in Figure 194(1), then pasting
it back after one of its boundaries has been given a full twist relative to the
other as in Figure 194(2). As a result, a transverse segment 4B of A . be-
comes an arc which makes a full circuit of .4”,. The fact that points which
are close together before the cutting and pasting are close together after it
is easily formalized to show that the operation defines a homeomorphism
of #.

Dehn’s work on simple curves on surfaces was done in the early 1920s
but not published by him at the time, The first appearance of twist homeo-
morphisms in print seems to be Goeritz 1933. They are often known as
Dehn twists, and since their revival by Lickorish 1962 it has been tempting
to call them “Lickorish twists.”

1 2)

Figure 194

EXERCISE 6.3.2.1. Let f,, 1, denote the twist homeomorphisms of the torus relative to
the canonical curves a, b. Find a combination of t,, t, which maps a onto a curve isotopic
to b.

6.3.3 Curves Which Meet at a Single Point and Cross

If p, g are simple closed curves on an orientable surface F witha single common
point, where they cross, then p can be mapped onto q by a twist homeomorphism
Jollowed by an isotopy.
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Figure 195

Figure 196

Figure 197
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Given the curves p, g construct the strip .4 shown in F igure 195 which
includes a small segment AB of p, all but a small segment of ¢, and elsewhere
follows close to p. Then a twist of .#" maps p into the curve p*, shown in
Figure 196, which is obviously isotopic to g (F igure 197). O

EXERCISE 6.3.3.1. Show that a curve p satisfies the hypothesis of the theorem if and
only if it is a nonseparating curve.

EXERCISE 6.3.3.2, Let py, p,, ..., pa, be simple closed curves on an % of genus n with a
single common point, where they cross each other. Show that the result of cutting &
along py, py, ..., p,, is a disc. Is this necessarily a handle decomposition (6.3.1)?

EXERcISE 6.3.3.3. Let p, g be simple closed curves on a nonorientable surface which meet
at a single point and cross. Under what circumstances is there a homeomorphism
mapping p onto ¢? Find a twist homeomorphism which (together with an isotopy)
realizes the mapping in this case.

6.3.4 Removal of Intersections

We shall assume that all points of intersection between two curves p, q are
crossings. If not, a small isotopy of p near a point where it touches g removes
the contact point altogether (Figure 198). When p, q are oriented, p can
cross g from right to left (1), or from left to right (2), as shown in F; igure
199. Assigning +1 and —1 respectively to these two types of crossing,
we obtain the algebraic intersection of p with q by summing the values
obtained in a circuit around p. We shall now prove:

If p, q are simple closed curves on F, then there is a combination of twist
homeomorphisms and isotopies which maps p onto a curve p* which meets q
at most twice, with zero algebraic intersection.

o

Figure 198

2
&} » @
g q
P

Figure 199
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If p, ¢ have only one point of intersection we can use the twist homeo-
morphism of 6.3.3 to obtain a p* disjoint from g, as Figure 196 shows.

We can therefore assume there are at least two points where p intersects g
with the same algebraic value. Without loss of generality we can assume
they occur as successive points of intersection on g (Case 1), or as first and
third in a sequence of three successive intersections on g (Case 2).

Case 1. Let 4, B be successive points of intersection on g, where p passes
from left to right, say (Figure 200). The curve ¢ shown follows p after its
exit at X, stays close to p without crossing it, and hence returns on the
right-hand side of p at Y (since # is orientable) after traversing part of p
Jjust once. It therefore has fewer intersections with g than p has (since 4, B
have been replaced by D) and exactly one with p itself. By 6.3.3 we can then
map p onto ¢ by a twist homeomorphism and isotopy. (Shiding the portions
of ¢ near p back onto p by an isotopy we can in fact get a curve which departs
from p only in a narrow neighbourhood of g, but has fewer intersections
with q.)

Case 2. Let A4, B, C be the successive points of intersection (Figure 201).
Assume that the path d which exits at X and follows p returns first at Y,
rather than on the middle branch of p. (If not, construct d so that it exits on
the bottom branch of p. It must then return on the top branch, and a similar
argument applies.) We then perform a twist homeomorphism using a
neighbourhood of d, which maps p onto the curve p’ shown in Figure 202
which is isotopic to the curve p” shown in Figure 203 and in turn isotopic
to the curve p” in Figure 204 which has fewer intersections with g. (Notice
also that p” departs from p only in a narrow neighbourhood of ¢, shown
dotted in Figure 204.)

Since the construction of a ¢ or p” reduces the number of intersections
with g, after a finite number of steps we obtain a p* (=c or p") for which
neither Case 1 nor Case 2 holds, and which therefore satisfies the conditions

of the theorem. O
Ad
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Figure 200
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The above proof is due to Lickorish 1962, who notes the corollary that
ifq,,...,q, are disjoint simple curves on &, then any simple curve p can be
mapped by twist homeomorphisms and isotopies onto a simple p* which
meets each g; at most twice, with zero algebraic intersection. For since the
above construction produces a p* which departs from p only in a narrow
neighbourhood of ¢ (though possibly omitting some portions of p entirely)
we can remove the intersections between p and any g; without affecting its
intersections with other g;s, eventually obtaining a p* with the property
described.

Lickorish uses this coroliary to continue the simplification of p as follows.
We continue to denote each successive modification of p by p*.
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6.3.5 Taking a Curve off the Handles

leen a particular handle decomposmon of #, choose a “meridian” ¢; and

“base curve” g; on each handle as

in Figure 205. If p* does not meet g;

we shall say p* is “off” the handle in question. (It may of course still pass
“through” the handle, meeting the base curve on each side.) Using twist

homeomorphisms and isotopies, we
handles.

Take the meridian and base curve:
the corollary at the end of 6.3.4, an
conclusion.

can obtain a p* which is off all the

s to be the g4, g5, .., ¢, mentioned in
d let p* be the curve obtained in its
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4i
Figure 205

Figure 206

We can view the portion p}¥ of p* on a given handle as a simple closed
curve on the torus by cutting the handle from & along g; and closing q;
with a disc, closing p¥ by an arc on the disc between its intersections with
g; (if they exist), as in Figure 206. We then have a simple closed curve on the
torus, and the known types of these curves (6.2.2), plus the fact that p*
meets g; and g; at most twice, with zero algebraic intersection, allow us to
conclude that p* is either null-homotopic or homotopic to ¢; itself. In
either case an isotopy will pull p¥, and hence p*, away from g;, so that p*
is off the handle. O

EXERCISE 6.3.5.1. Consider the handlebody # obtained by taking & together with its
interior when # is “standardly embedded” in R®. Show that a simple closed curve
which is off the handles of & bounds a disc in #.

EXERCISE 6.3.5.2. Give an algorithm for deciding whether a given simple curve on &
bounds a disc in #. (Hint: consider the universal covering space of #.)

6.3.6 Mapping onto a Canonical Curve

The construction of 6.3.5 not only takes p* off the handles, it also arranges
that p* passes at most once “through” each handle, since p* meets each base
curve at most twice, with zero algebraic intersection. We can then map p*
onto a canonical curve by twist homeomorphisms and isotopies.
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Case 1. p* passes through no handles. That is, all its intersections with
base curves g; can be removed by isotopies (Figure 207). Then p* can be
viewed as a curve on the “sphere part” of % and deformed into a semicircle,
for example see Figure 208. This is obviously the same as the canonical
separating curve on % previously pictured as in Figure 209.

Case 2. p* passes through a handle. This corresponds to the case where
the portion pf on the torus constructed in 6.3.5 is not null homotopic. Then
p¥, and hence p*, has a single point in common with a suitable latitude
curve [, which in turn has a single point in common with a meridian m
(Figure 210). Hence by two applications of 6.3.3 we can map p* onto the
canonical curve m.

EXERCISE 6.3.6.1. Show that the mapping in Case 2 can also be achieved by an isotopy.

6.4 The Mapping Class Group of the Torus

6.4.1 Introduction

Just as we can construct a discrete group =(%) from closed paths in a
complex ¥ by factoring out “topologically uninteresting” paths, we can
construct a discrete group M(%) from the self-homeomorphisms of € by
factoring out topologically uninteresting maps. We could take topologically
uninteresting maps to be those homotopic to the identity, or isotopic to the
identity. In the case where ¥ is a surface & these concepts coincide (as
Baer’s theorem suggests), but we take the isotopy relation for definiteness,
and call M(%) the homeotopy, or mapping class, group of #.

Thus the homeotopy group of # is the quotient of the group of self-
homeomorphisms of &, under composition, by the normal subgroup of
isotopies.

The easiest nontrivial case is the mapping class group of the torus 7,
which was known implicitly in the theory of elliptic functions as far back as
Clebsch and Gordan 1866, p. 304. It was not described as a group until later,
in Klein and Fricke 1890, and the topological interpretation appeared in
Tietze 1908. Tietzes interpretation yielded the important insight that
M(J) is the automorphism group of #,(7), a result whose extension to
other surfaces # (Baer 1928) reduces the computation of M(Z) to a purely
algebraic problem concerning n,(%). The details of this extension may be
inferred from Baer’s theorem and the argument for the torus we shall give
below, however we omit them because they yield little information about
M(F) except its relation to n,(F).

Exercise 6.4.1.1. Why do the isotopies constitute a normal subgroup among the group
of self-homeomorphisms?
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6.4.2 Canonical Curve Pairs on the Torus

It follows immediately from the classification of bounded surfaces (cf.
6.3.1) that the canonical polygon for the torus (Figure 211) can be produced
by cutting the torus along any two simple closed curves a, b which meet,
and cross, at a single point. For under these circumstances a, b must both be
nonseparating; a cut along ¢ will produce a surface with two boundary
curves, a* and a~, homeomorphic to an annulus, and b will be a “crosscut”
from a* to ¢~ which reduces the surface to a disc. The four edges of the
disc must then be identified as in the canonical polygon in order to recover
the torus.

Thus from an intrinsic point of view any pair of simple curves a, b which
meet, and cross, at a single point can be considered canonical, and choosing
one pair as generators to express all other curves is analogous to an arbitrary
choice of coordinate axes. ;

The curves a, b shown in the standard picture of the torus (Figure 212)
which we call a meridian and latitude curve respectively, can be distinguished
from other canonical curve pairs only relative to an embedding of the torus
in R®. Namely, if we take the solid torus, or ring, # consisting of the surface
Z and the region “inside” it, then a is determined up to isotopy as the curve
which is not null-homotopic on 4 but bounds a disc in #.

Y-

Figure 212
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Figure 213

A quick way to see this is to consider the universal covering space %
of &, which is an infinite solid cylinder (Figure 213). By the standard argu-
ment, a curve which contracts to a point in # must lift to a closed curve in
4. The only curves which do so are those of the form a™, and a is the only
simple nontrivial curve among these. The latitude curve is not determined
up to isotopy, even on the solid torus. One can either choose an arbitrary
curve which crosses ¢ once as the latitude, or else impose a further condition,
such as requiring it to bound a surface in the region Y outside” &, which
does determine the latitude curve for a given embedding.

These facts will not be used in the remainder of this chapter, but they are
very much to the point in 7.1, when we study knotted embeddings of the
solid torus in R3,

Exercis 6.4.2.1. What types of curve cross a at a single point?

ExerCISE 6.4.2.2. If the solid torus 4 is embedded in R? in a knotted way, no nontrivial
curve on 7 will bound a disc in R?® — #. Why must there be a nontrivial curve on 7
which bounds a surface in R* — 227

6.4.3 Classification of Canonical Curve Pairs

An (my, ny) torus curve and an (m,, n,) torus curve in standard form (that is,
projections of straight line segments through the origin in the universal covering
plane) have a single common point if and only if

MyHy — Myny = + 1.
They necessarily cross at this point.

Suppose that the net generated by g, b on the universal covering plane has
its vertices at the lattice points (i, j) where i, j are integers. Then the condition

Mk, — myhy = +1
or

m 1y
L B

my; np |

is precisely the condition for the linear transformation

’

T x = myx + nyy
Y =myx + nyy
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Figure 214

to map the set of lattice points one-to-one onto itself. This transformation
maps the net of squares with (vector) sides a, b onto the net of parallelo-
grams with sides mya + nib, mya + n,b. For example, Figure 214 shows
the net generated by a + b, —a — 2b. The fact that T is one-to-one means
in particular that no vertex falls in the interior of either vector mya + n;b,
mya + nyb from the origin. Thus the corresponding (my, ny) and (m,, n,)
curves on the torus have only a single common point, at which they cross.
Conversely, suppose we have (m,, n,) and (m,, n,) torus curves in stan-
dard form, with a single common point. The above argument about the
vectors mya + nib and mya + nyb and the net of parallelograms they
generate can then be reversed, showing that the transformation T is one-to-
one on the set of lattice points, and hence of determinant +1. |

ExERcISE 6.4.3.1 Show that the set of transformations T with determinant +1 is iso-
morphic to the group of automorphisms of the free abelian group of rank 2.

Exercise 6.4.3.2. Show that

my ny

My ny

in general is the algebraic intersection (6.3.4) of the (m,, n,) curve and the (m,, n,)
curve.

6.4.4 Generating Homeomorphisms for Transformations of
Canonical Curves

A homeomorphism of the torus maps the canonical pair g, b onto another
canonical pair and hence by 6.4.3 onto an (m,, n,) curve and an (m,, n,)
curve, with

mn, — many = +1.
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Any such transformation of canonical pairs can be realized by a combination
of isotopies with the reflection which sends a, b to a™*, b and the twist homeo-
morphisms t,, t, determined by a, b.

We first find generators for the linear transformations

T X' =mx + ny
Ny =myx 4+ nyy

my ny
my; Ny

with = +1

then interpret the generators as homeomorphisms of the torus.
T can be represented by the matrix

m; ny

My Ha
with determinant +1 and in fact the group GL(2, Z) of such matrices is
generated by

(3 el ()

This idea is to work backwards from

my m
my Ny

to(d 9). First we get a matrix of the form (§ {) using right multiplication by
A~ B~! to perform the euclidean algorithm on the bottom row, then
observe that i,j = +1 because the determinant remains +1 throughout.
Now multiply by R and/or (4B™1)% = ("} _9) to get (} {), which equals
AJ, and can therefore be multiplied by A/ to get (§  9).

The matrix R obviously represents the reflection which sends a, b to
a™ !, b. The transformation with matrix A can in fact be realized by the twist
homeomorphism ¢,. For

my n\(1 1 _fm myt
my ny/\0 T \m, my+nm,

and recalling the construction of an (m, n) curve by drawing m lines on a
cylinder, then joining the ends after a twist of 2n(n/m), we see that the extra
twist of 2m given by ¢, changes an (m, n) curve into an (m, m + n) curve.
The effect of ¢, on the pair represented by the matrix

my ny
My Ny
is therefore to produce the pair with matrix
my my+ny
my; My + hay ’

as required.
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Similarly, t, realizes the transformation with matrix B. Of course ,, t, do
not realize linear transformations of the plane, however it is easy to deform
them into linear transformations by isotopies. O

EXERCISE 6.4.4.1 (Tietze 1908). What are the generating homeomorphisms for the solid
torus?

EXERCISE 6.4.4.2, What are the generating homeomorphisms for the Klein bottle?
Show that there is only one twist homeomorphism, and that its square is isotopic to the
identity.

6.4.5 Homeomorphisms Are Determined up to Isotopy by the
Transformation of the Canonical Curves

The proof of this result in the general case requires point set subtleties such
as the Jordan-Schoenflies theorem, however the general idea is the following,
which can easily be developed into a formal proof in the case of simplicial
homeomorphisms.

Suppose h,:7 - F and h,;: T — J are homeomorphisms which
map a, b onfo pairs of canonical curves which are the same, up to isotopy,
as a standard (my,n,), (m,, n,) pair. We want to show that , is isotopic to h,.

It is clear that the covering curves of 4,(a), h;(b) in the plane can simul-
taneously be isotopically straightened into the straight line segments from
(0, 0) to (my, ny) and (my, ny); see Figure 215. By breaking the isotopy
down into a series of isotopies’ which take place within sufficiently small
parts of the plane we can induce a series of isotopies on 7, the result of which
is to reduce hy(a), h,(b) to a standard (m,, n,), (m,, ny) pair. Thus h, is
isotopic to a map h} which maps g, b onto this standard pair, and similarly

(my, ny)

!

,—‘ .-‘__I(mz:"z)

Figure 215
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h, is isotopic to an A, which maps 4, b onto the same pair. We then have
that

[ =W T T

is a homeomorphism which maps a, b onto themselves.

To show h,, h, are isotopic it will then suffice to show f is isotopic to the
identity. The required isotopy can be constructed in the following steps
(successive improvements of f will still be denoted f).

Step 1. Deform f into the identity on a, b using the fact that any orienta-
tion-preserving homeomorphism h: 8! — S! is isotopic to the identity.

Step 2. Deform f into the identity on strip neighbourhoods <7, % of a, b
(Figure 216).

Figure 216

Step 3. Observe that  — (o U4) is a disc, and f can be deformed into
the identity on it because any homeomorphism of the disc which is the
identity on the boundary is isotopic to the identity on the whole disc. A
clever proof of this fact is due to Alexander 1923b: for 0 < ¢t < 1 and x the
vector from the centre to an arbitrary point on the disc define

x for |x|=1
ft(ﬂ:{tf(lt.) for t>|x]>0

when ¢ > 0, and let f(x) = x. This function f; is an isotopy between f; = f and
Jfo = identity.

A more general result was proved by Baer 1928. Baer’s theorem (6.2.5)
in fact generalizes to canonical systems of curves on any surface &, then a
similar argument shows that a homeomorphism h: # — & is determined
up to isotopy by the image of the canonical curve system on #.

EXERCISE 6.4.5.1. Prove that any orientation-preserving homeomorphism h: 8' — 8!
is isotopic to the identity.
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EXERCISE 6.4.5.2. Give a rigorous version of the above proof, assuming h,, h, are
simplicial maps.

EXERCISE 6.4.5.3. Prove Baer’s generalized theorem.

6.4.6 The Mapping Class Group

Now that we know a homeomorphism h: 7 — 7 is determined up to
isotopy by the images h(a), h(b) of the canonical curves, and thus by the

matrix
my ng
my ny)

where (a), h(b) are curves of type (my, n,), (m,, n,) respectively, we can
associate the mapping class of h with this matrix, which has determinant
+ 1. Since composition of mappings corresponds to right matrix multiplica-
tion (6.4.4) we in fact have a homomorphism ¢ of M(Z) onto the group
GL(2,Z) of 2 x 2 integer matrices with determinant + 1. This homomor-
phism is one-to-one, since a mapping which sends g, b to a pair not homo-
topic to a, b is a fortiori not isotopic to the identity, hence M(7) is in fact
isomorphic to GL(2,Z).

This matrix representation gives quite a clear picture of the group (for
example one has an immediate solution of the word problem by multiplying
out the matrices), however, it is also possible to give a finite presentation
(see Nielsen 1924b, which also solves the much harder problem for 3 x 3
integer matrices with determinant + 1).

EXERCISE 6.4.6.1. Show that (§ D, (1 9, (% }) also generate GL(2, Z).

EXERCISE 6.4.6.2. What is the mapping class group of the Klein bottle?

6.4.7 Automorphisms of H;(#) whén & Is Orientable
of Genus > 1

The simple construction of the mapping class group of the torus 7 can be
attributed to the fact that =n,(9) = H,(9) and the automorphisms of
abelian groups are relatively easy to determine. When & is of genus g > 1
and n,(F) # H,(¥) the representation of a mapping by a matrix reflects
only the homology class of the image curves, not their isotopy class. Further-
more, not every automorphism of H,(#) = Z%¢ can actually be realized
by a homeomorphism. Those that can constitute a subgroup of the group
GL(2g,Z) of 2g x 2g integer matrices with determinant +1, called the
svmplectic group over the integers.
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Nevertheless, the mere fact that the matrix of an automorphism of Z2#
must be integral enables us to prove that the homology class of a simple
curve is not a multiple of any other homology class.

Let ay, by, ..., a,, b, be the canonical generators of m,(#) and H,(%).
An element

p= a'l"lb';i . .a;"gb:;y
of H,(%) can be represented by the vector (my, ny, ..., m,, ny). By 6.3.1
there is a homeomorphism h: # — % which maps p onto the curve a,
represented by the vector (1,0, ..., 0).
This homeomorphism induces an automorphism of 7,(#) (3.1.7) and

hence an automorphism A of H,(#). We can interpret A as a 2g x 2g
integer matrix such that

A(my, 1y, my, )" = (1,0,...,0)7,

where T denotes the transpose. But then the greatest common divisor d of
My, Ry, ..., My, B, must be 1, since A(m,/d, n,/d, ..., m,/d, ny/d)" is an integer
vector which equals (1/4, 0, ..., 0).

Thus (my, ny, ..., my, n,) is not a multiple of any other homology class.

‘When combined with its converse, this theorem yields the Poincaré 1904
characterization of homology classes which contain simple curves. A quick
proof of the converse using twist homeomorphisms has been given by
Meyerson 1976, and it is developed in the following exercise.

EXERCISE 6.4.7.1. Take generators oy, By, ..., &, B, for H () on a handle decomposi-
tion of & as shown in Figure 217 and denote the element p = of"f} -+ a7y of H ,(F)
by (my, ny, ..., my, ng)'

(1) Show that twists about oy, 8; send (..., m;, my, ..) to .., m; £, m;,...) and
C.oymym,..)to (.., my, ny &+ my, ...) respectively, where + depends on the direction
of twist.

Figure 217
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Figure 218

(2) Deduce that these twists can be used to send (my, ny, ..., m,, n,) to'(dy, 0, dy,
0,....4d,,0), where d; = ged(m,, n,).

(3) Let y;, 1 < i < g, be the curve shown in Figure 218. Show that a twist about v,
sends (.., Mg, My My s Bipgs oo ) 10 (o My 1 b Mgy By My ok By Mgy o)

(4) Deduce that (d;,0,4d,,0,...,d,, 0) can be sent to (4,0, ..., 0) by a, f, v twists,
where d = ged(dy, ..., d,).

(5) Conclude that if p is not 2 multiple of any element of H,(), then p is homologous
to a simple curve.
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7.1 Dehn and Schreier’s Analysis of the Torus Knot
Groups

7.1.1 Introduction

We have seen (4.2.7) that the (m, n) torus knot has group
Gp.n =<a, b;a™ = b").

It is obvious that G,, , = G,, ,,, which reflects the less obvious fact that the
(m, n) torus knot is the same as the (n, m) torus knot. G, , does not reflect the
orientation of the knot in R, since the knot and its mirror image have
homeomorphic complements and hence the same group. Since Listing 1847,
at least, it has been presumed that there is no ambient isotopy in R3 between
the two trefoil knots (Figure 219) and the same applies to the general (m, n)

A NE%

Figure 219

However, apart from this the torus knots are completely classified by
their groups (Schreier 1924) and a brilliant argument of Dehn 1914 even
allows us to distinguish a knot from its mirror image by deeper study of the
group. Dehn did not use the above presentation of G,, , but a more compli-
cated presentation like' Wirtinger’s, and Schreier’s analysis of G, , was
intended, among other things, to simplify Dehn’s argument.

7.1.2 The Centre of G,

By definition, the centre C of G,, , is the subgroup of elements which commute
with all other elements of G,, ,.. C is equal to the subgroup generated by a™.

The element o certainly commutes with g, and since it equals b” it also
commutes with b. Then ¢” commutes with every element of G,, , and hence
belongs to the centre.

Now since a™ commutes with every element of G, ,, the elements
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{a**k =0,1,2,...} constitute a normal subgroup N, and G, /N is
obtained by adjoining the relation o™ = 1, that is,

Guo/N=<a,b;a"=b"a" = 1)
={a,b;a" = 1,b" = 1).

We shall write this group as <@, b; @ = 1, 5" = 1) to emphasize the inter-
pretation of the generators as cosets:

= Na, b = Nb.

To show that N is the centre C of G,, , it will suffice to show that G, /N
has no nontrivial elements in'its centre. Since 3" = 1and 5" = 1, any element
of G,, ,/N has a unique normal form

aprasp: - . . g,
where
O0<sx; <mO0<x;<m fori>1,
0<y,<n0<y<n fori<p,

are integers. But such an expression commutes with & only if it has @ at
both ends, and with b only if it has b at both ends, so a nontrivial element
cannot commute with both g, b. O

7.1.3 Elements of Finite Order in G, ,/C

Elements of finite order in G,, ,/C are conjugate to a power of @ or a power of b.

Let g be an element of order r and let &* - - - b’» be its normal form. Since
no shortening of the word

(normal form of g)

is possible unless the normal form begins and ends with the same letter, we
must have one of x,, y, equal to 0. In the case p = 1 this makes g apower of
aor b, so the assertion is a fortiori true for p = 1,

Now suppose p is arbitrary and the assertion is true for all values <p.
If; say, y, = 0, then

a‘rga = = g=tre .. e ™)

But if g is of order r, so is @*rga~*, and hence s0 is o, the right-hand side of
{*), which means it is conjugate to a power of @ or b, by induction. The same
is then true of

g = a *rwae.

(Analogously when x; = 0.) (]
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7.1.4 Presentation-Invariant Determination of {m, n} from G, ,

7.1.2 tells us that we can define the group (@, b; @ = 1, b" = 1) independently
of a presentation of G, ,, namely as the quotient of G,, ,, by its centre C. Now
let :

G
E = abelianization of »gl

E is obviously a group of order mn, so we have determined the number mn
from G, , in an invariant manner.

Now 7.1.3 tells us that no element of finite order in G,, ,/C can have order
greater than that of @ or b. The number max(m, n) is therefore invariantly
determined as the maximum finite order of an element in G, ,/C. The
number min(m, n)is then determined as mn/max(m, n), so we have determined
the pair {m, n} independently of the presentation of G,, .

It follows that if {m, n} # {m’, n'}, then G,, ,and G,, , are nonisomorphic
groups.

An immediate consequence of this theorem is that if {m, n} # {m’, n'}, then
the (m, n) and (m', n') torus knots have nonhomeomorphic complements,
hence they are distinct knots, In particular, this proves that there are infinitely
many knots.

The group <&, b; @", b is of course the free product of cyclic groups of
orders m and n, so Schreier has incidentally derived four important properties
of such groups:

(1) Normal form of elements (hence a solution of the word ‘problem).

(2) The centre is trivial.

(3) An element of finite order is conjugate to a power of a generator.

(4) The orders {m, n} of the factors are uniquely determined by the group.

The particular free product {a, b; a®, b*) had already been studied by
Klein and Fricke 1890 in its realization as the group of transformations
generated by

1

@)= -~ b=
(these are the transformations f(z) = (pz + q)/(rz + 5) where p, g, r, s are
integers such that ps — rg = 1—the modular group). In this case the order
of procedure was different since initially only the generators were known.
The normal form was derived first and then used to show that the relations
a* = b® = 1 sufficed to define the group (since they suffice to obtain the
normal form).

Exercisk 7.1.4.1. Show that the transformations a(z), b(z) above define the group
{a, b; a?, b*) (For more help, sec Magnus, Karrass, and Solitar 1966, p. 44.)

EXERCISE 7.1.4.2. Construct the Cayley diagram of <a, b; ¢, b*).
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7.1.5 Latitude and Meridian Curves on a Knotted Ring

We now adapt Dehn’s train of thought on the two trefoil knots with the
Schreier analysis of G, , in mind. The two knots are represented by knotted
rings 2,, &, in R* and we take generators ay, b, for n,(R* — #,)and a, b,
for m(R® — #,) as shown in Figure 220 (a,, b, are the mirror images of
ay, by).

On the torus surface 7| of #, we choose latitude and meridian curves
¢;,d, which serve to determine a right-hand screw in R? (Figure 221). We can
specify the meridian d, up to isotopy and orientation as a simple closed curve
which is null-homotopic in 4, but not on J7, (6.4.2). A latitude is then a
simple closed curve on .7y which meets d, exactly once. Such curves are not
unique up to isotopy, and we shall choose the one most simply expressed in
terms of the generators of z,(R3 — #,), namely

¢, = al.

Figure 221

Figure 222
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1t is clear from the diagram above that a? can be deformed onto a latitude
curve on 7 ,. Figure 222 shows that

d; = a;'b,.

EXERCISE 7.1.5.1. Draw a picture of the latitude curve corresponding to ai.

7.1.6 Group-Theoretic Consequences of an Ambient Isotopy
Between the Two Trefoil Knots

Ifsuch aﬁ isotopy exists, the generators a,, b, of = ((R? — &,)can be regarded
as elements a,(ay, by), ba(a;, by) of 7, (R® — ). In fact, since
Car bysa = b = m(R® — ) = my(R® — %) = (az. by a3 = b,
the correspondence
ay > dy, by b,

defines an automorphism of the group.

We now see how the latitude and meridian are expressed in terms of
a5, b, . Since the meridian d, is unique up to isotopy and orientation, in terms
of a,, b, it can only be

d; = (aflbz)il-

By sliding the meridian and making a rotation of £,, if necessary, we can
arrange that d, = d, = a; 'b, (see Figure 223). The latitude ¢, must then
have the orientation of a; 2 in order to determine a right-hand screw with
d,, and its most general possible form is therefore

¢, = ay*dy  (cf. 64.3)
= ay ¥a, ‘b)Y

Figure 223
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When we substitute a, = a,(a,, b,) and b, = b,(ay, b,) in these expressions
for c,, d; and compare with

¢y =dal, dy = a7 'b,
from 7.1.5, we must get equations
al = a3 (a3 'by)" m
ai ‘b, = a; ‘b, 93]

which are valid in G, 3 = <aj, b;; a = b}).

We now have a purely algebraic question: is there an automorphism
a, — a,, by~ by of G, 5 which satisfies the Equations (1), (2)? Dehn was
able to answer this question in the negative by explicitly finding all auto-
morphisms of G, 3. The task is made much easier by Schreier’s analysis,
which we now resume.

7.1.7 Automorphisms of G, ,/C

When m # n all the automorphisms are given by @ i &1, bi— I~ 'L, where
r is prime to m and s is prime to n.

Since G,, ,/C = <@, b; @", b") the above substitutions certainly determine
automorphisms. We have to show there are no others. Each automorphism
must send 4 and b to elements @ and b’ of orders m and » respectively, and
hence conjugate to powers of generators by 7.1.3. They cannot be conjugate
to powers of the same generator, because the other generator would then
have exponent sum 0 in each product of @' and b, and hence would not
appear in the group they generate. By further consideration of exponent sums
we find that the powers r and s of @ and b which occur must be respectively
prime to m and n. Then since m # n the only way @, b’ can have periods m, n
respectively is if

a=plap, b = o 'bo,
for some elements p, 6 of G, ,/C. .

Now if a— p~'@p, b0~ 'b°c determines an automorphism, we can
compose it with the inner automorphism @+ ¢@s ™', b obe ™! to obtain
the automorphism

ars 1, b b,
where © = po !, and it will suffice to show that the latter has the required
form. Well, since g must be generated from t~*@'t and b*, 7 can only have the

form @b’ (otherwise sufficient cancellation is not possible) and then the
automorphism is

G bYa T @ Ey = bEh
b b° = bbF

and so we have the required form @~ 1@, b— 17 'bL O
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7.1.8 Automorphisms of G, ,

When m # n all automorphisms are given by av>t~1a%t, bt~ 1bt, where
¢ = 1 and tis an arbitrary element of G, ,.

Because the centre C is an invariantly defined subgroup of G, ,, any
automorphism of G,, , maps C onto itself and induces automorphisms of C
and G, ,/C. The only automorphisms of the infinite cyclic group C are
a™ > a*™ b b*" 50 we must have

am = g = bsn — bm

if a>a', b+ b’ is an automorphism of G,, .

By 7.1.7, the automorphism @+ @, b+ b’ induced in G,, ,/C must have
theforma’ = i @%b = i DL Nowd = i 1@F = i 'Ca’t = {t " ta"" "},
where b = 0, +1, +2,... and t is a representative of 7, so ¢ is therefore some
particular ¢t~ *a"*#t, Similarly, b’ = ¢~ 'b*+*'¢ for some integer k. Then it is
easy to see, by considering exponent sums, that

a/m o a£m= b&'l = b/?l
onlyifr + hm = ¢ = s + kn. (]

Exercise 7.1.8.1 (Schreier 1924). Show that the automorphism group of G,, , form # n
has presentation
<a, B,y o™, B 7%,

where o, 8, and y are

arsa, br>a 'ba,
ar>b"lab, brsb,
arsa™!, bbbl

respectively.

7.1.9 Nonexistence of an Ambient Isotopy between the Two
Trefoil Knots

Knowing that the automorphism a; > a,, b; — b, of 7, (R® — %) has the
form
a, =t 'ajt, b, =1t"'hit
we can now write Equations (1), (2) of 7.1.6 as
al = (t7'ast) 2(t ta; et BSE)"
= ¢ ta; *(a; B, M
a;thy = (" rait)y (e 5D
=t ta;*bit. 2
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Since the defining relation of #;(R* — %) is 1 = a}b7?, it follows that in
any expression equal to 1

exponent sum of a; = 2k

exponent sum of by, = —3k
for some integer k. Applying this to (2) we find ¢ = 1, then applying it to (1)
after ¢ = 1 is substituted, we get n = —12, so that (1) becomes
af = t7tay ay b))t ©)

But (3) is not true in n,;(R® — #,) = G, 5; it is not even true in G, ;/C, in
which

at = "ty ¥ar b)) 1

iff

i

t"Yag 'h)" 1%t because af = 1
iff

I = (a;'b)™"?
—which is clearly false.

This contradiction completes the proof that the two trefoil knots are not
equivalent. In his proof, Dehn drew on a solution for the word problem for
G, which he had already found in Dehn 1910. The method can be gener-
alized to show that no torus knot is equivalent to its own mirror image. The
exercise below shows that some knots are equivalent to their mirror images—
such knots are called amphicheiral following Listing 1847—and hence are
not torus knots.

Exercist 7.1.9.1. Show that the knot in Figure 224 is amphicheiral.

Figure 224
7.2 Cyclic Coverings

7.2.1 Introduction

Knot groups in general have not proved to be nearly as tractable as the torus
knot groups. A solution of the word problem for all knot groups was obtained
by Waldhausen 1968b, and the isomorphism problem has been solved
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recently by an extension of the same methods (Waldhausen 1978), but both
are very intricate. In trying to distinguish knots the approach has therefore
been to use less discriminating, but easily computable invariants.

The most important of these are the homology invariants of cyclic covering
spaces. As we mentioned in 1.1.4, there are good reasons for generalizing the
notion of Riemann surface to branched covers of S%, in which case the branch
set becomes a set of closed curves which may be knotted or linked. Heegaard
1898 was the first to observe that knots and links give rise to interesting
3-dimensional manifolds in this way, in particular lens spaces (though they
had not yet received that name).

Heegaard’s examples in fact suggest that torsion is a convenient distin-
guishing feature of the covering spaces. He found that the 2-sheeted cover
of 8% branched over the trefoil is the (3, 1) lens space, so this distinguishes the
trefoil knot from the circle, whose branched covers are évidently S® itself,
However, Heegaard was not interested in distinguishing knots, nor had he
quite isolated the concept of torsion (which was left to Poincaré), so the
potential of his discovery remained unfulfilled until Alexander revived it
about 20 years later.

7.2.2 The 2-sheeted Cover of S* Branched over the Trefoil Knot

Heegaard gives a rather complicated method for reducing the branched cover
to what we now call its Heegaard diagram (see next chapter), then merely
quotes the results of applying it in a few special cases. We shall demonstrate
his result for the 2-sheeted cover of the trefoil—the (3, 1) lens space—by
comparing it with the lens space definition given in 4.2.8.

Rather than use Heegaard’s cone construction, we span the trefoil knot 4
by a nonsingular surface in S (an idea due to Seifert 1934) which serves as a
“door” through which we pass to the second sheet. The simplest such surface
is a Mobius band .# with three half twists (Figure 225). It is important to
remember that when we cut S* along .# there are “two sides” to the cut,

Figure 225
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which meet along . These two sides form a twisted annulus (the double
cover of the Mobius band) whose edges are sewn together along ', and the
part of S? it encloses is a solid ring with %" as a (2, 3) torus curve on its
surface (Figure 226). Notice how a latitude curve [ on this ring transfers back
to the original surface, namely Figure 227. When we press this curve through
to the other side of the cut, to see how it looks on the boundary surface of the
second sheet, we get Figure 228—a (1, 3) torus curve. Thus we have that each
sheet is an S3 with a solid ring drilled out of it, but the boundary tori are
identified in such a way that a (1, 0) latitude curve on one is mapped to a (1, 3)
curve on the other.

Figure 226

Figure 227

or

Figure 228
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But for any unknotted ring #, S* —~ Z isitselfaring &', and an (m, n) curve
on & becomes an (1, m) curve on &’ (see Exercise 7.2.2.1 below), so another
way to describe the covering space is: the union of two rings £}, £, glued
together so that a meridian on one is identified with a (3, 1) curve on the
other. As we shall see in 8.3.2, this determines the manifold uniquely, but for
the present we are content to show that the (3, 1) lens space can also be
described in this way. ’

Take a lens-shaped solid with upper and lower faces divided into three
equal sectors, and identify the upper sectors with the lower after a twist of
2n/3 (Figure 229). Now if we take the “core” out of the lens and draw a curve
p round its middle (Figure 230) the result is a solid ring (since top and bottom
faces are identified) with a meridian curve p. The remaining portion of the
lens is split into three wedges by vertical cuts x, y, z through the boundaries
of the sectors (Figure 231). The arcs identified with the three pieces of p are
also shown. We now identify the 1, 2, 3 regions on the wedges, giving Figure

Figure 229

Figure 230

Figure 231
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Figure 232

232, which becomes a solid ring when x, y, z are rejoined, and the arcs join
up to form a (3, 1) torus curve! O

EXERCISE 7.2.2.1. Viewing S as the (1, 0) lens space, use the core construction to show
that it is the union of two solid rings, #,, #, and that an (m, n) torus curve on the
boundary of 2, is an (s, m) torus curve on the boundary of Z,.

EXERCISE 7.2.2.2. What space is obtained as the 2-sheeted branched cover over the
(2, 2n + 1) torus knot? Deduce that there are infinitely many knots.

7.2.3 Alexander’s Results

Heegaard’s result lay dormant (although noted by Tietze 1908) until the
publication of the French translation of his thesis in 1916. The translation
was checked for mathematical soundness by J. W. Alexander, fresh from
his work on homology groups, and we may surmise that the collision of these
ideas led to the fruitful discoveries which were to follow. Alexander must
also have read Tietze 1908 at this time, because in short order he disposed
of two of the most important of Tietze’s conjectures: Alexander 1919a shows
that there are nonhomeomorphic lens spaces with the same group, while
Alexander 1919b proves that any orientable 3-manifold is a branched cover
of 83, Later-in 1920 he finally took the cue from Heegaard’s example and
looked for torsion in cyclic covers of S* branched over various knots.

The torsion of a cyclic cover is obviously an invariant of the knot used as
branch set so, with the known computibility of the homology groups, one
had the first computable knot invariants.

With hindsight, and especially with the simplifying device of Seifert
surfaces, it is not hard to see how the twisted position of a knot in S might
induce torsion in its cyclic covers. Nevertheless, the extent to which different
knots induce different torsion is remarkable. Alexander found that by using
just 2- and 3-sheeted covers he was able to distinguish all knots with up to
eight crossings. His results were delivered in a paper to the U.S. National
Academy of Sciences in 1920 but not published until Alexander and Briggs
1927.

Alexander computed the first homology group H, from a cell decom-
position of the cover obtained by cutting S* along a surface rather like the
Heegaard cone. The computation of H, from a cell decomposition is just
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L\.—/
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Figure 233

like the computation of n; (4.1.6) except that one allows the generators to
commute.

It should be mentioned that not all knots have torsion in their cyclic
covers, so Alexander’s method does not invariably distinguish knots, even
from the trivial knot. Examples with no torsion are “doubled knots™ such
as that shown in Figure 233 (see Rolfsen 1976, p. 157). The doubling back and
twisting of the thread cancels the torsion induced by its trefoil-like shape.

7.2.4 Reidemeister’s Subgroup Method

It is perhaps fortunate that Alexander put off publication of his. results,
because of the way Reidemeister 1927 came to rediscover them. Reidemeister’s
method differs from Alexander’s in two small but significant ways:

(i) The knot 2" is removed from the space so that.one has an unbranched
cover of the knot complement S — .

(ii) The fundamental group =, of the cover is computed first, then abelianized
to give H,.

Since (ii) is a quite unnecessary detour it is clear that Reidemeister was
primarily interested in handling noncommutative groups, while the fortunate
choice of an unbranched cover meant that n; of the cover was in fact a
subgroup of n(S® — #). Thus the stage was set for Reidemeister’s subgroup
method, and its covering space interpretation.

Reidemeister gives the method first (essentially the Reidemeister—Schreier
process of 4.3.8, without the Schreier condition on coset representatives),
then the following geometric interpretation. To form the m-sheeted cover of
S* — o we take m copies of it, say (S — #),, ..., (8% — A, joined
along copies %, . .., %, of the Heegaard cone %, which serve as doors from
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Figure 234

one sheet to the next (Figure 234). The Wirtinger generators a,, 4,, ... can
be viewed as the basic routes for passing from the sheet (S* — X)
to (8° — A,y or from (8% — A7), to (8% — A),. It follows that the
closed paths in the covering space (§* — ) are exactly those which cover a
path

a2 - aif
in 8% — A whose exponent sum &, + & + -+ + & is an integer multiple
of m.

——

It is clear that the null-homotopic paths in (S* —#") are exactly those

which cover null-homotopic paths in S — ¢, so m;(8* — &) is in fact
isomorphic to the subgroup of 7, (S* — #") generated by the above elements.
This subgroup is just the kernel of the homomorphism

$:my(S* = A) > I,

where Z,, is the cyclic group of order m and ¢ is defined for any element x
by taking the exponent sum of x and reducing it mod m. This situation is
indeed ripe for the Reidemeister—Schreier process, since coset representatives
are readily computed.

EXERCISE 7.2.4.1. Define the above homomorphism ¢ independently of the presentation
of 1, (S — ).
EXERCISE 7.2.4.2. Show that 7, of the m-sheeted cyclic cover of S§* branched over %

is obtained from nl(m) by adding the relation

where A, is the element of nl(m ) corresponding to a7 in n,;(S* — ). Show also
that this relation implies

A=1 i=23...,

where A, is the element corresponding to af’.
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7.2.5 The Knot Problem

As mentioned in 0.1.1, the homeomorphism problem for knot complements
has been solved only recently, and with great difficulty; a full presentation of
the result would be a book in itself. A key ingredient in the algorithm is a
method of Haken 1961 for manipulating surfaces inside 3-manifolds. In
particular, to recognize whether a knot # is trivial, Haken spans it by a
surface &, then tries to reduce the genus of & as far as possible. Haken’s
method guarantees that an %* with minimal genus will eventually be found;
then " is trivial if and only if genus (¥*) = 0. A simplification of Haken’s
130-page proof was given by Schubert 1961, but it is still difficult.

One of the few others to master the method was Waldhausen, who used
it in Waldhausen 1968b to solve the word problem for all knot groups.
Waldhausen’s algorithm applies uniformly to all knot groups, so one can
use it to decide whether a given knot group is abelian; namely, see whether
all commutators of generators equal 1. This fact also implies an algorithm
for the trivial knot, because of a classical criterion of Dehn 1910: a knot 4
is trivial if and only if 7,(S® — #") is abelian. Dehn’s criterion depends on
the notorious “Dehn’s lemma,” a result about manipulating surfaces in
3-manifolds which first revealed how difficult such questions were. One of
Dehn’s manipulations was incorrect, and the result was not reinstated until
finally proved by Papakyriakopoulos 1957.

The step to the general knot problem, strangely enough, depended on
further progress in 2-manifold topology. This was finally achieved when
Hemion 1979 solved the conjugacy problem for mapping class groups. The
method for distinguishing one knot complement from another was then
sketched by Waldhausen 1978, using a combination of Hemion’s result with
the Haken method.

A recently announced result of Thurston offers a more elegant and classical
method for recognizing the trivial knot and solving the word problem
(without settling the knot problem, however). Thurston claims to have
proved the long-standing conjecture that knot groups are residually finite. A
group G is residually finite if, for each g € G, g # 1, there is a homomorphism
of G onto a finite group which does not map g to 1. It is easy to show that any
finitely presented residually finite group has a solvable word problem, in
fact by a uniform procedure, so we also have an algorithm for deciding
whether a knot group is abelian (see Exercise 7.2.5.1 below).

These results seem to vindicate Max Dehn’s confidence in the knot group
as a tool for understanding knots.

EXErcisE 7.2.5.1. (1) Show how to cffectively enumerate all homomorphisms of a
finitely presented group G onto finite groups, using (say) groups of finite permutations.
(2) Deduce that if G is residually finite one can effectively enumerate all words in the
generators of G which are #1.
(3) Deduce an algorithm for the word problem for G.
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7.3 Braids

7.3.1 The Closed Braid Form of a Knot

The theory of braids was introduced by Artin 1926 as a possible approach
to the knot problem. It had been observed by Alexander 1923c¢ that any knot
had a certain normal form, called a closed braid. A knot o is in closed braid
form if there is a straight line %, called the axis, such that the vector from &
to a point P on & rotates in a fixed sense as P traverses # in a fixed sense.
There is always a corresponding projection of ", with & represented by a
single point O, such that the radius vector OP rotates in a fixed sense. For
example, the usual projection Figure 235, of the trefoil knot has this property.
The usual projection, Figure 236(1), of the figure-eight knot is not in braid
form, but it has the braid form (2). Alexander proved that any knot (or link)
has a closed braid form. Kneser (as reported in Artin’s paper) observed that
a proof of this fact also followed from the result of Brunn 1897 that every
knot has a projection with just one, necessarily multiple, crossing.

The following proof of Alexander’s theorem includes a proof of Brunn’s
theorem, hence it may be what Kneser had in mind.

Step 1. Represent the knot or link " as a finite sct of simple arcs in the
plane connected by small “bridges™ at the crossings. For example, one such
representation of the trefoil knot is shown in Figure 237. Now make a
“rubber-sheet” deformation of the plane which pulls the endpoints of the
bridges onto a straight line & we shall call the axis (Figure 238). .% divides A~
into a number of simple arcs .oy, ..., &, (nine in our example).

Step 2. By slightly rotating the half-plane which contains «/; about &,
we can move each «; into a different half-plane without changing the knot

Figure 235

Figure 236
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Figure 237

Figure 238

or link . Now that .«7; has a half-plane to itself, it can be isotopically
deformed into an arc .o/} consisting of three sides of a square. Looking along
&, we now see m line segments radiating from a single point.

Step 3. We orient # and slightly twist the half-plane containing .« so
that the outer edge of & goes out of parallel with % (Figure 239). The
modified arcs ¢}, which we call o¢{, then present only a single multiple point
when viewed along %, so we have proved Brunn’s theorem. The direction of
twist is chosen so that each /7 has a clockwise orientation when viewed
from a point P on % to one side of .

Step 4. Take a cylinder with axis % and radius small enough not to include
any o/ and replace each V-shaped segment of 4 inside it by a circular arc
on the surface of &. Choose from the two possible arcs the one which presents
a clockwise orientation when viewed from P. Thus if ./} is followed by
2/}, the two cases are Figure 240 and Figure 241.

oLl
& 5

Figure 239
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Figure 241

Since the cross-section of the cylinder containing this V-shaped segment
contains no other part of ¥, the operation can be realized by an isotopy of
A and hence does not change its knot type. When viewed from P, which is a
finite distance away, the arcs on the cylinder will not be superimposed, and
we shall see 2 as a closed braid. O

EXERCISE 7.3.1.1. Show that the closed braid form of a knot ¥ can be further specialized
to consist of a spiral 4B together with a single wandering strand of the braid, B4, which
subtends an angle <2 at the axis, for example Figure 242. (Suggestion: Find a suitable
way to “comb” the braid.) This result was stated by Alexander 1932, He also noted that
A is trivial if BA crosses each strand of the spiral only once, and conjectured that if
BA could not be reduced to this form by “obvious transformations,” then 4~ was
nontrivial.

WA
Figure 242
7.3.2 Markov Operations
1t is clear that any knot # has infinitely many different closed braid forms,

in particular the operation in Figure 243 changes the number of loops around
the axis without altering the knot type. This operation and its inverse are
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Figure 243

called Markov operations. Markov operations differ from proper braid
operations (to be discussed in 7.3.4) in that the braid form is not maintained
relative to a fixed axis throughout the operation.

Markov 1936 showed that if #,, #, are two braid forms of the same knot
2, then %, is convertible to %, by a finite sequence of Markov operations
and proper braid operations. The proof is quite lengthy and the only pub-
lished version is in Birman 1975.

With Markov’s theorem, the problem of deciding whether knots 1Ay
are equivalent is the same as deciding whether their braid forms %,, 4,
(obtained, say, by the method of 7.3.1) are equivalent under Markov opera-
tions and proper braid operations. The problem of equivalence under proper
braid operations was posed by Artin 1926, and an algorithm for it was found
by Garside 1969, however the effect of adding Markov operations has so far
been too difficult to handle. Artin confined himself mainly to open braids,
which are what we usually mean by the term “braid,” and found the elegant
group-theoretic interpretation of them which follows.

7.3.3 The Braid Group B,

To define a braid on n threads we take a rectangle with sets of points
Ay, ... A, and Al ..., 4, on its two horizontal sides at corresponding
positions, as in Figure 244. Each4, is connected to A}, by a simple polygonal
arc in such a way that

(i) No two arcs meet (in particular, each goes to different endpoints).
(i) Each arc meets a given horizontal plane in at most one point.

The arcs are called the threads of the braid. By placing one rectangle on top
of another and then erasing the common edge we obtain a natural product of
braids, which is obviously associative.

Two braids are considered to be the same if one can be deformed into the
other by an isotopy in R®. There is no loss of generality in assuming the
figure remains a braid throughout the deformation. Such deformations
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Figure 244
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Figure 245

enable each braid to be brought into a standard form whose projection has
the following properties

(iii) No multiple point of the projection is more than double (a “crossing™).
(iv) There is at most one crossing on each horizontal line.

Then if we denote a braid with a crossing of the ith thread over the (i + 1)th
by o;, and one with a crossing of the ith thread under the (i + 1)th by a7,
any braid in standard form can be described as a product of 6;’s and a; !’s by
reading its crossings from the top down.

We observe that 5,67 * = 0] ', = a braid with no crossings (Figure 245).
Hence any braid f§ can be cancelled by its formal inverse B! which results
from writing f§ in reverse order and reversing ail exponents. This yields the
following proposition:

The braids on n threads form a group B, under the product operation.
The identity element 1 is the braid with no crossings and the generators are
the braids o; in which the only crossing is one at which the ith thread passes
over the (i + 1)th. The inverse ¢; ! is the braid whose only crossing has the
ith thread passing under the (i + Dth.

Exercise 7.3.3.1. Describe the usual hair braids (Figure 246) as elements of B;.

SRS

Figure 246
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7.3.4 Defining Relations of B,

Any deformation of a braid can be realized by a series of small deformations
of the following two types (called braid operations).

(i) Pulling one thread across its neighbour (Figure 247): This corresponds
to insertion of a term o;0; ' or ¢; !g; in the product describing the braid,
hence it has no consequences additional to those we already know from the
group property of braids.

(ii) Sliding a crossing up or down (Figures 248-250): The simplest effect
is to exchange two consecutive terms in the product (Figure 248). This is
possible just in case k # i — 1, i + 1. When the crossings have successive
indices the possible situations are shown in Figures 249, 250. In both cases
one obtains the relation

0i0;+10; = 041004 1.

"y

g
=}
=
o
)
&
~

Yoy
[IEe)

(

;0 = 0y 0;

Figure 248

Figure 250
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Since the braid operations suffice to produce all equivalents of a given
braid, it follows that B, is generated by ¢y,...,6,_; with the defining
relations ’

0,6, = 0;0; k#i—1i+1

0:0;410; = 0;+10;0;41-
ExERrcise 7.3.4.1. Show that B, is the same as the trefoil knot group.

ExErcise 7.3.4.2. What group results from B, when we add the relations ¢? = 1 for
i=1,...,n—17

7.3.5 Artin’s Solution of the Word Problem for B,

In geometric terms the problem of deciding whether a word w equals 1 in
B, is just the problem of deciding whether a given braid on » threads is trivial.
This geometric problem has an evident geometric solution, namely, see if
cach thread of the braid can be straightened by “combing.” More precisely,
take a loop t, round the kth thread and pull it through the braid from top
to bottom. If, for each k, 1, emerges at the bottom as a loop around the kth
thread only, then the braid is trivial, and conversely.

An elegant algebraic formulation of this process was given by Artin 1926,
He actually closes the braid by connecting top to bottom by circular arcs,
and throws the loops 1y, ..., t, around its threads at the top. However, his
subsequent interpretation of 7, .. ., ¢, as generators of a free group is easier
to defend if instead the threads of the braid are prolonged straight to infinity
in both directions, which we shall therefore do (Figure 251). It is then easy
to show that ¢,, ..., t, are indeed free generators for n,(R* — &), where &
denotes the infinitely extended braid. Furthermore, free generators th, ..., I,
are obtained by throwing loops around the threads at any level. Passing

<ty

Figure 251
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from the ¢; generators to expressions for them in the ¢; generators, then

dropping primes, defines an automorphism of F,,, the free group of rank n.
The automorphisms which occur are generated by automorphisms o

induced by pulling ¢,, ..., t, past the Jevel of a crossing ;. It is clear that

a¥(t)=1t; iMj#ii+ 1,
of () = Lis s
and Figure 252 shows that
0¥ (ti41) = s alitinh
The automorphism corresponding to a given braid
oit -+ of =P
is therefore
(a5)* -+« (oi)* = B*

and the braid is trivial just in case this automorphism sends each ¢, to f,.

To decide whether this is the case, one computes *(t,) for each k and then
uses free reduction to see whether the result equals . In effect, Artin has
reduced the word problem for B, to the easy word problem for F,.

EXERCISE 7.3.5.1. Show that the problem of deciding whether two closed braids «, f of n
threads are equivalent is the same as the conjugacy problem for B,,, that is, the problem
of deciding whether there is an element y in B, such that

a=yy~".

EXERCISE 7.3.5.2 (Artin 1926). Using the closed braid representation of a knot, and a
construction of the closed braid by identification of the ends of an open braid §, deduce
that any knot group has a presentation of the form

= PBHE)  i=1..,m

where # is the number of threads in .

EXERCISE 7.3.5.3. Compute presentations of the groups of the 2-crossing link and the
trefoil knot by the method of 7.3.5.2.
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Three-Dimensional Manifolds




242 8 Three-Dimensional Manifolds

8.1 Open Problems in Three-Dimensional Topology

8.1.1 Review of 2-manifolds

In Chapters 1 and 6 we have seen how to solve a wide variety of problems
concerning 2-manifolds. The success of 2-manifold topology is quite sur-
prising when compared with dimension 3, where almost no algorithms are
known. To see the contrast more clearly, let us first review what we know
about 2-manifolds.

The homeomorphism problem was essentially solved by the nineteenth-
century mathematicians who thought of handles, crosscaps, and the relation

handle + crosscap = 3 crosscaps.

The classification theorem (1.3.7) confirms that the number of handles (or
crosscaps, respectively) and the number of boundary curves determine the
homeomorphism type, and also give an algorithm for computing it. A con-
venient alternative is to compute the Euler characteristic and orientability
character, and in particular the 2-sphere is recognizable as the only surface
with Euler characteristic 2.

Various equivalence relations between curves on a surface F—
homology, homotopy, and isotopy—can be decided by solving the corre-
sponding algebraic problems in H, (%) and n,(%) (the word problem and the
conjugacy problem). It can also be decided whether a given homology or
homotopy class contains a simple curve, in other words, an embedded sub-
manifold S* of #. Equivalence of two embeddings of S* up to homeomor-
phism of & is decided by the Euler characteristics and orientability character
of the pieces into which they divide &, and up to isotopy by the solution of
the conjugacy problem and Baer’s theorem.

The algorithms used to solve these problems apply whether the 2-manifold
is given as a Riemann surface, polygon schema, or simplicial complex.

It is worth mentioning that the homeomorphism problem for 2-complexes
can also be solved (Papakyriakopoulos 1943. A more accessible proof is
Whittlesey 1958). This is despite the fact that any finitely presented group G
can be realized as 7, of a 2-complex, so there are 2-complexes with unsolvable
contractibility problem.

8.1.2 Methods of Constructing 3-manifolds

To begin seeing 3-manifolds from a combinatorial point of view it is probably
most convenient to consider simplicial decompositions. This is completely
general by virtue of the Moise triangulation theorem (0.2.5). A 3-manifold is
then a union of solid tetrahedra with disjoint interiors, with at most two tetra-
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hedra meeting at each face (exactly two for a closed manifold), and finitely
many at each edge and vertex. Furthermore, the neighbourhood surface
of each vertex must be a 2-sphere, so that each point in the complex has a
neighbourhood homeomorphic to the 3-ball (see also 8.2).

If the complex is finite, then all the above properties are decidable, so we
have an algorithm for deciding whether a finite 3-complex is a manifold
(and of course, for distinguishing between closed and bounded manifolds).

As in dimension 2, we can amalgamate simplexes until we have a single
polyhedron, homeomorphic to a ball, with faces identified in pairs. This
cell decomposition method of constructing 3-manifolds is therefore completely
general and could serve as an alternate definition provided we include the
statement that the neighbourhood surface of each vertex is a sphere.

The remaining methods of construction we shall mention yield only the
orientable 3-manifolds, however these greatly overshadow the nonorientable
3-manifolds in importance. (Note that the lens spaces, including the (2 1)
lens space or projective space, are orientable.)

The first such method, the Heegaard splitting, decomposes the manifold
into two pieces homeomorphic to subsets of R*, namely handlebodies
(Heegaard 1898, see also Dyck 1884). This is faintly analogous to the Clifford
decomposition of an orientable surface into two pieces of R? (1.1.3). However,
the perforated discs of a Clifford decomposition produce only one orientable
2-manifold, no matter how they are joined together, whereas two handle-
bodies can produce infinitely many different manifolds via different homeo-
morphisms between their boundary surfaces. It is fairly easy to show that
every finite orientable 3-manifold has a Heegaard splitting (8.3.1), by
starting with a simplicial decomposition.

The second construction of orientable 3-manifolds is by surgery, the
first example of which was given by Dehn 1910. One removes some solid
tori 97y, ..., 7, from an S* and “sews them back differently,” that is,
identifies the boundary of the hole left by 7, with the boundary of another
solid torus 47; via a homeomorphism different from the one defined by the
inclusion of 7, in S3. To obtain all orientable 3-manifolds the 7; have to be
knotted or linked in most cases. In 8.4 we shall follow Lickorish 1962 in
deriving the surgery construction from a Heegaard splitting.

The third construction is by branched coverings of S*, which has already
been discussed in 1.1.4 as the 3-dimensional analogue of Riemann surfaces.
Like surgery, it is generally based on knots or links, and can in fact be derived
from the surgery construction (Lickorish 1973, see 8.5).

Each of the above methods yields a finite description of the 3-manifold
which can be effectively translated into a simplicial decomposition. In fact
the different forms of description are intertranslatable, which is often useful
for showing that two manifolds are the same. The problem is that the same
manifold has infinitely many descriptions, so we cannot always be sure
whether different descriptions actually represent different manifolds.
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Exercisk 8.1.2.1. Give an algorithm for effectively enumerating all finite 3-manifolds
(with repetitions).

8.1.3 The Homeomorphism Problem

Since we do not yet know how to recognize the simplest 3-manifold S*
(see 8.1.4) it must be admitted that the homeomorphism problem is far from
being solved. The principal obstacles seem to be

(1) absence of plausible normal forms,
(2) lack of bounds on the length of constructions which convert one des-
scription of a manifold to another.

If we had plausible normal forms, comparable to handle and crosscap
forms for 2-manifolds, a way to solve the homeomorphism problem might
become evident. However, it should also be remembered that we had to
discover the relation

handle + crosscap = 3 crosscaps

before obtaining normal forms of 2-manifolds, and even if 3-manifolds possess
a comparable set of building blocks, the relations between them may be
unmanageable.

This is precisely the difficulty with the methods of construction described
above. We know for example a set of “simple” relations between Heegaard
splittings which enable us to enumerate all splittings in a given homeo-
morphism class (Singer 1933). Such results show that, like the word problem
for groups, the homeomorphism problem for 3-manifolds is a recursively
enumerable problem (0.4) but they do not help to solve it. To do that, one
needs to know when to stop looking for a description D, among the infinitely
many descriptions equivalent to a given D, —it is a question of bounding the
length of the search. For example, it may be possible to define a “complexity”
|D| of a simplicial decomposition D for which one can.compute a bound
b(|D,|,|D;|) on the complexity of a common refinement of D,, D,. Then one
could enumerate all simplicial decompositions of complexity < b({D|,|D,})
and see if they included a common refinement of D,, D, . If not, then D,, D,
would represent nonhomeomorphic manifolds, by the Hauptvermutung.

If the homeomorphism problem is solvable, then some such computable
bound must exist, and it will provide a solution whether or not normal forms
are available.

The homeomorphism problem has been solved for the subcase of lens
spaces (Reidemeister 1935). We shall see in 8.3 that the lens spaces are the
3-manifolds of Heegaard genus 1, that is, they possess Heegaard splittings
into solid tori. In general, the Heegaard genus of a 3-manifold .# is the mini-
mum # for which .# splits into handlebodies of genus n. We do not know how
to compute it, and little is known about the .# with Heegaard genus > 1.
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8.1.4 Recognizing the 3-sphere

The problem of recognizing the 3-sphere is particularly tantalizing in view
of the ease with which we can recognize the 2-sphere. However, all the
methods which apply to the 2-sphere break down. Homology invariants are
inadequate (Poincaré 1904), and so too are various methods which might
be expected to simplify the description of a manifold until its spherical nature,
or lack of it, became obvious.

One such method is called shelling a simplicial decomposition : one removes
any simplex, then tries to remove a sequence of free simplexes until only one
simplex is left. A free n-simplex is one which meets the boundary in a piece
homeomorphic to an (n — 1)-ball, so its removal does not change the homeo-
morphism type, and hence a complete shelling guarantees that the initial
manifold was a sphere, It is well known (and often used in proofs of the Euler
polyhedron formula) that any triangulation of S? can be shelled, so one way
to decide whether a given 2-manifold is S is to systematically try to shell it in
all possible ways.

This does not work for 3-manifolds because there are unshellable tri-
angulations of S* (W. B. R. Lickorish, private communication). The proof
is a little long to include here, but one can get the idea of it from the construc-
tion of an unshellable 3-ball, which is easier (8.1.5).

An algorithm for the 3-sphere needs to be at least strong enough to
recognize the trivial knot. The reduction of the latter problem to the former is
obtained by taking two copies of

(8% — tubular neighbourhood .4 of the given knot)

and pasting them together so that meridian and latitude on one 04" are
identified with latitude and meridian on the other. It can be shown (using
Dehn’s lemma for example) that the resulting manifold is S2 if and only if the
knot is trivial, :

EXERCISE 8.1.4.1. Prove that any triangulation of the 2-sphere, or the disc, can be shelled.

8.1.5 An Unshellable Triangulation of the 3-ball

The first such example was discovered by Frankl 1931, and a simpler example
has been given by Bing 1964. Bing’s example shows knots once again causing
trouble in 3-manifold topology.

Take a cube € with a knotted hole and plug the top end of the hole with
a small cube 2, so that ¥ U 2 is a topological ball (Figure 253). We tri-
angulate € U 2 as follows. Divide % into small cubes the same size as %
(assume the size and shape of the hole are chosen so as to make this possible),
then triangulate each cube by dividing it into two triangular prisms and
dividing each prism into three tetrahedra.
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Figure 253

Now & U £ contains a knotted curve which lies in its boundary except
for one interior edge, namely, a curve which pierces the plug but elsewhere
travels on the surface of the solid. A curve of this description remains after
the removal of a free simplex, and hence at each stage of shelling. But no
such curve lies on the single simplex which is the final stage of shelling, so no
shelling can be completed.

Exercise 8.1.5.1. Close the Bing cube to a triangulation of S* containing a knotted
triangle. (The triangle is of course not the boundary of a simplex in the $°, but its edges
are edges of the triangulation.)

8.1.6 The Poincaré Conjecture

Certainly the most famous problem in 3-manifold topology, the Poincaré
conjecture, is not in itself an algorithmic problem. However, it has important
implications for such problems and may be dependent on some of them
for its solution. Poincaré asked whether every finite simply connected 3-
manifold is an S3. An affirmative answer would reduce the problem of
recognizing the 3-sphere to the problem of recognizing whether a 3-manifold
group is trivial, and vice versa.

On the other hand, in searching for a counterexample to the Poincaré
conjecture—an .4 such that n;(.#) = {1} and not homeomorphic to $3—
the obstacle is precisely the lack of an algorithm for recognizing the 3-sphere.
We can in principle enumerate all .# such that =,(.#) = {1} (by enumerating,
say, the simplicial decompositions which yield manifolds, computing their
groups by 4.1.6, and seeing which presentations reduce to 1 by Tietze trans-
formations), but we do not know how to enumerate all the .# not homeo-
morphic to S3.

Interplay between the Poincaré conjecture and the problem of recognizing
the 3-sphere also appears when we look at 2-spheres in a 3-manifold 4.
Laudenbach 1974 shows that, assuming the Poincaré conjecture, an S?
which is homotopic to a point in .# is also isotopic to a point. It then follows
that the $2 will bound a 3-ball in .# (Sanderson 1957), which can be decided
if we have an algorithm for the 3-sphere.
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8.1.7 The Word Problem for 3-manifold Groups

Many groups are known not to be m, of a 3-manifold, for example Z x Z x
Z x Z (Stallings 1962), so 3-manifold groups may not be sufficiently general
to include groups with unsolvable word problem. As mentioned in 7.2.1,
Waldhausen solved the word problem for knot groups, and his solution in
fact covers a large class of 3-manifold groups. The recent results of Thurston
1977 also solve the word problem in many 3-manifold groups. Both these
authors use geometric methods, and Thurston’s are reminiscent of classical
surface topology.

Of course, to solve the word problem in 7, (.#) we only need to construct
the universal covering space of .#. The trouble is that we do not know what
the potential covering spaces might be in general. They include S* and R3,
but also more peculiar manifolds. Alexander 1932 gives the example of the
manifold .# obtained by 1dent1fy1ng the inner and outer surfaces of a spherical
shell. Its universal covering space ./ is homeomorphic to the open region of
R® between two concentric spheres. It is not known whether all umversal
covers are homeomorphic to submanifolds of S3.

Exercist 8.1.7.1. (1) Show that .# = S! x S2. (2) Why is .# not homeomorphic to S°
or R3?

8.1.8 Above Dimension 3

It is not yet known whether all 4-manifolds can be triangulated. In any case,
the problem of deciding whether a given 4-complex is a manifold awaits an
algorithm for recognizing the 3-sphere, since the hard condition to check
is whether the neighbourhood complex of each vertex is a 3-sphere.

We do know that any finitely presented group can be realized as =, of a
4-manifold (Dehn 1910), so there are 4-manifolds with unsolvable con-
tractibility problem. A remarkable refinement of this result, due to Markov
1958, shows that the homeomorphism problem for triangulated 4-manifolds is
unsolvable (see Chapter 9). Unsolvability follows in all dimensions > 4, so
dimension 3 is our last chance for a positive resuit.

Finally, two negative results about dimensions >5 may be mentioned.
The Hauptvermutung is false (Milnor 1961) and there is no algorithm for
recognizing S* (S. P. Novikov, a sketch of the proof is given in Volodin,
Kuznetsov, and Fomenko 1974).

ExerCisE 8.1.8.1 (Seifert and Threlfall 1934). (1) Using a 4-dimensional form of the
connected sum construction (Exercise 4.1.6.1) construct a 4-manifold .#, such that
n,(.#,) = F, (free group of rank n). )

() If p is a curve in #,, show that n,(#,) = =, (A4, — p) and likewise =
ny (M, — A7), where A" is a tubular neighbourhood of p, that is, the set swept out by a
small 3-ball moving with just its centre point on p. .
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(3) Identify the boundary S* x S? of 4" with the boundary of a B? x S2. Show that
p = 1 in n; of the resulting manifold.

(4) Deduce the construction of a 4-manifold to realize an arbitrary finitely presented
group.

(5) Why does a similar 3-dimensional construction break down?

8.2 Polyhedral Schemata

8.2.1 Manifolds and Pseudomanifolds

Poincaré 1895 introduces the construction of 3-manifolds by identifying
faces of simply-connected polyhedra, like the polygon schemata for 2-
manifolds. The strict analogy with a polygon schema would be

(1) a finite set of polyhedra (topological 3-balls) called cells, with disjoint
interiors,

(2) faces of cells identified in pairs, with vertices corresponding to vertices,

(3) resulting in a connected complex.

However, Poincaré observes that these conditions do not guarantee that the
outcome will be a manifold. They do guarantee that the cells incident with
a given edge form a closed cycle (analogous to the “umbrella” round a vertex
in a polygon schema) so interior points of edges have 3-ball neighbourhoods,
as of course do interior points of cells. But the neighbourhood surface of a
vertex need not be a sphere—as we shall see in 8.2.3—and in this case the
vertex will not have a 3-ball neighbourhood.

A complex satisfying (1), (2), (3) is called a (finite) 3-dimensional pseudo-
manifold, and it is a manifold if and only if it satisfies the additional condition

(4) The neighbourhood surface of each vertex is a 2-sphere.

Poincaré determines whether the neighbourhood surface is a sphere by
computing its Euler characteristic. Visualizing the neighbourhood of points
distant < ¢ from a given vertex P, he observes that vertices on the boundary
surface % p of this neighbourhood correspond to edges containing P, edges
on #; correspond to faces containing P, and faces on &, correspond to
“corners” at P, that is, the vertices of the polyhedron schema which are
identified in P.

It is then a matter of counting vertices, edges, and faces correctly by
observing identifications in the schema. We shall not explain this in further
detail, since it turns out to be even more convenient to compute the Euler
characteristic of the pseudo-manifold itself.

EXERCISE 8.2.1.1. Show that the result of removing an e-neighbourhood of each vertex ina
pseudomanifold is a manifold with boundary.
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8.2.2 The Euler Characteristic of a Pseudomanifold

Let V, E, F as usual denote the numbers of vertices, edges, and faces in a cell
decomposition of a 3-dimensional pseudomanifold .#, and in addition let C
denote the number of cells. Then ¥ — E + F — C is called the Euler char-
acteristic x(#) of A4, and y(.#) = 0 if and only if .# is a manifold.

It is clear that elementary subdivision (0.2.4) preserves the Euler char-
acteristic in three dimensions just as it does in two (1.3.8), hence we can
assume that the subdivision of .# is simplicial. The collection of tetrahedral
cells, with their face identifications, will be called the schema of . :

Let V', E', F’ be the numbers of vertices, edges, and faces in the schema,
ignoring identifications, and let v, ¢, f be the total numbers of vertices, edges,
and faces in the neighbourhood surfaces of vertices of .# (when identifications
are taken into account).

» v=2F 1)
because each edge of . accounts for two vertices on neighbourhood surfaces
(near its two ends).

e=E @
because if we look at a vertex of a tetrahedron of the schema we see equal
numbers of edges from the schema (drawn heavily) and in the neighbourhood
surface—three each (Figure 254). If we survey all vertices in the schema, then
all schema edges will be counted twice (since in a simplicial decomposition

cach edge has two endpoints), but so will all edges in the neighbourhood
surfaces, since they are identified in pairs. Hence (2),

f=v ©))

because each face on a neighbourhood surface corresponds to the corner of a
tetrahedron in the schema. Finally

F'=2F @

because faces of the schema are identified in pairs.

Figure 254
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Now since the Euler characteristic of a closed surface is < 2 and we have
V neighbourhood surfaces,

v—e+ <2V &)
and since the boundary of each of the C cells is a sphere,
V' —E + F =2C. ©)
Substituting v, e, £, F' from (1), (2), (3), (4) in (5) and (6) gives
2ZE-E +V' L2V @)
and
V' —E 4+ 2F = 2C. ! ®)
Then subtracting (8) from (7) gives
2E — 2F < 2V - 2C.
That is,
V—-E+F-C=0

and = holds just in case it holds in (5), namely if and only if all neighbourhood
surfaces are spheres, which means .# is a manifold. O

The above proof is adapted from Blackett 1967. The half which says 3-
manifolds have Euler characteristic 0 can be derived more elegantly by
Poincaré’s method of dual cell decomposition (Poincaré 1899), designed to
prove the more general property of Betti numbers mentioned in 5.1.1, and
which shows in particular that any manifold of odd dimension has Euler
characteristic 0.

The following exercise explores Poincaré’s construction in dimension 3.

EXERCISE 8.2.2.1. Let . be a 3-manifold with a simplicial decomposition of V vertices,
E edges, F faces, and C cells.

(1) Construct a new cell decomposition of .# which has a new vertex in the interior
of each old cell, a new edge through each old face, a new face pierced by each old edge,
and a new cell enclosing each old vertex.

(2) Show that the new and old cell decompositions possess a common refinement,
obtainable from either of them by elementary subdivisions.

(3) If V*, E* F*, C* denote the numbers of vertices, edges, faces, and cells in the new
decomposition, then ’

V¥ =_C, E*=F, F* = E, C*=1V.
(4) Deduce that
VeE+F—~C=V¥—E*¥4+F*-(*=0.
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8.2.3 An Example

Consider the pseudomanifold % defined by a cigar-shaped cell with four
2-gonal faces, the top being identified with the bottom and the back with the
front (Figure 255). % has two vertices, one edge, two faces, and one cell so
#(%) = 2 and it is not a manifold. The neighbourhood surface of each vertex
is a torus, as is clear from the edge identifications when we cut the corners off
at 4 and B (Figure 256). The bounded 3-manifold which results from deleting
the neighbourhoods of the vertices is easily glued together in ordinary space
and is homeomorphic to the space bounded by two coaxial torus surfaces.

It is also obtained by removing a tubular neighbourhood of the two-
crossing link in S3, The easiest way to sce this is to view S®as a lens-shaped
celi with top and bottom faces identified. A groove of semicircular cross-
section is gouged out of the lens rim, and a vertical hole is drilled through
its centre (Figure 257). These close up to linked circular tunnels when the top
and bottom faces are identified. Then cutting as in Figure 258 yiclds the
schema above.

Figure 256

b2

by ~Ja,

Figure 257
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<{ij=

Figure 258

Figure 259

Exercise 8.2.3.1. Stretch the vertices 4, B of & into edges a, b as in Figure 259, still
identifying the front face with the back and the top with the bottom. Show that the
resulting complex is an S in which a, b constitute the two-crossing link.

8.2.4 Remarks

Polyhedral schemata have never been used in a systematic way for the con-
struction of 3-manifolds, even though some interesting manifolds originally
arose in this way (for example lens spaces, cf. 4.2.8. See also Threlfall and
Seifert 1930, 1932 and Weber and Seifert 1933 for manifolds obtained
from the Platonic solids). Apparently polyhedral schemata do not admit
anything like the reductions applicable to polygon schemata, but it is not
clear that anyone has worked very hard on the problem. Only recently,
Thurston 1977 has found polyhedral forms of many 3-manifolds which can
be used to tesselate hyperbolic 3-space, yielding a theory like the classical
theory of 2-manifolds.

8.3 Heegaard Splittings

8.3.1 Existence

Given a triangulation of a finite 3-manifold .#, we decompose it into a tubular
neighbourhood of the 1-skeleton, and the complement of this neighbourhood.
A glance at the two pieces which result from a given tetrahedral cell (Figure
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Figure 260

‘*ij >
Figure 261

260) clearly suggests how the “edge pieces” and the “interior pieces”
respectively unite into handlebodies #,, #,. Each body is certainly the
tubular neighbourhood of a graph %; (i = 1, 2), and the standard ball with
handles can be obtained by taking a spanning tree 7, of ¢, and letting the
tubular neighbourhood of 7; be the “ball part” of ;.

This argument contains a hidden assumption of orientability because we
are assuming that the tubular neighbourhood of a closed curve in .4 is a
solid torus, and not the solid Klein. bottle obtained by identifying the ends
of a solid cylinder as in Figure 261. It is clear that any 3-manifold containing
a solid Klein bottle is nonorientable, and the converse follows by the same
argument used to show that a nonorientable 2-manifold contains a M&bius
band (1.2.1).

ExXERCISE 8.3.1.1 Show that $* x S! x S! splits into handlebodies of genus 3.

'8.3.2 Heegaard Diagrams

A manifold .# which splits into handlebodies #,, #, is determined up to
homeomorphism by the map h: 35#; — 84, which identifies the handlebody
boundaries. In fact, .# is determined by the images h(m,), .. ., k(m,) on 0,
(its Heegaard diagram) of the canonical meridians my, ..., m, shown on
04 | in Figure 262.
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Figure 262

P P P
Figure 263

We write A4 = #, v, #, to indicate that .# is obtained from #,, #,
by identifying 04, with 0, via h. It will suffice to show that .# can be
reconstructed, up to homeomorphism, from knowledge of the h(m;) on .5¢,.

We span the meridian m; on 0., by a disc 9; < #, and then detach a
thin closed “plate” neighbourhood 2; of 9; (Figure 263). £, is attached to
H, by identifying its rim 2; N ., with a thin closed annular neighbour-
hood of h(m,). Assuming that the annular neighbourhoods are thin enough
not to meet each other, the resulting bounded manifold .#" is unique up to
homeomorphism. But the piece of 2, which remains is a topological ball, so

M’ = #-ball, and this determines .# up to homeomorphism. 0

This construction is essentially that of Heegaard 1898. As stated in 8.1.3,
it is not easy to determine when two Heegaard diagrams determine the same
manifold. Waldhausen 1968a has shown that any Heegaard diagram of S°
is isotopic to the diagram in Figure 264; however, even isotopy of Heegaard
diagrams is not easy to recognize. The catch is that an isotopy within the
handlebody itself cannot necessarily be achieved in ordinary space. For
example, Figure 265(1) is isotopic to Figure 265(2) but not in ordinary
space. (Why?) The isotopy can be discovered if the embedding of Figure
265(2) in R® is changed to that shown in Figure 266.

Figure 264
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Figure 265

Figure 266
Exgrcisk 8.3.2.1. Find the isotopy just claimed.

Exercise 8.3.2.2. Give an algorithm which decides when a set of n disjoint simple closed
curves on a handiebody # of genus n is a Heegaard diagram.

8.3.3 Reading a Presentation of the Fundamental Group

The fundamental group of a handlebody # of genus n is the free group F,
of rank n, generated by loops g; through the handles. If p, denotes the element
. of m;(5#) corresponding to the curve h(m;), then attaching a plate to an
" annular neighbourhood of h(m;) introduces the relation p; = 1. These facts
are immediate from suitable deformation retractions and the Seifert-Van
Kampen theorem. Since attachment of the ball which completes .# does not
change n, (4.1.5), it follows that

7H(‘jl) = <ais e >9an;p1: sy pn>'

In particular, any 3-manifold group has a balanced presentation—one
with equal numbers of generators and relations. It also follows that the
minimum number of generators required to present n,(.#) is a lower bound
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on the Heegaard genus (8.1.3) of .#. For example, we can construct an .#,
with 7,(#,) = F, by taking the h(m;) to be curves which are already trivial
in 7,(4#,), such as standard meridians. Then

Heegaard genus of #, <n

but since there is no presentation of F, with < n generators (Exercise 2.2.4.3,
or 5.3.2) we have

'Heegaard genus of .4, = n.

(Papakyriakopoulos 1957 proved, assuming the Poincaré conjecture, that
M, is the unique finite 3-manifold whose n; = F,.)

Exercise 8.3.3.1. Show that .#, = S' x S

ExERCISE 8.3.3.2. Show that S' x S' x S! has Heegaard genus 3.

8.3.4 Lens Spaces

To find the Heegaard diagram of the (m, n) lens space we use the core dis-
section of 7.2.2. The diggram turns out to be a solid torus with an (m, n) curve.

Realize the (m, ) lens space as a lens-shaped cell with its faces divided into
m equal sectors, the top face being identified with the bottom after a twist of
2n(n/m) (Figure 267). The identifications are indicated by the numbers (which
are assumed to be reduced mod m) and it is convenient to imagine that the
top and bottom face meet at angle 2r/m when m > 1.

We now remove a vertical core from the lens and draw m equally spaced
vertical lines on it, connecting the ends of the sectors (Figure 268). After the
twist of 2n(n/m) required to identify the top and bottom faces, these vertical
lines join up to form an (m, n) torus curve p.

The remainder of the lens is divided into wedges of angle 2n/m by vertical
cuts through the boundaries of the sectors (Figure 269). When the regions
numbered 1, 2, ..., m on the wedges are identified the result is a cylinder with

Figure 267
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m-—n

Figure 270

the curve p as the edge at each end (Figure 270). The cut marks follow the
same cycle Xy, X{ -ps X120, -~ (indices mod m) on both ends, so when the
cuts are rejoined the cylinder ends close to form a solid torus, with p-as a
meridian curve.

The impression of p on the core torus, an (m, n) curve, is therefore the
Heegaard diagram of the (m, n) lens space. a
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If we associate a “(0, 1) lens space,” to which the lens construction
obviously does not apply, with the (0, 1) Heegaard diagram (p = meridian
on both tori) then the lens spaces exhaust all Heegaard diagrams on the torus.
Thus the lens spaces are precisely the manifolds of Heegaard genus 1.

EXERCISE 8.3.4.1. What is the (0, 1) lens space?

EXERCISE 8.3.4.2. Show that the ends of the cylinder formed by the wedges in the above
construction have to be joined after a twist of 2r(n'/m), where

nn= —1modm.
Deduce that the (m, n) lens space and the (m, n') lens space are homeomorphic when

n'n = +1 mod m.

Exercise 8.3.4.3 (Hotelling 1925). Consider the 3-manifold .# consisting of all unit
tangentstothesphere x* + y? + z% = 1inR* (Figure 271). Show that the submanifold of
tangents ¢ to points P in a given hemisphere is homeomorphic to a solid torus, and deduce
that .4 is the (2, 1) lens space.

N

Figure 271

8.3.5 Alexander’s Proof that the (5, 1) Lens Space and the
(5, 2) Lens Space Are not Homeomorphic

We have seen (4.2.8) that the (5, 1) and (5, 2) lens spaces have the same
fundamental group. Tietze 1908 conjectured that they are not homeomorphic.
This conjecture was proved by Alexander 1919a as follows.

Suppose on the contrary that the (5, 1) space and the (5, 2) space are
homeomorphic, so their Heegaard diagrams can be viewed as different
decompositions of one and the same space .#.

The diagram of the (5, 1) space corresponds to a decomposition into solid
tori #y, ', with a meridian on #, identified with a (5, 1) curve p = ab’
on ', (Figure 272). When p is traversed in the direction shown its points of
intersection 1, 2, 3, 4, 5 with the meridian ¢ are encountered successively.

On the.other hand, for the (5, 2) space the decomposition is into solid tori
H#y, #5 with a meridian on #°; identified with a (5, 2) torus curve P’ on
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Figure 273

H#" . The corresponding intersections of p’ with a meridian are encountered
in the order 1, 3, 5, 2, 4 as p’ is traversed.

Now 4, can be shrunk in cross-section, and 5, subjected o a comple-
mentary expansion, while retaining the same Heegaard diagram. Further-
more, the new 3, can be an arbitrarily thin neighbourhood of any curve
inside the old #, and isotopic to its axis. Similarly, we can shrink down #7,
and deform it enough to miss the shrunken ;. Thus there is no loss of
generality in assuming that #7, is disjoint from 4, that is, inside .

A, may lie inside #, in a complicated way, for example as in Figure
273, the important point is that the curve p’ on it must be nullhomotopic in
A — A, since it bounds a disc in #, and hence homotopic to p, which
bounds a disc in 3#,. A fortiori then, p and p’ will be null-homologous in
M — H#, and we shall now compute the consequences of this relation by
describing both curves in terms of a meridian ¢’ on #", and the latitude b
on #,.

H(s#,) is freely generated by b hence H,(#, — H#,) is freely generated
by a', b (cf. 5.3.4) and consequently H,(.# — #’,) is generated by ', b with
the relation p = 1, where p is described in terms of @', b. The last follows by
an “abelianized” Seifert—Van Kampen theorem, since .# — 5, is obtained
by glueing a plate to #, — #, along the curve p, then attaching a ball.

Now let 6 be the number of times 5, winds around 5#, in the b direction
(= the algebraic sum of the signed intersections of #”, with a meridian disc
in #,. For the example shown, 8 = 2). Then

p = ab’ = a'h* 1)
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in H,(#, — #%), because a typical meridian disc of H,, bounded by g,
contains § meridian sections of 5%, hence a = a® in H 1(3#, — H#%). The
defining relation p = 1 of H (.# — #5) is therefore

a%’ = 1. @
On the other hand
pr — a/5k+2b:t50 (3)

for some k, because when we describe p’ in the positive sense we traverse five
arcs which meet o' at the points 1, 3, 5, 2, 4 in turn, so each arc winds around
A5 “k + 27 turns in the ¢’ direction, for some fixed integer k. At the same
time, we make = 50 circuits inside #, in the b direction.

It follows from (2) and (3) that if p' = p = 1 in H,(.# — #), we must
have

15k + Zbi 56 _

a (@®b3y"  for some n

and equating exponents we get

Sk +2=nd “@
+56 = 5n ©)
Hence
0= +n
and if we substitute this in (4), we get
Sk'+ 2= +n>
But this is impossible, since all squares are of the form 5k or 5k + 1. O

ExEercCise 8.3.5.1. Prove the number-theoretic result used in the last line of the proof.

EXercisg 8.3.5.2. Show that #, — #°, is the complement of a two-component link in
S?, hence the claim that H,(#, — H3) is free abelian is a consequence of Exercise
534.1.

8.3.6 Heegaard Diagrams of Bounded 3-manifolds

Every set of disjoint simple closed curves on a handlebody determines a
bounded 3-manifold .#, namely, the .# obtained by glueing plates to annular
neighbourhoods of the curves.

Conversely, every finite orientable bounded 3-manifold 4 is obtained in this
way.

We begin by splitting .# into two handlebodies #,, H#, where A# | is a
tubular neighbourhood of the 1-skeleton of .# and #, = .# — K.
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Figure 274

#, and #, are not identified along their whole boundaries, indeed the
points where 8, 0, are not identified constitute J.4.

We glue 3, onto #; in the following steps.

Step 1. Render #, simply connected by removing suitable meridian
plates ;. Since the pieces of d.# on 34, are topological discs (from the
middle of faces in the triangulation of .#) we can place the #; so that they do
not meet 0.4, by pushing their rims away from these discs where necessary.
The 2, are then attached to #, along their rims according to the identifi-
cation map between 8¢, 03¢, .

Step 2. #, = #, — U; P, is a topological ball which meets 0.4 in certain
discs &;. For all but one of these discs, cut a p]ate #; from ", which has
D; as 1ts top face, and glue 2 to &, along its rim, whlch is an annulus
common to 4, 0, (Flgure 274).

Step 3 Hy = Hy — U; P is a ball which meets 6. in a single disc.
M — H' is therefore homeomorphlc to .# and we can throw 53 away. []

EXERCISE 8.3.6.1. Construct a Heegaard diagram of the solid torus with the toroidal
hole shown in Figure 275.

Figure 275

8.3.7 Fundamental Groups of Bounded 3-manifolds

As with ordinary diagrams, one can read off a presentation of n,(.#) directly
from the Heegaard diagram of a bounded 3-manifold .#, with the number of
generators equal to the genus of the diagram.
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Moreover, since any set of disjoint simple closed curves on a handlebody
determines a bounded 3-manifold, we can easily state a geometric criterion
for a finitely presented group G to be n; of a bounded orientable 3-manifold.
Namely, G must have a presentation

gy ey Qus Prsees Prp

such that the p;,.. ., p,, when interpreted as products of canonical generators
@i, ..., a4, for 7, (handlebody of genus n), can be realized by disjoint simple
closed curves,

8.3.8 Heegaard Diagrams of Knot and Link Complements

The general construction of 8.3.6 is not very economical with respect to
Heegaard genus, and a more efficient method in the case of knot (or link)
complements is to find a handlebody #,, standardly embedded in S3,
with the knot as a curve £ on 8.#,. We replace this curve by a thin handle #
Just outside #, except at two neighbouring discs where it meets 8#,, so that
cutting #, by meridian discs produces a solid torus in the form of the given
knot. On the other hand, we can unravel 2 from #, by dragging one of its
ends round the curve ., producing a standard handiebody 3, . ;. In the
process, the meridian curves on #, are dragged into positions on 3, ,
which bound discs cutting #,., into the solid torus of knot . (This was
in Exercise 4.2.7.2.)

The complementary handlebody in S® can be viewed as a ball with holes,
one of which (corresponding to #) is knotted. Instead of cutting, we glue
on plates to seal off unknotted holes, so it is a matter of seeing what happens
to the plate rims p when the knotted hole is unravelled.

Some examples clarify this process.

ExaMPpLE 1. The two-crossing link (Figure 276). On a standard handlebody
of genus 2, p looks like Figure 277, which we can read as p = a,a,a;*az?,
thus obtaining the standard presentation of the group.

Figure 276
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Figure 277

ExampLe 2. The trefoil knot (Figure 278). In terms of generators a,, a,
(clockwise round the right and left holes respectively),
p = ayazaia; tay tayt

which gives a standard presentation of the trefoil knot group (cf. 4.2.5),
{ay, az; a182a; = aya10,).

Figure 278

Exercise 8.3.8.1. Show that the figure-eight knot complement, Figure 279(1) has a
Heegaard diagram Figure 279(2) and deduce that its group has a presentation

. -1,-1 —1,~1
{ay, az; 03820103 'ay 'aa 007 tag .

&

Figure 279

8.4 Surgery

8.4.1 Dehn’s Construction of the Poincaré Homology Sphere

Poincaré 1904 constructed a 3-manifold with trivial homology but non-
trivial fundamental group, the so-called Poincaré homology sphere. His
construction was a Heegaard diagram of genus 2. Different constructions
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were later given by Dehn 1910 (surgery on a trefoil knot, see below), Threlfall
and Seifert 1930 (identifying opposite faces of a dodecahedron with a £
twist) and Weber and Seifert 1933 (2-fold cover of S3 branched over a (3, 5)
torus knot), though it was not at first realized that these manifolds were
identical. A quick pictorial proof that the Poincaré and Dehn constructions
are equivalent may be found in Rolfsen 1976, along with many other con-
structions of the Poincaré homology sphere.

Dehn’s construction is noteworthy as the first example of surgery on 3-
manifolds, and it is the most directly convincing as far as the trivial homology
is concerned. Surgery in general is the process of removing a solid torus %
from a manifold .#, and identifying the boundary of the hole with the
boundary of another solid torus #', via a homeomorphism different from the
one defined by the inclusion of # in .# (often called “sewing # back dif-
ferently”). Dehn takes # in S3, knotted in the form of a trefoil knot. Then
we know from 5.3.4 that H,(S* — #) is the infinite cyclic group generated
by a, (Flgure 280); on the other hand, since £ is knotted there are many
curves in S — & which are homologous to a, but not homotopic to it.
It we take such a curve p embedded in 94, then remove % and glue back
another solid torus #' with its meridian identified with p, we obtain a
homology sphere ..

For #' can be attached by first glueing a plate along its rim to p, then
attaching a ball. The abelianized Seifert-Van Kampen theorem says that

Hy(A#) =<ay;ay =p=1>={1}

while the ordinary Seifert-Van Kampen theorem says that 7, (.#) is obtained
by adding the relation p =1 to n,(S® — %), where p is expressed as an
clement of 7,(S3 ~ 2).

Figure 280

Figure 281
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We can ensure that 7,(.#) # {1} by suitable choice of p. It is necessary,
and in fact sufficient, for p not to bound a disc in %, though we shall verify
this fact only for the simplest such p, which is shown in Figure 281.

8.4.2 The Fundamental Group of Poincaré’s Homology Sphere
We use the Wirtinger generators ay, a, for 7,(S* — %) so that
7(S* — &) = {ay, a5; a,a;a; = a,0:a,)-
The expression for p is a;a3 a,a5 ?, so it follows by the Seifert-Van Kampen
theorem that
(M) = Kay, az; a10,0, = a2a,0,, a3 6,053,
which the substitution b = a,a, reduces to
7y (M) = a3, b; (a,b)* = b® = a3y
—a group which is nontrivial because it has a nontrivial subgroup of the
icosahedral group as homomorphic image. The details follow.
To find the expression for p we deform it as shown in Figure 282 and read
the sequence of undercrossings in terms of the Wirtinger generators:
P = arax(azaia; Haz*
= a,a3a,a; >,
(Notice incider{tally that p is homologous to a,, since a, and a, are homolog-
ous.) Thus we have .
(M) = {ay, az; a0, = aza,0,, a1a3a,a5 ).
Now substituting b = a,a, so that a, = bay ' we get
7 (M) = {ay, b; b%az ! = ayb, ba,ba; *>
= {az, b; b’a; " = ab, b(b*a; a;*)
=<a,,b; b%a; " = a,b,b% = a3
= a3, b; b = (a,b)%, b = a})
= {a;, b; (a;0)* = b* = a3).

]

ay = azaja; "

f

a, ~a,

Figure 282
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These relations can be modelled by the group of rigid motions of the
icosahedron generated by a, = rotation of 27/5 about a diagonal through
a vertex P and b = rotation of 27/3 about a diagonal through a face with
vertex P. Since the latter group is nontrivial, so is 7, (.#). i

Poincaré 1904 found the homomorphism into the icosahedral group, and
Dehn 1910 found the complete Cayley diagram of ey (M), showing that it
had order 120. To this day, this is the only known homology sphere # S3
with finite fundamental group. Dehn did not point out that he had the same
group as Poincaré, let alone the same manifold. The latter was proved around
1930 by a combination of results by Kneser (showing that the Dehn homology
sphere equals dodecahedral space), Threlfall and Seifert. See Threlfall and
Seifert 1930, 1932 and Weber and Seifert 1933.

Dehn observed that the homology spheres obtained! by other surgeries
on the trefoil knot (that is, other choices of the curve p) had infinite funda-
mental groups. A proof that these groups are all distinct is given in de Rham
1969.

8.4.3 Construction of Finite Orientable 3-manifolds by Surgery

Every finite orientable 3-manifold 4 is obtainable by removing a finite
number of disjoint solid tori from S* and sewing them back differently.

The proofis by induction on the Heegaard genusnof A . If n = 0, then. #
is already S and no surgery is necessary. Suppose then that n > 0 and con-
sider a splitting of .# into handlebodies #,, #, of genus n which identifies
the meridians m, ..., m, on 8, with curves h(my), ..., h{m,) on &5 ,.
The latter are disjoint simple curves so h(m, ) in particular may be mapped
onto a canonical latitude curve on 6#, (Figure 283) by a homeomorphism
t of 84, which is a composite of twist homeomorphisms and isotopies
(6.3.6).

th(my)

Figure 283
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Figure 284

The homeomorphism ¢ will not in general extend to #, itself (although
the isotopies will), but we can extend it to (#, — a finite set of disjoint solid
tori) as follows. Given a twist homeomorphism ¢, about a curve ¢ we excavate
a “tunnel” below ¢ by removing a thin solid torus £, (Figure 284). The twist
homeomorphism ¢, can then be extended to #, — %, by extending the twist
of the annular neighbourhood of ¢ inwards as far as the roof of the tunnel.
The twist in the roof of the tunnel leaves its boundary looking as in Figure
285. The meridian through A B has been transformed into a (1, 1) torus curve,
while the latitude retains its form. Sewing back £, so that its meridian and
latitude are identified with these two curves on 0(#°, — &) recovers #,,
but with 05, transformed by the twist homeomorphism ¢..

To extend the whole homeomorphism ¢ to (#, — some solid tori) we
excavate a tunnel under each twist curve in turn, halving the depth and cross-
section of each successive tunnel so that it just misses its predecessors. When
the necessary isotopies are combined with the twists the result is an extension
of t to

(o#, — finite set of disjoint solid tori) = #,

and th(m,) is a canonical latitude curve on 7.

=

T Hy— A

Figure 285



268 8 Three-Dimensional Manifolds

If #°; denotes the result of sewing back the tori %, into # in the ordinary
way, then 5 is a handlebody which yields 5#, by surgery. If we perform this
surgery on the manifold .#" obtained by attaching #, to #° via th, the
result is therefore ..

But the manifold .#" has Heegaard genus < n — 1, because we can
simultaneously reduce 5#,, # to handiebodies of genus n — 1 by trans-
ferring a meridian plate corresponding to m, in 3#; to a neighbourhood of the
latitude th(m,) on . It follows by induction that .#” is obtainable by
surgery on S, and hence .# is also, since the result of two successive surgeries
is itself a surgery. (The tori can be made arbitrarily thin and deformed so as
to miss each other, cf. 8.3.5). O

The above theorem was first proved using differential topology by Wallace
1960. The above proof is essentially that of Lickorish 1962, with some
simplifications due to Hempel 1962. Hempel also notes that any knotting
in the tori used for surgery can be removed by further surgery. It suffices to
observe that any polygonal curve can be unknotted by changing finitely
many crossings from over to under, and then to prove the following lemma,
which we leave as an exercise.

ExErcise 8.4.3.1. Let # be a knot and ™ the knot which results from reversing one
crossing of . Show that the manifold §3 — ¥ may be changed to S* — #” by
surgery usinga single unknotted torus. (Hint: consider Figure 286.)

EXERCISE 8.4.3.2. Show that any bounded orientable 3-manifold is obtainable by surgery
on a submanifold of $°.

Figure 286

8.4.4 The Role of Knots and Links

All the surgeries used in the Lickorish proof are of the same type—a solid
torus 2 is removed, then sewn back with its meridian identified with a (L, 1D
curve on the tunnel boundary and its latitude preserved. This also applies
to the surgeries used for unknotting the tori in the main proof; in this case
one removes a solid torus around a crossing, then cuts the cylindrical “neck ™



8.4 Surgery 269

Figure 287

containing the crossing and rejoins it after a full twist, again converting a
meridian to a (1, 1) curve (Figure 287). We may call these Lickorish surgeries.

Since we assume the tori are unknotted, any single Lickorish surgery
yields S3, since 83 is the (1, 1) lens space. The point is that surgery on one
solid torus changes the embedding of the tori linked with it, so that although
they remain in S? they may become knotted. It is easy to construct examples
by reversing crossings as above. Lickorish surgery on a knotted solid torus
can definitely produce a nonspherical manifold. In fact, Dehn’s construction
of the Poincaré homology sphere can be described in precisely this way. For if
one removes the trefoil-knotted solid torus with the curve p shown in Figure
281, unknots it and spreads it out, p is seen to be a (1, 1) torus curve,

The crossing-reversing trick can be used to produce the trefoil knot in
many different ways, yielding numerous surgery constructions of the Poincaré
homology sphere. For example, one can use the link in Figure 288, known

Figure 288

Figure 289
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as Whitehead’s link : Lickorish surgery on the horizontal torus, with suitable
orientation, changes the embedding of the other torus to that shown in Figure
289, which is easily seen to be a trefoil knot. Therefore Lickorish surgery
on both components will produce the Poincaré homology sphere.

Exercise 8.4.4.1. (Rolfsen 1976). Show that the Poincaré homology sphere may be
constructed by Lickorish surgery on the “Borromean rings” (Figure 290).

Figure 290
8.5 Branched Coverings

8.5.1 Wirtinger’s Construction of the Lens Spaces as Branched
Covers of S3

Tietze 1908 reports the following unpublished result of Wirtinger:

The (m, n) lens space is an m-fold cover of S branched over the two-crossing
link.

We define the (m, n) lens space as usual by identifying top and bottom
faces of a lens-shaped solid after a twist of 2n(n/m). Top and bottom faces
are divided into m equal sectors by meridians, and the lens can be decomposed
into m tetrahedra by vertical cuts through these meridians (Figure 291).
The picture shows the typical tetrahedron T; = A;B;C,D,. The construction
of the (m, n) lens space requires us to identify 4;B;C; with 4,,,B;,,D;..,
(vertex by vertex), and B;C;D; with 4;, ,C;, 1D, (vertex by vertex), where
indices are taken mod m.

Figure 291
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Figure 292

This schema gives an m-fold covering of the manifold determined by the
single tetrahedron ABCD (Figure 292) with ABC identified with ABD and
BCD with ACD, branched over the curves corresponding to the edges 4B
and CD. Since we pass from T; to T;, , in a circuit around CD, the associated
permutation of the sheets is the cyclic permutation (1 2 ... m), and since we
pass from T; to T,,, in a circuit around AB, its associated permutation is
(1+nl+4+2n..)

The manifold determined by ABCD is easily seen to be S3 (cf. Exercise
8.2.3.1), with the branch curves 4B and CD forming the two-crossing link. []

This result is a prototype of a general representation of orientable 3-
manifolds as branched covers of S found by Lickorish 1973. The first such
general representation was found by Alexander 1919b, but with rather
arbitrary branch curves. In the Lickorish representation the branch curves
are linked, but unknotted, circles which lie inside the solid tori of the surgery
representation (8.4.3).

EXERCISE 8.5.1.1. (Tietze 1908). Show that S* is an m-sheeted unbranched cover of the
(m, n) lens space (Hint: glue m copies of the lens together) and deduce that S can be
viewed as an m?-sheeted cover of itself, branched over the two-crossing link.

8.5.2 Constructing a Branched Cover from a Surgery
Representation

The surgery theorem of 8.4.3 says that any orientable 3-manifold .# contains
certain disjoint solid tori 2, ..., 2, such that # — (2, u---U &) is
homeomorphic to $* — (%, v - &,) where &, ..., &, are solid tori in
S3 which are unknotted but may be linked. Suppose the homeomorphism is

Bl — (3,0 02y > S® — (B U0 Ry,
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Then a branched covering f: .4 — S3 is constructed by dividing .# into the
following pieces:

1) M= (2,0---0 3,

(2) foreachi =1, 2,...,n,ashell neighbourhood A4"; of 62, lying inside 2;,
(3) the solid torus &, = 2, — A",

Then we map

N H~(2,0---uZyontoS* — (R, u---UR,) by h,
(2) A ; onto A, as a branched double cover,
(3) 2, homeomorphically onto the solid torus S* — 2.

If we are able to find the required double cover, and make the three pieces
of the map match on the boundaries, this will give an (n, + 1)-fold cover of
S3 by .4, branched over curves in the &,.

The double cover is not hard to find (8.5.4), but matching the boundary
maps requires a careful choice of canonical curves on the tori, which we now
discuss.

8.5.3 Choice of Canonical Curves

Since #; is unknotted in S3, its meridian and latitude are determined up to

isotopy and sign as curves which bound discs in #; and S* ~ 2, respectively.
For our purposes this gives sufficient determination of the (1, 1) curve on
04 which is the h-image of the meridian m on 2; according to the surgery
theorem. If we choose the curve [ shown on 2, as the other canonical curve,
we find that the latitudinal twist of surgery transforms it into the meridian
of @, (Figure 293). We now extend the map h across A4, in the natural way, so
that h(A4")) is a shell neighbourhood of 0%; in &#; and if m', I' are the natural
projections of m, [ on the “inner” boundary of A", h(m") and k(') are the
projections of h(m), h(l) on the inner boundary of h(A")).

To obtain the required branched cover f: 4", — &; we compose h|.A"
with a branched cover g: h(A";) = &; which is the identity on 0%; and maps

rigure 293
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inner boundary of h(.47;) OA;
Figure 294

the inner boundary of (4", onto d2; in such a way that it can be extended
to a homeomorphism #; — §* — %,. For the latter it is necessary and suffi-
cient that the meridian m’ on &; map to a meridian gh(m’) on S — @,
that is, a latitude on ;. We shall in fact construct g to behave as shown in
Figure 294. Thus g gives the inner boundary of A(4") a meridian twist
relative to the outer boundary, /4.

EXERCISE 8.5.3.1. Verify the claimed effect of the latitudinal twist on [,

8.54 A Branched Cover of (Disc x S!) by (Annulus x S1)

Let @ denote the disc and of the annulus@ — 9’ , where %' is adisc in the interior
of @. Then there is a branched covering map g: ¢ x S' = P x S! with the
Jollowing properties:

(1) There is a single branch curve, a circle which winds twice around the
interior of @ x S' and is unknotted when @ x S* is standardly embedded
in 83,

(2) Assuming meridians on the two torus boundaries 62 x S! and 02’ x S!
of & x S' are chosen to lie in a cross-section s£ x 8, then g is the identity
on 09 x S' and performs a meridian twist on 62’ x S,

First note the branched double cover of @ by & obtained by cutting
and cross-joining two copies of @ (Figure 295). If we do this for each cross-
section 2 x @ in two copies of @ x S! we obtain a branched double cover

Figure 295
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Figure 296

of @ x S! by & x S!. Furthermore, we can rotate the cut as 6 runs from
0 to 27 so that it sweeps out a Mdbius band in the interior of @ x S, the
single edge of which is the branch curve of the covering (Figure 296). The
twisting of the cut through = imparts a meridian twist of 27 in one boundary
of &/ x S! relative to the other, because a turn of the cut through ¢ occurs
in the two covering discs, and hence turns one boundary of </ through 2¢
relative to the other.

In particular, if we keep 8% fixed in each cross-section of the covering,
the covering map

g o x 8! 9P x 8!

will be the identity on 82 x S' and will perform a meridian twist on
09" x S, W]

This completes the proof that orientable 3-manifolds can be represented
as branched covers of S3, and makes a fitting conclusion to the journey we
began in Chapter 1 with the representation of orientable 2-manifolds as
Riemann surfaces.

EXERCISE 8.5.4.1. Describe the permutations of the n + 1 sheets about the branch curves
in the above construction.
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9.1 Computation

9.1.1 Turing Machines

The concept of a Turing machine was introduced in 0.4.1, as a machine that
controls a read/write head moving on an infinite tape. We shall now explain
the concept in more detail and give a few examples that illustrate how Turing
machines compute functions and solve problems.

A Turing machine consists of a finite alphabet set o = {blank, Si, ..., 8.},
a finite state set 2 = {q,, ..., q,}, and a response function &: o7 x 2 — of x
{left, right} x (2 U {halt}). Since the response function is also a finite set it can
be described completely by listing its members. Each member is traditionally
written, without commas and brackets, as a quintuple

4,58y Lgy, or g;5;S;Rqy,

which is understood to mean: “in state g,, if the scanned symbol is §;, replace
it by Sy, move one square to the left (or right, respectively), and go into state
q; (where g, = halt is allowed).”

Thus we can simply define a Turing machine M to be a finite list of
quintuples with the property that no two quintuples start with the same two
symbols ¢;5;. The latter condition expresses the single-valuedness of the
response function, also called determinacy of M—the uniqueness of response
to a given symbol when in a given state. It is usual to save space by omitting
quintuples commencing with a pair 4;5; for which no response is required.
One can assume some standard response, for example, :

4;S;S;L halt,

for all such pairs.

Since nothing is said about a state g, other than the responses it makes to
symbols §}, it is possible (and useful) to regard g, as merely a label for a set of
commands to the read/write head. The formalism of Turing machines is then
nothing but a language for programming a read/write head on an infinite tape
divided into squares. It is probably the simplest programming language,
though unfortunately not the most readable. Apart from the read/write
and movement commands, the language includes nothing but the two things
most detested by modern programmers—line numbers (the subscripts i) and
GOTO commands (the g;).

One appreciates their detestation of these features as soon as one tries to
read a Turing machine program written by someone else. It helps to write
comments next to the quintuples, but only slightly. Readers are encouraged to
study the following examples and then to try some of their own.

Example 1. Adding a one to a block of consecutive ones.
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It is assumed that the tape is initially blank except for finitely many ones on
consecutive squares. The machine starts on the leftmost of these squares in
state g;.

g, 1 1R g, Move right as long as the scanned symbol is 1
q; D1 Rg, Write1in the first blank square

Note the obvious notation [ for the blank square. The machine halts after
writing the extra 1, since no action is specified for state g,.

This machine M illustrates a standard input/output convention for Turing
machines. A positive integer n is input as a block of n ones on an otherwise
blank tape, and M starts on the leftmost one in state ¢,. The output is the
number of ones on the tape when M halts, at which time the tape is blank
except for a block of ones. M may then be considered to compute the function
f(input) = output, in this case f(n) = n + 1 for positive integers n.

Example 2. Doubling a block of ones.

Under the same input/output convention as in Example 1, this machine
computes f(n) = 2n. It does so by “copying” the input block one symbol at a
time, “marking” the copied symbols as it does so. To follow the program it is
important to realise that g, is not just the initial state. It is a state that recurs
each time the head returns to the input block after copying a symbol. The
program is written with this general situation in mind.

g1 1 'L g, Mark the leftmost 1 in the input block with ’.
q,1'1"L g, Move left across any 1’ (copied part of input block),
q; 1 1L g, and 1 (these are in the copy).
4, O 1 Rg; Write 1 in the first blank square.
q3 1 1L g; Move right across any 1,
g3 "1"Rg; and 1’ (at which point the initial state is resumed).
g 1"I"R gy
g; 0 O Lgqs Ifeachsymbolin the input block is now marked,

g4 1" 1L g, move left across the input block, erasing marks.
Example 3. Deciding whether a number is even.

This example shows how machine states play a role like mental states. The
machine has a state gy that “remembers” when an even number of ones have
been scanned and a state gyo that “remembers” when an odd number of ones
have been scanned. The initial state is ¢y and, as usual, the machine starts
on the leftmost one of the block.



278 9 Unsolvable Problems

gves 1 [0 Rgno
dnvo 1 OO R gygs

The machine halts on the first blank encountered, in state gy if the number
of ones in the block is even and in state gyo otherwise.

Thus the final state answers the question implicit in the input n: is n even?
If we take a problem, as in 0.4.1, to be a set of questions, then this machine
solves the problem of deciding evenness. Many other conventions for answer-
ing questions are possible, and they are equivalent in the sense that the same
sets of questions are answerable. In the case of questions with a YES/NO
answer we shall compute the characteristic function of the problem using the
output convention of Examples 1 and 2. If the problem consists of questions
Q; then its characteristic function is

70, = 1 if the answer to Q, is YES ‘
Y710 if the answer to Q, is NO

In particular, the characteristic function for the evenness problem is computed
when we add the following quintuple to the preceding machine

gyes 0 1 R g3.

(This is why the original machine was made to erase all ones on the tape. A
blank tape signifies output 0.)

Exercise 9.1.1.1. Construct a Turing machine that copies an arbitrary block of as and
bs.

Exercise 9.1.1.2. Explain how to convert an arbitrary Turing machine M to a machine
M, which produces tape expressions the same as those produced by M except for “end
markers” [ and ] on the nonblank portion of tape.

Exercist 9.1.1.3. Construct a Turing machine to erase the tape between [ and ].

9.1.2 Church’s Thesis

The simple examples of computation given in 9.1.1 fall far short of justifying
the claim, made in 0.4.1, that the concept of Turing machine is a general
definition of computer. This claim is known as Church’s thesis after Alonzo
Church, who first proposed a mathematical definition of computability in
1933. Church’s definition, called A-definability, was not at first very compell-
ing, but it gained credibility with the work of Turing 1936. The Turing
machine, with its read/write head and internal states, distilled the essence of
computation as experienced by a human being—the eye that scans and
recognizes, the hand that writes, and the mental states that direct the actions
of eye and hand. It was therefore reasonable to expect that it could realize any
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proposed model of computation. Turing 1937 showed immediately that this
was true of A-definability, and it has proved to be true of all subsequent
definitions of computability. In particular, all known programming languages
can be written in the language of Turing machines.

All this is extraordinarily impressive—Godel 1946 called it a “kind of
miracle”—but it does not give us a theorem that computability = Turing
machine computability. It is better to regard Church’s thesis as an axiom,
not a “self-evident” fact. Human computational processes are surely never
going to be as narrow, simple, and laborious as Turing machine processes,
hence Church’s thesis will probably stand in need of eternal verification.
However, we can make verification easier by devising programming languages
that better reflect broader notions of computation and contain single com-
mands for the most common routines. This is what has happened in the
development of “higher-level” languages, which may be seen as a movement
toward easier verification of Church’s thesis. The ultimate programming
language, if it exists, will be one which makes Church’s thesis seif-evident.

Despite the provisional nature of Church’s thesis, we cannot avoid as-
suming it in proving unsolvability of algorithmic problems. An algorithmic
problem is a set of questions and it is solvable if the answers are a computable
function of the questions. Thus to prove such a problem unsolvable we have
to prove that the answer function is not computable—and hence, by Church’s
thesis, not computable by Turing machine. This is the only way the statement
to be proved becomes mathematically definite,

On the other hand, as long as we have to use Church’s thesis we may as
well enjoy it. It is a wonderful shortcut in proving the existence of Turing
machines—if something is computable there is a Turing machine that com-
putes it—so we shall use it as a shortcut whenever possible.

9.1.3 The Halting Problem

The simplest way to devise a problem unsolvable by a Turing machine is to
consider questions about Turing machines themselves. Assuming only that
each machine M has a description TMT that can be given as input and any
fixed convention for answering YES and NO, then no machine can correctly
answer all the following questions.

Qur: Does M, given input M1, eventually.answer NO?

A Turing machine S may be deemed to have received question Q,, when it is
given input ™M1, since "M contains all the necessary information. But S
cannot correctly answer Qg! If S eventually answers NO, then the correct
answer to Qg is YES, and if § eventually answers YES then the correct answer
to Qg is NO.

If we use the YES/NO convention of 9.1.1, according to which YES is
signaled by halting on a tape with 1 on it and NO by halting on a blank tape,
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then we call the problem the self-halting problem because it consists of the
questions

O, Does M, given input 'M1, eventually halt on a blank tape?

All that is now required to make the halting problem mathematically definite
is to delimit the class of Turing machines M and define their descriptions TM1.

Without loss of generality we can assume that each machine alphabet is a
finite subset of {7, 1, 1’,1”, ...} and that each state set is a finite subset of
{4, 4, q",...}. Each quintuple can therefore be written in the finite alphabet
{g, 00, 1,", R, L} by viewing " as a whole, rather than part, symbol. The quintu-
ples of any machine can be concatenated into a single word without ambiguity
if g; is translated as ¢ (i primes). For example, Example 1 of 9.1.1 has
quintuples

g 11Rq
q(D]Rq”

and the quintuples can be recovered from the singlewordg’ 11 R g ¢’ 31 R ¢".
Thus if we define a standard Turing machine M to be one whose alphabet is a
subsetof {(J, 1, 1', 1, ...} and whose state set is a subset of {g, ¢, ¢”, ... } then
we can describe M with a single word on the alphabet {g, [1,1,’, R, L}.
Finally we can rewrite this word in the standard alphabet by replacing

[ with [,
1 with 1,
"with U,
g with 1",
L with 17, and
R with 1",

The resulting word is what we call the standard description TM1 of M.

With this definition of "M, the questions Q,, comprising the self-halting
problem have a mathematically precise meaning. Thus the self-halting problem
is a mathematical problem, not solvable by a Turing machine and hence, by
Church’s thesis, not solvable by any algorithm. The mathematics of the self-
halting problem is admittedly remote from group theory and topology, never-
theless they can be connected. We shall start building a bridge between them
in 9.1.5. In the meantime, we shall look at some variant halting problems.
These are useful for technical reasons and as an illustration of the idea of
reducing one problem to another.

The first variant is actually more natural than the self-halting problem. It
is the general halting problem, consisting of the questions

Q1 Does M, given input I, eventually halt on a blank tape?
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Of course, now that we know that the self-halting problem is unsolvable, it is
obvious that the general halting problem also is. The questions QO g include .
the questions @ (for I = TM1), hence any machine for answering the Qy,y will
answer the @,,, and we have shown that no such machine exists. We say that
the self-halting problem reduces to the general halting problem. In general we
say that problem P, reduces to problem P, when a solution of P; can be
computed from a solution of P,. It follows that if P, is reducible to P,, and P,
is unsolvable, then P, is unsolvable.

Reduction of one unsolvable problem to another is the most common
method of proving unsolvability. In fact, the self-halting problem is the only
problem we shall need whose unsolvability has to be proved directly. Un-
solvability extends from the halting problem to the homeomorphism problem
by a series of reductions, as we shall see in the remainder of this chapter.

Exgercise 9.1.3.1. Use reduction (and Church’s thesis) to show that there is no algorithm
that correctly answers all the questions

Q4. 1: Does M, given input I, eventually halt?

9.1.4 Universal Turing machines

The halting problems discussed in 9.1.3 involtved all Turing machines, and it
is less clear that there is a single machine with an unsolvable halting problem.
Such a machine comes to light when we reflect on the process of reconstructing
a machine M from its standard description T™M1.

First we separate TM1 into its quintuples and find those beginning with
the initial state ¢; = g’. Then, given a standard description MV of M’s input
I, we can “simulate” the computation of M on I by reading and marking the
leftmost symbol of 11, marking the quintuple of TM1 that deals with this
symbol, and thereafter moving from marked quintuple to marked symbol,
carrying out the required action, and updating the marks accordingly. It is
clear that a human computer can simulate the action of M on [ in this way
and hence, by Church’s thesis, so can a Turing machine. We call such a
machine a universal Turing machine. The existence of universal machines was
first pointed out by Turing 1936.

Since the coding of I into I'T1 replaces [ with [ (see 9.1.3), if M eventually
converts I into a blank tape, then the universal machine will convert TM11T1
to TMT (assuming marks are removed after the simulation is completed).
Therefore, if we construct a special universal machine T that erases 'TM1 only
after it finishes simulating a computation of M that halts on a blank tape
then

T, given input 'M1IT], eventually halts on a blank tape

<> M, given input I, eventually halts on a blank tape.
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Thus the unsolvability of the general halting problem (9.1.3) implies the
unsolvability of the halting problem for T, even on the special inputs TM1TT1,
This in turn implies the unsolvability of the general halting problem for T,
consisting of the questions

Q5 Does T, given input E, eventually halt on blank tape?

We do. not actually need this strong unsolvability result for the main
results of this chapter, the unsolvability of the isomorphism problem and the
homeomorphism problem. However, an explicit universal machine is needed
to produce an explicit group with unsolvable word problem, so some readers
may wish to do the following lengthy exercise.

ExerCisE 9.1.4.1. Construct a universal Turing machine.

9.1.5 Z?-Machines

The difficulty in proving the homeomorphism problem unsolvable lies in
reducing the halting problem to the word probiem for groups and, to a lesser
extent, reducing the word problem to the homeomorphism problem. In this
section we shall pave the way for the reduction to the word problem by viewing
computation as the composition of functions on subsets of Z2.

At any instant in the computation of a machine M, the future actions of M
are determined by a word

oo S, 8, 4651, S5, -

we shall call the complete state of M. Here S,c .5,8:,5;,8;,...5;, is the
expression on the marked portion of tape; g; is the current (lntcrnal) state of
M; and §;, is the scanned symbol. (Thus the position of the g symbol in the
complete state gives the position of the read/write head.) The computation of
M can be identified with the sequence of complete states, and the transforma-
tion of one complete state to its successor (resulting from the response of M
to g;S;,) is called a step of computation.
We now. replace the complete state with the pair

(St Sy S, G Sy, - 53,5,)

obtained by splitting the complete state at the scanned symbol and writing
the right-hand portion backward. This pair, which obviously carries the same
information as the complete state, is called the complete state pair. Tts advan-
tage over the complete state is that a step of computation changes only the
right-hand ends of the elements of the pair, and these changes are easy to
express arithmeticaily when we interpret the symbols [, Sy, ..., Sy 915 ++-5 G
as the digits for 0, 1, ..., m + n + 1 in base b = m + n + 2 numerals.

Before looking at changes in the complete state pair, note the unobtrusive
way in which extra blank tape is conjured up by the numerical interpreta-
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tion. Since [ is interpreted as 0, the blank tape to the left of 8, and to the
right of §; is represented by the unwritten zeros to the left of the numerals
S-Sk, qrand §; ... S, §;

J2

Now let us see what steps of computation look like when complete state
pairs are interpreted as pairs of numerals. A “left-moving” quintuple ¢,S;S; Lg;.
transforms the complete state

St S, 50,455, .- S,

Ju
into
S 8,005,5:S;, .
and hence transforms the complete state pair
(S-S, S, 015 S5, -+ S, S;)
into
(Se, - Sk, S

5,55
More concisely, the quintuple ¢;5;S; Lg; induces the transformation of com-
plete state pairs (g;S)): (US,, ¢, VS;)—(Ugy, VS;.S,,) for any digit S, and any
“g-free” numerals U = §, ... S and V' =§; ...S, .

These transformations can be expressed in terms of multiplication by b and
b* and addition of one- and two-digit numbers as follows:

(@:S): (0*U + S, q;, bV + ) (bU + g,., B*V + S S,)

where U, V € Z arc positive integers whose base b numerals have the special
form. In fact, there is no harm in allowing arbitrary U, V € Z. A pair with a
negative U (respectively, V) component transforms into another pair with a
negative U (respectively, V) component, and a positive pair with more than
one g-symbol! transforms into another positive pair with more than one
g-symbol. Hence, a complete state pair cannot arise from a noncomplete state
pair.

This leads us to associate ¢;8;S; Lg;. with a set of transformations of pairs
of integers we call I-transformations. They are defined for all U, ¥ € Z and are
of the form

) (b2U + A4, bV + B)>(bU + C, b*V + D))

where 4, = S, q;, B, = §;, G, = q;, D; = §; S, Since 8, can take m + 1 differ-
ent values there are m + 1 different transformations associated with a given
“left-moving” quintuple ¢;S;S;Lq;.. Similarly, we associate each “right-
moving” quintuple with a set of r-transformations of the form

) (bU + A,, b*V + B)—(b*U + C,, bV + D,)

where U, V € Z are arbitrary and {/} and {r} are disjoint sets of indices.
Corresponding to each Turing machine M we now have a finite set Z,, of
I- and r-transformations that “simulate” M in the following sense. The pairs
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(X, Y) of integers whose base b numerals form the successive complete state
pairs of M are produced by successive application of I- or r-transformations,
and exactly one such transformation applies to each (X, Y) in the sequence
except the last—corresponding to halting of M—to which no transformation
applies. We call Z,, a Z2-machine. (It is a slight variation of the “modular
machine” of Cohen and Aanderaa 1980.)

EXERCISE 9.1.5.1, What are the values of 4,, B,, C,, D, in the transformations (r)
corresponding to the quintuple ¢;5;3;Rg;.?

9.1.6 The Halting Problem for Z>-Machines

The simulation of Turing machines by Z?-machines naturally reduces the
general halting problem, or the general halting problem for the universal
machine T, to a halting problem for Z>-machines. A direct reduction, however,
does not lead to the most simply stated problem, since the final complete state
of Z involves the final state g, of T (which could be any one of several states).
Namely,

T halts on a blank tape in state g,
<> the final pair produced by Zr is (¢, 0).

In order to avoid mention of g, we modify T and Z;. as follows.

Introduce a new state g, and add the quintuple q,[1JR4g, to T for each
state g, in which T can halt on a []. This creates a universal machine T*,
which halts on a blank tape in state g, if and only if T halts on a blank tape.
Then

T halts on a blank tape
<> the final pair produced by Z« is (¢, 0).

Now add extra [-transformations to Zr«, which convert (o, 0) to (0, 0) and
which apply only after (g4, 0) has been created, namely,

(%) (b*U + 8,40, bV)— (bU + S,,, B*V).
If we now allow Z2-machines to include transformations (¥} and denote the
thus expanded Zy« by Z§., then
T halts on a blank tape
< the final pair produced by ZF. is (0, 0).

The general halting problem for T is thereby reduced to the following
problem about integers, which we call the halting problem for Z2-machines:
for each (X, Y) € Z% decide whether (X, Y) is convertible to (0, 0) by the set Z¥.
of |- and r-transformations. The latter problem is therefore unsolvable.
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ExERrCISE 9.1.6.1. Show unsolvability of the following problem without appealing to
the existence of a universal machine. Given a set § of I- and r-transformations, and
(X, Y) e Z%, decide whether § converts (X, Y) to (0, 0).

9.2 HNN Extensions

9.2.1 Representation of Computation in Groups

In 9.1.5 we showed that computation could be realized by transformations
of subsets of Z? (I- and r-transformations). The next step is to encode
pairs (X, Y)e Z? by elements p(X, Y) of a certain group K, and - and
r-transformations by certain isomorphisms of subgroups of K. This seemingly
roundabout realization of computation, due to Cohen and Aanderaa 1980,
supersedes earlier more direct approaches. In the direct approach, complete
states of a Turing machine are represented by words, and quintuples by rela-
tions, in a relatively obvious way. The trouble is that symbols in a group are
necessarily subject to relations with no computational counterpart, such as
q:97" = 1, and enormous ingenuity is required to prevent these relations crea-
ting “fake computations.” The most important outcome of the direct approach
was an appreciation of the value of the HNN construction, due to Higman,
Neumann, and Neumann 1949. This construction was found to be the key to
the success of Novikov 1955 and other early proofs of the unsolvability of
the word problem. (For more historical information, see Stillwell 1982.) It is
also crucial in the work of Cohen and Aanderaa, which leads to the unsolva-
bility of the word problem much more easily.

Cohen and Aanderaa begin with the group

K =<x, 3 2;xy = yx)

and they encode the pair (X, ¥) € Z2 by the element p(X, ¥) = y Yx ¥zx*y¥
K. This is not the simplest encoding of pairs one can imagine, but simpler ones
lack certain properties that will be essential later. For the moment we only
wish to observe how an I-transformation

0] (b*U + A;, bV + B)—(bU + C, B’V + D)

can be reflected in K.
The corresponding transformation of group elements,

p(b>U + A, bV + B p(bU + Cp, b?V + D)),
is induced by
x5 xt Yy, p(A, B)— p(C, D)),
which defines a map ¢, of the subgroup of K generated by x*°, y%, p(4,, B)
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onto the subgroup generated by x*, y*’, p(C,, D,). We shall in general denote
the group generated by g;, g5, --+» g BY {g1» 92, -.-» gy, hence in this
notation

iz <x", ¥, p(As, B)Y = {x, y*", p(C,, D).

The map ¢, isinfactan 1somorphlsm (see 9.3.2). There is a similar isomorphism
B, <x ¥7, p(A,, By — {xP°, y*, p(C., D.)> for each r-transformation.

This is where the HNN construction makes itself useful. Given any group
G and pairs of elements b, ¢; € G such that b, ¢; defines an isomorphism
between the subgroups ({b;}> and {{c;}>, respectively, we can embed G in a
group H in which the isomorphism b;\— ¢, is induced by conjugation by an element
te H — G, that is, t'bit = c;. In fact, H has a presentation consisting of the
presentatlon of G, plus a generator ¢, plus the relations t 7'b;t = ¢,. We abbrevi-
ate this definition of H by \

H=06ult;{Iht=c}>

and call H an HNN extension of G with stable letter t.

According to the preceding result, which will be proved in 9.2.3, K can be
embedded in a group in which the isomorphisms ¢, and ¢, are induced by
conjugation by letters ¢, and ¢,. That is, if ¢, sends p(X, Y) to p(X’, Y’) then
(X, Y)t, = p(X', Y'), and similarly for 4,. Since ¢, sends p(X, Y) to
p(X’, Y') only if (X, Y) goes to (X, Y’) by transformation (I), we have finally
arrived at a group in which steps of computation are reflected by equations
between words.

The crucial properties of the HNN construction are the embedding prop-
erty already mentioned and a property of the stable letters called Britton’s
lemma. The embedding property says that, after any number of HNN exten-
sions starting from G, elements of G are equal only if they were already equal
in G. In particular, an element p(X, Y) € K will remain unequal to p(X’, Y’)
for (X, Y) # (X', Y"), and continue to be a faithful representative of the com-
plete state pair (X, Y). Brittons lemma says, roughly, that words are only
equal for “obvious” reasons, and hence that only the “intended” equations
reflecting computations are true. To be specific, an equation expressing halting
on a blank tape is true only if halting on a blank tape really occurs. This
enables us to reduce the halting problem to the word problem and hence
conclude that the word problem is unsolvable.

In 9.2.2-9.2.4 we shall prove these properties of HNN extensions. We shall
then be in a position to prove the basic unsolvability results about groups in
9.3.

EXERCISE 9.2.1.1. Show that K is an HNN extension of the free group ¢x, z; — ).
EXERCISE 9.2.1.2. Show that the surface group (cf. 4.2.1)

{ay, by, .0 ay, by agbyar bt a,b,a bt
is an HNN extension of the free group {b,, a,, b,, ..., a,, b,; —>.
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ExeRrCISE 9.2.1.3. Check that ¢, sends p(b>U + A, bV + B)) to p(bU + C,, b’V + D))
forany U, VeZ

9.2.2 Normal Forms

Suppose G is a group and ¢: B — C is an isomorphism of subgroups. Corre-
sponding to ¢ we have the following HNN extension of G with stable letter ¢:

H =G u<t; {t'bt = ¢(b)b  B}D.

If B has a finite generating set {b;}, as will be the case in all our work, then H
is defined by adding the finitely many relations t~*b;t = ¢(b;) to G. We now
study the elements of H, following the exposition in Stillwell 1982.

A typical word in H looks like .

Got™g 7. . t%g,

where each ¢; = + 1 and each g; is a word in the generators of G (possibly 1).
Each g; can be factored into an element of B or C and a “residue,” that is, a
coset representative of g; modulo B or C. Writing the relation t™'bt = §(t) as
td(b) = bt or t*b = ¢(b)t ™, we see that an element ¢(b) € C can always pass
to the left across t, becoming b on the other side, while & € B can always pass
to the left across t~!, becoming ¢(b) on the other side. This suggests nor-
malizing the word by draining off elements of B or C to the left, leaving residues
stuck between the ts.

To make this process precise (though not necessarily computable), we chose
specific coset representatives; g® of the coset By, g€ of the coset Cg, with 1 as
the representative of both Band C. Then we work from right to left as follows.

If g, = —~1 we factorize g, into B.gf, where B, € B, so that

t%g, = t ' Buge = ¢(B)t 7 gf = d(B)tg?.
Similarly, if g, = + 1 we factorize g, into C,gf, where C, € C and
t9g, = tCgf = ¢~ (Cltgl = ¢ (C)t™gy.

(Since ¢ is an isomorphism, ¢~* is well defined.} We now have either g,_; ¢(B,)
or g;_ ¢~ (C,) between t%- and t*. We factorize it similarly, according to the
sign of ¢,_, and continue passing elements of B or C to the left, leaving coset
representatives behind. If at any stage t and ¢™! appear with only 1 between
them, they are canceled. The final result is a word of the form

gotiigit®a.. to%g., 8 =+1

where gy, is an arbitrary element of G, §; = — 1 => g; is a coset representative
of Gmod B, §, = +1=g] is a coset representative of G mod C, and t, t™* do
not occur as consecutive letters. This word is still not unique, because g; can
be any word from the equivalence class [g;] in G. Let us denote the class of
words that results from replacing g; with other representatives of [g{] by



288 9 Unsolvable Problems

g0t [g1]t%. .. 2% [g:]
and call this class a normal form of the element of H it represents.

EXeRcisE 9.2.2.1. Viewing {a,, b,, a,, b,; a,b,a7'b; a,b,a5'b5 1> as an HNN exten-
sion, asin Exercise 9.2.1.2, check that the word a; b, a7 b7 a, b, a5'b;* has normal form

[1].

9.2.3 Uniqueness of Normal Forms

The normal form of an element of H is unigue.

We shall faithfully represent H as a group of permutations of the set N of
normal forms. For each i € H we shall define a mapping @,: N — N with the
properties

(i) @, is the identity,
(i) (I),,I(I),,l = @, ;.. and
(iii) @0 i rorm 5(1) = normal form A.

From (i) and (ii) it follows that hi—®, is a homomorphism, in particular
®,®;-i = identity, so @, is invertible, hence a permutation. From (iii) it follows
that normal forms are unique, because ®,,, ®,, for different normal forms
hy, hy send 1 to different places, so that ®, , ®,, are different permutations
and hence represent different elements h,, h,.

The mapping @, is defined to be “multiply on the left by h and reduce to
normal form, one letier of 4 at a time,” Then (i)-(iii) are clear, but since the
word for an element & € H is not unique, the problem is to show that D, is
well defined. This requires showing that equivalent words determine the same
permutation, in other words, that each defining relator of H determines the
identity permutation. For a relator g of G this is clear, because

O,(Lgole™... 1% [g.]) = [ggo]e™ ... t%[g.] = [go]e" ...t%[g.]

since g = 1 in G. (Although we are supposed to apply g one letter at a time,
itis clear that these letters just accumulate to the left of g, since no interaction
with t is possible. We shall similarly present just the end results of letter-by-
letter accumulations later.)

The relators involving ¢ are t£7', 17t and ¢ 'btg(h)~!. We check just the
last of these, since the first two are similar, but easier.

D1y gy-1([g61t7 g1 ]8%...)
=0 D, @Dy ([g5]¢% [g7]1%...)
=0 0,0([p(bh) 9o Tt [g1 7% )
= @, ®y(normal form of ¢[$(b) gy 1t% [g;Tt%...).
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There are now three cases to consider:

(@ [6(b)g5] = 1,ie., (b) = g5, and 6, = —1;
(b) [#(b)"g0] = 1, e, 4(b) = gy, and &, = +1; and
(© [ob)go] # 1.

In case (a), t and t* cancel and we continue with
@, ®y([g7127...)
= @, ([bg11t%...)
= normal form of t~*[bg} Jt%...
= [p(b)]t g\ ]t ... since g is a coset representative
= [go]t%[g,]t%... since ¢(b) = g4, 6, = —1 by hypothesis.
In case (b) we continue with
@@y (t[1]¢[g1]¢%...) = @ ([be[1]e[g1]2%...)
= normal form of ¢t 1 [A1t[1]t[g;]t%...
= normal form of [¢(b)Jt e[ 1]t[g; ]t%. ..
= [¢(b)]t[g:1t%..., cancelingt ‘¢
=[g]t% [g,]t%... since ¢(b) = g5, 6; = 1 by hypothesis.

In case (c) we let ¢(b) g5 = ¢(by) ¢S, where $(by) ! € C and g is the coset
representative, and continue with

@, @, (normal form of t[¢(by) 'g51%...)
= O ®,([hg " 1e[g§1e"...)
= @,([bby* 1e[g61t™...)
= normal form of t 1 [bby 1 ]t[g§1t% ...
= normal form of [#(bbg )1t t[gS1t% ... since bby' € B
= [d(bbg)g§1to ..., canceling 1™t
= [d(b)(bo) g5 1¢% ... since ¢ is a homomorphism
= [golt® ... since #(by) 1gS = #(b)1g; by definition.
Thus ®,.14,4¢5-1 15 indeed the identity. O
Since each [g] € G is identical with its normal form, the proof shows in

particular that distinct [g, ], [g,] € G are also distinct in H. That is, G embeds
in H (Higman, Neumann, and Neumann 1949).
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9.2.4 Britton’s Lemma

If w is a word involving t that equals 1 in H, then w contains either a subword
t7bt, where b e B, or a subword tet™!, where c e C = ¢(B) (Britton 1963).

The normal form of w is 1, hence ts must be canceled in the normalization
process. Suppose, for example, that t™*bt is a subword of w whose ts get
canceled in the normalization process. Normalization inserts a word b € B
between b and ¢, and the ts cancel only if bb € B, because only then can bb be
moved to the left, leaving no residue. But bb e B<b e B.

Similarly, if tc™ is a subword of w whose ts are canceled during normaliza-
tion, thenc e C. O

This result is Britton’s lemma for an HNN extension H'of G with a single
stable letter ¢. It easily generalizes to any group H, that is nthin a sequence

Hi=Gu{t; (i7" dt, = ¢, (d)ld e D3

Hy = H, o {t; {t;" dt, = ¢,(d)ld e D,}>

of HNN extensions with stable letters t,, ..., t,. Britton’s lemma for such
an extension H, (which we call an HNN extension of G with stable letters
tys..., t,) reads:

If wis a word involving t;s that equals 1 in H,, then w contains a subword
t7'd;t, where d; € Dy, or a subword tiet;t, where e; € E; = ¢,(D,).

If we consider the 7; of highest index in w, and view w as an element of the
HNN extension H; of H;_,, then this result is immediate from Britton’s lemma
for extensions with the single stable ietter ¢,. |

EXERCISE 9.2.4.1. Derive an algorithm for the word problem for the group<ay, by, ..., a,,
by aybiar*bit . a,b,a; bty by viewing it as an HNN extension and applying
Britton’s lemma.

9.3 Unsolvable Problems in Group Theory

9.3.1 Faithful Representation of Complete State Pairs

The Cohen and Aanderaa representation of computation by groups was out-
lined in 9.2.1. We shall now use properties of HNN extensions to show that
this representation is “faithful” in a certain sense, and hence gives a reduction
of the halting problem to the word problem. The first step is to show that
P(X, Y) =y~ x *zx*y¥ faithfully represents the pair (X, ¥).
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The group K = {x, y, z; xy = yx) containing the elements p(X, Y) is the

HNN extension
Xz —> Uy yTixy = XD

of the free group {x, z; —, with stable letter y inducing the identity isomor-
phism of the subgroup {x). This yields the following resuit, which shows how
faithfully (X, Y) is represented by p(X, Y).

The elements p(X, Y) = y 'x " %zx*YY for X, Y € Z are free generators of
a free subgroup of K.

Since p(X, Y)Y = y"Yx *z/x*y*, any reduced word on generators p(X;, Y;)
can be written in the form

W= y"Y’x"X‘zj‘xxlyyl . y—Y2x‘XzzjzxX2yY2 N _y”ka“XkakxXkka,
which simplifies to

W= y—le—?hthX1—Xsz1—Yzzjz . xxk—l—"xkyyk—l—ykzjkxxkyYk

by commuting x, y and canceling. The fact that w is a reduced word on the
p(X;, Y)) means in particular that no consecutive powers of the same p(X;, Y))
occur, and hence each term x¥-17¥ipYi- =Yt hetween powers of z has either
X, —X;#0o0r Y_, — Y; # 0. Thus the simplified w is freely reduced as a
word on X, y, z and hence, by Britton’s lemma, w = 1 only if it contains a
subword y~'x’y or yx/y~!. This is not the case, since z appears between any
consecutive occurrences of y*!. Hence w # 1 and therefore the elements
p(X;, Y;) are free generators. O

This result means in particular that p(X, Y)=pX, Y)=(X,Y) =
(X', Y’),not only in K, but also in any HNN extension of K (by the embedding
property, 9.2.3). More generally, p(X, Y) is in the subgroup generated by a set
{p(X;, i)} = p(X, Y) = p(X;, Y;) for some i, since the p(X;, Y;) are free genera-
tors. We shall call this property faithful representation of (X, Y)by p(X, Y)in
K and its HNN extensions.

The following exercise shows that certain simpler methods of encoding
pairs in groups are not faithful in the same sense.

Exercist 9.3.1.1. If p(X, Y¥) = x*y¥ in the free group {x, y; —), show that p(X, ¥) =
p(X + 1, V)p(i + 1, YY) !p(i, Y) for any i e Z. Show that the same relation holds if
p(X, Y) = x*zyY in the free group <x, y, z; —). (An attempted simplification of the
Cohen and Aanderaa construction in Stillwell 1982 fails because of this relation.)

9.3.2 Representation of I- and r-Transformations

Cohen and Aanderaa realize an I-transformation

(62U + A,, bV + B (bU + C,, B*V + D))
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by the map ¢;:
x> xb, Py, p(4;, B+ p(Cy, Dy)

of the subgroup {x*’, y*, p(4;, B))> onto the subgroup ¢(x*, y*, p(C,, D;)>. We
now prove the result claimed in 9.2.1:

@, is an isomorphism.

It suffices to show that x> x, Yy, p(4,, B) >z and xP i x, y** 1y,
p(C,, D))~z are both isomorphisms onto <x, y, z; xy = yx). (Compose the
first with the inverse of the second to get ¢,.)

Since p(A4,, B) = y Bix~%zx4iyB conjugation by x 41y~ is an isomor-
phism x** i x*, y* y¥, p(4,, B}z of (x*, y*, p(A,, B)) onto (x*, y*, 2>.
And since <x, y* is the free abelian group generated by x*, y*, we also have
the isomorphism x*" 1 x, Y2y, zi z of (x¥’, ¥, z) = (X%, y*> * (z)> onto
X,y 2) = <X, yy » (2).

The composite of these two isomorphisms is x** - x, y? = y, p(4,, B} z.

We similarly show that x® - x, y** >y, p(C,, D;) z is an isomorphism, as
required. O

There is a similar proof that the map ¢,:

xtox?, syt p(d,, B)=p(C,, D))

realizing an r-transformation is an isomorphism of {x?, y”*, p(4,, B,)> onto

x”, y*, p(C,, D).
It follows that we can make an HNN extension K, of K by adding

generator t,, relations  t;'x"’t; = x¥,’
'y = y¥,
t7'p(4;, B)t, =p(C;, D),
generator t,, relations t7'x%t, = x?’,
5y, =y,
t'p(4,, B)t, = p(C,, D,),

Jor each transformation (1) or (v) making up a Z:-machine Z.
By construction, K, has the property that if a complete state pair (X', ¥)
results from a complete state pair (X, Y) by transformation (/) then

Il_jp(Xa Y)l! = p(X’: Y')
Because if transformation ({) applies to (X, Y) we must have
(X,Y)=(b*U + A, bV + B) forsomeU,VeZ,

in which case
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§'p(X, Y)t, = 7' p(b?U + A, bV + B)t,
i tl—ly—be—szp(A“ B!)xbzuybl/tl
— yvszx—bUp(Cb Dl)xbbelV
= p(bU + C,, b*V + D))
= p(X', Y").

Similarly for a transformation (r). Thus steps of computation of Z are repre-
sented by equations in K. In 9.3.3 we shall show that equations of this form
hold only if the corresponding computational steps exist, and hence that the
representation is faithful.

9.3.3 Faithful Representation of Computational Steps

If t7 ' p(X, Y)t; = p(X', Y') in K, then there are U, V € Z such that
X =b?U + 4, Y =bV + B,
X' =bU + C, Y =b’V+ D,

That is, the equation reflects an actual computational step of Z.

Rewriting the equation as
tp(X, Vup(X, Y)Yt =1,

we see from Britton’s lemma in K, that p(X, Y) belongs to the subgroup
{x¥, yb, p(A,, B)> of K. Tt is clear that this subgroup contains all elements of
the form p(b2U + A, bV + B)) for U, V e Z. Conversely, the general element
of <x¥*, y*, p(A,, B;)> has the form

YT p(Ay, BYx™ Py bp(Ay, BY2. . p(Ay, By)kxmetytend,

By rewriting the x, y term between p(4, B)* and p(4,, B)* as
xMbZpmb o ~lmi—mab?y={mi—nb we create the term

YT p (4, B ymb = p(b2my + Ay, bny + B,

and by successively rewriting the x, y terms from left to right in a similar way
the general element takes the form

(H p(b*U; + A, bY; + Bz))xmbzynb-

Since this equals p(X, Y) by hypothesis, it follows by Britton’s lemma
in K (cf. argument in 9.3.1) that m=n =0 and the product of terms
p(b*U, + Ay, bV, + B))is freely equal to the single term p(X, Y). Thus

p(X,Y)=p(b?U + A, bV + B) forsomeU,V,
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and hence
X=bU+4d, Y=bV+B5,

by the faithful representation of pairs (9.3.1).
It now follows from the defining relations of K, (9.3.2) that

6p(X, V) = 67 p(b*U + A, bV + By,
=p(bU + C,, bV + D,)

and hence
p(X, Y') = p(bU + C, b2V + D)),
whence
X'=bU+GC, Y =b*V+D,
by the faithful representation of pairs again. O

We similarly prove the corresponding result for a t:
If 7' p(X, Y)t, = p(X', Y’} in K, then there are U, V e Z such that

X =bU+4,, Y =02V + B,
X'=b2U + C,, Y =bV+D,

Thus conjugation by a t, or ¢, faithfully reflects a transformation () or ().
However, it is equally true that conjugation by &% or ;7! does not reflect a
transformation (1) or (r) but, rather, its inverse:

up(bU + C, b*V + D)t;! = p(b*U + A, bV + By,
or
tp(b*U + C,, bV + D)t = p(bU + A b*V + B,),
This corresponds to a fake backward computational step:
(bU + C, b’V + D)~ (b*U + A, bV + B)
or
(62U + C,, bV + D)= (bU + 4,, b*V + B,).

In 9.3.4 we shall show that backward steps cannot create a path from (X, Y)
to (0, 0) unless there is a path from (X, Y) to (0, 0) by forward steps alone. In
this sense K, contains a faithful representation of halting computations.

9.3.4 Faithful Representation of Halting Computations

A halting computation of a Z>-machine Z (cf. 9.1.6) with initial complete state
bair (X, Y} is a series of steps s, ..., Sp1:

XY)=X;Y)3 X, )3 .. 245 (X,, ¥ = (0,0),



9.3 Unsolvable Problems in Group Theory 295

where each s; is a transformation (!) or (). Now suppose we admit backward
steps from (X, Y;) to (X4, Yiyq ), writing (X, Y;) < (X441, Yiuq) toindicate that
(Xi11, Y1) is a pair (not necessarily unique) such that (X,,,, ¥;,,) > (X,, Y.
Then we have the following result. )

If (X, Y) is a complete state pair convertible to (0, 0) by forward and back-
ward steps, then (X, Y) is convertible to (0, 0) by forward steps alone.

If (X, Y) is convertible to (0, 0) then we can obtain a sequence (X, Y) =
(X1, 1), (X,, Vo), .0y (X, Vo) = (0, 0) without repetitions such that each
(X1, Yiyq) results from (X, Y;) by a forward or backward step. It suffices to
omit any segments of the original sequence between repeated terms. I claim
that all steps in a nonrepeating sequence are forward.

This is because any pairs accessible from a complete state pair are them-
selves complete state pairs, except (0, 0), which occurs only as the last pair in
the sequence by hypothesis, and which only results from the forward step
{@o> 0) — (0, 0) by definition of Z>-machines (9.1.6). Thus there is at least one
forward step in the sequence, namely, (X,_;, ¥_;) = (X, ¥) = (0, 0), and all
the terms (X, Y}), ..., (X;—,, Yi—,) are complete state pairs. It follows that
any backward step occurs in a context (X,..q, Y1)« (X;, Y)) = (X;11, Yie1)
where (X, Y;) is a complete state pair, and hence that (X,_,, ¥,_,) =
(X:41, Yiyy) by the determinacy of machines. This contradicts the absence of
repetitions. O

Combining this result with 9.3.3 we get:

A Z2-machine Z converts a complete state pair (X, Y) to (0,0)< p(X, Y) =
wp(0, O)w in K, where w is a word on the letters t* and tF1.

Thus we have reduced the halting problem for Z2-machines (9.1.6) to a
problem about special equations in K, With the help of Britton’s lemma, the
latter is easily reduced to the generalized word problem for XK.

9.3.5 The Generalized Word Problem

The halting problem for a Z2-machine Z is reducible to the generalized word
problem for K.

In fact we shall show that

Z converts a complete state pair (X, Y) to (0, 0)

<> p(Xa Y) € <p(07 0)’ {tl}a {tr}>-

The direction (=) is immediate from the (=) direction of the result at the
end of 9.3.4 (which is essentially the fact that conjugations by ¢, t, reflect
computational steps of Z).

To prove (<), suppose p(X, Y) € {p(0, 0), {#,}, {t,}>. This means p(X, Y) =
T,p(0, 0Y* T, ... T, p(0, 0y*T,.,, where each T; is a word on the ¢, and t,, and
hence
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*) T,p(0, 0V T; ... Tp(0, 0¥ Ty p(X, Y) ™" = 1.

By Britton’s lemma for K, the left-hand side of (*) must contain a subword
of one of the following forms

(i) t7'wi,, where w € {x¥*, y®, p(4,, B)>,
(i) 1w, where w e xb, ¥, p(C,, D,)>,
(iii) ¢, wt,, where w e {x?, y**, p(4,, D.)>,
(iv) t,wt, ", where w e <x**, y®, p(C,, D,)>.

Since the terms T; in (*) consist entirely of letters ¢! and £*!, w must in fact
be p(0, 0}, in which case (i) and (iii) simplify to the form p(u, v)*, where
(0, 0) ~ (u, v} in Z, and (ii) and (iv) simplify to p(’, v'), where (0, 0) « (i, v")
inZ.

Repeating this argument until all letters ¢ and ¢*! are eliminated, (*)
simplifies to the form

(**) (H p(ui’ ui)fx)p(X, Y)—l =1,

where each (u;, v;) is obtainable from (0, 0) by a series of backward or forward
computational steps by Z. It then follows, since the elements p(u;, v;) are free
generators (9.3.1), that [ [, p(u;, v;)* freely reduces to the single term p(X, Y),
and hence (X, Y) itself is obtained from (0, 0) by backward or forward compu-
tational steps. In other words, (0, 0) is obtainable from (X, Y) by forward or
backward steps and hence, by 9.3.4, by forward steps alone.

This shows that the halting problem for Z is reducible to the general-
ized word problem for K. That is, the problem of deciding, given words
Wi, ..., w,and w, whether w belongs to the subgroup Wi, ..., w,> of K gener-
ated by wy, ..., w,. Thus if we choose a machine Z for which the halting
problem is unsolvable, such as the machine Z#. of 9.1.6, we find:

There is a finitely presented group K, with unsolvable generalized word
problem.

Exercise 9.3.5.1. Show, without assuming the assistance of a universal machine, the
unsolvability of the general generalized word problem: given a finitely presented group
G, and words wy, ..., w,, w, decide whether w & Wiy .o, Wy in G

9.3.6 The Word Problem

A group K, with an unsolvable generalized word problem is easily extended
to a finitely presented group G, with unsolvable word problem by a trick of
Boone 1959. Namely, let

Gy = Kz 0 <k Kp(0, 00k = p(0, 0), {k~tk = 1), (K™1,k = 1,).

This is an HNN extension of K 2> With stable letter k inducing the identity
isomorphism of ¢p(0, 0), {t,}, {t,}>. :
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The generalized word problem for K, is reducible to the word problem for
G (hence the latter is unsolvable when Z has an unsolvable halting problem).

Since k commutes with p(0,0), {} and {1}, a word p(X, Y)e
<p(0,0), {1}, {t,}) satisfies

kp(X, Y) = p(X, Y)k.
Conversely, if this equation holds we have
kp(X, )k Ip(X, Y) ' = 1.

Since the only occurrences of k, k™ on the left-hand side are those explicitly
shown, Britton’s lemma for G, tells us that p(X, Y)e <p(0,0), {t,}, {t.}>.
Hence

p(X, )€ (p0, 0), {t;}, {t,}> <= kp(X, Y)k7'p(X, ¥) = L.

This equivalence reduces the generalized word problem for K, (or, rather, the
special case of it equivalent to the halting problem by 9.3.5) to the word
problem for G,. O

A presentation for a G, with unsolvable word problem can be constructed,
in principle, from a universal machine Z. It would obviously be enormously
complicated. In fact, no really simple or natural group with unsolvable word
problem is yet known. However, one can use the existence of G, to show that
the generalized word problem for F, x F, (direct product of free groups of
rank 2) is unsolvable. This surprising result was discovered by Mikhailova
1958, and her argument is outlined in the following exercises.

Exercise 9.3.6.1. Let G = <ay,..., Aps 155ty and let F,={ay, ..., a, —>. Re-
calling from 0.5.6 that

w=1inG = w=]]gu g inF, show that
;
w=1inG <« W Dedlr,),..., (ry Dy (ay, ay)s o5 (8p00,)> in F, x F,

Exercise 9.3.6.2. Deduce that the word problem for G is reducible to the gene-
ralized word problem for F, x F,.

EXERCISE 9.3.6.3. Using 2.2.7.3 or otherwise, reduce the generalized word problem for
F, x F, to the generalized word problem for F, x F,.

EXERCISE 9.3.6.4. Give a finite presentation of F, x F,.

9.3.7 The Isomorphism Problem

To obtain our final unsolvable problem in group theory, we shall reduce the
word problem for G, (9.3.6) to the isomorphism problem. The reduction
depends only on the following fact: each w + 1 in G, is of infinite order. This
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is certainly true of the group K = (x, y; xy = yx + {z> we started with. Ele-
ments of K retain their orders under successive HNN extensions, by the
embedding property of 9.2.3. And each element involving a stable letter is
easily seen to be of infinite order by applying Britton’s lemma to the powers
of its normal form.

Now for each word w in the generators of G,, which we rename Ayyeney Ay,
we construct the group (which is not necessarily an HNN extension)

GW) = Gy U ({ks); (k7 wh, = a}>.

Then the reduction of the word problem for G to the isomorphism problem
is immediate from the following result.

w=1inG < Gyw) =<k, ... ky;—> = F,
The direction (=) holds because i
w=1l=a=k'k=1=Gyw)=<ky,..., ki —>.

Conversely, if w 5 1 in G, then w is of infinite order, as is a;. Hence wi— g,
is an isomorphism and G,(w) is an HNN extension of Gz. In particular, G,
embeds in Gz(w) by 9.2.3, and hence G,(w) has an unsolvable word problem.
Then G,(w) cannot be a free group F,, because the word probiem for F,is
solvable for any. set of generators. (If G,(w) = F, with free generators x,, ...,
X, et a(x;), ki(x;) be words expressing the generators a;, k; of G,(w) in terms
of xy,..., x,. Replace the letters a;, k; of a given word W by a;(x;), ki(x;), and
hence decide whether W = 1 by free reduction of the X;8, as in 2.1.4), O

Since G, was chosen to have an unsolvable word problem, this reduction
brings us to our goal: the isomorphism problem for finitely presented groups is
unsolvable.

ExErcise 9.3.7.1. Without assuming the existence of a universal machine Z, prove the
unsolvability of the general word problem: given a finitely presented group G and a
word w, decide whether w = 1 in G.

EXERCISE 9.3.7.2. Deduce the unsolvability of the isomorphism problem—given finitely

presented groups F and G, decide whether F 2 G—without assuming a universal
machine.

9.4 The Homeomorphism Problem

9.4.1 Manifolds with Given Fundamental Group

A natural way to prove unsolvability of the homeomorphism problem is to
show that the isomorphism problem is reducible to it. A reduction would be
immediate if we had a construction of complexes C(#) from presentations &
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with the following properties

(i) Group(#) = Group(#') = C(%) homeomorphic tb C(#)
(ii) 7,(C(#)) = Group(2),

where Group(#) denotes the group with presentation & This is because
complexes with different fundamental groups are not homeomorphic, hence
(i) and (ii) give the equivalence

Group(?) = Group(?) <« C(P) homeomorphic to C(#),
which yields the required reduction.

Unlortunately, the known methods of constructing complexes from presen-
tations can give nonhomeomorphic C(#), C(#”) for different presentations 2,
# of the same group. In particular, the surface complex constructed in 3.4.4
to realize the group <ay, ..., Gy 7y, ..., 1> as fundamental group actually
depends on the generators ay, ..., a,, and relators r,, ..., r,. This is why we
are now taking special care to distinguish between a presentation 2 and the
group it defines, Group(#). We shall continue to use the notation <a,, ...,
Qw3 T'15 .., 1y for the group, but write the presentation simply ds ay, ..., a,,;
Py, ..., ¥, It is then appropriate to describe the surface complex of 3.4.4 as
S(@y, ooy i Fiy ooy 1)

Now, to see that the complex S(%) depends on the presentation &, consider
the two presentations a,; a, and a,, a,; a,, a, of the trivial group. S(a; a,)
is a disc, while S(ay, a,; a,, a,) is the union of a pair of discs with a single
common point (Figure 297). These are nonhomeomorphic because, for exam-
ple, S(a;, a; a, a,) is disconnected by the removal of a single point and
S(ay; a,)is not.

Figure 297

This difficulty was first overcome by Markov 1958, using the Seifert and
Threlfall construction of a 4-manifold with given finitely presented funda-
mental group (Exercise 8.1.8.1). A second approach, based on an idea of Dehn
1912a for construction of a 4-manifold with given fundamental group, was
developed by Boone, Haken, and Poénaru 1968. Both these approaches yield
the unsolvability of the homeomorphism problem restricted to closed 4-
manifolds. We shall be content to get unsolvability for open 5-manifolds, in
order to avoid detailed high-dimensional constructions, but we shall follow
Boone, Haken, and Poénaru part of the way. Readers familiar with manifolds
of dimension >3 should find it easy to strengthen the proof so as to obtain
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unsolvability for closed 4-manifolds. (The results of Markov and Boone,
Haken, and Poénaru are also stronger than ours in a few more technical
aspects. However, our proof is substantially simpler than theirs.)

The idea of Dehn 1912a is to embed the surface complex S(2), for a finite
presentation 2 in R, Since S(2) can obviously be triangulated, this is possible
by 0.2.3. Then the e-neighbourhood :

M, (#) = {P e R®|distance(P, S(#)) < &}

is an open set, and hence a S-manifold, and for ¢ sufficiently small it has a
deformation retraction to S(#). Assuming ¢ is chosen sufficiently small we
therefore have

T (M(P)) = 7, (S(#)) = Group(2P).

It is unfortunately still not true that M,(#) is homeomorphic to M (9)
whenever Group(#) = Group(#') (see 9.4.2), but the situation is better than
with S(#) and $(2). The counterexample for S(#) where 2 is ay;a, and &' is
ay, Gy} 4y, @, is not a counterexample for M,(#), since the e-neighbourhoods
of S(ay; a,) and S(a,, a,; ay, a,) are homeomorphic (each to an open 5-ball
in fact). Figure 298 indicates these neighbourhoods in R® schematically, One

Figure 298

way to recognize the homeomorphism is to view M,(#') as a neighbourhood
(of points at distances between &/2 and &) of the topological disc D shown in
Figure 299, which is ¢/2 larger than S(#'). A homeomorphism D — S(#) can
then be extended to a homeomorphism of their neighbourhoods.

Figure 299

Itis hoped that readers will be content with sketchy descriptions of homeo-
morphisms, like the example just given. We need only three, intuitively simple,
homeomorphisms (see 9.4.5), so it seems a waste to develop a detailed theory
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of high-dimensional manipulation for their sake. Nevertheless, readers who
are aware of such details will be in a better position to do the following
exercise, which is the key to obtaining the unsolvability result for closed
4-manifolds. See also Boone, Haken, and Poénaru 1968.

EXERCISE 9.4.1.1. Show that the frontier of M,(%) is a closed 4-manifold with the
same fundamental group as M,(#?).

9.4.2 Reducing Isomorphism to Homeomorphism

If 2 and &' are different presentations of the same group, then we know from
0.5.8 that there is a sequence of Tietze transformations, T;** or T;*!, converting
2 to #'. Thus the dream of 9.4.1, of finding complexes C(#) such that

Group(#) = Group(#') = C(£2) homeomorphic to C(#"),

could come true if the C(#) were “invariant under Tietze transformations.”
That is, if C{2} were homeomorphic to C(#') whenever & resulted from 2 by
a Tietze transformation.

Since the known constructions of complexes from presentations all fail to
give homeomorphic C(#), C(#') for certain 2, &' defining the same group,
they necessarily fail to be invariant under certain Tietze transformations. The
examples of S(a,; a,)and S(ay, g,; a,, a,) show that the surface complex S(#)
fails to be invariant under T, (adding a generator). M,(#) in fact is invariant
under T, (see 9.4.5), but not under T, (adding a consequence relator).

Consider, for example, the presentations a; 4, and a,; a,, a, of the trivial
group. M,(a;; a,) is the e-neighbourhood of a disc in R, hence a 5-ball, while
M(a,; a,, a,) is the e-neighbourhood of a sphere. These are not homeomor-
phic because M,(a,; a,, a,) contains a noncontractible sphere and M,(a,; a,)
does not. o o ' '

Further study of the M,(#) reveals that addition of redundant relators, as
in this case, is the whole trouble. Since it may be necessary to add redundant
relators to convert 2 to a & which has more relators than & this trouble
cannot be entirely eliminated. However, it turns out that we can preempt it
by adding redundant relators to 2 in advance. Given a %' that may define the
same group as %, we can find, from the size of & and 2, a bound ¢ on the
number of relators that must be added in the course of converting 2 to #'. If
we then add ¢ trivial relators 1 to & at the beginning, it turns out that we can
convert the enlarged 2 to & (plus some trivial relators 1) by special Tietze
transformations under which M, (%) is invariant.

Following Markov 1958 and Boone, Haken, and Poénaru 1968, we denote
the result of adding ¢ trivial relators to 2 by 2 = t. Then the reduction of the
isomorphism problem to the homeomorphism problem may be described as
follows. )

Given presentations 2 and 2, compute t and t’ such that 2 « £ is convertible
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to & «t' by special Tietze transformations il Group(#?) = Group(#”'). Then
construct the manifolds M (2 = t) and M (% xt’). Since

Group(?) = Group(? = t) = n,(M,(P? * 1)),

and similarly for 2, t’, and since M,(# =) is homeomorphic to M, (% =t')
whenever 2 ¢ is convertible to ' xt’ by special Tietze transformations, we
have

Group(2) = Group(#?') <> Group(? *t) = Group(# *t')
< M/(P *t) is homeomorphic to M, (P xt').

Since M, (2 % t), M,(#' = t') are computable from 2, 27, this equivalence gives
the desired reduction.

The details of ¢, ¢' and the special Tietze transformations will be worked
out in 94.3 and 9.4.4. The invariance of M,(#) under the special Tietze
transformations will be shown in 9.4.5, to complete the proof.

The only other point worth stressing right now is that the manifolds
M,(2 * 1), M (%' «t') have natural finite descriptions, so it is valid to assume
that a (hypothetical) algorithm for the homeomorphism problem is applicable
to them. M,(2) can be described by a list of vertices, edges, and faces of the
triangulated complex S(#) in R?, plus the number &. Since the coordinates of
the vertices can be taken to be rational, without loss of generality, as can g,
this is a finite description.

9.4.3 Special Tietze Transformations

The special Tietze transformations we shall use are T, and four “small”
transformations T, ;, Ty ,, Ty, T4, which replace T;. The latter are chosen to
be “small enough” that their effect on M,(P) is apparent (see 9.4.5), yet
comprehensive enough to reconstruct any relator that could be added by T;.
Unlike T;, however, Ty, Tia, Ty;, Tiy can add consequence relations only
when given sufficient “room,” in an enlargement of 2 to the equivalent
presentation £ =t with ¢ copies of the trivial relator 1.

We shali begin by defining T} |, T} 5, T} 5, T4 for an arbitrary finite presenta-
tion ay, ..., Gy; 1y, ..., 1, then work out the amount of “room” they require
to add a single consequence of ry, ..., r, to the presentation.

Ty,: Replace r; by a;a7'r; or a;'ajr,

T:,: Replace r; = uvw by a cyclic permutation vwu,
Ti5: Replace r; by r; t

T,4: Replace r; by ryr; with j # i,

These transformations differ from T, not only in being “small,” but also in
replacing a relator rather than adding one. T,,, T},, T;; obviously give a
presentation P’ defining the same group as 2. T,, does also, thanks to the
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restriction j # i, which allows 7; to be recovered from the new relator r,7; and
the relator r; still present. The fdct that Ty, T;,, Ti3, T14 replace relations
rather than addmg them is the secret of their success in keeping M.(#')
homeomorphic to M,{(%), as we shall see in 9.4.5. At the same time, it is the
reason they need an enlargement & =t of 2 to work on.

If P is the presentation ay, ..., a,; Fy, ..., I, and P’ is the presentation
Ay oovs Qs 1, o0, Ty, S, where s is a consequence of 1y, ..., 1,, then & %2 may
be converted to '« 1 by T,,, T\5, Ty, T4 and their inverses.

By 0.5.6, any consequence s of r, ..., r, has the form

s=guttaTt gartles gt el

where gl, ..., g are words on ay, ..., a,,. The idea is to construct the factors
girittart, gzr"‘qzl, ... successively in the place of the last 1 in # %2, and to
bulld up s in the place of the first 1 by successive applications of S, ,. In more
detail, the manipulation of the sequence of relators goes as follows.

Piaeeesty, 1,1

STl L, by Ti4

Sy by L by T3 (if necessary)

=Tty L e it by Ty; (where g, = last letter of g,)
STy, b Loag et by Ti»

=Py b L agag i e ag by Ty, Ty

(where a;, = second last letter of g,)

= Fiy eyt 1, glrvlel Y by Ty, T, repeatedly

P T G0 1 91 ’glril i by T,

1

by Tii%, T, repeatedly
(reversing earlier steps)

+
_’rlv"srmglrj‘ gl 9737

_ . .
Dy TG i T gt g by Ty5 (if necessary)

"’rly---aﬁfis'“’rnsgirﬁ g;"‘qu: '::1 by T4

S B P g T by T, T;; repeatedly
Py B eens By G115 1 by Ty5 (if necessary)
- "1:---,rmgﬂ}"flgfl’gz’ﬁlg;l by 71> Tias i3, Tha

{as used to construct g, ri'g7?)
DI T 0175 9T 021 02 dati eyt by T
Tty glr'ilg; '92"“‘_ g; 21 by Tl?lla T2, Tis, Ty
: (as used to restore g;ri'lg, to 1)

Py ey By S, L 0
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9.4.4 Presentation of the Same Group

If P(m generators, n relators) and P (m’ generators, n' relators) are presentations
of the same group, then 2« (n + n' + 1) may be converted to # *(n' + n + i)
by Ty, iz, Tys, Tha, T, and their inverses.

We imitate the proof of Tietze’s theorem (0.5.8), using the construction of
9.4.3 to add consequence relations. Because of the existence of inverse trans-
formations it suffices, as in 0.5.8, to convert both Zx(n + n’' + 1) and
#'=(n’ + n + 1)to the same presentation 2", Asin 0.5.8 we let & be a word on
4y, ..., a, representing a;, and let «; be a word on a, ..., aj, representing a,.
We also abbreviate the list a4, ..., a,, by a;, the list a;, ..., a’,. by a, etc.. Thus
a; ry*(n + n’ + 1), for example, stands for the presentation aj, ..., Qs Ty oees
r 1,1, ..., 1 with n + n’ + 1 relators 1.

agria)x(n+n + 1)
= ay @), i () % (n + 1) by 9.4.3, n’ times
= a;, a;; rla), 1 (o), af = ojx (n + 1) by T,, m’ times
= ag, aj; 1{a;), 1(a), af = o« (n + 1) by 9.4.3, n’ times, and 9.4.3

inverse n times (alternately adding the consequence ri (@) of r{ (at})
and a; = o}, and subtracting the relator r/(e}})

=y, ap;ra), v(an)), af = o, ;= o % 1 by 9.4.3, n times.

This presentation #” is symmetric with respect to primed and unprimed
symbols, hence 2’ «{n’ + n + 1) is also convertible to #, as required. |

9.4.5 Invariance Under Special Tietze Transformations

If @' vesults from P by Tyy, Ty,, Ty, Ty4 or T, then M(P) is homeomorphic to
M(Z).

If the transformation is T} , (cyclic permutation of a relator) or Ti 4 (inversion
of a relator), then M,(%) is certainly homeomorphic to M,(#). In fact the
surface complexes S(2) and S(#) are identical in this case.

In the remaining three cases S(2) and S(#”') are not homeomorphic, but
their e-neighbourhoods M,(2) and M,(#”') are. The extra thickness of M (P)
allows us to “slide” and “squash” part of it to form M,(#) as follows.

T,,: Replace r; with aja;'r;  (a;ay, is similar).

Let 27 be 2 minus the relator r, (which is also 2’ minus the relator a;a;'r).
Then §()is the result of attaching a disc D to the curve r;in S(#7), and S(#')
is the result of attaching a disc D’ to the curve a;a;*r,. Then D meets the frontier
of M(#7) in a simple closed curve d (since D, by construction of S(#), has
identified points only on its boundary) and I’ meets the frontier of M (?7)in
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Figure 300

a simple closed curve d', which is close to d except for a “tongue” at distance
<e [rom the path g;a;* (Figure 300, a schematic view of the situation in R5).
Now M,(#) is the union of M,(#~) with the e-neighbourhood D, of a closed
disc with boundary d, while M,{#') is the union of M,(#~) with the &
neighbourhood D] of a closed disc with boundary d’ (the discs being subdiscs
of D and D', respectively). We obtain a homeomorphism between M, (%)
and M,(#') by sliding d to position d’—extending the “tongue” in the
e-neighbourhood of a;.
T.,: Replace r; with r;7;, J# I

In this case M,(2) is the union of M,(#~) with the e-neighbourhood D, of
a closed disc with boundary 4, a simple closed curve at distance <e from r,.
And M, (#') is the union of M,(#~) with the e-neighbourhood D! of a closed
disc with boundary d’, a simple closed curve at distance <z from r;7; (Figure
301, which incidentally illustrates how d is a simple curve, even when 7, is not).
Since j # i, the curve 7;is in 27, and since r; is a relator the curve is spanned
by a disc. We can slide d across the ¢-neighbourhood of this disc in M,(27),
thus obtaining a homeomorphism between M,(#) and M, ().

T;: Add generator a,,,, and relator a,,,, w, where wis a word in a, ..., a,,.

Figure 301

The new generator a,,,, adds a “handle” to M,(#)—the e-neighbourhood
of the arc of a,,,, outside M,(#). $(2') is formed by attaching a disc to S(#)
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along a,,,, w. Suppose this disc meets the frontier of M,(#) plus handle in the
simple closed curve d,,,.; d, where d is the intersection with M,(?) and d ,,, the
intersection with the handle (Figure 302). Then M,(”) is formed by attaching
the e-neighbourhood D, of a disc bounded by d,,.,d. By contracting this disc
we can “squash” the handle and D, down to M,(£), thus showing M,(#) to be
homeomorphic to M,(#). Oa

\
1
1
1

1

~———

P —
/

Figure 302

This result finally justifies the reduction of the isomorphism problem to the
homeomorphism problem that was outlined in 9.4.2:

Group(#) = Group(#')
< Group(@+(n + n' + 1)) = Group(#' =(n’ +n + 1))
< M/(Z*(n+ n’ + 1)) homeomorphic to M,(# *(n’ + n + 1)).

Since the isomorphism problem is unsolvable by 9.3.7, the homeomorphism
problem is unsolvable. Readers who wish to carry their study of topology
beyond 3-manifolds can therefore rest assured that the subject is not
trivial,

EXERCISE 9.4.5.1. Use Exercise 9.4.1.1 to show that the homeomorphism problem is
unsolvable for closed 4-manifolds.



Bibliography and Chronology

1752
Euler, L.: Elementa doctrinae solidorum, Novi comment. acad. sci. Petrop., 4 (1752),
109-140.

The Euler polyhedron forniula.

1771
Vandermonde, A.-T.: Remarques sur les Problémes de Situation, Histoire de ' Académie
des Sciences (Paris) 1771, 566--574.

Combinatorial description of knots, with examples from knitting.

1847
Listing, J. B.: Vorstudien zur Topologie, Gottinger Studien 1847, 811-875.
Introduces name “topology.” States that the two trefoil knots are not the same.

1851
Hermite, C.: Sur les fonctions algebriques, Comptes rendus, Paris 32 (1851), 458-461.
The monodromy group.
Riemann, G. F. B.: Grundlagen fiir eine allgemeine Theorie der Funktionen einer
verdnderlichen complexen Grisse, Gesammelte Mathematische Werke, Dover, New
York 1953, 3-43.
Riemann surfaces and connectivity.

1863
Mébius, A. F.: Theorie der elementaren Verwandtschaft, Werke, Vol. 2, Martin Sandig,
Wiesbaden 1967, 433-471.

Surfaces in R® reduced to spheres with handles.

1866

Clebsch, A. and Gordan, P.: Theorie der Abelschen Funktionen, Teubner, Leipzig 1866.
Matrix generators for mapping class group of torus.

Jordan, C. (2): Sur la déformation des surfaces, J. de Math. (2) X1 (1866), 105-109.
Attempts to characterize surfaces by connectivity.

Jordap, C. (b): Des contours tracés sur les surfaces, J. de Math. (2) Xt (1866), 110-130.
Generators for 7, of a surface, but incorrect relations.



308 Bibliography and Chronology

1870
Jordan, C.: Traité des Substitutions et des Equations Algébrigues, Gauthier-Villars,
Paris 1870.

Introduces term *‘abelian,” and notions of isomorphism and homomorphism.
Kronecker, L.: Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealen
complexer Zahlen, Werke Vol. 1, Chelsea, New York 1968, 271-282.

The structure theorem for finite abelian groups.

871
Betti, E.: Sopra gli spazi di un numero qualunque di dimensioni, Annali di Matematica
pura ed applicata (2) 4 (1871), 140-158.

Betti numbers.

1872
Schwarz, H. A.: Ueber diejenige Fille, in welchen die Gaussische hypergeometrische
Reihe eine algebraische Function ihres vierten Elementes darstellt, J. reine u. angew.
Math. 75 (1872), 292-335.

Tessellation of the unit disc by curvilinear triangies.

1874 .
Du Bois-Reymond, P.: Ueber asymptotische Werthe, infinitdre Approximationen und
infinitire Aufldsung von Gleichungen, Math. Ann. 7 (1874), 363-367.

The diagonal argument.
Klein, F.: Bemerkungen iiber den Zusammenhang der Flichen, Math. Ann. 7 (1874),
549-557.

Sphere as double cover of the projective plane.

1876
Klein, F.: Ueber den Zusammenhang der Flachen, Math. Ann. 9 (1876), 476-482.
Intrinsic definition of orientability, using indicatrix.

1877
Clifford, W. K.: On the canonical form and dissection of a Riemann surface, Proc. Lond.
Math. Soc. (1) 8 (1877), 292-304.

Riemann surface is a sphere with handles.

1878
Cayley, A.: On the theory of groups, Proc. Lond. Math. Soc. (1)9 (1878), 126-133.
Cayley diagrams for finite groups.

1882
Dyck, W.: Gruppentheoretischen Studien, Math. Ann. 20 (1882), 1-44.

Generators and relations for Fuchsian groups, including surface groups.
Klein, F. (a): Uber Riemanns Theorie der Algebraischen Funktionen und Ihre Integrale,
Teubner, Leipzig 1882 = Ges. Math. Abh. 111, 499-573. Translated as On Riemann’s
Theory of Algebraic Functions and their Integrals, Dover, New York 1963.

Sphere with handles, as we know it. The Klein bottle.
Klein, F. (b): Letter to Poincaré¢, 14 May 1882, Ges. Math. Abh. 111, 615-616.

The universal covering surface.
Klein, F. (¢): Neue Beitrdge zur Riemannschen Funktionentheorie, Math. Ann. 21
(1882), 141-218.

Generators and relations for Fuchsian groups, including surface groups.



Bibliography and Chronology 309

Poincaré, H.: Théorie des Groupes F uchsiens, Acta Math. 1(1882), 1-62.
Generators and relations for Fuchsian groups, including surface groups.

1883
Poincaré, H.: Mémoire sur Ies Groupes Kleiniens, Acta Mazh. 3 (1883), 49-92.
Poincaré model of the hyperbolic plane.

1884
Dyck, W.: On the “Analysis situs” of Three Dimensional Spaces, Brit. Assoc. Adv. Sci,
Report 1884, 648,

Decomposition of 3-manifold into handlebodies.

1887
Appell, P.: Quelques rémarques sur la théorie des potentiels multiforms, Math. Ann.
30 (1887), 155-156.
A covering of R? branched over the circle.
Jordan, C.: Cours & Analyse, First ed., Gauthier-Villars, Paris 1887.
Statement of Jordan curve theorem, but faulty proof.

1888
Dyck, W.: Beitrige zur Analysis situs I, Math. Ann. 32 (1888), 457-512.
Classification of nonorientable surfaces.

1890

- Klein, F. and Fricke, R.: Vorlesungen iiber die Theorie der elliptischen Modulfunktionen

Vol. 1, Teubner, Stuttgart 1890 (vol I, 1892), Johnson Reprint Corp, New York 1966.
Defining relations for the modular group (p. 454).

1891 :
Cantor, G.: Uber eine elementare Frage der Mannigfaltigkeitslehre, Ges. Math. Abh.,
Georg Olm, Hildesheim 1962, 278-281.

The diagonal argument used to prove any set has more subsets than elements.

1892 ‘
Poincaré, H.: Sur PAnalysis situs, Comptes rendus 115 (1892), 633-636.
Betti numbers do not completely determine a manifold. Analytical definition of .

1895
Poincaré, H.: Analysis situs, J. de I Ecole Polyt. (2) 1 (1895), 1-123.
Betti numbers, combinatorial definition of 7, , H, = abelianized =, .

1897
Brunn, H.: Ueber verknotete Curven, Verh. des intern. Math.-Congr. 1 (1897), 256-259.
Any knot has a projection with a single multiple point.
Fricke, R. and Klein, F.: Vorlesungen iiber die Theorie der au tomorphen Funktionen vol I,
Teubner, Stutt;;art 1897 (vol I1, 1912), Johnson Reprint Corp., New York 1965.
Hurwitz, A.: Uber die Entwicklung der allgemeinen Theorie der analytischen Funk-
tionen in neuerer Zeit, Verh. des intern. Math.-Congr. 1.(1897), 97-112.
Statement of the homeomorphism problem.
Sommerfeld, A. : Uber verzwei gte Potentiale in Raum, Proc. Lond. Math: Soc. 28 (1897),
395-429.
Some branched coverings of R?.



310 Bibliography and Chronology

1898
Heegaard, P.: Sur I"Analysis situs (French translation of 1898 Copenhagen dissertation),
Soc. Math. France Bull. 44 (1916), 161-242.

Heegaard diagrams, some special branched covers of S3 and computation of their
Heegaard diagrams (2-fold, cyclic over trefoil = (3, 1) lens space, 2-fold irregular over
trefoil = S3 jtself).

1899
Poincaré, H: 1" Complément & 'analysis situs, Rend. circ. mat. Palermo 13, (1899), 285--
343,

Simplicial complexes, combinatorial definition of Betti numbers.

1900
Poincaré, H.: 2¢ Complément a I’analysis situs, Proc. Lond. Math. Soc. 32 (1900), 277-
308. )

Torsion, matrix computation of Betti and torsion numbers (structure theorem for
finitely generated abelian groups).

1904
Poincaré, H.: Cinquiéme complément & I'analysis situs, Rend. circ. mat. Palermo 18
(1904), 45-110.

Simple curves on surfaces—algorithms to decide which homology and homotopy
classes contain them. Construction of homology sphere by Heegaard diagram. The
Poincaré conjecture.

1905
Veblen, O.: Theory of plane curves in nonmetrical analysis situs, Trans. Amer. Math.
Soc. 6 (1905), 83-98.

Rigorous proof of Jordan curve theorem.

1906
Schoenflies, A.: Beitrage zur Theorie der Punktmengen I1T, Math. Ann. 62 (1906), 286~
328,

Jordan-Schoenflies theorem.

1907 :
Dehn, M. and Heegaard, P.: Analysis situs, Encykl. Math. Wiss. vol 111 AB3 Leipzig
1907, 153-220.

Classification theorem for surfaces proved.

1908
Schoenflies, A.: Die Entwicklung der Lehre von den Punktmannigfaltigkeiten I, Jber.
Deutsch. Math. Verein (2 Ergdnzungsband), Leipzig 1908.
Steinitz, E.: Beitrage zur Analysis situs-Sitz.-Ber. Berlin Math. Ges. 7 (1908), 29-49, also
in Arch. d. Math. u. Phys. 13 (1908).

States Hauptvermutung.
Tietze, H.: Uber die topologischen Invarianten mehrdimensionaler Mannigfaltig-
keiten, Monatsh. Math. Phys. 19 (1908), 1-118.

Tietze transformations, abelianization, Wirtinger presentation of knot groups and
enumeration of branched covers of S, statement of isomorphism problem for groups,
mapping class groups, lens spaces.



Bibliography and Chronology 311

1910
Dehn, M.: Uber die Topologie des dreidimensional Raumes, Math. Ann. 69 (1910), 137-
168.

Realization of finitely presented group by 2-complex or 4-manifold, word problem
and conjugacy problem, Cayley diagrams for infinite groups, Dehn’s lemma (incorrectly
proved), knot groups, solution of word problem for trefoil knot group, construction
of homology spheres by surgery.

1911
Brouwer, L. E. J.: Beweis der Invarianz der Dimensionzahl, Math. Ann. 70 (1911),
161-165.

Topological invariance of dimension.

1912
Brouwer, L. E. J. (a): Uber Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912),
97-115.
Brouwer degree, Brouwer fixed-point theorem.
Brouwer, L. E. J. (b): Beweis des Jordanschen Satzes fiir den n-dimensionalen Raum,
Math. Ann. 71 (1912), 314-319, )
S"~! separates R" into two components.
Dehn, M. (a): Uber unendliche diskontinuierliche Gruppen, Math. Ann. 71 (1912), 116
144.
Dehn’s algorithm for solution of the word problem for surface groups, proved using
hyperbolic geometry.
Dehn, H. (b): Transformation der Kurven auf zweiseitigen Flichen, Math. Ann. 72
(1912), 413-421.
Topological proof of Dehn’s algorithm.

1914
Dehn, M.: Die beiden Kleeblattschlingen, Math. Ann. 75 (1914), 402-413.
Automorphisms of trefoil knot group used to prove that the two trefoil knots are not

the same.

1915
Alexander, J.W.: A proof of the invariance of certain constants of Analysis situs; Trans.
Amer. Math. Soc. 16 (1915), 148-154.

Topological invariance of homology groups.

1918
Nielsen, J. : Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugen-
den, Math. Ann. 78 (1918), 385-397.

1919 i
Alexander, J. W. (a): Note on two three-dimensiopal manifolds with the same group,
Trans, Amer. Math. Soc. 20 (1919), 339--342.

(5,1) and (5,2) lens spaces are not homeomorphic.
Alexander, J. W. (b): Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1919), 370-
372.

3-manifolds are branched covers of §3.
Nielsen, J.: Uber die Isomorphismen unendlicher Gruppen ohne Relation, Math. Ann.
79 (1919), 269-272.



312 Bibliography and Chronology

1921
Antoine, J.: L'Homéomorphie de deux figures et leurs voisinages, J. Math. Pure et
Appl. 4 (1921), 221-325,

Antoine’s necklace, wild curves, and spheres.
Brahana, T. R.: Systems of circuits on 2-dimensional manifolds, Ann. Math. 23 (1921),
144-168.
Nielsen, J.: Om Regning med ikke kommutative Faktorer og dens Anvendelse i
Gruppeteorien, Mat. Tidsskrift B (1921), 77-94.

Finitely generated subgroups of free groups are free, rank is independent of the
presentation, solution of generalized word problem.

1922
Veblen, O.: Analysis Situs, American Mathematical Society, New York, 1922.

1923
Alexander, J. W. (a): A proof and extension of the Jordan-Brouwer separation theorem,
Trans. Amer. Math. Soc. 23 (1923), 333-349.

Alexander duality theorem.

Alexander, J. W. (b): On the deformation of a n-cell, Proc. Nat. Acad. Sci. 9 (1923),
406-407.

Simple proof that a homeomorphism fixed on the boundary is isotopic to the identity.
Alexander, J. W. (c): A lemma on systems of knotted curves, Proc. Nat. Acad. Sci, 9
(1923), 93-95.

Braid form of a knot or link.

Kerekjarto, B.v.: Topologie, Springer-Verlag, Heidelberg 1923.

1924
Nielsen, J. (a): Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924),
169-209.

Finite presentation for automorphism group of free group.
Nielsen, J. (b): Die Gruppe der dreidimensionalen Gitter-transformationen Kgl. Danske
Vidensk. Selsk. Mat. Fys. Meddels. 12 (1924), 1-29.
Radé, T.: Uber den Begrifl der Riemannsche Fliche, Acta Univ. Szeged 2 (1924),
101-121.

2-manifolds can be triangulated.
Schreier, O.: Uber die Gruppen A°B® = 1, Abh. Math. Sem. Univ. Hamburg 3 (1924),
167-169.

Simplified treatment of torus knot groups and their automorphisms by developing
some theory of free products.

1925
Hotelling, H.: Three-dimensional manifolds of states of motion, Trans. Amer. Math.
Soc. 27 (1925), 329-344.

1926
Artin, E.: Theorie der Zopfe, Abh. Math. Sem. Univ. Hamburg 4 (1926), 47-72.
Braid groups, generators and relations, solution of word problem.
Noether, E.: Ableitung der Elementarteilertheorie aus der Gruppentheorie, Jber.
Deutsch. Math. Verein 34 (1926), 104, ‘
Homology groups, as opposed to Betti and torsion numbers.

1927
Alexander, J. W. and Briggs, G. B.: On types of knotted curves, 4nn. Math. 28 (1927),
562-586.



Bibliography and Chronolfogy 313

Knot classification by homology of 2- and 3-fold cyclic covers.
Nielsen, J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flichen,
Acta Math. 50 (1927), 189-358.

Automorphisms of surface groups are induced by homeomorphisms.
Reidemeister, K.: Knoten und Gruppen, Abh. Math. Sem. Univ. Hamburg 5 (1927), 7-23.

Algorithm for finding presentations of subgroups. Then abelianizes to find homology
of cyclic covers of knot complements.
Schreier, O.: Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg 5
(1927), 161-183.

Subgroups of free groups are free, Schreier coset diagrams, Reidemeister—Schreier
process.

1928
Baer, R.: Isotopie von Kurven auf orientierbaren geschlossenen Flichen und ihr Zusam-
menhang mit der topologischen Deformation der Flachen, J. /. Math. 159 (1928), 101-
116.

Homotopic simple curves are isotopic, surface homeomorphisms are determined by
canonical curves.

Brauner, K.: Zur Geometrie der Funktionen zweier komplexer Verinderlicher, 4bA.
Math. Sem. Univ. Hamburg 6 (1928), 1-55.

Wirtinger’s application of knot theory to singularities of algebraic functions.
Reidemeister, K.: Fundamentalgruppe und Uberlagerungsraume, Nachrichten,
Géttingen 1928, 69-76,

Covering spaces realize subgroups.

1930
Threlfall, W. and Seifert, H.: Topologische Untersuchungen der Diskontinuitits-
bereiche endliche Bewegungsgruppen des dreidimensionalen sphirischen Raumes I,
Math. Ann. 104 (1930), 1-70, 11 Math. Ann. 107 (1932), 543-586.

Introduces term “‘lens spaces™ (Linsenrdume).

1931
Frankl, F.: Zur Topologie des dreidimensional Raumes, Monatsh. f. Math. u. Phys. 38
(19313, 357-364.

A triangulation of the ball which cannot be shelled.
Johansson, I.: Topologische Untersuchungen iiber unverzweigte Uberlagerungs-
flachen, Skriften norske Vidensk.~Akad. Oslo Math.-natur. KI. 1 (1931), 1-69.

7; of infinite surface is free.
Magnus, W.: Untersuchungen iiber einige unendliche diskontinuierliche Gruppen,
Math. Ann. 105 (1931), 52-74.

Automorphisms of figure eight knot group, commutator subgroup of modular
group.
Seifert, H.: Konstruktion dreidimensionaler geschlossener Riume, Ber. Sdchs. Akad.
Wiss. 83 (1931), 26-66.

Seifert-Van Kampen theorem.

1932

Alexander, J. W.: Some problems in topology. Verh. internat. Math.-Kongr. 1932, 249~
257.

Hilbert, D. and Cohn-Vossen, S.: Anschauliche Geometrie, Springer, Berlin, 1932,
Translated as Geometry and the Imagination, Chelsea, New York 1952.

Reidemeister, K.: Einfithrung in die kombinatorische Topologie Teubner, Leipzig 1932.
Reprinted by Chelsea, New York 1950.



314 Bibliography and Chronoclogy

Van Kampen, E. R.: Komplexe in euklidischen Réumen, Abh. Marh. Sem. Unir,
Hamburg 9 (1932), 72-78 and 152-153.
An n-complex not embeddable in R?",

1933
Borsuk, K.: Zur kombinatorischen Eigenschaften der Retrakte, Fund, Math. 21 (1933),
91-98.

Retraction induces homomorphism of =, deformation retraction induces iso-
morphism.
Goeritz, L.: Die Abbildungen der Brezelfliche und der Vollbrezel vom Geschlecht 2,
Abh. Math. Sem. Univ. Hamburg 9 (1933), 244-259.

Twist homeomorphisms.
Singer, J.: Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer.

Math. Soc. 35 (1933), 88-111.

Semidecision procedure for homeomorphism of 3-manifolds, using Heegaard
diagrams (assumes Hauptvermutung). ‘
Van Kampen, E. R.: On the connection between the fundamental groups of some
related spaces, Amer. J. Math. 55 (1933), 255-260.

Seifert-Van Kampen theorem.
Weber, C. and Seifert, H.: Die beiden Dodekaederrdume, Math. Zeit. 37 (1933), 237~
253.

Equivalence of some forms of the Poincaré homology sphere.

1934

Kurosh, A. G.: Die Untergruppen der freien Produkte von beliebigen Gruppen, Math.
Ann. 109 (1934), 647-660,
Kurosh subgroup theorem.

Seifert, H.: Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
Homology of knot covering spaces computed by using nonsingular spanning

surfaces.

Seifert, H. and Threlfall, W.: Lehrbuch der Topologie, Teubner, Leipzig 1934.

1935
Reidemeister, K.: Homotopieringe und Linsenraume, Abh. Math. Sem. Univ. Hamburg
11 (1935), 102-109.

Classification .of lens spaces.

1936
Baer, R. and Levi, F.: Freie Produkte und ihre Untergruppen, Compositio Math. 3
(1936), 391-398.
Covering space proof of the Kurosh subgroup theorem.
Markov, A. A.: Uber die freie Aquivalenz der geschlossenen Zopfe, Rec. math. Moscow
1 (1936), 73-78.
Markov operations on braids.
Post, E. L.: Finite combinatory processes—formulation 1, J. Symbolic Logic 1 (1936).
Definition of computability.
Todd, J. A. and Coxeter, H. S. M. ; A practical method for enumerating cosets of a finite
abstract group, Proc. Edinb. Math. Soc. 5 (1936), 25-34.
Coset enumeration method.
Turing, A. M.: On computable numbers, with an application to the Entscheidungs-
problem, Proc. Lond. Math. Soc. 42 (1936), 230-265.
Definition of computability.



Bibliography and Chronology 315

Whitehead, J. H. C.: On equivalent sets of elements in a free group,
Ann. Math. 37 (1936), 782-800.
Algorithm for determining whether elements are equivalent under an automorphism.

1937
Turing, A. M.: Computability and A-definability, J. Symbolic Logic 2 (1937), 153~
163.

1943 _
Papakyriakopoulos, C. ID.: A new proof of the invariance of the homology groups of a
complex (Greek), Bull. Soc. Math. Gréce 22 (1943), 1-154.

Proof of Hauptvermutung and solution of homeomorphism problem for 2-complexes.

1946
Godel, K.: Remarks before the Princeton bicentennial conference on problems in
mathematics. In The Undecidable (M. Davis, Ed.), Raven Press 84-88, 1965.

1947

Post, E. L.: Recursive unsolvablllty of a problem of Thue, J. Symbolic Logic 12 (1947),
1-11.

1948
Fox, R. H. and Artin, E.: Some ‘wild cells and spheres in three-dimensional space.
Ann. Math. 49 (1948), 979-990.

Wildness of arcs proved by computation of groups.

1949

Fox,R. H.: A remarkable snmple closed curve, Ann. Math. 50 (1949), 264-265.

Higman, G., Neumann, B. H,, and Neumann, H.: Embedding theorems for groups, J.
Lond. Math. Soc. 24 (1949), 247-254. " -

1950
Blankenship, W. A. and Fox, R. H.: Remarks on certain pathological open subsets of
3-space and their fundamental groups, Proc. Amer. Math. Soc. 1 (1950), 618-624.

1952
Moise, E. E.: Affine structures in 3—mamfolds V. The triangulation theorem and
Hauptvermutung, Ann. Math. 56 (1952), 96-114,

Proof of triangulation and Hauptverm,ul‘ung,{or 3-manifolds.

1954
Magnus, W. and Moufang, R.: Max Dehn zum Gedachtnis, Math. Ann. 127 (1954),
215-227. SR .

1955
Novikov, P. S.: On the algorithmic unsolvablllty of the word problem in group theory,
(Russian) Trudy Mat. Inst. Steklov 44 (1955), 143 pp.

Unsolvability of the word problem for gryoups..

1956
Griffiths, H. B.: Infinite products of sem1groups and local connectivity, Proc. Lond.
Math. Soc. (3) 6 (1956), 455-480. Sh



316 Bibliography and Chronology

1957
Papakyriakopoulos, C. D.: On Dehn’s lemma and the asphericity of knots, Ann. Math.
66 (1957), 1-26.

Proof of Dehn’s lemma.
Sanderson, D. E.: Isotopy in 3-manifolds. I. Isotopic deformations of 2-cells and
3-cells, Proc. Amer. Math. Soc, 8 (1957), 912-922.

1958
Markov, A. A.: Unsolvability of the problem of homeomorphy (Russian), Proc. Int.
Cong. Math., 1958, 300-306.

Unsolvability of the homeomorphism problem for triangulated 4-manifolds.
Mikhailova, K. A.: The occurrence problem for direct products of groups (Russian),
Dokl. Akad. Nauk SSSR 119 (1958), 1103-1105.

Rabin, M. O.: Recursive unsolvability of group-theoretic problems, Ann. Math. 67
(1958), 172-194,

Unsolvability of isomorphism problem. !

Whittlesey, E. F.: Classification of finite 2-complexes, Proc. Amer. Math. Soc. 9 ( 1958),
841--845.

1959
Boone, W. W.: The word problem, Ann. of Math. 2 (1959}, 70, 207-265.

1960
Fuchs, I..: Abelian Groups, Pergamon Press, Oxford 1960).
Wallace, A. H.: Modifications and cobounding manifolds, Can. J. Math. 12 (1960),
503-528.
Construction of orientable 3-manifolds by surgery.

1961
Cairns, 8. 8.: Introductory Topology, The Ronald Press Co., New York 1961,
Haken, W.: Theorie der Normalflichen, 4cta Math. 105 (1961), 245-375.
Algorithm for recognizing the trivial knot.
Milnor, J.: Two complexes which are homeomorphic but combinatorially distinct,
Ann. Math. 74 (1961), 575-590.
Hauptvermutung is falsc for 6-complexes.
Schubert, H.: Bestimmung der Primfaktorzerlegung von Verkettungen, Math. Zeit.
76 (1961), 116-148.

1962
Hempel, J.: Construction of orientable 3-manifolds in Topology of 3-manifolds and
Related Topics (ed. M. K. Fort Jr.,), Prentice-Hall, Englewood Cliffs, 1962, 206-212.
Lickorish, W. B. R.: A representation of orientable combinatorial 3-manifolds, Ann.
Math. 76 (1962), 531--540.

Surgery construction using twist homeomorphisms of surfaces.
Reinhardt, B. L.: Algorithms for Jordan curves on compact surfaces, Ann. Math. 75
(1962), 209-222,

Algorithm using hyperbolic geometry.
Stallings, I.: On the recursiveness of sets of presentations of 3-manifold groups, Fund.
Math. 51 (1962), 191-194,

Z x 7 xZ x Zis not a 3-manifold group, and hence there is no algorithm for
recognizing presentations of 3-manifold groups.

1963
Britton, J. L.: The word problem, 4nn. of Math. 2 (1963), 77, 16-32.



Bibliography and Chronology ,'31.7

1964
Bing, R. H.: Some aspects of the topology of 3-manifolds related to the Poincaré con-

jecture in Lectures on Modern Mathematics 11 (ed. T. L. Saaty), Wiley, New York 1964
93-128.

1965 ;
Zieschang, H., Algor:lhmen fiir einfache Kurven auf Flichen, Math. Scand. 17 (1965),
17-40.

Combinatorial derivation, based on Whitehead 1936.

1966 :
Calugareanu, G.: Sur les courbes fermées simples tracées sur une surface fermee
orientable, Mathematica (Cluj) 8 (1966), 29-38.

Vindication of Poincaré’s 1904 algorithm for simple curves. :
Magnus, W., Karrass, A., and Solitar, D., Combinatorial Group Theory, Wiley Inter-
science, New York 1966.

1967

Blackett, D. W.: Elementary Topology, Academic Press, New York 1967. .
Massey, W. S.: Algebrazc Topology: An Introduction, Harcourt, Brace and World,
New York 1967.

Rogers, H. Jr.: TheoryojRecursweFunctmns and Effective Computability, McGraw-Hﬂl
New York 1967.

1968 R )
Boone, W. W., Haken, W., and Poénaru, V.: On recursively unsolvable problems in
topology and their c1ass1ﬁcat1on In Contributions to Mathematical Logic (H. A.
Schmidt, K. Schiitte, and H.-T. Thielé, Eds.), North-Holland, 37-74, 1968.
Waldhausen, F. (a): Heegaard-Zetlegungen der 3-sphire, Topology 7 (1968), 195-203.
All are isotopic to the obvious ones.
Waldhausen, F. (b): The word ‘problem:in fundamental groups of sufficiently large
irreducible 3-manifolds, Ann. Math; 88 (1968), 272-280.
Solution of word problem for knot groups.

1969
Garside, F. A.: The braid group and other groups, Quart. J. Math. Oxford 20 (1969),
235-254.

Solution of the conjugacy problem for braid groups.
de Rham, G.: Lectures on Introductzon to Alqebrazc Topology, Tata Institute, Bombay
1969.

1971
Hoare, A, H. M,, Karrass, A., and Solltar, D Subgroups of finite index in Fuchsian
groups, Math. Zeit. 120 (1971), 289-298. :

1972
Bollinger, M.: Geschichtliche Entw1cklung des Homologlebegnﬁ”s Arch. for Hist.
Exact Sci. 9 (1972), 94-166.

1973
Lickorish, W. B, R.: 3-manifolds as branchcd covers, Proc Camb, Phil. Soc. 74 (1973),
449-451.

With unknotted branch curves.



318 Bibliography and Chronology

1974
Hilden, H.: Every closed orientable 3-manifold is a 3-fold branched covering space of
S3, Bull. Amer. Math. Soc. 80 (1974), 12431244,
Laudenbach, F.: Topologie de la dimension trois : homotopie et isotopie, Asterisque # 12,
Soc. Math. de France, Paris 1974.
Magnus, W.: Non-euclidean Tessellations and Their Groups, Academic Press, New
York 1974,
Volodin, I. A., Kuznecov, V. E., and Fomenko, A. T.: The problem of the algorithmic
discrimination of the standard three-dimensional sphere. Russian Math. Surveys 29
(1974), 711-172.

Sketches 8. P. Novikov’s proof that there is no algorithm for recognizing S3.

1975
Birman, J. S.: Braids, Links, and Mapping Class Groups, Princeton University. Press,
Princeton 1975.
Proof of Markov’s 1936 theorem on equivalence of closed braids.
Lefschetz, S.: Applications of Algebraic Topology, Springer-Verlag, Heidelberg 1975.

1976

Meyerson, M. D.: Representing homology classes of closed orientable surfaces, Proc.
Amer. Math. Soc. 61 (1976), 181-2.

Montesinos, J.: 3-manifolds as 3-fold branched covers of 83, Quart. J. Math. Oxford 27
(1976), 8494, '

Rolfsen, D.: Knots and Links, Publish or Perish Inc., Berkeley 1976.

1977

Giblin, P. J.: Graphs, Surfaces and Homology, Chapman and Hall, London 1977.
Moise, E. E.: Geometric Topology in Dimensions 2 and 3, Springer-Verlag, New York
1977.

Thurston, W.: Lecture Notes, Princeton Math. Dept. Princeton 1977.

1978
Waldhausen, F.: Recent results on sufficiently large 3-manifolds, Proc. Symp. in Pure
Math 32 (1978), vol. 2, 21-38, American Mathematical Society.

Outline of classification for large class of 3-manifolds and their groups, using
Hemion 1979 and Haken 1961.

1979
Hemion, G.: On the classification of homeomorphisms of 2-manifolds and the classi-
fication of 3-manifolds, Acta Math. 142 (1979) 123-155.

Solution of conjugacy problem for mapping class groups.
Weil, A.: Riemann, Betti and the birth of Topology, Arch. for Hist. Exact Sci. 16 (1979)
91-96.

1980

Cohen, D. E, and Aanderaa, S.: Modular machines, the word problem for finitely
presented groups, and Collins’ theorem. In Word Problems 11 (S. I. Adian, W. W. Boone,
and G. Higman, Eds.), North-Holland, 1-16, 1980.

1982
Stillwell, J. C.: The word problem and the isomorphism problem for groups, Buil. Amer-.
Math. Soc. 6 (1982), 33--56.



Index

A
Aanderaa, S. 285,290
Abelian group
Betti numbers of 175, 180
cyclic 175-177, 179-180
finite  175-177, 180
finitely generated 175
free 48, 177-178, 180, 184
infinite cyclic  (See Infinite cyclic
group)
infinitely generated 179
structure theorem 175, 180
torsion coefficients of 175, 180
torsion-free 179
Abelianization
of free group 104, 181
of fundamental group 171-173, 259
of knot group 183
of surface group 182
presentation invariance 172, 181
Alexander, JW. 62, 64-65, 110, 166,
184, 212, 226, 229, 230, 233, 235,
247,258,271
duality theorem 172, 184
Algebraic
function 54, 56-57, 85
intersection  200--205
Algorithm 2
definition of 36-37
Dehn’s 186, 190
euclidean 210
for coset enumeration 51
for deciding abelianness 232
for decomposition of abelian group
180

for presenting m, of a complex 139
for recognizing Heegaard
diagram 255
for recognizing trivial knot 232
for set enumeration 38-39
for simple curves on surfaces 190
194
for word problem in braid
group 239-240
for word problem in free group 94,
298
for word problem in free product
220
for word problem in M(Torus) 213
for word problem in surface group
186, 190
Poincaré’s 192194
Reidemeister—Schreier 165
Zieschang’s 194
Algorithmic problem 36, 278-280
Ambient
isotopy 18, 218, 222
space 11
Ampbhicheiral 225
Analytic continuation 110
Annulus 77, 227,273
Antoine, J. 152
necklace 152
Appell, P. 61
Approach path
in complex 137
in graph 96, 137
in Kurosh theorem 167
in Seifert-Van Kampen theorem
126, 127
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Approach path {cont.)

in surface complex 139
Arc

across the polygon 30

connected 27

definition 10

great circle 56

in a polygon 32

polygonal 28, 31, 326

simple 33-35

simple polygonal 32-33

wild 150
Artin, E. 150, 152153, 233, 236,

238-240

Automorphic functions 85
Automorphism

of free group 240

of free product 223

of groups 45

of Hy 213-214

of tessellation 8486

of torus knot groups 224

of tree 99

of trefoil knot group  222-224
Automorphism group

definition 45

of Cayley diagram 107

of free abelian group 209

of 7, is mapping class group 206

of torus knot group 224
Axiom of choice 8, 95, 167

B
Baer, R. 18, 167, 195, 206, 212
generalized theorem 212-213
theorem 18, 195, 206, 242
Balanced presentation 255
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and connectedness 26
half 15
n- 12
neighbourhood 6, 8, 27
wild 152
Barycentric subdivision 25
Basepoint 114
Belt-driven machinery 63
Betti, E. 170
Betti numbers
computability of 180
of abelian group 175, 180
of manifold 170-171, 250
of surfaces 183
topological invariance 110
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Bing, RH. 245-246
Birman, J.S. 236
Blackett, D.W. 250
Blankenship, W.A. 152
Bollinger, M. 171
Bolzano-Weierstrass theorem 6-7
Boone, W.W. 296, 299-301
Borsuk, K. 121-122
Boundary

and homology theory 171

curves 77,79

of manifold 15

of polygon 28, 30, 34

of simplex 3

of simplicial complex 15

of union of bricks | 32

path of face 156

topological invariance 172

topological invariance for

2-manifold 34

Bounded
manifold 15
surface 77

surface, embedding R® 78

3-manifold 260

Bounding 173

Bouquet 97, 105

Braid

closed 233

combing 239

form of a knot  233-235

group 236-240

group generators 237

group relations 238-239

group word problem 239-240

hair 237

infinite 239

open 236

operations 238

product 236

threads 236

Branch

curves 61-62

points  55-57

Branched covering

of disc by annulus 273

of R® 61

of S 54,56

of S3 61, 226-229, 231, 243, 270~
274

of higher dimension 61-62

Brauner, K. 62

Brick 32-33

Britton, J.L. 290



Index

Britton’s lemma 286, 290
Brouwer, LEJ. 119, 120, 122,172
degree 119-121
fixed point theorem 122
Brunn, H. 233-234

C
Cairns, S.S.  171-172, 180
Calugareanu, G. 194
Cancellation-reducing
transformation 104
Canonical curves
and handle decomposition 197
as edges of canonical polygon 84
generate all curves 186
homeomorphism determined by
image of 211
mapping onto  196-197, 204-205
nonseparating 196-197
pairs of torus  207-213
separating 197
Canonical homomorphism 45, 178
Canonical polygon,
and handle decomposition 197
edges of 186
for bounded surface 78
for Klein bottle 66
for nonorientable surface 68
for projective plane 64
for surface of genus 2, 82
for torus 8081
in universal cover 81-87, 186189,
191-194
Cantor, G. 39
set 152
Cardan’s formula 62
Cayley, G. 47
Cayley diagram,
and normal subgroup 106-107
and word problem 47-48, 98
definition of 47
finite 107
of free group 92-94, 97
of homology sphere group 266
of Klein bottle group 187-188
of modular group 220
of surface group 87, 186-190
Cell 23
and homology theory 170
complex 23-24
decomposition 24, 170, 243, 250
of polyhedral schema 248-250
Centre of group 218

Chain
closed 172
one- 172
stitch 152
two- 173
Church, A. 278
Church’s thesis 278-281
Classification theorem for surfaces
183,197, 242
Clebsch, A. 58, 206
Clifford, W.K. 57-58, 60
normal form for Riemann
surface 57-58, 60, 243
Closed
curve 10
one-chain 172
path 91
set 6,33,34
surface 69
Closure 6
Cohen, D.E. 285, 290
Coherent orientation 21
Cohn-Vossen, S. 67
Collapse 123
and elimination of a generator
elementary 123
of subcomplex of surface onto
graph 141, 144
Combinatorial
fundamental group 96, 157
group theory 40, 46
homeomorphism 19, 25, 38
Commutator subgroup
and abelianization 181
as normal subgroup 101
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69,

158

generated by commutators  174-175

of free group 101, 106

of fundamental group 173

of modular group 163
Compact set 7, 31

locally 19
Compactness

and invariance of Brouwer

degree 120
and r; of infinite complex 140
role in finding n, (8') 116-121

role in Seifert—Van Kampen 126

Complete state 282, 284
pair = 282-283, 290
Complex
arc-connected 116
cell 23
finite 15
infinite 15, 140
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Complex (cont.)

n- 19,21

nonorientable 22

orientable 22

path-connected (See also Arc

connected) 116

surface (See Surface complex)

two-  (See Surface Complex)
Complex function 54

of two variables 62

theory 54, 85, 190
Complex plane 54
Component

bounded 33, 35

of open set 27, 30

of R — f-graph 29

of R¥ - 82 36

unbounded 33-35
Computation 282

step 282-283, 293-294
Conjugacy problem 187, 232, 240,

242

Conjugate 166, 219, 223
Connected 27
arc 27,32
graph 91
path- 116
set 34
sum 139, 180, 247
surface 57
Connectivity 54
" higher dimensional 170
of surface 58, 170"
Consequence relation 49, 50, 302-303
Continuation 112
analytic 110
Continuous function 6
Contractibility problem  186-187, 242
Convex 20
hull 2
Coset 43
decomposition 43, 51, 100, 102-103,
176
enumeration 51
in torus knot group 219
representative 44, 51, 105-106,
176-177, 287, 289
Covering
branched (See Branched covering)
cyclic 84, 225-231
graph 97,99
map 10, 12,99, 102
motion group 98, 106-107, 164
path 191-195

Index

regular 107
space 54
surface 80
surface complex 158
two-sheeted 87
unbranched 64, 80, 84, 88, 230
universal (See Universal covering)
universal abelian 99, 101
without automorphisms 102
Coxeter, H.S.M. 51
Crosscap 65, 66
definition of 70
equals Mobius band 65, 79
normalization 72, 74
relation with handle 68, 244
Curvature of surface 77
Curve
branch 61-62
canonical 84
canonical nonseparating. 196-197
canonical separating 197
closed 10
definition of . 7,9
Jordan 27
null-homotopic 17-18
polygonal 8, 26-28, 30, 197, 268
simple closed (See Simple closed
curve)
Cut and paste 9, 57,60, 72-74, 78
Cycle 172
Cyclic cover
of knot complement  225-231
of surface 84
Cylinder
covering torus 81
solid 208

D
Deformation
elementary 136
of curve 8,110
ofmap 17
of plane 9,233
rectangle 113,126, 140
retract 122
Deformation retraction
definition of 122
induces isomorphism of n, 122
of graph-to bouquet 97, 124
of perforated torus 124
Degree
Brouwer 119-121
of unsolvability 50
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Dehn, M. 46-47, 58, 69, 90, 125,
186187, 194, 198, 221, 223, 225,
232, 243, 247, 263-264, 266, 269,
299-300
algorithm 186, 190
lemma 232, 245
twist 198
Descartes, R. 54
polyhedron formula. 77, 170
Determinacy 276, 295
Determinant 208-210
Diagonal argument - 39
Dimension 15
and homology theory 171
topological invariance 172
Direct product
from free product 134
of abelian groups 175-180
of groups 133
of infinite cyclic groups
Disc
meridian 254, 259--260
singular 10
topological 10
Dodecahedral space 266
Doubled knot 230
Du Bois-Reymond, P. 39
Dyck, W. 45-46, 67-68, 90, 243
classification of nonorientable
surfaces 68
theorem 45

178-179

E
Edge
circumferential 188
endpoints of 91
final point of 91
free 77
initial point of 91
of Cayley diagram 4748
of graph 91
of Mdbius band 62
oriented 47,91
path 86,93, 188-189, 197
radial 188
Elementary collapse 123
Elementary subdivision 24-25, 75-76
Elliptic functions 206
Embedding
definition 16
of bounded surface in R® 78
of closed surface in R* 79, 80
of factor in free product 131
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of groups 45
of Riemann surface in R* 57
of S* in'R! (nonexistence) 16
of Stin R* 16
of Stin R¥ 16+
of S%in R® 36,152
of simplicial complex in R” 22
of surface complex in R® 300"
of tree in R*? 94 :
wild 144
Endpoints 91
Equivalence
class of path 114
class of schema vertices 72
class of word 42
free 41,94
of journeys 111
of paths and covering paths 100
of paths in complex 40
of paths in graph 92, 94, 96
of paths in surface complex 157
of words 41
Euclidean algorithm 210
Euler, L. 54,75
Euler characteristic
of cover 84
of odd-dimensional manifold 250
of pseudomanifold 248-250
of surface 75-77, 79, 183, 197,
242
of 3-manifold 250
topological invariance 76, 183
Euler polyhedron formula 75, 170

F
Face
boundary path of 156
of a simplex 3
of a surface complex 156
Factorization theorem 177
Figure eight knot 233, 240
braid form 233
Heegaard diagram of
complement 263
is amphicheiral 225
Finite surface
bounded 77
closed 69
fundamental group 141
Fomenko, AT. 247
Fox, RH. 150, 152-153
Artin wild arc” 150-152, 184
Frankl, F. 245
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Free abelian group
automorphism group of 209
Cayley diagram 48
generators for 178
H, of link complement is 184,
259-260
subgroup of 178
Free equivalence 41, 46, 94
Free generators 57
for free group  103-107
for 7, of graph 97
forZ* 178
Free group
as subgroup of modular group 90
automorphisms 240
definition of 45
every group is quotient of 46
generated by edge labels 86
infinitely generated 101, 182
rank 104, 181
realized by infinite surface 142-144
subgroups 90
Free product
automorphisms 223
definition of 131
elements of finite order 219
embeds factors 131
normal form for elements 219-220
presentation invariance 131
realization by surface complex 131
subgroups 166
Fricke, R. 85, 165, 206, 220
Frontier
definition of 6
of component of RZ-curve 33-35
of S-manifold 301
of n-ball 12
of open set 27
of polygon 28-29
point 6
Fuchs, Laszld 179
Fuchs, Lazarus 85
Fuchsian groups 84-87
Fundamental group
and homotopy 17
combinatorial 96, 157 .
combinatorial invariance 110, 158
commutator subgroup of 173
definition 114
fails to distinguish 3-manifolds 171,
258
history 110
independence from basepoint 96
115-116

Index

invariance under collapsing 158

invariance under deformation
retraction 97, 122

invariance under elementary
subdivision 157

of annulus 123

of bounded 3-manifold 261-263

of bouquet 97,121

of complex 40, 46-47, 139

ofdisc 123

of finite surface 141

of Fox-Artin arc complement 150
152

of graph -~ 96, 137

of graph complement 148

of infinite complex 140

of infinite surface 142-144

of knot complement  144-147

of lens space  155-156

of link complement 62

of n-sphere 138

of perforated sphere 57

of Poincaré homology sphere 265

of product 133

of 8! 116-121

of solid torus 123

of surface complex 129, 138

of 3-manifold 255

of torus 125, 133

of trefoil knot complement 148

of 2-crossing link complement 148

topological invariance 110, 115-116

G
Garside, FA. 236
Generating path 40
Generation
of group 44
of normal subgroup 43
Generator
addition by Tietze transformation
49, 301, 305
elimination by collapsing 158
for braid group 237
for free abelian group 178
for fandamental group of graph 96
for mapping class group of
torus 210
for modular group 220
of group 41,47
of semigroup 47
Schreier 106-107
Wirtinger  145-146, 231, 265
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Genus
Heegaard 244, 256, 262-263, 266
of Riemann surface 62
of surface 58, 60

Giblin, P.J. 171

Godel, K. 279

Goeritz, L. 198

Gordan, P. 206

Graph
covering 99
definition of 91
fundamental group 96, 137
interpretation of free groups 90
#- 28,30,32

Griffiths, HB. 119

Group
abelian (See Abelian group)
automorphism 45
centre 218
cyclic 220,231
first homology 172, 181
free (See Free group)
Fuchsian 84-87
fundamental (See Fundamental

group)
homeotopy 206
homology 171
homomorphism 45
icosahedral 265-266
infinite cyclic  (See Infinite cyclic
group)

isomorphism 435
knot 144,183
mapping class 206
monodromy 57
monomorphism 45, 100, 162
presentation 42
quotient 44
residually finite 232
surface 85, 141, 182183
symplectic 213
trivial 43

H
Haken, W. 232, 299-301
Half ball 12, 15,28
Halting problem 279-282, 284
Handle
base curve 203
boundary path 174
curve passing through 203-206
decomposition 197
definition of 70
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meridian 196, 203
nonorientable 67
normalization 73-74
on 5-manifold 305--306
relation with crosscaps 68, 244
taking curve off 203-204
Handlebody 155, 243, 253, 260262
universal cover 204
Hauptvermutung 19, 25, 110, 247
for 3-manifolds 244
for triangulated 2-manifolds 183
Hawaiian earring 119
Heegaard, P. 58, 61, 69, 149, 170, 226,
229, 243, 254
cone 61-62,229
didggram 226, 253-263
genus 244, 256, 262-263, 266, 268
splitting  243-244, 252254, 266
Hemion, G. 4,232
Hempel, J. 268
Hermite, C. 57
Higman, G. 285,289
Hilbert, D. 37, 67
Hilden, H. 62
HNN extensions  285-290
normal forms in  287-290
stable letters 286
Hoare, AHM. 165
Holes (See also Perforations)
in ball 262
in bounded surface 77
Homeomorphism 5
between surfaces with same
invariants 197
combinatorial 19, 25, 38
local 10, 99, 160
of neighborhoods in surface
complex 160
of Klein bottle 211
of solid torus 211
of torus 209-213
simplicial 211
twist  198-206, 210211
Homeomorphism problem 2
dimension 2 3,183,242
dimension 3 3,244
dimension > 4 5, 247, 299-306
general 2, 38-39, 281-282, 298
knot complements 4, 232
lens spaces 244
Homogeneity 12-13
Homology
and homotopy 172
and wildness 184
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Homology (cont.)

groups 171, 181

of cyclic cover 184, 226

sphere  263-266

theory 170
Homomorphism 45

canonical 45,178

kernel of 45

of homology sphere group 265-266

of knot group 231
Homotopy 17

and homology 172

decomposition into “small”

ones 117

of curves 17, 18, 57, 242

of journeys 113

of maps 17

of paths 113

of sphere in 3-manifold 246
Hotelling, H. 258

Hurwitz, A. 2
Hyperbolic plane
metricin 186, 190, 193-194

motions of 94

Poincaré model 190, 192-193

tessellations of 83-85, 94
Hyperrectangle 6

1
Identification space
197
Imbedding (See Embedding)
Index
and sheet number 100, 162
of a subgroup 51, 104-105, 162, 165
Indicatrix 63
Infinite cyclic group 121-122, 144,
149, 178-179, 183, 264
Interior 6, 28
of polygon 32, 34
Intermediate value theorem 8, 16
Intersection
algebraic  200-205
removal of 195-196, 200--207
Invariance
of Betti and torsion numbers 110
of boundary 172
of dimension 172
of Euler characteristic 76, 183
of fundamental group (See
Fundamental group)
of orientability character 76, 183
presentation 131, 172, 181

11,12, 14, 19,

Index

Inverse

of curve 18-19, 40

of equivalence class of curve 40

of generator 51

of letter 41

of path 112

of path class 115

of Tietze transformation 49
Isomorphism 25, 45, 225

of subgroups 286-287, 292
Isotopy
ambient 18,218,222

between the two trefoil knots (non
existence) 222

definition 18

determination of homeomorphism up
to 211

of braid 236

of disc 212

of Heegaard diagram 254-255

of meridian on solid torus 207

of nonorientable handle 67

of R? 36

of simple curves 195, 198, 200206

of sphere in 3-manifold 246

of torus  210-213

J
Johansson, I. 142
Jordan, C. 26, 110, 186
Jordan curve
bounds bricks 32
definition 27
polygonal 27, 28, 29
separates R> 31
theorem 26,35, 58, 192
Jordan-Schoenflies theorem
35,211
Jordan separation theorem 31
Journey 111

16-17,

K
Karrass, A.
Kernel 45
Klein, F. 60,6365, 8485, 87, 165,
206, 220
Klein bottle
canonical polygon for 66
construction 65
crosscap form 66
homeomorphisms 211
mapping class group 213

165,220
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perforated 67-68
polygon schema 71
separation into Mobius bands 67
simple curves on 194
solid 253
solution of contractibility
problem 187
universal cover 187
Kneser, H. 233, 266
Knot 3,4, 16,18
amphicheiral 225
as branch curve 61-62
doubled 230
existence of infinitely many 220, 229
figure-cight 225, 233, 240, 263
group 144
problem 232-233
projection 144, 233
torus (See Torus knot)
trefoil  (See Trefoil knot)
trivial 144, 230, 232, 245
Kronecker, L. 175-177, 180
Kurosh, A.G. 166-167
Kuznetsov, V.E. 247

L
Latitude 207, 221, 267, 272-273
Laudenbach, F. 246
Lefschetz, 5. 69
Leibniz, G.W. 54
Length
of path 91
of word 103
—reducing transformation 103
Lens space
as branched cover
270-271
as polyhedral schema 252
definition of 155
group 156
Heegaard diagram 256-257
homeomorphism problem 244
nonhomeomorphism of (5,1) and (5,2)
258-260
orientability 243
Levi, F. 167
Lickorish, W.B.R.
268,271
surgery 269-270
Lifting a path 100, 186
Limit point 6, 193
Link
group 184

226-229,

198, 202, 243, 245,

327

two—crossing (See Two—crossing
link)
Listing, J.B. 62, 218, 225
Local
compactness 19
finiteness 19, 20, 140
homeomorphism 10, 88, 99, 100, 160
simply connectedness 20
I-transformations and
r-transformations 283-287,
291-293

M
Magnus, W.
Manifolds
bounded 15
definition 13
five-dimensional
four-dimensional
306
n-dimensional
product of 133
three-dimensional  (See
Three-manifolds)
two-dimensional (See Surface)
Map 8,10
Mapping class group
conjugacy problem 232
definition of 206
is automorphism group of #; 206
of Klein bottle 213
of torus  206-213
Markov, A.A. 5,39, 236, 247, 299—
301
operations 235-236
Massey, W.S. 163
Matrix 210, 213-214
Mechanical systems 13
Meridian
disc 254, 259-260
on handlebody 253254, 262, 266
on knotted ring 221
on solid torus 258-259
on sphere 55, 57
on torus 207
on unknotted ring 272-273
plate 254, 268
twist 273
Metamorphosis of handles 74
Meyerson, M.D. 214
Mikhailova, K.A. 297
Milnor, J. 247
Modular group 163, 220

85, 90, 163, 190, 220 -

299-306
247-248, 299-301,

13,20
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Mobius, A.F. 59, 60
classification of surfaces
Mabius band
and Klein bottle 67
boundary as branch curve 274
equals crosscap 65, 79, 87
history 62-63
is nonorientable 22, 63
not at boundary of surface 77
simple curves on 194
spans trefoil knot 226
with handle 68
Moise, EE.  25-26, 36, 242
Monedromy group 57, 84
Monomorphism 45, 100, 102
Montesinos, J. 62
Motion 85, 94, 98
Moufang, R. 90
Multiple point 10

59, 60

N
n-ball 12,139
Neighbourhood
annular 254
ball 6,27
epsilon 6, 300
in identification space 12, 14
of edge in surface complex 159
of path in surface complex 129, 138
of vertex in graph 97, 99
of vertex in surface complex 159
plate 6,254
star 20, 93
strip 6, 27, 29, 63, 212
surface 243, 248-251
tube 6
tubular 247, 253
tunnel 146
Nested presentations 140, 144
Neumann, BH. 285, 289
Neumann, H. 2835, 289
Nielsen, J. 90, 103104, 182, 194, 213
method 103-105
—Schreier theorem 103
transformation 103
Nielsen—Schreier theorem
and surface groups 164
covering space proof 103
Nielsen proof 103
Schreier proof 105-106
Noether, E, 175
Nonorientable 22
complex 22

Index

handle 67
surface 22, 62-63, 68, 87, 172, 183
3-manifolds 243, 253
Normal form .
for closed surface 75-76, 244
for element in HNN
extension 287-290
for Riemann surface 57-58, 60
for word in free group 94
for word in free product 219-220
Normal subgroup
and Cayley diagram 106-107
and regular covering 107
characterization 43, 46
commutator subgroup is 101
definition of 43
generation of 44
of isotopies 206
Novikov, P.S. 39,47, 285
Novikov, S.P. 247
n-sphere 12, 138
Null-homologous path 173
geometric interpretation 173
in lens space 259
on knotted ring 264
which is not null-homotopic 174,
264
Null-homotopic path (or curve) 17, 18,
46, 114, 173, 196
in covering space 231
in lens space 259
on solid torus 207, 221

(0]
One-sided surface (See also
Nonorientable) 63
Openset 6,26
arc connected 27
connected 27
in Jordan curve theorem 27-28
in Seifert—Van Kampen
theorem 125,129

Orientability character 75-77, 183
Orientable
closed surface 62, 76, 183
complex 22

3-manifold 243, 252, 266
Orientation 20-21, 91

P
Papakyriakopoulos, C.D. 232, 242,
256
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Partial recursive function 38
Path
class 114
closed 91,94
definition of 111
equivalence in graphs
in Cayley diagram 48
in graph 91
in tessellation 86
inverse 91
product 91,94
reduced 91-93
uniqueness in trees, 91
Path-connected 116 (See also Arc
connected)
Perforation 78-79
Period 175
Permutation of sheets
Phase space 13
Plane
as universal covering surface 80,
88
complex 54
hyperbolic  83-85
noneuclidean 83
projective  (See Projective plane)
Poénary, V. 299-301
Poincaré, H. 47, 84,87, 110,
136, 170172, 186, 192, 194, 214,
226, 245, 248, 263, 266

92,94

56, 81, 84

algorithm for simple curves 192—
194
conjecture 171, 246, 256

criterion for homology class to
contain
simple curve 192,214
homology sphere 263266, 269—
270
method for computing
presentations 136
model of hyperbolic plane 190,
192-193
Polygon 28, 30-32
arcs in 30, 32
construction of covering surface 80
enclosing Jordan arc 34
enclosing Jordan curve 35
schema for surface 69, 71--75
Polygonal
arc 28,30-31
curve 8,26-28,30
Polyhedra 248
Post, EL. 36, 39,47
Potential theory 61
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Presentation 42, 299
abelian 180
and Cayley diagram 48
and Heegaard diagram 255
balanced 255
enlargement 301-302
finite 42, 50, 137, 165
invariance of abelianization 172, 181
invariance of free product 131
Tietze transformations of 48-50
Problem 38
algorithmic 36, 38, 278-280
conjugacy 187, 232, 240, 242
contractibility 186-187, 242
halting (See Halting problem)
homeomorphism 2, 38--39, 242, 244,
281-282, 299--306
isomorphism 37, 50, 225, 297298,
301, 306
of recognizing S*  245-247
recursively enumerable 244
unsolvable 37-39
word (for groups, See Word problem)
word (for semigroups) 39
Product
direct, of groups 133
fundamental group of 133
of braids 236
of cosets 44
of curves 17-18, 40
of closed paths 96
of equivalence classes of curves 40
of equivalence classes of words 42
of manifolds 133-
of path classes 114
of paths- 112
of simplicial complexes 133
of spaces 132
of words 41
proper 103
Projective plane 64
canonical polygon 64
construction 64
crosscap from 65-66
covering of 64, 159
nonembedding in R® 64, 130
solution of contractibility
problem 187
Pseudomanifold 248-251

Q
Quintuple 276, 280, 283
Quotient group 44, 106—-107
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R

Rabin, M.O. 37
Rado, T. 25
Rank

of free abelian group 178, 181
of free group 104, 181
of infinitely-generated free
group 182
Recursively enumerable 38, 244
Reduced
curve on torus 191
path 91,96
path in tree  91--94, 96, 105-106
word in free group 94, 105
word in surface group 190
Reduction of problems 280-282, 298,
301
Reidemeister, K. 47, 88, 90, 103, 159,
163-164, 166, 184, 230, 244
~Schreier process  165-166, 184,
230-231
Reinhart, B.L. 194
Relation 41,47
addition by Tietze
transformation 49, 301-303
in Seifert-Van Kampen
theorem 126
for braid group - 238-239
for surface group 86
trivial 41
Wirtinger
Relator 41
Residually finite group 232
Retract 121
Retraction . 121-122
deformation (See Deformation
retraction)
de Rham, G. 111, 266
Riemann, G.F.B. 4,25, 54,59, 170
mapping theorem 35
spaces 61
surfaces  54-57, 62, 84, 226, 242,
274
Ring 207 (See also Torus, solid)
complement in S*  228-229, 273
knotted 221
latitude on_ 207, 221, 272-273
meridian on 207, 221, 272-273
(m, n) curve on  228--229
Rogers, H. Jr. 50
Rolfsen, D. 179, 230, 264, 270
Roman mosaics 63
r-transformations (See
I-transformations)

145, 147, 151

Index

S
Samphier, L. 23
Sanderson, D.E. 246
Schema
for bounded surface 77
for Klein bottle 71
for simplicial complex 19
for sphere 71
for sphere with cross caps  74-75
for sphere with handles 73-75
for surface 69
for torus 71
isomorphic 25

polygon 69
polyhedral 248--252
Schiafli, L. 64

Schoenflies, A. 35
Schreier, 0. 90, 105, 107, 166, 182, 221,
223-224, 230
coset diagram 107

coset representative  105-106,
165-166

generators  106-107, 165

index formula 104-105

proof of Nielsen-Schreier
theorem 105
transversal 105-106
Schubert, H. 232
Schwarz, HA. 80, 190
Seifert, H. 110, 154, 174, 226, 229, 247,
264, 266, 299
surface 226, 229
Seifert—Van Kampen theorem 11,
123-128
abelianized 259, 264
and free products 130-131.
and Heegaard splitting 255
and realization of groups 129
Semidecision procedure 39, 50
Separation
and homology theory 171
of open disc by arc (nonexistence) 34
of points in set 27
of polygon by arc 30
of R? by arc (nonexistence) 33-34
of R? by Jordan curve 31, 171
of R? by line to infinity 35
of R? by open line 34
of R? by polygonal Jordan curve 28
of R*by S 36
of §? by simple closed curve 35
of semidisc by arc 28
Sheet
number of graph cover 100
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number of surface complex two- 3,17, 187
cover 161 with crosscaps 65, 75
of covering of S* 55 with crosscaps and holes 77
of covering of S3 62 with handles 60, 62, 75
of covering of torus 81 with handles and holes 77
Shelling 245 with holes 77
Simple closed curve Spur  91-92, 94, 96--97, 100, 110
homology class of 192, 214-215 Stable letters  (See HNN extensions)
homotopy class of 191-193 Stallings, J. 247
inR? 27 Star 20,93
on Klein bottle 194 Steinitz, E. 25
on Mobius band 194 Stillwell, J.C. 285,287,291 -
on nonorientable surface 196, 198, Subdivision 24,25
200 Subgroup
on orientable surface 192-193, abelianization of 184
194-206 conjugate 166
onS? 35 index of 51, 104-105, 165
on surface 190, 194 normal 43-44
on torus 191 of abelian group 177
Poincaré aigorithm 192-193 of free abelian group 178-179
Zieschang algorithm 194 of free group  100-107
Simplex 2, 245 of free product 166-167
Simplicial of surface group 164
complex 3,19 property of coverings 100, 162-163
decomposition 24, 170, 243-246 realization by covering 102-103,
decomposition of surface 69, 76-77 105-107, 162-163
refinement 25 torsion 180 '
Simply connected 17, 20, 98 Subpath property 188--189
Singer, J. 244 Surface 3
Singular bounded 77
disc 10,114 classification 58, 69-77, 183, 197,
rectangle 113 242
surface 173 closed 69
Singularity 10 combinatorial definition 69
Skeleton 23, 40-41, 139 complex (See Surface complex)
Solitar, D. - 165, 220 connected 57
Sommerfeld, A. 61 finite  (See Finite surface)
Spanning tree group (See Surface group)
and coset representatives 105 infinite  142-144
construction 95 neighbourhood 243, 248-251
for universal abelian cover 101 nonorientable 22, 62-63, 68, 87
gives generators for 7, of graph 96 orientable 62
implies axiom of choice 95 perforated 78,173
of Cayley diagram 107 Riemann 54-57, 62, 69
of graph of infinite connectivity - 182 schema 69
Sphere Seifert 226, 229
as completed plane 54 spanning 226, 232
branched covering of 54 Surface complex 129
five- 247 combinatorial =, of 156
Heegaard diagram 254 definition 156
homology 263-6 ' fundamental group of 138
perforated 59 homeomorphism problem 242
schema 71 realization of group 129, 299—

three- 171 300
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Surface group
abelianization of 182
as automorphism group 85
as HNN extension 286, 288, 290
presentation 85, 141
subgroups of 164
word problem  186-190
Surgery 243
and branched covers 271-274
construction of homology
sphere 263-266
construction of orientable
3-manifolds 266-270
Symplectic group 213

T
Tessellation
of unit disc 90, 190--193

of universal covering surface 82-83,

186, 192-193, 209
Three manifolds

as branched covers 243, 270-274
bounded 248, 260-263
combinatorial 243
Euler characteristic 249250
groups 247, 255, 265
Heegaard diagrams 253-263

Heegaard genus 244, 256, 262-263,

266, 268
Heegaard splitting 243, 252-254
Homeomorphism problem 244
nonorientable 243, 253
orientable 253, 266
polyhedral 243, 248-252
surgery 243, 266-270
Threlfall, W. 154, 174, 247, 264, 266,
299
Thurston, W.P. 232, 247, 252

Tietze, H. 37,47, 50, 62, 110, 137, 144,

155, 158, 171, 206, 229, 258,
270-271
theorem 49, 181, 301
transformation 48-50, 131,
180182, 246, 301-306
Tightening a path 117
Time-warp 111
Todd, JA, 51
~Coxeter coset enumeration
method 51, 166
Torsion
coefficients  (See also Torsion
numbers) 171

Index

coefficients of abelian group 175,

coefficients of nonorientable
surfaces 183

definition of 170

explanation of name 170

—free 179

numbers, topological invariance
of 110

of covering space 226, 229-230

subgroup 180

Torus

as identification space 11, 12

as phase space 13, 14

as product 132

as Riemann surface 57

as simplicial complex 3

canonical curve pairs  207-213

canonical polygon 207

coaxial 251

homeomorphisms 209-213

is not simply connected 17

knot (See Torus knot)

knot group 154, 218

latitude 207

mapping class group 206-213

meridian 207

(m, n) curve 153-154, 191, 210,
227-229

perforated 124, 192

polygon shema 71

simple curves on  191-192

solid 207, 243

solution of contractibility
problem 187

twist homeomorphisms 910, 198,
210-211

universal cover 81, 191

with handles 88

Torus knot 153

definition of 154

existence of infinitely many 220
group 154,218

group automorphisms 224
group centre 218

mirror image 218

(m, nyand (n, m) 155,218

Transitive permutation group 57,
62

Tree

and Schreier transversal 105
as Cayley diagram 92
definition of 91
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path uniqueness property 91, 94,
105-106
spanning (See Spanning tree)
universal covering 97
Trefoil knot 144-145
as braid 233, 240
cover of S* branched over 226--
229
group 148-149,221-223
group automorphisms 222-224
Heegaard diagram of
complement 263
mirror image 218, 221-222
nontriviality 149
surgery on  264-266, 269
Triangulation (See also Simplicial
decomposition)
of disc can be shelled 245
of 3-manifolds 25,242
of 2-manifolds 25
unshellable 245
Turing, AM. 36-37,278-279, 281
Turing machine 36-39, 47, 276-282
universal 281-282
Twist homeomorphisms (See also
Dehn twists) 198-206
and surgery 266-268
definition of 198
of Klein bottle 211
of orientable surface 198-206,
214-215
of torus 198, 210-211
Two-crossing link
as braid 240
branched covers over 270-271
complement in §* 251
group 148
Heegaard diagram of
complement 262
nontriviality 148

‘U

Umbella 69, 161
half- 69, 70,77

Unbranched cover 64, 88
how a Riemann surface fails to

be 88

local homeomorphism property 8
of knot complement 230-231
of lens space by S* 271
of projective plane 64, 159
of surface 80

of torus 81 i
Uniform contmulty 7 110 126 :
Universal covering

and word problem 98, 247

graph 98

of circle 98

of handlebody 204

of Klein bottle 187

of nonorientable surface 88

of orientable surface of genus

>1 82-84

of solid torus 208

of surface complex 164

of 3-manifold 247

of torus 81, 191-192, 208-209

surface 80, 186, 188, 193, 195

tree 97

v

Vandermonde, A.-T. 152

Van Kampen, ER. 23,111
theorem (See Seifert—Van Kampen

theorem)

Veblen, O. 26, 110

Vector 178

Vertex 4
of Cayley diagram 47-48, 92-93
of graph 91

Volodin, LA, 247

w

Waldhausen, F. 4, 225-226, 232, 247,

254
Wallace, AH. 268
Weber, C. 264, 266
Weil, A. 4
Whiskers 129
Whitehead, JH.C. 194
link 269-270

Wild
arc 150
ball 152

Cantor set 152
embeddings 144
sphere 152

Whittlesey, E.F. 242

Wirtinger, W. 62, 144, 149, 270
generator 145-146, 231, 265
presentation 144-147, 183,218
relation 145-147, 151

Word 36,41
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Word problem

and Cayley diagram 47-48, 87

and universal cover 87, 247

for braid groups  239-240

for free groups 94, 240

for groups 39, 4648, 98, 282,
285--286, 290-297

for knot groups 225, 232

for mapping class group of
torus -213

for semigroups 39,47

Index

for surface groups 186—190

for 3-manifold groups 247

generalized 104, 295-297

unsolvability 282, 285-286, 290
297

Z

Zieschang, H. 194
Z?-machines 282-285

halting problem 284, 294--295



