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ON THE VANISHING OF THE THIRD SPIN COBORDISM GROUP ΩSpin
3

A. I. Stipsicz UDC 515.162+515.164.24

An elementary proof of the theorem given in the title is presented. Bibliography: 6 titles.

Here, we prove the following theorem.

Theorem 1.1. A spin 3-manifold M is the spin boundary of a spin 4-manifold; in short, ΩSpin
3 = 0.

The proof given below can be found in various sources (cf. [3, 2]); in our presentation, we try to be as
elementary as possible. Preceding the proof, we collect the basics about spin structures and handlebodies, and
list their fundamental properties. (For a more detailed treatment of these notions, see [3, 1].) The purpose of
this survey is to complete the proofs discussed in [5, 6].

§1. Preliminaries on spin structures and handlebodies

Definition 1.2. A manifold X has a spin structure if its stable tangent bundle TX ⊕ εk admits a trivialization
over the 1-skeleton of X which extends over the 2-skeleton.1 A spin structure is a homotopy class of such
trivializations. (Here, ε denotes a trivialized bundle. It can also be shown that the definition does not depend
on k if k ≥ 1.)

An oriented manifold X admits a spin structure if and only if w2(X) = 0. An oriented 3-manifold always
admits a spin structure, since its tangent bundle is trivial. Since for a 4-manifold X we have w2(X) ∪α ≡ α∪ α
(mod 2), the existence of a spin structure on X implies that the cup square of every α ∈ H2(X; Z) is even.
Moreover, if X is simply connected and α ∪ α is even for all α ∈ H2(X; Z), then w2(X) = 0; this direction does
not hold in the presence of 2-torsion in H1(X; Z). Spin structures on a manifold (of arbitrary dimension) with
vanishing w2(X) can be parametrized by H1(X; Z2).

If X is a spin manifold and Y ⊂ X is a codimension-0 submanifold, then Y inherits a natural spin structure
from X. If N ⊂ X has trivialized normal bundle (e.g., N = ∂X), then N inherits a spin structure from X. Now
assume that X1 and X2 are two spin manifolds with boundary and Ni ⊂ ∂Xi are codimension-0 submanifolds of
the boundaries. If f : N1 → N2 is an orientation-reversing diffeomorphism mapping the induced spin structures
into each other, then the manifold X1 ∪N2=f(N1) X2 has a canonical spin structure induced from those of X1 and
X2.

Using the above properties, we define the spin cobordism group ΩSpin
n of closed spin n-manifolds. Finally,

we note that there is an orientation-preserving self-diffeomorphism f : S1 × D2 → S1 × D2 of the solid torus
interchanging its two spin structures.

We quickly review the part of handlebody theory that is relevant in our subsequent discussions. (See [1] for
further details.)

Definition 1.3. For 0 ≤ k ≤ n, an n-dimensional k-handle h is a copy of Dk ×Dn−k attached to the boundary
of an n-manifold X along ∂Dk ×Dn−k by an embedding ϕ : ∂Dk ×Dn−k → ∂X.

Dk × 0 is the core, 0 ×Dn−k the cocore, ϕ the attaching map, ∂Dk ×Dn−k (or its image ϕ(∂Dk × Dn−k))
the attaching region, and ∂Dk × 0 (or its image) the attaching sphere of the handle.

X ∪ h is specified by an embedding ϕ0 : Sk−1 → ∂X (i.e., a knot in ∂X) with trivial normal bundle together
with a framing f of ϕ0(Sk−1) (i.e., an identification of the normal bundle νϕ0(Sk−1) with Sk−1 ×Rn−k).

If ∂X is connected and we restrict ourselves to the study of oriented manifolds, then 1-handles are attached
uniquely (up to isotopy). In order to glue a 2-handle, we specify a (1-dimensional) framed knot in ∂X. Homo-
topically different framings can be parametrized by the group π1(SO(n−2)), which is isomorphic to Z for n = 4.
If X = D4, then this framing can be identified with the linking number of ϕ(∂D2 × {0}) with ϕ(∂D2 × {p}) for
some p ∈ D2 close to the origin 0. The extendability of the spin structure of D4 to a 2-handle depends on the
framing (i.e., the above linking number) mod 2; we easily see that the spin structure extends if and only if this
framing is even.

1Note that if a trivialization over the 1-skeleton extends to the 2-skeleton, then it extends in a homotopically unique way.
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If we attach a 1-handle to D4, then the resulting 4-manifold is S1 × D3, which is diffeomorphic to (D2 −
ν{0}) × D2, i.e., to D4 with an open tubular neighborhood of an embedded disk deleted. Consequently, a 1-
handle can be symbolized by an unknot in S3 = ∂D4 with a dot on it, where the circle records the boundary of
the 2-disk that (together with its neighborhood) has been deleted. Similarly, an m-component unlink with dots
in S3 denotes the 4-manifold obtained by adding m 1-handles to D4. (This manifold is obtained as follows: for
each component Ui of the unlink, delete from D4 an embedded disk (Di, ∂Di) ⊂ (D4, ∂D4) (together with its
open tubular neighborhood) such that ∂Di = Ui.)

Note that the attaching map of a 2-handle (which maps S1×D2 to the boundary of the union of the 1-handles)
can now be regarded as pointing to

S3 − ν(an m-component unlink) ⊂ S3

(ν denotes a tubular neighborhood); hence, the above framing convention (as the linking number of the attaching
circle and a nearby one) extends to all cases. By the above-said, a 4-manifold obtained by adding 1- and 2-handles
to D4 is represented by a link diagram in S3, where some knots are framed (they correspond to 2-handles) and
the others (which form an unlink) are dotted (they correspond to 1-handles). Such a diagram is usually called
a link diagram or the Kirby diagram of the 4-manifold considered. We easily see that the attaching region of
a 2-handle passes through a 1-handle if and only if the attaching circle of the former is linked with the dotted
circle representing the latter.

Turning the dot on an unknot to 0 framing, we replace the 1-handle represented by the dotted unlink (which
is S1 ×D3) with a 0-framed 2-handle attached along the unknot (which is S2 ×D2), i.e., we perform a surgery
along the 1-handle. Conversely, a 0-framed unknot gives rise to an embedded 2-sphere (as the union of the core
of the handle with a spanning disk of the unknot) with trivial normal bundle; hence, we can perform surgery
along this sphere. In the diagram, this means that we replace the 0 framing of the unknot by a dot, i.e., we
invert the surgery described above. (In this second case, we must be careful, since the dotted circles must form
an unlink.)

Definition 1.4. Let X be a compact oriented n-manifold with boundary ∂X decomposed as a disjoint union
∂+Xt∂−X of two compact submanifolds, either of which can be empty. (Orient ∂±X so that ∂X = ∂+Xt∂−X
in the boundary orientation.) A handle decomposition of X (relative to ∂−X) is an identification of X with a
manifold obtained from [0, 1]×∂−X by adding handles, such that ∂−X corresponds to {0}×∂−X in the obvious
way. A manifold X with a given handle decomposition is a relative handlebody built on ∂−X, and if ∂−X = ∅,
then X is a handlebody.

A Morse function f : X → [0, 1] provides a handle decomposition for X. Without loss of generality, we assume
that the handles are attached in order of increase of the index. Considering 1− f instead of f , we obtain a new
handlebody; this operation is called turning the handlebody upside down.

In what follows, we restrict our attention to the 4-dimensional case. Clearly, isotoping the attaching maps of
the individual handles does not change the diffeomorphism type of X. Thus, we can slide a 2-handle over any
other without changing X; after the operation, the attaching circle of the 2-handle that we are sliding becomes
the connected sum of the two knots (the connected sum is taken with the band along which we slid the 2-handle).

To determine the new framing, we orient the two former attaching spheres and compute their linking number.
The new framing on the connected sum is (the sum of the framings ± twice this linking number), where the
sign depends on whether the band respects or disrespects the chosen orientations. (In the first case, we add the
corresponding handle, while in the second case we subtract it.)

It can be shown that if the attaching circle of a 2-handle links a dotted circle geometrically once (i.e., the
dotted circle admits a genus-0 Seifert surface intersecting the attaching circle transversally at a single point),
then this pair of handles can be canceled without changing the diffeomorphism type of X. In the notation, we
simply erase the corresponding knots from our diagram.

However, to obtain the diagram of the new handlebody, we must slide handles. The reason for this is as
follows: if a 2-handle h passes through a 1-handle k that we want to cancel with a 2-handle h′, then after
cancellation the attaching map of h is changed (since we change the target space of the attaching map). For
the cancelling pair (k, h′), this confusion can be resolved as follows: slide the 2-handle h over h′ repeatedly until
the resulting 2-handle is disjoint from k. (This can be done because the attaching circle of h′ links the dotted
circle geometrically once.) After separating the dotted circle (representing the 1-handle k) from all 2-handles
(except h′), we cancel the pair (k, h′) by deleting the corresponding knots from the diagram; then the remaining
(framed) knots provide a diagram of the new handlebody.
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Finally, note that if we attach a 2-handle to D4 along a (±1)-framed unknot, then the boundary of the
resulting 4-manifold is the total space of the Hopf bundle, hence diffeomorphic to S3. Consequently, adding (or
deleting) a (±1)-framed unknot to our diagram, we change the 4-manifold but leave its boundary unchanged.

§2. Proof of Theorem 1.1

We divide the proof into several lemmas.

Lemma 2.1. Every orientable 3-manifold M bounds a 4-manifold that can be constructed by using only one
0-handle and several 2-handles.

Proof. Since Ω3 = 0, we know that M bounds a 4-manifold X. Fix a handle decomposition of X and cancel
handles until there is a unique 0-handle and there are no 4-handles. Perform surgeries on 1-handles and then
turn the handlebody upside down. Now the 3-handles of the original decomposition become 1-handles, and by
surgery we turn them into 2-handles. This completes the proof. �

Lemma 2.2. Every spin 3-manifold M is spin cobordant to S1 × Σg for some g (and some spin structure on
this latter manifold). Here, Σg denotes the Riemann surface of genus g.

Proof. Consider X4 with ∂X = M which admits a handle decomposition with a single 0-handle and some
2-handles. Turn the handlebody decomposition upside down, i.e., regard X as constructed on M × [0, 1] by
attaching several 2-handles and a single 4-handle. The spin structure of M extends to some 2-handles and does
not extend to the others, depending on the gluing of the individual handles. Assume that h and h′ are two
2-handles to which the spin structure does not extend. We easily see that in this case the spin structure extends
to the 2-handle obtained by sliding h over h′.

If the spin structure extends to all 2-handles, then M is a spin boundary, and since S1 × S2 (for example)
can be equipped with a bounding spin structure, the lemma obviously follows. If there are 2-handles to which
the spin structure does not extend, then sliding all 2-handles but the last one over the last one, we can assume
that there is a unique such handle h. Note that if we delete the cocore of h (resulting in (D2 \ {0})×D2), then
any spin structure of the gluing region extends to this complement (since both spin structures on ∂D2 × D2

extend to it). Capping off the cocore of h with a Seifert surface of its belt circle in the 4-handle, we obtain an
embedded surface F ⊂ X such that the spin structure of M extends to the complement X \ F . Consequently,
X \ νF provides a spin cobordism between M and the boundary of νF .

Next, we show that (by changing X) it can be assumed that the D2-bundle νF → F is trivial and so we have
a spin cobordism between M and S1 ×F = S1 ×Σg . Take the connected sum of X with the complex projective
plane CP 2. Since CP 2 contains an embedded sphere (a complex projective line CP1) having normal bundle
with first Chern number 1, it follows that, tubing F to this sphere, we obtain F′ having normal bundle with first
Chern number 1 higher than F did. (Note that the spin structure obviously extends to the complement of this
sphere in CP2, the complement being a disk.) Now, using CP 2 (which is CP 2 with the opposite orientation) and
the same argument, we lower the Chern number of the normal bundle of F . Choosing an appropriate orientation
and repeating the process, we turn the Chern number of the normal D2-bundle into 0, i.e., make it trivial. This
completes the proof. �

Lemma 2.3. S1 × Σg (with any spin structure) is spin cobordant to the disjoint union of several 3-tori (with
various spin structures on them).

Proof. We show that Σg (with any spin structure) is spin cobordant to the disjoint union of some 2-dimenional
tori (with various spin structures on them). This fact easily implies the above lemma: The spin structure on
S1×Σg is the product of a spin structure on Σg and one on S1. Consider this spin structure on S1 and multiply
the above spin cobordism between Σg and

⋃k
i=1 T 2 with it; the resulting spin cobordism between S1 × Σg and⋃k

i=1 T 3 proves the lemma.
To show that Σg is spin cobordant to

⋃k
i=1 T 2, we either use the fact that the group ΩSpin

2 = Z2 is generated
by the torus T2 with a particular spin structure (so that Σg either is a spin boundary or is spin cobordant to a
single copy of T 2), or argue as follows: Σg is cobordant to the disjoint union of g tori, and the cobordism can
be constructed on [0, 1]× Σg by attaching 2-handles along the circles separating Σg into g copies of T 2. Now,
no matter what the spin structure on Σg is, these circles inherit the bounding spin structure on S1, and so the
spin structure of [0, 1]×Σg extends to the cobordism, which proves that Σg with the given spin structure is spin
cobordant to the disjoint union of g tori (with various spin structures on them). �
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The next lemma already completes the proof of our main Theorem 1.1. Since the proof of Lemma 2.4 below
consists of several steps, we first prove Theorem 1.1 and then return to the proof of the lemma.

Lemma 2.4. The 3-dimensional torus T3 with any of its eight spin structures is a spin boundary.

Proof of Theorem 1.1. Once we have proved Lemma 2.4, the proof of Theorem 1.1 is obviously complete because
by Lemmas 2.2 and 2.3 we have

[M, s] = [Σg × S1, s̃] =
k∑

i=1

[T 3, si] in ΩSpin
3

(where s, s̃, and si are various spin structures on the corresponding manifolds), and by Lemma 2.4 this expression
vanishes. �

Below, we prove Lemma 2.4 by using only basic handlebody theory.

§3. Proof of Lemma 2.4

First, we show that T3 bounds the 4-dimensional handlebody obtained by gluing three 2-handles along the
0-framed Borromean rings in S3 = ∂D4. This can be verified as follows: T2 admits a handle decomposition with
one 0-, two 1-, and a 2-handle (see Fig. 1(a)).

Fig. 1. (a) Handle decomposition of T 2, and (b) Kirby diagram for
T 2 ×D2

.

Notice that the 2-handle passes through the first 1-handle, then through the second one, then returns to the
first one from the opposite direction, and finally passes through the second one (from the opposite direction
again). Now, multiplying everything by D2, we obtain a handle decomposition of T 2 ×D2 with boundary T 3;
cf. Fig. 1(b). Surgery along the 1-handles now provides the required presentation of T3 (see Fig. 2).

Fig. 2. Presentation of T3
.
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Viewing T 3 as above, we see that the small normal circles C1, C2, and C3 of the Borromean rings B1, B2, and
B3 represent a basis of H1(T 3; Z). If we glue 2-handles to [0, 1]× T 3 along the circles Ci, then the given spin
structure of T3 tells us whether we must use even or odd framing in order to obtain a spin cobordism. (For even
framing, we always use 0, for odd one, we use −1.) Note that the eight different choices correspond to the eight
possible spin structures on T3.

Lemma 3.1. Assume that the given spin structure on T3 is such that one of the framings on C1, C2, and C3 is
0. Then T 3 (with that given spin structure) is spin cobordant to S3, and hence spin bounds.

Proof. Consider the 4-manifold Y obtained by gluing 2-handles to D4 along the 0-framed Borromean rings B1,
B2, and B3. As we saw above, ∂Y = T3. We define X as the handlebody obtained from Y by adding 2-handles
along the normal circles Ci (with the framing specified by the spin structure on T3). Notice that X \ intY
provides a spin cobordism between T3 and ∂X, and so we must only show that ∂X = S3. (In doing this, we
are free to change X as long as ∂X remains fixed.) Assume that the framing of C1 is 0, and perform surgery on
the 2-handle corresponding to C1 (cf. the text before Definition 1.4). This surgery replaces this latter 2-handle
with a 1-handle, which can be canceled by the 2-handle glued along B1. Now B2 and B3 become unlinked, so
that we can perform surgery along them. These surgeries result in cancelling pairs (with the 2-handles attached
along C2 and C3), which proves that the three surgeries turn X into D4, whence ∂X = S3. Since S3 admits a
unique spin structure (which bounds the unique spin structure on D4), we see that T3 with the spin structure
described in the lemma spin bounds a spin 4-manifold. �

§4. The end of the proof of Lemma 2.4

Finally, we analyze the case where all framings on the circles Ci are −1. First, we show that the boundary
Σ of the handlebody X obtained by gluing handles along the rings Bi (with zero framing) and the circles Ci

(with framing −1) is a homology sphere (hence supports a unique spin structure). Then we show that it is the
boundary of a spin 4-manifold, which implies that the unique spin structure on Σ = ∂X spin bounds. This last
step completes the proof of Lemma 2.4.

Lemma 4.1. If the framings on all circles Ci are −1, then the boundary of X is diffeomorphic to the boundary
of the handlebody Z obtained by gluing a single 2-handle to D4 along a (+1)-framed trefoil knot, see Fig. 3.
Moreover, ∂Z is a homology 3-sphere, hence admits a unique spin structure.

Fig. 3. Handlebodies with diffeomorphic boundaries.

Proof. Slide B1 over C2 twice: first use a band resulting an addition, then a subtraction of the two handles.
Repeat the same process with B1 and C3. In this way, the resulting B̃1 is unlinked with B2 and B3, i.e., they
can be separated by planes. (Note that algebraically B1, B2, and B3 did not link each other – however, this
does not mean that they could have been separated by planes.) Now surgeries on B2 and B3 (together with the
handles glued along C2 and C3) create two cancelling pairs. After cancelling these pairs, we easily see that B̃1

becomes a 0-framed trefoil knot with C1 as a (−1)-framed normal circle. Sliding C1 off from B1 and deleting it,
we obtain the first claim of Lemma 4.1.

Finally, we show that H1(∂Z; Z) = 0, i.e., ∂Z is a homology 3-sphere. To prove this, we use the fact that

∂Z = (S3 − νK)∪ϕ S1 ×D2,
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where K is a knot and ϕ : ∂(S1 × D2) → ∂(S3 \ νK) is specified by the following property: Assume that two
circles m, l ⊂ S3 \ νK represent a meridian and a longitude of νK, i.e., m is the boundary of a small normal
disk of K, and l is a parallel copy of K with `k(l, K) = 0. Now, ϕ∗ must satisfy ϕ∗([{q}× ∂D2]) = [m]− [l] on
the first homology group

H1(∂(S1 ×D2); Z) = 〈[S1 × {p}], [{q}× ∂D2]〉
(because the framing of the trefoil knot in the link diagram of Z is ±1.)

Since H1(S3 \ νK; Z) is generated by the homology class [m] of the meridian, an easy Mayer–Vietoris type
argument concludes the proof. (Note that the above argument shows that if X4 is given as D4∪ (a single 2-handle
with framing n), then H1(∂X; Z) is the cyclic group Zn.) �

Now we return to the proof of Lemma 2.4: The 3-manifold Σ obtained by (+1)-surgery on the trefoil knot is
the link of the singularity

{x2 + y3 + z5 = 0} ⊂ C3

(cf., e.g., [4]) and hence (as a submanifold of S5) it obviously bounds a spin 4-manifold: its Seifert surface.
Consequently, Σ with its unique spin structure bounds a spin 4-manifold, which completes the proof of Lemma 2.4.
(See Remark 5.2 for a detailed proof of this last statement.) Here we just note here that the above 3-manifold Σ
is, in fact, diffeomorphic to the famous Poincaré homology 3-sphere. (See [4] for more about this 3-manifold.) �

§5. Concluding remarks

Remark 5.1. Note that in the above proof we showed that T3 with a spin structure s is spin cobordant to a
3-manifold M admitting a unique spin structure, and then (by finding the diffeomorphism type of M ) we showed
that M was a spin boundary. (For seven choices of s, the corresponding 3-manifold M is S3, while for the latter
spin structure, M is the Poincaré homology sphere Σ.) However, the first step of the program easily extends to
arbitrary spin 3-manifolds, and so we see that a spin 3-manifold M is spin cobordant to a 3-manifold N with
H1(N ; Z2) = 0, i.e., N admits a unique spin structure.

Remark 5.2. For the sake of completeness, we sketch the proof of the fact that Σ (given as the boundary
of a handlebody with a unique 2-handle glued along the (+1)-framed trefoil) bounds a spin 4-manifold. More
precisely, we show that the boundary of the 4-manifold X obtained by gluing eight 2-handles along the (+2)-
framed knots as given in Fig. 4 is diffeomorphic to Σ.

Fig. 4. Spin 4-manifold with boundary Σ.

This X is spin since all framings are even, hence the unique spin structure of D4 extends over each 2-handle.
(Essentially the same handlebody calculation can be found in [4].) Add to X a 2-handle along a (−1)-framed
unknot. (Recall that this operation changes X, but leaves its boundary fixed.) Sliding the latter 2-handle over
the rightmost (+2)-framed handle, we turn our presentation as it is shown by Fig. 5.

Fig. 5. Result of a handle-slide.
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We observe that the framing of the (+2)-framed circle becomes +1 after this slide; consequently, it can
be deleted. However, when deleting it, we change the framings of the linking circles (they decrease by 1);
furthermore, the circles become linked. (Verify this by sliding both handles over the ∗(+1)-framed one and
then delete the now separated (+1)-framed unknot.) This means that we can repeat this process and delete the
(+1)-framed unknots (which decreases the framings of all linking circles). At the end of the process, we obtain
the 4-manifold given by Fig. 6 – with the same boundary Σ.

Fig. 6. An intermediate stage.

Fig. 7. An intermediate stage.

Fig. 8. The final handleslides.

After the same process has been applied to the leftmost and the bottom (+2)-circles, we obtain Fig. 7. Now,
after sliding the handle corresponding to the (−1)-framed circle to all of the three remaining ones, the (−1)-
circle becames separated and can be deleted without changing the boundary of the handlebody. The resulting
diagram is shown in Fig. 8(a); repeating the same process with the (−1)-framed unknot of this diagram, we
obtain Fig. 8(b), which represents a handlebody still with the same boundary. Now, sliding the (−1)-framed
unknot of the latter diagram twice over the remaining handle and then deleting it, we arrive at Fig. 8(c), which
proves the assertion.
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