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ON THE µ–INVARIANT
OF RATIONAL SURFACE SINGULARITIES

ANDRÁS I. STIPSICZ

(Communicated by Daniel Ruberman)

Abstract. We show that for rational surface singularities with odd determi-
nant the µ–invariant defined by W. Neumann is an obstruction for the link
of the singularity to bound a rational homology 4–ball. We identify the µ–
invariant with the corresponding correction term in Heegaard Floer theory.

1. Introduction

Smoothings of surface singularities play a prominent role in constructing new
and interesting smooth (and symplectic) 4–manifolds. It is of particular interest
when the singularity at hand admits a rational homology 4–ball smoothing. Such
smoothings led to the discovery of the rational blow–down procedure [2, 20], which
in turn provided a major tool for finding exotic 4–manifolds. Restrictions for a
singularity to admit rational homology 4–ball smoothing have been found recently
in [22].

A topological obstruction for a Z2–homology 3–sphere (that is, a 3–manifold
Y with H∗(Y ; Z2) = H∗(S3; Z2)) to bound a spin rational homology 4–ball is
its µ–invariant, defined modulo 16. An integral lift µ of µ has been defined by
Neumann in [14] (cf. also [21]) for plumbed Z2–homology 3–spheres, but it was
unclear whether this integer–valued invariant obstructs the 3–manifold to bound
a spin rational homology 4–ball. Special cases, like Seifert fibered 3–manifolds,
have been considered by Saveliev [21]. More recently, based on work of Ozsváth
and Szabó [16, 17, 18] the correction term of spinc 3–manifolds (stemming from
gradings on the Ozsváth–Szabó homology groups) provided further obstructions.
For applications of these invariants along similar lines, see [7].

In fact, in [14] the µ–invariant is defined for any spin rational homology 3–sphere
which can be given by plumbing spheres along a tree (i.e., the assumption on the
parity of the determinant of the plumbing graph can be relaxed). By identifying µ
of a spin 3–manifold (Y, s), which is a link of a rational surface singularity with the
appropriate correction term, we show

Theorem 1.1. Suppose that YΓ is given as a plumbing of spheres along a negative
definite tree Γ, defining a rational surface singularity.
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3816 ANDRÁS I. STIPSICZ

• For a spin structure s ∈ Spin(YΓ) the invariant µ(YΓ, s) ∈ Z is an ob-
struction for the existence of a spinc rational homology 4–ball (X, t) with
boundary (YΓ, s).

• If Πs∈Spin(YΓ)µ(YΓ, s) �= 0, then the rational singularity does not bound a
spin rational homology 4–ball.

• Specifically, if det Γ is odd and µ(YΓ) �= 0, then YΓ is not the boundary of a
rational homology 4–ball. Consequently the corresponding singularity does
not admit rational homology 4–ball smoothing.

Corollary 1.2. Suppose that SΓ is a normal surface singularity with det Γ odd. If
µ(YΓ) �= 0, then SΓ does not admit a rational homology 4–ball smoothing.

Proof. If SΓ is not a rational singularity, then it does not admit rational homology
4–ball smoothing. If det Γ is odd, then for rational surface singularities, Theo-
rem 1.1 concludes the proof. �

We hope that this obstruction will be useful in completing the characterization
of surface singularities with rational homology 4–ball smoothing along the line
initiated in [22].

Remark 1.3. The assumption on the parity of det Γ cannot be relaxed in general,
since for example the singularity with resolution graph having a single vertex of
weight (−4) has two spin structures with µ–invariants −3 and +1, but the link of
the singularity is the boundary of a rational homology 4–ball: the complement of a
quadric in the complex projective plane. In fact, this rational homology 4–ball can
be given as a smoothing of the singularity. In accordance with Theorem 1.1, the
spin structures on the link of the singularity do not extend to the rational homology
4–ball.

As was indicated earlier, the proof of Theorem 1.1 above rests on the following,
more technical statement. Here the invariant d(Y, s) of a spinc 3–manifold (Y, s) is
the correction term in Heegaard Floer theory. (For more on Heegaard Floer theory,
see Section 4.)

Theorem 1.4. Suppose that Γ is a negative definite plumbing tree of spheres,
giving rise to a rational surface singularity. Let s be a given spin structure on
the associated 3–manifold YΓ. Then µ(YΓ, s) = −4d(YΓ, s).

2. The µ and µ invariants

Suppose that Y is a rational homology 3–sphere, and the rank |H1| of its first
homology is odd. Then H1(Y ; Z2) = H1(Y ; Z2) = 0; hence Y admits a unique spin
structure. Consider a spin 4–manifold X with ∂X = Y . The classical definition of
Rokhlin’s µ–invariant is

µ(Y ) ≡ σ(X) mod 16,

where σ(X) is the signature of the 4–manifold X. The invariance of this quantity is
a simple consequence of Rokhlin’s famous result on the divisibility of the signature
of a closed spin 4–manifold by 16. (If Y is an integral homology sphere, that is,
H1(Y ; Z) = 0 also holds, then the signature σ(X) of a spin 4–manifold X with
∂X = Y is divisible by 8, and in this case sometimes Rokhlin’s invariant is defined
as σ(X)

8 ∈ Z2.)
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ON THE µ–INVARIANT OF RATIONAL SURFACE SINGULARITIES 3817

It is not hard to see that if X is a spin rational homology 4–ball (i.e., H∗(X; Q) =
H∗(D4; Q)) with ∂X = Y and H1(Y ; Z2) = 0, then µ(Y ) = 0. Consequently, the
µ–invariant of a Z2–homology sphere Y provides an obstruction for Y to bound a
spin rational homology 4–ball. (The spin assumption on X is important, since for
example the Brieskorn sphere Σ(2, 3, 7) has µ = 1 and bounds a nonspin rational
homology 4–ball; cf. [3].) Since µ is defined only mod 16, it is typically less effective
than an integer–valued invariant. Interest in integral lifts (or related obstructions)
was motivated also by a result of Galewski and Stern [4] about higher–dimensional
(simplicial) triangulation theory.

In [14] Walter Neumann defined a lift µ ∈ Z of µ for spin 3–manifolds given
by the plumbing construction along a weighted tree. Before giving the definition
of this invariant we shortly review a few basic facts about plumbing trees. For a
general reference, see [14].

Suppose that Γ is a weighted tree with nonzero determinant. Let XΓ denote
the 4–manifold defined by plumbing disk bundles over spheres according to the
weighted tree Γ, and define YΓ as ∂XΓ. As is described in [14], the mod 2 homol-
ogy H1(YΓ; Z2) can be determined by a simple algorithm, which we outline below.
Consider a leaf v of Γ, connected to the vertex w.

• Move 1: If the weight on v is even, then erase v and w from Γ.
• Move 2: If the weight of v is odd, then erase v and change the parity of

the weight on w.
This procedure stops once we reach a graph Γ′ with no edges. Suppose that Γ′

contains p vertices, q of them with even weights.

Lemma 2.1. The dimension of the vector space H1(YΓ; Z2) over Z2 is equal to q.

Proof. Denote the set of vertices of the given weighted plumbing tree Γ with nonzero
determinant by V = {v1, . . . , vn}. It is known (cf. [5, Proposition 5.3.11]) that
the homology group H1(YΓ; Z) admits a presentation by taking elements of V as
generators, and equations

ni · vi +
∑
j �=i

〈vj , vi〉 · vj = 0

as relations (i = 1, . . . , n), with the convention that ni is the weight on vi, and
〈vj , vi〉 is one or zero depending on whether vj and vi (as vertices of the tree Γ) are
connected or not. These relations follow easily from the existence of Seifert surfaces
for the components of the surgery link. The mod 2 reduction of the relations (with
the same generators) provides a presentation for H1(YΓ; Z2). Now the moves for
simplifying the graph (until it becomes a disjoint union of some vertices) obviously
correspond to base changes and expressions of generators in terms of others. Indeed,
when Move 1 is applied to v and w, then the relation for v shows w = 0, while the
relation for w expresses v in terms of the other neighbours of w. In the situation
of Move 2 the relation for v simply asserts that v = w (mod 2). From this
observation the statement easily follows: a single point with odd weight gives rise
to a 3–manifold with vanishing first mod 2 homology, while with even weight the
first mod 2 homology is 1-dimensional. �

Recall that an oriented 3–manifold Y always admits a spin structure, and the
space of spin structures is parametrized by the first mod 2 cohomology H1(Y ; Z2) (∼=
H1(Y ; Z2)) of Y . A convenient parametrization of the set of spin structures on the
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3818 ANDRÁS I. STIPSICZ

rational homology 3–sphere YΓ is given as follows. First we define a set of subsets
of the vertex set for every plumbing graph Γ. We start with a graph Γ′ having no
edges: in that case consider the subsets of the vertices which contain all vertices
with odd weights. Every such subset will give rise to a unique subset S ⊂ V for
the original graph Γ as follows. We describe the change of S under one step in the
process giving Γ′ from Γ. Suppose that Γ′ is given by Move 1 from Γ (via erasing
v = vi and w = vj), and a set S′ ⊂ V ′ is specified for Γ′. Now we define the set
S ⊂ V by taking it to be equal to S′ or S′∪{vi} according as the number of indices
in S′ adjacent to w = vj has the same parity as nj or nj − 1. If Γ′ is derived from
Γ by Move 2 (via erasing vi), then let S be equal to S′ or S′ ∪ {vi} depending
on whether vj was in S′ or not. It is not hard to see from this algorithm that if
vi, vj ∈ S, then vi and vj are not connected by an edge in Γ.

Suppose now that S ⊂ V is a subset defined as above. Consider the submanifold
ΣS ⊂ XΓ defined as the union of the spheres corresponding to the vertices in S.
Notice that since by construction S does not contain adjacent vertices, the above
surface is a disjoint union of embedded spheres. Let cS ∈ H2(XΓ; Z) denote the
Poincaré dual of ΣS . The inductive definition (and the starting condition) shows
that cS is a characteristic element ; that is, for every surface Σv ⊂ XΓ defined by a
vertex v we have

cS(Σv) ≡ nv mod 2.

On the simply connected 4–manifold XΓ a characteristic cohomology class uniquely
specifies a spinc structure tS , which restricts to a spinc structure sS on the boundary
YΓ. Since PD(cS) =

⋃
v Σv = ΣS is in H2(XΓ; Z), on the boundary the spinc

structure sS = tS |∂XΓ has vanishing first Chern class; therefore it is a spin structure
on YΓ. Hence every subset S constructed above defines a spin structure sS on YΓ;
the set S is called the Wu set of the corresponding spin structure. Since this
construction provides a spin structure on the complement X − ΣS , it is obvious
that two different sets induce different spin structures: if S1 and S2 differ on the
vertex v of even weight (in the disconnected graph our construction started with),
then only the spin structure corresponding to the Wu set not containing v will
extend to the cobordism we get by the appropriate handle attachment along v. In
conclusion, we get an identification of H1(YΓ; Z) (∼= H1(YΓ; Z)) with the set of spin
structures on YΓ: take the characteristic function of S on the starting disconnected
graph Γ′ (which by what has been said above determines S), and associate to it the
corresponding first mod 2 cohomology class. Now the definition of the µ–invariant
of Neumann (cf. also [14]) is as follows.

Definition 2.2. For a spin structure s on YΓ consider the corresponding Wu set S
and the embedded Wu surface ΣS ⊂ XΓ. Define µ(YΓ, s) ∈ Z as the difference

µ(YΓ, s) = σ(XΓ) − [ΣS ]2.

By applying the handle calculus developed in [15] together with the Wu set S,
we easily get the proof of the following statement.

Proposition 2.3 ([14, Theorem 4.1]). The quantity µ(YΓ, s) is an invariant of the
spin 3–manifold (YΓ, s) and is independent of the choices made in the definition. �

3. Rational singularities

Consider the plumbing tree Γ and suppose that Γ is negative definite. According
to a classical result of Grauert [6], for any negative definite plumbing graph there
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ON THE µ–INVARIANT OF RATIONAL SURFACE SINGULARITIES 3819

exists a normal surface singularity such that the plumbing along the given graph is
diffeomorphic to a resolution of the singularity.

Definition 3.1. A normal surface singularity SΓ is called rational if its geometric
genus pg = 0. A negative definite plumbing graph Γ is rational if there is a rational
singularity SΓ with resolution diffeomorphic to XΓ.

Although the singularity corresponding to a plumbing graph might not be unique,
it is known that rationality is a topological property and can be fairly easily read
off from the plumbing graph through Laufer’s algorithm. Namely, consider the
homology class

K0 =
∑
v∈Γ

[Σv] ∈ H2(XΓ; Z).

In the ith step, consider the product Ki · Σvj
= 〈PD(Ki), [Σvj

]〉. If it is at least
2, then the algorithm stops and the singularity is not rational. If the product is
nonpositive, move to the next vertex. Finally, if the product is 1 for some v ∈ Γ,
then replace Ki with Ki+1 = Ki + [Σv] and start checking the value of the product
for all vertices of Γ again. If all products are nonpositive, the algorithm stops and
the graph gives rise to a rational singularity.

Lemma 3.2. A rational plumbing graph is always a (negative definite) tree of
spheres, and the link is a rational homology 3–sphere. In addition, for any vertex
vi ∈ Γ the sum of its weight ni and the number di of its neighbours is at most 1. �

Notice that in a rational graph a vertex with weight (−1) has degree d ≤ 2,
hence can be blown down by keeping Γ a plumbing tree. For this reason, we might
assume that ni ≤ −2 for all vertices vi ∈ Γ.

4. Heegaard Floer groups

In [17, 18], a set of very powerful invariants, the Ozsváth–Szabó homology groups
ĤF (Y, s), HF±(Y, s) and HF∞(Y, s) of a spinc 3–manifold (Y, s), were introduced.
In the following we will use these groups and relations among them; for a more
thorough introduction, see [17, 18, 10]. Recall that a rational homology 3–sphere
Y is an L–space if ĤF (Y, s) = Z2 for every spinc structure s ∈ Spinc(Y ). (In
the version of the theory we are about to apply, we use Z2–coefficients.) In this
case we can label the unique nonzero element of ĤF (Y, s) by the corresponding
spinc structure s. Recall also that for a rational homology 3–sphere Y the groups
are equipped with a natural Q–grading. The grading of the unique nontrivial
element of ĤF (Y, s) for an L–space Y is called the correction term d(Y, s) of the
spinc 3–manifold (Y, s). For the proof of the next proposition, see for example [8,
Theorem 2.3].

Proposition 4.1. Suppose that d(Y, s) �= 0. Then there is no spinc rational ho-
mology 4–ball (X, t) with ∂(X, t) = (Y, s). �

Proposition 4.2. Suppose that det Γ is odd. If d(YΓ, s) �= 0 for the unique spin
structure s, then YΓ does not bound any rational homology 4–ball.

Proof. Suppose that YΓ = ∂X for a rational homology 4–ball X. Let ϕ : YΓ → X
denote the embedding of the boundary, inducing the map ϕ∗ on homology. Since
|H1(YΓ; Z)| is odd, the size of the subgroup Im ϕ∗ is also odd. This implies that
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3820 ANDRÁS I. STIPSICZ

an odd number of spinc structures in Spinc(YΓ) extend to X. Since s ∈ Spinc(YΓ)
and its conjugate s extend at the same time, we conclude that the spin structure
s = s of YΓ extends to X as a spinc structure; therefore Proposition 4.1 concludes
the proof. �

A relation between the singularity’s holomorphic structure and its Heegaard
Floer theoretic behaviour was found by A. Némethi:

Theorem 4.3 (Némethi, [13]). Suppose that the negative definite plumbing tree Γ
gives rise to a rational singularity. Then YΓ is an L–space. �

5. A relation between µ(YΓ, s) and d(YΓ, s)

The proof of our main result about the µ–invariant relies on the identification of
it with the appropriate multiple of the d–invariant of the spin 3–manifold at hand.

Proof of Theorem 1.4. Let Γ be a given negative definite rational plumbing tree
with a spin structure s (represented by its Wu set S ⊂ V ). Let mΓ,S denote the
number of those vertices vi ∈ Γ which are not in S but −ni of the neighbours of vi

are in S. (Notice that by the rationality of Γ this means that vi has −ni or −ni +1
neighbours and either all or all but one of the neighbours are in S.)

The proof of the theorem will proceed by induction on mΓ,S . Let us start with
the easy case when mΓ,S = 0; that is, for any vertex vi in Γ we have

(5.1) cS(Σvi
) < −ni.

For vi ∈ S we have cS(Σvi
) = ni, while if vi is not in S, then cS(Σvi

) is the
number of neighbours of vi which are in S. In particular, 0 ≤ cS(Σvi

) ≤ di holds
for all vi not in S. Since cS is characteristic, inequality (5.1) actually means that
cS(Σvi

) ≤ −ni − 2. In conclusion, cS satisfies ni ≤ cS(Σvi
) ≤ −ni − 2 for all

vertices; hence cS is a terminal vector in the sense of [19]. By subtracting twice
the Poincaré duals of the homology classes represented by surfaces corresponding
to vertices in S, eventually we get a path back to a vector K ∈ H2(XΓ; Z) which
satisfies K(Σvi

) = −ni for vi ∈ S and K(Σvi
) ≥ −di ≥ ni + 2 if vi is not in S.

This means that K is an initial vector ; hence cS is in a full path (again, in the
terminology of [19]). By the identification of [13] this implies that cS gives rise to a
Heegaard Floer homology element in ĤF (Y, s) of degree 1

4 (c2
S −3σ(XΓ)−2χ(XΓ)).

(Here, as is customary in Heegaard Floer theory, χ(XΓ) is understood as the Euler
characteristic of the cobordism we get from S3 to YΓ by deleting a point from XΓ.)
Since YΓ is an L–space, this degree must be equal to d(Y, s). On the other hand,
since Γ is negative definite, χ(XΓ) = −σ(XΓ); hence the above formula for the
degree shows that −µ(YΓ, s) = c2

S − σ(XΓ) is equal to 4d(YΓ, s).
Next we assume that the statement is proved for graphs (Γ, S) with mΓ,S ≤

m − 1. In the inductive step we will utilize the exact triangle for Heegaard Floer
homologies, proved for a surgery triple; see [18, 9]. To this end, fix a graph Γ with
Wu set S and corresponding spin structure s ∈ Spin(YΓ) having mΓ,S = m > 0
and let v denote a vertex with −ni neighbours in S. (Consequently v is not in
S.) Consider the following plumbing graphs (with spin structures specified by the
various Wu sets):

• Let Γ′, Γ′′ denote the same graphs as Γ with the alteration of the framing
on v from ni to ni−2 and ni−4, resp. It is easy to see that S still provides
Wu sets S′, S′′ (and hence spin structures s′, s′′) for Γ′ and Γ′′. Notice that
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mΓ′,S′ = mΓ′′,S′′ = mΓ,S − 1. In addition, since v was not in the Wu set S,
we see directly that µ(YΓ, s) = µ(YΓ′ , s′) = µ(YΓ′′ , s′′). Laufer’s algorithm
shows that Γ′, Γ′′ are also rational.

• Let Γ1 be the disjoint union of Γ′ and the graph on a single vertex w with
framing (−2). The set S1 is chosen as S∪{w}. A simple computation shows
that µ(YΓ1 , s1) = µ(YΓ, s)+1. In the surgery picture for YΓ1 resulting from
the plumbing let K denote the unknot linking the unknot corresponding to
v ∈ Γ chosen above and the new (−2)–framed circle (corresponding to w)
once.

Attach a 4–dimensional 2–handle to the 3–manifold YΓ1 along K with framing
(−1). The resulting cobordism will be denoted by X.

Lemma 5.1. The result of the above surgery is YΓ, and the spin structure s1 on
YΓ1 defined by S1 extends as a spin structure to provide a spin cobordism (X, t)
from (YΓ1 , s1) to (YΓ, s).

Proof. By sliding K and the handle corresponding to w down, the first statement
is obvious. The extension follows from the fact that for the graph containing Γ1

together with K, the vertex corresponding to K is not in S1. �
Notice that by induction on mΓ,S the statement of the theorem holds for Γ1 and

Γ′; hence we have that −4d(YΓ1 , s1) = µ(YΓ1 , s1) = µ(YΓ, s) + 1 and −4d(YΓ′ , s′) =
µ(YΓ′ , s′) = µ(YΓ, s).

If the spin cobordism (X, t) of Lemma 5.1 between (YΓ1 , s1) and (YΓ, s) induces
a nontrivial map on the Ozsváth–Szabó homology groups, we can easily conclude
the argument: since a negative definite spin cobordism with χ = 1 and σ = −1
shifts the degree for Ozsváth–Szabó homologies by 1

4 , the unique nontrivial ele-
ment of ĤF (YΓ1 , s1) maps to the unique nontrivial element of ĤF (YΓ, s) of degree
d(YΓ1 , s1)+ 1

4 = d(YΓ, s), reducing the proof to elementary arithmetic. The nontriv-
iality of the map FX,t is, however, not so obvious. Let us set up the exact triangle
defined by the surgery triple (YΓ1 , YΓ, YΓ′′) along the knot K ⊂ YΓ1 :

ĤF (YΓ1) ĤF (YΓ)

ĤF (YΓ′′)

FX

FUFV

for the identification of the two manifolds YΓ, YΓ′′ simple Kirby calculus arguments
are needed. Recall that the map FX is the sum of all FX,u for u ∈ Spinc(X).

We claim first that FX(s1) has a nonzero s–component. Since U is not negative
definite, the map F∞

U vanishes, and since YΓ is an L–space, this implies the same for
the maps F+

U and FU . In particular, by exactness we get that FV is injective and FX

is surjective. Suppose that FX(s1) has a zero s–component. Then FX(s1) = a + a

for some a ∈ ĤF (YΓ), where a is a formal sum of some spinc structures on YΓ

and a denotes the sum of the conjugate spinc structures; cf. [10]. By surjectivity,
now there is x ∈ ĤF (YΓ1) with FX(x) = a; hence s1 + x + x is in the kernel of
FX , so in the image of FV . If FV (y) = s1 + x + x, then the same holds for y;
hence by the injectivity of FV , the element y satisfies y = y. In order for FV (y) to
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3822 ANDRÁS I. STIPSICZ

have a spin component, y must have a spin component; hence we have found some
spin and spinc structures z ∈ Spin(YΓ′′) and t′ ∈ Spinc(V ) with FV,t′(z) = s1.
By the uniqueness of extensions this z must be s′′, and the spinc cobordism (V, t′)
connecting z = s′′ and s1 must be spin. Therefore the grading shift between the
elements s′′ and s1 is 1

4 . This implies

(5.2) d(YΓ′′ , s′′) +
1
4

= d(YΓ1 , s1).

Recall that

(5.3) µ(YΓ′′ , s′′) = µ(YΓ, s) = µ(YΓ1 , s1) − 1.

Since by induction for the spin 3–manifolds (YΓ1 , s1) and (YΓ′′ , s′′), the invariant
µ actually computes the correction term—that is, −4d(YΓ1 , s1) = µ(YΓ1 , s1) and
−4d(YΓ′ , s′) = µ(YΓ′ , s′)—Equations (5.2) and (5.3) contradict each other. There-
fore the element FX(s1) has a nontrivial s–component, verifying our claim.

The nontriviality of FX between s1 and s, however, implies that there is a con-
necting spin structure t with FX,t(s1) = s; cf. [10, Lemma 3.3]. Consequently the
degree shift given by FX,t is 1

4 ; hence the inductive step concludes the proof of
Theorem 1.4.

Proof of Theorem 1.1. Combining Propositions 4.1 and 4.2 with the identification
of Theorem 1.4, we immediately get the proof. �

Acknowledgements

We would like to thank Stefan Friedl, Josh Greene, and an anonymous referee for
helpful comments and corrections. The author was partially supported by OTKA
49449, by EU Marie Curie TOK program BudAlgGeo, and by the Clay Mathematics
Institute.

References

[1] A. Casson and J. Harer, Some homology lens spaces which bound rational homology balls,
Pacific J. Math. 96 (1981) 23–36. MR634760 (83h:57013)

[2] R. Fintushel and R. Stern, Rational blowdowns of smooth 4–manifolds, J. Diff. Geom. 46
(1997) 181–235. MR1484044 (98j:57047)

[3] R. Fintushel and R. Stern, A µ–invariant one homology 3–sphere that bounds an orientable
rational ball, Contemporary Math. 35, AMS, 1984, 265–268. MR780582 (86f:57013)

[4] D. Galewski and R. Stern, Classification of simplicial triangulations of topological manifolds,
Ann. Math. (2) 111 (1980) 1–34. MR558395 (81f:57012)

[5] R. Gompf and A. Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics
20, AMS, 1999. MR1707327 (2000h:57038)
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