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Abstract

It is known that the linking form on the 2-cover of slice knots has a metabolizer. We show that several weaker conditions, or
some other conditions related to sliceness, do not imply the existence of a metabolizer. We then show how the Rudolph–Bennequin
inequality can be used indirectly to prove that some knots are not slice.
c© 2006 Elsevier B.V. All rights reserved.

MSC: Primary: 57M25; secondary: 11E04; 11T30

1. Introduction and statement of results

Algebraic topology has attempted the study of topological equivalence problems by means of algebraic invariants.
In the case of classical knots (knots in 3-space), much of the theory concerns such invariants derived from abelian
coverings of the knot complement. The algebraic information of these coverings is contained in the Alexander module,
the homology group of the infinite cyclic cover, on which the deck transformation acts. This module carries a bilinear
form, the Blanchfield pairing. Despite being previously well known, the interest of classical abelian invariants is
that only they remain easily and generally computable, and therefore practically useful, despite their various recently
proposed (non-abelian [6,16] and quantum [9]) modifications.

In this paper we will study some properties of algebraic invariants for slice knots, i.e. knots trivial in the topological
concordance group. Our aim will be to find, partly by computation, knots that demonstrate the failure of possible
implications between sliceness obstructions involving various algebraic invariants. We believe that it is useful to have
concrete knots in hand to illustrate the occurring phenomena, even though theory may suggest the existence of such
examples. The recent expansion of knot tables [13] and computational tools has led to a series of examples related
to other questions. In the present context, we are mainly concerned by the undue lack of computations, even for the
(presumably easy to handle) abelian invariants. In the final section, we will turn to smooth concordance, and give
some related examples.
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1.1. Topological concordance

Classical (topological) knot concordance was introduced by Milnor and Fox [7] in the 1950s. The decision whether
two knots are equivalent in that sense is a longstanding problem, related to singularity theory, and the classification of
topological four-manifolds. Levine [18] made substantial early progress in the late 1960s, by introducing an algebraic
structure called the algebraic knot concordance group, and using it to solve the problem in dimension at least 4. While
the algebraic concordance group is of fundamental importance also in dimension 3, Casson and Gordon [5] showed
that Levine’s homomorphism from the classical to the algebraic concordance group has a non-trivial kernel.

The algebraic knot concordance group C has a description within a Witt group of quadratic forms (see for
example [42], mainly Section 5). Levine’s approach is to consider the Witt group of isometric structures of the
symmetrized Seifert form over Q. (Working over Z is much harder, and the arising invariants were given later
by Stoltzfus [49].) The Witt group splits along primes p in the ring Q[t] of polynomials, which are characteristic
polynomials of the isometric structure. Embedding Q ⊂ R ⊂ C, we obtain an integer invariant (signature) for
polynomials p (regarded now in C[t]) with zeros on the complex unit circle S1. Factoring out p (i.e. working
over Q[t]/〈p〉), we have two Z2 valued invariants, the discriminant and Hasse–Witt invariant (latter is not a
homomorphism). Levine shows that the vanishing of all these invariants implies the vanishing of the form in the
Witt group (Theorem 21 in [20]) and that finite order elements in C have order 1, 2, or 4 (Proposition 22(b) in [20]).

Now Levine defines, in [18], further algebraic knot concordance invariants by Tristram–Levine signatures, and
the Alexander polynomial modulo Milnor–Fox factorizations. These must thus find themselves in the above set of
complete invariants of C . In [28] the relation is shown between Tristram–Levine signatures and the real Witt group
signatures. So by Proposition 22 (a) in [20] invariants detecting the (infinite rank) torsion-free part of C correspond
exactly to Tristram–Levine signatures. The Milnor–Fox condition relates to the discriminants (see Proposition 5
in [18]), and so if it holds, the algebraic concordance class of the knot is completely determined by the Hasse–Witt
invariants. In theory these invariants can be realized non-trivially, but no examples seem to have been elaborated on.

1.2. Linking pairings and metabolizers

A different description of C is in terms of Witt classes of the Blanchfield pairing (valued in Q[t]), modulo pairings
with a self-annihilating submodule. There is a correspondence between this and Levine’s approach, first proven by
Cherry Kearton [15]. (Another source is the appendix A of Litherland’s note [23], but beware of diverse typos in the
published version.) Under the restriction Z → Zn for any prime n, the Alexander module turns into the homology
group of the n-fold branched cyclic cover, and the Blanchfield pairing determines a (non-singular) linking form on the
torsion homology group of this cover. In this paper we will be concerned with the case n = 2.

Let K be a knot, DK be its double branched cover, and λ the linking form on its Z-homology group H1 =

H1(DK ) [21]. The (finite and odd) order of H1(DK ) is called the determinant det = det(K ) of K . The quadratic
form λ takes values in Z/ det(K ), which is identified with the subset of Q/Z of fractions with denominator (dividing)
det(K ).

If K is slice (bounds a topological locally-flat disk in B4), then it is algebraically slice, i.e. all algebraic concordance
invariants of K vanish. This occurs if and only if the Blanchfield pairing has a self-annihilating submodule. So if
the knot is (algebraically) slice, then the n-fold cover linking forms are metabolic as well. Specifically for n = 2
this means that then λ vanishes on a subgroup M of H1(DK ) of order

√
det, equal to its annihilator. M is called a

metabolizer. That det(K ) ought to be a square is well-known from the condition of Milnor–Fox [7] that the Alexander
polynomial is of the form ∆K (t) = f (t) f (1/t) for some f ∈ Z[t], since det(K ) = |∆K (−1)|. A further condition
for K being slice is that its (Murasugi) signature σ [33] vanishes, and so do the generalized (or Tristram–Levine)
signatures σξ , when ξ is a unit norm complex number and ∆(ξ) 6= 0. (We have σ = σ−1.)

The metabolizer existence condition is useful in some theoretical situations, where the calculation of other
invariants is more tedious. See for example [24,25]. The present work is mainly motivated by an interest in concrete
examples showing that this criterion is essential, in particular as opposed to the other conditions for sliceness. We
also investigate the size of the isotropic cone Λ0 of the linking form. We will find, in Section 3, examples illustrating
possible phenomena concerning Λ0. First we give in Section 3.2 computational examples, obtained from the tables
of [12,13], that show
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Theorem 1.1. For each one of the three conditions below, there exist knots satisfying this condition, which have zero
Tristram–Levine signatures and Bennequin numbers, and an Alexander polynomial of the Milnor–Fox form.

(a) Λ0 is trivial, i.e. {0},
(b) 1 < |Λ0| <

√
det,

(c) |Λ0| ≥
√

det, but Λ0 contains no subgroup of order
√

det.

(Here ‘det’ refers to the above introduced number det(K ) = |∆K (−1)|. The meaning of Bennequin numbers is
related to smooth sliceness and is explained in Section 4.)

In Section 3.3 we find, now applying more systematical constructions, examples that refine Theorem 1.1. We make
decisive use of the realization of any admissible Alexander polynomial by an unknotting number one knot. (This result
was proved first by Sakai [41] and Kondo [17], and later by several other authors, with a very recent construction due
to Nakamura [34].)

Theorem 1.2. For any of the properties (a)–(c) in Theorem 1.1, we can find knots whose H1 has additionally no
4k + 3 torsion (or whose determinant is not divisible by 4k + 3).

We can in fact classify all trivial cone forms on such groups H1 (Theorem 3.1), although it is not clear which forms
are indeed realizable by knots.

The motivation for excluding 4k + 3 torsion lies in the structure of the Witt group of Zp-forms, and the possibility
to rule out concordance order two, when there is such torsion. For 4k + 3 torsion, recent further-going work of
Livingston–Naik [26,27] gives in fact sufficient conditions on infinite concordance order. In Section 3.4 we will give
examples where the isotropic cone can exclude concordance order two, but Livingston–Naik’s criterion does not apply.

Theorem 1.3. For the properties (b) and (c) in Theorem 1.1, we can find knots K = K̂ #K̂ so that the p-Sylow
subgroup of H1(DK̂ ) for any prime p = 4k + 3 is not cyclic of odd p-power order.

For property (a) such knots do not exist. This follows from an exact description of trivial cone forms on K̂ #K̂ given
in Proposition 3.2 (which is similar to Theorem 3.1, although all occurring forms are easily realizable).

1.3. Smooth concordance invariants

Knots are smoothly slice if they bound a smooth disk in four-space. In the 1980s, Andrew Casson, using deep
results of Freedman and Donaldson, gave the first example of a topologically slice knot which is not smoothly slice.
Such knots known up to now remain scarce (they all have trivial Alexander polynomial), despite some new candidates
being recently suspected. The difficulty in exhibiting such examples clearly displays the problems with the methods
we apply to study both types of concordance.

In recent years, the separation between topological and smooth concordance grew wider with a vast development of
new techniques in the smooth category. One such is the inequality of Rudolph–Bennequin [3,38,39], which emerged
in the early 1990s, and sometimes proves (smooth) non-sliceness. More recently, Ozsvath and Szabo [35] used Floer
homology to define an invariant τ that detects some non-slice knots. This invariant behaves similarly to the (Murasugi)
signature and simultaneously improves upon the Rudolph–Bennequin inequality. The Ozsvath–Szabo invariant, in
turn, motivated Rasmussen [36] to define a (conjecturedly equivalent) signature-like invariant s from Khovanov
homology.

In Section 4 we show how the inequality of Rudolph–Bennequin can prove that a knot K is non-slice, by applying
this inequality on knots K ′ different from K . We also discuss the relation to the recent knot homological “signatures”
of Ozsvath–Szabo–Rasmussen, and their status in the examples of Section 3.

In Section 5, we explain concludingly how to construct prime (in fact, hyperbolic and of arbitrarily large volume)
knots with the previously chosen properties.

2. Preliminaries and notation

2.1. Knots, linking form and sliceness

In the following knots and links will be assumed oriented, but sometimes orientation will be irrelevant.
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For a knot K , its obverse, or mirror image !K , is obtained by reversing the orientation of the ambient space.
The knot K is called achiral (or synonymously amphicheiral), if it coincides (up to isotopy) with its mirror image,
and chiral otherwise. When taking the knot orientation into account, we write −K for the knot K with the reversed
orientation. We distinguish among achiral knots K between +achiral and −achiral ones, depending on whether K is
isotopic to !K or !−K .

Prime knots are denoted according to [37, appendix] for up to 10 crossings and according to [12] for ≥ 11 crossings.
We number non-alternating knots after alternating ones. So for example 11216 = 11a216 and 11484 = 11n117. We write
K1#K2 for the connected sum of K1 and K2, and #k K or K #k for the connected sum of k copies of K .

Let G be a finite group and let p be a prime. A Sylow p-subgroup of G is a subgroup H such that p does not divide
|G|/|H |. If G is abelian, the p-primary component of G, written G p, is the subgroup of all elements whose order is a
power of p. It is the unique Sylow p-subgroup of G. By the p-torsion subgroup we mean the subgroup of all elements
whose order is equal to p.

By DK we denote the double branched cover of S3 over a knot K . (See [5,37].) By H1 = H1(DK ) = H1(DK , Z)

we denote its homology group over Z. (The various abbreviated versions will be used at places where no confusion
arises; H1 will be used throughout the paper only in this context, so that, for example, when we talk of H1 of a knot,
always H1 of its double cover will be meant.) H1 is a finite commutative group of odd order. This order is called the
determinant of a knot K , and it will be denoted as det = det(K ). (It generalizes to links L , by putting det(L) = 0
to stand for infinite H1(DL).) By the classification of finite commutative groups, H1 decomposes into a direct sum of
finite (odd order) cyclic groups Zk = Z/k = Z/kZ; their orders k are called torsion numbers.

H1(K ) is also equipped with a bilinear form λ : H1×H1 → Q/Z, called the linking form (see [21,32] for example).
Since λ in fact takes values of the form n/det for n ∈ Z, we can identify them with Zdet.

A knot K is called slice if it bounds a disk in B4. Except for Section 4, and unless pointed out explicitly otherwise,
we work in the topological category. In Section 4, we will consider smooth sliceness.

It is known that if K is topologically slice, then λ is metabolic. This means, there is a subgroup M of H1(DK ) of
order

√
det, which is equal to its annihilator

M⊥
= {g ∈ H1 : λ(g, h) = 0 for all h ∈ M}.

M is called a metabolizer. Whenever λ is non-degenerate, we have for any subgroup G of H that

|G⊥
| · |G| = |H |. (1)

We also recall a few basic facts from number theory we will require in the study of λ. We apply for example
Dirichlet’s theorem on infinitely many primes contained in arithmetic linear progressions. We use also that every odd
number n is the sum of two squares, if any only if every prime p ≡ 3 mod 4 has even multiplicity 2e as factor of n,
and then pe divides a and b in any solution of a2

+ b2
= n. Such facts can be found in standard books on number

theory; my personal favorites are [11,55].

2.2. Knot polynomials and signatures

The skein polynomial P (introduced in [8]; here used with the convention of [22], but with l and l−1 interchanged)
is a Laurent polynomial in two variables l, m of oriented knots and links, and can be defined by being 1 on the unknot
and the (skein) relation

l−1 P(L+) + l P(L−) = −m P(L0). (2)

Herein L±,0 are three links with diagrams differing only near a crossing.

(3)

We call the crossings in the first two fragments respectively positive and negative, and a crossing replaced by the
third fragment smoothed out. A triple of links that can be represented as L±,0 in (3) is called a skein triple. The sum
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of the signs (±1) of the crossings of a diagram D is called the writhe of D and written w(D). The smoothing of all
crossings of D yields the Seifert circles of D; each crossing in D can be viewed as connecting two Seifert circles. Let
s(D) be the number of Seifert circles of D, and s−(D) be the number of those circles to which only negative crossings
are attached. We call such Seifert circles negative Seifert circles.

The substitution ∆(t) = P(−i, i(t1/2
− t−1/2)) (with i =

√
−1) gives the (one variable) Alexander polynomial

∆, see [22]. It allows one to express the determinant of K , as det(K ) = |∆K (−1)|. The (possibly negative) minimal
and maximal power of l occurring in a monomial of P(K ) is denoted min degl P(K ) and max degl P(K ). Alexander
polynomials (and factors thereof) will sometimes be denoted by parenthesized lists of their coefficients, putting the
absolute term in brackets. As an example of such a notation, 1/t − 1 − t2

= ( 1 [−1] 0 − 1).
The signature σ is a Z-valued invariant of knots and links. Originally it was defined in terms of Seifert matrices

[37]. We have that σ(L) has the opposite parity to the number of components of a link L , whenever the determinant
of L is non-zero (i.e. H1(DL) is finite). This in particular always happens for L being a knot, so that σ takes only even
values on knots.

Most of the early work on the signature was done by Murasugi [33], who showed several properties of this invariant.
In particular the following property is known: if L±,0 form a skein triple, then

σ(L+) − σ(L−) ∈ {0, 1, 2}, (4)
σ(L±) − σ(L0) ∈ {−1, 0, 1}. (5)

(Note: In (4) one can also have {0, −1, −2} instead of {0, 1, 2}, since other authors, like Murasugi, take σ to be with
opposite sign. Thus (4) not only defines a property, but also specifies our sign convention for σ .) We remark that for
knots in (4) only 0 and 2 can occur on the right.

Let M be a Seifert matrix for a knot K , and ξ ∈ S1 a unit norm complex number (S1 denoting the set of such
complex numbers). The Tristram–Levine (or generalized) signature σξ (K ) of K is defined as the signature of the
(Hermitian) form Mξ = (1− ξ)M + (1− ξ̄ )MT , where bar denotes complex conjugation, and ·

T means transposition.
We call ξ and σξ non-singular if their corresponding form Mξ is so, that is, det(Mξ ) 6= 0, which is equivalent to
∆K (ξ) 6= 0. For a fixed knot K we obtain a function σ∗(K ) : S1

→ Z given by ξ 7→ σξ (K ). It is called the
Tristram–Levine signature function of K . We have σ = σ−1, so Murasugi’s signature is a special value of σ∗. If
σξ (K ) is non-singular, then it is even. (Since a knot has non-zero determinant, Murasugi’s signature is always non-
singular.) Also σ∗(K ) is locally constant around non-singular ξ , that is, it changes values (“jumps”) only in zeros ξ of
∆K . The properties (4) and (5) hold also for σξ .

Signatures (at least all those we talk about in this paper) change sign under mirroring and are invariant under
orientation reversal, and so vanish on amphicheiral knots. They are also additive under connected sum.

Let gt (K ) be the topological 4-ball genus of a knot K . Then it is known, by Tristram–Murasugi’s inequality, that
if σξ is non-singular, then

|σξ (K )| ≤ 2gt (K ). (6)

So if K is topologically slice (that is, gt (K ) = 0), all non-singular σξ vanish. Since a concordance between K1
and K2 is equivalent to the sliceness of K1#−!K2, this implies that σ∗(K ) is a topological concordance invariant
outside the zeros of the Alexander polynomial. That is, if K1,2 are concordant, and ∆K1(ξ) 6= 0 6= ∆K2(ξ), then
σξ (K1) = σξ (K2). (In general one cannot say much about the behaviour of singular σξ under concordance [19].)

Now more sophisticated methods are available to obstruct sliceness in certain cases, like Casson–Gordon
invariants [5] and twisted Alexander polynomials [52,16]. Indeed, the Milnor–Fox and Tristram–Murasugi conditions
can be generalized to signatures and twisted Alexander polynomials of certain non-abelian representations of the knot
group [16]. The general computability of such invariants is still difficult, though (see [50]). A similar disadvantage
reveal, for smooth sliceness, the very recent knot homological (signature-like) concordance invariants τ and s of
Ozsvath–Szabo and Rasmussen. The determination (or estimation) of these invariants is often easier indirectly, using
their properties, rather than their definition. (We will later make a comment on their calculation in relation to the
Rudolph–Bennequin inequality.)

We invite the reader to consult [44–46] for more on the use of notation and (standard) definitions.
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3. The metabolizer criterion

3.1. Initial observations and remarks

When looking for a metabolizer M of λ, there are some simple, but important, observations to make.
First, M always exists, whenever H1 is cyclic. This already restricts the search space for interesting examples, since

about 80% of the prime ≤ 16 crossing knots with square determinant have cyclic (or trivial) H1. It also suggests why
composite knots (where H1 is more often non-cyclic) are likely to be of interest.

The second, and for us more relevant, observation is that clearly any element in g ∈ M must have λ(g, g) = 0.
That is, each M is contained in the isotropic cone

Λ0 := {g ∈ H1(DK ) : λ(g, g) = 0 ∈ Q/Z}

of λ. Note that if the isotropic cone contains a subgroup G, then G is always isotropic (the linking form is zero on G);
this is a bit more than a tautology, but follows from the identity

2λ(g, h) = λ(g + h, g + h) − λ(g, g) − λ(h, h), (7)

since we have no 2-torsion in Zdet. Thus a natural way to find (or exclude the existence of) M is to determine Λ0 and
seek for subgroups of H1 of order

√
det contained in Λ0. Any such subgroup is a metabolizer (that is, equal to its

annihilator) because of (1).
A third observation is that the linking form λ, restricted to the p-torsion subgroup of H1 for a prime p, modulo

metabolic forms, naturally defines an element in the Witt group of nonsingular Zp forms. This group is either Z2 ⊕Z2
or Z4, depending on whether p ≡ 1 or 3 mod 4 (see lemma 1.5, p. 87 of [29]). Thus, if 4k + 3-torsion exists
in H1(K̂ ), one may detect K̂ being 4-torsion in the algebraic concordance group. The other invariants (signatures,
Alexander polynomial, etc.) can only detect (up to) 2-torsion. This suggests that if σ(K̂ ) = 0 and 4k + 3 | det(K̂ ),
then K = K̂ #K̂ may be an example whose non-sliceness is only detectable by the linking form. Therefore, in the
search for interesting examples K = K̂ #K̂ , we are led to consider (prime) knots K̂ with σ = 0 and determinant
divisible by 4k + 3.

In the case of 4k + 3-torsion, there is, though, Livingston and Naik’s result [26], that if a prime p = 4k + 3 has
single multiplicity as divisor in det, then the knot has infinite order in the classical knot concordance group. In [27]
Livingston and Naik generalized their result to groups H1 whose Sylow p-subgroup is cyclic of odd power order.
Therefore, for interesting non-slice examples K = K̂ #K̂ , we should consider in particular knots K̂ with determinant
divisible by a prime p = 4k + 3, but whose Sylow p-subgroup of H1 is not of the stated type for any such p.

For the computational part in the examples in Section 3, we applied a computer program for calculating the linking
form [44]. This program was written in C originally by Thistlethwaite, and later extended by myself. It calculates the
torsion numbers of H1 and the corresponding generators out of a Goeritz matrix [10] of a knot diagram. The further
algebraic processing was done with MATHEMATICATM [54]. Still computation alone often did not suffice to find
proper examples, and we were led to argue about their (non-)existence mathematically.

From the explanation in Section 1.2 is it clear that Witt group invariants of the forms on all n-fold covers could
tell something about (algebraic) non-sliceness. But, again, we are unaware of any concrete computations, even for the
very restricted case n = 2 we consider. The study of higher n, from such a computational point of view, is certainly
also worthwhile, and may be a future project. (It is the lack of description in terms of Goeritz matrices of higher cyclic
cover homology groups that has prevented us from their study.) It seems unclear (and may not be true) that the Witt
class of all finite cover forms recovers the Witt class of the Blanchfield pairing.

3.2. Examples with trivial, small or large cone

The first series of examples shows that the existence of M is essential as opposed to the previously mentioned
conditions on Alexander polynomial, Rudolph–Bennequin numbers, and signature.

Example 3.1. Consider the knots on Fig. 1. The first (alternating) knot 1577828 has σ = 0 and Alexander polynomial

∆ = ( 1 − 8 32 − 82 152 − 216 [243] − 216 152 − 82 32 − 8 1),
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Fig. 1. Knots with Milnor–Fox condition on the Alexander polynomial and signature 0, but with trivial isotropic cone of the linking form. The last
one, 16850678, is −achiral (and fibered of genus 4).

Fig. 2. Knots providing examples with the Milnor–Fox condition on the Alexander polynomial and signature 0, and with non-trivial isotropic cone
of the linking form, which still does not contain a metabolizer. The first three have |Λ0| = 3, while the last one’s connected sum with 31#31 has
|Λ0| ≥

√
det.

which is of the Milnor–Fox form f (t) f (1/t) with f = ( [1] − 4 8 − 9 8 − 4 1). (We explained in the appendix of
[45] that for given ∆ only finitely many f come in question, and one can make the search for f very efficient. Thus
the Milnor–Fox test is easy to perform.) The Rudolph–Bennequin inequality (in the smooth setting; see Section 4, and
in particular Remark 4.1) is also trivial on its 15 crossing diagrams. This knot has H1 = Z35 ⊕ Z35. Two particular
generators g1 = (1, 0) and g2 = (0, 1) of the cyclic factors have

λ(g1, g1) = 8/35, λ(g1, g2) = 18/35, λ(g2, g2) = 4/35.

This shows that Λ0 = {(0, 0)}. Hence 1577828 is not slice. The knots 15158192, 16705153, 16747143 and 16850678, three
of which also appear in Fig. 1, are of similar nature. They all have ∆ = ( 1 − 10 43 − 100 [133] − 100 43 − 10 1)

of Milnor–Fox form, H1 = Z21 ⊕ Z21, and trivial Λ0. Particularly interesting is 16850678, because it is −achiral. Thus
for it all (including the singular) Tristram–Levine signatures vanish. (Similarly, as will follow from the explanation in
Section 4, the Rudolph–Bennequin method fails — with certainty; quite likely it also fails for the others.)

Example 3.2. The fact that in the above series Λ0 is always trivial originally led us to suspect that when Milnor–Fox
holds and σ = 0, then Λ0 6= 0 may already imply Λ0 ⊃ M . There is no reason why this should be true, but the
examples found to refute it required a considerable quest. There were a total of 10 prime knots of ≤ 16 crossings
(all alternating 16 crossing knots), for which determinant is a square, σ = 0 and Λ0 6= 0, but Λ0 6⊃ M . Seven of
them (three of which are shown in Fig. 2, and are the knots to the left) have ∆(t) = f (t) f (1/t). For all 10 knots
H1 = Z135 ⊕ Z15, with Λ0 = {(0, 0), (45, 0), (90, 0)}, which is still too small.

Thus a further-going and more complicated question is what occurs if we do not desire that Λ0 ⊃ M is excluded
already because of cardinality reasons, that is, if |Λ0| ≥

√
det.

Example 3.3. Consider the knot K = 31#31#!1416777. (The knot !1416777 is given on the right in Fig. 2.) We have
σ(1416777) = 4 and ∆(1416777) = ∆(31)

2 f (t) f (1/t), where f (t) = −2 + 2t − 2t2
+ t3. Clearly σ(K ) = 0, but

since f (t) has no zeros on the unit circle, we can conclude that even all non-singular (i.e. not corresponding to the
zeros of ∆(31)) Tristram–Levine signatures of K vanish. We have det = 3969, and H1 = Z147 ⊕ Z3 ⊕ Z3 ⊕ Z3. It
turns out that |Λ0| = 231 > 63 =

√
det, but Λ0 contains no subgroup of order 63.
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Fig. 3. Knots occurring in examples of Sections 3.3 and 3.4.

A more complicated knot with simpler factors is K ′
= 52#818#!912. There we have

∆(t) = (1 − t + t2)2
· (1 − 3t + t2)2

· (2 − 3t + 2t2)2/t6.

Since both 1 − t + t2 factors come from (the Alexander polynomial of) 818, which is amphicheiral, one can similarly
conclude that all non-singular Tristram–Levine signatures of K ′ vanish. Now H1 = Z105 ⊕ Z105, and |Λ0| = 117, but
Λ0 contains no subgroup of order 105.

Remark 3.1. The most general condition under which one can seek a large metabolizer, of course, is when det(K )

is a square. (Otherwise, the definition of a metabolizer does not make sense.) It turned out that even in this most
general setting, among prime knots up to 16 crossings, there was a single example, and it does not fall into any of
the further specified categories. This example is 15197573. (This knot has σ = −4 and ∆(t) 6= f (t) f (1/t) and 15
crossing diagrams with non-trivial Rudolph–Bennequin numbers.) It has H1 = Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3, and |Λ0| = 21,
but Λ0 contains no subgroup of order 9.

It is also interesting to ask what values |Λ0| can attain. In particular how large can |Λ0| become for given
determinant? Can |Λ0| be relatively prime to det? Obviously it does not need to share all the determinant’s prime
divisors.

3.3. Examples with no 4k + 3-torsion

For some explicitly named knots of 11 or more crossings that occur in the examples of Sections 3.3 and 3.4, see
Fig. 3.

Example 3.4. The search among connected sums allows us also to find knots K , where H1 has no 4k + 3-torsion.
They were motivated by the remarks about the Witt group in Section 3.1. One least crossing number example we
found is K = 63#121152. (Here H1 = Z65 ⊕ Z65.) One verifies similarly all Alexander polynomial and signature
conditions, but |Λ0| = 1.

All other examples we found have trivial Λ0 as well. However, there is a systematic way of constructing knots with
large Λ0, which we explain.

Proposition 3.1. There are knots K with 4k + 3 - det, with ∆ = f (t) f (1/t) and zero Tristram–Levine signatures,
with |Λ0| >

√
det but no metabolizer.

Proof. Let d ≡ 1 mod 4 have no 4k′
+ 3 divisor, and let it contain any prime with multiplicity one. Let

∆(t) ∈ Z[t, t−1
] be some polynomial with ∆(t) = ∆(1/t), ∆(1) = 1, no zero on the unit circle and ∆(−1) = d.

That such ∆ exists is easy. Consider the base-4-expansion

d =

n∑
i=0

ei 4i

of d (with 0 ≤ ei ≤ 3 and e0 = 1), and take ∆(t) = ∇(t1/2
− t−1/2) where ∇(t) =

∑
ei (−t2)i . By Kondo’s

result [17] there is an unknotting number one knot K with ∆(K ) = ∆. By [53], H1(K ) is cyclic, and by [21,44], there
is a generator g of H1 with λ(g, g) = 2/d (note that σ(K ) = 0).
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The prime condition assures that H1 has no elements of non-trivial prime power order, and then the metabolicity
of λ is equivalent to the metabolicity of its reductions on the p-torsion subgroups, for all primes p dividing d. Then
by the Witt group argument, λ ⊕ λ on H1 ⊕ H1 is metabolic.

Since λ ⊕ λ is metabolic, |Λ0(K #2)| ≥ det(K ) = d . Now, because of (7),

Λ0(K #4) ⊃ Λ0(K #2) ⊕ Λ0(K #2),

and |Λ0(K #4)| ≥ d2. We want to show now that this inequality is strict, and so we must show that the inclusion is
proper. Now, when d = 4k + 1 has no 4k′

+ 3 divisors, there are a and b relatively prime to d with a2
+ b2

= d. Then
(a, 0, b, 0) lies in Λ0(K #4) but not in Λ0(K #2) ⊕ Λ0(K #2).

Then for any knot K0 with non-metabolic λ, the knot K0#K #2k will also have non-metabolic λ, but for k large
enough |Λ0| >

√
det. �

In the case of trivial cone, we can in fact classify the forms algebraically in a slightly more general situation. This
explains the nature of the knots found computationally in Example 3.4.

Theorem 3.1. Assume H is a finite commutative group of odd order d, and that d has no 4k + 3 divisors. Let
λ : H × H → Q/Z be a symmetric bilinear form with trivial cone Λ0. Then (and only then) H = Zq ′ ⊕ Zq ,
where q ′ is a product of distinct primes pi = 4li + 1, and q | q ′, and for each prime pi | q, there is a basis (g1, g2)

of the pi -Sylow subgroup Zpi ⊕ Zpi of H such that with (e1, e2) denoting e1g1 + e2g2 we have

λ((e1, e2), (e1, e2)) = e2
1 + βe2

2, (8)

where β is not a square residue mod pi .

Proof. Of course if Λ0 = 0, then λ is non-degenerate. We have Λ0 = 0 if and only if [Λ0]pi = 0, where [Λ0]pi is the
reduction of Λ0 on the pi -Sylow subgroup (or pi -primary component) Hpi of H .

Fix a prime p = pi | d . If Zp2 ⊂ Hp, then one easily finds non-trivial elements in [Λ0]p. Thus Hp = Z⊕k
p . If

k = 1 then [Λ0]p = 0, since λ does not degenerate on Hp. Consider then k = 2. Then Hp = Zp ⊕ Zp with a basis
(g1, g2). We write (e1, e2) for e1g1 + e2g2. Then for some a, b, c ∈ Zp we have

λ((e1, e2), (e1, e2)) = ae2
1 + be1e2 + ce2

2. (9)

We can assume a 6= 0 6= c, else Λ0 6= 0. Then since 2 is invertible in Zp, we have

λ((e1, e2), (e1, e2)) = a
(

e1 +
b

2a
e2

)2

+

(
c −

b2

4a

)
e2

2.

Now (e1 7→ e1 +
b

2a e2, e2 7→ e2) is bijective, and so we can assume w.l.o.g. that in (9) we have b = 0.
Now the multiplicative group Z∗

p of units of Zp is cyclic. Thus there are two equivalence classes of non-trivial
residue classes modulo p up to multiplication with squares. If a and c lie in the same class then we can assume
w.l.o.g. that a = c, find 4k + 1 = p = e2

1 + e2
2, and have Λ0 6= 0. If a and c are in different classes, then one can make

(exactly) one of them equal 1, and λ has the form in (8).
Now let k ≥ 3. Consider Z⊕3

p ⊂ Hp with a basis (g1, g2, g3). Then one can again assume that mi = λ(gi , gi ) 6= 0,
and by substitutions diagonalize λ. That is, we can assume w.l.o.g. that λ(gi , g j ) = 0 when i 6= j . Then, since at least
two of m1, m2, m3 are in the same equivalence class modulo squares in Z∗

p, by the previous argument we can find a
non-trivial element in the cone. �

Remark 3.2. If now det is a square, then for trivial Λ0 we must have q ′
= q. Among the knots obtained from our

calculations we had q being the product of two primes, p1 = 5 and p2 ∈ {13, 17, 29, 37}. (For each of these p2
examples are 41#63#121722, 83#142160, 1176#11160 and 817#1415965 resp.) No knots occurred where q is only a single
prime. More particularly, from 122,624 prime ≤ 16 crossing knots with determinant d = 4k + 1 prime and σ = 0,
all have λ(g, g) = 2/d for some generator g of H1. (For any d a knot K1 of such a linking form always exists, so if
another knot K2 fails to realize this form, then K1#K2 is a potential candidate for trivial Λ0.) This phenomenon seems
related to some property of Minkowski units, but so far I cannot work out an exact explanation.
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Now we explain how to construct knots with no 4k + 3-torsion and 1 < |Λ0| <
√

det.
Let K2 be a knot with determinant d being a product of distinct primes p = 8k + 5, with a generator of (the

necessarily cyclic) H1 having λ(e2, e2) = 1/d . Let K1 be a knot with det = d3 and cyclic H1 with λ(e1, e1) = 2/d3.
Then, for each prime p | d , consider Λ0(K1#K2) on the p-Sylow subgroup Zp3 ⊕Zp of H1(K1#K2). We calculate

|[Λ0]p|. We have in Q/Z

λ((e1, e2), (e1, e2)) = 2e2
1/p3

+ e2
2/p.

If p - e1, then the first term on the right has denominator p3, and so λ 6= 0. Thus p | e1. Let e′

1 ∈ Zp be the reduction
of e1/p ∈ Zp2 modulo p. Then e′

1, e2 ∈ Zp satisfy 2e′
2

1 + e2
2 = 0. Since p ≡ 5 mod 8, we have that ±2 is not a

quadratic residue, and e′

1 = e2 = 0. Thus the vectors v = (e1, e2) with λ(v, v) = 0 are multiples of (p2, 0), and so
|[Λ0]p| = p.

Thus |Λ0| = d , while |H1| = d4. With this idea in mind we can find examples.

Example 3.5. Consider the knot K2 = 11333, which is also the 2-bridge knot (65, 14). It has signature σ = 0,
determinant d = 65 and a generator g of H1 with λ(g, g) = 14/65, which is equivalent to 1/d up to squares. (By
Remark 3.2, this is apparently the smallest d for which we can find K2.) The Alexander polynomial

∆ = ( 4 − 16 25 − 16 4)

has no zero on the unit circle. Let K1 be a knot of unknotting number one, whose Alexander polynomial ∆K1 has
no zero on the unit circle, is of the form ∆K2 f (t) f (1/t) and ∆K1(−1) = 653

= 274,625. (For example take
∆K1 = ∆3

K2
.) Then K1#K2 is a knot of the type we sought.

3.4. Excluding concordance order 2

Here we present some examples where our method prohibits the sliceness of the connected sum of a knot with
itself, i.e. rules out (topological) concordance order 2. Among K̂ #K̂ type examples, we can find or construct the
following knots.

Example 3.6. The simplest example arising is 77#77 (with H1 = Z21 ⊕ Z21). It has trivial Λ0. This can be easily
explained, since 77 has unknotting number one, and a2

+ b2
= 0 has no non-trivial solutions in Z21.

There are, however, no examples of trivial cone, to which the Livingston–Naik result does not apply. This is
explained as follows.

Proposition 3.2. λ(K̂ #K̂ ) has trivial isotropic cone, if and only if det(K̂ ) = d is a product of distinct primes p, all
of which are congruent 3 mod 4.

Proof. Note that Λ0(K̂ #K̂ ) is trivial, if and only if it is so in every reduction to prime torsion subgroups of H1.
If the determinant d is of the described exceptional type, then the reduction of Λ0 to Zp ⊕ Zp is trivial, since p is

not of the form a2
+ b2. So Λ0 is trivial.

Assume now the determinant d is not of the specified type. If a prime p = 4k + 1 divides the determinant d, then
the reduction of Λ0(K̂ #K̂ ) on the p-torsion subgroup is metabolic by the Witt group argument, and so Λ0 cannot be
trivial.

Now let p = 4k + 3 be a prime with p2 dividing d. If Zp2 occurs as subgroup, one immediately finds non-trivial
zero-linking elements. Thus the p-Sylow subgroup of H1(K̂ ) must be a multiple of Zp, and since we assume p2

| det,
we have at least two copies of Zp. Since λ(K̂ ) is non-degenerate, each generator of each Zp has non-zero self-linking.
Now the multiplicative group Z∗

p of units of Zp is cyclic, and so any element is plus or minus a square. Then on
Zp ⊕ Zp ⊂ H1(K̂ ) we have in Zp up to sign

λ((e1, e2), (e1, e2)) = e2
1 ± e2

2 + qe1e2 (10)
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for some q ∈ Zp. Since 2 and 4 are invertible in Zp, we can write in Z⊕4
p ⊂ H1(K̂ #K̂ )

λ((x, y, z, w), (x, y, z, w)) =

(
x +

q
2

y
)2

+

(
z +

q
2
w

)2
+ q ′(y2

+ w2), (11)

with q ′
= ±1 − q2/4.

If we have negative sign in ± in (10), then (x, x, x, −x) for every x is isotropic. So assume we have positive sign.
If q = ±2, then in (10) we have λ = (e1 ± e2)

2, and we are easily done.
So assume q 6= ±2. Then −q ′ is invertible in Zp. Consider the arithmetic progression −1/q ′

+ k′ p, and the
subprogression in it made of numbers 4k + 1. If −1/q ′ is even, then k′ is odd and vice versa. Thus we have a
progression a′

+ b′
· (4p), where (a′, 4p) = 1. This progression contains a prime r by Dirichlet’s theorem, and since

r = 4k +1, we have −1/q ′
+ k′ p = r = y2

+w2 for some y, w (obviously not both divisible by p, since (p, r) = 1).
Then in Zp we have q ′(y2

+ w2) = −1, and for these y and w we can find x and z with x +
q
2 y = 0 and z +

q
2 w = 1,

so by (11) we are done. �

Example 3.7. Among small cone type examples, we found the knot 11274#11274. The Alexander polynomial of
K̂ = 11274 is

( 1 − 6 18 − 35 [45] − 35 18 − 6 1)

with determinant 165, and no zeros on the unit circle. In this case K̂ #K̂ has |Λ0| = 9. A similar example is K̂ = 11280.

To find examples, to which the Livingston–Naik results do not apply, let K̂ = K̂1#K̂2, where K̂1,2 are unknotting
number one knots, whose Alexander polynomial has no zero on the unit circle. We choose the determinants of K̂1,2
to be d2 and d resp., and d to be a product of an even number of different primes pi = 4ki + 3.

To calculate |Λ0(K̂ #K̂ )| it suffices to consider its restriction on the p-Sylow subgroup for p being any of the pi .
This subgroup is Zp2 ⊕ Zp2 ⊕ Zp ⊕ Zp. Now if p divides a2

+ b2, then so does p2, and p divides both a and b. This
means first that the p-adic valuation of the restriction of λ on Zp2 ⊕ Zp2 is 0 or −2, so that [Λ0]p splits into a direct
sum over its part in Zp2 ⊕ Zp2 and Zp ⊕ Zp. It means second that the former summand of [Λ0]p has size p2, while
the latter summand is trivial. Thus |[Λ0]p| = p2, and |Λ0| = d2.

Example 3.8. We found among low crossing knots one single example of the large cone type. Here K̂ = 12554. This
knot has H1 = Z21 ⊕ Z3 ⊕ Z3. The Alexander polynomial

∆ = ( − 2 15 − 45 [65] − 45 15 − 2)

has determinant 189 and no zeros on the unit circle. We have for K = K̂ #K̂ that |Λ0| = 225, but Λ0 contains no
subgroup of order 189.

For an example, to which the Livingston–Naik result does not apply, take K̂ = 77#12#2k
554. Since H1(12554) has no

elements of non-trivial prime power order, the Witt group argument ensures that λ(K̂ #K̂ ) is not metabolic, because it
is not so for k = 0. But since |Λ0(12#2

554)| > det(12554), we obtain for large k again large cone.

4. Indirect Rudolph–Bennequin inequality

For the final contribution of the paper, we turn to smooth sliceness. In contrast to the topological case in (6), let
gs(K ) be the smooth 4-genus of K . So K is smoothly slice if and only if gs(K ) = 0.

Rudolph [38] showed the “extended slice Bennequin inequality” (later proved also, and slightly more clarified by
Kawamura [14]), which gives a lower estimate for gs(K ) from a reduced diagram D of K :

gs(K ) ≥
w(D) − s(D) + 1

2
+ s−(D) =: rb(D). (12)

As we explained in Section 2.2, by w(D) we denote the writhe of D, and by s(D) and s−(D) the number of its
Seifert circles resp. negative Seifert circles. (Kawamura remarked that we must exclude diagrams with negative Seifert
circles adjacent to nugatory crossings.) We call rb(D) the Rudolph–Bennequin number of D. Inequality (12) is an
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Fig. 4. The two 16 crossing knots satisfy the Milnor–Fox condition on the Alexander polynomial (the second one has trivial polynomial), have
signature 0, and cyclic H1(DK ). On any of their 16 crossing diagrams that could be found, the Rudolph–Bennequin inequality is also trivial.
However, in the diagrams depicted, a crossing switch results in a diagram of 121609. This knot has the diagram on the right, with (Rudolph-)
Bennequin number 2. Thus the 4-genus is at least 2, and so the original 16 crossing knots are not slice.

improvement of Bennequin’s original inequality [3, theorem 3], which estimates the ordinary genus g(K ) of K by the
Bennequin number

b(D) =
w(D) − s(D) + 1

2
,

in which the s−(D) term is missing. Rudolph showed prior to the above improvement (12), that b(D) also estimates
gs(K ) (“slice Bennequin inequality”).

This quantity b(D) has another upper bound, namely the minimal degree min degl P(K ) of the skein polynomial
P , as proved by Morton [30]. In particular, if

δ(P(K )) = max
(
min degl P(K ), −max degl P(K )

)
≤ 0,

the original Bennequin number b(D) will be useless in showing that K is not slice, whatever diagram D of K (or
its mirror image) we apply it to. The s−(D) term, however, lifts the skein polynomial obstruction, and in [46] we
showed that indeed min degl P = 0 can still allow the existence of diagrams with rb > 0. (Our example 136374 has
also ∆ = 1, so that any other previous method to prohibit sliceness fails.)

In theory thus, for many non-slice K , we could have rb(D) > 0 for some D. In practice, however, to find such
D for most K is a tedious, or even pointless, undertaking. It may well be that D does not exist, and it is not worth
checking more than a few diagrams that can be easily obtained. Since the improvement involving s−(D) is modest,
δ(P) � 0, even if not a definite obstruction, still remains at least good heuristic evidence that such D is unlikely to
exist.

There is one particular situation, in which one can definitely exclude the existence of D. Namely, note that it would
imply that

lim
n→∞

gs(#n
± K ) = ∞, (13)

as rb is additive under a connected sum of diagrams (if it is properly performed, and unless the estimate is trivial), and
invariant under reversal of knot orientation. Thus in particular if K is of finite order in (smooth) concordance as an
unoriented knot, D cannot exist. The finite concordance order amounts, at least in practice, to saying that K is slice
or achiral (of either sign), explaining the special role of 16850678 in Example 3.1.

As a contrast to the intuition described so far, we conclude by showing how the Rudolph–Bennequin inequality can
prove indirectly that some knots are not slice, when the quest for a diagram D with rb(D) > 0 (among the suggestive
candidates) fails. See Fig. 4.

Example 4.1. Consider the knot !16953447. Using Thistlethwaite’s tools, one can generate 253 different 16 crossing
diagrams of this knot, all of which, however, have rb ≤ 0. This knot has the Alexander polynomial of the square knot,
and σ = 0. (This again implies that all Tristram–Levine signatures vanish.) Its H1 is cyclic, and hence λ is metabolic.

Now we pursue the following idea. If K ′ differs from K by one crossing change (performed in whatever diagram
D of K ), then |gs(K ′) − gs(K )| ≤ 1, so that if K is slice, gs(K ′) ≤ 1. However, if we find a diagram D′ of K ′ with



A. Stoimenow / Journal of Pure and Applied Algebra 210 (2007) 161–175 173

rb(D′) ≥ 2, then gs(K ′) ≥ 2, and so K can not be slice. Consider the diagram of K =!16953447 on the left of Fig. 4.
Switching the encircled crossing turns K into K ′

= 121609. When K ′ is depicted in the diagram D′ on the right of
Fig. 4, then b(D′) = rb(D′) = 2, and so we can conclude indirectly that !16953447 is not slice.

Example 4.2. The same argument (again with K ′
= 121609) applies to 161335658. One can also handle in a similar

way (using another knot K ′
= 1427071) the (−3, 5, 7)-pretzel knot P(−3, 5, 7) = 15199038. In fact, P(−3, 5, 7) has

also a diagram D with rb(D) > 0 (one comes from a 32-crossing braid representation; see [45]). This shows, that for
some knots we may be lucky to find a diagram that excludes sliceness directly, and working with K ′ is not necessary.
Of course, by Fintushel–Stern’s, and later Rudolph’s work (see [38]), the non-sliceness of this famous example has
been dealt with before. Note contrarily that, since both knots have ∆ = 1, they are topologically slice by Freedman’s
theorem.

We found in total 5 prime knots up to 16 crossings (including the 3 so far mentioned), for which the indirect
Rudolph–Bennequin inequality proved essential in excluding sliceness. All these knots have min degl P = 2, however,
so that on some more complicated diagram the direct inequality may apply — as seen for P(−3, 5, 7). Note that, when
the indirect argument works, still (13) holds, so that achiral knots cannot occur. The attention to our examples was
drawn by the problem of [45] to find slice knots with min degl P > 0. Since the described method ruled out all
candidates for such a knot we had, the problem remains open.

Remark 4.1. Recently, Ozsvath and Szabo [35] defined a new “signature” invariant τ (for knots) using Floer
homology, and Rasmussen [36] a conjecturedly equivalent invariant s using Khovanov homology. This invariant lies
between the two hand-sides of the slice Bennequin inequality b(D) ≤ gs(K ). Thus it must confirm, too, the non-
sliceness of the examples in this section. However, it is still non-trivial to calculate, and thus Rudolph–Bennequin
numbers remain a useful tool — in fact, one can estimate s often easier from them than calculating it directly.
(Nonetheless Shumakovitch [43] computed s on a number of knots with ∆ = 1. He found some knots of s 6= 0, where
δ(P) = −4 is relatively small, and so the existence of non-trivial Rudolph–Bennequin numbers seems unlikely.) On
the opposite side, the calculation of s is easy for alternating knots by virtue of being equal to the usual signature σ .
This fact shows the failure of the new invariant, too, for many of our examples, including the first knot in Fig. 1, and
the knots in Figs. 2 and 3. It also explains the failure of the Bennequin numbers for such knots.

5. Fibered, prime, arborescent and hyperbolic knots

Motivated by Nakamura’s construction [34], in [47], we gave another proof of Sakai-Kondo’s result. (We found
subsequently that our construction was given, in a different context, also in [31].) The method explained in [47] allows
us to choose our examples to have a few special properties. Above, we considered a knot K , found by computation,
and a knot L of unknotting number one with suitable Alexander polynomial. Then the knots Kk := K # #k L can be
modified to prime knots K ′

k using tangle surgery. See Proposition 5.1 below. Also, [47] shows that one can choose
L fibered, if its Alexander polynomial is monic. So one can obtain (composite) fibered examples Kk if K is fibered.
(How to keep fiberedness in going from Kk to K ′

k is not clear at this point, though.)

Proposition 5.1. One can make a composite knot K into a (prime) hyperbolic knot K ′ of arbitrarily large volume,
preserving ∆, H1, λ, all non-singular Tristram–Levine signatures σξ , and the Rasmussen invariant s. If K is a
connected sum of arborescent knots, one can also choose K ′ to be arborescent.

The same argument works for the Ozsvath–Szabo signature τ instead of s. If τ is equivalent to s, then there is
anyway nothing to do. If, however, τ is not equivalent to s, and one would like to keep track of τ and s simultaneously,
an extra argument must be provided.

Proof. In [47] we showed that by tangle surgery one can make K into a hyperbolic knot of arbitrarily large volume.
If K is an arborescent connected sum, one can also choose K ′ to be arborescent. (More generally, the tangle surgery
can be chosen so as to preserve the Conway polyhedron of the diagram.)

Now, for tangle surgery one chooses the numbers of twists to satisfy congruences modulo the determinant. Then
K and K ′ have Goeritz matrices [10] G and G ′, such that d := det(G) = det(G ′) and G ≡ G ′ mod d. This implies
that H1 and λ are preserved.
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The tangle surgeries preserve the Alexander polynomial. It can also be easily observed that they preserve all the
non-singular Tristram–Levine signatures σξ . Namely, by (in this or the reverse order) changing a positive crossing (to
become negative), applying concordance, and changing a negative crossing, one obtains the original knot. So σξ is
changed by at most ±2. But if ∆(ξ) 6= 0, the sign of ∆(ξ) determines σξ mod 4; see [48]. So the failure of σξ to
exhibit non-sliceness persists under the tangle surgery even if the Alexander polynomial has zeros on the unit circle.

Since s is not connected to ∆, so far tangle surgery may alter it. We will argue how to remedy this problem.
Consider the pretzel knots of the form P(−p, p+2, q), with p, q > 1 odd and chosen so that ∆ = 1. First note that

all such knots have s = 2. Namely, by the main Theorem in Section 1 of [40], these pretzel knots are quasipositive,
and by Proposition 5.3 of [40] have slice genus 1. By [36] one has then s = 2.

Now with a connected sum of a proper number k of P(−p, p + 2, q) or their mirror images, we can make s
vanish. (We require that k is bounded by the number of surgeries in a way independent on the number of twists in
the surgered tangles.) In [47] we showed that the tangle surgery making the connected sum prime can preserve the
smooth concordance class (and hence s).

To show hyperbolicity, now note that we can augment p arbitrarily. Similarly we can augment the dealternator
twists in the surgered tangles (also within a proper congruence class to keep track of H1 and λ). Then by Thurston’s
hyperbolic surgery theorem [51] and the result of Adams on the hyperbolicity of augmented alternating links [2], the
knots will be hyperbolic for large number of crossings in the twists. To obtain arbitrarily large volume, we augment
the number of twist classes of crossings, and use Adams’ lower estimate on the volume of the augmented alternating
link in terms of the number of components [1]. (For an explanation, one may consult also [4].) �
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