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Abstract

Tristram and Levine introduced a continuous family of signature invariants for knots. We
show that any possible value of such an invariant is realized by a knot with given Vassiliev
invariants of bounded degree. We also show that one can make a knot prime preserving
Alexander polynomial and Vassiliev invariants of bounded degree. Finally, the Tristram–Levine
signatures are applied to obtain a condition on (signed) unknotting number.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider for a knotK and a complex number� of unit norm the Hermitian forms
M� = (1− �)A+ (1− �̄)AT , whereA is a Seifert matrix ofK. The signatures of these
forms M� are the generalized or so-called Tristram–Levine signatures�� [40,23], of
which the Murasugi[27] signature� = �−1 is a special case. These invariants have a
variety of relations and applications, within and outside of knot theory. First, via the
Tristram–Murasugi inequality[40,27], the signatures are related to the 4-genus, and
hence unknotting number. More recently, they have been of some interest because of
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their application to the classification of zero sets of algebraic functions on projective
spaces[31]. Tristram–Levine signatures have also close relationship to the zeros of
the Alexander polynomial, which have been studied for a while and have importance
for several subjects, including monodromy of fibered links[34], divisibility [28] and
orderability [32] of knot groups, and statistical mechanical models of the Alexander
polynomial [26]. Also some relations of these signatures to (a quantum version of) the
Jones polynomial have become apparent[11].
Vassiliev invariants[5] have been introduced more recently, and their relations to more

classical invariants have been sought. In this paper, we shall treat the possible relations
between Vassiliev invariants and generalized signatures�� with � ∈ C and |�| = 1.
We extend the result on the Murasugi signature of[37] (and basically following also
from [29]) to them, constructing knots of any given possible value of�� and Vassiliev
invariants of bounded degree.

Theorem 1. For any n ∈ N, any � ∈ S1 \ {1}, and any admissible valuev of ��, one
has a prime knot with given values of Vassiliev invariants up to degree n, realizing
��(K) = v.

For the proof the notion of braiding sequences[39] is used. While for generic�
(in particular if � is transcendental),�� admits—as the usual (Murasugi) signature—
only even values on knots, the remaining cases (we describe them exactly) require an
additional argument which we provide using Gousarov’s result[14] on the existence
of n-inverses. The knots constructed in Section 3 are composite. In order to find prime
examples, some additional work is needed. It will be carried out in Section 4, using
the construction ofn-trivadjacent knots of Askitas and Kalfagianni[4]. It shows also
the following result, which may be independent interest.

Theorem 2. If K is a knot andn > 0, then there exists a prime knotK ′ n-similar to
K, such that�K ′ = �K .

We will have to show for this that a certain family of the knots arising in the
construction of Askitas–Kalfagianni are non-trivial (a suggestive fact, which, however,
does not follow from their results). In doing so, we give a new proof, using the Jones
polynomial, that the (pure) braid groups are not nilpotent.
The result of Theorem 1 on the�� should be put in contrast to the fact that via

the Alexander/Conway polynomial Vassiliev invariants may well pose conditions to the
Seifert pairingA. Also, Ng’s result[29] that any concordance class contains a (possibly
composite) knot with given Vassiliev invariants of bounded degree does not imply ours
(even for composite knots), since by work of Levine[24], the signatures may not
be concordance invariants in the zeros of the Alexander polynomial (see Remark 4).
Namely, there are slice knots with non-zero (singular) signatures.
Albeit Levine writes down only the Seifert forms of such knots, we will later be

able to find many concrete examples: any slice knot with zeros of� on the unit circle,
which has unknotting number one, turns out to be such. This follows from work given
in an appendix, where we obtain a condition on signed unknotting number by analyzing
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the eigenvalues ofM�. (This work should be differentiated from the rest of the paper,
since it uses mainly the same background on the signatures, but not the arguments in
the main part.) In particular, we will also show for an amphicheiral unknotting number
one knot, no zeros of�K lie on the complex unit circle (Corollary 2).
It is a more challenging question (also pointed out by the referee) whether one can

realize not just every individual signature, but rather every signature function, using an
n-trivial knot. Although the methods we apply clearly provide a way to approach such
a question, they do not put into perspective a rigorous, but elegant and short solution.

2. Preliminaries

We shall briefly introduce the main notions appearing in the sequel (and give a few
additional references to those in the introduction for further details).
Recall that ifA is a Seifert matrix of size 2g×2g corresponding to a genusg Seifert

surface of a knotK, then for any� ∈ C with |�| = 1 and� �= 1 we define

M�(K) := (1− �)A + (1− �̄)AT ,

where bar denotes conjugation and, superscriptT transposition. This is a Hermitian
matrix, and all eigenvalues are real. By�(M�) and n(M�) we denote the signature
(sum of signs of eigenvalues) and nullity (number of zero eigenvalues) ofM�. They
turn out to be independent in the surface and Seifert matrix, and are thus invariants
of K, denoted by��(K) and n�(K) respectively.��(K) is called a generalized or
Tristram–Levine signature. It satisfies, as the usual signature� = �−1, the rules

��(L+) − ��(L−) ∈ {0,1,2}, (1)

��(L±) − ��(L0) ∈ {−1,0,1},
��(!L) = −��(L),

��(L#K) = ��(L) + ��(K).

(Whether to have{0,1,2} or {0,−1,−2} in (1) is a matter of convention.) Here
L+, L0, L− form a skein triple

L+ L− L0

and !L is the mirror image ofL. K1#K2 denotes the connected sum ofK1 andK2,
and #nK denotes the connected sum ofn copies ofK.
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The main difference in the usual signature is that�� may be odd even on knots, and
that nice combinatorial formulas, as for alternating links (see[27,18,13]), are lacking.
The (normalized)Alexander polynomial[3] can be defined from a Seifert matrixA

by

�K(t) = t−g det(A − tAT ).

� satisfies the skein relation

(2)

which defines it alternatively (up to a factor, fixed by demanding�(©) = 1).
We will sometimes modify� up to units inZ[t, t−1], as in the original definition

of Alexander.
Let ∇K denote theConway polynomial[8], given by

∇K(t1/2 − t−1/2) = �K(t).

Consequently,∇ also satisfies a skein relation, namely

(3)

A knot invariant is calledVassiliev invariantof degreen, if, when linearly extended
to linear combinations of knots, it vanishes of the subspace of(n + 1)-singular knots,
in which each singular knot is mapped to a linear combination of knots by the rule

See[5]. We consider Vassiliev invariants valued inZ, Q, R or C .
‘R.h.s’ (resp. ‘l.h.s’) will abbreviate ‘right-hand side’ (resp. ‘left-hand side’). In the

sequel the symbol ‘⊂’ denotes a not necessarily proper inclusion. Finally, let�e and
�m denote the real and imaginary part, respectively. We will also writei = √−1 for
the imaginary unit, in situations where no confusion (with the usage as index) arises.
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3. Vassiliev invariants and generalized signatures

3.1. Outline of results

Here, we consider the generalized signatures (see[23]) and show that they are all
as independent from any finite number of Vassiliev invariants as the classical signature
is.
First, we determine the value range of�� on knots. This result, albeit possibly

known, was never stated explicitly in previous publications. We will give a proof
of it, both because it involves some subtleties which are worth remarking, and be-
cause it demonstrates some facts used to prove the result on Vassiliev invariants stated
below.

Proposition 1. The value rangeV� ⊂ Z of �� (|�| = 1, � �= 1) on knots is given by

V� =
{

Z if
(
2�e

�−1
|�−1|

)−2
is an algebraic integer

2Z else
. (4)

(An algebraic integer is the root of a polynomial inZ[x] with leading coefficient 1.)

The main result we prove in this section is a weaker version of Theorem 1, without
the primeness property.

Theorem 3. Any s ∈ V� is realizable as the value of��(K) of some(possibly com-
posite) knot K which is n-similar to any fixed knotK ′ for any fixed n.

Here, we call a knotK n-similar to K ′ in Gousarov’s[14] sense if the Vassiliev
invariants of degree< n of K and K ′ coincide. We will sometimes writeK ∼n

K ′. For the proof of Theorem 3 we will need the construction of[37] recalled
below.

3.2. n-trivial rational tangles

Rational tangleswere introduced by Conway[8]. TheConway notationof a rational
tangle is a sequence of integers, to which a canonical diagram of the tangle is associated.
(The order of the numbers is a matter of convention, so that some authors use the
reverse sequences.) In the tangle notation of Conway, shown in Fig. 1, this diagram
corresponds to the expression

a1 · · · an = ((a1a2)a3 . . .)an

(that is, the ‘product’, which is not associative, is written as if it is left-associative);
see[1, Section 2.3]. A rational knot is the closure of a rational tangle.
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Fig. 1. Conway’s tangles and operations with them. (The designation ‘product’ is very unlucky, as
this operation is neither commutative, nor associative, nor is it distributive with ‘sum’. Also, ‘sum’ is
associative, but not commutative.)

Define theiterated fraction(IF) of a sequence of integersa = (a1, . . . , an) recursively
by

IF (a1) := a1, . . . , IF (a1, . . . , an−1, an) := 1

IF (a1, . . . , an−1)
+ an.

It will be helpful to extend the operations ‘+’ and ‘1/.’ to Q ∪ {∞} by 1/0 =
∞, 1/∞ = 0, k + ∞ = ∞ for any k ∈ Q. The reader may think of∞ as the
fraction 1/0, to which one applies the usual rules of fraction arithmetics and reducing.
In particular reducing tells that−1/0= 1/0, so that for us−∞ = ∞. This may appear
at first glance strange, but has a natural interpretation in the rational tangle context. A
rigorous account on this may be found in Krebes’s paper[22].
In this sense,IF is a map(∀ n ∈ N)

IF : Zn −→ Q ∪ {∞}.

It is known [1], that diagrams of sequences of integers with equalIF belong to the
same tangle (up to isotopy; where isotopy is defined by keeping the endpoints fixed).
The correspondence is

a1 . . . an ←→ IF (a1, . . . , an). (5)

If IF (a1, . . . , an) = p/q with (p, q) = 1, we call p the numerator of the tangle
(a1 . . . an) and q the denominator.
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Using correspondence (5), one can convince himself, that a rational tangleT has a
representation with all numbers of the same sign, or a different representation with all
numbers even (and both signs), if one of numerator or denominator is even.
Define for a finite sequence of integersa = (a1 . . . an) its reversiona := (an . . . a1)

and its negation by−a := (−a1 . . . − an). For b = (b1 . . . bm) the termab denotes
the concatenation of both sequences(a1 . . . an b1 . . . bm).
We call a tanglen-trivial, if all its Vassiliev invariants (defined analogously to the

knot case) of degree< n are the same as for the 0-tangle. The following construction
of such tangles was introduced in[37].

Proposition 2 (Stoimenow[37] ). Fix some evena1, . . . , an ∈ Z and build inductively
the integer sequenceswk = wk(a1, . . . , ak) by

w1 := (a1), . . . wk := wk−1(ak)−wk−1. (6)

Then the rational tangles with Conway notationwn are n-trivial, and, if all ak �= 0,
non-trivial, i.e., not (isotopic to) the0-tangle.

Example 1. For a1 = 2, a2 = −4 anda3 = 2 we havew1 = (2), w2 = (2 − 4 − 2)
andw3 = (2 − 4 − 2 2 2 4 − 2). The tanglew3 is shown below:

In other words, the replacement of a 0-tangle by awn-tangle in some diagram (possibly)
changes the knot type, but preserves the values of Vassiliev (knot) invariants of degree
< n.

3.3. Proof of Theorem 3

We start by a proof of a part of Proposition 1. Even although there are more direct
arguments (coming from perturbation theory of linear forms[19]), we prefer not to be
minimalistic, as we need to set up notations and tools needed in the following.

Lemma 1. If for � ∈ C with |�| = 1, z0 = �̊1/2− �̊−1/2 is a simple zero of∇K along
the line between 0 and2i, where

�̊ := −
(
1− �̄

|1− �̄|

)2
= �̄ − 1

1− �
= �−1, (7)

then ��(K) is odd.
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Proof. Let

A� = (1− �)A + (1− �̄)AT

and � = �(t) = e2�it (note thatA = ĀT so that all eigenvalues ofA� are real). We
have

det(A�) = (1− �)2g det

(
A − �̄ − 1

1− �
AT

)

= (1− �)2g
(

�̄ − 1

1− �

)g

�K

(
�̄ − 1

1− �

)

= (−1)g |1− �|2g�K

(
�−1)

= (−1)g |1− �|2g∇K

(
2i�m

√
�−1

)
= (−1)g |1− �|2g∇K

(
2i�e

� − 1

|� − 1|
)
.

As both mapst �→ |1− �(t)| and

t �→ z(t) := 2i�e
�(t) − 1

|�(t) − 1|

have non-zero derivatives fort ∈ (0, 1/2) (� = −1 corresponds to the determinant which
is never zero),t0 = z−1(z0) is a simple zero of

t �→ detA�(t) .

This shows that

�
�t

detA�(t)

∣∣∣∣
t=t0

�= 0.

Consider�(x, t) = �A�(t)
(x) to be the characteristic polynomial ofA�(t) (whose absolute

term is detA�(t)). We have

�(0, t0) = 0 and
�
�t

�(0, t0) �= 0 .
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Then, by the implicit function theorem there is anε > 0 and a function̂t : [−ε, ε] → R

with t̂ (0) = t0, such that

�(x, t) = 0 ⇐⇒ t = t̂ (x)

for x ∈ [−ε, ε] and t close to t0. This means that, fort close to t0, each eigenvalue
�i = �i (�(t)) of A�(t) (with i = 1, . . . ,2g) in [−ε, ε] is attained for only one value
of t. Thus there is auniqueeigenvalue ofA�(t) in a neighborhood of 0 fort around
t0, and that eigenvalue indeed changes sign ast̂ exists for both positive and negative
arguments. Finally, the eigenvalue may be a multiple, but it must have odd multiplicity
because∇K changes sign aroundz0 (and this multiplicity is locally constant because
the dependence of the eigenvalues ofA�(t) on t is at least continuous). ThusA�(t0) has
odd nullity, and hence also odd signature.�

Remark 1. One can show using[19] that in fact the multiplicity of the eigenvalue is
indeed 1.

The fact that for a simple zero� of � on S1, �� changes by±2 near� = �̊ implies
that the signature cannot vanish on both sides of�̊. Thus we have

Corollary 1. If K is achiral, then �K has no simple zero onS1.

The argument clearly shows the corollary also for slice knots, but in this case it
easily follows from the Milnor–Fox condition�(t) = f (t)f (1/t) [9]. It shows that in
fact all the zeros of� on S1 are of even order. It is tempting to conjecture that this is
also true for achiral knots. It follows from[15] for strongly (positively or negatively)
amphicheiral knots. It is also true for all the amphicheiral knots of up to 16 crossings.
I have no proof in general, though.

Lemma 2. If
(
2�e

�−1
|�−1|

)−2
is an algebraic integer, thenV� contains some odd integer.

Proof. If |�| = 1, then�K(�) = ∇K(2i�m(
√

�)) for � = �−1. Now, the polynomial
∇̃K(x) := ∇K(ix) ∈ 1+ x2Z[x2], and, as well-known, any polynomial in this affine
ideal is∇K , and hence∇̃K , for some knotK. Therefore,x is a zero of∇̃K for some

K ⇐⇒ 1/x2 is an algebraic integer. (Note, that herex = ±2�m
√

�−1 = ±2�e
(

�−1
|�−1|

)
is non-zero.) Moreover, in this case we can choose∇̃ so asx to be a simple zero –
as extensions ofQ are separable, simply take the minimal polynomialPx of x if
Px = P−x , or PxP−x otherwise. Then apply Lemma 1.�

Remark 2. Since for|�| = 1 we have�̊ = 1/�, which is holomorphic and of non-zero
derivative for� �= 1, and

�̊ �→ z(�̊) = �̊1/2 − �̊−1/2
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is holomorphic and of non-zero derivative for�̊ �= −1, we have for� �= ±1 by
Cauchy–Riemann that

z(�̊) is a simple zero of∇K ⇐⇒ �̊ is a simple zero of�K along S1 ⇐⇒
along line between 0 and 2i

z(�̊) is a simple zero of∇K ⇐⇒ �̊ is a simple zero of�K .

Proof of Proposition 1.We prove in (4) only the inclusion ‘⊂’. The reverse inclusion
will follow from Theorem 3, when taking the r.h.s. of (4) as a definition ofV�.
The case� = 1 is trivial, so we need to examine for which other� the matrix

(1− �)A + (1− �̄)AT can be made singular (of odd nullity) for a Seifert matrixA

of a knotK. This happens only if�K

(
�−1) = 0 for someK (the zero being of odd

order). But from the proof of Lemma 2, this is equivalent to
(
2�e

�−1
|�−1|

)−2
being an

algebraic integer. �

Remark 3. The map� �→
(
2�e

�−1
|�−1|

)−2
for � ∈ S1 \ {1} is 2-1, the preimages of an

element being conjugate and (up to this conjugacy) the dependence of the one quantity
on the other is algebraic (in fact even quadratically radical, and the construction can
be performed using ruler and compasses) so that the transcendency of the one is
equivalent to the transcendency of the other. Therefore, in particular, as remarked in
the introduction, for transcendent�, �� admits only even values on knots. (See[36]
for more details on the algebraicity arguments.)

Remark 4. It is known that if �K1(�̊) �= 0 �= �K2(�̊), andK1 is concordant toK2,
then ��(K1) = ��(K2). However, by the examples of[24], there are slice knots with
�� �= 0 for �(�̊) = 0. Ng showed[29] that any concordance class of knots contains one
n-similar to a given knotK (modulo Arf invariant). This result implies for ours values
of �, for which �(�̊) is never zero (on knots), e.g. for� = −1 or � transcendental, but
not for general�. Also, since Ng’s knots are composite, her result does not imply any
of the statements about prime knots we will make below.

Now we prove Theorem 3.

Proof of Theorem 3.We split the proof into three lemmas. For simplicity, we consider

only the cases where
(
2�e

�−1
|�−1|

)−2
is an algebraic integer. The other cases are simpler

and the argument for them is obtained by omitting irrelevant parts of the argument we
describe for theV� = Z case. (As said, these cases can also be obtained from[29]
using the results of[23].) Theorem 3 then follows by takingK to be the connected
sum ofK ′ with the knots constructed in the lemmas.
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Lemma 3. There is for any n an n-trivial knotKn of odd ��.

Proof. As we already saw in the proof of Lemma 2, there is a knotK with ��(K)

odd. LetK ′ be ann-inverse ofK, that is, a knot such thatK ′#K is n-trivial (n-similar
to the unknot). The existence of suchn-inverses was proved by Gousarov[14]. Note,
that a knotn-similar to ann-inverse as also ann-inverse. Thus we would be through

(consideringKn = K#K ′), if we show thatK ′ can be chosen so that�K ′
(
�−1) �= 0.

This follows from the lemma below. �

Lemma 4. For any knotK ′, anyn > 0 and any� ∈ S1\{1} there is a knot K n-similar

to K ′ such that�K

(
�−1) �= 0.

Proof. By [30], we can assume up ton-similarity without loss of generality, thatK ′ has
unknotting numberu(K ′) = 1. Assume that�K ′

(
�−1) = 0. Consider an unknotting

number one diagramD of K ′ and a crossingp in D whose switch unknotsK ′.

p

(The sign choice ofp here is irrelevant; the argument goes through also with the
mirrored diagrams.)
Let D0 be the diagram obtained fromD by smoothing outp, andK0 the 2 component

link represented byD0. As

�K ′
(
�−1) = 0 �= 1= �©

(
�−1) ,

the skein relation (2) shows that

�K0

(
�−1) �= 0 .

Then consider the diagram

Dw p= w (8)

belonging to a knotK ′
w, wherew = wn = wn(a1, . . . , an) is the n-trivial rational

tangle considered before, depending on the even integersa1, . . . , an. The new knot
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K ′
w is n-equivalent toK ′. Thus, we need to show that for some choice of theai the

resultingK ′
w has�K ′

w

(
�−1) �= 0.

If we draw the tangle diagram of a rational tangle with all coefficients in the Con-
way notation even, it is easy to see that the half-twists counted by these coefficients
are all reverse. Then the skein relation (2) for � shows that, in analogy to the braid-
ing polynomials considered in[39], any value of the Alexander polynomial of a ra-
tional knot depends polynomially on the coefficients in the Conway notation in the
form with all coefficients even, and the dependence is linear in each single (even)
coefficient.
Thus

(a1, . . . , an) �→ P(a1, . . . , an) = �K ′
wn(a1,...,an)

(
�−1) ∈ R[a1, . . . , an]

depends polynomially on theai ’s, and the degree ofai in this polynomial is less than
or equal to the number of occurrences ofai in the Conway notation ofwn, that is, 2n−i .
The top degree coefficient ofP(a1, . . . , an), that is, the coefficient of the monomial∏n

i=1 a2
n−i

i , is (up to a sign) equal to the product of a power of the (non-zero) number

(
t1/2 − t−1/2

)∣∣∣
t=�−1

with �
D̃w

(
�−1). Here the link diagramD̃w = Dw(∞,...,∞) arises fromDw by replacing

wn by w∞, andw∞ is obtained in the same way aswn, but formally setting allai = ∞,
meaning composition with the∞-tangle in the tangle calculus of Fig. 1.
Thenw∞ is just the∞-tangle, and thusD̃w depictsK0, for which, as observed, we

have�K0

(
�−1) �= 0. Thus the top degree coefficient ofP(a1, . . . , an) is non-zero, so

that for some choice of theai ’s, P(a1, . . . , an) will be non-zero, as desired. �

Lemma 5. There exists an n-trivial(rational) knot K̂n of �� ∈ {±2}.

Proof. Consider fors ∈ 2Z the knotsKs,wn = (wn, s). They unknot only switching
crossings in a group of reverse twists (those counted byan) and hence have|��|�2
(such a move alters only a single diagonal entry in the Seifert matrix). We need to
show that for somes andwn, ��(Ks,wn) �= 0.
The definitions of�� and � in terms of Seifert matrices show (see the proof of

Lemma 1), analogously to the classical case� = −1 that, provided�K

(
�−1) �= 0,

��(K) is even, and 4| ��(K) exactly if the (real) number�K

(
�−1) is positive, when

� is normalized so that�(t) = �(1/t) and �(1) = 1. Thus we would be through

if for some s and wn we could make�Ks,wn

(
�−1) < 0. Again this value depends

polynomially ons and all ai in wn, and the top degree coefficient of this polynomial
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P is obtained, up to some non-zero multiple, by replacings and all ai by ∞. But
the resulting diagram is an unknot diagram, so that the top degree coefficient ofP is
non-zero. As the top degree monomial ofP, in which theai ands occur with the same
multiplicities as in the notation(wn, s), is linear in s and an, so isP itself. But any
non-trivial polynomial ink variables admitting only non-negative values on the whole
(2Z)k has even degree inall variables. This shows the lemma.�
To finish the proof of Theorem 3, now consider the families of knots

F1 = {K ′#Kn##
lK̂n}l∈N, F2 = {K ′##lK̂n}l∈N,

F3 = {K ′#Kn##
l !K̂n}l∈N, andF4 = {K ′##l !K̂n}l∈N. (9)

HereKn is the knot of Lemma 3, and̂Kn the one of Lemma 5. Since any�� ∈ Z is
realized by some of the knots, one of the families contains the knotK we sought. �

4. Constructing prime knots

The knots in the previous construction are composite. That we can modify them into
prime knots we prove now. This is related to the proof of Theorem 2.

Proof of Theorem 2.We proceed as in[20]. Let K be a composite knot with prime
factorsK1 andK2 (more prime factors are dealt with inductively). Then we represent
K1 and K2 as closures of prime tanglesM1 and M2. We consider a knotK ′ =
(M1,M2)Xn for a suitable tangleXn.

Xn

M2

M1

We need the following three properties ofXn:

1. Xn is prime,
2. Xn is n-trivial, and
3. replacingXn for the 0-tangle preserves�.

We recall from[20] that a tangleX ⊂ B3 is called prime, if it has no connected
summand (a ball intersecting it in a knotted arc), and has no separating disk, i.e. a
properly embedded diskD ⊂ B3, with both components ofB3 \ D containing parts
of X. The rational tangles are exactly those with no connected summand, but with a
separating disk.
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WhenXn satisfies the above three conditions, thenK ′ is prime from condition 1 by
[20], and has the same Vassiliev invariants and Alexander polynomial by conditions 2
and 3.
To find Xn, we turn to a (special case of a) construction ofn-trivadjacent knots due

to Askitas and Kalfagianni[4].
Let Bn be then-strand braid group and�i the Artin generators. Define a sequence

of (pure) braids�n ∈ Bn by �2 = �±2
1 and inductively�n = [�n−1,�±2

n−1], where
[�,�] = ���−1�−1 is the commutator and�n−1 ∈ Bn is meant with respect to the
canonical inclusionBn−1 ↪→ Bn. (All the signs ‘±’ can be chosen independently.) It is
easy to see that�n is “Brunnian”, that is, the removal of any strand(s) from�n gives
a trivial braid on the remaining strands.
For �n ∈ Bn, let �

′
n ∈ B2n be the doubled braid. (Each letter�±1

i in �n is turned into
�±1
2i �±1

2i−1�
±1
2i+1�

±1
2i .) Consider the knotKn built up from �′

n in the following obvious
way (depicted forn = 4):

Kn
β′

=
n

c

. (10)

(Note, that heren of the strands of�′
n are reversely oriented.)

Such knots are constructed in[4]. Kn is n-trivadjacent, i.e. for the set ofn encircled
crossings in (10) the switch of any non-empty set of these crossings gives an unknot
diagram. Thus by[4, Theorem 5.2], �Kn = 1 for n�3.
Let

Yn−1

be the complementary tangle to the rightmost encircled crossingc in (10). Let

X =n−1
Yn−1

.
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Since

Yn−1

c
and Yn−1

c

have unit Alexander polynomial, by a simple skein argument (see[6]) one sees that
replacingYn−1 for the 0-tangle preserves the Alexander polynomial, and hence the same
is true forXn−1. Also, one easily sees thatYn−1, and henceXn−1, are (n − 1)-trivial.
Finally, we must show thatXn−1, or equivalentlyYn−1, is prime.
For this we must show thatYn−1 has no connected summand and is not rational.

The first property is clear since

Yn−1

is the unknot. The second property would follow from the fact that

K =n Yn−1

has unit Alexander polynomial, provided one can show thatKn is non-trivial, since
no non-trivial rational knot has� = 1. Thus the proof is concluded with the below
lemma. �

Lemma 6. Kn is non-trivial.

Proof. We prove by contradiction. AssumeKn is trivial.
We know from[35] that if in a skein tripleL+, L0, L− the linksL± are l-component

unlinks, thenL0 is the (l + 1)-component unlink. By iterating this argument, we
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conclude that

K′n β′n=

is the (n + 1)-component unlink. Now,K ′
n is the boundary of a diskD with n bands

attached to it (corresponding to the doubled strands of�n). The disk is obtained by
removing the bands, i.e. replacing$$ · · · $ for �′

n:

Un β′= n
.

Let Un be the unknot bounding this disk. By[10] we know that if a linkL is obtained
from two (split) componentsL1 and L2 by band connecting,L has a minimal genus
Seifert surface containing the band. Since then bands attached toD can be viewed as
connecting the(n + 1) components ofK ′

n to build an unknot, the assumptionKn is
the unlink means that one must find a disk boundingUn containing each band. As this
disk D is unique up to isotopy, for each single band,D must be isotopable so as to
contain it without intersecting the rest of the linkK ′

n. In particular, if one shrinks the
bands into strands (i.e., ignores the framing), and connects their endpoints by arcs in
D, one finds that the usual braid closure�̂n of �n must be then-component unlink.
To show that�̂n is non-trivial (and hance to have the contradiction we wish), consider

the Jones polynomial value
∣∣V (e�i/3) ∣∣ (or alternatively the number of torsion numbers

of the double branched cover homology group divisible by 3)[25,12]. Since this is
invariant under the insertion of�±3

i , the assumption that

�̂n =̂([. . . [�±2
1 ,�±2

2 ], . . . ,�±2
n−1]

)
is trivial means for

�̃n = [. . . [�∓1
1 ,�∓1

2 ], . . . ,�∓1
n−1]

that we have ∣∣∣V̂̃�n

(
e�i/3

) ∣∣∣ = √
3
n−1

.

In particular, by[17, Proposition 15.3], b( ̂̃�n) = n, with b denoting the braid index.
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Thus it suffices to show that̃�n is not a minimal strand number representation for̂̃�n. �̃n contains as braid word two copies of�±1
n−1 (of opposite sign). Letwn−1 be

the subword ofwn = �̃n between (and not including) these two letters.wn−1 in turn
has two copies of�±1

n−2 (again of opposite sign) and so on. By induction one finds

subwordswk of �̃n for 2 ≤ k ≤ n containing only letters�i with i < k, with �k−1
occurring twice (and with opposite sign), unlessk = 2, in which casew2 = �±1

1 is a

single letter. Letc be the crossing in the diagram̃̂�n corresponding to this letter.
Numbering generators from left to right, and composing words from bottom to top

(i.e. orienting strands upward), consider the segment of the knot strand in the diagram̂̃�n between the right outgoing arc ofc until the right incoming arc of this same
crossing. Here is an example forn = 5 (rotated by−�/2 to save space):

All crossings this arc passes correspond to a pair of (oppositely signed)�±1
i for

2� i�n − 1. Thus in ̂̃�n this arc can be shrunk and eliminated, giving a smaller
strand number braid representation.�
Note that the construction of Theorem 2 applied on the example in Theorem 3 does

not immediately prove Theorem 1, because�� may be changed. Also, we cannot control
the behaviour of�� if �̊ is a zero of the Alexander polynomial of order> 1. Thus a
bit more care is needed.

Proof of Theorem 1.We start with the knots occurring in the proof of Theorem 3, built
for givenK ′. Now look at which family in (9) contained the knotK found in the proof
of Theorem 3 (or one of these knots, which we fix in the following). Apply a certain
number of times the construction of Theorem 2 to makeK ′#Kn or K ′ (dependingly
on whetherK was in familyF1∪F3 or F2∪F4) into a prime knotP, and by[20]
representP as the closure of a prime tangleP ′. Let Tn = (wn, s) be the rational tangle
whose closure isK̂n. Note that we have chosen theai in wn so that��(K̂n) �= 0. Also
�
K̂n

(�̊) �= 0.
Then consider the tanglesSl = (P ′, !Tn, . . . , !Tn) · Xn (with l copies of!Tn) if K is

the lth knot in familyF3 or F4, or S−l = (P ′, Tn, . . . , Tn) ·Xn, if K is in family F1
or F2, with Xn being the tangle found in the proof of Theorem 2. The tangleSl is
built up as sum of two prime tangles (see[33]). Thus its closure knotSl is prime. It
has the same Vassiliev invariants of order< n asK ′ andK, and the same Alexander
polynomial asK.
Assume �̊ is a zero of�K of order n�(K) mod 2 ∈ {0,1}. Then by Lemma 1 if

��(K) is even, so is��(Sl), and if��(K) is odd, so is��(Sl). Now let l ∈ Z vary. Then
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Sl ∼n K. In general�Sl
�= �K , but �K̂n

(�̊) �= 0 implies that�̊ is zero of all�Sl
of the

same order. Hence still��(K)− ��(Sl) is even for alll. Also by the fact thatTn turns
by undoingan reverse half-twists into the 0-tangle, we have|��(Sl+1) − ��(Sl)|�2
(see proof of Lemma 5). Thus it suffices only to show that by adjustingl ∈ Z one can
make��(Sl) arbitrary large or small. But this is clear since by a crossing change one

turnsXn into the 0-tangle, and henceSl into #l !K̂n#P (resp. #−lK̂n#P for l < 0), and
��(K̂n) �= 0.
What remains is to justify our assumption that�̊ is zero of�K of order 0 or 1. As

�
K̂n

(�̊) �= 0, this is equivalent under replacing�K by �P . That is, we must show that

we can modifyP up to n-similarity so as�̊ to be a zero of ordern�(K) mod 2 of
�P . This is proved in the below lemma. The knot found there may be composite, but
applying the construction of Theorem 2 gives again a prime knot.�

Lemma 7. Let K be a knot, � ∈ S1 \ {1} and n > 0. Then there is a knotK ′ ∼n K

with �K ′(�̊) �= 0. Also there is a knotK ′ ∼n K with �̊ being a zero of�K ′ of order
one, provided�K(�̊) = 0.

Proof. That we can achieve�K ′(�̊) �= 0 follows from the proof of Lemma 4.
Assume now�K(�̊) = 0. We would like to findK ′ such that�̊ is a simple zero of

�K ′ andK ′ ∼n K.
Let K1 be a knot such that̊� is a simple zero of�K1. That suchK1 exists follows

from the separable extension argument in the proof of Lemma 2, and the remark after
this proof. LetK ′

1 be ann-inverse ofK1, chosen by the proof of Lemma 4 to have
�K1(�̊) �= 0. Finally, let K̃ be a knotn-similar to K such that�

K̃
(�̊) �= 0, also found

by Lemma 4. Then takeK ′ = K̃#K1#K ′
1. �

Appendix Unknotting numbers

We would like to note here an application of Tristram–Levine signatures independent
from our previous constructions. It seems useful, and builds on some of the background
we introduced, but is possibly too short to deserve a stand-alone exposition.
Let u(K) be theunknotting numberof a knot K, the minimal number of crossing

changes needed to make the unknot out ofK. We callK = K0 → K1 → · · · → Kn =
© (© denoting the unknot) anunknotting sequenceof K, if Ki andKi+1 differ by
a crossing change. Thus the unknotting number ofK is the minimal lengthn of an
unknotting sequence ofK.
We say thatK has positive unknotting number n(denoted byu+(K) = n) if it

unknots by switchingn, but not less thann, positive crossings to negative. Similarly
u−(K) = n denotes thenegative unknotting number. These concepts were introduced
in [7]. Trivially u+(K) = n ⇐⇒ u−(!K) = n, !K being the mirror image ofK,
and u(K) = 1 ⇐⇒ u+(K) = 1 or u−(K) = 1. If in the unknotting sequence
K = K0 → K1 → · · · → Kn = © we have thatKi+1 differs fromKi by a change of
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a positive crossing, then we call the unknotting sequencepositive. In caseK has no
positive unknotting sequence, we setu+(K) = ∞.

Theorem 4. If there is a� ∈ C with |�| = 1 and ��(K) = 0 and �K(�̊) = 0 (with �̊
given as in(7)), then u±(K) = ∞. In particular, u(K)�2.

Proof. Assume thatu+(K) = n < ∞. If K+ andK− differ by a crossing which is
positive resp. negative, we haveA�(K+)−A�(K−) = diag(2−2�e�,0, . . . ,0). Then we
know that if we order the eigenvalues ofA�(K±) non-increasingly�1,± ��2,± � · · · �
�2g,±, we have�i,+ ��i,−. This follows from a theorem attributed to Courant-Fischer
and Weyl [42], and is now known as a special case of the complete description of
inequalities for the eigenvalues of sums of Hermitian matrices due to Helmke–Rosenthal
[16] and Klyachko[21]. Set e.g.j = 1 in formula (3) of [2].
Then

��(K+) =
∑
i

sgn(�i,+) �
∑
i

sgn(�i,−) = ��(K−) .

Thus ��(K+) = ��(K−) only if sgn(�i,+) = sgn(�i,−) for all i = 1, . . . ,2g. If
�K+(�̊) = 0, then some of the�i,+, and hence�i,− vanishes, so that also�K−(�̊) = 0.
If now K = K0 → K1 → . . . → Kn = © is a positive unknotting sequence, we
have ��(Ki+1) ≤ ��(Ki) with strict inequality at least once, as the zero�̊ of �K

must disappear under some of the crossing changes. But then��(©) < ��(K) = 0, a
contradiction.
The argument foru−(K) = ∞ is analogous. �
Since all Tristram–Levine signatures vanish on achiral knots, we have

Corollary 2. If K is achiral and �K(S1) ' 0, then u(K) > 1.

Unfortunately, this is not necessarily true for slice knots, as by the examples of[24],
we may have� with �� �= 0 and�(�̊) = 0. In fact, Corollary 2 gives an easy way of
finding such examples, without examining the Seifert form. (Note, that in[24], Levine
just writes down Seifert forms, and claims they come from knots without giving the
knots explicitly, though.)

Example 2. Consider, for example, 820, which is slice and of unknotting number one,
and � = e�i/3. As 820 has the Alexander polynomial of the square (and granny) knot,
�(�̊) = 0, and one can in fact calculate that��(820) = −1 andn�(820) = 1.

The signed unknotting number information of the theorem can be combined with
other conditions.

Proposition 3. Assume K satisfies the premise of Theorem4. If additionally (a)
VK

(
e�i/3) = −3 or (b) there is some�′ with ��′(K) = ±4, then u(K) > 2.
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Proof. If u(K) = 2, the additional conditions implyu±(K) = 2, contradicting
Theorem 4. (For condition (a) this follows from the inequality��′(K+) ≤ ��′(K−)+2,
analogous to Murasugi’s inequality for�′ = −1, and for condition (b) from the
argument of Traczyk[41].) �
To obtain some interesting examples, we consider twist knots. It is easy to see that

for those of even crossing number, the Alexander polynomial has no zeros on the unit
circle, while for those of odd crossing number, there in one pair of conjugate zeros,
moving towards 1 when the crossing number increases.

Example 3. u(31#31#!72) = 3. (Here the factor knots are so mirrored so as the knot
to have signature 2.)

In particular, we have

Corollary 3. If K is achiral and 0 ∈ �K(S1) and VK

(
e�i/3) = −3, then u(K)�3.

Example 4. u(31#!31#41) = 3.

This solves one of the undecided numbers in the tables of[38]. No previous method
seems to give this result.

Remark 5. As we proved above,�(�̊) = 0 and �� = 0 imply that �̊ is (at least) a
double zero of�. Already the existence of such a double zero, unfortunately, limits
the space of applicable examples, and makes it most likely to obtain new information
for composite knots, as we saw above.

The argument in the proof of Theorem 4 works in fact assuming a more general
condition on the nullityn�(K).

Theorem 5. Assume K is a knot for which there is a� ∈ C with |�| = 1 and � �= 1
with n�(K) > ��(K). Thenu+(K) = ∞.

Proof. Assume the contrary. By the argument in the proof of Theorem 4, we obtain that
the n�(K) zero eigenvalues must become negative inKn = ©, in order�Kn(�̊) �= 0,
but then 0= ��(Kn) ≤ ��(K) − n�(K) < 0, a contradiction. �
The condition of this theorem is unfortunately seldom satisfied. For example, ifK =

31#31#!31 and � = e�i/3, then n� = 3 > 1 = ��. However, for the really interesting
exampleK = 810 (with the same Alexander polynomial), we have onlyn� = 1 (a
single eigenvalue changes sign cubically), so that the desired conclusionu+(K) > 1
fails.
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