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I .  INTRODUCTION 

The f i r s t  half of this note is a summary of the algebraic results concerned with 

the classif icat ion of isometric structures of the integers arising in knot theory under 

the concordance or metabolic equivalence relation. A detailed expostion can be found 

in the author's Memoir [St] .  Br ief ly ,  the Seifert l inking pairing, L, on the free sub- 

module, M, of the middle dimensional homology of a Seifert manifold for an odd dimen- 

sional knot defines an endomorphism, t ,  of M by the equation 

i )  L(x,y) = b(t(x),y) 

where b is the bi l inear unimodular intersection pairing on M. From the symmetries 

satisfied by L we obtain the following relation 

i l )  b(t(x),y) : b(x,(Id - t ) (y) )  

Such objects (M,b,t) are called isometric structures over the integers. I t  is called 

metabolic i f  there is a submodule N which is invar|ant under t and equal to i ts  own 

annihi lator under b, N = N ~ = {m in Mlb(m,n) = 0 for each n in N} . 

The algebraic technique of localization allows us to relate the integral case to 

the rational case which was computed by Levine [L]. Unlike the rational f ie ld  case 

there are obstructions to the decomposition of an integral isometric structure according 

to the Z[X]-module structure induced by t which are measured by the coupling exact 

sequence. This reduces the exp l i c i t  computation to modules over orders in some alge~ 

raic number f ie ld ,  where the f inal  computations are made. 

When (M,b,t) is metabolic on N, there is an exact sequence of Z[X]-modules 

i i i )  0 - N ~ - M - HOmz(N,Z) " O. 

When this sequence sp l i ts ,  the isometric structure Is called hyperbolic. This is 
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a necessary condition for the geometric condition of double null concordance of a 

knot studied by Dewitt Sumners [S] . Stabilization with this relation defines a new 

group of knots under the operation of connected sum which is much larger than the knot 

concordance group. In fact, a simple knot is t r i v i a l  in this group only i f  i t  is 

(stably) isotopic to the connected sum of a knot with i ts  inverse. Furthermore, the 

even dimensional group is non-trivlal contrasting with the even-dimenslonal knot con- 

cordance group, which is zero [K]. The above techniques and ideas also apply to iso- 

metries of integral inner product spaces which arise geometrically in the bordlsm of 

dlffeomerphsim question solved by Kreck [Kr]. The application may also be found in[St].  

Grateful acknowledgement is made for the supportive assistance of Pierre eonner, Michel 

Kervaire, "Le Troisieme Cours" and the National Science Foundation. 

I I .  THE METABOLIC CASE 

Let R be a Dedekind domain, in particular the integers, Z, the rational f ie ld ,  Q, 

or a f in i te  f ie ld  with q elements, F . Let c = + 1. q 

Definition 2.1 An c-symmetric isometric structure over R is a t r ip le  (M,b,t) 

where M Is a f i n i t e l y  generated R-module~ b is an c-symmetric bi l inear form on M with 

values in R and t is an R-linear endomorphism of M satisfying: 

i )  (M,b) is an inner product space, that is the adjoint homomorphism, Ad b:M - 

HomR(M,R) given by Ad b(m) = b(m,-), is an isomorphism. 

i i )  b(t(x),y) - b(x,(Id - t ) (y) )  

Let K denote the f ie ld  of fractions of R. we w i l l  relate isometric structures over 

R and K by means of the following: 

Definlt io n 2.2 An c-symmetric torsion isometric structure over R is a t r ip le  

(T,b,t) where T is a f i n i t e l y  generated torsion R-module, b is an ~-symmetrlc bl l lnear 

form on T with values in the R-module K/R and t is an R-llnear endomorphlsm of T with: 

I)  Ad b:T -HomR(T,K/R) is an isomorphism 

i i )  b(t(x),y) = b(x,(Id - t ) (y))  

An isomorphism of isometric structures must preserve the inner product and commute 

with the endomorphism. ~he isomorphism classes form a semlgroup under the operation of 

orthogonal direct sum. We now define an equivalence relation so that the equivalence 

classes form a group. 
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Definition 2.3 An isometric structure is metabolic if there is an R-submodule N 

I) N is t Invarlant, that is t(N)~N, and 

ii) N = N ~={m in M: b(mmN) =( b(x,n): n inn } = {0}} , the annihilator of N under 

the inner product b. We call N a metabolic submodule or simply, metabollzero 

Examples 2.4 

i )  The diagonal D in (M,b,t) + (M,-b,t) is a metabolic submodule 

i l )  Given an R-module N and an R-linear endomorphism s, where R is torsion free 

or completely torsion, the hyperbolic isometric structure H(N,s) = (N + N , b, t) 

where N* = HomR(N,R) in the torsion free case and HomR(N,K/R) is the torsion case with 

b((x,f)m(y,g)) = f(y) +cg(x) and t (x , f )  = (s(x),fo(Id-s)) has metabolic summands 

N and N . 

i i i )  The torsion isometric structure H(Z/(m2), Id) has a metabolizer mT v,bich 

is not a direct summand. 

Deflnltion 2.5 Two isometric structures, M and N, are Witt-equivalent (or concord- 

ant) i f  there are metabolic isometric structures, H and K, such that M + H is isometric 

with N + K. The set of equivalence classes form a group, denoted CO(R) (C~(K/R) in 

the torsion case), under orthogonal direct sum. The inverse of (M,b,t) is (M,-b,t) as 

in example 2.4 i ) .  

CO(Z), which was f i r s t  defined by Kervaire in [K], is well-known to be isomorphic 

to the geometric knot concordance group in dimensions above one and to have in f i n i te l y  

many elements of each possible order, ~o, four and in f in i te ,  [K,L] . We wish to 

further elucidate i ts  structure. The f i r s t  question we w i l l  solve is which rational 

isometric structures contain unimodular integral isometric structures? 

Let (V,B,T) be an isometric structure on the f ie ld K, the fraction f ie ld  of the 

Dedekind domain R. An R-lattice in V is a f i n i t e l y  generated R-submodule of V. An 

obvious necessary condition for an R-lattice L to be invariant under T, is that T 

satisfy a monic polynomial with coefficients in R. ( I f  R = Z, then L is a free Z-module 

and this is the theorem of Cayley and Hamilton, in a general Dedeklnd domain, this 

applies to each localization.) Let Co~K) be the Witt group of isometric structures 

over K satisfying f(T)=O for some monic polynomial with coefficients in ~. I f  {x i }  

a basis for V, then the R-module generated by TJx~, J <deg f ,  is an R-lattice is 
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invariant under T. Since K is the fraction f ie ld of R, we may scale the lat t ice L by 

product of the denominators of the inner product B on the f in i te  set TJxi to obtain the 

a new lat t ice dL on which the inner product B is R-valued. Define the lat t ice L # = 

{v in V: B(v,l) is in R, for every I in L} .This lat t ice is also Invariant under T, 

so that T induces an endomorphism of the quotient L#/L, say t .  Finally we define a 

K/R valued inner product on L#/L by b(T,v-') = B(u,v) mod R. This is a torsion isometric 

structure and i ts equivalence class in CO(K/R) is independent of the choice of the la t -  

tice L. We have defined a homomorphism B:C¢(K) ÷ C ~ (K/R), called the boundary. 

LOCALIZATION THEOREM 2.6 the following sequence is exact: 

O- C ¢ (R) i c ~ C c (K/R) ~C o (K) - 

In the case R = Z~ the boundary is ontoD making the sequence short exact. The map i 

is given by localization at zero (or tensor product with the f ie ld of fractions.) 

Example: Let R = Z, and consider the rational isometric structure, given with 

respect to a basis, e I and e2, by the matrices (V= Q + Q, B =(~. ~), t = (~ " I )  

\ I 0 / - 1 5  

has a one-dimensional self-annihilating subspace generated by e I - e2, but no one 

dimensional l ine in L#/L over the f ie ld  F 5 can be invariant since the minimal 

polynomial is X2-X+I~ which is irreducible mod 5. 

We now introduce a very powerful notion which simplifies the computation of the 

last two terms in the sequence. 

Definition 2.7 An isometric structure is anisotroplc, i f  for any t invariant 

R-submodule N, N~N "L = O 

Proposition 2.8 Every Witt equivalence class has an anlsotropic representative. 

Proof: Let L be an invariant pure R-submodule with LCL ~ .Then L'L/L inherits a 

quotient isometric structure and N = { (x,x+L): x is in L} is a metabolizer. 

We now note that the endomorphlsm t must have kernel O in any anlstroplc repre- 

sentative, for b(x,(1-t)y) = b(x,y) = b(tx,y) = b(O,y) = 0 i f  x and y are in the 

kernel. Hence the kernel is Invariant and self-annihilating. I f  R is a f ie ld  or i f  

(M,b,t) is a torsion structure on a f in i te  module M, then t is invertible and s = 

Id - t "1 is an isometry of b, by an easy veri f icat ion. 
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Let A denote the polynomial ring R[X]. I t  has an involution induced by X* = I-X. 

An isometric structure over R can be viewed as a A-module in the tradit ional way, by 

allowing the indeterminate X to act as the endomorphism t. We w i l l  denote restrict ions 

on the module structure by subscripts, for example, i f  I is an ideal in R, CR/I(K/R) 

w i l l  denote the Witt group of torsion isometric structures on R/I-modules, that is 

torsion R modules annihilated by I .  As a second application of the existence of aniso- 

tropic representatives, we have the following: 
i 
Theorem 2.9 The following inclusions are isomorphisms: 

C~/I(K/R)n C CE(K/R) 
I ,  maximal ideal in R 

. ~ C ~ (F) C C~(F) 
I= I , invariant maximal ideal A/I 

where R is a Dedekind ring of f i n i t e  rank over Z and F is a f ie ld .  

P.roof: I f  N is a t invariant subspace in M, an anisotroplc structure, then NJ~-O. 

I f  the module M is a vector space over a f ie ld  or i f  M is a torsion module with f i n i t e  

cardinal i ty (this is assured by the condition on R in the torsion case) then the exact 

sequence: 0 - N ~ - M - HomR(N,R) ~0, where the second map is the 

adjoint homomorphism restricted to ~I, implies that M = N+ N ~ by a dimension or cardln- 

a l i t y  argument. Hence the annihi lator of an irreducible anisotroplc must be a maximal 

ideal in the appropriate ring, R or A Furthermore in the f ie ld  case, the annihi lator 

must be invariant under the involution for otherwise, i f  a is in the annihi lator I ,  

then 0 = b(ax,y) = b(x,a*y) and i f  a y # 0 for some y then the form is singular. 

In jec t i v i t y  is veri f ied in [St]. 

In the f ie ld  case the invariant maximal ideals in F[X]are generated by self-dual 

n~nic polynomials p = p , where p*(X) = (-1) deg Pp(1-X). In the torsion case there is 

a further reduction. I f  l i s a  maximal ideal, R/I is a f ie ld  and i f  the torsion R-module 

is annihilated by I i t  must take i ts values in the submodule I ' I /R  = {k:kICR}/R in K/R 

which is isomorphic to R/I by a choice of unlformizer. ( I f  R = Z we make this choice 

c (R/Z), canonical by choosing the positive prime element.) We then have CR/I(K/R) = C ~ 

and we may apply the f ie ld  case of (2.9) to obtain a further decomposition according 

to the R/I[X]structure. 

Corollar~ 2.10: The following inclusion is an isomorphism: 
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+ finiteC~[x]/i(R/(I~R))~ , C¢(K/R) I=I* ,  R[X]/I 

in the integral case, R = Z, the involution on Z[X]/I is t r i v i a l  only i f  X = X* 

= 1-X mod I ,  that is 2X = I mod I ,  so 2 is in I and Z[X]/I = Fp for some odd prime p. 

z/(2) +z / (2 )  p= lmod4 

z/(4) 

0 

Z/C2) 

¢ = +I 
p - 3 mod 4 Tr~vlal involution 

i f  the involution is non-tr lv lal  

The f i r s t  three computations are the well-known computations of the Witt groups of 

f i n i t e  f ie lds,  the last is a computation of the w i t t  group of Hermitian forms over a 

f i n i t e  f ie ld  which w i l l  follow from the theory of the succeeding paragraphs. 

We must now make use of the R[X]-module structure to make further computations. 

The setting we desire is specified as follows: Let S be an R-algebra, f i n i t e l y  gener- 

ated as an R-module,A an S-module and L an R-module. Suppose also there is an R-llnear 

~p  s:A ÷ L such that s.:S x A÷ L given by s.(a,k) = s(ak) is non-slngular (that is ,  

both adjoints are R-module isomorphisms). Then we have the following trace lemma of 

Milnor [M]and Knebusch and Scharlau [KS]: 

TRACE LEMMA 2.11: s. induces an equivalence of the category of non-singular L~ 

valued bi l inear forms, ( , ), on R-modules with an S-module structure and the category 

of A-valued forms < , • on S-modules. The equivalence is given by s.< , • = ( , ). 

Furthermore, i f  there is an involution * on S, t r i v i a l  on R such that s(a*) m s(a), 

then i f  ( , ) is ~-symmetric and satisf ies (ax,y) = (x,a y) then ( , ) corresponds to 

a ¢-Hermitian form < , •. 

Examples 2.12 i )  I f  R is a f ie ld  and S is a f i n i t e  degree separable f ie ld  exten- 

sion, then A = S, L = R and s = traces/R satisf ies the conditions of the trace lemma 

(whence i ts  name). This induces an isomorphism C~[X]/I(R)=H c (S = R[X]/I),  the Witt 

equivalence classes of c-Hermitlan forms over S. This completes the computation of 

C¢(Q) using Landherr's Theorem 2.14 (following). 

i i )  Let P be a prime ideal in R[X]and le t  S = R[X]/P. Thls is an R-order in a 

f i n i t e  degree extension E of the fraction f ie ld  K, provided that Pr~ R - O. Making 

assumption, le t  A= A'I(s/R) = {e in E: traceE/K(eS)C R} , the inverse differen~ this 

of S. By i ts  very def in i t ion,  the trace induces a nonsingular pairing S x A~ R. This 
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example is very important in the further computation of Co(Z). 

i i i )  Let P = (X2-X+I) and S = Z[X]/P with an integral basis I and a = (I+ /-3)/2. 

Then A is (I/p'(a))S = (I/~-3)S by a classical theorem of Euler. Consider the A-valued 

Hermitian form on the rank one free module S, given by [x,y] - xy /J-3 . Thls is a 

non-singular form and corresponds to the symmetric isometric structure ($, b - trace 

The beneficial decompostion of M as N + N ~ for any invariant submedule N of an 

anisotropic structure in the f ie ld  and torsion case fa i ls  in the integral case. In 

R[X]the prime ideals result from an interaction between the primes In R and those in 

K[X]. This is featured in a second exact sequence which measures the fai lure of the 

above-mentloned decomposition. 

CpUPLING EXACT SEQUENCE 2.13: There Is an exact sequence 
C 

0 - • - - - C ~ K / P  " ~ ( R ) -  . + ~ /p(K/R) 
P=P*, prime in ~ ~ P ~ 

RF~P = 0 

The coupling map is defined as follows: Given (M,b,t) le t  Mp = { m:pim = 0 for some I } .  

The form b restricted to M is non-degenerate since I f  x is In Mpt there is a y in M 

so that b(x,y) # O. But 0 b(ax~y) * = = b(x,a y) hence y must be in Mp. Therefore Mp 

is a non-degenerate sub-lattice of M and we may define cp(M) = (Mp#/Mp, ~,t-') as in the 

definition of boundary. The coupling map C is the direct sum of the C.p. In general the 

cokernel of C is known but i t  is not well-understood. 

Now, by the trace lemma and the localization sequence, we have a commutative dia 

c - C c (K/R) 
gram: 0 "~[XI /P = S (R) "CR[xI/p(K) R[XI/P 

I t  ' I 
0 H¢Ca" (S/R) ~) . H~(E L " - - K[XJ/P)-----F~(E/A) 

where the vertical arrows are isomorphlsms. We wi l l  make a further reduction and com- 

pute the boundary homemorphism only for the maximal order in E, the ring of algebraic 

integers D, and obtain the computation for S from the appropriate commutative diagram 

of forgetful maps. 

We now recall Landherr's theorem on the computation of the Witt group of Hermitian 

forms over an algebraic number f ie ld  E with involution *. Denote by Q(E,*) the semi- 

direct product Z/(2) x F'/NE" where NE" -{ee*}is the image of the norm map NE/F:E-~F" 
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and the multiplication is given by (el,dl)(e2,d2) = (e I + e2,(-1)e1+e~ dld2). To each 

conjugate pair of equivariant embeddings (E,*) ~ (C, -) where C is the complex num- 

bers with complex conjugation - ,  there is an associated signature homomorphlsm: oi: 

H(E) ~ H(C) = Z. 

Landherr's Theorem 2.14: There Is an exact sequence: 

0 , (4Z) s - H(E , * )  - Q(E,*) w -0 

where w is (rank mod 2, disc = (-1)n(n'1)/2det) and n is the dlmension of the form. 

The kernel of w is detected by the s signature homomorphisms which are • 0 mod 4. 

• (d,z2)p ° The group F /NE" is computed by the Hilbert symbols = ~ 1 at a l l  the 

prime ideals P in the fixed f ie ld  F, where E = F(/z2), by the Hasse Cyclic Norm 
o 

Theorem and can be realized a rb i t ra t i l y  subject to Hilbert Reciprocity that only an 

even f in i te  number can be - I .  For the next result we wi l l  suppose that no dyadic 

prime ramifies in the extension E/F. This is true in al l  the number f ields arising 

in the knot concordance group. After performing the technical task of relating the 

boundary homomorphism to the Hilbert symbols we obtain: 

Theorem 2.16: Let D be the ring of integers in an algebraic number f ie ld with 

involution. Then H+I(A'I(D/Z)) is computed as follows: 

i )  there is a rank one form i f  and only i f  no prime ramifies in the extension E/F. 

i i )  Let JH be the subgroup of elements of even rank and H, the Hilbert reciprocity 

homomorphism. Then the following sequence is exact: 

0 - - -  jH+I(A-I(D/Z)) o . (2z)S H -(Z'= +__I) ~I 

In particular there are no elements of order four and this is true in general 
+I 

for H(A'I(s/z)) =C S (Z). 

Corollary 2.17: An element of order four in C+I(z) must have a non-trivial 

coupling invariant and an Alexander polynomial with dist inct factors. 

We now give a complete description of two important subgroups of the knot con- 

cordance group: those whose minimal polynomials are a product of quadratic polynomials 

(this is related to low genus knots) and those whose Alexander polynomials are a prod- 

uct of cyclotomic polynomials (this is case for Milnor-Brieskorn knots). 

LetXn be a primitive n th root of unity and, denote by Pn(X) the minimal polynom- 

ial of (1 -~n ) ' I .  This ~ a monic polynomial with integer coefficients i f  and only 
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i f  n is composite. Let C be the semigroup of polynomials generated by the Pn under 

multiplication. Applying the coupling exact sequence 2.13) to this case, we have: 

Cxclotomic Coupling Theorem 2.18: C~/(pn)(Z) Is torsion free and the following 

is exact: 0 - - -+  C~/pn(Z)~ ~ C~(Z)b_ - =+ Cc'A/p n(Q/Z) ~ CE(Q/Z) -0 

Any monlc self-dual quadratic polynomial must be of the form: X 2 - X + b. Let 

d be the largest square free divisor of the discriminant and le t  a be the number of 

prime divisors of I-4b not dividing d and b be the number of prime divisors of d. 

Denoting by T the semigroup generated by the quadratic self-dual polynomials, we have: 

quadratic Couplin 9 Theorem 2.19: 

p=p , deg = 

The following sequence is exact: 

- m C ¢ (Q/Z)  -C;(Q/Z) ~ m Coker c - - 0  
xlp P 

E 
c Sign(1-4b) C^/p(Z) Coker Cp 

+I - 2Z (Z/(2)) a+b'1 

* I  , 0 (z/ (z))  a*b'1 

- I  Z + (Z/(2)) a+b'1 0 

-1 + order = 2 a~b 0 
two torsion except 
single element of order 4 
i f f  prime = 3(4) divides d 

CA/p(F q) = Z/(2) (l-4blq) = - I  

I 0 = I (1-4blq) 

I (Zl(2)) 2 p ~ I(4),  I-4b ~ 0(q), c : +I 

Z/(4) p ~ 3(4), I-4b ~ O(q), ~ = +I 

0 l-4b ~ O(q), E = -I 

where ( I ) is the Legendre symbol. 

This has been a brief outline of the structure of CE(Z) elucidated In complete 

detail in [St] , together with many expl ic i t  examples of a more arithmetic nature 

and a geometric analog of the localization sequence. 
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I l l .  THE HYPERBOLIC CASE 

We now introduce another relation on the semlgroup of isometric structures under 

the operation of orthogonal direct sum. Although this relation was f i r s t  conceived 

algebraically, we wi l l  give a geometric interpretation in Theorem 3.]3. 

Definit ion 3.1: The hyperbolic E-symmetric isometric structure on (N,s) where 

N is either a torsion or a torsion free R-module and s is an R-module endomorphism 

is the structure (M,b,t) where: 

i )  H = N + HomR(N,R) (HOmR(N,K/R) in the torsion case) = N + N 

i i )  b ( (x , f ) , (y ,g) )  = f(y) + ~g(x) 

i i i )  t ( x , f ) =  (s (x) , f  o (Id -s)) 

As we have seen, the R&X]- module structure plays a strong role in the analysis of 

isometric structures. The following proposition relates the above def ini t ion to this 

structure. 

pro~gsition 3.2: An ~-symmetric isometric structure over R is hyperbolic i f  

and only i f  there is a metabolic submodule N such that the short exact sequence 
AdIN =p 

0 -N -H - HOmR(N,R or K/R) - 0 

spl i ts  as a sequence of R[X]- modules. 

Proof: The isomorphism wi l l  be constructed in two stages. First ,  define the 

sp l i t  isometric structure H(M,q) on N + N depending on q:N ÷ N satisfying q - q 

:N ÷N = N by b( (x , f ) , (y ,g) )  : f(y) + cg(x) + q(x)(y). I f  a:N ~ M spl i ts the 

sequence there is an isometry H(N,q) ~ M where q(x)(y) = b(a(x),a(y)) given 

by (x , f )  ÷ x + a(f) because b(x+a(f),y+a(g)) = b(x,y) + b(a(f),y) + b(x,a(g)) 

+ b(a(f),a(g)) : O + f(y) + cg(x) + q(f)(g) = b( (x , f ) , (y ,g ) )  since N is se l f -annih i l -  

ating and a spl i ts the adjoint Fap. 

Next, we use the evenness property bu i l t  into the fundamental relation of iso- 

metric structures: b(x,y) : b(tx,y) + b(x,ty) = b(tx,y) + cb(ty,x) to demonstrate the 

isomorphism: H(N,q) = H(N,O) : H(N), given by (x , f )  ÷ (x, b( t (a(x)) ,a(- ) )  + g}. For 

b((.x,b(t(a(x)),a(-)) + f ) ,  (y ,b( t (a(y)) ,a(- ) )  + g)) : b(t(a(x),a(y)) + f(y) + ~g(x) + 

b(t(a(y)),a(x)) = f(y) + sg(x) + q(x)(y). 

We now define an equivalence relation on the semigroup and demonstrate that this 

give a new group of isometric structures. 
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Definit ion 3.3: Two isometric structures M and N are (stably) hyperbolic equiv- 

alent i f  there are hyperbolic isometric structures H and K so that M + H is isometric 

to N + K. 

As in the metabolic case, this is an equivalence on the isometry classes of iso- 

metric structures. Note that the t r i v i a l  calss is the set of stably hyperbolic struc- 

tures. Now the diagonal in M + -M,is a metabolizer with an invarlant complement 

(M, for instance). Hence by the proposition, the form on M + -M is hyperbolic, so 

inverses exists and the equivalences classes form a group under the orthogonal direct 

sum, which wi l l  be denoted CHC(R). While the localization machinery of the metabolic 

case w i l l  give some results on this new group, many of the results fa i l  to generalize. 

When R is a f ie ld ,  we can make a complete analysis by using ancient and often 

reproven results concerning the classif icat ion of i sometries of inner product spaces. 

To reduce to the case of isometries, w need the following: 

Prpppsitipn 3.4: I f  F is a f ie ld ,  then every equivalence class in CHE(F) has 

a representative (V,B,T) with T injective (and therefore an isomorphism.) This is 

also true for CHC(K/R) when R is f i n i t e l y  generated over Z. 

Proof: Let H = {v: TN(v) = 0 for some integer N) and le t  K = {v:(Id-T)N(v) = O} 

Now, Id - T is invert ible on H and T on K. Furthermore, B(TNx,y) = B(x,(Id-T)Ny). 

Hence, both H and K are self-annihi lat ing. Furthermore, the above relation shows 

that H ~nd K are dually paired, so that the form on H + K is hyperbolic. The orthogonal 

complement of H + K is the desired isometric structure. 

By the standard ver i f icat ion,  the monodromy, s = Id - t " I  exists and is an iso- 

metry: B(sx,sy) = B(x,y). We now consider a new involution on the polynomial 

ring: P*(X) = ao Xdeg PP(x-I), where a 0 is the zeroth coeff icient. An isometry of 

an inner product space satisfies a self-dual polynomial, p = p . Fixing some self-dual 

polynomial p, define V k = {v: pk(T)(v) = O} . and consider the form bk(V,W) = b(pk'Iv,w) 

Claim: V~ = Vk. 1 + PVk+ 1 
Proof: I f  v + pw is in the r ight  hand side then b(pk'lu,v+pw) = b(u,pk'Iv + pkw) 

= 0 so that the inclusion of the RHS in the l e f t  is obvious. Using the cyclic decomp- 

osit ion of F[X]- modules and computing dimensions, equality must hold. (dim V k + dim 

V ~ = dim V.). 
k 
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From the claim, i t  follovs that the structure (W k : Vk/Vk.1+ PVk+l,Bk,T) is an 

inner product space under the induced form B k and isomorphism T. Furthermore, i f  the 

original structure was hyperbolic, so is W k. Observing that W k is annihilated by p, 

we have defined a homomorphism: ¢: CHe(F) • + , ( s CH~(F)) 
p = p  n=1 

By the trace lemma, CHC(F) = HC(F{X]/P(X)). TNe following theorem computes CHC(F). 

Theorem 3.5 [ Mi lnor{~] ]¢ is an isomorphism. 
th 

One may also consider the n component of the right hand side as the hyperbolic equiv- 

alence classes of structures over F which are projective as F ~ ypn(x)- modules. 

This computation shows that the hyperbolic relation is in f in i te l y  f iner than the 

metabolic relation. Furthermore, i t  is possible to show that stably hyperbolic implies 

hyperbolic in the f ie ld  case. Hence, i f  a structure is in the kernel of ¢, i t  is i s , -  

metric to a hyperbolic structure. This is an unknown and interesting question in the 

integral case. 

In the integral case, the localization sequence degenerates to: 

Theorem 3.6: CHC(~ . CHE(K) . C E(K/R) is exact. 

Proof: Proceed as in the localization theorem 2.6. The boundary is well-deflned 

since metabolic is weaker than hyperbolic and i ts vanishing is the necessary condition 

(and suff icient also) for a rational structure to contain a unimodular lat t ice.  

The previous injection of the localization homomorphism from the Dedekin d Ring 

R to i ts  f ie ld of fractions K is false. However, when the order S = R ~ yP is maximal 

that is,  S is the Dedekind ring of integers in i ts  f ie ld of fractions, we have: 

Theorem 3.7: CH~ ~/p(R)= ~R ~R)p=H~ ~I(D/R)) 

Proof: I f  M is metabolic then any metabolizer is torsion free over R and hence 

over D, the maximal order. Therefore the metabolizer is projective and the sequence 

of 3.2 spl i ts .  

Therefore no counterexample to the injection of (3.6) exists when the order S is 

maximal. The following example shows that the localization homomorphism fa i ls  to be 

injective in a s l ight ly  more restricted situation. ~,!e restr ic t  ourselves to structures 

on projective S-modules and consider the case when S is local. Note then, the sequence 

of (3.2) spl i ts i f  and only i f  the metabolizer is projective as an S-module. 

Lemma 3.8: Let S be a local ring and E i ts f ie ld  of fraction with a non-trlvial 



286 

involution *. Consider the homomorphlsm Sym(S')/Norm(S') = {s : s*, s a un i t } /  {uu ~} 

÷ F'/NE" induced by the inclusion i .  I f  i(a) = 0 then the form <I> + <-a> is 

metabolic but not hyperbolic, even after the addition of a projective hyperbolic 

S-modul e. 

Proof: The hermitian space is metabolic because i t  has rank two and i ts discrlm- 

inant = -(1)(-a) = a = ee, a norm in F" by assumption. An isotropic vector is given 

by (e,a). However the space annot be stably hyperbolic since the discriminant of a 

hyperbolic space is a norm in S'. Note that the discrinimant is defined because proj- 

ective modules over a local ring are free. 

The above space defines a self-dual S-latt ice in a metabolic space V over E. 

Hence the boundary of this la t t ice is zero and we can find a non-singular la t t ice 

which localizes to the above la t t ice .  

Example 3.9: Let P(X) = X 2 - X - 11 and consider the localization of the order 

S at the ideal (3,X + I ) .  Then i ( - 5 )  : 0 because -5 : (/5)(-J5), but /5, while i n t -  

egral, is not in S which is not a maximal order. By a straight-forward computation 

-5 is non-tr iv lal  in Sym(S')/Norm(S'). Therefore the form <I> + <-5>is metabolic 

but not hyperbolic at this local izt ion and, by the above remarks, there is  a unimodular 

la t t ice over the integers realizing this la t t ice.  

In the hyperbolic case, the coupling exact sequence disintegrates. However, i t  

s t i l l  yields necessary conditions for a structure to be hyperbolic which are independ- 

ent of the condition that the rational form be hyperbolic. Let p(X) be a self-dual 
N 

= Cp(L) , polynomial. Let Lp { l :p  (t)(1) = O} and define = (L #/L b, t) be the usual 
P P 

a l t t i ce  construction. I f  L had a hyperbolic sp l i t t ing L = H + H* and ~ be the proj- 
P # 

ection of the vector space V containing L onto i ts  P-primary component, then L = 
P 

(L), hence ~ induces a hyperbolic sp l i t t ing of Cp(L). This gives a well-deflned 
P P 

homomorphism c :CHC(R)~ CH~(K/R). As CHC(Fq) is contained in CP~(Q/Z) this is a much 
P 

sharper invariant. Using these invariants i t  is possible to construct elements in the 

kernel of CHc(Z) ~HE(Q). We mention several other results that can be proven using 

these techniques. Let p and q be self-dual polynomials such that the associated orders 

are maximal. 
C~÷C 

Theorem 3.10:o~CHp(Z) + CHc(Z) ÷ CH c (Z) v÷ q CHC(Q/Z) + CH~(Q/Z) is exact. 
q P~ P 
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This is the one non-trivial case (in addition to the Dedekind case (3.7)) in which the 

integral hyperbolic case is computable. 

A further complication eccurs when the minimal polynomial of t is a power of an 

irreducible polynomial. In this case we have obtained the following partial results, 

without any Dedekind assumptions on the orders. Let CHpn,G(Z) be the subgroup of the 

group of isometric structures satisfying the condition that the condition that the 

rational structure is projective (and hence free) over Q[X]I(pn(x)). 

Theorem 3.11: There are hovTomorphisms CH'~(Z) + CHC2n,o(Z)p and CH~(Z) ÷ 
¢ P P 

CHp2n+I,0(Z). The second homomorphism is spl i t  by the map s(L) = (Lpn/Lpn,b,t) where 

n is the subgroup annihilated by p Lpn . 

Hence the second map is an injection (the f i r s t  is i f  the order is Dedekind). 

The surjectivity of either map is unknown for n greater than zero. 

In answering a question posed by R.H. Fox at the Georgia Topology Conference in 

1961, DeWitt Sumners introduced the notion of double null concordant knots [S]. 

Although the hyperbolic relation in the context of isometric structures f i r s t  occurred 

in the algebraic context, the connection with the geometric notion of double null 

concordance was soon realized. 

Definition 3.12: A knot (sn+2~n) is doubly null concordant i f  i t  is the cross 

section of the t r iv ia l  knot (sn+3,sn+l). (Equivalently, there is a smooth function 

f:S n+3~ R such that f ' l ( t )  is the knot (S~) for some regular value t .)  

Theorem 3.13 (Sumners [ ~ , Kearton [ Ke]) A simple knot ($2n+I~ 2n-I) is doubly 

null concordant i f  and only i f  the Seifert isometric structure S(S~) is hyperbolic, 

provided n f I .  

In the geometric setting, we can form a new group of knots from the semigroup of 

knots under connected sum by introducing the equivalence relation: 

tsn+2 Definition 3.14: Tv~ knots ~ ,ZO) and (sn+2,~ I) are equivalent i f  there are 

doubly null concordant knots H and K such that the connected sums ZO#H and ZI#K are 

isotopic. 

This is an equivalence relation and Corollary 2.9 of Sumners [S] verifies that 

-K is the inverse to K in the new group, denotedC~E(Z). Le t~q ' l ) (z )  denote the 
x n  n 

group of knots with (q-1)-connected Seifert manifolds ((~-1)-simple) under the above 
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The above theorem and the real izeabi l i ty  of isometric structures gives: 

Theorem 3.15: C)~(n ' I ) (z )  CHc(Z) is an isomorphism (E = (- I )  n) 2n-1 ÷ 

In the even dimensional case we have the surprising result that ~2n(Z)  is non-tr iv ial ,  

contrasting the t r i v i a l i t y  of the even dimensional knot concordance group due to M. Ker- 

vaire [K] . This result was prompted by a remark made to me by J. Levine at Les Plans. 

Dewitt Sumners has also communicated to me that he had an example (the double spun 

t re fo i l )  of an even dimensional knot that could not be double null concordant. 

According to Levine [L1] , i f  (sn+2, n )  is an n-knot with complement X = sn+2\~ 

and universal abelian cover X, the torsion subgroup Tq of the knot module Aq = Hq(X~Z) 

has a nonsingular pairing Tq x Tn_ q ÷ Q/Z satisfying b(tx,y) = b (x , t ' l y )  where t is 

the automorphism of Tq induced by the oriented generator of the group of covering trans- 

lations. Furthermore, since X has the homology of a circle by Alexander duality, 

Id - t is invertible (called type K by Levine). Then the isomorphism T = (Id - t) " I  

satisfies: b(Tx,y) = b( (1- t ) ' l x ,y)  = b (x , ( I - t ' 1 ) ' l y )  = b(x,1-(1-t) '1(y)) = b(x,(~T)y) 

I f  n = 2q then (T ,b,T) is an c = (-1)q+l-symmetric torsion isometric structure, and 
q 

taking i ts  equivalence class in CH~(Q/Z) we have a map S. 

Theorem 3.16: There is a well-defined morphism S: ~)~2q(Z) "-CHE(Q/Z) 
r 

which is an epimorphism for q greater than one. 

Proof~ By Theorem 13.1 of [LI ]  the map S is an eplmorphism provided q is greater 

than one. To prove well-deflnedness i t  suffices to she~ that S vanishes on double null 

concordant knots. I f  (S 2q+2, ~) is a cross-section of the t r i v i a l  knot, the complement 

X of z spl i ts the complement of the t r i b a l  knot, SlxD 2q+2 into two components, V and 

W. By the Mayer-Vietoris sequence: Hn+I(SlxD2q+2)÷ Hn(X) * Hn(V) + Hn(W) * Hn(Slg)) 
we compute that V and W are also honology circles. Furthermore the ~yer-Vietoris 

sequence of the in f in i te  cyclic covers: 

0 = Hn+1(Rxu~2q+2~, ~ Hn(~) ÷ HR(~) ÷ HR(~) ÷ Hn(R x D 2q+2) = 0 

degenerates to an isomorphism at the middle morphism. Hence the ( i . , - j . )  induced by 

the respective inclusions of X into V and W is an isomorphism. Let H = Kernel i .  N Tq 

and K = kernel J. ~ Tq. By the exactness of the homology exact sequence of the respect- 

ive pairs, H and K are the torsion subgroup of the images of the respective boundaries. 

Note that H and K are invariant under t (and hence T) because the in f in i te  cyclic cover 
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of Xis induced from that of V or W. Now H and K are dls jo int  and T : H + K since 
q 

( i . , - j . )  is an isomorphl sm. To complete the demonstration that our invarlant is hyper- 

bolic on double null concordant knots, i t  suffices to show that H and K are self-anni- 

h i lat ing under the inner product b. 

Z[X,X.I ] / (xk. I )  k Let e = where t = i d on T and le t  I(e) be the i njective hull of 
q 

the ring e. In Section Six of [L I ]  (part icular ly(6.4f)  the pairing b is  related to a 

pairing { , ): Tq---HOmTq~I(e)/o) with the following def in i t ion.  

Consider the following ~quence (numbered (6.4) in [L I ] ) .  

2" I f  ~ iS in Tn. q and B is in T then {a,B} : i re ' (= ' ) (B)  where ~' fn H (X,o/me) satls- 
q 

fles -64~1(m ') : ~, the dual of ~. (Here,a I and 6 4 are coboundaries induced by the 

appropriate coeff icient sequences.) The map r is given by restr ict ion to T and i is 

I/m q induced by the coeffieient map e/me - q(o)/ec I(e)/e. 

By the commutatlvity (up to sign) of the following diagram of duality traps 

H ~2(W) ~Hq+2(X) 
e 

Hq+I(~J,X) =Hq(X) 

i f  ~,B are in the image of ~ then their duals are in the l~age of i * .  

Now consider the following commutative diagram induced by inclusion and which 

exists since W is also a homology circ le (so that 6 1 and 

Hq+I(Y. ̂ )  

T," i T/ 
q+l " Hq+2(~) 6 e 6 e H (~, Am) 

64 are defined). 

q+l - - 
H (~, X;~Ime) 

e 

l ,  q "  
-He(X,elmo) 

li* 
2(- . H V, elm)) 

Therefore i f  ~ and B are in the i~ge  of the B - ker I . ,  then ~', the dual of ~ is in 

the image of i , a = i (y). Let y' sat isfy -a4a1(y ') : y so that i * ( y ' )  : ~'. 

Also let  B = @n . Then we have {~,B} = i re ' (~ ' ) (B)  = i r e ' ( i * y ' ) ( ~ )  = i re ' ( l *y ' ) (~n)  

: i r e ' (~ f  y ' ) (n)  by the duality of 6 and ~ under the Kronecker paiNng, 
. % 

= 0 by the exactness of the cohomology sequence of (W,X). This completes the proof 

of the we11-definedness of S. 
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This theorem should be compared with the stronger classification of Kearton of 

(q-1)-si~le 2q-knots when Tq is of odd order in [Ke2]. There is also a geometric 

long exact sequence for these new groups that can be developed according to that in 

Section Six of [St]. Finally, we raise the auestion of the relation between stably 

doubly null concordant and doubly null concordance or (eeuivalently, in the simple 

case), the relation between stably hyperbolic and hyperbolic isometric structures. 
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