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1. Introduction 

The spectra of  the signature opera tor  and the Dirac opera tor  on a spin manifold 
M with r iemannian metric g contain subtle information about  the diffeomorph- 
ism type of  M. For  example the 28 differentiable structures on the 7-sphere 
[D 1] and certain homeomorph ic ,  but  not  diffeomorphic homogeneous  spaces 
[KS]  can be distinguished by their spectra, provided the metric is chosen such 
that the cor responding  Pontr jagin  forms vanish. 

Fol lowing a suggestion of  P. Gilkey [ G 2 ]  we study the spectrum of the 
twisted Dirac opera tor  on the exotic projective space Q4 constructed by Cappell-  
Shaneson [CS].  It is h o m e o m o r p h i c  to the real projective space RP* by Freed- 
man's  topological  s -cobordism theorem, but not  diffeomorphic to it. We prove 
in this paper  that  the spectra of  the twisted Dirac opera tor  on R P  4 resp. Q4 
are never the same, independent  of  the metrics chosen. 

To state more  precise results we denote by q(M, g, ~b)~R the ~/-invariant 
of the twisted Dirac opera tor  on a smooth  closed 4-manifold with Riemannian  
metric g and pin +-structure ~b. Here the pin + -structure is needed to define the 
twisted Dirac opera tor  (like an orientat ion is needed to define the signature 
operator)  and q(M, g, ~b) is a measure for the asymmetry  of  the spectrum of 
this opera tor  with respect to the origin. 

Theorem A. tl(RP 4, g, ~)~t l (Q 4, g', cy) for all riemannian metrics 8, g' and 
pin § ~, c~' on RP 4 resp. Q4. 

Theorem B. Let M, M' be smooth closed non-orientable 4-manifolds with funda- 
mental group Z/2. Let 8 (resp. g') be a riemannian metric and let c~ (resp. (D') 
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be a pin+-structure on M (resp. M'). 7hen M is stably diffeomorphic to M' if 
and only if their Euler characteristics agree and q(M, g, ~b)= 
+ r/(M', g', qS') rood 2Z. 

We recall that two manifolds are stably diffeomorphic if the connected sums 
with copies of S 2 x S z are diffeomorphic. 

The key to these results is the observation that t/(M, g, ~b) mod 2Z depends 
only on the pin+-bordism class of (M, qS) (Prop. 4.3). This improves a result 
of P. Gilkey that t/(M, g, 4)) m o d Z  is a pinC-bordism invariant [G2]. The im- 
provement by the factor two is crucial for the following reason. 

The bordism group of 4-manifolds with pin + -structure is the cyclic group 
of order 16 generated by RP 4 (this follows modulo the identification of the 
bordism groups considered from [K2]) and ~l(RP 4, g, ~b)= 1/8 m o d Z  by Gilkey's 
computations [G2]. Hence the q-invariant mod 2Z detects the pin+-bordism 
classes. Moreover it follows from the theory of M. Kreck [K1],  [K2] that the 
stable diffeomorphism type of closed non-orientable manifolds of dimension 
4 with rcl(M)~-Z/2 is determined by their pin+-bordism class and their Euler 
characteristic thus proving theorem B. Theorem A is a corollary of this using 
the fact that RP 4 and Q4 a re  not stably diffeomorphic [CS]. 

While this line of reasoning has the advantage of being short, I prefer to 
give a direct prove that RP 4 and Q4 are not diffeomorphic using the q-invariant. 
The structure of the paper is as follows. 

Sections 2 and 3 contain preliminaries about pin +-structures and the twisted 
Dirac operator on (8k+4)-dimensional manifolds. In Sect. 4 we prove that 
t/(M, g, ~b) mod 2Z is a bordism invariant. 

In Sect. 5 we show that t/(M, g, qS) can be computed topologically by counting 
isolated fixed points on a manifold with Z/2-action bounding the orientation 
cover of M (Prop. 5.3). Alternatively, if M is orientable, q(M, g, q5)=1/16 
sign(M) rood 2Z (Prop. 5.1). 

Section 6 contains a discussion of pin+-structures from a topologist's point 
of view. This is needed mainly to identify the bordism group of pin + -manifolds 
with the bordism group relevant for the stable diffeomorphism classification 
which is carried out in Sect. 8. 

In Sect. 7 we compute the q-invariant of Q4 and other exotic structures 
by applying the formulas developed in w 5. 

Section 8 contains the proof of theorem B. 

2. Pin +-structures and pin--structures 

The orthogonal group O(n) has two double coverings a+: Pin + (n)~  O(n) and 
a - :  P i n - ( n ) ~  O(n). Restricted to SO(n)cO(n) both give the universal covering 
Spin(n)~SO(n) for n>3.  Using Clifford algebras lABS] these coverings can 
be described as follows. 

Let C + (R") (resp. C-(R")) be the Clifford algebra generated by the elements 
v~R" subject to the relation v.v=lv[ 2. 1) (resp. v . v = - I v [  2. 1). Pin + (n) (resp. 
Pin-(n)) is the subgroup of the units of C +(R") (resp. C-(R")) generated by 
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the elements  y e S " - ~ .  Note  tha t  if w e R "  then v . w . v a C  +- (R") is in the subspace 
R " c C •  This observa t ion  is used to define the h o m o m o r p h i s m s  o •  
Pin -+ (n) --* O (n). Fo r  v e S"-  1 c Pin + (n) and w e R" let a + (v). w = 
- v. w .  w R "  c C + (R") (resp. a -  (v). w = v.  w .  v ~ R "  ~ C -  (R")). More  geometr ical ly 
both,  a + and a - ,  are the reflection at the hyperp lane  perpendicular  to v. 

If  c~ is a n-dimensional  vector  bundle  over  some p a r a c o m p a c t  space X a 
pin+-strueture (resp. p in--s t ructure)  on a is a principal  Pin+(n)-bundle  (resp. 
P in- (n) -bundle)  P over  X (with Pin • (n) act ing f rom the right on P) together  
with a vector  bundle i somorph i sm 

f :  c~ ~ P x Pin i (n) R", 

where Pin + (n) acts on R" via the representa t ion  o -+. M o r e  precisely a pin-struc- 
ture on c~ is an equivalence class of  such pairs (P, f )  where two pairs are equiva-  
lent if there is an i somorph i sm of principal  bundles compat ib le  with the vector  
bundle i somorphisms.  

A p in+-s t ruc ture  (resp. p in - - s t ruc tu re )  on a manifold  is a pin +-structure 
(resp. pin -structure) on its tangent  bundle.  

3. The Dirac operator 

The Dirac  ope ra to r  is a first order  elliptic ope ra to r  defined on r iemannian  mani -  
folds with spin-structure  [AS, w It  can be extended to manifolds  with 
pine-structure [ G 2 ] .  Below we define the Dirac  ope ra to r  and the twisted Di rac  
opera to r  for manifolds  with p ine-s t ruc ture .  Our  presenta t ion  follows closely 
the descript ion of the Di rac  ope ra to r  in [AS].  

Let A be a fixed module  over  C + ( R  ") (resp. C - ( R " ) ) ,  and let Pine(n)  act  
on R" by a • No te  that  the Clifford mult ipl icat ion 

c: R " |  --* A 

is Spin(n)-equivariant ,  but  not  Pin + (n)-equivariant.  We can fix this by replacing 
A in the range of c by )~| A, where )~ is the 1-dimensional  non-tr ivial  representa-  
tion of Pin + (n). 

Let  M be a n-dimensional  r iemannian  manifold  with a pin +-structure (resp. 
p in - - s t ruc ture )  and  let P be the cor responding  principal  Pin-+(n)-bundle over  
M. If  ~ is a representa t ion  of Pin+(n) we write E(() for the associated vector  
bundle P x P in~(n )~ .  

The Dirac operator is the first order  elliptic ope ra to r  

D: C ~ (E(A))  --* C ~ ( E ( z |  

defined as follows. The Levi-Civi ta  connect ion on M induces a connect ion  on 
P and hence a covar ian t  derivat ive 

v: c~(~(d))-~ C~(~*| 
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On the other hand z*~-z ~-E(a • using the metric resp. the pin• and 
we have the homomorphism 

co~ (E (~r-+)| C~ (E(Z| 

induced by Clifford multiplication. The Dirac operator  is the composite of these 
two homomorphisms.  Thus in terms of an or thonormal  basis {ei} we have 

Ds= ~ eiVe~s. 
i = 1  

If A extends to a module over C+(R "+~) (resp. C-(R"+~)), denote by or: E(A) 
~ E ( z |  the vector bundle isomorphism induced by the Pin • (n)-equivariant 
map  A ~ z |  given by the Clifford multiplication by e,+leR "+ 1. In this situa- 
tion we define the twisted Dirae operator 

0: C~176 C~176 

to be the composit ion of D and a -  1./3 is a first order selfadjoint elliptic operator. 
Suppose the n-dimensional manifold M bounds a manifold W with 

pin • -structure restricting to the given pin • -structure on M. Fur thermore sup- 
pose that  the riemannian metric on Wis the product  metric in a collar neighbour- 
hood of M. Then a C• A leads to a Dirac operator  Dw on W 
and a twisted Dirac operator  /3M on M. In the collar neighbourhood of M 
they are related by 

where u is the inward normal coordinate. 
So far our definition of the (twisted) Dirac operator  depends on the Clifford 

module A and we need to choose A to be able to speak about  the (twisted) 
Dirac operator.  Since we are mainly interested in the twisted Dirac operator  
on (8k+4)-dimensional  pin + -manifolds and the Dirac operator  on (8k+5)-  
dimensional pin +-manifolds it suffices for us to choose a C § (R 8k§ 5)-module 
A. According to Atiyah-Bott-Shapiro [ABS] the algebra C § (R 8k§ 5) is isomorph- 
ic to H(m) G H(m), m = 2 '~k § 1, where H (m) denotes the algebra of (m x m)-matrices 
with quaternionic entries. Since H(m) is a simple algebra there is exactly one 
irreducible H(m)-module, namely H "  with its natural (left) H(m)-action. Hence 
there are exactly two irreducible C § (R sk§ 5)-modules which can be distinguished 
by the action of the central element SSk+5=el.....e8k+5~C+(R 8k+5) whose 
square is the identity element. 

We fix A to be the irreducible C § (RSk+5)-module such that 

S8k + 5 acts trivially on A. (3.2) 

Note  that A extends to a module over C+(Rak+5)@RH if we let h~H act on 
A = H m by right multiplication by its quaternionic conjugate h. 
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It follows that C ~ (E (A)) and C ~ (E (Z| d)) are quaternionic vector spaces 
and that both, the Dirac operator  on (8 k + 5)-dimensional and the twisted Dirac 
operator  on (8k +4)-dimensional pin+-manifolds, are H-linear. 

4. The t/-invariant 

Let E be a hermitian vector bundle on a closed riemannian manifold M and 
let D" C ~ ( E ) ~  C ~ (E) be a selfadjoint elliptic operator. Then the sum 

7 (s) = ~ sign 2 dim E (2) [ 2 [ -s 
,~4:0 

where E(2) is the 2-eigenspace of D and 2 runs through the non-zero eigenvalues 
converges for complex numbers s with Re(s)~> 0. Moreover  7(s) can be extended 
to a meromorphic  function on the complex plane without a pole at s = 0 [APS] 
[ G I ] .  The number  7(0) can be interpreted as a measure for the asymmetry 
of the spectrum of D with respect to the origin. 

The 7-invariant plays a central role in the index theorem for manifolds with 
boundary. Let M be the boundary of a manifold W and let F, F'  be vector 
bundles on W such that F restricts to E on the boundary.  Suppose 

Dw: C ~  C~(F ') 

is an elliptic operator  such that Dw restricted to a collar neighbourhood of 
M can be written in the form 

where u is the inward normal coordinate and a: F ~ F'  is some vector bundle 
isomorphism on the collar. Then the index of D w with respect to certain global 
boundary conditions can be expressed as follows lAPS] : 

index(Dw) = ~ ~0(x) d x -  7(D) (4.2) 
W 

Here following [G 2] we use the notation 7 (D) for 

dim kerD + 70(0) 

2 

The integrand ~0 (x) is constructed using eigenfunctions of D w Dw and Dw Dw. 
It vanishes identically if W is odd-dimensional [-G2, lemma 1.5]. If M is a 
(8k+4)-dimensional  manifold with riemannian metric g and pin +-structure 4) 
we write q (M, g, ~b) for the q-invariant of the twisted Dirac operator  on M. 

The following proposit ion shows that 7(M,g,q~) modulo 2 Z  is a 
pin+-bordism invariant thus improving for pin + -manifolds Gilkey's result that 
7(M, g, ~b) modulo Z is a pin%bordism invariant [G2,  lemma 1.7]. 
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Proposition 4.3. Let M be a (8 k + 4)-dimensional manifold with riemannian metric 
g and pin+-structure 4). Suppose that M bounds a manifold W admitting a 
pin +-structure restricting to 05 on the boundary. Then tl (M, g, c~) is an even integer. 

Proof We choose a metric on W which is the product metric in a collar neigh- 
bourhood of M. Then according to (3.1) in this collar the Dirac operator Dw 
and the twisted Dirac operator/~M are related by 

The index theorem then implies 

index(Dw) = - t/(M, g, 05). 

As pointed out in w 3 the Dirac operator Dw on (8 k + 5)-dimensional manifolds 
with pin +-structure is H-linear and hence its index is even. Q.E.D. 

5. Topological descriptions of the q-invariant 

In this section we show how the t/-invariant of a (8 k + 4)-dimensional manifold 
M can be computed topologically, namely by evaluating the .,t-genus of M 
if M is orientable (Prop. 5.1) and in the general case by counting fixed points 
(with multiplicity) on a Z/2-manifold W bounding the orientation cover M of 
M (Prop. 5.3). 

Proposition 5.1. Let M be a (8 k + 4)-dimensional closed manifold with riemannian 
metric g and spin-structure O. Then q(M, g, qS)= 1/2 (,4(M), [M] )  mod 2Z. 

Here ~(M) is the d-genus of M which is a polynomial in the Pontrjagin 
classes of M. If M has dimension 4 we compare 

<A(M), [M]> = --1/24 @1, EM]> 

with the signature of M 

sign(M) = <L(M), [M]> = 1/3 <p,, [M]> 

and conclude: 

Corollary 5.2. I f  M is a closed 4-dimensional manifold with riemannian metric 
g and spin-structure 4) then t/(M, g, 05)= 1/16 sign(M) rood 2Z. 

Remark. The right hand side of the above congruence depends on the choice 
of the orientation of M whereas the left hand side does not. Hence the corollary 
implies Rohlin's theorem that the signature of 4-dimensional spin-manifolds 
is divisible by 16. 
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Proof of proposition 5.1. First we show that the spectrum of the twisted Dirac 
operator  15 is symmetric which implies t/(M, g, r  1/2 dim ker/). Let 

s: C~(~(A)) ~ C~176 

be the operator  induced by the Spin(n)-equivariant map  A ~ A, u ~ s,-u, where 
s, = e l - . . . . e , e  C, and el . . . . .  e, is the standard basis of R", n = 8 k + 4. Note that 
this map  is not Pin • (n)-equivariant and thus the operator  S can only be defined 
for spin-manifolds. 

The identities s , . w . u = - w . s , . u  and s , . s , = l  for weR% ued imply SD= 
- D S  and S 2 =  id. Moreover  since s . .e ,  +1 = e. +1" s, the isomorphism cr induced 
by multiplication by e,+l commutes with S and hence S/5= - / ) S  for the twisted 
Dirac operator  /5 = a - 1  o D. Thus S interchanges the eigenspaces of /3 corre- 
sponding to the eigenvalues __% 2 proving that the spectrum of/~ is symmetric. 

Next we relate 1/2 dim ker/~ to the spinor index of M which is defined 
as follows [AS,w Let A = A + G A  - be the decomposition of A into the 
{ _+ 1 }-eigenspaces of the above map. This is a decomposition of A as a represen- 
tation of Spin(n). The Clifford multiplication R"| A interchanges A + and 
A - and thus the Dirac operator  decomposes in the form 

D = ( O +  O-): C~(E(A+))OC~(E(A- ) )~C~(E(A+))OC~(E(A- ) )  

Let h + = dim kerD + = dim coke rD-  and h-  = dim k e r D -  = dim cokerD +. Index 
D + = h  + - h -  is called the spinor index of M and can be computed using the 
index theorem [ABS, Thm. 5.3]: 

IndexD + = (A(M), [M]>. 

The numbers h + are even since D -+ is H-linear and we conclude 

d i m k e r / ) = d i m k e r D = h  + + h -  ---h + - h -  =( ,4(M) ,  [ M ] > m o d 4 Z  Q.E.D. 

There is an other situation where the q-invariant can be computed topologi- 
cally. 

Suppose M, the orientation cover of M, is the boundary of a (n+ l)-dimen- 
sional manifold W with involution T: W-~ W extending the non-trivial covering 
transformation of the double covering ]~t-.. M. Assume that T has only isolated 
fixed points. Fur thermore suppose that W has a Z/2-equivariant pin +-structure 
extending the Z/2-equivariant pin + -structure on /~ determined by r Here an 
equivariant pin +-structure on W is a pin +-structure (P, r on the tangent bundle 
z of W together with a Pin + (n + I)-equivariant involution T: P--* P making the 
diagram 

f 
) p • P i n +  (n + l)Rn+ l 

r , p • P i n  + (n  + l)Rn+ 1 
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commutative. 
If x e  W is a fixed point d72. zx ~ Zx is multiplication by - 1 and hence T: Px 

P~ is left-multiplication by s, + 1 = e l . . . . . e ,+  1 or - s,§ z (here we identify 
with P in+(n+ 1)). We attach to x an index zxe{+l}  according to the sign of 

PropositionS.3. I f  M is a (8k+4)-dimensional  riemannian manifold with 
pin +-structure qb and W is as above then 

r/(M, q~, g)= 2-(4k+3)~ tx rood 2 Z  

where the sum extends over all f i x ed  points o f  14(. 

This result can be used to compute the q-invariant of R P  8k § whose orienta- 
tion cover S 8k+4 bounds the disk D sk+5 with its antipodal involution. We can 
extend this involution to P =  D8k+5 x Pin + (8k+ 5) by left-multiplication with 
s,+ 1 on the second factor and there is an obvious vector bundle isomorphism 
between the associated vector bundle E(a +) and the tangent bundle of D 8k+5. 
This Z/2-equivariant Pin § induces a Pin +-structure ~b on R P  8k § 4. 

Corollary 5.4. r/(RP 8k + 4, g, q~) ~ 2-(4k + 3) mod 2 Z, where (a is the pin +-structure 
described above. 

The proof of proposition (5.3) is essentially identical with Gilkey's computa- 
tion of the r/-invariant of R P  2t [G2, Thm. 3.3] except that working modulo 
2Z  we have to be slightly more careful. 

The Dirac operator  D w and the twisted Dirac operator/~M are Z/2-equivar- 
iant with respect to the Z/2-actions on the vector spaces C~ resp. 
C~176174 induced by T. To  compute r/(/3M) we can identify the eigenspaces 
o f / 3  M with the Z/2-invariant subspaces of the corresponding eigenspaces of 
/~M. For  g ~ Z / 2  denote by r/(/~t, g) the real number defined analogously to 
r/(/3M) but replacing the dimension of vector spaces by the trace of the element 
g acting on it. In particular r/(/3M, 1)=r/(/3~t) and r/(/3M)=l/2(r/(/3M, 1 ) 
+ r/(/~M, t)), where 1 (resp. t) is the identity element (resp. the non-trivial element) 
of Z/2  (written multiplicatively). To compute r/(/3M, g) we can use the equivariant 
version of the Atiyah-Patodi-Singer index theorem as proved by Donnelly I-D 2]: 

index (D w, g) = j" flo (Y) d y - ~/(/3M, g) 
F 

Here index(D w, g)= Trace(g on  k e r D w ) - T r a c e ( g  on cokerDw), F is the fixed 
point set of g and flo (Y) is a local invariant. 

For  g = 1 this reduces to the non-equivariant index theorem and we get 

index(Dw, 1) = - ~/(/3M, 1). 

For  g = t  the fixed point set F consists of isolated points. The contribution 
of fl0 at an isolated fixed point x was analyzed by Kotake [Ko]  who showed 

flo(Y) d y = d e t ( 1 -  dTx)-  X {Tr( t  on E ( A ) x ) -  Tr ( t  on E ( z |  A )x) } 
x 
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As discussed above dTx is multiplication by - 1  and t acts by multiplication 
by lxel . . . . .e .+~ on P~ and hence by multiplication by zx (resp. - t x )  on E(A)~ 
(resp. E(z| due to our conventions (3.2) and the fact that e l ' . . . - e . + l  acts 
by - 1  on X since n + 1 = 8k + 5 is odd. The complex dimension of A is 2 4k§ 2 
and thus 

flo(Y) dY = 2 - ( " +  1)( 24k+2 ix--( -24k+2 lx))=2-(4k+2)lx. 
x 

Putting everything together we have 

r/(/3M) = 1/2 (r/(/3M, 1) + q (/~t,  t)) 

= 1 /2(- index(Dw,  1)+ 2-~4k+2)V 1 --index(Dw, t)) x 

= 2 - (2k + 3) 2 l x  _ [dim (ker Dw) z/2 -- dim (coker D w) z/2] 

-= 2-  (4k + 3)~ Zx mod 2 Z 

since the Z/2-invariant subspaces (kerDw) z/z (resp. (cokerDw) z/z) are H-vector 
spaces and hence even dimensional. Q.E.D. 

6. Classification of pin +-structures and pin--structures 

In this section we give a topological description of pin• which we 
mainly need for the proof  of theorem B in Sect. 8. 

The exact sequence of groups 

1 , Z/2 , Pin • (n) , O (n) ,1 

induces a fibration 
Ba 

BZ/2 ,BPin• (n) ,BO(n). 

It follows from the properties of classifying spaces that pine-structures on a 
vector bundle ~ as defined in Sect. 2 correspond bijectively to homotopy classes 
of lifts g in the diagram 

B Pin -+ (n) / 
X , BO(n) 

Here c(c0: X ~ BO(n) is the classifying map of c~. 
The fibrations BPin+-(n)~BO(n) are compatible for various n and hence 

they are pull backs of a fibration B~r: BPin+~BO via the natural mapBO(n) 
BO. 
To identify the fibration B P i n •  BO we use the following lemma which 

is easily proved using obstruction theory (compare [ K  1, w 1]). 
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L e m m a  6.1. Let B ~ BO and B'-~ BO be two fibrations such that the homotopy 
groups of both fibers vanish above dimension k. Suppose that there is a homotopy 
equivalence between the (k + 1)-skeleta of B (resp. B') compatible with the projection 
maps. Then they are fibre homotopy equivalent. 

Let  H be the H o p f  line bundle  over  RP ~ = BZ/2 and let 7 be the universal  
spin bundle  over  BSpin.  Fo r  a na tura l  n u m b e r  n let c(7 • nil): BSpin  • RP ~ 

BO be the classifying m a p  of 7 •  and denote  by B(n) ~ BO the associated 
fibration. 

Proposit ion 6.2. i) BPin  + -~ BO is fibre homotopy equivalent to B(1) -~ BO. 

ii) B P i n -  -~ BO is fibre homotopy equivalent to B(3) -~ BO. 

Proof The exact sequence of groups  

i P 
1 , Spin (n) , Pin + (n) ~ Z/2 --* 1 

splits. A splitting h o m o m o r p h i s m  s+: Z/2 ~ P i n + ( n )  is defined by sending the 
genera tor  to e~ e S " -  ~ ~ Pin + (n) c C + (R"), where {el . . . . .  e,} denotes  the stan- 
dard  basis of  R". Ana logous ly  the exact  sequence 

i P 
1 , Spin (n) , P i n -  (n) ~ Z/2 ~ 1 

splits for n >  3. A splitting m a p  s - :  Z/2 ~ Pin - (n )  is defined by sending the 
genera tor  to e l ' e2"  e 3 ~ P i n - ( n ) c  C + (R"). Moreove r  B Spin(n) is 3-connected for 
n > 3 and hence we can conclude f rom the f ibrat ion 

Bi B p  

B Spin (n) , B Pin -+ (n) , BZ/2 

that  Bs•  is a 3-equivalence. The bundle  over  BZ/2 corre-  
sponding  to the compos i t ion  

Bs ~ B ~  

BZ/2 , B Pin • (n) ) BO (n) 

is the vector  bundle  associated to the representa t ion  a + (resp. a - )  restricted 
to Z/2cPin+(n) .  Since this Z /2-ac t ion  on R" is non-tr ivial  on R I c R "  (resp. 
R 3 c  R") the vector  bundle  in quest ion is HO)(n-1)e  (resp. 3 H~)(n-3)e) ,  where 

is the trivial line bundle.  
This shows tha t  the 2-skeleton of BPin + can be identified with RP 2 such 

that  the m a p  to BO cor responds  to the classifying m a p  of H (resp. 3H). The  
p ropos i t ion  then follows f rom 6.1. Q.E.D.  
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If w is an element of H E ( B O ; Z / 2 )  let B O ( w ) ~ B O  be the pull back of 
the path fibration P K ( Z / 2 ,  2 ) ~ K ( Z / 2 ,  2) via the m a p B O ~ K ( Z / 2 ,  2) deter- 
mined by w. 

Proposition 6.3. i) BO (w2)  ~ BO is fibre homotopy  equivalent to B(1) ~ BO. 

ii) BO (w2 + w E) ~ BO is fibre homotopy  equivalent to B ( 3 ) ~  BO. 

Proof  It follows from the fibre homotopy  exact sequence of the fibration 
BO ( w )  ~ BO that the composit ion 

c(wl) 

BO ( w )  , BO , R P  ~ 

is a 3-equivalence. Here w=w2 (resp. w = w 2 + w  2) and c(wO is the map corre- 
sponding to the cohomology class w 1. Moreover  the pull back of H (resp. 3H) 
via this composition has the same first and second Stiefel Whitney classes as 
the pull back of the universal bundle. Thus we can identify the 2-skeleton of 
B O ( w )  with R P  2 and the map to BO with the classifying map of H (resp. 
3 H) and hence the claim follows using 6.1. Q.E.D. 

As a consequence of 6.2 and 6.3 we see that the fibration BPin -+ (n)-* BO(n) 
is induced from the path fibration over K(Z/2 ,  2) and we conclude 

Corollary 6.4. Let ~ be an n-dimensional vector bundle over some space X.  

i) ~ has a Pin+(n)-structure (resp. Pin-(n)-structure) iff w2(a)=0 (resp. 
w2 (~) + w~ (~) = 0). 

ii) I f  ~ has a Pin -+ (n)-structure then H 1 ( X  ; Z/2) acts transitively and effectively 
on the set o f  Pin + (n)-structures on ~. 

If ~ is a vector bundle over some space X with a lift & X - - , B O ( w )  of 
its classifying map  c(~): X ~ BO we call 6 a (w)-strueture on ~. If M is a manifold 
we define a tangential (w)-s tructure  (resp. normal (w)-structure) on M to be 
a (w)-s t ructure  on its tangent bundle ~ (resp. its normal bundle v). One can 
translate back and forth between tangential and normal structures in the follow- 
ing way. 

Let g: BO -~ BO be the H-space inverse, i.e. the classifying map  of the inverse 
bundle. Then the pull-back fibration g* BO ( w )  --* BO can be identified with 
BO (g* w) and the commutat ive diagram 

B O ( g * w )  

/ 
M , BO 

, B O ( w )  

g 

BO 

shows that g ~ (  gives a bijection between normal (g* w)-structures and tan- 
gential (w)-structures,  since gc(v) is the classifying map  of the tangent bundle. 
An easy computat ion shows g* (w2)= w2 + w 2 and we conclude using (6.4): 

Corollary6.5. Pin+-structures (resp. pin--structures) on a manifold are in 1 
-1-correspondence with normal (w2 + wZ)-structures (resp. (w2)-structures). 
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7. Exotic  structures on 4-manifolds 

In this section we describe two methods to produce exotic differentiable struc- 
tures on 4-manifolds due to Cappell-Shaneson [CS] respectively M. Kreck [K 2]. 
Moreover we show that in some cases this exotic structure can be detected 
by the t/-invariant. We first describe the exotic structure due to M. Kreck. 

Let K be the Kummer  surface which is a simply connected closed 4-manifold 
with signature 16 and let S be the connected sum of eleven copies of $2• S 2. 
If M is a non-orientable closed smooth 4-manifold, it is an easy consequence 
of Freedman's results that the connected sum M # K is homeomorphic to M # S. 
On the other hand there are many examples where M # K is not diffeomorphic 
to M ~ S  [K2, Thm. 1]. 

In some cases M ~ K and M ~ S can be distinguished using the q-invariant 
as follows. Using the result (6.4) we see that K and S have unique pin +-structures 
q~r resp. 49s, since they are simply connected and their intersection form is 
even which implies the vanishing of the second Stiefel-Whitney class. Their t/- 
invariants can be computed via their signatures (Cor. 5.2). If M has a 
pin +-structure q~ then 

tl(M ~ K, 49 :~ 49x)=tl(M, 49)+rI(K, 49r)=rl(M, 49)+ 1 mod 2Z  
and 

q(M4~S, 49 # 49s)= t/(M, 49)+q(S, 49s)= t/(M, 49) mod 2Z, 

since the connected sum of two manifolds is bordant to their disjoint union 
and the t/-invariant is clearly additive with respect to disjoint unions. 

Note that this does not imply that M ~  K and M ~  S aren't diffeomorphic 
since the ~/-invariant involves the choice of a pin +-structure. By Corollary 6.4 
the possible choices of pin + -structures on a manifold N are parametrized by 
HI(N;Z /2 ) .  Hence if we assume H I ( N ; Z / 2 ) ~ Z / 2  there are only two 
pin +-structures. Moreover if 49 is a pin +-structure on N and N is non-orientable 
the only other pin + -structure is -49 with (N, -49) representing the inverse of 
(N, 49) in the bordism group of manifolds with pin + -structure. In particular 
t/(N, ~) = _ q (N, 49') mod 2 Z for any pin +-structure 49'. We conclude: 

Theorem 7.1. Let M be a non-orientable closed 4-manifold with pin+-structure 
49 and assume HI (M;  Z / 2 ) ~ Z / 2  and q(M, 49)+- +__l/2 mod 2Z. 7hen 
r 1 (M ~ K, 49') ~e rl (M ~ S, 49") for all pin +-structures 49', 49" on M ~ K (resp. M ~ S). 

Corollary 7.2. t 1 (RP 4 4~ K, 49') + t 1 (RP 4 ~ S, 49") for all pin +-structures 49', 49" on 
Rp4 # K (resp. RP4 ~ S). In particular Rp4 # S has an exotic differentiable struc- 
ture detected by the tl-invariant. 

Now we turn to the exotic structures of Cappell-Shaneson. A matrix 
A e G L ( 3 ;  Z) induces a diffeomorphism 

~ka: T3--. T 3 

by viewing the 3-torus T 3 as the quotient of R 3 by the integral lattice Z 3. 
Let MA be the mapping torus of ~O A, i.e. MA is obtained from T 3 x [0, 1] by 
identifying (x, 0) with (r 1). 
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If M is a closed non-orientable 4-manifold, c~ is an embedded, orientation 
reversing circle and A ~ GL (3; Z) is a matrix with det A = -- 1 denote by M ~ ~ MA 
the manifold constructed by deleting a tubular neighbourhood of c~ resp. of 
the circle �9 x {t} c ( T 3 x  [0, 1])/~ = M A  and glueing those two manifolds along 
their common boundary. 

Then there is a simple homotopy  equivalence 

f : M ~ M A - ~ M  

provided d e t ( i d - A 2 ) =  _ 1 [CS, Thm. 3.1]. Moreover  the normal invariant of 
f is the unique non-trivial element in the kernel of [M, G/O]  --* I-M, G/TOP] .  

Using the surgery exact sequence [W, Thm. 10.3 and Thm. 10.5] 

L5 (Z 7t 1 M, w a (M)) ~ ~ ~176 (M) ~ [M, G/TOP]  --+ 

we conclude that M ~ ~ M a is topologically s-cobordant and hence by Freedman 
homeomorphic  to M if the surgery group vanishes. This is the case for example 
if rq ( M)_~Z /2  [-W, Thm. 13A.1.]. The following result is the key step to distin- 
guish M and M ~ ~ M A by means of the ~/-invariant. 

Proposition 7.3. M a has a pin +-structure C~A such that q (Ma,  qSa)= i. 

Proo f  The basic idea to compute tl(MA, ~)a) is  t o  use a combination of (5.2) 
and (5.3). Let W be the standard bordism between two copies of the mapping 
torus of the diffeomorphism O_a and the mapping torus of the composition 
O - a ~  = Oa2, which is constructed as follows. Let D' be the 2-dimensional 
disk with two smaller disks deleted and cut open along the lines L and L' 
as indicated in the picture. 

Fig. 1 

Then W is the product T 3 • D' glued along T 3 • L (resp. r 3 • L') using the 
diffeomorphism tp-A X id. Let T: W-~ Wbe  the involution induced by the involu- 
tion 

0 - 1 d x  - i d :  T 3 x D ' ~  T 3 xD' .  
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It has exactly eight fixpoints of the form fix], 0) where xeR  3 is half integral, 
i.e. 2 x e Z  3. In particular the involution is free on (?W and the corresponding 
quotient is the disjoint union of MA and M _  a.  We assume for the moment  
that W has a Z/2-equivariant pin +-structure q~ and that the eight fixed points 
have index + 1. Then ~b induces pin +-structures q5 a (resp. ~b_a) on MA (resp. 
M-A) and using (5.3) we conclude: 

rl(M A, ~ba)+ r/(M_ a, ~b_A)=2- 3 ~  z~ = 1 mod 2Z.  

Note that M-A is an orientable manifold and hence we can use (5.2) to conclude 
q(M-a,  qS-a)=l /16  s ign(M_A)=0 mod 2Z  since the signature of a mapping 
torus vanishes by Novikov additivity. 

It remains to be shown that Whas an equivariant pin+-structure. We observe 
that T 3 x D' has a pin + -structure induced by the natural trivializations of the 
tangent bundles of T 3 and D', i.e. P = T 3 x  D ' x  Pin + (5) and the vector bundle 
isomorphism f is given by those trivializations. Moreover  we can turn this 
into a Z/2-equivariant pin+-structure by defining 

T =  - i d  • - i d  • Ss: T 3 • D' x Pin + (5) ~ T 3 • D' x Pin + (5), 

where s S = e l - . . . -e5  e Pin + (5). To extend this Z/2-equivariant pin + -structure to 
W we have to study the derivative of the glueing diffeomorphism. With respect 
to the trivialization f it is given by multiplication by A eGL(3 ;  Z ) ~  GL(5;  R), 
but using a path  between A and some element A'eO(5)  we can change f without 
loosing the equivariance such that the derivative of the glueing map  is given 
by multiplication by A' with respect to this new trivialization. Choosing an 
element A"ePin  +(5) projecting down to A' we can extend the glueing to the 
principal bundle P by left multiplication by A" on the factor Pin + (5). The vector 
bundle isomorphism f then extends by construction and Textends to this bundle 
since ss~Pin + (5) commutes  with all other elements. Moreover  by construction 
of 7" all fixed points have index + 1. Q.E.D. 

If  M is a closed non-orientable 4-manifold, e is an embedded, orientation 
reversing circle and qb is a pin + -structure on M restricting to the trivial 
pin + -structure on c~ (i.e. the pin + -structure extending to the disk) then ~b and 
q5 A fit together to give a pin +-structure qS#~b a on M # , M A .  Moreover  
( M ~ M A ,  q~:ll=~bn) is p in+-bordant  to the disjoint union o f ( m ,  ~b) and (M A, C~a) 
(a bordism is provided by M x I w r T  x I w r M a  x I, where I is the unit interval 
[0, 1] and T is the tubular neighbourhood of the circle in M (resp. MA)). Using 
the same arguments as for theorem 7.1 we conclude: 

Theorem 7.4. Let M be a non-orientable closed 4-manifold with pin+-structure 
c~ and assume Hi(M; Z /2 )~Z /2  and q(M, c~)+ +_1/2 mod 2Z. Then 
~I(M ~ M A ,  4)')oeq(M, 4))for all pin +-structures ~' on M ~ M  A. 

Corollary7.5. Let Q4 be R p 4 ~ M A .  Then q(Q4, qS')+rl(RP4,4) '') for all 
pin +-structures q~', qY' on Q4 resp. RP 4. In particular RP 4 has an exotic differenti- 
able structure detected by the q-invariant. 
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8. Proof of theorem B 

Let M be a closed non-orientable 4-manifold with fundamental group Z/2 and 
pin +-structure 4~. Denote by g the normal (w)-structure, w=wz+w 2, corre- 
sponding to ~b using (6.5). 

BO (w) 

M ' BO 

Note that rq(BO(w))~-Z/2 and rc2(BO(w))=O which follows from the fibre 
homotopy exact sequence of the fibration 

K(Z/2, 1) ~ BO (w) --. BO. 

Hence ~ induces an isomorphism on nl (since M is non-orientable) and is a 
surjection on g2. Thus the pair (M, g) is a normal 1-smoothing in the sense 
of M. Kreck [K1] ,  [K2]  and it follows from his results that two such pairs 
are stably diffeomorphic if and only if their Euler characteristics agree and 
they represent the same element in the bordism group f2<4 +> of manifolds with 
normal (w)-structure. 

We claim that the map induced by the r/-invariant q: f2<4w> ~ R/2 Z is injective. 
To prove it we use the Pontrjagin Thom construction to identify f2~ w> with 
rc4MO[w], the Thom spectrum associated to B O ( w ) ~ B O .  It follows from 
(6.3) that MO[w] is homotopy equivalent to MSpinAM(3H) where M(3H) 
is the Thorn spectrum of 3H and MSpin is the Thom spectrum associated 
to BS pin -* BO. 

Following [K 2] the inspection of the relevant terms in the Atiyah Hirzebruch 
spectral sequence shows that f2<4 w> ~ ~+ MO [w] ~ 7t+ (M Spin ^ M (3 H)) is a group 
of order at most 16. On the other hand q(RP 4, g, 4))= 1/8 mod 2Z by corollary 
5.4 and hence RP 4 represents an element of order 16 in f2~ w>. It follows that 
~2<4 w> is isomorphic to Z/16 and that the homomorphism q: f2<4W>~R/2Z is 
injective. 

Finally if M 4 is a non-orientable manifold with fundamental group Z/2 
and twisted pin-structure 4, according to (6.4) the only other twisted pin-structure 
is -4).  Since [ M , - q ~ ]  is the inverse of [M, qS]ef2<4 w> we find rl(m,-qS)= 
- r / (M,  qS). This proves theorem B. 
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