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FINITE TOPOLOGICAL SPACES

BY
R. E. STONG

1. Introduction. The object of this paper is to consider finite topological
spaces; i.e. spaces having only a finite number of points. Most of the results
obtained are clearly valid for spaces having only a finite number of open sets.

In §2, an analysis of the homeomorphism classification of finite spaces is made
and a representation of these spaces as certain classes of matrices is obtained.
In §3, the point-set topological properties of finite spaces are considered. The
topics covered are separation axioms, connectivity, mappings, and function spaces.
In §4, the classification of finite spaces by homotopy type is made, reducing
homotopy problems back to related homeomorphism problems. In §5, a clas-
sification of finite H-spaces is made. It is shown that all such are of the obvious
types. In §6, the homotopy classes of mappings of a finite simplicial complex
into a finite space are examined.

General references and definitions may be found in [2], [4], and [5].

The author is greatly indebted to Professor I. M. James for suggesting these
questions and for discussions on these topics. The author is also indebted to the
National Science Foundation for financial support during this work.

2. Homeomorphism classification.

PROPOSITION 1. Let F be a finite topological space with topology 7 . There
exists a unique minimal base % for the topology.

Proof. For each xeF, let U, be the intersection of all open sets of F which
contain x. Since F is finite, this is a finite intersection and so U, is open. Let % be
the collection of all U,. It is immediate that % is a base for 7 and that any base
for J contains %.

NoTE. Spaces having this property, i.e. that any intersection of open sets is
open, were considered by Alexandroff [1].

PROPOSITION 2. Let F be a finite set, Wa collection of nonempty subsets of F.
Then W is the minimal base for a topology of F if and only if:

(1) {4l 1eq} =F,

(2) if A,Be, there exist sets C,€ U such that ANB=|]JC,, and

) if A,eWand UaAae A, there exists a B such that Ay = UaA,.
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326 R. E. STONG [June

Proof. Conditions 1 and 2 are the usual conditions that 2 is a base for a
topology. If % is the minimal base, then % < . Then if Ae U, A4 is a union of
elements of % since % is a base, but by condition 3 and Z = U, A4 is one of the
sets of % of which it was the union.

If % is a minimal base, (1) and (2) are trivial and if U, = U U,, then there is a j
such that xe U;, so U, < U; by definition of U,, so that (3) is satisfied.

PROPOSITION 3. Let F and G be finite spaces with minimal bases % and V". Then:
(a) If G is a subspace of F, V" ={U NG|Ue}.
(b) If F X G is the product space, then the minimal base is

UXxV ={UxV|Ue,Ve?}.

DerINITION.  Let .’ be the set of all square matrices (;;) with integral entries
such that:

@ o1,

2 i#j=>o;=-1,00rl,

(3) i#j=o0;;=—0a; and

(4) for any sequence (iy,iz,++,i5), S>2, iy # i, -+ # iy such that

Oy, = 0 =0 =1, o;,; =0.

If A,Be .4’ and there is a permutation matrix T with TAT ™! = B, then say A
is equivalent to B. Let .# be the set of equivalence classes of elements of .#'.

THEOREM 1. The homeomorphism classes of finite topological spaces are in
one-to-one correspondence with .

Proof. Let F be a finite topological space with minimal base %. Choose an
ordering of # so % = {U,,U,,--+,U,}. Define a matrix (o) i,j=1,---,r, by:

Number of xeFaU,=U,; if j=i,
1if U;oUj;and 3nokaU; o U, > U;
—1ifU;oU;and dnokaU; o2 U, U, } if j#i.
0 otherwise

Trivial verification shows that («;;) € #’. Choosing a different order on % gives
a permutation of {1,---,r} and hence F determines an element of ./Z.

If f: F> G is a homeomorphism, then f induces a map of minimal bases,
which preserves inclusions and numbers of elements in each base set, so F and G
determine the same element of /.

If F and G give the same element of .# then by proper ordering of bases, they
give the same matrix. A homeomorphism is easily constructed, thus showing
that the function to « is monic.
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To see that the function to . is onto, let A =(o;;)e 4’, with 4 an r x r
matrix. Let S ={(a,b)eZ x Z] 1fasr1£b<a,} and for i=1,---,r, let

{(a, b)eS

i

a=iora#iand 3 chain (i, iy, }
=1}

i=i1¢i27é"'¢is=aWithOCiliz=~~=OC

is~1is
It is easy to verify that the collection of U, is a minimal base for a topology on S,
and that with this topology S gives the matrix 4.

1t should be noted that the size (r X r) of the matrix is the number of sets in the

minimal base and that the trace ( X«;;) of the matrix is the number of points in
the space.

3. Point-set topology. First, it is clear that if a finite space is 7 then it is in fact
discrete. However, T)-spaces are more useful and one has:

PROPOSITION 4 (ALEXANDROFF [1]). 4 finite space F is Ty if and only if U,=U,
implies x = y.

Note. Thus F is Ty if and only if its matrix has only 1’s on the diagonal.

Proof. If Fis T, and x # y, there is an open set V such that xe V, y¢ V (or
yeV,x¢V). Thus y¢ U, (or x¢ U,) so U, # U,. Conversely, if U, = U, implies
x = y and u, ve F such that every open set containing one contains the other, then
veU,, ueU, so U,=U, and u=v.

For Ty-spaces, the partial order by inclusion on % gives a partial order on the
space, and thus x < y is equivalent to U, = U, or x € U,. For non-Ty-spaces, one
may also write x < y for xe U,, and the proposition then becomes: F is Ty if and
only if x <y and y £ x implies y = x.

Now, consider connectivity. First, each set U, is connected, for if 4, B are open,
U, = Ay B, then x is in one set, say x€ A and so U, = A. Thus a finite space is
locally connected. The usual open-closed argument shows:

PROPOSITION 5. Let F be a connected finite space, and x and y in F. Then
there exists a sequence zy,z,--,z, of elements of F such that zo = x, z, =y and
for each i 0<i=<s—1), either z; <z, OF z; 2 2;,,.

PROPOSITION 6. Let F be a finite space, x,yeF and x < y. Then there is a
path in F whose ends are x and y.
Proof. Let
yt=0
g:1=[0,1]~F by ¢(t)={

Xt>0
If Vis any open set in F and

(1) yeV,thenx<ysoxeU,cVand ¢~ '(V)=1.

(2) xeV, y¢ ¥, then ¢~'(V) = (0, 1].

(3) x¢V, then ¢~ '(V) = .
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Thus ¢ is continuous.
Combining Propositions 5 and 6, one has immediately:

COROLLARY 1. Connectedness and path-connectedness are equivalent for
finite spaces.

Next, consider functions.

PRrROPOSITION 7. Let F and G be finite spaces. f: F—G a function. f is con-
tinuous if and only if x <y implies f(x) < f(y).

Proof If fis continuous, x < y, then Uy, is open so f “I(Uf(,,)) is open and
contains y. Thus it contains U, and hence x (xeU,). Thus f(x)e Uy, or
f(x) = f(). Conversely, suppose x < y implies f(x) < f(»), and let V' be open in G.
If yef~'(V), f(y)eVso Uryyc V. Then if xe Uy, x < y and so f(x) = f(y) or
f(x)€ Uy Thus f(x)e V or xef~ (V). Since £ ~'(V) = Uyes-,0»U,» it is open
and so f is continuous.

ProposiTION 8. Let F be a finite space, f a continuous map of F into itself.
If f is either one-to-one or onto, then it is a homeomorphism.

Proof. Since F is finite, one-to-one and onto are equivalent. Since f is one-
to-one, A — f(A) defines a 1-1 correspondence f': 2F — 2. If f(4) belongs to the
topology 7 < 2F, f(A) is open and by continuity and the 1-1 nature of f, A€ 7.
Since 7 is finite and f'(9) > 7, f’ gives a 1-1 correspondence J — 7. Thus 4
open implies f(A4) open, and f ! is continuous.

Finally, consider spaces of maps. Let X be any topological space, F a finite
space and let F¥ denote the space of continuous maps of X into F, with the compact
open topology. If f,g e FX, write g < f if g(x) £ f(x) for all x e X.

PROPOSITION 9. The intersection of all open sets in FX containing the map f
is {geFX|g < f}.

Proof Let V, be the intersection of all open sets containing f and
W,={ge FX |g <f}. For any compact set K< X and open set Uc F, let
(K,U)={geF¥|g(K) = U}. If ge V; and x € X, then x is compact, U, is open
and fe({x}, U)). Thus ge({x}, U, or g(x) € Uy Thus g(x) = f(x) for any
xe X, or ge W,. If ge Wy and (K, U) is any sub-basic open set of F X containing f,
then for all xe K, f(x) € U. Then g(x) < f(x) or g(x) € Ujy,. Since U is open and
contains f(x), it contains U ). Thus g(x)e U for all xe K, or ge (K, U). Thus g
belongs to all open sets containing f or ge V.

Note. If X is also a finite space, F¥ is finite and the order on functions is the
same as the order given by the compact open topology.

One has the standard result (see [3]):

LeMMA 1. Let X and Y be topological spaces. Suppose that for all pe X the
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compact neighborhoods of p form a base for the neighborhood system of p. Then:
(@) If ¢: X x I > Yis continuous, so is ¢': I - Y*: t > ¢( , t).
(b) If y: 1> Y* is continuous, so is 1 X x I - Y: (x,t) = Y(t) (x).
In particular, these conditions are satisfied if X is a finite space.

Thus one has:

COROLLARY 2. If F and G are finite spaces, the homotopy classes of maps of F
to G are in one-to-one correspondence with the components of G.

CoROLLARY 3. If f,g: F—G and f<g, then f is homotopic to g by a homotopy
which keeps pointwise fixed the set {x€F |f(x) = g(x)}.

Proof. Since G is finite, Proposition 6 applies and applying (b) of the lemma
to the path given produces the desired homotopy.

4. Homotopy-type classification.

DerFINITION. Let F be a finite space

(a) xeFislinearif 3y > x 2z > x implies z = y,

(b) xe F is colinear if 3 y < x3z < x implies z < y.

DEFINITION. A finite space F (with base point p) will be called a core if F is T,
and has no linear or colinear points (except possibly p).

DEerFINITION. A core of the finite space F (with base point p) is a subspace F; of
F (with the same base point) such that F, ((F,, p)) is a core and such that F, is a
strong deformation retract of F.

THEOREM 2. Let F be a finite space (with base point p). Then F has a core.

Proof. (a) Let % be the minimal base for the topology of F, and for each
Ue, let xye U such that U, = U (choosing p for U,). Let F’ be the subspace
of all x;. Foreach x e F, let f(x) = xy where U = U,. Then x; € U, or x; = f(x) < x.
If x<y, xeU, so f(x)eU,c U, = Uy, or f(x) < f(y). Thus f is continuous
and f < identity.

By Corollary 3, f is homotopic to the identity by a homotopy fixing F’, so F’
is a strong deformation retract of F. Further F’ is T,

(b) Let F be a finite space, x€ F a linear point. Then F — xis a strong defor-
mation retract of F. To see this, let f: F —» F by f(z) = z if z # x, f(x) = y, where
y > x such that z > ximplies z= y. If u S v:

(1) u=x, v=x, then f(u) = f(v),

(2) u=x,v#x, then f(u) = y, f(v) =v and v> x so v = y giving f(u) < f(v),

B)u#x,v=x,thenf(u)=u=<x<y=f(v), and

4) u # x,v#x, then f(u) =u 2 v=[(v).

Thus f is continuous and clearly f = identity. By Corollary 3, f is homotopic to
the identity by a homotopy fixing F — x.
By reversing the inequalities, one has
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(c) Let F be a finite space, x€ F a colinear point, then F — x is a strong de-
formation retract of F.

(d) Now let F be any space and form subspaces G; of F by:

(1) G, =F' as in (a),

(2) if G; is defined and has a point x (% p) which is linear or colinear, let
Giv1=G;—x.

Since F is finite, this process must terminate. Let F; be the terminal subspace.
F,is T,, being a subspace of F’ and has no linear or colinear points (other than
perhaps p). Thus F, (or (Fy,p)) is a core. Since each G, is a strong deformation
retract of G;_;, and G, is a strong deformation retract of F,F, is a strong de-
formation retract of F.

Thus F, is a core of F.

THEOREM 3. Let F (or (F,p)) be a core. Then any map f: F — F (preserving
base point) which is homotopic to the identity (relative to base points) is the
identity.

Proof Let f: F— F (f(p) = p) and suppose f = identity. Then for all xeF,
f(x) = x. If x is a maximal point of F, then f(x)= x implies f(x)=x. Then
suppose x € F and for all z > x, f(z) = z. Then for all z > x, z = f(z) = f(x) by
continuity of f. Since f(x) = x, either x is linear or f(x) = x. Since the only possible
linear point is p, and f(p) = p, this gives f(x) = x. By induction, f is the identity.

Similarly, f < identity implies f = identity.

By Proposition 5, the component of the identity in F* (or the subspace of base
point preserving maps) is a single map, the identity. By the relation between
homotopy and components, this gives that any f homotopic to the identity must
be the identity.

THEOREM 4. Let F, G be finite spaces (with base points p and q) and with
cores Fy, G,. Then F is homotopy equivalent to G if and only if F, is home-
omorphic to G, (relative to base points).

Proof. Since a core of a space is a strong deformation retract, it has the same
homotopy type as the space. Thus if F; and G, are homeomorphic, both F and G
have the same homotopy type as F,. Also, if F and G have the same homotopy
type, F, is homotopy equivalent to G,. Let f: F; = G, g: G; = F, be a homotopy
equivalence. Then gf and fg are homotopic to the identities. By Theorem 3,
they are equal to the identities, and so g =f ~'and f, g are homeomorphisms.

REMARKS. (1) By Theorem 4, it is meaningful to talk of ‘“‘the core’ of a finite
space, as the homeomorphism class of the cores of the space.

(2) In any homotopy equivalence class of finite spaces there is a representative
with a minimal number of points. This minimal space is a core and its homeo-
morphism class is the core of any space in the homotopy class.
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(3) If F is a finite space, the cores of F are the minimal strong deformation
retracts of F in the partial order by inclusion.

COROLLARY 4. Let F be a finite space. Then F is contractible if and only if
some point of F is a strong deformation retract of F.

Preof. F contractible is equivalent to F has the homotopy type of a point,
which is equivalent to the core of F being a point.

5. Finite H-spaces. There are two definitions of H-space which will be considered
here.

DErFINITION. An H-space (of type 1) is a triple (F, p,u) where F is a space,
p €F is a base point and u: F X F— F is a map such that

FxF—tsF
AN

e
FV F

commutes up to homotopy, where F\ F = {(x,y)e F x F]x =p or y=p}
and ¢ is the collapse, c(x,p) =x, c(p,x) = x.

Asis obvious, if G is any space, GU p = F (disjoint union) admits an H-space
structure. It will be shown that all finite H-spaces of type I are equivalent to one
having this form: i.e. the component of the base point is contractible.

DerNITION. An H-space (of type I1) is a space F (with base point p) and a map
u: F X F— F such that

Ui F X F—>F XF:(x,) - (x,p1(x,y)
and

Ui F X F—>F X F:(x,)-(,1(x,)

are homotopy equivalences.

DeriNiTION.  Two H-spaces (F,w), (G,v) (with base points) are said to be
equivalent if there exists a homotopy equivalence f: F - G, g: G— F such that
the diagrams

F><F—”->F G><G—-V—>G
foJ lfandgxgl lg
Gx G——> F Fx F-ts F

commute up to homotopy.

ProrosiTioN 10. If F and G ((F,p) and (G,q)) are homotopy equivalent,
there is a one-to-one correspondence between the H-space structures on F and
those on G.
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Since any finite space is homotopy equivalent to its core, one may consider
first the situation for cores. Temporarily, all spaces considered will be with base
point.

ProrosiTiON 11. Let (F,p,1) be a finite H-space (either type) and let (F, p)
be a core. Then the maps

0,:F—F:x- u(x,p),
and

0,: F>F:x— u(p,x)
are homeomorphisms.

Proof. 1If the H-space is of type I, one has

P Fx F—tsF

Joald
N
"F \V F

commutative up to homotopy, or 0, is homotopic to the identity, hence is the
identity by Theorem 3.
If the H-space is of type II, let ¢, be the homotopy inverse of y,. One has

T

Pl b e 2 p P p 02 p T R

3 )
7 ?

01 oy

Now, on the image of F, (px). m, is the identity, so
@10, =7y 0 ¢ 0 py o (xp) ~ 7wy o (xp) = identity.

Since (F, p) is a core, a,0, is the identity. Since 0, is then one-to-one, it is a home-
omorphism by Proposition 8.

PROPOSITION 12. Let (F,p) be a core, xe F. Then:

(1) x is less than two distinct maximal points, or

(2) xis maximal, or

(3) x is linear under a maximal point; hence x = p; and
(1") x is greater than two distinct minimal points, or

(2') x is minimal, or

(3") x is colinear over a minimal point; hence x = p.

Proof. Let A be the set of points not satisfying (1), (2) or (3), and let x be a
maximal element of A. Since x € 4, x is not maximal in F and there is a z > x.
Let B={z|z>x}#(. If any element of B satisfies (1), then x satisfies (1).
If p¢B, then every element of B is maximal, and since B doesn’t contain two
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maximals, B must consist of one point, z. Then w > x = w =z, so x is linear
under a maximal and satisfies (3). Thus pe B. Since p > x, x is not linear, and
there is a y > x such that y % p. Since y is not type (1) or (3), y is maximal. Let w
be maximal with w = p. Then y, w are maximal, y, w > x and since w = p, y £ p,
w# y.

Hence x satisfies (1), but xe A. Thus A4 is empty.

ProPoSITION 13. Let (F,p) be a core, (F, p, ) an H-space (either type). Then p
is both maximal and minimal.

Proof. (a) p doesn’t satisfy (1) or (1°).

If m, m’ are maximals, m,m’ > p, then since pu( ,p) is a homeomorphism,
u(m, p) is maximal, and since p(p, ) is a homeomorphism, u(p, m") is maximal.
Since m’ > p, (m,m’) > (m,p) and so by continuity of u, u(m,m’)= u(m,p).
Since m > p, (m,m’) > (p,m’) and p(m,m’) = u(p,m"). By maximality, u(p,m")
= p(m,m’) = p(m, p). Taking m’ = m, p(p,m) = p(m,m) = p(m, p), and so for
any m,m’, u(p,m’) = u(m, p) = u(p,m). Since u(p, ) is a homeomorphism, this
gives m =m’.

Similarly, p cannot satisfy (1°).

(b) p doesn’t satisfy (2) and (3).

Suppose p satisfies (2") and (3).

For r =0, F contains a subset D, = {p =ug,u, - u,; My, >+, M,_;} With u;
minimal, m; maximal in F and such that

(1) my>xifand only if x =u; or ;4 (i=0,--,7 — 1),

(2) y > u, if and only if y = m,,

B y>u;(i=1,-,r—1)ifand only if y =m;_, or m,,

@ p(x,m)=pu(m,x)=m;if x=m, oruy, kSiand 1si=r-—1

(5) u(x,u;) = pu(u;,x)=u; if x=my, k<i or x=u,, k=i and 0<i=r.

(6) u(x,m;) = p(x, p) = p(x, u;); p(m;,x) = p(p, x) = p(u;, x) for all x ¢ D,.

For r =0, this is true; since then Dy = {p =u,} and one has only to verify
that p is minimal and that u(p,p) = p.

Assuming F contains D,, one can show it must contain D, ;.

First, m, exists. If r =0, by assumption, there is a unique x > p, which is a
maximal, mgy. If » > 0 there is a maximal m, > u,, m,¢D,, for u, # p, and u, is
not maximal (u, < m,_,) so u, is less than two maximals, only one beingin D,.
If there are two maximals, m,m’¢ D, with m,m’ > u,, then u(m,u,) = u(m, p) is
maximal (u( ,p) a homeomorphism) u(m,u,) = u(u,,u,) = u, (continuity of )
u(m,u,)¢D, for u( ,p) is a homeomorphism. As in (a), u(m,u,) = u(u,,m)
= p(m,m) = p(m,m’) = p(m’,u,) = p(u,,m") = p(m, p) = p(m’, p) and being maxi-
mals over u,, all are equal to m, or m'.

There is no z with u, < z < m,, else z is not maximal and z # p, so z would lie
under two maximals. Since u, can lie under only m,_; and m,, z <m,_;, con-
tradicting assumption (1) for D,.
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Assumption (6) verifies the multiplication rule (4) for m,, and one need only
verify (6) for m,. For this, let §: F— F:x— u(x,m,) (or u(m,,x)). If x¢D,,
0(x) = u(x,m,) = u(x,u,) = u(x,p) (or 6(x) = w(p,x)). If x is maximal, so is
u(x,p) (or u(p,x)) and 6(x) = u(x,p) (or u(p,x)). Then if for all y > x, 6(y)
= w(y, p), and if z > p(x, p); since u( , p) is a homeomorphism, there is a z’ > x,
with p(z’,p) = z. Then z’' > x=-z" ¢ D, and so z = 0(z") = 6(x). Since u(x, p) # p,
u(x, p) is not linear and so 6(x) = u(x, p).

Since m, # p, m, not minimal, there is a u,; <m,, u,;, minimal, u,,, ¢D,.
Applying the same arguments as with m,, except for reversed inequalities, verifies
all hypotheses (1)-(6).

By induction F contains D, for all r = 0. Since F is finite, this is a contradiction.

(c) p doesn’t satisfy (2) and (3').

By reversal of inequalities in arguments for (b), one can construct a countable
set in F.

(d) p doesn’t satisfy (3) and (3°).

For if it did, one can find a set D, = F,

’ . .
Dr = {ZO = D215 5 Zps Uy ot Upmq s Moy oo My x(r—l)}

with u; minimal, m; maximal and such that

(1) my>xifand onlyif x < z,0rz;,,05isr—1.

@) u;<xifandonlyifx=z;0rz;,,0Sisr—1.

(3) x > z, if and only if x = m,; x < z, if and only if x = u,.

@4 x>z;ifandonlyif x=m;orm;_, 1Sisr—1,
x<z;ifandonly if x=u;0oru;_, 1Sisr—1

(5) m._q >Zr>ur—1'

6) u(x,z) =Wz, x)=z;if x=mpu;k<iorx=z,k<i;0iZr.

p(x,m) = p(my, x) = {m; if x = my, 2, k S is x = uy, k < iy z;if x = u;}
and '
p(x,u) = p(u, x) = {u; if x =up, 23, k < is x =my, k <i;z;if x=m}

for0Zigr—1.

(7) For x¢Dl, u(x,m)= p(x,z) = p(x,u) = u(x,p) and pu(my,x) = u(z,x)
= p(u;,x) = p(p, x)-

Clearly Dy = {p =z} = F and the argument is by induction on r, similar to
(b). First m, and u, exist as a maximal over z, and a minimal under it. The standard
argument gives uniqueness. The relations p(x,m) = p(x,z,) = u(x,u,) give all of
the multiplication table except w(u,,m,)= u(m,,u,)=z,,,. This will in fact
define z,,,, once equality is known.

Since u, # p, u, is not linear and there is a z > u, 3z % z,. Choose a minimal
such z and call it z,,,. Since m, # p, m, is not colinear and there isa w <m, 2w
=% z,. Choose a maximal such w and callit w, ;. By choice of z, ., W,+1, Z, 41 ¢ D},
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w,+1 ¢ D’ and there can be no h or k such that u, <h <Zz,.q or m,>k>w.;y.
One then has the inequalities

ﬂ(wr+ 1 p) é /'l(wr+ 1 ur) é ﬂ(mn ur) é ﬂ(mr’ Zpy 1) = #(Ps Zry 1)
and

ur = u(zl" ur) é I’l(mr’ ur) é I’l(ml" Zl‘) = ml’

so u(m,,u,) lies between u(w,,q,p) and p(m,,p) = m, and between u, = u(p,u,)
and u(p,z,+1)- Since nothing lies properly between u, and z,,; or m, and w,, 4,
this is only possible if u(m,,u,) = u(p,z,+1) = (W, +1, p). Uniqueness of z,,, and
w,,, follow and then clearly z,,; = Ww,4{ = p(m,, u,). z,4+1 = u(,,m,) is obtained
by the same reasoning.

(¢) Combining steps (a)—(d) with Proposition 12, it follows that p is both
maximal and minimal.

THEOREM 5. Let F be a finite space. A necessary and sufficient condition that
there exists an H-space of type 1 (F,p,u) is that p be a strong deformation
retract of its component in F. A necessary and sufficient condition that there is
an H-structure of type 1 on F for some base point is that a component of F is
contractible.

Proof. By Proposition 13, p is a component of the core of F and hence p is
the core of its component.

THEOREM 6. Let F be a finite space. A necessary and sufficient condition
that there exists an H-space of type 11 (F,u) is that every component of F be
contractible. A necessary and sufficient condition that there exists an H-space of
type 11 (F, ) with base point p is that every component of F is contractible and
that p is a strong deformation retract of its component.

Proof. If peF is a base point, let (F,, p) be a core at p. By Proposition 13, p is
a component of F; and hence is a strong deformation retract of its component.
Further p is neither linear nor colinear, so F; is a core of F. (As well as (Fy,p)
being a core of (F,p).)

Then by Proposition 10, with or without base point, there is an H-space (F’, 1)
where F' is a core of F. Analogous to Proposition 10, for any ze€ F’, the maps

0,:F' - F'":x—p'(x,2),

0,: F' - F':x— u'(z,x),
are homeomorphisms. Let m be any maximal point of F’, u any minimal point.
Then p'(m,u) is maximal, since m is and p’( ,u) is a homeomorphism, and is
minimal since u is and u’(m, ) is a homeomorphism. Thus since u'( ,u) is a

homeomorphism, m is minimal, and since p'(m, ) is a homeomorphism, u is
maximal. Thus F’ is discrete, or every component of F is contractible.
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6. Mappings of a finite complex.

PROPOSITION 14. Let X be any topological space and F a finite space. If
f,g€FX with g = f, then f and g are homotopic.

Proof. Let H: X X I— F be given by H(x,t) = f(x)if t > 0, and H(x,?) = g(x)
if t = 0. Let U be any open set in F. For any (x, f) e H™ (U), there is a neighborhood
V of (x,t) contained in H™'(U). If t>0, V=f"'(U)x (0,1] and if ¢t=0,
V=g }(U) x[0,1]. Thus H gives the required homotopy.

The remainder of this section will be devoted to the study of mappings of a
finite simplicial complex into a finite space, with emphasis on relating homotopic
maps by means of inequalities. Another approach to the study of such homotopy
classes is contained in the work of McCord [6], by which one has for any complex
K an associated finite space F and a map f: K — F inducing isomorphisms of
homotopy groups.

LemMA 2. Let K be a finite simplicial complex, L a closed subcomplex, F a
finite space, peF, and f:(K,L)— (F,p) a continuous function. Then there
exist closed subsets

K'=KoK!'o5K?>---oK' oK' =g,

finite collections L i=0,-,r, of closed subsets B of K* with f constant valued
on B, and closed subsets K of K* for Be X', such that:

(1) L #& implies Le 2°;

(2) Kp is a neighborhood of B in K* (BeX)) with Ky < {zeK lf(z) SfB3;

(3) K'=U Kgfor BeX';

(4) If B, B’ are distinct elements of ' and y € Kz N Ky, then y belongs to the
boundary in K' of K.

(5) K*'={yeK'|3B+#B’ in L'with ye Kz NKy}; and

(6) If BeX, Ce¥, j>i, and Ky N\ Kc #J , then f(C) < f(B).

Proof. In order to show this, a construction will be given to produce =0
the sets K for Be Z°, and the subset K*, together with a specific structure of K*
as a finite simplicial complex of dimension less than that of K. Taking L' to be
empty, one then performs the same construction on K*. Iteration then gives the
sets K, collections T, and sets K. Since dim K**! < dim K, this process must
terminate, giving all objects of the lemma. It will be clear from the construction
that all parts of the lemma are valid, except for part (6), which will be proved last.

To begin the construction, let ¥ be an open set containing Land having closure
contained in the set U={zeK|f(z) < p} (if L=¢, take V=). For each
point x€ K, let ¥, be an open set containing x and having closure contained in
both U, ={zeK | f(2) £f(x)} and the open star S, of x in K (i.e. S, is the in-
terior of the set U g for all xe s, o a simplex of K).
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Let A be a finite set of points of K— L for which the sets V,, x € 4, cover K — V.
Let X°  2X be the finite collection consisting of the sets {x} for xe 4 and the
set Lif L# ¢ . Clearly f is constant valued on each set BeZX0.

Then X° is a finite collection of disjoint closed subsets of K, so there exist
disjoint open sets Wp, BeZX° with B W,

There is then an integer n such that for any closed simplex ¢ of the nth bary-
centric subdivision K(n) of K:

(@) 6 NV # & implies 6 = U,

b)yeNV,.#JF, xed, implies 6 < U, NS,, and

() §NB# &, BeX’ implies 6 < W,

For any free simplex o of K(n) (i.e. not a face of any other simplex) let ¢(¢) € £°
be defined by:

(d) if § "B # & for some BeX® (unique by (c)), let ¢(o) = B,

(e) if 6B = for all BeX’, and 6 NV # J, let ¢(6) = L (P % & implies
Lex0),

(f) otherwise there is at least onc x € 4 with NV, # &, and let ¢(0) = {x} ¢ £°
for one such xe A.

Then for each Be X’ let K be the closed subcomplex of K(n) which is the
union of all ¢ for all free simplices o of K(n) with ¢(c¢) = B.

By choice, (1) is satisfied. Since Ky contains all simplices meeting B, Kj is a
neighborhood of Bin K, and KycU if B=L, Kzy< U, if B= {x}, x€ 4, so (2)
is satisfied. Since for all free simplices ¢ of K(n), & is contained in some Kj, (3) is
satisfied. For B # B’ in £°, the sets Ky and K intersect only along boundary
points, giving (4).

The set K! is then defined to be the set of points belonging to two or more of
the sets Kp for Be X°. Thus (5) is satisfied, and further K* is a closed subcomplex
of K(n), with dimK' < dimK.

Having iterated the procedure completes the lemma except for the proof of (6).
Suppose then that Be X', CeX’, j > i, and Ky NKc# &, and let xe Kz N K.
Since xe K/, x belongs to all sets K* for i <k <j, and by (3), there exists a
CieXt, C;=B, C;=C, with x€ K,. It then suffices to prove (6) when j =i+ 1
since one would then have f(C) £ f(C;~,) = - £ f(C;+,) = f(B). Thus, suppose
j =i+ 1. By choice, C = {y} for ye K'*' and K. = U, N S,, s0 x€S,. Now K'**
is a subcomplex of K(n) for some n, as is also Kp. Thus K'** N K} is a sub-
complex containing x, so Ky contains any simplex of K‘*! which contains x.
Since x € S,, x belongs to a simplex of K'*' which contains y, and hence y e Kp,.

Thus f(C) =/(y) =/(B) by (2).

LemMA 3. Let K, L, F, p, and f be as in Lemma 2. Then there exists a finite
collection T =32°U ... UZ" of sets Bc K such that:

(1) f is constant valued on each BeX;

(2) L# & implies Le £°;
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and there exist disjoint subsets Ty = K, for Be X, such that:

(3) K is the union of the sets Ty, BEX;

(4) B < Ty;

(5) Ty = {zeK|f(z) < /(B)};

(6) if BeX, Ty is an open subset of Z'=K — | JT¢, the union being for
CeY, j>i;and

(1) Ty N T # & implies f(C) < f(B).

Proof. Let Z=3°y ---UZX" be given by Lemma 2, giving (1) and (2) by
choice of Z.

The sets Ky, Be X', are disjoint closed sets of K (since K"*! = ¢¥) and they
have disjoint open neighborhoods ¥V in K. Let Wy be an open set of K containing
K such that:

(@) Wy {zeK|f(2) ££(B)} (by Lemma 2, (2),

(b) Wy N K¢ # &, CeZ, implies Kz N K¢ # & (by normality of K),

(©) WynNC# J, CeZ, implies C = B (for by Lemma 2, (2), (4) and (5), the
sets CeZf and Ky, BeX’ are disjoint if i <), and

(d) W V.

Then let T, BEX', be an open set containing Ky with T < Wy,

Inductively, suppose Ty has been defined for Be X7, j > m, satisfying:

@) Kic T, the union being for Ce £ k 2 j,

(b)) BT,

(©) Tsc {zeK|f(z) £/B)},

(d") If Be X/, Ty is an open subset of Z’ (see (6)) containing Z* N K, and

(e') CNTy# & implies B=C, if CeX’, BeX! i>].

This is clear for m = r — 1, with the choices made for T, Be X’

Then define sets T, Be X", as follows. Z™is a closed subset of K, having been
formed by removing open sets from Z™**, and by (¢’), the sets Ce X' ¢t < m, are
contained in Z™, so the sets Kz N Z™, Be L™, are nonempty. By (a’) and Lemma
2:5), the sets Kz NZ™ are disjoint closed subsets of Z™, and let V3 be disjoint
open neighborhoods in Z ™of the sets Kz MZ™ Then let Wy be an open set of
Z™ containing Kz NZ™ and such that:

(1) Wy < {zeK|f(z) £/(B)}, (by Lemma 2,(2));

2) WgNKc# @& implies Z"N Ky N K¢ # & (normality);

(3) Wy N C # & implies C = B (for W N C # & implies CeX ! i < m, by (a’),
and so C and Kp are disjoint if i <m, C and Kz NZ™ are disjoint for i = m);

4) Wy N T, # & implies Tc "KzgNZ™ # & (normality);

(5) Wye V.

Then let T be open in Z™, containing Kz N Z™ with T = W.

Properties (a’)-(d’) are then trivial for j>m —1, and (e') is trivial except
when BeL" If CN Ty # &, CeX, then CeX for i<m by (a’); and then by (3)
in the choice of Wy, C=B.
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By induction, the sets Ty are defined for all Be Z, property (3) of the lemma is
just (@"), (4) is (b"), (5) is (c’), (6) is part of (d"), leaving only property (7) to be
proved. Suppose then that B, CeX with T, NT.# &, with BeZ, CeX’. If
j <i,T¢ =27’ and does not meet Ty by (6). If j = i, the sets Ty and T are disjoint
by Ty © Wy Vp. Thus j > i, and by property (4) of W, Tc NKzNZ# &, so
TcNKp# & and W N Ky # . By property (2) of We, Kc NKy NZ/ # &, so
KyNKq# & with BeXi CeX’ and j>i. By (4) of Lemma 2, this gives
f(C) = f(B), giving property (7).

THEOREM 7. Let K be a finite simplicial complex, L a closed subcomplex,
F a finite space, pe F, and U the space of continuous functions h: (K, L) — (F, p)
with the compact open topology.

(@) If fe N, there exists a ge N such that {heQIIh < g} is a neighborhood
of fin A

(b) If f.f' e W are homotopic (relative to L), there exist elements ¢;eU,
0Zi<s, withgg=1f, ¢,=f", and for 0 < i<s, either ¢; < P;pq OF §; 2= i1

Proof. With the notation of Lemma 3, each x € K belongs to a unique T},
BeZX, and let g(x) =f(B).

IfL# &, LeX,and L< Tyso g(x) = f(L) = pforallxin L

g is continuous. If xe K, xe Ty say, and let Cy,---C,€X be the sets C for
which xe T, x¢ Tc. There is then a neighborhood N of x with NN T, # &
only if Ae{B, Cy,---,C,}. For z€ N, g(z) takes one of the values f(B) or f(C,y
Since Ty NT¢, # &, f(C) < f(B)=g(x) by (7) of Lemma 3. Thus there is a
neighborhood N of x with z € N implying g(z) < g(x), and hence g is continuous.

Thus ge .

Let B={he QII W(T p) € U, for all Be Z}. Bis open in W for each Tpis compact
and each Uy g, is open. Then fe B, for if x e T, f(x) < f(B) by (5) of Lemma 3.
If heB, xeK, then xe Ty for some B and since heB, h(x) = f(B) = g(x).
Thus h<g,s0 feBc{hel | h £ g}, completing part (a).

Now let H: K X I - F be a homotopy of f and f’ (rel L). Let J = I be the set
of ¢ eI for which there is a finite set ¢, W, 0 < i < m, with ¢ =f, ¢, =H ( ,1)
and such that for 0 < i<m either ¢; < ¢;+; Or ¢;4; < ¢;. Clearly, 0eJ by
taking ¢o=f, m = 0. If teJ with corresponding elements ¢, e U, let ¢,,., be a
map for which {h]h < ¢n+1) is a neighborhood of H( ,t). There is then an
¢ >0 such that |t —s| <& implies H (,5)€{h|h < ¢ps1}> 50 Piz=H(,s) if
| t— s| < ¢ shows that J contains a neighborhood of ¢. Thus J is open. Similarly,
if teJ, there is a g such that {he A|h < g} is a neighborhood of H( ,f) and
hence there is an &> 0 such that |t—s| < ¢ implies H( ,s) < g. Since teJ
there is a ¢'€J with |t — 1’| <&, and so elements ¢;€ A, 0<j < n, ¢, =H( ,t')
which give t' €J. Letting ¢+, =g, ¢,+, = H( ,t), one has teJ so J is closed.
Thus J =1 and (b) is proved.
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COROLLARY 5. Homotopy classes of maps f:(K,L)— (F,p) are in 1-1 cor-
respondence with the components of U, i.e. path components and components
coincide in UN.
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