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ON THE STRUCTURE OF MANIFOLDS.*

By S. SmaLe?

In this paper, we prove a number of theorems which give some insight
into the structure of differentiable manifolds.

The methods, results and some notation of [13], hereafter referred to as
GPC, and [12] will be used. These two papers and [14] can be considered
as a starting point for this one. The main theorems in these papers are
special cases of the theorems here.

Among the most important theorems in this paper are 1.1 and 6.1.

Some conversations with A. Haefliger were helpful in the preparation
of parts of this paper.

Everything will be considered from the differentable, equivalently C=,
point of view; manifolds, imbeddings, and isotopes will be C*.

Section 1. We give a necessary and sufficient condition for two closed
simply connected manifolds of dimension greater than four to be diffeomorphic.
The condition is h-cobordant, first defined by Thom [16] for the combinatorial
case, and developed by Milnor [9], and Kervaire and Milnor [7] for the
differentiable case (sometimes previously h-cobordant has been called J-
equivalent). It involves a combination of homotopy theory and cobordism
theory. More precisely, two closed connected oriented manifolds M,", M,» are
h-cobordant if there exists an oriented compact manifold W with W (the
boundary of W) diffeomorphic to the disjoint union of M, and — M,, and
each component of 4W is a deformation retract of W.

THEOREM 1.1. If n=35, and two closed oriented simply connected
manifolds My" and My are h-cobordant, then M, and M, are diffeomorphic
by an orientation preserving diffeomorphism.

It has been asked by Milnor whether h-cobordant manifolds in general
are diffeomorphic, problem 5, [9]. Subsequently, Milnor himself has given
a counter-example of 7-dimensional manifolds with fundamental group Z,,
h-cobordant but not diffeomorphic [10]. Thus the condition of simple-con-
nectedness is necessary in Theorem 1. 1.

* Received July 18, 1961.
* The author is an Alfred P. Sloan Fellow.
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388 S. SMALE.

Theorem 1.1 was proved in special cases in [13] and [14]. These special
cases were applied to show that every sphere not of dimension four or six has
a finite number of differentiable structures. The six dimensional case is
taken care of by the following.

CoroLLARY 1.2. Ewvery homotopy 6-sphere is diffeomorphic to S°.

This follows from 1.1 and the result of Kervaire and Milnor [7] that
every homotopy 6-sphere is h-cobordant to S°.

CoROLLARY 1.8. The semigroup of 2-conmected closed 6-manifolds is
generated by S® X 82,

This follows from 1.2 and [15].

Haefliger [2] has extended the notion of h-cobordant to the relative
case. Let Vi, Vi, M,, M, be closed oriented, connected manifolds with
V,C My, i=1,2. According to Haefliger (M, V), (M, V,) are h-cobordant
if there is a pair (M, V) (i.e, V C M) with oM —= M, — M,, V=V,—7V,
and M;— M, V,— V homotopy equivalences. Then 1.1 can be extended to
the relative case.

TaEOREM 1.4. Suppose (M," Vi*) and (M,",V*) are h-cobordant,
k=5, (V) =m (M;— V) =1. Then there is an orientation preserving
diffeomorphism of My onto M, sending V, onto V..

By taking V; empty (the proof of 1.4 is valid for this case also), one
can consider 1.1 as a special case of 1.4.

Actually we obtain much stronger theorems which will imply 1.4. The
proof of 1.4 is completed in Section 3.

It would not be surprising if the hypothesis of simple connectedness in
these theorems could be weakened using torsion invariants (see [10], for
example).

Theorem 1.4 has application in the theory of knots except in codimension
two.

Section 2. The main theorem we prove in this section is the following.
Here we use the notation of GPC.

THEOREM 2.1. Let M be a compact manifold with a simply connected
boundary component Q. Let V. —=x(M, Q;f;m) where f: 0Dy™ X Do*™—> Q 1is
an embedding, m > 2, n—m > 8. Suppose W =x(V,Q1;91," * *,9r;m+1)
where Q, 1is the component of 0V corresponding to @ and suppose that
H, (W, M) is zero. Then W is of the form x(M,Q ;9 1, * *5 ¢n1;m 4 1).
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Note that an example of Mazur [8] shows that the dimensional restriction
is necessary here.

For the proof we use several lemmas.

Lemma 2.2. Let M» be a compact manifold, Q a component of 0M,
n—m>1, V=x(M,Q;f;m), W=x(V,Q1391" - ",gr;m+1) where Q1
is the component of 8V corresponding to Q and f: 8Dy™ X Do"™— @),
gi: 0Dyt X Dt — Q. are imbeddings. Let F=—q X Dyrm CV with
q ¢ 0Dy, 0F C 8V. Suppose 0F does not intersect g;(9D* X 0),1=1,- -+,
r—1 and g,(0D,m* X 0) intersects OF transversally in a single point. Then
W is of the form

XM, Q59w+ *59'rasm+1).

Proof 2.2. In the proof of 2.2, we use without further mention, the fact
that the diffeomorphism type of an n-manifold is not changed when an n-disk
is adjoined by identifying an (n—1) disk on the boundary of each under
a diffeomorphism. See GPC, 3.4, J. Milnor, “ Sommes de varietes différen-
tiables et structures différentiables des sphéres,” Bulletin de la Societe Mathe-
matique de France, vol. 87 (1959), pp. 439-444 and R. Palais, “ Extending
diffeomorphism,” Proceedings of the American Mathematical Society, vol. 11
(1960), pp. 274-277.

We may assume, using the uniqueness of tubular neighborhoods that
0F does not intersect g¢;(dD;™* X Dpm™1), ¢=1,- - -, r—1.

Since g, (D™ X 0) is transversal to F in §V, there exists a disk neigh-
borhood L of 0==g,(3D™* X 0) NF, L=Am X B*™*, where A™ X 0 is a
disk neighborhood of 0 in g,(dD™* X 0), 0 X B*™* a disk neighborhood of o
in F, with (o,0) corresponding to o.

Now there exists a disk neighborhood D,” of the point F N (D™ X 0) in
Dym X 0 so small that if N =D, X D™ C V, then

(1) Nnimagegi=@, 1=1,- - -,r—1, and
(2) N Nimageg, C L.

Since both Dy X 0 and A™ X o (i.e. A™ X 0) are transversal to 4F in
0V, we may assume using a diffeomorphism of V, and restricting L, that
Am X 0, Dg™ X o coincide, and that L coincides with image g, N N.

The following statements are made under the assumptions that corners

are smoothed via “straightening the angle,” Section 1 of GPC or better [9].
Let K=NUD»m1 C W.
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We claim that K N Cl(W—K) is diffeomorphic to an (n—1)-disk.
First K N Cl(W-—K) is 8Dy™ X (0D, X D,»m-1) —interior L or

aDam >< Don—m U Dbm X Drn—m—l

where Dym is 0D, minus the interior of an m-disk. Furthermore
KNCIH(W—K) may be described as 8Dy X Dy»™ with Dy™ X D,vm-1
attached by an embedding &: 0Dy™ X D"t — 9§D, X D™ with the
property that 2 (8D,™ X 0) coincides with dD,™ X ¢ for some point ¢ € D",
In fact, h is the restriction of g,. This is the situation in the proof of 3.3
of GPC, where it was shown that the resulting manifold was a disk. Thus
KNCH(W—K) is indeed an (n—1)-disk.

Since K is an n-disk, K N CI(W —K) an (n—1)-disk, we have that W
is diffeomorphic to CI(W—K). On the other hand it is clear from the
previous considerations that OI(W —K) is of the form

X(M>Q;g,1;' * ';g,r—l,m—!—]_).
This proves 2. 2.

The next lemma follows from the method of Whitney [18] of removing
isolated intersection points. The paper of A. Shapiro [11] makes this
apparent (apply 6.7, 6.10, 7.1 of [11]).

Lemma 2.3. Suppose N*™ is a closed submanifold of the closed mani-
fold X* and f: M™— X is an imbedding of a closed manifold. Suppose also
that M, N are connected, X is simply connected, n—m >2, m > 2 and
b={f(M)oN is the intersection number of f(M) and N. Then there exists
an ymbedding f': M — X isotopic to f such that f' (M) intersects N in b points,
each with transversal intersection.

LemMMA 2.4, Let Fom™ be a submanifold of Q where Q is a com-
ponent of the boundary of a compact manifold Ve, n—m > 2. Let
W=x(V,Q;9;m 4 1) where g: 0D;™** X Dy""*— @ is an imbedding with
b the intersection number g(0Dy"* X 0)oF, For an imbedding h:
8" —Q N oW, there is an imbedding I’: Sm— Q N oW, isotopic to h in oW
with b’ (S™) o Fy—=h(S™) o Fy, &b, sign prescribed.

Proof. Let D be the closed upper hemisphere of S™, x, € 4D,"™* and H*,
H- be the closed upper, lower hemisphere respectively of g(0D™** X xo) .
Then & is isotopic in AW N Q to an imbedding #’: S — oW N Q, with
B (8™) N g (8Dy™* X x,) equal H* with the orientation determined by the
+b of 2.4. This follows essentially from R. Palais, Extending Diffeomor-
phism, Proc. AMS, vol. 11 (1960), pp. 274-277, Theorem B, Corollary 1.
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Next let b be »” followed by the reflection map H*— H-, so that k, #’:
D —9W are naturally topologically isotopic. However %’ is an angle on 4D. By
the familiar process of “straightening the angle ” we modify #’: S»— aW N Q
to an embedding A’: 8" — W N Q. Our construction makes it clear that A’
and h are isotopic in W, and that A’ has the desired property of 2.4.

We now prove 2.1. Let F be as in 2.2 and b; be the algebrais intersection
number g;(0D™* X 0)0dF, i=1, - -,r. We first note that the b; are
relatively prime. This in fact follows from the homology hypothesis of the
theorem.

The proof proceeds by mductlon on 2 | ;| and is started by 2.3 and 2.2.
Suppose 2.1 is true in case 2 | b is p—l > 0.

We can say from the homotopy structure of W that H,,(W,M) is
Hn(V,M) wtih the added relations [0D;m*'] —0, =1, - -,r, where
[0Dy"*] C Hw(V,M) =Z and H,(V,M) is generated by (D,™, dDs™).

Since Hy, (W, M) =0, [0D;™*] are relatively prime. On the other hand,
since Do™ X 00 F'=1, we have that [D'] =b;. So the by, i=1,- - -,r
are relatively prime.

Since the b; are relatively prime, there exists, 4o, 4, 4,544, with
| bi| =] by | > 0. One now applies 2.4 to reduce | biy| by |bs | using the
covering homotopy property as in Section 2 of GPC. The induction hypo-
thesis applies and we have proved 2.1.

Lemma 2.5. Let n=2m 41, (n,m) £ (4,1), (3.1), (5.2), (7.3),
M be a compact manifold with a simply connected boundary component @
and V=x(M, Q;f;m) where f: D™ X Drm— Q is a contractible imbedding.
Let Q, be the component of 9V corresponding to @ and W =x(V, Qy; g; m + 1)
where ¢: 0D,™* X D,»m— Q,. Then if the homomorphism m,(V,M)
= mm (W, M) induced by inclusion is zero, W is diffeomorphic to M.

We use the following for the proof of 2.5.

LeMMA R.6. Let Y be a simply connected polyhedron and Z an (m—1)-
connected polyhedron. Then (Y \ Z) = ap(Y) 4 mn(Z).

This is a standard fact in homotopy theory. For example it follows
from [6], V.3.1 and the relative Hurewicz theorem.

Using 2.6 it follows easily that my,(Q:) — 7 (Q) + 7w (S™).

Then from the homotopy hypothesis it follows that the homotopy class y
of g restricted to 9D, X 0 is of the form a - g1 where a € 7,,(Q) and g,
generates m, (S™).
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Since P is contractible, V.— M - H, where H is an (n—m)-cell bundle
over 8™, and also @, =@ + 0H. Then let ¢’;: 4D™*— @ be an imbedding
representing ¢ and ¢’y : 0D™* — 9H an imbedding intersecting 0F transversally
in a single point where F is the same as n 2.2. Then by the sum construction
we obtain ¢’: 8D™* X 0 — @, realizing y with the property that ¢’(6D,™* X 0)
intersects F transversally in a single point where F is the same as in 2.2.
Application of 2.4 of GPC and 2.2 finishes the proof.

Section 3. Among other things, we apply the theory of Section 2 to
obtain 1.4.

THEOREM 3.1. Let W» be a mamifold (not necessarily compact), n > 5,
with 0W the disjoint unton of simply-connected manifolds M, and M, where
the inclusion M;—> W are homotopy equivalences. Suppose j: Vo— My 1s
the inclusion of a compact manifold V, into M which is a homotopy equiv-
alence and there is an imbedding a: Cl(M,—V,) X [1,2] > W such that
a) the complement of the image of « has compact closure and b)

a(C1(M;, —V;) X n) C M, i=1,2,

a restricted to Cl(M,—V,) X1 4s j. Then a can be extended to a diffeo-
morphism M, X [1,2] > W.

Proof of 3.1. Let Iy=[—%,n -+ 4] and replace [1,2] in the statement
of 3.1 by I,, denoting the projection CI(M,— V,)C I,— I, by f,. We may sup-
pose that points under « have been identified so that CI1(M,—V,) X I, C W.
Then by the results of [12] one can find a non-degenerate €' real function f
on W such that a) f restricted to CI(M,—V,) X I, is fo, b) at a critical
point the value of f is the index and ¢) f(M,) =—1%, f(M) =n+%.

Let Xp,=f*'[—4,p+%]. We will show inductively that by suitable
modifications of f which also satisfy a), b) and c¢), we can assume X, is a
product M; X I (or equivalently the modified f has no critical points of
iﬁldex =p).

First by 5.1 of GPC, note that we may assume that the function f has
no critical points of index 0. Next by the method in Section 7 of GPC,
using the fact that =, (M,) ==, (W) =1, we can similarly assume that there
are no critical points of f of index 1.

We are not quite yet in the dimension range where 2.1 applies, but we
apply 2.5 to eliminate a critical point of f of index 2 if it occurs, as follows.

We have that X, — x(X1, Qu5f1," * *, fi3R), Xo=x(X2 Q2595+ +,9r53)
where @, =f*(1%), Q-=71"(24). It follows from the homotopy hypothesis
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that each f; is contractible in ¢, so that X, is of the form X, H,
He ¥ (n,k,2) (following notation of GPC).
The g’s induce a homomorphism G, — m,(Q:). Let ¢ be the composition

Gr = 72(Q1) = 72 (X2) > m (H)
where the last homomorphism it obtained by identifying X; to a point in X,.
Assertion. ¢ is an epimorphism.

Suppose the assertion is false and « € =,(H) is not in the image of ¢.
Then since m(X.) =m(X;) +m(H) (by 2.6), the image of a under
mo(H) = w2 (X2) = 72 (X;) is not in the image of =, (X;) = 72 (X2) = 72 (Xs).
But the last composition is an isomorphism since X, — M, X I, thus contra-
dicting the existence of such an «. Hence the assertion is true.

Let yi,- -, yx be the generators of =,(H) corresponding to fi,* - *,f.
Then by 4.1 of GPC there is an automorphism g of @, such that ¢8(g:) —yi,
1=Fk, $8(9:) =0, 7> k. By 2.1 of GPC it can be assumed that the g, are
such that ¢(g:) =vi, 1=Fk, ¢(g:) =0, 1 < k.

Now apply 2.5 with W, V, M corresponding to

X(XZ)QZQQk):X(XI:QI;fI:' : ')fk))X(Xlz leflr' : ':fk-l)

respectively. This eliminates the critical point of f corresponding to f; and
by induction all the critical points of index two are eliminated.

Applying some of the previous considerations to n—f we eliminate the
critical points of f of index n, n—1.

Now more generally suppose f on X, . has no critical points where
p=n—3. Then since H,(X,.,X,) =0, 2.1 applies to eliminate the
critical points of index p. Thus we obtain by induction a function fon W
with critical points only of index n—2, and which satisfies the conditions
a)-c) above. By 7.5 of GPC, f has no critical points at all. This proves 3. 1.

COROLLARY 3.2. Suppose Wn is compact, n > 5, 0W the disjoiﬁt union
of closed manifolds M., M, with each M;—> W a homotopy equivalence.
Suppose also V C W with

0V — Vl U Vg, V«,, - Zl.[@, V=7V X I and 71'1(M¢— V/,,) =1.
Then i: — W can be extended to a diffeomorphism of My X I onto W.

Proof of 3.2. First < may be extended to T XX I where T is a tubular
neighborhood of ¥V, in M,. Then apply 3.1 to W—7V to get 3.2.



394 S. SMALE.

We now can prove 1.4. First by 3.2 with V empty applied to V of 1.4
yields that V is diffeomorphic to V, X I. Now 3.2 applies to yield 1.4.

Section 4. The following is quit a general theorem and in fact con-
tains 1.1 as a special case with k=n—1.

TaEOREM 4.1. Suppose WD M* where W is a compact connected
manifold and M is a closed manifold. Furthermore suppose

(b) n>5
(e) The inclusion of M into W is a homotopy equivalence. Then W

15 diffeomorphic to a closed cell bundle over M, in particular to a tudbular
neighborhood of M in W.

We need a lemma.

LemMmA 4.2. Suppose B is a compact connected n-dimensional sub-
manifold of a compact connected manifold Vv with 0B N9V —= @, =, (0B)
=m(0V) =1 and Hy (B) = H, (V) induced by inclusion is bijective. Then
Q@ = Cl(V — B) has boundary consisting of 0V, 0B with the inclusions of 0V,
0B into @ homotopy equivalences.

For the proof of 4.2 we use the following version of the Poincaré Duality
Theorem, which follows from the Lefschetz Duality Theorem.

THEOREM 4.3. Suppose W is a compact manifold 0W the disjoint union
of manifolds M, and M, (possibly either or both empty). Then for all i,
HY(W,M,) 1is isomorphic to Hy (W, M,).

To prove 4.2 note H;(Q,0B) = H;(V,B) =0 and Hi(Q,dB) — Hi(V, B)
=0 for all . By 4.3 then H;(Q,0V) =0 for all 7 also. By the Whitehead
theorem we get 4.2.

The proof of 4.1 then goes as follows. We can first suppose that M is
disjoint from the boundary of W. Now let T' be a tubular neighborhood of
M which is also disjoint from §W. Now apply 4.2 and 3.2 to CL(W —T)
with V of 8.2 empty. This yields tht CI(W —T) is diffeomorphic to 87 X I
and hence W is diffeomorphic to 7. We have proved 4. 1.

THEOREM 4.4. Suppose 2n = 3m + 3 and a compact manifold Wn has
the homotopy type of a closed manifold M™, n > 5, with ay (0W) == (M) =1.
Then W s diffeomorphic to a cell-bundle over M.
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Proof. Let f: M— W be a homotopy equivalence. By Haefliger [1],
f is homotopic to an embedding g: M — W. Now 4.1 applies to yield 4. 4.

Section 5. We continue with some consequences of 4.1. The next
theorem is a strong form of the Generalized Poincaré Conjecture for n > 5
and was first proved in [14] except for n="1. This theorem follows from
4.1 by taking M to be a point.

THEOREM 5.1. Suppose C* is a compact contractible manifold with
7 (00) =1 and n > 5. Then C is diffeomorphic to the n-disk D".

For n—5, if one knows in addition that 4C is diffeomorphic to S*, then
using the theorem of Milnor ® =0 and 1.1, one obtains that C is diffeo-
morphic to D5.

The following is a weak unknotting theorem in the differentiable case.
Haefliger [2] has given an imbedding (differentiable) of S§® in S§® which
does not bound an imbedded D*. On the other hand we have:

THEOREM 5.2. Suppose 8% C S* with n—1k > 2. Then the closure of
the complement of a tubular neighborhood T of S* in S* is diffeomorphic to
Sn-k-1 X D1,

The proof of 5.2 is as follows (the case n =15 is essentially contained
in Wu Wen Tsun [19]). It is well-known and easy to prove that if
X=Cl(8*—T), X has the homotopy type of S»**. In fact T is diffeo-
morphic to a cell bundle over S* and the inclusion of the boundary of a fiber
S¢" %t into X induces the equivalence. Furthermore the normal bundle of
S¢" %t in S* is trivial because §,"** bounds a disk in S». Now 4.1 applies
to yield Theorem 5. 2.

‘ One can also prove some recent theorems of M. Hirsch [5], replacing his
combinatorial arguments by application of the above theorems.

TrEOREM 5.3 (Hirsch). If f: M,*— M," is a homotopy equivalence of
stmply connected closed manifolds such that the tangent bundle of M, is
equivalent to the bundle over M, induced from the tangent bundle of M, by
f, then My X D¥ and M, X D* are diffeomorphic for k > n.

One obtains 5.3 by imbedding M; in M, X D¥ approximating the homo-
topy equivalence and applying 4.1. The tangential property of f is used
to conclude that a tubular neighborhood of M, in M, XD* is a product
neighborhood.

THEOREM 5.4 (Hirsch). If the homotopy sphere M» bounds a paralleliz-
able manifold, then M X D? is diffeomorphic to Sm X D3,
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One first proves that M» can be imbedded in §**% with trivial normal
bundle by following Hirch [4] or using “handlebody theory.” Then apply
the argument in 5.2 to obtain the complement of a tubular neighborhood of
M~ is diffeomorphic to 82 )X D™, The closure of the complement of §2 )X D+t
in 8™+ is 8" X D3, thus proving 5. 4.

Section 6. The main goal of this section is the following theorem.

THEOREM 6.1. Let M be a simply connected closed manifold of dimen-
sion greater than five. Then on M there is a non-degenerate C* function with
the minimal number of critical points consistent with the homology structure.

One actually obtains such a function with the additional property that
at a critical point its value is the index.

6.2. We make more explicit the conclusion of 6.1. Suppose for each
0=1=mn, oi,” * ", 0@ Ti," * "»Tigeey 18 a set of generators for a corres-
ponding direct sum decomposition of H;(M), oi; free, i of finite order. Then
one can obtain the function of 6.1 with type numbers satisfying

Mi=p(i) +q()) +q(i—1).
By taking the ¢(¢) minimal, the M; becomes minimal.

In the case there is no torsion in the homology of M, 6.1 becomes.

THEOREM 6.3. Let M be a simply connected closed manifold of dimen-
sion greater than five with no torsion in the homology of M. Then there
18 @ non-degenerate function on M with type numbers equal the betti numbers
of M.

We start the proof of 6.1 with the following lemma.

LemmaA 6.4, Let M» be a simply connected compact manifold, n > 5,
n=2m. Then there is an n-dimensional simply connected compact manifold
X, such that:

a) HJ'(Xm) =0, j> m

b) There is a “nice” function on X, minimal with respect to its
homology structure. In other words there is a O non-degenerate function
on Xy, value at a critical point equal the index, equal to m 4% on 98X,
regular in a neighborhood of 0X,, and the k-th type number 3M; is minimal
i the sense of 6.2.

c) There is an imbedding i: X,,—> M* such that
1(0Xn) N =M =0, 1y Hj(Xm) > Hj(Xp)

18 bijective for j < m and surjective for j—m.
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Proof. The proof goes by induction on m, starting by taking X, to be
an n-disk. Suppose, Xy-1, %: X3-1—> M have been constructed satisfying
a)-c) with 2k =n. For convenience we identify points under 7, so that
Xy1 C M. We now construct Xy, i: Xy — M satisfying a)-c).

By the relative Hurewicz theorem the Hurewicz homomorphism

h: Wk(M,Xk_l) —-)Hk(Jll,Xk_l)
is bijective.

For the structure of Hy(M,X;,) consider the exact sequence

j
0= Hy(M) = Hy(M, X1s) = Hiy (X31) —> Hyy (M) — 0.

Let y1,* + *,vp be a set of generators of H;(M,X; ) corresponding to
a minimal set of generators of Hy (M) together with a minimal set for Ker j.
Represent the elements A*(y,) - + -2 (yp) by imbeddings

it (D%, 0D%) = (CL(M — Xy, 0X 1)

with §;(D¥) transversal to 0X;, along §;(0D*), for example following Wall
[17], proof of Theorem 1.

In the extreme case n=2Fk, the images of §; generically intersect each
other in isolated points. These points can be removed by pushing them along
arcs past the boundaries. Still following [17], the §; can be extended to
tubular neighborhoods,

gi: (D% 0D*) X Do — (CU(M — Xj1),0X50).

Then we take Xj to be x(Xy-1;9"1," * *,9ps k) where ¢’s: 0D* X D»*
—> 0Dy, is the restriction of g;. It is not difficult to check that X; has the
desired properties a)-c). This proves 6.4.

To prove 6.1, let M" be as in 6.1 with n=2m or 2m + 1. Let X,, C M
as in 6.4, f the nice function on X,, and K = Cl(M — X,,). Then H,;(M,X)
=0, 1 =m, so by duality H/(K) =0, j=n-—m. By the Universal Coeffi-
cient Theorem this implies that H, 1 (K) is torsion free. Let Yy iy C K
be again given by 6.4 with ¢ the nice function on Y, 4. By 4.2 and 3.2
we can in fact assume that K and _Y nm-1 are the same, so M = X,, U ¥, 1.
Let fo be the function which is f on X,, and n—g on Y, y. By smoothing
fo along X, we obtain a (' function f. It is not difficult using the Uni-
versal Coefficient Theorem and Poincaré Duality to show that f may be taken
as the desired function of 6. 1.

The previous results of this section may be extended to manifolds with
boundary.
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By the previous methods one may prove the following generalization of
6.1. We leave the details to the reader.

THuEOREM 6.5. Suppose Wr is a simply connected manifold with simply-
connected boundary, n > 5. Then there is a mice function f on W (non-
degenerate, value n -4 on W, regular in a neighborhood of 0W, value at a
critical point is the index) with type numbers minimal with respect to the
homology structure of (W,0W).

Section 7. The goal of this section is to prove the following.

TeeoREM 7.1. Let f: Wyr— Wy be a homotopy equivalence between
two manifolds such that the tangent bundle Ty of W, is equivalent to fT,.
Suppose also n>5, n=2m-+1, H(W,) =0, i >m, = (W,) == (0W,)
= (0W,) =1. Then W, and W, are diffeomorphic by a diffeomorphism
homotopic to f.

Let ¢ be a nice function on W, with no critical points of index greater
than m, whose existence is implied by 6.5. Thei we let X; —g¢*[0,k -} %],
k=0,1,- - -, m with X,,=W,;. By 3.2 and 4.2 is is sufficient to imbed X,
in W, by a map homotopic to f.

Suppose inductively we have defined a map fr4: Xz — W, homotopic to
f with the property fi. is an imbedding, k= m. ILet X; be written in
the form y(Xy-1561," * *,9p3 k) Where g;: 0D* X D**— X, .. Using the
Whitney imbedding theory we can find f44: Xz — W, homotopic to [y,
which is an imbedding on X;, and on the images ¢g;(D* X 0) in X as well.
It remains to make f%_; an imbedding on a tubular neighborhood of each of
the g;(D* X 0), or equivalently on each of the g;(D¥ X D %),

This can be done for a given ¢ if and only if an element y; in
-1 (0(n—1%)) defined by f%». in a neighborhood of ¢;(0D* X 0) is zero.
But the original tangential assumptions on f insure y;=0 in this dimension
range. The arguments in proving these statements are so close to the argu-
ments in Hirsch [3] Section 5, that we omit them. This finishes the proof
of 7.1.

Section 8. We note here the following theorem.

TuarorEM 8.1. Let M*™* be a closed simply connected manifold, m > 2,
with Hy (M) torsion free. Then there is a compact manifold W2+ uniquely
determined by M and a diffeomorphism h: 0W — 0W such that M is union
of two copies of W with points identified under h.
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Proof. Let W™ C M be the manifold given by 6.4. Let W,2m
CM—W be also given by 6.4. Then it is not difficult using homotopy
theory to show that W,, W, satisfy the hypotheses of 7.1. Also by previous
arguments W, is diffeomorphic to CI(M — W,). The uniqueness of W, =W,
is also given by 7.1. Putting these facts together we get 8.1.

Remark. 1 don’t believe the condition on H,, (M) is really necessary here.
Also in a different spirit, 8.1 is true for the cases m =1, m = 2.
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