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1. Introduction

We work in the DIFF category. A knot K = (Sn+2, Sn) is a ribbon knot if Sn bounds
an immersed disc Dn+1 -> Sn+Z with no triple points and such that the components of
the singular set are n-discs whose boundary (n — l)-spheres either lie on Sn or are
disjoint from Sn. Pushing Dn+1 into Dn+3 produces a ribbon disc pair D = (Dn+3, Dn+1),
with the ribbon knot (Sn+2,Sn) on its boundary. The double of a ribbon {n + l)-disc
pair is an (n + l)-ribbon knot. Every (n+ l)-ribbon knot is obtained in this manner.

The exterior of a knot (disc pair) is the closure of the complement of a tubular
neighbourhood of Sn in Sn+2 (of Dn+1 in Dn+3). By the usual abuse of language, we will
call the homotopy type invariants of the exterior the homotopy type invariants of the
knot (disc pair). We study the question of how well the fundamental group of the
exterior of a ribbon knot (disc pair) determines the knot (disc pair).

L.R.Hitt and D.W.Sumners[14], [15] construct arbitrarily many examples of
distinct disc pairs {Dn+Z, Dn) with the same exterior for n ^ 5, and three examples for
n — 4. S.P.Plotnick[24] gives infinitely many examples for n S* 3. For n = 3, his
proof requires Freedman's solution of the four-dimensional Poincare" conjecture, so he
only gets results in TOP. We prove:

THEOREM 1-1. There exist infinitely many distinct ribbon disc pairs (Dn+Z, Dn), n ^ 3,
with the same exterior.

A nice feature of these disc knots is that nx is the trefoil knot group. The difference
comes from the fact that their meridians are not equivalent under any automorphism
Of 7TV

In [9], C. McA. Gordon gives three examples of knots in 8i with isomorphic TT± but
different n2 (viewed as Z7r1-modules). Plotnick[23] generalizes this to arbitrarily many
knots. In [24], he produces infinitely many examples in the TOP category. Analysing
the boundaries of the discs provided by Theorem 1-1 for n = 3, we prove:

THEOREM 1-2. There exist infinitely many ribbon knots in Si with fundamental group
the trefoil knot group, but with non-isomorphic n2 {as ZTI\-modules).

The exteriors of these knots are fibred over S1, with the same fibre

as that of the spun trefoil, but with monodromy suitably modified. As n2 of the fibre
is not generated by the boundary 2-sphere, we are unable to use the techniques in [9],
[24] to distinguish among Z77X-module structures on n2. Accordingly, we give a presenta-
tion of TT2 coming from a surgery description of the knots, and reduce the problem to a
question about 2 x 2 matrices.

This paper is organized as follows. In § 2 we discuss several definitions of ribbon



482 ALEXANDER I. Suciu
discs and knots. § 3 gives a method for computing n2 of a ribbon 2-knot. In § 4 we con-
struct our examples and prove Theorem 1-1. §5 contains the proof of Theorem 1-2.
Finally, in § 6, we derive a few consequences and make some comments.

Notation. All i2-modules are left-modules. An element ueR induces the i?-module
map u: R ->• R via right multiplication. Vectors in Rn are row vectors and matrices
with entries in R act on the right.

2. Ribbon discs and knots

Ribbon w-knots were first defined by Fox [7], for n = 1, and Yajima [28], for n = 2.
A ribbon knot (Sn+2, Sn), n ^ 2, is the double of a ribbon disc pair (Dn+2, Dn). I t is
determined by its equatorial cross section S71'1 = 8Dn, which consists of disjoint
spheres SQ'1, ...,8m~l (with meridians xt), joined together by m bands running
from SQ'1 to Si*1 (1 < i ^ m). Fig. 1 shows the 'motion picture' of a ribbon disc
pair.

(c
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Fig. 1

The fundamental group of the ribbon knot can be computed from the motion
picture (see [7], [29]):

ni(8
n+2-Sn) = n1(D

n+2-Dn)

= (xo,xv...,zm\xo = wixiwjx, 1 *S i < m),

where wt is the word in xo,...,xm that records the way the ith band links the SJ~V8
homotopically. We call such a presentation of ixx a ' ribbon presentation'. For example,
the ribbon 2-knot with cross section the stevedore knot (Fig. 1) has

•nx = (t,a\t = (at-1)a(at~1)-1) = (^xtyxt-1 = x2)

(compare ([7], p. 136)). The spun trefoil, with equatorial section the square knot
(Fig. 2), h a s ^ = (t,x\t = (xt)x(xt)-1) = (t,x\txt = xtx).

Here is another construction of ribbon discs and knots, first described in [16], Start
with (Dn+3, Dn+1), the standard disc pair, with meridian t. Add l-handlesAJ (1 < i < m)
to Bn+3, with core circles xit and 2-handles h\ along curves r{ in 8(Dn+s u {h\}) — 8Dn+1,
with rt isotopic in 8(Bn+s U {h\}) to a circle which intersects the cocore of h\ in a single
point and is disjoint from the cocore of h), j =# i.

By the handle cancelling theorem, Dn+3 u {h\} U {h2} — Dn+3 and we get a new disc
pair (Dn+3,Dn+1), with n1(D

n+3-Dn+1) = {t,xv...,xm\r1,...,rm). The procedure is
illustrated in Fig. 3.

THEOREM 2-1 ([4], [13]). A disc pair is ribbon ifand only ifit can be obtained from the
standard disc pair by adding 1- and 2-handles in the above manner.
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Fig. 3

<3
Fig. 2

Fig. 4

In practice, one passes from the above presentation of n1 to a ribbon presentation
through Andrews-Curtis moves [1], and then draws the ribbon knot prescribed by this
presentation. An example of the procedure is given in § 4. The exterior of the ribbon
knot (Sn+2,8n) = 8(Dn+3, Dn+1) is obtained from S1 x Z)Jl+1 # ( # J1 S1 x Sn+1) by per-
forming surgery on the curves rx. For example, the ribbon 2-knot with cross section
the stevedore knot is the boundary of the disc pair in Fig. 3, and can be constructed by
surgery on r = txt~lx~2 in S1 x D3 # S1 x 83 (Fig. 4).

3. 7r2 of a ribbon 2-knot

This section gives a method for calculating n2 of a ribbon 2-knot as a Z7T1-module.
This method, briefly sketched in [25], yields explicit results for one-relator ribbon
knots and spun knots. Let X be the exterior of a one-relator ribbon knot. It is obtained
by surgery on a simple closed curve r in S1 x D3 # S1 x 83, where n^S1 x D3) = Z{t),
n^S1 x S3) = Z(x), and r(t, x) has exponent sum + 1 in x. We write n = nxX = (t, x\r).
As the exponent sum of x is + 1, the relation r is not a proper power. Hence, by
Lyndon's theorem [21], n is torsion-free. In case x has finite order, n = Z(<) and Milnor
duality in the universal cover shows the knot to be homotopically trivial (see, for
instance, [4]).

Assume x has infinite order in n. Let M be the cover of S1 x f l ' f f i ' x S 3 corresponding
to the kernel ofZ*Z-»(7r = Z* Z/(r)). If we perform equi variant surgery on the lifts
of r in M, we get X, the universal cover of X. M consists of copies of U x D3, indexed by
the cosets n/Z(t), and copies of IR x S3, indexed by the cosets n/Z(x), tubed together by
'connectors' #3 x / , indexed by n. Fig. 5 depicts the cover, together with three lifts of
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the surgery curve r = txt-xx~2. The lifts of the 'fibre' S3, gS3 = 8%, are indexed by n.
The lifts of r are indexed by their basepoints gen.

Let M = M0 U (II
USlxS' it

0 u (UZ)2x>Sz).
ILS1xS1 w
77

The Mayer-Vietoris sequences corresponding to these decompositions yield

S2) -> H3{M0) -*• H3(M) -*- 0 #,(£» x

H2(M) -+ 0 -^ fli(JH,) ^ J3i(Jf) -> 0

0 -* © H3(8
l x S2) -> H3{M0) -*• H3(M) -*- 0 #,(£» x S2)

and

0 -> © tfafS1 x £2) -> H3(M0) -> H3(X) -> © H^S1 x 52)

-^ ©^2(i)2 x S2) ® H2{M0) -> H2(l) -> © Hx(m x S2) - t J5TX(Ĵ ,) -> 0.

Notice that H2(M) = 0 and H3(M) = In, generated by the lifts of S3. These sequences
simplify to give ,T , ̂ v , , #

^ J 8 fl(^) = ker(Z7r>Z7r) (1)
0 -> coker ^ -> ^ 2 ( X ) -> ker ^ -̂ - 0. (2)

L e t Xr = e° u e^ U 4 U e? be t h e 2-complex associated t o t h e p resen ta t ion n = (t,x\r).
T h e reduced cha in complex of i ts universal cover is (see ([5], p p . 45-46))

ZTT =• Z7T © ZTT > In -> Z -> 0, (3)

w h e r e d2 is *
n e m a t r i x of F o x derivat ives . B y Lyndon ' s theorem [21], Xr is aspherical ,

t h a t is , d£T = (dr/dt dr/dx) is a monomorphism.
T o compu te </>, no t e first t h a t t h e ' f ibre ' S3 is a dua l cycle to x. Hence , t h e algebraic

s u m of t h e lifts of S3 c u t b y t h e lift of r a t 1 equals (8r/8x).S3. Therefore $£(£?), which
is t h e algebraic s u m of t h e lifts of r which intersect S3, equals dr/dx, where

g =

That is to say, <f> = dr/dx: TLn -> In. For example, if r = txt^x'2, 0(1) = t^-x*1— 1,
which can be seen directly in Fig. 5.

9 - 1

LEMMA 3-1. Let geGbe an element of infinite order in a group 0. Then IG -> TLG is a
monomorphism.

Proof. Suppose (Znhh).(g- 1) = 0. Then nhg-i-nh = 0, and so
nh =

an infinite sequence of equalities. Hence, nh = 0. |
The exact sequence (3) gives dr/dt. (t - 1) + dr/dx. (x - 1) = 0. From the lemma and

the injectivity of (dr/dt dr/dx) we deduce that dr/dx is injective. Hence, ^ is a mono-
morphism, and H3(X) = 0 (that is to say, the knot is quasi-aspherical [20]).

Lyndon's theorem also shows that the relation module H^M^) is freely generated by
the lifts of r, so that ijr: In -*• In is an isomorphism. Hence ker \jr = 0, and (1) and (2)
combine to give the exact sequence

Or/dx

0 > In > In > n,X > 0.



Ribbon knots with the same fundamental group 485

PROPOSITION Z-2.0nerelatorribbon2-knotsarequasi-aspherical,with7r2 = Zn/(8r/8x),
where nl = (<,x|r). |

For example, the knot in Fig. 4, with n1 = (t, xltxt*1 = x2), has

whereas the spun trefoil (Fig. 2), with TTX = (t, x\txt = xtx), has

These calculations check the ones in ([20], appendix B).
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4. Meridians and ribbon discs

In this section we produce the examples for Theorem 1-2. The (n — 2)-spun trefoil,
n ^ 3, is a fibred knot with fibre (S1 x S"-1 # S1 x S"-1) - Dn (see [3]). If u and v
generate n1 of the fibre, the monodromy a is given by <r{u) = v, <r(y) = u~h). This knot
bounds a fibred ribbon disc pair Do = (Z>"+2, Dn), with fibre Vn+1 = S1xDn I) S1xDn

and monodromy cr. The exterior V $ 81 has meridian t and nx the trefoil knot group
(t, u, vltut-1 = v, tvt~x = u~xv).

We now construct other disc pairs Dk, with the same exterior, but different
meridians. Add a 2-handle A2 to F£ S1 along a simple closed curve representing
tk = ukt, with either framing. Since tk is homologous to t in V£ S1, the Mayer-Vietoris
sequence shows that the resulting manifold <&n+2 is acyclic. Its fundamental group is
Andrews-Curtis equivalent to the trivial group:

= (t,U, V^M-1 = V, M-1 = U~h), Ukt= 1)

= («, «|tt~*Ma* = v,u~kvuk = u~*v)

= (v\v~kvvk = v~xv)

= (v\v = 1).

By a standard argument [1], Q)n^ is diffeomorphic to D"+2.
Then (Z)n+2, cocore of 2-handle) is a knotted disc pair Dk = (Dn+2, Dn) with exterior

V % S1, and meridian tk. The fundamental group is
^ I = "liVS S1) = (t,u,v^ut-1 = v, tvt-1 = u^v),

which is Andrews-Curtis equivalent to:

(t, u, v, tk\tut-x - v, tvt-1 = u-xv, tk = ukt)

= {tk,u,v\u-ktkutkiuk = v^-H^t^u11 = u^v)
1* = u-1u-ktkutk

1uk)

= (h>'li'\tklutku~ktkutic1uk~1 = !)•

Hence V £ S1 has a handle decomposition A0 u h\k u AJ U A2, with A2, attached along a
simple closed curve representing r = r(tk,u) = tk

1utkurktkutk
1uk-1 with the property

r(l ,«) = M. Now

Dn+2 =VxSiuh2 = (h°[)hl
tk U A2) U K U A? = Z>?+2 U Ai U A2,

with Z)re = cocore A2 = standard ra-disc in DJ+2 = A0 U h\k U A2 and r isotopic to u in
Z)Q+2 U Aj. By Theorem 2-1, Z>fc is a ribbon disc pair.

The pairs Do and Dx are equivalent, since the conjugation m a p / v V ~> V extends to
a diffeomorphism of F * S1 taking t to tv The boundary of Do = (D5, D3) is the spun
trefoil (Fig. 2). In order to picture the other disc pairs, we give here a ribbon presen-
tation of 77̂ .

77-j = (tk,u\tk
1utku-ktku

ku-k+1tk
1uk~1 = 1)

= (tk,u,c,d\tk1utkcd-1 = l,c = u~\uk,d = vrk+1tku
k-1)

= (tk,c,d\d = tk(dc-1)-k+1.tk.(dc-1)k-1tk
1,c = ^cd-H^.d.^dc-Hj;1).

Fig. 6 depicts the boundary of D2 = (D5, D3) - a ribbon knot in S* with its equatorial
cross-section drawn.
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Fig. 6

The ribbon disc pairs Dk = (Dn+2,Dn),k ^ 1, have the same exterior V^S1. To
prove Theorem 1-1, we have to show that they are all distinct. A diffeomorjmism of
pairs Dk ->• Z>, restricts to a diffeomorphism of V % 8X preserving meridians, thus taking
tk to t^1. I t induces an automorphism of nx = nt(V^ S1) taking tk to tf1. Rewriting n1

as: TT1 = {t,u,v|tut~x = v,

= (t,x\txt = xtx)

— u~xv)

(a,b\a? = b3),

gives tk = «*< = (a-16o6~1)*6-1a. I t is well known tha t 7r/Z(7r) ̂  PSL(2,1), under the

isomorphism ai->.4 = ( I, & i—>• J5 = I 1. The centre being characteristic,

we are left with proving:

LEMMA 4-1. Let Tk = (A-1BAB-1)kB-1AeP8L(2,2). There is no automorphism of
PSL{2,1) taking Tk to Tf1 for k,l> l,k*l.

Proof. We compute

-i = (

where o_3 = — 1, a_2 = I, o_x = 0, a0 = 1, ofc = ak_t + ak_2 are the Fibonacci numbers.
Therefore

*•- ( a2" I2""2) and teW)-flu-««w-a%M.
\~°2A:-1 —a2k-3/

An automorphism of PSL(2,I) has the form A-^HAH~\ B -»HB±1H~1

(0. Schreier ([26], Hilfssatz 3)). As ̂ 4 -> J , B-+B~x is given by conjugation by r z\,

we are done. |
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5. Ribbon knots with different n2

In the previous section we produced ribbon disc pairs Dk = (D5, D3). The boundary
of Dk is a ribbon knot Kk = (S*, S2). We show in this section that the knots Kk provide
the examples for Theorem 1-2. The exterior Xk is obtained from

by deleting a neighbourhood of the curve tk = ukt. Actually, Xk is fibred over S1, with
fibre S1 x S2 # S1 x S2 — D3 and monodromy ak = (i^cr. As explained in [24], we
'untwist ' the deleted curve, thereby 'twisting' the monodromy. The fundamental
group is

TTX = nlXk = (u,v,t^t^th1 = ukvu~k, tkvtk* = w*-1^-*)

where rk = utku-ktkutk
1uk-1tk

1. We saw that

nlXk~n = {f,u,v\tvirx = v, tvt'1 = u^v),

the trefoil knot group.
Proposition 3-2 gives the following presentation for n2Xk, k > 1:

to*
0 -> 277 -+ In -> n2Xk -> 0,

where

= ^ = l-utk(u-1

= u[uk - (1 + . . . + tt*-1) t-1 + u-H~2 + (1 +. . . + uk~2) t-hi\ M-*-1.

(It is understood that 1 + ... + uk~2 = « + ... + uk~l = 0 when k = 1.)
Remark. Given a knot group n, the abelianization map y: n ->Z induces a ring

homomorphism y.Zn-^lZ, which takes the Jacobian matrix of Fox derivatives to the
Alexander matrix. In our situation, y(wk) = l — t~l + t~2, the Alexander polynomial
of the trefoil knot. By Levine duality [18], the knots Kk have the same Alexander
invariants. We thus have to look at non-abelian invariants in order to distinguish
among our knots.

We have the following result, which proves Theorem 1-2:

LEMMA 5-1. Let a:n1Xk->n1Xl be an isomorphism, k, I £t l,k=t=l. There is no
a-isomorphism ft: n2Xk -» 7T2Xt.

Proof. An automorphism of n = (a,b\a2 = b3) has the form a -> hath*1, b -> hb'hr1,
where e = + 1 and hen [26]. Therefore, any automorphism inducing the identity on
TT/TT' = Z is an inner automorphism.

LEMMA 5-2. There is a diffeomorphism F: Xk -*• Xk inducing —I on Hy{Xk; Z) = Z.

Proof. We define fe Aut (Z * Z) via
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We check t h a t / = crkfcrk:

crkfcrk(u) = crkf{ukvu-k) = crk({vu-1)kuvu-\uv-1)k)

= a-k((vu-1)k-1v(uv-1)k-1) = u-k+1uk-1vu-kuk-1 = vu-1

<rkf<rk(v) = (Tkf(u
k-1vu-k) = (rk((vu-1)k-1uvu-1(uv-1)k)

= crk((vu~1)k~2v(uv~1)k-1) — u~k+2uk~1vu~kuk~1 = uvu-1.

/ can be realized by a diffeomorphism of 8l x D3 l| S1 x D3 by handle slides and inver-
sions (see ([17], lemma 2)). Up to conjugation, <rk consists of handle slides and inver-
sions also; hence/ = <rkfcrk geometrically. Restrict/to the boundary S1 x S2 # S1 x S2.
We can assume that / fixes a ball D3 and that the relation still holds. The required
diffeomorphism is F(x, t) - (f(x), 1-t). |

Replacing the given isomorphism by a o F+ if need be, we may assume that a induces
+ 1 on Z. Then a = /ih, conjugation by an element hen.

We have the central extension

1 -> I * n > 8L(2,1) -> 1.
II II II

(a4) (a,6|a2 = 63) (a,b\a2 = b3, a4 = 1)
The automorphism a = /ih of n induces fih e Aut (SL (2, Z)), which extends to an auto-
morphism of 1(SL(2, Z)). Define the ring homomorphism 0:1(8L(2,1)) -+ JK{2,T) by
adding up the matrices in the formal sum. Then /ih e Aut (l(8L(2, Z))) extends via $ to

We now turn to studying isomorphisms of n2. Given an a-isomorphism

with inverse the a~1-isomorphism ft'1, they lift to

O^-Zir »- Zr »- Zir/(wk) -> 0

w.

where c, d, c', d' e In. From the commutativity of the diagram, we find

a(wk). c = c' .wu

a~1(wl) .d = d'. wk,

ct(d).c = y.wl+l,

pr\c).d = z.wk+l,

for some y,zeln. Projecting these equations to 1(SL(2,1)), and then mapping them
to JK{2,1) via O, we find

h-W,h.D = D'.Wk,

hDh~1.C= Y.W, + I,
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These equations provide the commutative diagram

\hD'

showing that

Now recall that the projection it-> SL(2,Z) takes t = b~xa to T7 = I I and
1)* to

JJk _
a2ft- l a2&-2

Hence

\2-2a2fc_2 -
which gives

det Wk = 2[a2fc_1(«2fc_4 - 1) +1 - a2fc

= 2(«lfc-2 ~ 2O2fc-2 + * - «2fc-l«2fc-3)

= 4(l-a2fc_2),
where we used

l) ak-l = ak(ak ~ ak~l) ~ ak-\

+ 1, if k is even
v k-i k k-2/

This contradicts (*), thus proving Lemma 5-1. |

6. Comments

We now derive some consequences of the computations done in the previous
sections. The exterior of a ribbon disc is homotopy equivalent to the 2-complex
associated to the presentation of its fundamental group. Hence, by Lyndon's theorem,

COROLLARY 6-1 ([12], p. 169). One-relator ribbon disc exteriors are aspherical. \

COROLLARY 6-2. Let Xx and Xz be the exteriors of one relator ribbon 2-knots. If
n1X1 ^ n1Xz and n2X1 s ^2-^2 (oa Zn^modules), then Xx ~ X2.



Ribbon knots with the same fundamental group 491
Proof. As vx has a 2-dimensional K(n1, 1), H3(n1,n2) = 0 and the first ^-invariant

vanishes. Since Xt are quasi-aspherical, a theorem of Lomonaco [20] implies Xt ~ X2. \

It is claimed in [4] that the conclusion of Corollary 6-1 is valid for arbitrary ribbon
discs. The proof rests on a proposition erroneously attributed to Lomonaco, which
amounts to showing ker \jr = 0, for an arbitrary ribbon 2-knot. The asphericity of
ribbon discs is implied by the Whitehead Conjecture (see ([12], Conjecture 6-5)).

Given a knot K = (<S3, &1), the n-spin of K, n ^ 1, is the (n + l)-knot

where K = K — standard (D3, D1). For n = 1, we get the usual spin of K, Let X be the
exterior of K, and n = (t,xx, ...,xm\rv •••,rm) be a Wirtinger presentation of nj^X. The
spin of K is a ribbon 2-knot with exterior X1 obtained from i S ' x D ' t (#^S1 x S3) by
surgery on the curves ri. With notation as before, we compute

,): (Zn)m->(ln)m.

X is an aspherical 2-complex [22], with d^ = (dri/dt dr^dx^). As in the proof of
Proposition 3-2, ^ is a monomorphism. Thus H^Xj) = 0, as a result of Gordon ([9],
theorem 4-1). I t also follows that the map (drJdXj): H1(M0)^(ln)m ([5], pp. 43-46), is
a Z7r-isomorphism. Therefore ^ is an isomorphism. We have proved:

PROPOSITION 6-3. Spun 2-knots are quasi-aspherical, vnthn2 = (Zn)m/(8ri/dxi), where
n1 = (t,x1,...,xm\r1,...,rm). |

This complements Andrews' and Lomonaco's computation n2 = (Zn)m/(8ri/8xi)
t

[2], [19].
The asphericity of classical knots [22] implies that w-spun knots with isomorphic n1

have homotopy equivalent exteriors. It seems reasonable to conjecture that they are
actually equivalent. This is supported by

PROPOSITION 6-4. Let K1 and K2 be knots in S3 with nrX1 ^ ^X^ Assume Kt are not
(p,q)-cables, \p\ ^ 2, of a non-trivial knot. Then o~n(Kx) = crn(K2).

Proof. Results of Johannson, Feustel, Whitten, Burde and Zieschang (see [11], pp.
9-10), imply that either (i) Kt are prime knots, with Xt = X2 or (ii) Ki are composite
knots, with the prime factors equal, up to orientations. In case (i), crn{X^) = o~n(X2),
and by Gluck[8],forn = 1 andCappell[6],for?i > 1, crn(Kj) = an(K2). In case (ii), the
argument in Gordon [10] yields the equivalence of aJ^K^. \

Combining this with Theorem 1-2, we get

COROLLARY 6-5. There are infinitely many distinct knots in S* which are not spun but
have the fundamental group of the spun trefoil. \

This paper is part of the author's thesis, written at Columbia University. I wish to
thank my advisor Steven Plotnick for his constant guidance and encouragement.
I also wish to thank S. Cappell and J. Moody for helpful discussions, and the referee for
pointing out reference [26].
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