
24O 

Invertible Knot Cobordisms* 

D. W. SUMNERS 

I. Introduction 

In [1], R. H. Fox studies embeddings of S z in S 4 by means of 3-dimensional 
hyperplanes slicing the embedded S z in 1-complexes. The connected manifold cross- 
sections are slice knots; the non-connected manifold cross-sections are (weakly) slice 
links. Fox poses the following question [2, # 39] : Which slice knots and weakly slice 
links can appear as cross-sections of the unknotted S z in $4? Many examples of this 
phenomenon are known [3, 4, 14, 16, 19], and Hosokawa [3] has given sufficient geo- 
metric conditions on the cross-sectional sequence of the S z in S 4 for the S 2 to unknot. 

This paper considers Fox's question in the setting of higher-dimensional knot 
theory, but from a different viewpoint - that of inverting a knot cobordism. A slice 
knot is one which is cobordant to the unknot. If  the slice knot bounds a cobordism 
(to the unknot) which is invertible from the knotted end, then the slice knot is said 
to be doubly-null-cobordant [19]. The doubly-null-cobordant knots are precisely the 
cross-sections of the unknot. We supply in this paper detailed proofs of the results 
announced in [18]. Using techniques of Levine [8], we develop necessary algebraic 
conditions for an odd-dimensional knot to be doubly-null-cobordant. These con- 
ditions are shown to be sufficient in a restricted case. We show that the Stevedore's 
Knot  (61) is not doubly-null-cobordant, and that in fact 946 is the only knot in Reide- 
meister's table of prime knots 1-10] which is doubly-null-cobordant. 

We then turn to the problem of geometric realization of doubly-null-cobordant 
knots. We show that all allowable systems of invariants can be geometrically realized. 

A development of similar results for higher-dimensional codimension two links 
will be dealt with in a future paper. 

H. Necessary Conditions for Invertibility 

An n-knot Kis a smooth pair (S "+2, k) where k is a smooth oriented submanifold 
homeomorphic to S". Two n-knots KI, K2 are cobordant if there exists a proper smooth 
oriented submanifold w of  S "+2 x/ ,  with Ow=(kl x 0 w ( - k 2 ) x  1) and w homeo- 
morphic to S " x L  Let (W;Ka ,  K2) denote (S "+2 x / ,  w) the cobordism between 
K~ and K2. If  U= (S "+2, S") denotes the standard (unknotted) sphere pair, then an 
n-knot K is said to be null-cobordant if it is cobordant to U. 
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Following [13], we identify two cobordisms if there is an orientation preserving 
diffeomorphism (of pairs) between them. If  (W; K1, Kz) and (W';  K2, K3) are two 
cobordisms with a common boundary component (oriented oppositely) we can then 
paste W' to W along K 2 to get ( W u  W'; K l, K3). 

DEFINITION.  A cobordism (W; K~, K2) is said to be invertible K 2 if there is a 
cobordism (W';  K2, K~) such that (W u W'; K~, K~) = (KI • I, K~, K~) the product 
cobordism of pairs. 

Given the above situation, we say that K s bounds an invertible cobordism and Kz 
splits K 1 • L 

PROPOSITION 2.1. (W; Ks, K2) invertible from both ends then (S "+ z x I - w )  is 
an h-cobordism from S " + z - k  s to S "+2-k2.  

Proof. Just as in [7], we have (S" + 2 x I -  w) - (S" +2 _ k2) ~ (S" + 2 _ k l) x [0, 1), 
(S "+2 x I - w ) - ( S " + 2 - k l ) ~ ( S " + 2 - k 2 )  x (0, 1] from which the lemma immediately 
follows. 

Because of Proposition 2.1, we will restrict consideration to cobordisms invertible 
from one end only. Noninvertible cobordisms abound in knot theory, and we are led 
to the following: 

Question. Do there exist invertible knot cobordisms (other than product co- 
bordisms)? The answer is provided by 

THEOREM 2.2. Every n-knot K bounds infinitely many distinct invertible co- 
bordisms. 

Proof. As will be shown in w it is possible to split U •  by infinitely many 
distinct knots. I f  (B "+2, B") denotes the unknotted ball pair, then each splitting of 
U • I induces a splitting of (B "+2, B") • I which is the trivial product splitting on the 
boundary pair. Given K • L pick a point x~k  c S" + 2. The point x has an unknotted 
ball pair neighborhood x~ (B~ "+ 2, B~)= (S" +2, k). If K'  splits U • then we have an 
induced splitting of (B~ "+2, B~)x/ ,  and this allows us to split K x I  by K # K ' ,  where 
# denotes the usual connected sum operation on knots. 

Note. If  (M "+2, N") denotes a smooth codimension two manifold pair, then 
the above techniques can be used to obtain infinitely many distinct splittings of 
( m  "+z, N") • 

Question. Which knots split U • I? 

DEFINITION. An n-knot K is doubly-null-cobordant if it splits U x L (These 
knots are sometimes called cross-sections of  the unknot [1, 4].) 

In order to obtain a necessary condition on the invariants of a knot in order for it 
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to split U x / ,  we recall Levine's formulation [8, 9] of the Seifert matrix of a knot: 

Let K = (S 2q+ l, k) be a (2q - 1)-knot. 

Then k bounds an orientable manifold V 2q, called a Seifert manifold for k. We define 
a pairing 

O:H+(V)| ~| i,(fl)) 

where L denotes homological linking number in S 2q + 1 and i,  (fl) denotes the translate 
of the cycle fl off V in the positive normal direction. A basis for the free part of 
H a (V) determines a matrix M representing 0. M is called a Seifert matrix for k, 
associated with the manifold V. 

DEFINITION. A square matrix M (over Z )  is said to be null-cobordant if it is 

congruent to \N21N3/] where Ni are square and of  the same size. M is said to be 

doubly-null-cobordant if it is congruent to \~21--0- ] where Ni are square and of the 
same size. 

Levine [8] proves the following: 

THEOREM (Levine). K=(S 2q+l, k) q~> 1 null-cobordant then K has a null-co- 
bordant Seifert matrix. The implication is reversible for q >1 2. 

A similar relationship can be obtained between doubly-null-cobordant knots and 
matrices. 

THEOREM 2.3. K=(S 2q+l, k ) q ~ l  doubly-null-cobordant then K has a doubly- 
null-cobordant Seifert matrix. 

Proof. We have cobordisms (W; U,K)and (W' ;K,  U) such that (Wu  W'; U,U) 
= ( U x I ;  U, U). We convert the trivial cobordisrn ( U x I ;  U, U) to the unknotted 
sphere pair (S 2q+2, S 2q) by adding two copies of the unknotted ball pair (B 2~+2, B2q), 
one to each end of  the cobordism. Now S 2q is unknotted hence bounds a disc D 2q+1 
in S 2a+2. By relative transversality arguments [11] we can assume that D 2~+1 hits the 
hypersphere S 2a+1 defining K transversely; that is D2a+ac~S2q+l= V 2q and OV=k. 
V is a Seifert manifold (not necessarily connected) for k. S z~+~ splits D 2~+1 along V 
into two parts, W1 and I412, W1 lying on one side o f S  2a+1 in S 2q+2, W2 on the other. 

We will show that the Seifert matrix associated with V is doubly-null-cobordant. 
It suffices to find a free basis ~1,..., ~,, ill,..., fl, for the free part ofHq (V; Z) such that 
0(~i, ~j)=0=0(fl~,/~j) 1 <~i,j<~r. Consider now the Mayer-Vietoris sequence for the 
triad (D 2a+1, W1, W2): 

i i*I~(--  i2.) 
H+Cv) _ , n + C w , ) e  n+Cw2)-+o 
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where i 1, and i 2 ,  a r e  inclusion homomorphisms. We have that Hq(V)=Keril,G 
Keri2,. Levine [8, Lemma 2] proves that rank (Keria,)=�89 
(Keri2,), so let el, . . . ,  c~ r freely generate the free part of Keri~,, and/31 .... , fl, freely 
generate the free part of Keri2,. Now cq, ctjeKeril, so el, i , (ej)  bound disjoint 
chains in B 2q+2, hence 0 (c% e j )=0.  This completes the proof of Theorem 2.3. 

Let M be a Seifert matrix for K =  (S 2q+ i, k), and R denote the infinite cyclic cover 
of S 2~+~-k. Let J(t) be the infinite cyclic group of covering translations of R, and 
A denote the integral group ring of J(t). Let F=A| Q, the rational group ring of 
J(t). F is a principal ideal domain, and A is a Noetherian domain. H~(R, Z )  is a 
finitely presented A-module [9] for all i ; likewise for Hi (R; Q) as a F-module. In fact 
[tM+ (-1) q M ' ]  presents Hq (/~; Q) as a F-module, where M'  denotes the transpose 
of M. (See [9].) If K is a simple knot (=~(S2q+~-k)~-zh(S*)i<~q-1) then [tM+ 
+ ( - 1 ) ~ M  '] presents Hq(K; Z) as a A-module. It also turns out [12] that [ M +  
+ ( -  1)q+*M '] presents Hq (K2; Z)  as an abelian group, where K z denotes the 2-fold 
branched cyclic covering of the knot K. 

We have the following corollary to Theorem 2.3: 

CORROLLARY 2.4. If a (2q-1)  knot K (q~>l) is doubly-null-cobordant, then 
Hq(R; Q) is presented as a F-module by a diagonal matrix of the form diag(0] (t), ... 
.... Oqm(t), O~ (t-X),..., O~(t-1)) where OqsA, 0q+a[0 q in A, and 0~(1)= _+1 for all i. 

Proof. If  A and B are matrices over a ring R, we say that A ,~B iff A and B present 
isomorphic R-modules. Now we have by Theorem 2.3 a doubly-null-cobordant Seifert 

matrix M =  \N21 0 ]" Hence 

( 0 tNI+(-1) 'N~) :_;_0_ L(t)~ 
[ tM+(-1) 'M']= tN2+(_l)qU; 0 "~\L (t-1)i 0 ,] 

where L (t)= tN1 + (-1)q N~. Since F is a principal ideal domain, there is a diagonal 
,+110~ in A which presents the same F-module matrix diag(07(t),..., 0~(t)), 07cA, q q 

as L(t). The fact that 07(1)= _+ 1 follows from the fact that the knot complement is a 
homology circle. (See [12].) 

The following two corollaries provide an answer to question 39(a) of Fox [2]. 

COROLLARY 2.5. The Stevedore's knot (6~) is not doubly-null-cobordant. 
Proof. Using the methods of Fox [1] one obtains as a presentation matrix for 

Hl(R'Z)the2x2matrix(21 t '  2t-lO ) ,  and this has elementary ideals 

el = { ( 2 -  t) ( 2 t -  1)} 

ei = {1} i/> 2 

where {2} denotes the A-ideal generated by 2~A. 
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Now if the Stevedore's knot were a cross-section of the unknot, then//1 (/~; Z)  

would have a presentation matrix of the form M =  L' (t - ~) where L is an 

r x r matrix over A. Furthermore, the determinant IL (t)l = ( 2 -  t) or (2 t -  1) because 
the Alexander polynomial of K satisfies Aj ( t )=  ( 2 - t )  ( 2 t -  1)= ]L(t)l IL'(t -1)1. Now 
the matrix M has the following elementary ideals: e 1 = { (2 - t )  (2t-1)},  e2r {1}. 
e2 is generated as a A-ideal by the determinants of the (2 r -  1) x (2 r -  1) submatrices 
of M. These determinants will be either zero, divisible by ( 2 -  t) or divisible by (2 t -  1). 
The ideal they generate will be non-trivial, which is easily seen by considering the 

A &  Z 
mapping t .-* - 1 induced by sending t to ( -  1). The image of e2 under ~b is an ideal 

of Z generated by some collection of multiples of 3, hence non-trivial. 
The loss of information in passing from Z to Q coefficients is evident from the fact (: 0) 0) 

that (2 t) ( 2 t - l )  and ( 2 t - l )  present the same F-module, but dtf- 

ferentA'm~176176176176 0 (2t 0_ ) 1) 

as a presentation matrix for H1 (/~; Z), namely 946. This will be dealt with in detail 
in section III. 

A more tractable invariant to consider when dealing with doubly-null-cobordant 
knots is the set of torsion numbers of the 2-fold branched cyclic cover/~2. 

COROLLARY 2.6. K a simple (2q-  I) knot which is doubly-null-cobordant (q >i 1), 
then the torsion numbers of Kz appear in pairs. 

Proof. In order to obtain a presentation matrix for Hq (Kz ; Z)  as an abelian group, 
one simply sets t = -  1 in a A-presentation matrix for H~(/~; Z). Hence Hq(/~2; Z )  

{ 0 
is presented by a matrix of  the form ..... from which the result im- 
mediately follows. 

THEOREM 2.7. The only doubly-null-cobordant knot included in Reidemeister's 
table of  prime knots is 946 

Proof. The proof that 946 is doubly-null-cobordant will be postponed to section IV. 
For another proof, see [-19]. By considering torsion numbers of K" z, signature, etc., 
one rules out all other possible candidates (including 61), save 941. 941 can be ruled 
out as follows, by arguments on the second elementary ideal of the presentation matrix 
/-/1 (/~; Z) ,  similar to the argument in Corollary 2.5. The following argument was 
developed at the 1969 Georgia Topology Conference during conversation with a 
number of people, and I would like to thank them for their observations. For 941, 
the torsion numbers of-~z are 7, 7; a = 0, C v = + 1. A presentation matrix for H 1 (/~; Z )  
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is the 2 x 2 matrix 

3 - 3t + t 2 0 ) 
t + 1 3 t  2 - -  3t + 1 

51 ~ {1}, 52 = {(3 - 3t + t2), (3t 2 - 3t + 1), (t + 1)). 
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As in Corollary 2.5, we have that if 9 4 1  is doubly-null-cobordant, then 52= 
= {(3 - 3t + t2), (3t 2 _ 3t + 1)}. Consider the ring homomorphism A~-%A| Z 2 = A2. 
Then q S ( 3 - 3 t + t 2 ) = c ~ ( 3 t 2 - 3 t + l ) = t 2 + t + 1 ~ A 2 ,  q S ( t + l ) = t + l .  By degree con- 
siderations, (t + l )r  2 + t + l ) }  in A2. 

If  one desires non-prime doubly-null-cobordant knots, consider the following 
surprising theorem of Zeeman [21]. 

THEOREM 2.8 (Zeeman). Every 1-twist-spun knot is unknotted. 
Zeeman proves the theorem by showing that a p-twist-spun knot fibers with fiber 

whose closure is the bounded punctured p-fold branched cyclic covering space of the 
knot you are spinning. When p =  1, the closed fiber is a disc. Let ( - K )  denote the 
cobordism inverse of K, that is, ( -  K) denotes the knot obtained by taking the image 
of  the submanifold k, with reversed orientation, under a reflection of S "+2. Then we 
have the following corollary to Theorem 2.8: 

COROLLARY 2.9. K #  ( - K )  is doubly-null-cobordant, for every knot K. 
This shows that the square knot is doubly-null-cobordant, a fact first proved by 

Stallings 1-14]. 

III. Geometric Realization of Invertible Cobordisms 

One approach to the geometric realization problem would be to prove a converse 
to Theorem 2.3, then appeal to the geometric realization theorem of Kervaire [5, 
Chapter [[, w We have the following weak converse to Theorem 2.3: 

THEOREM 3.1. K =  (S 2q+ 1, k) q >>, 2 a simple knot, and K has a ( q -  l )-connected 
Seifert manifoM whose associated Seifert matrix is doubly-null-cobordant, then K is 
doubly-null-cobordant. 

Proof. Case 1 : q ~> 3. 
We will construct using surgery a cobordism (W; U, K) invertible from K. The 

knot k has a (q-1)-connected Seifert manifold V 2~, and Hq(V 2~) is free of rank 2r 
on generators ~1,..., ~, ;ill  ..... fir such that 0 (0% ~j)= 0=  0(fli, fl~) 1 ~< i,j<~ r. Consider 
S2q+ 2 as the union of 2 balls R2q+ 2 and B 2~ + 2 identified along S 2~+ 1, the equator of ~ ' 1  

S 2q+2 The knot k and its Seifert manifold V 2~ sit in S 2q+1. Push V out into n2q+2 
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and Bi q+2 obtaining an embedding of VxI,  I =  [ -  1, 1], such that Vx {0} = V. Levine 
[8, Lemma 5] describes a method for doing surgery on V x { 1 } inside B~ q + 2, producing 
a cobordism W1 between Vand D 2q by adding (q + 1)-handles h~ + l to V x [0, 1] along 
Vx {1} via the {ai}. Likewise, we can do surgery on the flj inside B22q+2 to produce a 
cobordism W2 between V and D 2q inside u 2u2q+2. Let A = (1411 u W2)/V. Then W~ 

r x  [0, 1][..)7= 1 h~ +~ and W2~ Vx [0, 1][..)7=, hj q.+ ~. Vis ( q -  1)-connected, so each 
of W~ and I4'2 is (q-1)-connected, hence A is (q-1)-connected. The Mayer-Vietoris 
sequence for the triad (A, W1, W2) is 

- - i 1 . ( ~ - - i 2 .  

Hq(V) , Hq(W1)O Hq(W2)--~ Hq(A)--*O. 

Now Hq (V) is free on the generators a~, ..., ~,; ill,..., fir and by construction Keri, is 
the summand of Hq(V) generated by the {ai}, and Keri2. is the summand generated 
by the {fl,}, so i~.~ - i2 .  is an isomorphism and Hq (A)= 0. Since 0A = S 2q, then by the 
h-cobordism theorem A ~ D 2~ + 1 and OA is unknotted in $2~+ 2. So k is a cross-section 
of the unknot, and clearly there exists a cobordism (W; U, K) invertible from K. 

Case. 2: q = 2. 
As in Levine [8, p. 235], we have two difficulties: (a) representing the {~i} and {flj} 
by embedded 2-spheres (b) asserting that surgery by either {~h} or {flj} produces D 4. 

Levine's argument using the results of Wall go through a s  in [8], making one 
extra observation. 

We are given V 4, OV4,~S 3. Form the smooth closed manifold I 7 by putting a 
disc on O V. Just as in Levine, we get that I7# (S 2 x S 2)#. . .  # (S 2 x S 2)~ 0 W where 
W is a handlebody with handles of index 2 only. The handlebody decomposition for 
W gives us {S~} a family of disjoint embedded 2-spheres in 0 W, the boundaries of the 
transverse 3-discs of the 2-handles. Let ~'i ~H 2 (a W) denote the homology class of S;, 
then {a~} is half a basis for/ /2 (0 W). We can embed disjoint copies of S 2 x S 2 in S 5, 
and take the connected sum of these with V. This has the effect of adjoining the 

matrix (~ 10) to the existing Seifert matrix, thereby preserving double-null-co- 

bordance. We can thus take V=OW-Int(D4). H2(V ) has as a free basis {~i}7=1 w 
w{fli}~=x with 0(a,, aj)=0(fl , ,  f l j )=0 l~i,j<~q. Now a'i-a~.=0=~h.a j all i,j. Since 
the intersection paring on Vis unimodular, both {~i} and {s extend to bases {~,, y~}, 
{~t~, y'~} satisfying a,.Tj = a'~. ~j. = 6,j, y,. ~,j = ?~'7)= 0. By Wall [20, Theorem 2] 3 a dif- 
feomorphism h a : t~ W ~  0 W such that h~. (a'i) = ~,. Likewise ~ a diffeomorphism h 2 
such that h2.(a'~)=fl,. Hence we can take {h~ (S',)}, {h2 (S~)} as embedded represen- 
tatives for {~q}, {fl,}. Doing surgery by either set is equivalent to removing the handles 
of W, so we get D 4 at either end. Adding the trace of both surgeries as before yields 
a smooth S ~ which bounds a contractible submanifold in S 6. By the h-cobordism 
theorem, the contractible submanifold is a smooth 5-disc, so the S ~ is unknotted. 
This completes the proof of Theorem 3.1. 
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Ideally, one would like to prove that if K =  (S 2q+1, k) q>~2 is a simple knot with 
a doubly-null-cobordant matrix, then K is doubly-null-cobordant. One approach 
which I have tried, but failed so far to succeed in doing, is to do surgery on the Seifert 
manifold to make it (q-1)-connected,  preserving double-null-cobordance of the 
Seifert matrix at each stage. For an analysis of the effects of such surgery on the 
Seifert matrix, see Levine [7]. 

We will now describe the Alexander invariants that are to be realized. If K k is a 
finite simplicial complex with the homology of S 1, le t /~  denote the infinite cyclic 
cover of K. With A and F as in section II, we have that H~ (/~; Q) is presented as a 
F.module by a diagonal matrix of the form diag ().q,...,).qm) where ).7~A, ).~+ 1]).7 in 
A, and ).7(1)= • 1. (See [22].) If  K happens to be a knot complement, the {)-7} are 
called the Alexander invariants of  32. 

Combining a theorem of Levine [9, Theorem 1] and Corollary 2.4, we have the 
following: 

THEOREM 3.2. Let {27} O < q < n + l , O < i < m  be the family of Alexander in- 
variants of  a doubly-null-cobordant n-knot, n >1 1. Then the following are satisfied: 

(i)).7+1 [ ).7 in A 
(ii) 27 (1) = • 1 Vq, i 

(iii) 27(0 , , , -q+ l  = st  ( t - ' )  

e = + 1 a an integer 
(iv) n = 2q - 1 then 3 a collection {0~}~= 1 of elements of A satisfying the con- 

clusion of Corollary 2.4 such that each of the diagonal matrices diag ().~ (t), . . . ,).q(t)) 
and diag (0~ (t), . . . ,  0, q(t), 0 q ( t - l )  .... , Oq(t-1)) presents H~ (R; Q) as a r-module. 

We will prove the following 

THEOREM 3.3. Let { ).q} 0 < q < n + 1, 0 < i < m be a set of  elements of  A satisfying 
(i)-(iv) of Theorem 3.2. Then for n >11 there exists a doubly-null-cobordant n-knot with 
the {2~} as its Alexander invariants. 

Proof. The proof is by construction, an extension of that in [4, 15, 17]. 
The Construction 

n 
Case 1. Suppose that we are given ).cA, ) .(1)= + 1, and n~>2, 1 ~<q~<2. We will 

construct a doubly-null-cobordant knot K=  (S .+z, k) such that if g is the infinite 
cyclic covering space of S~+2-k ,  then 

u,(g;z)= 

A 

2(t)  

A 

0 

i = q  

i = n + l - - q  

0 < i < n + l  i ~ q , n + l - - q .  
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This means that  the Alexander invariants of  K are 

[ );(t) p = q , i = l  

[ 1 0 < p < n + l  0 < i < m  ( p , i ) r  1 ) o r ( n + l - q ,  1). 

Let the unknotted sphere pair (S "+ a, S" + 1) be decomposed into the union of two 
unknotted ball pairs {(B 7 + 3, BT+ ~), (B~+ 3, B~+ ~)} glued together along their common 
unknotted boundary (S "+2, S"). We will exchange handles across (S "+2, S") to 
obtain a new decomposition of (S "+ 3, S,+ 1) as the union of two knotted ball pairs 
glued together along a common knotted boundary sphere pair. 

Begin by choosing a smooth proper embedding i :Dq~(B~+3-B~2+I  ). See [4, 
Figure 1]. A tubular neighborhood of i (D q) in (B~2+a-B~ +~) is diffeomorphic to 
D q X D n+3-q, a q-handle, and adding this to B7 +3 produces a manifold M = B ~  +3  u i h q. 

Let L = S  n+3 - - M  denote the complementary solid torus. Then if ~ denotes diffeo- 
morphism, -- denotes homotopy equivalence and v denotes wedge product, we have 

M ~ S q • D n + 3 - q  L ,,~ D q+l  • S n + 2 - q  

M ' = M - - ~ l u n + I ~ - S  1 v S  q L ' = L - B ~  +2~-S  1 v S  ~+2-q 

O M ' = a E  ,~S qx  S ~ + 2 - q - S  n + l - S  1 v S  q v S  "+2-q 

Now if q >  1 then o v e r  A~Z~z  I we have that nq(3E)~-A(ce) a free A-module of  
rank 1 generated by co, which we can take to be an embedded q-sphere going once 
around the handle hL By general position we can choose a smooth embedding 
g : S  q ~ ~L' in the homotopy class of  2 " ~ n q  (~?E). Since nq (L') = 0  then g ( S q ) ~ O  in 
L', and we can be general position again extend g to a proper embedding g :D q+a --> L'. 
We then add a tubular neighborhood o f g ( D  q+l) in L' to K, obtaining B = K u g h  q+l 
Now in a L ' u S  n, 2-~ is homotopic to 0c, hence diffeotopic to e. So B u B ~  +1 
= K u ,  h ~ + 1 ~ B n + 3, hence B is a knot  complement, that is B = B" + 3 _ k'B" + 1 for some 
smooth proper embedding k '  : B" + 1 ~ B" + 3. Furthermore OB = S" + z _ k S  ~ is the com- 
plement of a doubly-null-cobordant knot ( k = k ' l  Sn), and the calculations of  [17] 
show that this knot has the desired invariants. 

I f  q = 1, then nl (aL') is the free group on generators e and ]3, where e can be taken 
as an embedded S 1 going once around h 1, and ]3 as an embedded S 1 homologically 

t m linking the submanifold S" once in c3L. If  2 ( ) = ~ =  o a:i ,  then there is an embedding 
g : S  ~ ~ OL' in the homotopy class of  

The construction proceeds exactly as above, and the calculations of  [17] show that 
the resulting doubly-null-cobordant knot has the desired invariants. 
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Case 2. The middle dimension. 
We are left with the case n = 2 q -  1, q ~> 1, and q-dimensional invariants to realize. 

Given 2~A such that  2 ( 1 ) = 1 ,  we will construct  a doubly-nul l -cobordant  knot  
K =  (S 2~+1, k) such that  i f /~  is the infinite cyclic cover of  S 2q+1 - k ,  then 

H,(/~;  Z) = (t) @ 2 ( t _ ~ )  i q 

0 < i < 2 q  i # q .  

The p roo f  begins exactly as before, producing 

M ~ S q x D q+2 L ~ D q+l x S q+l 

M' = M - B 2q+2 ~ S 1 v S q ]_J = L - B 2q+2 "~ S 1 V S q+ l 

t?M' = aL'  ~ S q x S ~ + 1 -  S 2q+1-~S 1 v S  q v S q+ t . 

I f  q >  1, we can as before obtain an embedding representing 2"e in nq(OL'), but 
the fact that  L'  is not  simply connected prevents us f rom removing double points to 
extend the embedded S q in OL' to an embedded D q+l in L'. In  fact, there are choices 
of  embedded representatives of  2- e which do not  span embedded discs in L'. However,  
we can construct  an embedded representative which will span an embedded disc in L'. 

L e t ~ ( t ) = ~ = o ' ~  a~t'." Choose ~ :  o fa~l distinct points in S q + 1 ; label them {x~, j} t ~< 
~<j~< la~l. Consider the embedded spheres S ~ , j = S q x  {x,,j} in the product  structure 
dL ~ S q x S q + ~ Each S. q �9 spans the embedded disc D~ ~. ~ = O q + ~ x {x,, j} in the produc t  �9 t , J  

structure o f L ~ D  q+l x S q+2. We can assume Bz 2q c~ ([._J,, j O~,+. I) =0 ,  altering our choice 
o f  {x~,i} if necessary. We will now pipe the {S~j} together in ~L' to produce an 
embedding in the homotopy  class of  2.c~(q> 1) or  a,ofl, ,fl . . .e~,~fl-m(q= 1) where 
a = S q x  {.}, . e S  q+~ the basepoint.  We can without loss of  generality take a o > 0 ;  
and we choose an orientation for  c~. Orient S -q. with orientation corresponding to t,J 

sign a,; that  is, if sign a , = l  we orient Sqj  compat ibly  with e, and s i g n a l = -  1 we 
orient S~ j the opposi te  of  ct. 

S 2q-~ spans a disc D 2q in t3L. Choose a mutual ly  disjoint family of  embedded 

arcs fj! i + 1 : I ~ aL '  satisfying the following: 

(i) f j ,  j+l  (O)~Sq.,,~, f j ' , j + l ( 1 ) ~ S ~ . ~ + i  

(ii) f j ,  j+~((O, 1 ) ) ~ ( ~ S ~ , ~ ) = O ,  f j ,  j + ~ ( I ) c ~ D Z q = o .  
i , j  

Thicken fj,  i+~ (1) to a tube Tj. i+ ~ ~f~! ~.+1 (1) x D q such that  

i D ~ D~, 1,  T],~+~c~S~,y = fj,~.+l (0) x = 

Tj,~+Ic~S~,~+I = fj,~+~ (1) x D~=D~,~+~.  

Otherwise Tf, i+ t misses ~ , ~  S~,~, and Tj,~+ t is chosen so tha t  the orientations of  
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D~, j, and Di, q j + 1 match up with the orientations of S~ j and Si,~ j+ 1 correctly. By the 
words "pipe S~ j to S~ j +1 via f~i  +1 ( I ) "  r mean take the sphere 

0D q) (S~ ~, - Int D~ j) w (Si q, j +1 - Int DT, j. +1) w (fj, j +1 (I) • j 

With i fixed, piping S~ q, j to S~, j+ 1 for all 1 ~<j~< la~l- 1, we obtain Sf. Suppose that 
ak is the "next" non-vanishing coefficient in ).(t); that is in the expansion ).(t) 
=~.i~=o a~fl, aj=O i<j<k. We then pipe S~ to Sg by an arc that loops around S zq-1 
precisely ( k - i )  times. That is, the arc has intersection number ( k - i )  with D zq. We 
now have an embedded sphere in the homotopy class of). .~. See [Figure 1.] Further- 
more, this sphere spans an embedded D ~+1 in E,  obtained by adding the interiors of 

Dq+l~ the pipes to ((..) ~, j ~, j / and then pushing the pipe interiors out into L'. Furthermore, 

~ ,  2 Ill 

"-S q+l 

1,1 
~_ s~.q-1 

Fig. 1 

)-.~ is isotopic to +~ in OL, the sign depending on the sign of ).(1). Some care must 
be taken in the case q = 1 to insure that the arcs chosen to pipe along do not link each 
other, but clearly this can be done. 

Continuing as before, we obtain a doubly-null-equivalent knot. It remains to 
calculate the homology invariants of this knot. 

Calculation of the Invariants 
We proceed as in [-17]. From the handlebody structure for the complement 

B=B 2g+2-k' (B 2q) we will have induced a handlebody structure for B, the infinite 
cyclic cover of  B. Or equivalently we can consider constructing the covering as 
follows: The unknotted open complement B* = B 2~+ 2 _ BZq fibers over S I with fiber 
b 2q+1, a halfclosed D 2~+1. That is, D 2q+1 has a closed B 2q (corresponding to the un- 
knotted sub-ball) removed from its boundary. The infinite cyclic cover of B* is/~* 
,~,R 1 x b 2q+1. We thereupon add Z copies {h~} of  h ~ to ~* to obtain ~r ' ,  the infinite 



Invertible Knot Cobordisms 251 

cyclic cover of M'.  We then add Z copies {h~ +1} of h q+l to ~3~' to get ~. The 
attaching spheres for the {h~ + 1} are {g~}, lifts of g: S q ~ O/~r. 

The framings of the normal bundle of g(S q) in OM' are in 1 -1  correspondence 
with zcq(SOq+~), and Oszq(SOq+l) corresponds to the canonical product framing of 
the normal bundle of ~. Clearly from the construction the fact that h q § 1 is the tubular 
neighborhood of a D q+l in L', we have that the framing must correspond to 
Oe~q(SOq+~), since the framing on the attaching sphere extends over the core of the 
handle. However, we can consider the possibility of constructing arbitrary, possibly 
non-doubly-null-cobordant slice knots by altering choice of framing, and we will do 
the calculation in this more general setting. 

Choose a framing f E ~q (SOq + 1); let G: S q x D q + ~ -~ ~M' be an embedding repre- 
senting this framing; G]s,• Let So=~/~ '. Then G lifts to a family {G~} of 

trivializations for the {gl (Sq)} in So. Let $1 = S0 - ~ ,  [G, (S q x D ~ + 1)] where upper 
bar denotes topological closure. If  S=  0/~, then we have 

A i = q , q + l  
H~ (S0) ~ otherwise 

{ ;  i = q + l ,  2q+l 
Hi (So, $1) ~ otherwise 

{A i = q + l ,  2q+l 
Hi (S, $1) ---- otherwise. 

Following Kervaire-Milnor I-6], we have the following exact sequences of A-modules: 

 /q+l S , )  0, , ,  
---9. ~ Hq ( S 1 )  ~ Hq (go) ~ 0 (1)  

.,~, ~ 0 ~ i 
Uq+ 1 (S) "+ Hq+ 1 (S, S1)  --~ Uq ( S 1 )  -+ nq (~,~) -+ 0 .  (2)  

The homomorphisms in (1) and (2) are as follows: Let 2o denote the generator of 
Hq (So)~ A (2o) corresponding to Go (S q x 0), the attaching sphere of hl + '. Let ~o be 
the free generator of Hq+l (So), corresponding to the lift at level 0 of the belt sphere 
of h q. Hq+l (So, S1)~A(flo) where flo is the class of Go(xo xD q+l) xosS ~ the base 
point. Then Hq+l(~o)-~Hq+l(So, $1) is the module homomorphism induced by 
taking 

7o"~[t,~s~(t ) t~(7o, t '2o)l  flo 

where J(t) is the infinite cyclic multiplicative group of covering transformations, and 
(Yo, tiyo} is the intersection number of ~'o and the image of 2 0 under the translation 
t i. The mapo2 is equal to the usual map of the homology exact sequence of the pair 
(So, $1) because (rio, 20) = 1 and (/~0, lifo) =0 i#0.  o2' is defined analogously. 
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Suppose that 2 (t) = ~_- o a,t', and that by construction 20 e Hq (~o) is homologous 
to 2 (t)oeo, where eo is the free generator of Hq (go)~-A (0%). Now 

02: H +I (So)-* (go, 

A (Yo) A (flo) 
sends 

YO-'*~ ti al<yo, ti+J~ flo = t-kak flO=2(t-1)flo 
j = 0  k=0 

since <'~o, t k 0 ~ 0 ) = 0 0 , k "  This shows that 02 is injective. 
We want a A-presentation matrix for Hq(g). We first obtain a presentation for 

Hq(gl), and by adjoining one relation, obtain one for Hq(g). We have the following 
exact sequence: 

o2 0' i' 
0 --+ H~+ 1 (~o) -* H~+I (So, gl) -* Hq(S1) ~ Hq ('~o) ---* 0 

II II II 
A (Yo) A (flo) A (~o) 

So Hq(S1)~-ImO'@A(eo ) and Im0' is presented by the 1 x 1 matrix (2(t -1)). Hence 

(o o Hq(Sz) is presented by the 1 x2 matrix 2(t_1) ] where 2;=~flo. 

Consider now the exact sequence 

[I 
A (Co) 

where e o = G o (D q+ 1 x xo), x o the base point of S q. Co is the core of hl + 1 pushed out to 
the boundary of the handle via the first vector in the framing. The above sequence 
tells us that Hq (g)  is obtained from Hq (~1) by adjoining the relation given by 0 (%). 
Now by construction, 0 (Co)=2(t) ~o +~flo, where ~ depends on our choice of both 
attaching sphere g:Sq~ OM' and framing G: S q x D q + 1 _~ OK'. Hq (S) is presented by 

the 2 x2 matrix ( 0 ~ 2; 

Letf e n, (SO, +1) be the chosen framing, and let (2o)s = O (Co) -- Go(S q x Xo)e Hq ($1) 
be the longitude of the boundary of the tubular neighborhood Go(S q x Dq+l), and 
2;=0 ' ( f lo)=Go(xo x S ~) be the meridian of the tubular neighborhood. Clearly 
2;eHq (~1) is independent of the framing, but (20) f depends on the framing. In fact, 
if 20 corresponds to the zero framing, then (2o ) r=2o (g j , ( f )  (2;) as elements of 
H~(~a) where j,:rc~(SO~+l)~n~(Sq)=Z is the homomorphism in the homotopy 
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exact sequence of the fibration SOq+ 1 /SOq  = S q [6]. j .  ( f )  measures a sort of "self- 
linking" in the attaching spheres of the {h~ + 1} in ~1. For the zero framing in our situa- 
tion, j . ( f ) = 0 .  Even with the zero framing, it is still possible to have ~r This is 
due to a kind of "linking" that occurs among the {g~ (Sq)} in~ o. (See Fig. 5.) In our 
construction, if we were to cancel the generator ao of Hq (S0) by a family of trivially 
attached {h~ + 1 }, the {g~ (Sq)} would simultaneously bound discs in the new manifold; 
so ~=0 and hence 2o=2(t  ) ~oeHq(S1). By a suitably bad choice of attaching sphere 
g: S q--, OM', this situation can be changed, and one could arrange to have ~r 0. See 
[16], and section IV, [Figure 5]. 

Hence H e (~) is presented by the diagonal presentation matrix diag (2 (t), 2 (t -1)). 
This completes the proof of Case 2. The proof of Theorem 3.3 is completed by taking 
connected sums of the knots produced above, exactly as in Levine [-9]. 

IV. Some Geometrical Considerations 

It was erroneously claimed in [4] that the Stevedore's knot (61) was doubly-null- 
cobordant. In fact, 946 is the doubly-null-cobordant knot produced by the surgery 
techniques used in [4], [-Figure 2]. 

Stevedore's knot 61 (�89 twist) 

J 

Fig. 2 946 (�89 twists) 
)/',/,U. 

Consider the situation of Theorem 3.3, the middle-dimensional-case, where 
n = 1 =q. We will look at the case of the doubly-null-cobordant knot with diag ( (2-  t), 
(2 t -1))  as a presentation matrix for//1 (/~; Z). Figure 1 shows the attaching sphere 
for h 2. The problem is to decide exactly which classical slice knot is produced by the 
surgery. To do this, we straighten out the attaching curve g, ambient isotoping it until 
it goes around the S 1 in S 1 x S z exactly once, taking care to drag the submanifold 
k = S 1 along in the isotopy [Figure 3]. As far as the boundary situation is concerned, 
adding the handle h 2 corresponds to performing surgery by the attaching sphere. First, 
remove an open tubular neighborhood of the attaching sphere, leaving k embedded 
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S2x 1 

g_ 

;{ 
S2x 0 

S2 

Fig. 3 

> 

f 

t' 

> 

Fig. 4 

in S 1 x 0 2. The attaching sphere has the product framing induced from the product 
structure of  S x x S 2, and performing the surgery amounts to adding D 2 x S a to S a x D 
by the identity map on the boundary. The problem is to visualize k in the compli- 
mentary S 1 x D 2 obtained by removing the open tubular neighborhood of the at- 
taching sphere. When I first did it [4], I missed out one complete twist in the band of 
the knot, obtaining the Stevedore's knot 61 (�89 twist) instead of 946 (~ twists). The 
following simplified method of  dealing with the geometry is due to W. B. R. Lickorish. 
Redraw S 1 x S  2 as S 2 x I  with S 2 xOI to be identified, as in Figure 4. In order to 



Invertible Knot Cobordisrns 255 

look at k in the complimentary torus S 1 x D 2, we simply have to pull k around the S 2 
until it is well away from the attaching sphere. Figure 4 outlines the process. 

I f  one desires to produce a noninvertible cobordism, one can obtain a cobordism 
between the unknot  and 61 (hence noninvertible) by either choosing a "self-linking" 
attaching curve for h 2 or by choosing a different trivialization of  the normal bundle 
to the attaching curve o f  Figure 1. Figure 5 depicts the "self-linking" attaching curve, 

Fig. 5 

and checking through the process of  Figure 4 reveals that 61 is the resulting knot. 
Likewise, a twist in the framing of  the tubular neighborhood of  the attaching curve 
of  Figure 1 can be seen from the final picture o f  Figure 4 (before identification) to have 
the effect of  putting one full twist in the band of  the knot, hence can be arranged to 

cancel two of  the existing crossovers, producing 61 . 

REFERENCES 

[1] R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics 
(Prentice-Hall, 1961), 120-167. 

[2] R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics (Prentice- 
Hall, 1961), 168-176. 

[3] F. HOSOKAWA, On trivial 2-spheres in 4-space, Quart. Jour. Math. Oxford (2), 19 (1968), 249-256. 
[4] J. F. P. HUDSON and D. W. SUMNERS, Knotted ballpairs in unknotted sphere pairs, Jour. London 

Math. Soc. 41 (1966), 717-722. 
[5] M. A. KERV~RE, Les noeuds de dimensions superieures, Bull Soc. Math. France 93 (1965), 225-271. 
[6] M. A. KERVAmE and J. W. MILNOa, Groups ofhomotopy spheres: I, Ann. of Math. 77 (1963), 

504--537. 
[7] J. LEVI~, An algebraic classification of  some knots of  codimension two, Proceedings of the 1969 

Georgia Topology Conference, to appear. 



256 D.W. StrMNERS 

[8] J. LEVlNE, Knot cobordismgroups in codimension two, Comment. Math. Helv. 44 (1969), 229-244. 
[9] J. LEVINE, Polynomial invariants o f  knots ofcodimension two, Ann. of Math. 84 (1960, 537-544. 

[10] K. REIDEMEmTER, Knotentheorie (Chelsea 1948). 
[11] C. P. ROURKE and B. J. SANDERSON, Block bundles: 11. Transversality, Ann. of Math. 87 (1968), 

256-278. 
[12] Y. SRINOrtARA and D. W. SUMNERS, Homology o f  cyclic coverings, with application to links, in 

preparation. 
[13] J. R. STALHNGS, On infinite processes leading to differentiability in the complement o f  a point, 

Differential and Combinatorial Topology (Princeton 1965), 245-254. 
[14] J. R. STALLINGS, Unpublished. See [1, pp. 138]. 
[15] D. W. SUMNERS, Higher-dimensional slice knots, Bull. Amer. Math. Soc. 72 (1966), 894-897. 
[16] D. W. SUMNERS, Higher-dimensional slice knot~, Ph.D. Thesis, Cambridge University, 1967. 
[17] D. W. SUMNERS, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 

229-240. 
[18] D. W. StrMNERS, lnvertible knot cobordisms, Proceedings of the 1969 Georgia Topology Con- 

ference (to appear). 
[19] H. TERASAKA and F. HOSOKAWA, On the unknottedsphere S 2 in E 4, Osaka Math. Jour. 13 (1961), 

265-270. 
[20] C. T. C. WALL, Diffeomorphisms of4-manifolds, Jour. London Math. Soc. 39 (1964), 131-140. 
[21] E. C. ZEEMAN, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. 

Florida State University 
Tallahassee, Florida 

Received July 18, 1970 


