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Surgery of non-simply-connected manifolds
By C.T.C. WALL

The method of surgery, initiated by Milnor [12] in 1959, has proved a
powerful tool in differential topology (see, for example, [10], [14]). The key
idea can be expressed as follows. Let M™ be a smooth (or piecewise linear)
manifold, f: M — X a map of M to any cw-complex X. Then we wish to
change (M, f), by performing a series of spherical modifications [25] to M, to
make f a homotopy equivalence. In the first instance, X was taken as a point.

We shall regard this problem with manifolds as analogous to the same
problem for cw-complexes, This latter problem is trivial; our proof of this
(Lemma 1.1) gives a pattern of attack on the case of manifolds. Now a
spherical modification on an (r — 1)-sphere of M™ has an effect similar to
attaching simultaneously two cells ¢" and ¢!, For 2r < m, our CwW-analogue
is satisfactory; however, a detailed investigation of duality is necessary before
we can pursue our programme in the middle dimensions. We feel, however,
that although the algebraic problems raised are of considerable difficulty, the
method of setting up the algebra gives a clearer insight into the problems
raised than previous expositions of the topic.

Our exposition of the technique of surgery is given in this paper; applica-
tions are reserved for a planned second part. Our approach is general enough
to cover essentially all published applications of surgery other than in
codimension one (which seems to be somewhat easier). The paper is divided
as follows:

§1 Surgery below the middle dimension,

§ 2 Duality and maps of degree 1.

§ 3 Surgery in the middle dimension: case m = 2k.

§4 The algebraic problem,

§5 Surgery in the middle dimension: case m = 2k — 1.

§6 The case m = 2k — 1 and 7 of order 2.

§ 7 Relative surgery.

The first section sets the scene for the main part of the paper, as well as
obtaining a strong result on surgery below the middle dimension, which already
has useful applications. The second defines Poincaré complexes, and introduces
the K notation which is much used later. In §3 the geometric problem of
surgery is reduced (when m = 2k) to a purely algebraic problem. This is dis-
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cussed in § 4, and solved when the fundamental group is cyelic of prime order.
The treatment of the case m = 2k — 1 is much less satisfactory, and the author
now feels that the linking numbers here used should be replaced by a different
algebraic setting altogether. Publication of the present account is perhaps
justified by the solution in § 6 of all the algebraic problems when the funda-
mental group is cyeclic of order 2 (this permits an application to diffeomorphism
classification of homotopy projective spaces, for example). The paper closes
with a brief description of surgery on manifolds with boundary.

1. Surgery below the middle dimension

Our surgery will follow the following pattern. We have a map +: M — X,
and we perform surgery on M to make the map + highly-connected. Recall
that the relative group 7,..(y) is a set of equivalence classes of pairs (f, g) of
maps which form a commutative diagram

ST < D!

ool

M-2. X
and that there is an exact sequence

o (M) L5 T (X) —— ) —— T (M) -

First of all we describe a cw-analogue of surgery, and prove a lemma which
contains all the necessary homotopy theory.

Suppose given an element « of 7,.,(v). Let (f, g) be a representative pair
of maps, as above. Form M’ from M by attaching an (» + 1)-cell with attach-
ing map f. Let F: D "' — M’ be the characteristic map of the cell, so that
F|S" = f. Then we extend + to a map v": M’ — X by setting ' | F(D""') =
goF:onM N F(D™") = F(S"), thisis g o f~' = «, so we have a well-defined,
continuous map. The natural inclusion of  in ' takes « to zero, since both
triangles commute in the representative diagram

S < Dt

e
o
M-LXx.

We describe this process as attaching an (r + 1)-cell to M by «, or to kill a.

LEMMA 1.1. Suppose M and X finite CW-complexes, +: M — X a map.
Then we can attach to M a finite number of cells of dimension =< k to make
¥ k-connected.
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REMARK. This result was obtained in [23], using a lemma of Whitehead.
We now give a direet and simple proof. Note that it is enough for the k-
skeleton of X to be finite.

PrOOF. We may suppose that + is a cellular map (if necessary, alter
by a homotopy). Replace X by the mapping cylinder of + (which is homotopy
equivalent to it), then + is homotopic to an inclusion. So we may suppose M
a subcomplex of X,

Now all we have to do is to attach to M in turn (in order of increasing
dimension) the cells of X — M of dimension = k, at each stage extending -
by the inclusion map. We end with a subcomplex M’ of X, which contains
the k-skeleton, and the inclusion ' of M’ in X. Then ' is k-connected, for
any map f: (D%, S™) — (X, M’) is homotopic to a cellular map which, if ¢ =
k, has image in M.

Observe that although for the proof it was convenient to use different
models for X and +, the cell attachment was made on the given M,

In order to apply this result, we need a construction which, given a ¢
7;+1(@), attaches an (¢ + 1)-handle to a manifold corresponding to the cell
attachment above. We discuss first the absolute case. If f:S*x D™ —
oV ™+ is an imbedding, and we form a manifold from V™™ (D** x D™ %) by
identifying S® x D™ by f, the result is said to be obtained from V by attach-
ing an (7 + 1)-handle. If the components of 0V are partitioned, so that 0V =
6_V U0,V is a splitting into disjoint open sets, or more generally, if 0_V and
6.V are m-manifolds which meet only along their common boundary, we call
V a cobordism. We write 7, for the tangent bundle of V.

LEMMA 1.2, Suppose V™*t a cobordism, obtained from o_V by attaching
i-handles with 1 < m — r. Let +,: V— X, w: X — B(0,,) be such that
® o +r, 18 a classifying map for t,. Let ae€ w, . \(yy). Then if m = 2r + 1,
we can attach a handle along 6,V by «, giving V' and v, V' — X, so that
o+, classifies Ty..

LEMMA 1.8. With the notations of 1.2, but V=0_V x I, m =2r, r =Z 2,
a determines a regular homotopy class of immersions S™— 0.V, in the
homotopy class 0., and the construction is possible if and only if this class
contains an imbedding.

PRrROOF OF 1.2, Set N = 4. V. Then V is obtained from N x I by attach-
ing handles of dimension = (m + 1) — (m — r) = r + 1, so 7,(N) maps onto
7.(V). Hence we can represent o, € (V) by a map f: S”— N which, since
dim N = m = 2r + 1, may be supposed a smooth imbedding. Let (f, g) re-
present . Then w o § induces the trivial bundle over D"+, and its restriction
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to S” gives a framing of f*z,.

Let ¢ denote the field of inward unit normals to N in V. Then we identify
f*e with the field 7 of unit outward normals to S™in D™, and so f*(¢j s+ €)
with g + 7, the bundle of vectors tangent to D**', which has a standard
framing. This defines a field of (» -+ 1)-frames in f*7,, which is framed, and
hence an element of 7,(V,,.,,,.,). But since m = 2r + 1, this group vanishes.
So we can extend our (» + 1)-frame to a framing of f*7,,, homotopy equivalent
to the given framing, The remaining (m — 7) vector fields frame the normal
bundle of f(S7) in N.

Extend fto a tubular neighbourhood f: S* x D™ "— N using this framing,
and take f as the attaching map of a handle D™+ x D™, Extend +, over
D™t x 0 by g, and over D"*! x D™ " using a retractionon D"*' x 0US"™ x D™,
It remains only to check that ® o . classifies 7,,, and this is known on V.
But we chose the normal framing of f(S”) in N precisely so that the induced
framing of S” x D™ was given on S”" X 0 by wo g. The result now
follows.

ProoF oF 1.3. There are just two points at which the proof of 1.2 breaks
down when m = 2r: first, where we say that f may be supposed a smooth
imbedding; and second, the group 7.(V,..,,+;) no longer vanishes. We shall
reverse our procedure,

Since V=N x I, d,aerx,V=nrN, so f*cy is well determined. As
before, @ induces a framing of f*z,. We wish 4 + 7, with the standard
framing, to be imbedded by the first (» + 1) fields of the framing of f*z, =
f*ty + €. This determines an imbedding, unique up to homotopy, of 74 in
f*Ty (since the single vector field ¢, or 7, in f*z, is unique up to homotopy,
and the homotopy between two such is also unique up to homotopy if » = 2).
By a theorem of Hirsch [9], this determines a regular homotopy class of im-
mersions S™ — N , in the homotopy class d,. It is now clear that, to proceed
with the construction above, to attach a handle, we need an imbedding in this
regular homotopy class.

REMARK. Similarly if m = 2» + 1, » = 2, we can perform surgery using
any imbedding in a well-defined regular homotopy class.

THEOREM 1.4, Suppose M™ compact, X a CW-complex with X* finite,
Yy M™ — X and w: X — B(0,.,) such that o o, classifies Ty + €, and
m = 2k. Then we can attach to M X I a finite set of handles of dimensions
<k, forming W, and extend +ry to a k-connected map +y: W — X such that
® o Yy classifies Tw. If N =0, W, ¥y = vy | N, then vy ts also k-connected.

ProOF. Lemma 1.1 shows how cells can be attached to W to make +y
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k-connected, and Lemma 1.2 states that each r-cell attachment may be
represented by a handle attachment (with the additional condition about the
tangent bundle), provided m = 2r + 1. This proves all but the last clause.
Now W is obtained from N by attaching handles of dimensions = (m + 1) —
k =k + 1, so the inclusion of N in W is k-connected. Since +ry is also k-con-
nected, so is the composite .

REMARK. This result can also be extended to the non-compact case,
provided that X* is locally finite and +r, proper.

We now consider the relative case, when M ™ lies in a containing manifold
L™+, We need to be able to represent any « < x,.,(+) by a handle attached
inside L x I, and so by an element of «,,,(L, M), so we must relate X to L.
We also have to keep a dise D" disjoint from M in L.

LEMMA 1.5. Suppose given maps ry: M™— X, v: X — L™, w: X —
B(0,) and a smooth imbedding ¢: M™ — L™, such that vory =~ ¢, and @ory
classifies v, the normal bundle of ¢«(M). Let aem . (vy), 2r + 1 =m, r =
¢ — 2. Then we can do surgery to M in L to kill «, and preserve all side
conditions. If 2r = m = 4, a determines a regular homotopy class of im-
mersions S™— M; we can do surgery if and only if this contains an tmbed-
ding.

Proor. First suppose m = 2» 4+ 1. Then we can represent o,a by an
imbedding f: S”— M. Represent a by a pair (f, 7); then (as before), w o §
induces a framing of 7*v. Use the first vector of this framing (e.g., via the
exponential map) to extend f to an imbedding k. S” x I — L, disjoint from
M except at h,(S™ x 0) = f(S7). Now represent v, (@) € w,.,(® o v,) by a pair
(f, h), e.g., h =vog, and alter h by a homotopy so that

(i) in a collar neighborhood of the boundary, it agrees with A,,

(ii) it is a smooth imbedding, possible since L has dimension m + ¢ =
2(r + 1) + 1,

(iii) it is disjoint from M except at the boundary, possible since in a collar
neighborhood of the boundary, it already has this property, and m + ¢ >
m + (r + 1),

Now the normal bundle of A(D"*") is trivial, and may be supposed framed.
The last (¢ — 1) vectors of the framing of f*v induce a (¢ — 1)-frame on the
boundary of this, and hence define an element of 7 (V. ,_.,._,), Which van-
ishes since m = 2r 4 1. Hence we can identify them with the first (¢ — 1)
vectors of the normal frame: the others give an (m — r)-field over i(D"*")
which gives on the boundary a framing of the normal bundle of £(S") in M.

If m = 2r, we proceed as in Lemma 1.3. The homotopy class of f is well-
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defined and w o §, v o g induce framings of f*v, f*c,. Write ¢ for the first
vector of f*v, identify ¢ witn — 7, and deduce a framing of 7, + ¢. So we
have a framing of 74 + f*v, which we wish to identify with part of the
framing of f*z, = f*t, + f*v. Now ‘peel off’ in turn the vector fields which
frame f*v, and we see we have defined an imbedding of t in f*z, and hence
a regular homotopy class of immersions S”— M. If this contains an imbedding,
we recover the situation above; again we can imbed D™, as dim L = 2r + ¢ =
3r + 2 = 2r + 3 (except in the trivial case r = 0, ¢ = 2).

Now use the (m — r)-frame to extend & to an imbedding h: D™ x D™ " —
L, where f = h | S” x D™ has range M. Then our cobordism W C L x I can
be deseribed as obtained from (M x I)U (D" x D™ x 1) by ‘pushing down’
D7+ x Int (D™ ") x 1; or perhaps better, from (M — Im f) x I by attaching a
‘saddle’ in D™ x D™ x I, containing S"x D™ x 0 and D™ x S™ "' x 1,
and then (again) rounding corners. (For details, cf. [8, p. 460]).

Then § defines an extension +,: W — X of 4, and since & was homotopic
(rel S7) to v o g, v o ry is homotopic to the imbedding of W in L x I. Also,
® o 7y classifies the normal bundle of W; again, as this holds for M, we need
only check the agreement of the two induced framings on the boundary of the
attached cell. But our construction ensured that these agreed (note that when
we introduce angles, the first vector of f*v is deformed to coincidence with
the vertical vector in L x I). This completes the proof.

THEOREM 1.6. Suppose given maps ry: M™— X, v: X - L™, @w: X —
B(0,), and a smooth imbedding ¢: M™ — L™ such that v oy = ¢, and
o Yy classifies the normal bundle of «(M). Suppose M™ compact, X* finite,
m = 2k, and ¢ = k + 1. Then there is a manifold W < L x I, formed from
M by attaching a finite set of handles of dimensions = k, and a k-connected
extension yry: W — X of +ry, such that v o +y = the inclusion, and @ o yy
classifies the normal bundle of W. If N =06, W= WN(L X 1), ¥y = ¥w | N,
then y: N — X is also k-conmnected.

This follows immediately from 1.1 and 1.5, just as 1.4 followed from 1.1
and 1.2.

REMARK. There are analogues of all the above for PL-manifolds. Details
will appear elsewhere.

2. Duality, and maps of degree 1

It is not to be expected that if M™(m = 2k or 2k + 1) is a closed manifold,
X a finite cW-complex, and +: M — X a map, we should be able to perform
surgery to make the map + (k + 1)-connected, since duality imposes certain
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restrictions upon H,(M). For example, if M is (k — 1)-connected and m = 2k,
then H,(M) is a free abelian group which, if k is even, has even rank. If
m = 2k + 1 and k is even, there must exist a finite abelian group B such that
the torsion subgroup of H,(M) is isomorphic either to B Borto B B P Z,.

However, we do not see any way to proceed with surgery by merely
imposing conditions on H,(X). More natural and useful is to consider the case
when X itself satisfies duality; hence we now seek to define this.

Suppose first that M™ is a closed, connected oriented manifold, with
fundamental class [M]e H, (M, Z). The simplest version of Poincaré duality
states that ~[M]: H"(M) = H,,_,(M) is an isomorphism for all integers ». We
must generalise this to other coefficient groups, possibly twisted as coefficient
bundles. Suppose M is (or has the homotopy type of) a finite cW-complex, and
write I for its universal cover, A for the (integral) group ring of =,(M). If
B is a A-module, the operations of 7 on B determine a bundle B over M,
associated to M — M: 9B is a bundle of abelian groups. Write C, for the chain
complex of M. The operation of 7 on M induces an operation on chain groups
under which they are finitely generated free A-modules: the cells of M de-
termine a free basis. We write H,(M; B) and H*(M; B) for the homology of
the complexes C, @, B and Hom, (C,, B); this is equivalent to Steenrod’s
definition [17] of homology and cohomology with a bundle of coefficients. We
shall assume the usual properties of these groups.

Observe that H,(M; A) can be identified with H,(M); similarly for co-
homology where, if M is non-compact, we use finite cochains (or compact
supports). Now I is a manifold, so ~[M]: H*(M) — H,(J) is an isomor-
phism'. The corresponding map of chains Hom,(C,, A) — C, (also induced by
cap product with a fundamental eycle for M) is a map of free chain complexes
of finite rank inducing homology isomorphisms, so by a result of Whitehead
[28] is a chain homotopy equivalence. Hence so is the induced map

Hom,(C,, B) = (Hom,(C,, A)) @,B — C, R,B,

and we have isomorphisms ~[M|: H*(M; B) — H,.(M; B). For this argument
I am indebted to J. Milnor.

In the non-orientable case, there is an extra complication. If w'e H'(M;Z,)
is the first characteristic class, it induces a double covering of M; let Z* be
the associated bundle with fibre Z, on which Z, operates by change of sign.
As this is a group automorphism, Z* is a bundle of groups; the fundamental
class | M] now lies in H,(M, Z*). We write, for any bundle B of groups, B! =

! The fundamental class [M] is represented by an infinite (locally finite) chain; how-
ever, cap product with it or with [M] give the same result.
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B R Z'. Recalling the ideas of [23], we are led to the following definition.

X is a Poincaré complex if it is a Cw-complex, dominated by a finite
complex, which has a characteristic elass w'(X) € H(X; Z,), defining a bundle
Z' of twisted integer coefficients over X, and a class [X] e H,.(X, Z) such that
cap product with [ X ] induces an isomorphism H*(X) = H,(X).

It follows from the argument above that for all 8, » we have isomorphisms
~[X]: H(X;®B) = H,_(X, B"). We call [X] the fundamental class. Since
H,(X;7Z') = HYX; Z), a direct sum of copies of the integers, one for each
component of X, and since [X ] must clearly determine a generator for each
component, [X] is determined uniquely up to a sign for each component.

Next we must consider manifolds with boundary. If N™*! is compact,
with boundary M™, then the fundamental class [N]lies in H,, (N, M; Z*) and
cap product with it, as above, induces isomorphisms (for all r, B)

H™(N;®) = H, (N, M; %"
H™(N, M;®) = H,,_,(N; %" .

We call (Y, X) a Poincaré pair if Y is a cw-complex, X a subcomplex
(both dominated by finite complexes), with X a Poincaré complex. Also there
must be w'(Y) e H(Y; Z,) (with i*w'(Y) = w'(X)) defining a coefficient bundle
Z', and a class [ Y] e H,.,(Y, X; Z') such that we have 9,[ Y] = [X] and

~|Y]: H«Y) = H (Y, X)
(where Y is the covering of Y which is the universal covering over each com-
ponent; X is the induced covering of X ).

As above, we must then obtain isomorphisms

~[Y]: H"(Y;®B) — H,_(Y, X; D)
for all », B, Also, as the following diagram is commutative up to sign,
cor H(X; 4*8) - H(Y, X;8) > H*(Y;8) — H*X;1*B) — ...
l[X]A lmA JmA PX]A
o H, (X;1*B) — Hm;,( ;%) -H, (Y, X;3)>H,_, (X;1*B)— .
the Five Lemma shows that we also have isomorphisms
~|Y]:H*(Y, X;8)— H,_(Y;BY) .
Again, [ Y] is unique up to a sign on each component of Y. I do not know

whether it follows from the other conditions that 0,[ Y] is a fundamental class
for X.

There are further instances of duality isomorphisms for manifolds which
have analogues in this context. Suppose (Y, X) a Poincaré pair, that X is a
union of subcomplexes X,, X_ which meet in W (possibly empty), and that
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each of (X,, W), (X_, W) is also a Poincaré pair. Suppose also that in

H, oY, X; 2 2 H(X; 20 2 Hy(X, W; 20)
= H,(X,, W;Z") + H(X_, W; Z) ,
we have 7,0,[Y] = [X,] — [X_]. Then we call (Y, X,, X_)a Poincaré triad.

The geometric model for the situation is a manifold N™*! with boundary M™;
and submanifolds M, M™ of M™ with MrUM™ = M™, M M™ = L' =

OM? = 0M™: an important special case is where L is empty, and then M™, M™

form a partition of the set of components of M™. We have the commutative
diagram

e H(X ;0*8) — H™Y(Y, X; B) — H"(Y;B) —> -+
l[XAA J[Y]A lmA
- H, (X, W, *8)—H, (Y, X ;¥8)—H, (Y, X;B)— ---
where the rows are exact, in view of the excision isomorphism
H, (X., W:"®) = H, (X, X_; i*B).

It follows by the Five Lemma that the middle map is an isomorphism. This
argument is due to W. Browder [3].
We shall be doing surgery on a map +: M — X of a manifold M to a

Poincaré complex X with +, [M] = [X]. Such maps are called of degree 1.
We first consider the closed case.

LEMMA 2.1. Let M, X be Poincaré complexes, +: M — X of degree 1, B
a coeffictent bundle over X. Then the diagram

HA(M; y*®) < H(X;®)
[M%l [X]Al
H, (M; *9) =5 H,_(X; %)
18 commutative, and induces an isomorphism of the cokernel, K"(M; B) say,
of * onto the kernel K,_.(M;B') of V.. In particular, if + is k-connected,

Yy and ¥ are isomorphisms if r < kor >m — k.
ProoF. The diagram commutes, since if ¢ € H"(X; B),

Vi([M]~yp*e) = yru[M]—~c = [X]~c.
Since [M ]~ and [X ]~ are isomorphisms, " = ([M]~)oy* o ([X]~)""is a
right inverse to +,, so H,_,(M; v*%') splits as the direct sum of the kernel

of 4, and the isomorphic image by " of H,_(X; 8'). Similarly the cohomolo-
gy splits, [M ]~ preserves the split, and we have the stated isomorphism.
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If  is k-connected, it induces homology and cohomology isomorphisms in
dimensions < k. Hence if » < k or if » > m — k three, and hence all four of
the maps in the diagram above are isomorphisms.

Now we must consider the case corresponding to boundaries. Suppose
i (N, M., M_)— (Y, X,, X_)amap of Poincaré triads with ,[N]=[Y].
(It follows that each ,[M.] = [X.]). Consider the diagram

H™ (N, M; 4*®) < H"\(Y, X,; B

[N%j (Y]~
H, (N, M_; 8 25 H, (Y, X_; 9.

Precisely the same considerations apply as in the lemma, and we have re-
phrasing of the same results; here, the induced isomorphism is denoted by

[N]~: K™*(N, M,;®) = K,,_ (N, M_: 38" .

We shall identify the K’s with the direct summands of the corresponding
homology and cohomology groups. The direct sum splitting is natural in
several senses.

LEMMA 2.2. Let : (N, M,, M_)— (Y, X, X ) be a map of degree 1 of
Poincaré triads. Then the direct sum splittings above are preserved

(a) in an exact sequence induced by a short exact sequence of coefficient
bundles,

(b) in any of the homology (or cohomology) exact sequences of the triad,
and

(¢) (cohomology only) under cup products by elements of Im +*

PrOOF. In (a) or (b) we have a sequence of maps of square diagrams of
the type above, forming 4 exact sequences. It is immediate that the sequences
of subgroups defined by Ker +* and Im +* are subcomplexes; the result fol-
lows (cf. [24]). We point out that the exact sequences we have in mind in (b)
are those of the pairs (N, M.), (N, M_), (M., L), (M_, L), and the Mayer-
Vietoris sequences (see below).

In (c), since * preserves cup products, one half of the splitting is certain-
ly preserved. But so is the other, since if d lies in some K", so does d - ¢,
for

Yo ([NT~d - *e) = v, (IN]~d)~v*c)
= Y4([N]~d)~¢c = 0~c =0

(similarly if the appropriate fundamental class is [M.] or [M_] rather than
[N1).
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PROPOSITION 2.3. Let +: (N, M) — (Y, X) be a (k + 1)-connected map of
degree 1 of Poincaré pairs, inducing on (m — k)-connected map of M™to X™.
If m < 2k, v: N — Y 1s a homotopy equivalence.

Proor. Without loss of generality, we may suppose Y (hence also N)
connected. If & =1, 4 induces an isomorphism of fundamental groups;
write 7 = 7,(N), and identify it with z(Y), and A = Z[z]. Now we prove
4 (k + 2)-connected; the result will follow by induction and Whitehead’s
theorem [27]. We have

Tiso(V) = Tiro(P) = Hyro(F)

by the relative Hurewicz theorem, and since +, is onto in

H, o(N; A) 25 Hy (V5 8) — Hyo ) — HooN; &) =5 Hy (Y3 )

we have H,..(+) = K,..(N; A). But by the relative form of (2.1), K, ,(N; A) =
K™ (N, M; AY). So, by (2.2), Ti.s(yp) = K™ *(N, M; A') lies in the exact
sequence

K"+(M; AY) — K™ (N, M; AY) — K™ (N; A") .

But the first group vanishes since the induced map M — X is (m — k)-con-
nected; the last, since the induced map N — Y is (k + 1)-connected, and m — &
=k

If & < 0, the result is empty; if & = 0, the only cases arising are m =
— 1, 0, and here the result is trivial, since a Poincaré (— 1)-complex is empty,
and a connected Poincaré 0-complex (resp. 1-pair) has the homotopy type of a
point (resp. of (I, dI)), as we will show elsewhere.

The following somewhat technical lemma will be useful later; the proof
follows ideas of [23].

LEMMA 2.4, Let +: (N, M) — (Y, X) be a k-connected map of degree 1
of connected Poincaré pairs, inducing a (k — 1)-connected map M — X. Let
k= 2, and [N] have dimension 2k. Then G = K (N; A) is a projective A-
module, and if N and Y are homotopy equivalent to finite CW-complexes
there is a finitely generated free A-module F with F @ G free. Similarly
for K. (N, M; A).

Proor. Replace Y by the mapping cylinder of . Then we can suppose
4 an inclusion of a subcomplex. In fact, since 4 is k-connected, we may
suppose that Y — N has no cells of dimension =< k. Perhaps the easiest way
to see this is to note that Y and N may be assumed to have finite skeletons
(by [23, Th. A]) and apply to the (k + 1)-skeletons a result of Whitehead [28,
Lem. 15].
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Let C; be the 7™ chain group of (¥, N): this is a free A-module. All K;(M)
and KM) vanish for i < k — 1, and K,(N) and Ki(N) for i < k; by the
exact sequences of 2.2, KN, M) and KN, M) vanish for 7 < k; and by
duality, all six vanish for ¢ > k. In particular, K,(N; A) = 0 for ¢ # k, so the
sequence
( 1 ) e Ck+2 Ck+1 G 0
is exact. Write d;: C;,, — C; for the boundary operators, and B; = Imd,.
Then (1) gives rise to short exact sequences, which we write as

0— By 2 Gy — G— 0

(2) b; li1 .
0—B, 2, N B, ——0 (=k+2.

We prove that the sequences (2) all split. Now B; defines a coefficient bundle
B;, and Ki(N; B;) = H*(Hom,(C,, B;)). Thus we may regard ¢;,,(1 = k + 1)
as an (i + 1)-cochain. It is a cocycle since ¢;,0d;,; = 0. But as¢ =k + 1,
the group K(N; B;) vanishes, so ¢;,, is a coboundary, say

Civy=8;00; =8;0b;0¢;,;.
As ¢, is onto, s; o b, = 1, so all the sequences (2) split; in particular, C,,, =
B,.. P G, so G is projective.
If N and Y are finite, so is the complex C,. Using the splittings just
established, we have '

G D oven Coss = GB; B; = Dioaa Crvr 5
as the C, ., are free modules of finite rank, this proves the result.

The argument for K,(N, M) is similar; here we may suppose M, N, X
subcomplexes of Y with M = N N X, and must use cochains of (Y, N U X).
For the last part, we assume all four complexes to be finite.

We must now discuss in detail the effect of surgery. First note that if
(N,'M+, M) is a proper triad, with M, UM_= M and M, NM_= L, we can
combine the homology exact sequences (with respect to any bundle over N of
coefficients) of the triples (N, M., L) and (N, M, M.) into the diagram

O RN

Hy (M, L) H, (N, M_) H,(M, M )=H,M_, L) H (N, M)

N\ ~N 7

Hn+1N,L) H, (N, M) /H(N \

n+1<M_,L) Ho 0Ny HOLA)=HOL D B M)

N AN
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We shall frequently use diagrams of this shape, and so introduce some
conventions concerning them. It will be convenient to have all squares and
triangles commutative: this is easy to arrange for the triangles (re-define one
map as the composite of the other two). The usual conventions give a negative
sign in alternate squares: we avoid this by defining the map H,.,(N, M) —
H,(M_, L) to be minus the usual boundary map. If we again adjust signs
suitably, an argument of Eilenberg and Steenrod [6, §1.15] shows that
sequences of the shape

Hn+l(Ny L) _— Hn+l(N7 M—) @ Hn+1(N’ M+)
_——')Hn+1(N? M)—_’Hn(Ny L)——_—) e

are exact. We shall refer to all sequences of this type as Mayer-Vietoris
sequences.

Next suppose +: (N, M,, M_) — (Y, X., X_) a map of degree 1 of Poincaré
triples. Then for any bundle of coefficients over Y, there is a commutative
exact diagram as above, but with the groups K, since by Lemma 2.2 the whole
diagram splits as a direct sum. If, in particular, + induces a homotopy
equivalence of L on W = X, N X_, then all K,(L) vanish, and the homology
exact sequences of pairs involving L show that K,(M_;B) = K, (M_, L; D),
and similarly for M. and N. Thus the diagram becomes (again with some
coeflicient bundle B over Y)

Knp (M K. (N, M) K,.(M.) K.(N, M,)
NP / \ / N
(4) KN Koo, M n<N )
i i S

\/

We now apply the sequence to surgery. Let M_ be a connected smooth
manifold with boundary L, (X_, W) a Poincaré pair, _: (M_, L) — (X_, W)
a map of degree 1 inducing a homotopy equivalence of L on W. Suppose N
obtained from M_ x I by attaching an (» + 1)-handle (» = 0—so N is con-
nected) and that +_ extends to +: N — X_. Then 0N is the union of M_,
L x I, and a manifold M. obtained from M_ by surgery. Inorder to fit exactly
the definition of Poincaré triad, we can adjoin L x I to M_ (this does not even
change homeomorphism type), and write L for L x 1. Itiseasy to verify that

(Y, X, X)=(XxI,Xx1,Xx0UWxI
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is also a Poincaré triad. Let F: N—1I have F(M_) =0, F(M,) =1, e.g. a
Morse function, with just one singularity (of index » + 1) corresponding to
the handle. Then

P = X F:(N,M+,M_)—“-’(Y,X+,X_)

is a map of degree 1 of Poincaré triads, inducing a homotopy equivalence of
Lon W.

THEOREM 2.5. Let +_: (M_, L) — (X_, W) be a map of degree 1 of a
connected smooth manifold and its boundary to a Poincaré pair, inducing a
homotopy equivalence of L on W, and the map p: (N, M., M_) — (Y, X,, X )
be obtained, as above, by attaching an (r + 1l)-handle. Then for any
coefficient bundle B over Y, with fibre B, we have a commutative exact
diagram (4). The groups K, (N, M_) vanish for n+r + 1; K, (N, M_) =
B, and the map from this to K.(M_) is induced by the class x € K. (M_; A)
on which surgery is done. The groups K, (N, M,) vanish for n = m — r;
K,_.(N, M.) = B, and the map from K,_.(M_) to this is induced by inter-
section with x.

PrRoOF. We have already obtained the diagram (4). As X., X_ are de-
formation retracts of Y, all H,(Y, X.) vanish, so K, (N, M.;8)=H,(N, M,; p*B).
But N is obtained from M_ x I by attaching an (» + 1)-handle; or, up to
homotopy, an (r + 1)-cell. Thus H, (N, M_; *B) =0 for n = r + 1, and
gives B for n = » + 1. Similarly if we replace M_by M, andr + 1by m — 7.

It remains to desecribe the maps. Now K., (N, M_ )= H, (N, M) is
generated by the class of the chain represented by the attached (r + 1)-cell.
Taking the boundary to K,.(M_) is induced, then, by taking the boundary
sphere of the cell, the attaching sphere of the handle, which determines the
class . Similarly, K,,_.(N, M,) is generated by the class of the dual (m — r)-
cell. Now the attaching sphere has a neighborhood S” x D™ in M_, to
which the handle is attached; the complementary subset of M _ is isotopic (in
N) to the corresponding subset of M.. An (m — r)-sphere in M_ can be made
to meet S” transversely, and then meet S, X D™ " in various dises P; x D™,
So all is homotopic to M, except for these dises, which are homotopic to the
dual (m — r)-cell mentioned above. And they are determined by intersections
with the attaching sphere.

3. Surgery in the middle dimension: case m = 2k

We return to the problem of § 1, and in particular to Lemma 1.3. Here,
if M* =0,V,k = 2, we have a map +: M — X, and for each element « of
G = m,.,(+r), a regular homotopy class of immersions of S* in V; surgery on
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« 1s possible if and only if this class contains an imbedding.

Our next task is to consider the self-intersection of spheres corresponding
to @. To compute the effect of surgery, we also need to study mutual inter-
sections between different regular homotopy classes.

Let x be the base point of M. Orient the tangent space at *, corresponding
to the homology orientation [M]. We shall suppose each immersed /%-sphere
provided with a path (defined up to homotopy) which joins it to the base point;
it is equivalent to specifying a lifting of the sphere to 1. Let S¥, Sk be two
such spheres. Without loss of generality, we may suppose that they meet
transversely in a finite set of points, none at a singularity of either S;. We
now give to each intersection point P a sign ¢, and an element ¢, of 7.

We have paths «a,, a, from x to P; «; proceeds by the characteristic path
of S}, then round the sphere S to P (since k = 2, S* is simply-connected; it
is understood that the path avoids singular points, or at least does not change
over branches at one). Define g, as the homotopy class of a;'-a,and ¢, =
=+ 1 according as the orientation of S at P (i.e., the image by the immersing
map of the standard orientation of S*), followed by that of SJ, does or does
not agree with the transport along «, of the chosen orientation at x,

If S, S} correspond to x, y € G, we define p(x, y) = Y €595, Summed over
all intersections P. Write this as Egen"(g) g. Then n(g) is the intersection
number of the homology classes &, yg~" in M and so it, and ¢@(x, y) are well
defined.

A similar procedure gives us an estimate of the self-intersection of an
immersion,

We define an anti-automorphism of A, A — A\~ by

22n(9) 9) = 2ow(g) n(g) g,

where w(g) = = 1 according as g preserves or reverses orientation. Let I be
the subgroup of A consisting of all v 4+ (— 1)y~ for v € A; and denote by V
the quotient group A/I.

THEOREM 3.1. Intersections define a bilinear map @: G X G — A, satis-
Sying

(1) @@, yn) = p(@, y) N,

(i) oy, 2) = (— 1) p(x,y)".
Self-intersections define a map pt: G—V satisfying

(iii) o(z, ¥) = @) + (— 1)* ()™,

(iv) (o + ) — (x) — p(y) = p(e, y) (mod I),

(V) @) =\~ () s
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If k = 3, we can do surgery on x if and only if p(x) = 0.*

PROOF. We have already defined ¢. Since it can be defined by intersection
numbers of homology classes in M, it is certainly bilinear over Z.

We first verify (i) when v = g for some g€ 7. Now yg is represented by
the same sphere S¥, but with characteristic path «, replaced by a,g. Thus g»
becomes gpg, &p is unaltered, and the formula holds. Since o is bilinear, it
follows at once that (i) holds in general.

To check formula (ii) we must see what happens to each ¢, and g, when
we interchange the two k-spheres. As g, is represented by a;* - a, it becomes
a;t - ay, i.e., g5'. For the sign, we first have a factor (— 1)* corresponding to
interchange of the spheres, and a further sign if «, and @, do not induce the
same orientation; i.e., if w(g) = — L.

Now consider an immersed sphere S* representing x. At each self-inter-
section P we make (arbitrarily) a choice of order of the two branches at P.
The definition of ¢(P) and g(P) is now as before. As in the proof of (ii) above,
if we change the order, ¢(P)g(P) is replaced by (— 1)* &(P)g(P)~, so is altered
only by an element of I. Thus S* determines the element } ;e(P)g(P) modulo
I, ie., in V., Call it ;(S*).

If two immersions are regularly homotopic, we can suppose the regular
homotopy generic. Then the self-intersections vary continuously, except that
at each of a finite number of moments, two self-intersections appear (or dis-
appear) together. For these two we have the same element of 7 (at the crucial
moment, they determine the same path) and opposite values of e. Thus the
invariant p¢ is constant throughout, and depends only on the regular homotopy
class z.

To verify (iii), note that the immersion actually given by Lemma 1.3 isa
framed immersion; i.e., an immersion of S* x D* The induced ‘parallel’
immersions of S* x 0, S* x 1 will then meet twice near each self-intersection
Pof St = S* x 0, and each ordering of the branches occurs once. So we have

0 P 0

2 Qur criterion for imbeddings contradicts a result announced by Kervaire (Comment.
Math. Helv. 39 (1965), 271-280), that « is homotopic to an imbedding if p(x) has finite
order, since changing the sphere in its homotopy class can only alter p(x) by a multiple
of 1€G. The mistake occurs on p. 273, line 19, where it is assumed that A and A’ are
distinct: they need not be, if r has order 2.



SURGERY OF NON-SIMPLY-CONNECTED MANIFOLDS 233

) = 2 &(P)g(P)
p(x, x) = 3 _{e(P)g(P) + (—1)* &(P)g(P)}
= p(x) + (—1)* p(2)~ .
(Note that although ¢(x) is only defined modulo I, if ce I ¢ + (—1)* ¢~ = 0.)

To prove (iv) we need a geometric construction for the immersion rep-
resenting the sum of two elements of G (we could also have used this to give
a geometric proof of bilinearity of ). Let 7, §: S* — I be immersions re-
presenting x, y, and let &: D* x I — I be an imbedding, with A(D* x 0),
(D* x 1) lying on f(S*), §(S*) and with the same induced orientations. Let
f, g, h, be the projections on M; we assume also i(D* x Int I) disjoint from
the images of fand g. (As k = 2, it is easy to construct I by thickening a
suitable arc). Now if from f(S*)U ¢g(S*) we delete h(D* x {0, 1}), and replace
by h(S** x I), and round corners, we obtain an immersed sphere which, we
claim, represents « + y. Recall that, if we use f, « to attach D*** to M and
extend + over it, the tangent framing of D*™* at f(S*) can be used as the first
(k + 1) vectors of the framing of 7, @ ¢ induced by @ o +; in fact this is what
defined the immersion. The same holds for ¢, y. If we attach both, the two
dises D*** are joined by A(D* x I); the union is a disc A*"* whose boundary is
the sphere constructed above. We now push A(Int D* x I) outside M (e.g.,
in a thickening of M by a collar neighbourhood of 6M) and round corners;
then the tangent framings of the disecs fit together, and we have a consistent
extension of + over A which satisfies the framing condition.

Now the self-intersections of the constructed sphere consist precisely of
the self-intersections of f and of ¢, and the intersections of f with g. If at
each of the latter we call £(S*) the first branch, we obtain (iv) at once.

To check (v), as for (i), we first take the case » = g. Then each ¢(P),
g(P) become (as in (i)) w(g) &(P), g~ g(P) g, and the formula holds. Now we
verify, using (iv), that if (v) holds for X\, A, it also holds for \, + \,, and
clearly ¢(— x) = p(x), so it holds in general.

Finally, suppose pt(x) = 0, and let S* represent x. It is easily checked
that we can make choices of order so that the intersections can be put into
pairs (P;, Q;) with ¢(P;) = 1, ¢(Q;) = — 1 and ¢g(P;) = ¢(Q;). Let «; be an arc
on S* joining the first branches at P;, @,; B; one joining the second branches;
we may suppose that (except at their ends) a; and 3; contain no singularities.
Since g(P;) = ¢(Q;), the simple closed curve B;'-«; is null-homotopic in M.
Since also the two intersections have opposite signs, we can use the process of
Whitney [29] to remove them both with a regular homotopy, provided k£ = 3.
Similarly, we can remove all the self-intersections, and so obtain an
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imbedded sphere (and clearly y vanishes for an imbedding) so the result now
follows from Lemma 1.3.

The proof of Theorem 3.1 is now complete.

We can prove more about (G, ), and hence p, in some particular cases.
For if (X, W) is a Poincaré pair, and +,: (M, M) — (X, W), a map of degree
1, which is k-connected, and induces a (k — 1)-connected map oM — W, we
can appeal to (2.4) to see that G is a projective A-module. If, in addition, X
is finite, then since M (as a compact smooth manifold) is also a finite cw-
complex, by (2.4) again there is a finitely generated free A-module F' with
F @ G free. Note that it is easy to see that G is finitely generated; this fol-
lows essentially from (1.1). It is also possible to obtain some properties of ¢.
We sum up our results in

THEOREM 3.2. Let M* be a compact smooth manifold, (X, W) a Poincaré
pair, and o (M, 0M) — (X, W) a map of degree 1, which is k-connected,
and induces a (k — 1)-connected map oM — W. Write G = 7, (Vry). Then
G 1s a finitely generated projective A-module. If X is finite, there is a
finitely generated free A-module F' with FE@B G free. If G=0, ¥ 1is a
homotopy equivalence. Lf +r induces a homotopy equivalence oM — W, ¢ is
non-stngular.

ProOF. The first two conclusions were obtained above; the third follows
from (2.3). Non-singularity is to be interpreted as follows: since y — @(x, )
is A-linear, we have a map Ap: G — Hom,(G, A), defined by Ap(x) (¥) = o(z, ¥).
We call @ non-singular if Ap is an isomorphism.

We will obtain the result by interpreting Ap homologically. Now G =
K,(M; A), and we assert that Hom,(G, A) may be identified with K*(M: A).
For, with the notation of (2.4), this last is the kernel of Hom,(C,.,, A) —
Hom,(Cy ., A), and the assertion follows from the left exactness of Hom,.
Now duality gives an isomorphism of K*(M; A) with K,(M, oM; A?), and A’ is
isomorphie (as A-module) to A, for g — w (¢9) Q g induces an isomorphism. We
observe that duality is induced by cap product with the fundamental class;
this induces the same map as cup products, or intersection numbers (cf. 2.2).

We have thus identified Ap with « in the exact sequence

K. (0M; A) — K (M; A) —— KM, 0M; A) — K, (3M; A) ;

it is now trivial that, if the K;(0M; A) vanish, « is an isomorphism.
We retain the general hypothesis of 3.2 for the next theorem,

THEOREM 3.3. Suppose G has a free A-basis e, -+, e, fi, +++, f, with
olei, e;) = 0, ple;, f;) = 0.5, and p(e;) = 0. Then we can do surgery to kill G,
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and so (by 2.3) make + a homotopy equivalence.
ProoF. By Theorem 3.1, we can do surgery on the class ¢,. By Theorem
2.5, we have the following commutative exact diagram

0 K, 1(M+;{\/1/i\G/I—Q\1;/_\Kk1<M- ;{_\0
NSONN N N NS

where, since + is k-connected, it follows using (2.1) and (2.2) that all the
groups not listed vanish. Also by (2.5), the map a: A — G takes the unit to
e,, and the map 8: g — A is induced by intersections with e,. More precisely,
B(x) = ple,, ): this follows from the argument of (2.5), using the definition
of ¢. Clearly a is mono, and since B(f,) =1, 8 is epi; thus K;(M.; A)
vanishes for ¢ + k, and + induces a k-connected map M, — X.

Now K, ..(N, M; A) can be identified with Ker 8, and hence with the sub-
module of G generated by e, ---, ¢,, fi, -+, fr_.. The image of A is the sub-
module of this generated by e,. Hence K,.(M,; A) is a free module, with basis
e, +++, e 1, fi, *++, fro. Moreover, these basis elements can all be represented
by immersed spheres in M_, disjoint from the sphere used for surgery. Thus
essentially the ‘same’ spheres (in (M x 1) M.) continue to represent them in
M . In particular,  and p are unaltered. The result now follows by induction
on 7.

The situation in which we are now nearest to a definitive solution is when
i (M, 0M) — (X, W) is a map of degree 1 of a compact smooth manifold to
a connected finite Poincaré pair, inducing a homotopy equivalence oM — W,
and with dim|M] = 2k = 6. Given the extra assumptions of (1.4) or (1.6),
we can do surgery to make «, k-connected, and then we have the (G, ¢, f¢) of
(3.1). Also, we can always take a = 0 € m,(v) and do surgery; this replaces
M by the connected sum M # (S* x S*), and G by GH AP A, and by (3.2)
we can do this a finite number of times to make G free. Again by (3.2),
is non-singular,

But by (3.3), if (G, ¢, /) has a certain particular form, we can do surgery
to make 4 a homotopy equivalence. We are left with the purely algebraic
problem of classifying structures (G, ¢, ().
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4, The algebraic problem

We first recall the notation which has been used in the preceding sections:
7 is a finitely presented group, A its integral group ring. We have a homo-
morphism w: 7 — {+ 1} and a sign 7(= (— 1)*). The anti-automorphism bar
of A is defined by
(Z,e.m9) 9)” = 22, w(g) M) g™
(where n(g) is an integer, zero for all but a finite number of g € ), and
I={v—n:veA}, V=AI.
Our data consist of a A-module G, a map @: G X G— A, anda map p: G —
V satisfying
(P1) G is a finitely generated free module.
(P2) o is right A-linear; i.e., @(x, y» + ¥'\) = p(x, YN + p(x, YN
Thus we can define Ap: G — Hom,(G, A) by Ap(x) (y) = o(x, y).
(P3) Ag is an isomorphism.
(P4) oy, 2) = 7o, y)~.
(P5) o(z, 2) = (@) + Npua).
(P6)  is quadratic with associated bilinear map o; i.e.,
pan + &'N) = N p@ -+ (e, T+ N
(Note that though V is not a A-module, \~p\ is well-defined for yz€ V and

e A)
The first version of our problem is to find reasonable sufficient conditions
that G admit a free basis e, ---, ¢,, f1, ++ -, f, with

ple;, e;) = 0 (e, ;) = 0i; te) = 0.
We wish to reformulate this, and first make some comments on the nature of
the above axioms (P1) — (P6).

REMARK 4.1. Hom,(G, A) has a natural A-module structure, with
respect to which Ap is an isomorphism of A-modules.

For the anti-automorphism bar permits us to give G a left A-module
structure by defining Ag = gA~. This yields a right A-module structure on
Hom,(G, A). (P4) now shows that Ap is a morphism of right A-modules.

We now concentrate on (P2), (P4), (P5), and (P6).

REMARK 4.2. Suppose e, +--, e, a free A-base of G. Then the values
p(e;, e;) determine @; they may be chosen arbitrarily subject to @(e;, e;) =
ple;, e;)~, provided each ¢(e;, ;) has the form v + nv~. Given o, the p(e;)
determine y; they may be chosen arbitrarily subject to (e, €;) =
1(e;) + npe;)~. Hence @ and pt together are uniquely determined by the
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(independent) choice of the p(e;) and ple;, ¢;) (1 < j) to satisfy the axioms
except (P3).

This corresponds to the elementary remark that, with respect to a basis,
a quadratic form corresponds to a symmetric matrix; the proof is essentially
the same, and is left to the reader.

REMARK 4.8. Suppose that e,, - -, e, form a base of a free direct sum-
mand E of G, and that p(e;, e;) = 0 for all 1 <1, j < r. Then we can find
elements such that e, -+, e,., fi, -+, f» form a base of a free direct summand

Fof G, and p(e;, f;) = 0;;. If also each p(e;) = 0, we may also take o(f;, f;) =
0 and p(f;) = 0.

As Hom,(E, A) is a direct summand of Hom,(G, A), the map of G to it
induced by A is onto. For each j, let f; € G correspond to the homomorphism
E — A with e; —nd,;. Thus @(e;, f;) = 0,;. Let F' be the free A-module of
rank 2r with base e, ---,¢e;, f{, -++, f/, a: F — G the map with «a(e}) = ¢;,
a(f!) = fi. The composite

Hom(a, 1)

F - G 22, Hom,@, &) 22D, Hom,y(F, A)

~ is an isomorphism of free A-modules, as is easily verified. So the image of «
is the required free direct summand.
If now y¢(e;) = 0, we choose for each ¢ some z; in the coset p(f;) < A, and
make the substitution

fi—fi— 7/{(21‘0 ejQD(fjsfi)) + et} .
REMARK 4.4. Suppose (G, @i, tt.) and (G,, p,, ) both satisfy all of (P1) —
(P6). We can define the (orthogonal, direct) sum as (G, + G, ¢, ), where
CP((xu ), (Y1, ?/2)) = @@, Y1) + Do, Y1)
(%1, ) = () + () 5
it is trivial to verify that this again satisfies the axioms. We can now define
a Grothendieck group &. Let F be the free abelian group whose basis is the
set of isomorphism classes {®) of all ® = (G, @, ¢t); R the subgroup generated
by the {® + ¥ — (P> — (W), & the quotient group F/R. Thus & is the
universal group for additive functions on forms ®, with value in an abelian
group. It follows from the definition that, if ® and ®’ yield the same element
of &, there exists some ¥ with ® + ¥ = @' + W,
REMARK 4.5. We call @ a hyperbolic plane if G has a free base ¢, f with
ple, e) = 0, (e, f) = 1. Note that if z(e) = 0, by (6.3) we may suppose z¢(f) =
0, and by (4.2) this determines ® up to isomorphism: we call ® a standard

plane, and a sum of copies of ®@ (or any isomorph) a kernel: these are the ones
we wish to characterise.
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Suppose @ = (G, @, 1) such that G is free, with basee,, - - -, ¢,, say. Define
— ® = (G, — @, — 1), and denote its base by ef, - - -, e/. Then it is clear that
el =e + e, -, e =e, + ¢ satisfy the hypotheses of both parts of (4.3),
hence we can find a kernel, the sum of r standard planes, which is a direct
summand of G + G with complement P, say.

Any element of P is orthogonal to each e/, so if expressed as 3 _e;\; + e\,
must satisfy N; = )\, for each i (by P8), hence be a linear combination of e,
and so zero. Thus ® + (— ®) is a kernel.

Note that it now follows from the last sentence of (4.4), by adding — ¥
to each side, that if ® and @' determine the same element of &, then they
become isomorphic on adding a suitable kernel to each.

REMARK 4.6. The rank of a free (or even projective) A-module G is well-
defined, for the trivial homomorphism 7 — {1} determines a ring homomorphism
A — Z, and we can calculate the rank of the free abelian group G @, Z. The
rank of a hyperbolic plane is 2. Rank is additive, so determines a homo-
morphism & SN 7. We shall see below that the image of this consists of the
even integers. So a right inverse 7’ to r is defined by mapping 2 to the trivial
plane. The cokernel of 7’ (or kernel of r) is the reduced group ®. If ® and
@' determine the same element of &, then they become isomorphic on adding
appropriate kernels, ‘

We can now reformulate our problem quite simply as. determine . A
determination will take the form first, of finding additive functions of forms
®, which vanish on kernels, and so define homomorphisms of ®. We must find
enough of these to give a monomorphism of ® to some (known) abelian group,
and then determine the image of the monomorphism. The ‘reasonable sufficient
conditions on ® referred to in the first formulation of the problem will be
that the additive functions listed all vanish on ®.

We now give some examples of additive functions. They may be divided
into three classes: invariants of

P ®1: (G RzR) ¥ (GRzR) — AR:zR,
invariants of @ itself, and invariants of . We discuss these in the reverse
order.

ExaMPLE 4.7. The trivial homomorphism = — 1 induces a ring homo-
morphism A — Z, which induces a map V — Z,. Write G, for G R, Z,. We
assert that s« induces a non-singular quadratic map f,: G, — Z; indeed, it is
trivial to verify for « € G that the image of p(x) in Z, is unaltered by adding
to  elements of the form 2y or y(1 — g) (y€ G, g€ ). Clearly also, the as-
sociated bilinear map . to /¢, is found by tensoring ¢ over A with Z,, so is



SURGERY OF NON-SIMPLY-CONNECTED MANIFOLDS 239

non-singular,

P5 now shows that, for x € G,, @,(x, ) = 0. As ¢, is non-singular, the
rank of G, is even. Hence the rank of G is even, as we have already mentioned.
In fact G, has a free Z,-basis u,, « =+, %,, ¥, * + -, v, With @.(u;, u;) = p.(v;, v;) = 0,
@(U;, V;) = 045

Our additive function is the Arf invariant of f.,

c(#e) - Eﬂz(uz) #2(”1’) .
It is easily seen that this is invariant: ¢(z,) is equal to that value (0 or 1) which
/t. takes most frequently on the finite set G,. Our form of the definition shows
that c(/s,) is additive and zero on kernels, so defines a homomorphism ec: & —
Z‘l

ExamMPLE 4.8. The simplest invariant of a quadratic form is its de-
terminant. Here, non-commutativity forces us to be a little more circumspect;
an automorphism of a free A-module of finite rank induces one of the free A-
module M of countable rank. The group K,(A) is defined (ef. [28], [1]) as the
commutator quotient group of the group of automorphisms of finite type (i.e.,
the difference from the identity has finite rank) of M.

Take a free basis for G. This determines one for Hom,(G, A), so Ap
determines a matrix A. If the free basis is changed by a matrix B, A becomes
B A B*, where B* is obtained by transposing B and replacing each element
by its conjugate under bar. (P4) shows that A = nA*.

The map B — B* is an anti-automorphism of the group of automorphisms
of the free A-module. So we also have an automorphism * of K,(A). The
matrix A determines an element x ¢ K,(A) with x* = x, since G has even rank
soeven if » = — 1, the scalar matrix 7 is a commutator. The element x € K,(A)
is determined up to addition of an arbitrary element of the form y + y*.

Let us write A(A) for the quotient of the group of symmetric elements
(x* = x) of K,(A) by its subgroup of traces (y* + y). Then the matrix A above
determines a class A(®) € A(A), which is an invariant of . This invariant is
clearly additive; however, it need not vanish on kernels: a standard plane has
the matrix (g (‘)> which does not have determinant 1 even if 7 ={l}and =1.
We write A, for its class in A(A). Then if ® = (G, @, 1t) has G free of rank 2r,
we define the discriminant A(P) = A(p) — rA,. This is additive and vanishes
on kernels, so gives rise to a homomorphism A: S — A(A).

ExAMPLE 4.9. Real quadratic forms are entirely classified by the signature
(the number of positive minus that of negative terms when in diagonal form).
This again gives rise to invariants in our case. The involution bar on A extends
in a natural way to A ®zR, which is a semi-simple real associative algebra
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with involution. Let us suppose also that z is finite, Then A XzR is finite-
dimensional, and so decomposes into a direct sum of simple algebras, which are
matrix rings over R, C or H. The involution may interchange these in pairs
or leave them fixed. The various cases were classified by Weil [26], there are
10 essentially distinct. In each case, the Grothendieck group of modules with
non-singular hermitian form is isomorphic either to Z or to Z + Z; in the Z + Z
case, an invariant analogous to the signature is needed for classification, in
addition to the rank of the module.

Hence for each direct summand of the algebra-with-involution A QzR,
of certain types, we have a signature invariant of @, with integer values; the
collection of all these defines the multi-signature Z(®) € aZ (where « is the
number of relevant summands of A ®zR). This is additive and vanishes on
kernels, so defines a homomorphism

5:6—aZ.

The reader might well expect us at this point to define, or at least indicate
definitions for, a generalisation of the Hasse-Minkowski invariant from
ordinary quadratic forms to our present problem. However, for a unimodular
quadratic form over the integers, all the Hasse-Minkowski invariants for odd
primes are trivial; the ones for p = 2 and p = == are then equal, and deter-
mined by the signature. We suspect that an analogous result holds in general.

It seems to us that the correct method of attack on the problem, at least
when 7 is finite, would be as follows. We must use Hasse's idea of proceeding
from local to global results, and from results over fields to results over rings.
The notion of extension fields does not quite apply (A is not a field), but the
obvious substitute concept seems to work; namely, to consider the tensor
product of A over Z with the reals, p-adic rationals, rationals, and p-adic
integers in turn as the ground ring of the problem. So the ground ring is
always semi-simple, though not simple; or, we have an order (not a maximal
one) in a semi-simple algebra. Note that the invariant = decides the problem
over the reals. We conjecture that the problem over p-adic rationals, p prime
to | |, is trivial.

Alternatively, we can consider the algebraic group (over Q) of auto-
morphisms of a kernel (preserving ¢, t¢), and seek to determine its Galois
cohomology. The classification of principal homogeneous spaces by the first
cohomology group will give our rational classification; then we must use the
validity of the strong approximation theorem in its connected and simply-
connected covering group.

When we have settled the classification of (G, @), we must turn to s«
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Here, we can easily give a theory which is complete in some cases.

LEMMA 4.10. Let G be a sum of hyperbolic planes, and suppose c(ft,) =
0. Then we can write G as a sum of hyperbolic planes with c(p) = 0 for each.

ProOF. We shall write y¢, also for the composite map G — G, — Z,. Let
e:, f: be the standard base of the ¢ hyperbolic plane, so ¢(e;, e;) = 0,
@(e;, fi) = 1. First make the substitution f; — f; — ne, p(f;), which reduces
o(fi, fi) to 0.

By hypothesis, the number of values of ¢ for which the corresponding
hyperbolic plane has ¢ = 1 (i.e., for which e(e;) = t4(f;) = 1) is even. Group
these in pairs, and suppose for convenience that ¢ = 1, ¢ = 2 is such a pair.
Then

ee=e +e fi=1f
6;———62 f2':f2—f1

gives a new decomposition of these two planes into two planes each with zero
Arf invariant, This proves the lemma.,

Now I is spanned by the ¢ — 7w(g) g~*(¢g € 7); in fact, ¢ and g~* give the
same (up to sign), and these form a Z-basis of I. So V is a sum of copies of
Z and of Z,. A Z,occurs whenever g — yw(g) g~ = 2¢; i.e., ¢ = 1l and w(g) =
— 7. Now st + 7y~ = 0 implies that the components of /¢ in the infinite cyeclic
summands vanish. Hence if V has only one summand Z, and this holds, p
vanishes if and only if its image in V& Z, = Z, does.

LEMMA 4.11. If V has no summand Z, every hyperbolic plane is
standard. If V has one summand Z,, every hyperbolic plane with zero Arf
invariant is standard.

ProoF. In the first case, p(e, ¢) = 0 implies z«(¢) = 0. In the second,
either /t(e) = 0 or /,(f) = 0; in the latter case, make the substitution e — f,
f—7ne. But now, by the remark above, ¢(e,e) = 0 and z¢,(e) = 0 imply /«(e) = 0.
The result now follows in either case by the last clause of 4.3.

We list a few examples of the above,

Cases where V has no summand Z,, 7 = 1, and w = 1 (e.g., | 7 | odd).

Cases where V has one summand Z,, ) = — 1 and | 7| is odd, or, 7 has
order 2 and w is non-trivial, '

Case where V has two summands Z,, = — 1, w = 1 and 7 has order 2.
In this case we have the

Complement to Lemma 4.11. If m has order 2, w =1, and = —1,
every hyperbolic plane with zero Arf invariant is standard.,
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PROOF. Let (e, f) be the standard basis, so p(e, €) = p(f,f) =0, p(e, f) = 1.
Since ¢ = 0, we may suppose that s, vanishes on the mod 2 reduction of
e,50 pt(e) = 0 or 1+ T. In the former case we are home by (4.3); the
substitution e — e + f(1 + T) reduces the latter case to the former.

We make one further preliminary remark of a general nature before
turning to particular cases.

LEMMA 4.12. Suppose © finite or free. Let a denote a collection of
invariants of (G, p), additive, vanishing for hyperbolic planes, and such
that a(G, @) = 0 implies that G has a free basis e, « -+, e, with (e, e;) = 0.
Then a (G, @) = 0 implies that (G, p) ts a sum of hyperbolic planes.

PROOF. By 4.3, G has a hyperbolic plane as direct summand: let P be
the complement. Then P is a projective A-module, and the direct sum of P
with a free module of rank 2 is free. Now if 7 is free, any projective A-module
is free by Bass [2]. If « is finite, any projective A-module is the direct sum
of a free A-module and an ideal of finite index in A, according to Swan [18],
so if P is non-zero, its rank (which is even) must be at least 2. By another
result of Swan [19], since the rank of P is at least 2, and P plus a free module
is free, P is itself free.

Hence we can apply the above argument again to P (if P+ 0), and con-
tinue splitting off hyperbolic planes till we reduce the complement to zero..
The lemma follows.

PROPOSITION 4.13. Suppose m = {1}. Then if n =1, we have an 1iso-

morphism a/8: & = Z; if n = —1, an isomorphism c: G = Z..
This result is well-known; we include it for completeness.
Proor. If = —1, p(e, ¢) = — p(e, €) = 0 for any e. If » = 1, the hy-

pothesis ¢(p) = 0 implies that the unimodular quadratic form ¢(w, x) represents
zero (Milnor [12]); hence certainly we can find an indivisible e with @(e, e) = 0;
but, any indivisible element is part of a free basis. By (4.12) we have a direct
sum of hyperbolic planes (provided ¢ = 0 if n» = 1).

Now if » = 1, V has no summand Z,, so every hyperbolic plane is standard
(4.11), If = — 1, V is isomorphic to Z,, so every hyperbolic plane with zero
Arf invariant is standard (4.11). But by (4.10), if ¢ =0, G is a sum of
hyperbolic planes with zero Arf invariant.

This shows that if » =1, o ® —2Z,andif = — 1, ¢:® — Z,, is mono-
morphic. When 77 = — 1, ¢ is onto as p¢(e) = p(f) = 1, p(e, f) =1 determine
(by Remark 4.2) ¢ and y, and it is trivial that ¢ is unimodular. When =1,
@ is an even quadratic form so by [15, 106.1] () is divisible by 8. Moreover,
[11] there exists an even quadratic form (G, p) with signature 8 and de-
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terminant 1, and if we define p(x) = 3p(x, x) we can easily check (P1) — (P6).
This concludes the proof.

Complement. When =1, c=0 and A =1e{x 1}, When n= —1,
> belongs to the zero group, and A = 1 e {+ 1}. We need merely verify these
facts on the examples given above.

We now propose to determine & when 7 is eyclic of prime order p. Let
T denote a generator of . Then A ®zQ = Q[T/T* = 1] is a direct sum of
two fields, isomorphic to Q and to Q[{], where { = exp(27i/p). The ring A
does not split accordingly (it is not a maximal order), but we can use the
splitting as follows. Write A, = Z, A, = Z[{]. Define homomorphisms «,: A—
Ajand a,: A— A, by T—1and by T— {. Then we have an exact sequence

0— A S APA 27, —0

where 8 (m, Y 27 n; {) = Y7 n; — m (mod p) .

G is a free A-module. Denote its tensor products (over A) with A,, A, and
Z, by G, G,, G, respectively. (Z, is made a A-module by the homomorphism
Ba, = — Ba,.) So we have an exact sequence

0— G 5G®G L6, —0.

If w = 1, the involution ‘bar’ on A induces the identity on A, and complex
conjugation (also denoted by a bar) on A,. Tensor product then defines

@o: Gy X Gy—— A, @.: G, X G, —— A,
i Go— V, 11 G — V,

(where the definitions of V,and V, from A, and A, are the same as of V from
A) and of course, if p = 2, p#,: G, — Z,. Invariants ¢ and A for ¢, (and for ;)
can be constructed just as before. In this case, A(p,) lies in the group A(A,)
of real units of Z[{], modulo norms of complex units.

THEOREM 4.14. If p =2, 7 =1, ¢ = 1, then (30(p,), to(@)): & = Z + Z.
If p =2, otherwise, ¢:® = Z,. If p is odd, ® determines zero in & if and
only if o(@) = 0, Alp) = 1, and (if 7= 1) a(p) = 0, (if p= — 1) ¢ = 0.

PRrROOF. Let us first of all suppose ¢ = 1 (necessarily true when p # 2).
Then Theorem (4.13) tells us that G, is a sum of hyperbolic planes, provided
(if » = 1) that o(p,) = 0. If p = 2, the same applies to G,. Hence we turn to
G, when p is odd. The ground work here was done by Shimura [16].

First we consider equivalence over Q[{]. By [16,5.8] a(p,) = 0and A(p,) =1
imply that @, is isomorphic over Q[{] to a kernel. Shimura proves this in
the hermitan case, but we may convert the skew-hermitian case to it by
multiplying values of ¢, by the purely imaginary { — {~*. This is not a unit,
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so the resulting form is modular, but not unimodular,

Next we consider equivalence over the local rings Z,,[{] (where Z,, denotes
the ¢-adic integers). Since these are prinecipal ideal rings, torsion-free modules
are free. We have a vector space V = G, ®zQ, over Q,[{] with a free base
e, <+, e, fi, -+, f] such that p(e}, e}) = p(fi, i) = 0, @lei, f}) = 0;;. Let K
be the subspace spanned by ¢, ---, ¢.. We regard G, ®,Z, = Gj as a lattice
in V. Let H, = GiN K. Then G;/H, is torsion-free, and so free, so H, is a
direct summand of G;. Hence G] has a free A, Q;Z,-basis e, -+, e,, f1, -,
f» with the ¢, in K and so @(e;, ¢;) = 0. The same proof as in (4.3) now shows
that G is a sum of hyperbolic planes and (as in 4.10) it follows that each is
standard for . (We have given our own proof since, in the ramified case ¢ =
p, our lattice is not maximal.)

By [16, 5.24], each genus g contains [C: €,] x [€(g): f,(E;)] classes of
lattices over Z[{] = A,. Here, € is the ideal class group of Q[{]. It is seen
from the proof of the theorem and from [16, 2.15.1] that the first obstruction
vanishes when we have a free A,-module G,. As to the second, we assert
G(g) = f,(E,). For by [16, 4.18] since the only ramified prime—({ —1)—is odd,
| (g) | = 1 or 2. By the proof of [16, 4.16], &(g) is generated by the image of
( — 1) under @ —a'a", i.e., by — {~'. But this is in E,, so the index is 1
as asserted.

Thus our hypotheses imply G, a kernel over A,, as well as G, over A,. We
must now return to G. By Lemma 4.12, to show that G is a sum of hyperbolic
planes, it will suffice to prove that G has a free basis ¢,, - - -, ¢, with ¢(e,, e,) = 0,
or even that e, G generates a free direct summand. It will then follow
from 4.10, 4.11, and its complement that (still assuming w = 1), our hypotheses
imply that G is a kernel. Let us call an element which generates a free direct
summand primitive, and if p(e, ¢) = 0, call ¢ isotropic. :

We assert that an element of G is primitive if and only if its images in G,
and G, both are; moreover, our exact sequence shows that a pair of elements,
one from G, and one from G,, have a common antecedent in G if and only if
they have a common image in G,. To prove our assertion, let e ¢ G determine
e, € G,, e, € G,, which generate free direct summands Ae,, Ae,. If we choose
retractions, we obtain a diagram

0—G@—GeG—G,—0
0— A— APA —> A, —0;

if the composite map G — A, vanishes, we have an induced map G — A with
e — 1, so e is primitive. So we choose a retraction G, — A,; the composite
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G,—A,— A, =Z, necessarily factors through G,/({ —1)G,=G, (since ({—1)"/p
is a unit), so also defines a map G, — G, — Z,; and ¢, — 1. As G, is free abelian
with e, primitive, we can lift this to a map G, — Z with ¢, — 1, as required.

Now G, and G, being kernels, certainly contain primitive isotropie vectors;
these reduce to non-zero isotropic elements of G,. We assert that, conversely,
if the rank r of G is 2, every non-zero isotropic element of G, arises from a
primitive isotropic element of G,; if » = 4, it arises from a primitive isotropie
element of G,. Thus in any case, we can find a pair (e,, e,) of primitive isotropic
vectors in G,, G, with common image in G,, and so defining (as required) a
primitive ¢ € G which is clearly isotropiec.

First let » = 2, and (¢, f) be a standard base for G,. Any isotropic vector
of G, is the reduction of either re or rf for some ». Hence it is also that re-
duction of ¢(3_7" (') which, as Y7'7' (' is a unit, is primitive. Now let » = 4.
Then the group of automorphs of G, is transitive on isotropic vectors, and
each automorph of G, is the mod p reduction of one of G,: our assertion follows
at once from these two facts. The proof is virtually identical with that of
[21, Th. 1] (in the case » = 4): the formulas for a, 3, v, 8, &', ¢ define auto-
morphs of G, and of G, and the group on G, is transitive on isotropic vectors,
hence (by the proof of the Corollary) the whole group of automorphs. The
extension to higher values of » is immediate.

We must now return to the case when w = — 1, and so p = 2. Here,
bar does not induce involutions of A, and A,; instead, it interchanges them.
Hence ¢ induces, not forms on G, and G, but a non-singular pairing
¥: Gy X G, — A,. For if a,(z) = a,(z') and a,(y) = a,(y'), we can check that
P@', ¥') — p(x, y) is a multiple of T + 1, so ayp(x, y) = a, p(&’, y'). As before,
the mod 2 reduction of + is the bilinear map ¢,: G, x G, — A, associated to fz,.
Choose a basis h,, «--, h,, b, --+, bl of G, with @y,(h;, h;) = @,(h}, h}) = 0,
Po(hiy BG) = 0;;. Lift to a free basis g, -+, g,,9}, -+, g’ of G,. Let the dual
(with respect to +) basis of G, be f,, -+, f,, fI, -+ +, f!. These elements have
mod 2 reductions hj, - - -, i, ’hl, +++, h,. Hence G has a free basise, ---, ¢,,
el, «+ -, & with a(e) = (9;, f1), a(e}) = (¢}, fi). Then a, p(e,, €}) = ¥(g;, f;) =
0;;, and

& ples, €5) = a, plef, )™ = ¥ (g5, fI) = 65 = 0y,
80 @(e;, €;) = 0;;. Similarly, p(e;, €,) = @(é}, ¢;) = 0. So, without any assump-
tions, G is a sum of hyperbolic planes., Lemmas 4.10 and 4.11 now imply that
if ¢ = 0, G is a kernel.

It remains to give examples which show that our invariants can be non-
trivial. That ¢ can be non-zero in the stated cases follows from (4.2), which
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shows that the Z,-components of the values of /£ on the basis elements can be
chosen independently of . Now let p = 2, =1, w=1. That o(p,) and o(p,)
are both divisible by 8 follows as in (4.13). Examples with o = 8 were
constructed there,

Now suppose given ¢,: G, X G, — A, and ¢,: H, x H, — A,, satisfying the
(modified) (P1) — (P4). These induce (via tensor product)

Cpp:GPXGp—'—)Ap (P;):HPXHP—__)Ap,

which are just non-singular symmetric or skew-symmetric forms over Z,, of
the same ranks as G,, H, which we may suppose equal and even, Then in the
skew case, @, and ¢} are necessarily isomorphic; in the symmetric case there
are two types, distinguished (if p is odd) by diseriminant, or (if p = 2) by the
existence or not of a corresponding y. If we assume an isomorphism, we can
define G as the kernel of the difference map G, + H, — G,, and the restriction
of @, + @, to G will then necessarily take values in A and satisfy (P1) — (P4).

5. Surgery in the middle dimension: case m = 2k — 1

We return again to the problem of § 1, where we are doing surgery on a
map ¢: M™ — X, and m = 2k — 1. By the results of §1, we can do surgery
to make + (k — 1)-connected, but to go further needs a more detailed argument,
For although given an element 2 of G = m,(y), we can imbed a sphere re-
presenting x and do surgery, this will not necessarily simplify G: the exact result
will be discussed below. In fact, by the remark preceding Theorem (1.4),
determines a regular homotopy class of immersions, and we can use any
imbedding in this class, but different imbeddings will in general lead to
different results.

Consider a regular homotopy H: S*~' x I— M*~* x I between two imbed-
dings. We may suppose H in ‘general position’, so that its image has (at most)
isolated double points, with transverse intersections. To count these, we adopt
the same conventions as in §3 for spheres. Then the self-intersections of H
will be measured by an invariant p in the value group V = A/I.

If ¢ vanishes and k& = 3, the same technique as in §3 can be used to
remove the self-intersections of H, keeping the ends fixed, and also keeping
H level-preserving, so that in this case the spheres are isotopic. We omit the
details as we shall have no need to use this result. We do not assert that if
1t # 0 the spheres cannot be isotopic (this is in general false).

However, if £ = 2, given an imbedding f: S*' — M and pte V, we assert
the existence of a regular homotopy of f with self-intersection z«. For since
V = A/I, it is sufficient to be able to obtain any element of A: since we can
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always follow one homotopy by another, and # is then additive, it is sufficient
to be able to obtain any + g, gew. An example, with k£ = 2, of a regular
homotopy with self-intersection + 1 is given if we have a knot of S*in R?,
described in the usual way [5] via a projection on R? with some double points
where one branch crosses over another. For our regular homotopy, we seize
the lower branch at such a point and move it upwards, cutting through the
upper branch as we do so. Similarly, for any value of k, given two (k — 1)-
dises in R*~!, we can isotope one to lie ‘underneath’ the other, and then move
it upwards cutting through the other at one point. Now, to obtain our general
regular homotopy, we take two discs near the base-point of S*!, move one
round a loop in M, representing ¢, and disjoint (except at the ends) from S**
(here is where we need k = 2), and then perform the above construction in a
neighbourhood of the base point.

We observe that the imbeddings and immersions under discussion are all,
strictly speaking, based and framed. For example, although any two (2 — 1)-
spheres in R*~" are isotopie, if we take a regular homotopy with self-intersec-
tion pe V=17 from a (2l — 1)-sphere to itself, we return with a framing
altered by the image of ¢ under Z = 7,,(S*) —a*—mz,_l(SOu). This explains the
relation of our /¢ to the framing used by Kervaire and Milnor [10].

Now that we know which surgeries are possible, we must check what
effect they have on the group G which we are trying to kill. We shall use the
notation introduced for (2.1) and (2.5). Also, let f_: S*™* x D* — M_ be the
map used for surgery; f.: D* x S*'— M, the complementary map. We have
the commutative exact diagram

/j/_—\/_\/\

K M) }N Q K (M) /9
voi(N,ON) Kk(N) KN, ON\\ Ky 1«(N)
K(M) KN, M) K (M) \

\_/\_/\_/\__/

where the coefficient module A is understood. Also, f.(D* x 1) represents the
generator of K, (N, M_) = A, and f_(1 x D*) that of K,(N, M,) = A; we write
¢_, €. for their images in K,(N, 0N); «_, «, for their imagesin K, (M_) = G_
and K, ,(M.) = G, respectively. Note that e_ generates the kernel of
K, (N,oN)— G.; similarly for e¢,. The map K,(M,) — K, (N, M_) = A is
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induced by intersection numbers with «,: y — 2, ~y. There are duality rela-
tions, such as K,(M,) = K*\(M,) = Hom,(K,_,(M,), A) = Hom,(G,, A). All
these results follow from § 2, particularly (2.5). Also, again by [23, Th. A],
G_ and G, are finitely generated: this is almost all we can say about them as.
modules,

Any « € G_ determines two ideals of A, namely
A(x) = e A:an = 0}
B(x) = {f(2) | fe Hom\(G_, M)}:
A(z) is a right ideal, B(x) a left ideal.

We have just observed that K,(M_) = Hom,(G_, A), so B(x) consists of
intersection numbers y—~x. Its conjugate B(x)~, consisting of all x—~y, is the
image of K,(M_) — A, or the kernel of K,(N, M,) — K,(N, 0N) above (if we
do surgery starting with ), hence B(x_)~ = A(e.).

We call « (provisionally) a torsion element of G_ if B(x) = 0. The torsion
elements of G_ form a subgroup G*; the intersection of the kernels of all
homomorphisms G_ — A,

Now assume 7 finite. Then B(x) = 0 if and only if A(x) contains some
non-divisor of zero, and hence some non-zero integer. Write A = Q ®zA =
Q[r]; then A is an injective A-module. (Analogous results can be obtained
when 7 is the infinite eyclic group generated by ¢ by writing A = Q(t), but
the general case is not yet clear: we think that it should be sufficient to take
A as the injective envelope of A (as A-module) when A is noetherian.)

For our detailed discussion, we shall need to use linking numbers. Write
J = {v + (— 1)*D: v e A}, in analogy to I. We make the

HYPOTHESIS 5.1. M™ is a connected compact manifold; (X, W) a Poincaré
pair, 4 (M, 0M) — (X, W) is of degree 1 and induces a homotopy equivalence
oM — W and a (k — 1)-connected map M — X, m = 2k — 1; there is a map
o as in §1. Also, k = 2 and 7 s finite.

THEOREM 5.2. Under (5.1), linking numbers define a mon-singular,
(— 1) -hermitian bilinear form b: G* x G* — A/A. Self-linking defines a
homogeneous quadratic map q: G* — AJJ, with associated bilinear map
b+ (— 1)*b~. Moreover, if we do surgery on x€G*, and M€ A(x), e_N =
e.(q(x)N), where diﬁerent determinations of q(x) correspond to different
spheres representing x. Also, if j € K,(N, ON) maps toy € G*, and N, € A(y),
we have Yn, = €. (b(y, ¥)\,), where the different determinations of b (y, x)
correspond to the different choices of y given y.

PrROOF. The exact sequence 0 — A — A — A/A — 0 of coefficient modules
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induces exact sequences for M in homology and cohomology:

0 — Ky(A) — Ku(A) = Ku(AJA) —2— Ko (A) == K, (K) — Ky _(AJA) — 0
In n n n n n

0 — K*'(A) — K*'(&) = K*1(A/A) — KH(A) —— K*(R) — K*A/A)—0 .

We can identify G* with the kernel of v, hence with the image of 8, or

cokernel of «, or of a’. But we have already remarked in §2 that, (by left

exactness of Hom,) K*(B) = Hom,(G, B). Now we also have an exact
sequence

0 — Hom,(G, A) — Hom,(G, A) N Hom,(G, A/A) — Exti(G, A) — Exti(G, A)
where the last term vanishes since A is injective, so the cokernel of a’ can
also be identified with Exti(G, A). We shall make yet a third identification.
Let 6: Hom,(G, A/A) — Hom,(G*, A/A) be the obvious map; since G* is torsion,
any homomorphism to A (or to A) is zero, so da’ = 0, and ¢ factorises through
the cokernel, inducing a map G* — Hom,(G*, A/A). This defines the required
bilinear map b. To prove it an isomorphism, and so b non-singular, we use
the two exact sequences

Hom,(G*, A) = 0 — Hom,(G*, A/A) — Ext}(G*, A) — Exti(G*, A) = 0.

Ext\(G/G*, A) — Ext\(G, A) — Ext{(G*, A) — Exti(G/G*, A) .
The extreme terms of the second sequence vanish since G/G* is torsion-free,
hence Z-projective and ([4, XII, 1.1]) A is weakly injective, so we can appeal
to [4, X, 8.2a]. Putting the results together gives isomorphisms

G* — Exti(G, A) — Ext(G*, A) «—— Hom,(G*, A/A)

whose composite is the map constructed above.

We next relate b to surgery. For this we combine the surgery exact

sequence arising from M_ — (N, M,) — (N, 0N) with the short exact sequence
of coefficient modules A — A — A/A: we obtain the diagram

KN M 1) K (N,0N; 1) K (N, oN; 1) Ky (M5 1)
K, |(N,aN; 1.1 K,(N, M. :1) K, _(M_; .1 K, (N, 8N 1)
K.(M_ ;.1 KM ;1. KN, M_: 10D Kj (N, M5 )

Since N is obtained from M. by attaching a single k-handle, we know the
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relative groups of (N, M,). Also, the homomorphisms into these are given
(2.5) by intersection numbers with x; recall that in our case, » is torsion, so
the map to A is zero. Hence we can rewrite the diagram as

s

/1\ K,(N,8N; 4) K, (N, 6N§< GRA1

KN, a]>/7/11)< I ><G K (N, oN; A1,
0

K.(M_; 1) K, (M_; A]4) Aj4 0.

Now given yeG*, y— 0 in G® A, and so lifts to some element te
K. (M_; A/A). By definition, b(y, ¥) = t—a, the image of ¢ in A/A. But y also
lifts to 7 € K.(N, dN; A) which has image, say, y € K(N, oN; A). By com-
mutativity, the image of ¥ in G @ A is the same as that of y, i.e., 0, so y lifts
to a unique element 5 e A. We assert that 3 has image b(y, ¥) € A/A; this can
be seen by a prolonged diagram chase.

Now Y\, = 0, 80 ¥, lifts to some element of A; since the maps A — A—
K,.(N, 0N; A) are both monomorphisms, this element must be just Bn,. This
proves the last assertion of the theorem, since the choices of 7 and of 5, given
y, can only vary by the image of some element of A.

The form b is related to geometry as follows. Let x, y e G, M e A(v). We
can represent @ and y by spheres & and 7 imbedded disjoint in M. Asaxn =0,
&\ is a boundary; say &n = 9{: we can choose the k-chain C to meet 7 trans-
versely, so the intersection invariant ¢, = p~( is defined (as in §3). If {is
changed, ¢, is altered by an element of B(y), so if y is torsion, ¢, depends only
on &, 7, and . Also, clearly, ¢, = 6,0, S0 A — ¢, is a module homomorphism
A(x) — A, and if x is also torsion, this extends uniquely to A — A; the image
of the unit can be defined (for example) as (1/7)¢,, where r € Z 1 A().

If ¢ is changed, say to & 4+ 6%, we can change {, to { + {\, so ¢y is
changed to ¢, + (p~,)\; similarly if 7 is changed to 7 + oz, the change is
0t ~L = 3(Te—~C) + (— 1) 7,~3¢ = 0 + (— 1)*(z,~E\. In either case, the
resulting (1/r), € A is changed only by an element of A, It is now clear that
its class in A/A is precisely b(z, y). We have only to observe that the inter-
seetion numbers used here are equivalent to (and essentially the same as) the
duality isomorphisms in our first version of the definition.
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To obtain the symmetry property of b, write &r = 0{, s = dt; then using
(as in the preceding paragraph) the fact that the boundary of a 1-chain always
has zero Kronecker index, we have

0 = d(z~0) = oc~L + (— )"t~

= ot~C + (— 1) (0l ~7)~

= ps~L + (— 1) (ér—~7)~

= s(p~0) + (— D 'r(é~7)”

= rs{b(x, y) + (— 1)* by, x)} mod 7s A ,
so b is (— 1)*-hermitian, as stated.

To obtain q, we must be more precise. If x€ G is represented by £, ¢ is

a framed immersion (or imbedding) of S*~*, We obtain &’ from & by moving a
small distance along the first vector of the framing; then & and ¢ are disjoint.
Taking & for & and & for 7 above we obtain, if A = 0, an element ¢, of A.
Now any other representation of x is regularly homotopic to &; we have
moreover analysed regular homotopies. Note that since the track of a regular
homotopy with point self-intersections is homotopy equivalent to & with 1-
cells attached, we may suppose the track disjoint from . Write 7 for the
track of the regular homotopy, »’ for its deformation along the first vector of
the framing. Then if &, &, are the initial and final positions of &, we have

ol = &N, 68 =&~C, oy =& — &,
s0 0(C + 7'N) = &I\,
6=~ + 7N =&~ + (& — &)~ + E—~7)h.
Here, the first term is ¢}; the second is
om~L = (— 1) p~ol = (— ) p~&n .

So ¢, — & = vn, where v = & ~7 + (— 1)* (p—~&;). But here we have been
considering only the track of the homotopy; now recall that self-intersections
were originally computed inh M x I. Let 77, 77’ denote the regular homotopies
in M x I, projecting on 7 andz’. Let /¢ be the invariant of the homotopy, i.e.,
the self-intersection invariant of 7 (as in §3), and 7—~7' = ¢ + (— 1)*u. But
since 7’ is isotopic (relative to its boundary) to & x IUy" x 1,

7~7" = 7~(& x Iuy x 1)
= & (p~&) = (&~7)

where considerations of orientation show that the signs (— 1), 1 must be
taken. Thus, finally,

A== (i (— DN
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showing that, in particular, (1/r), is changed by exactly g + (— 1), a
typical element of J, Hence we are at liberty to write ¢(x) for its class modulo
J.

We pause to mention that of course ¢(x) cannot be an arbitrary element
of A/J: it must in fact be a torsion element. For if r» = 0, we have seen that
0=1¢ + (— D¢, so 2¢,eJ, and 2rq(x) = 0. Also, it is clear from the
definition that modulo A, q(x) reduces to b(x, x).

It is evident that ¢(— x) = q(x). To establish the quadratie character of
q, we represent @ and y by imbedded spheres ¢ and », and join by a tube to
find a sphere representing x + y. We also have a parallel tube joining &’ and
7/. Choose r such that ro = 0 = ry, and write r&" = 9(, »y’ = dc, where {
and 7 may be supposed disjoint from the tubes, and meeting ¢ and 7 trans-
versely. Then for the sum of &’ and %', we use { +  plus » times a solid tube,
disjoint from the tube joining & and . Then » q¢(x + y) is represented by the
intersection of this with the ‘sum’ of & and 7, i.e., by

E+n~C+o)=~L+p~L+ i~ +n~7.

Here, the first and last terms represent rq(x) and rq(y). The second represents
rb(x, y); moreover, we saw above that
r{in~C + (=D (¢~} =0,

so the sum of the two middle terms represents »(b(z, y) + (— 1)* bz, y)™)
modulo 7J, and not merely modulo rA. Hence dividing by =, we obtain,
modulo J, the equation

(@ + y) = q@) + q(y) + bz, y) + (— b=, y)™,
as asserted.

It remains only to relate q to surgery. We will first give a geometrical
account of the relation of b to surgery. Let yx, =0, and let the disjoint
imbedded spheres, &, » represent x, y. We form N from M x I by attaching
a dise § to & x 1, and thickening, so M_= M x 0. Thus y lifts to y¢
K. (N, dN) represented by n x I. As yn, = 0, we can write )\, = 0. And
N, lifts to a class ye K (N, M,), represented by (n x I)N, + 7 < 0. But
KN, M,) = A, the isomorphism being given by intersection numbers with
J. So Y\, = &, a, Where

a=0~{(n x I)\ + (z X 0)} = o~(t X 0) = &~7 = b(y, ¥)\, .

Now recall that ¢_ is the class of D* x 1, or ¢, in K, (N, oN). The
boundary S*~!' x 1 is just the sphere we have called & (or & x 0). We have
ax = 0, and write &x = 6. Then e_\ is the image of the class ¢ in K, (N, M)
represented by (— d'n + {); and ¢ is B times the generator, or e .\ = ¢.8,
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where
B =0~ — N\ =0~L =E~L=qx)\.

(Note the sign —d’\; the map K, (N, 0N) — K, _,(M_) was defined as minus the
boundary map.)

This completes the proof of the theorem,

We have now described our linking numbers and shown how they influence
surgery. Next we will try to formulate necessary and sufficient conditions for
killing the group G. First suppose that it is possible to do a sequence of
surgeries on M = M_, giving a cobordism N of M_ to M., and extending )y
to a map N — X, whose restriction to M, is a homotopy equivalence. Choose
also a map N— I with M_— 0 and M, — 1. The product gives a map of
degree 1 of Poincaré triads (as in § 2).

i (N, M_, M., 0M x I)— (X x I, Xx 0, X x 1, Wx I)

where 0M x I may be adjoined to M_ or to M, (similarly for W x I). As
dim N = 2k, we can perform surgery until +, is k-connected. The exact
sequences (which hold by (2.2)) now show that all K-groups of N, of (N, M_),
of (N, M,) and of (N, 0N) vanish except in dimension k. Now by (2.4), these
groups (with coefficient module A) are all projective A-modules, and if X and
W are finite, we can add finitely generated free modules to make them free,
We perform surgery on (k — 1)-spheres imbedded trivially on N a number of
times (in fact once is erough, if 7 is finite): this adds A € A to each module,
s0 we may suppose them free,
Thus all that is left is an exact sequence

0 KkM KkN Kk(N, M) e Kk—lM———) O y

where K,N = K (N, M,) and K,(N, M) = K,(N, oN) are dual to each other,
and hence are free modules of the same rank, The map K,(N)— K, (N, M)
corresponds to a bilinear form on K,(IN) with values in A; this, of course, is
none other than the pairing @ which we studied in § 3. Here, of course, it is
no longer non-singular, but the proof of (3.1) includes this case.

LEMMA 5.3. In the situation above, the form @ on K,(N) determines b
and q on G* (G = K,_(M)) as follows: Let x, ye G* lift to T, yc K, (N, M).
If ox = 0, lift T to x € K (N), and write ¢, = <y, y. Then thet, determine
b and q as in Theorem 5.2; i.e. if ra = 0,

b(x, y) = (1/r)e, (mod A), q(x) = (1/r)<Z, x> (mod J) .

ProOOF. Let ¢ be a sphere representing x, and £ a k-chain of (N, M) (or
rather, of the universal cover) representing %, with 02 — — &, Similarly,
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define » and 7. Now a\ = 0, so we can write &\ = 0 for some k-chain { of
M. Then ¢ may be taken as the class of &\ + £, and <7, > = T~ + () =
M—&) N + -~ so that (1/r), calculated as above differs from our previous
value only by (7~&) € A. Thus the assertion about b is correct.

As to g, we first note that since x — 0 in K,_(N), & is regularly null-
homotopic in N, and bounds an immersed disc & where — £ represents some
choice of Z € K,(N, M). Moving this parallel to itself (as usual), we obtain &',
with boundary &. Set 0 = &x. Then — & represents Z, (— &\ + () represents
some z, and the intersection is — (E~&) N + (E~0) = — (E~&) N+ £~L. But
here again, £~&’ is (as in § 3) an element of J, and §~( is the same ¢, as we
used before. Thus we obtain the correct value of g(x).

To complete the lemma, we show that altering the choices of Z and x will
only alter <Z, x> by an element of Jx. For if we add to # the image of z (and
hence to Z)\ the image of z\), and to x add Z: plus w (where w goes to 0 in
K.(N, M)), we replace <z, ) by

(T + Ap(), © + an + w) = (B, &) + <&, 2)N + @(z, @) + 2, 2\,
since w is orthogonal to K, (IN). Now ¢(z,2)ed, oz, ) = (z~Z)», and
(T~2) + (#—~Z) e J by the symmetry property of intersections.

The main result of this chapter is a partial converse of the above lemma.,
Before we go on to prove this, however, we give another result, similar to the
above, which arises as follows. We are developing a sort of cobordism theory
for the manifold M. In usual cobordism theory, the cobordism classes form a
group, and the inverse of a manifold is given by the same manifold with the
opposite orientation.

LEMMA 5.4. There exvists a finitely generated projective A-module P,
which may be supposed free if X is finite, and an exact sequence

0 — K (M) @ Ku(M) — P2 Hom (P, A) — GH G — 0,

where (as in §3) Ap is associated to a (—1)*-hermitian bilinear form . On
G* P G*, pinduces b — band ¢ P — q.

ProOF. The proof is almost the same as that of 5.3. However, instead of
starting with a cobordism of M to a manifold M, with + a homotopy equiva-
lence, we start with the product M x I (for which + is already (k — 1)-
connected) and do surgery to make + k-connected. We then have the exact
commutative diagram



SURGERY OF NON-SIMPLY-CONNECTED MANIFOLDS 255

TN

K,(M,) K, (N, M_) K, (M_)=
0/ \K — \K (N, oN) - \
k AT S]
K (M_) Ky(N, M) K, (M,)=G

\/

in which, by (2.4), the middle four modules are all projective and, as in (5.3),
can be made free if X is finite. Also, K,(N, oN) is dual to K,(N): we write
P = K,(N); then K,(N, 6N) = Hom,(P, A).

We observe that the sequence

0—— Ki(M_) — Ki(N) — KN, M) — G ——0

resembles closely the sequence in (5.3), but here the two middle modules,
although free, are not dual to each other,

From the above diagram, however, we can extract the Mayer-Vietoris
sequence

0— K,(M.)D Ki,(M.) — K (N) — K(N,oN) — GHG— 0,

which is the desired sequence. It remains to identify the bilinear and quadratic
forms on G* @ G*. The identification proceeds as in the previous lemma, if
we note two points. Firstly, the two copies of G* are orthogonal for the
induced b. For, if ve K, ,(M_)* and ye K, _,(M.)*, we can lift © to Ze
K,(N, M_) and y to y € Ky(N, M,). If xx = 0, Zx lifts to x € K,(N). Now ¢,
is the intersection of the image of 7 in in K, (N, M) with x, which is the same
as the intersection of  with the image ZX of @, so ¢, = (~Z)\». Thus b(x, y)=
0 (mod A).

Secondly, the induced b and ¢ on K, _,(M,)* have the opposite signs from
what we had before, in wiew of our sign conventions about the maps
K, «(M,) — KN, M) — K,_,(M_).

We observe that (in the case when G is a torsion module) the existence of
an exact sequence 0 — P— F'— G — 0 with Pand F projective is equivalent
to G being a cohomologically trivial A-module. It is not clear whether this is
significant in the present context.

We are now ready for the partial converse to (5.3), which is the main
result of this chapter.

THEOREM 5.6. Assume (5.1) and k = 3; suppose G finite. Then surgery
to kill G = K, _ (M), and so make +r,, a homotopy equivalence, is possible if
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and only if there is a finitely generated free A-module F, and a mon-
degenerate (—1)*-hermitian bilinear map @: F x F— A and pt as in (3.1),
such that there is an exact sequence (of A-modules)

A ®
0 — F 2% Hom, (F, A) —2 K, (M) — 0
such that @ and p induce b and q on G (as in (5.3)).

ProoF. Necessity of the condition was established in (5.3); suppose then
that it is satisfied. Write F' for Hom, (F, A); choose a basis e,, + -+, ¢, of F'
and the dual basis é,, - - -, é, of F. If we are to use the above in analogy with
(5.3), we must do surgeries using the classes ®(é;). It is more convenient to
perform them all together than separately.

Since it is not clear which isotopy class of imbeddings in the regular
homotopy class determined by w(é;) ought to be used, we start with a com-
pletely arbitrary such imbedding &; for each ¢, and perform surgery. Let us

_compute the result. We shall temporarily denote the resulting manifold by N,
and write M = 6_N = M_, M, = 3, N. We shall have the diagram of exact
sequences, which would be commutative if the map Ap were omitted,

/—\ 0]
.

. ,
ACL

K (M) F= KN, M) K, _(M)=G
o K (N) Ay K, (N, 0N) 0
7
K, (M) F=K,(N,M.) K (ML)

AN

<Note that if in this dlagram i_o(Ap) = 1., it follows (since by the Mayer-
Vietoris sequence i_ € i, is onto) that i_ is onto, so K,_(M,) =0, and we
have attained our objective. Thus we must investigate the deviation of the

triangle from commutativity, and then (if necessary) re-choose the spheres 2;
to force the diagram to be commutative,

Write Ap(e;) = é;1;; (with the dummy suffix convention). Since this is
sent to 0 by w, the cycle &£;\;; in M is a boundary. Write d{; = &;\;;, Where
¢, is a finite k-chain in M. Now also we have — & = 00; where the d; are the
cores of the attached handles. Thus Agp(e;) lifts to the class f; in K. (N)
represented by the cycle (in N) 6,0, + &. If we could choose this to have
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image e, in F, our triangle would be commutative (for ¢; and Ap(e;) would then
both have the same image as f; in K,(N, oN)). Now the image in F' is de-
termined by intersection numbers with the generators of ¥'. We must use &
rather than 6, as chains representing the generators, so that intersection
numbers shall be defined. Then our image in F'is e, tt,;, where
i = 0.~(0;N + &) = 0, ~8 = — &—~C;

since the &, and &, are all disjoint in N (so all their lifts are in N). We observe
that this description of f; is closely related to linking numbers in M.

Next we recall how to change the £;. Each can be subjected to a regular
homotopy with arbitrary self-intersection invariant v; in A/J. In addition,
these homotopies may meet each other; we assert that the mutual intersection
numbers p;; € A (i < j) may be chosen independently of each other and of the
v;. Indeed, this follows at once from the same argument as was used at the
beginning of § 5 to establish that the v; could take arbitrary values. The other
intersections are determined by the formulas p;; = (— 1)*05;, 0:: = vi+(—1)*v;.

Now perform regular homotopies with tracks 7, in M x I, projecting to
7: in M. Then we can write dy; = & — &. Set {} = {2 + n;\;;. This has the
correct boundary &jn;;. The change in the /’s is given by

/"}ci — M = & ~0 + (5};’*77]‘)7\% — & ~0.
The sum of the first and third terms here is
& — &N~0 = o~ = (— D 9i—~08 = (— D* (i—~EDNji
)

thi — i = (&8~ + (— DFpi~EN;
= (Di~0 ) Nji = OuiNji

by an argument above. We wish to make our choices so that y}; = d,; for
then, as noted earlier, i_ o Ap = 7., and the surgery Kkills the group G.

Now by hypothesis, G is a finite group, hence for some positive integer
r, rG = 0. We can then write r¢; = 6Z;,. Now »{, — &,\;; is a k-cycle, and so
has zero intersection numbers with the 2, which represent torsion classes.
Thus

it = &~ = E~&;Nj; = Ol
if we write 0,; = & ~Z;. Note that the f,; are independent of the choice of
the {’s in this case. Also, (1/r)o,; = b(x,, x;) (mod A), by the geometrical
definition of . On the other hand, by hypothesis, if ré; = Ap(e.x,;) we have

b(x,, ©,) = (1/r)k,;(mod A). So (0,; — K;;) € A, and \;;&,, = 79;,, S0 we have
inverse matrices.
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We now choose o;; = (1/r) (£;; — 0;;). Then
Tl = T A TON = T+ (B — Or)Nji = Exhji = 704

and ft}; = 0,; as required. To justify this choice, we note that, since the
matrix A;; is (— 1)*-hermitian, so is £,;, and ¢;; is also, for

1oy = r&~E; = 06,~&; = (— 1) §;~08; = (— 1) {05, ~E,;}
= (— ¥ roj; .

Thus p,; has the requisite symmetry property. Finally, we must verify that
0::€ J. But this is immediate since q(x;) = (1/r)k;; (mod J) and also = (1/r)o;;
(mod J),

It is not quite clear how to generalise the above to the case when G is no
longer torsion. Perhaps some more refined linking numbers would be neces-
sary.

We can deduce some corollaries from the above argument, regarding
surgery of torsion groups. Let I' denote a triple (G, b, ¢) where G is a finite
A-module, and b and ¢ are as in (5.2). We can define the sum I' + I" of two
triples by taking the direct sum of the groups and quadratic maps, and the
orthogonal direct sum of the bilinear maps; and the negative —I'" of a triple by
changing the signs of b and q. Write I'~0 if I satisfies the condition of (5.6).
Then (if X is finite), (5.4) shows that we are only interested in triples I' with
'+ —1'~0.

We form the Grothendieck group of all triples I with I' + — 1'"~0, modulo
triples I'~0. Then I' determines zero in the Grothendieck group if and only
if for some triple 1V~0, we have I' + 1V~0; this follows by an immediate
induction from the definition.

LEMMA 5.7, If I"~0and I + 1I"~0, then T'~0. Thus the obstruction
to surgery presented by I depends only on the class of T in the Grothendieck
group.

Proor. Let the given exact sequences be

®, ~ oy

0 A A G H—0
0— BB " H 0,

where @, and ®, are associated to ¢, and @,. We shall regard &, and P, as
inclusion maps, so the dual pairing of A and A extends the pairing @,; we
extend it in turn (in the obvious way) to a pairing of A with itself into A, and
similarly for B, except that we alter the sign of these pairings. Thus for X,
Y e A we have
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b(y X, v, Y) =<X, YD (mod A)
9y, X) =<X, X>  (modJ)
and similarly for B (with minus signs).
Define C by the exact sequence

0—>C—APBYr" "GO H—0;
so A B c C, and the image of the quotientin A BIAPB=GHHPH
consists of the elements (0, &, k), h € H. Taking duals, we find also
APBcCc ADB,
and C‘/A@ Bisthe annihilator of C/A@ B, so consists of elements (g, k,h) h € H.
Thus we have an exact sequence

0—sC-2, 6,60,

From the hermitian (or skew-hermitian) character of ¢,, ¢, follows also that of
@s. The projection of C on B is surjective with kernel A4, hence C is free.
Let X = (X, X,) € C, 50 y(X)) = (¥4(X), ¥+(X.)); similarly for Y. Then

<X, Y> - <X1’ Y1> + <X2, Y. = b(“/lely L Y) — b("‘/f2X2y q/f2Y2) (mOd A)
= by X, ¥, Y)
(X, X> =X, XD+ <X, Xop = q(4, X)) — ¢(¥:X2) = q(y,X)  (mod J) .
So @, induces b and ¢ as required, and in consequence, if Xe C, 0 =<X, X> =
(X, X) (mod J) so ¢, admits a form p. This completes the proof.

6. The case: m = 2k — 1 and 7 of order 2

The results of §5 present algebraic problems apparently even more
formidable than the one studied in §4, and even so, (5.6) is not a complete
result. The only case previously settled in the literature is where X is simply
connected, and so 7 trivial; geometric expositions may be found in Wall [20]
or Kervaire and Milnor [10]; the algebraic problem is explicitly dealt with in
[22]. All the proofs are quite long; they seem closely related, and involve an
induction on order, and a discussion of special cases.

Since the cases when x is trivial is already so involved, we will now
confine ourselves to the case when 7w has order 2. The pattern of the proof
resembles the case when 7 has order 1; the details, naturally, are more com-
plicated. We give a summary of results at the end of the chapter.

We first deal with the torsion free part of G. Recall that : M* "' — X
has degree 1 and is k-connected; G — K,(M; A). The effect of surgery is
described by (2.5) and (5.1), which will be used repeatedly below without
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further reference. Throughout this chapter we make the hypothesis that (5.1)
holds and = has order 2; we write T for the non-unit element.

LEMMA 6.1. If k is odd and M 1is orientable, the parity of the rank of
G is a cobordism tnvariant. Assume (in this case) that the rank is even.
Then (in all cases) we can do surgery to make G a torsion group.

Proor. Write G* for the torsion subgroup of G, G° = G/G*. Then G° is
a torsion-free A-module, hence by a well-known result (see e.g. [30]), is
isomorphic to a direct sum of copies of the modules A, Z,, Z_; where Z_, Z_
denote the group Z with T operating by the trivial resp. sign-changing auto-
morphism,

Suppose A appears. Choose a generator, and lift to « € G. Now do surgery
on . Then A(x) = 0 and B(x) = A, so K,(N,oN) = G, and K, _,(M,) is the
quotient of G by the submodule generated by x; in particular, the rank is
lowered by 2.

If there are no A’s, but Z, and Z_ both appear, we choose generators y
and z of these, and do surgery on & = y + z. This time A(z) = 0 and B(x) has
index 2 in A; K(N, 0N) is an extension of Z, by G, and again the rank of
K,_(M,) is 2 less.

It remains to look at the case when G° is a sum of copies of Z_(Z_ is treated
similarly). Here, we must distinguish 3 cases.

If M and X are non-orientable, we use the Euler characteristic. Since X
(also M) has odd dimension, we know that the Euler characteristic x(X)
vanishes if 0X is empty; in general, 3(X) = £ x(0X). But the map oM — 0X
is a homotopy equivalence, so ¥(0M) = y(6X), and y(M) = x(X). Thus the
Euler characteristic of the groups K is zero: K,_(M; Z.) and K,(M; Z,) have
the same rank. Using the duality isomorphism K (M; Z.) = K*(M; Z_), and
the universal coefficient theorem, we deduce that K,_,(M; Z_) also has the same
rank. In the situation above, one of these ranks is zero, hence so is the other,
and G is already a torsion group.

If M and X are orientable, choose a generator of one of the summands Z,,
and lift to ¢ € G. Then B(x) is the set of multiples (in A) of 1 4 T, so K,(N,oN)
is an extension of Z_ by G, and contains ¢_ which projects to x, and hence
generates a submodule of rank 1 or 2, In the second case, the net result of
surgery is to reduce the rank of G by 1; in the first, the rank of G is unaltered,
but one of the copies of Z_ has been replaced by a Z_. Thus in this case, if
there were at least two copies of Z, originally, we return to a situation dealt
with above, where we can reduce the rank of G by a further surgery.

By induction, then, we may suppose that either G° = 0, when we are
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done; or, G* = Z_.. If now k is even, we can deal with the latter case by being
more careful about our surgery. As & — xT has finite order a, we have a
relation
e(a—aT)=c¢c(b+cT),

and as (1 + T)e B(x), Te, = — €., so we may suppose ¢ = 0. Now if b = 0,
%, is a torsion element and the resulting G is finite. If 6 = 0 we move the
sphere representing x by a regular homotopy with self-intersection 1. Then
(as in (5.2)), this has the effect of replacing ¢ by ¢ = ¢_ + 2¢, and hence b
by b + 4a. So we can ensure b = 0.

Finally we check that when k is odd, the parity of the rank of G is a
cobordism invariant. If N is a cobordism of M_ to M,, we may suppose
to be k-connected. We have the Mayer-Vietoris sequence

K.N-—"5 K,(N,oN) — K, (M) ® K, (M,)—0,

where by (2.4) we may assume the first two modules free, and they are dual
to each other. The matrix of a is (by (3.2)) skew-symmetric, so « has even
rank. As K,(IV, 0N) is free, it too has even rank, The result follows.

We now assume G a torsion group; we shall use induction on the order of
G. We first cover the cases where it is easy to effect a reduction in the order.

LEMMA 6.2, Let x € G be such that

(1) if k is odd and M orientable, | xA| > 2,

(i) if M is non-orientable, b(zx, x) + 0,

(ili) of k is even and M orientable, b(x, x) + 0 and q(x) s not divisible
by either of 1 + T.

Then we can perform a surgery starting with x, and in case (i), @ second
surgery, to reduce the order of G.

PROOF. Since G is finite, x is a torsion element, so B(x) = 0, and ¢,
generates a free submodule of K, (N, oN) for the first surgery. If ox = 0,
then, e_\ = &, ¢ where ¢ is determined by ¢(x) € A/J.

Now in case (i), J = 0. Since g(«) is a torsion element of A, it vanishes.
Hence /¢ = 0. In case (ii), if k is even, J consists of the even integers: A/J=
Q/2Z1 + QT. Now the coefficient of T in g vanishes; similarly if % is odd,
the coefficient of 1 vanishes, By hypothesis, if x» = 0, e_.r = ¢,s with r }s.
In case (iii) we have ¢_r = ¢, (a + bT) where by hypothesis r } (¢ + bT'), and
2r k(@ £ b).

In case (i) our surgery first gives an extension of A by G, then kills the
torsion element ¢_. The resulting G, has a submodule A generated by z.; Gf
maps monomorphically to G,/2z.A = G/xA. We have GY = A or to Z, + Z_.
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In the first case, choose a generator, lift to G,, and perform surgery. As in
(6.1), the net result is to kill G} and keep the torsion subgroup unaltered, so

, = G, isomorphic to a subgroup of G/xA, henceif x # 0, G, has lower order
than G. If G = Z, + Z_, then the order of G,/x, A must be at least twice the
order of G, so |G} | = |G |/2|xA|. Asin (6.1), perform surgery on the sum
y + z of the generators; we first obtain an extension of Z, by G,, then kill
(y + 2)A, whose image in G has index 2. The resulting group G is finite, and

|G2|§4|G;“{£7,,xim<lG|

by hypothesis.

In cases (ii) and (iii), we use (5.2), which says that in the equation ¢ » =
¢ {g(x) \}, we can use any lift to A of g(x)e A/J. Thusine_r = ¢.s, resp.
e_r = e.(a + bT), we can alter s resp. a and b modulo 2r. Since, by hypothe-
sis, they are not divisible by 7, we may suppose 0 < |s| < r (or similarly for
a,b). Alsoa = =+ b, hence a + bT generates an ideal I of index |a® — b*| in
A;and 0 < |a® — b*| < 7* (or in case (ii), we have index s* < r?).

Now perform surgery. We assert that the order of G is multiplied by
s*/r?, resp. | a* — b*|/r*; hence is decreased. For if H = K,(N, 0N )/(re_A), the
maps of K, (N, 6N) onto G and G, factor through H; the kernel of the former
is generated by the image of ¢, hence has order s*, resp. |a* — b’ |, whereas
the other kernel is generated by the image of ¢_, so has order r°.

This lemma is not strong enough to permit us to complete an induction,
and further progress seems to depend on the following trick, which is valid
for an arbitrary ring A.

LEMMA 6.3. Suppose given exact sequences of A-modules

0 F’ F-l A®B—0

[24

0 G G A 0
with F, F', G projective. Then G’ is projective.

PROOF. Choose an epimorphism 5 : H — B with H projective; let H' be
its kernel. We shall construct automorphisms e,, ¢, of F' d G @ H such that

FOCOHHFOCOH->FHGHH
N ‘ /
N /
NG, 0,0 Immm SO,
N /
N 1 /
N /
A®B
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is commutative. Then e.e, induces an isomorphism of the projective module
FPOGH Honto FHG P H’, so G’ and H’' are projective.

To construct e,, we lift (since F' is projective) v to a homomorphism,
fF—-G@H,inducingf":FOGHH—FHGD H whichisO0on G H.
Then set e, = 1 + f’, with inverse 1 — f’. The construction of ¢, is similar.

In applying this result, we shall use (5.5), which shows that G, if a
torsion group, and of the form A @ B, satisfies the hypothesis. Note that the
direct sum decomposition is merely additive. Also note that for the ring A in
question now, every projective module is free.

COROLLARY 6.4. Suppose G a torsion group and x € G such that xA isan
(additive) direct summand. Then A(x) is isomorphic (as a module) to A. In
particular, A(x) #<1 — T,1 + TO.

For take 0 — A(x) — A — xA — 0 as the second sequence in the lemma;
note that since « is torsion, A(x) has rank 2,

We are now ready to settle the easy cases.

THEOREM 6.5. Suppose G a torsion group. Then we can do surgery to
kill G altogether, in cases (i) and (ii).

ProOF. By induction on the order of G. First take case (i). By (6.2) and
induction, we can assume that for any xe G, [2A | = 2. So for = 0, A(x)
has index 2, hence is <1 — T, 1 + T). This ideal annihilates G, which is
therefore a module over the quotient ring, which is a field. Any non-zero x
thus generates a direct summand: but this contradicts (6.4). Hence G is zero.

Next consider case (ii). We suppose k even. The case when % is odd gives
an isomorphic problem, as we see by multiplying b and ¢ by 7. By (6.2) and
induction, we can assume b(x,x) = 0. For any =z, v, b(x, y) + b(y, ) =
bx + y, x + y) — bz, x) — b(y, y) = 0. Let b(x, y) = N + T, then b(y, x) =
bx,y)” =N — pT, so 2» = 0. As e Q/Z, this implies » =0 or 4. Now
b(x, yT) = 1 + \T, hence also ¢t = 0 or . Thus b(x, 2y) = 0 for all z, y; as
b is non-singular, 2y = 0 for all ¥, so 2G = 0. Thus we can consider G as a
vector space over Z,, with an action of the group {1, 7'}. But representations
of this group over Z, are well known; G is a direct sum of modules generated
by single elements, whose annihilators are (2> or <1 — T, 1 + T). We may
exclude the second case by (6.4).

Now let x == 0 in G. As b(x, ) = 0, we have g(x) = 0 or 1. First suppose
q(x) = 0. Then on surgery, we have 2¢_ = 0; K,(N, 0N) is an extension of A
by G, and for G, = K,(M.) we kill ¢_, which generates a submodule of order
4. The same proof as for case (i) of (6.2) now shows that we can do a further
surgery with the net effect of reducing the order of G. '



264 C. T. C. WALL

Now suppose ¢q(x) = 1, and so 2¢_ = 2¢,.. Here we use the fact that b is
non-singular, so for some y, b(x,y) = 4. Then y lifts to an element 7e
K,(N, 0N) with 2y = ¢,. Thus although the surgery, after setting ¢_ = 0,
gives a new group with the same order as G, we have a class 7 of order 4 and
so, by the argument above, can apply (6.2) again to reduce the order of G.
Hence by induction we can reduce G to zero.

We observe that the two cases above are fairly similar to the two cases
arising when w is trivial. The third case, however, is considerably more
troublesome, and we need further lemmas.

LEMMA 6.6. Suppose G° =Z, and |G* | = d. Then we can perform a
sequence of surgeries to make G a finite group of order at most 2d.

Proor. Choose a generator of G° and lift tox € G. Then B(x) =<1 + TO.
Let A(x) =<b — bT ). Then we have ¢, (1 + T) = 0, and can write

e(b—0bT)=ce,.

We can perform surgery on different spheres in the regular homotopy class
determined by x; this will alter ¢_ by an arbitrary multiple of 2¢,, and hence
alter ¢ modulo 4b. We may thus suppose — 2b < ¢ < 2b. If ¢ = 0, we perform
surgery, and the resulting group has order ¢| G* |/b < 2d. If ¢ = 0 and b # 1,
we obtain a group H with | H*| = |G*|/b and H° = Z_; we can then apply
the above procedure to H.
Ifc=0and b =1, we try lifting to a different x. The only case when
=1 for all choices of « is when (T — 1) annihilates G. Then G is a direct
sum of cyclic groups, each a submodule: let y; be their generators and »,; their
orders. On surgery, these lift to classes ; € K;(N, 0N), and 9;(1 — T) and ny;
are multiples of ¢,. If any of these multiples are non-zero, surgery gives a
group H as above; if all are zero, we simply have H* = G*, so can again
reduce unless (1 + T') also annihilates G*.

In this final case, we change ¢ to 4 and perform surgery. We end with
the direct sum of G* and a module A of order 4, generated (say) by z. Since
G* is annihilated by <1 — T, 1 + T, (6.4) now shows that G* = 0. But the
annihilator of the generator of 4 is<1+ T, 4>=<1+ T, 2 — 2T, and this
also is prohibited by (6.4). The lemma is proved.

We return to our induction on | G|, and now give a more careful analysis
of cases when the order can be reduced.

LEMMA 6.7. (i) Suppose G contains an element x which does not satisfy
(A) Either T =cwx and q(x) = V(1L + eT) with e = = 1 and

| VIi=1/2, 2/3 or 8/4; or,bx,x)=0.
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Then we can perform a sequence of surgeries to reduce | G |.

(ii) If every x € G satisfies (A), then for every x€ G, 6x = 0.

ProoF. We have already (in (6.2)) dealt with the cases when g¢(z) is not
divisible by either of 1 = T; hence we may now assume it divisible by 1 + T.
Let A(x) =<a + BTy witha > B8] >0, or A(x) =<y + T, d — 0Ty with
v, @ > 0 (this is a complete list of all ideals in A of rank 2), Then | A: A(x) |=
a* — 5 or 2v4.

On surgery, we have

e(a+ BT)=-¢(a+ aT)
e(v+7T) =¢e(c + ¢T), e(0—0oT)=20

since g(x) is divisible by 1 + T. Changing ¢_ by a suitable multiple of 2¢, we
may suppose, since b(x, x) = 0,

or

O0<]a|<a+pB or 0<|c|<2v.

‘When we do surgery, we acquire a subgroup Z_, and the order of the torsion
subgroup is multiplied by at most |a |/(a* — 8% or |c|/2vd; then by (6.6) we
can get rid of the Z_, at most doubling the order of the torsion subgroup.
Thus the order is certainly decreased, except perhaps if « — 8 =1 or 6 = 1.
We note that these are precisely the cases with Tx = x.

Even in these cases, we have reduced the order half the time: i.e., when
|la| < aor|ec| <. For the other cases we need new procedures. We have
q(x) = v(l + T) with |v| = 1, and the above gives a simplification if | v | < .

If § <|v]| < 5/8, we consider 2x. We have ¢(2x) = 4q(x) = 401 + T);
reducing by 2 + 2T, we have replaced |v| by 4|v| — 2, which satisfies
0 < 4|v| — 2 < 4. The preceding paragraph guarantees a simplification in this
case.

If 5/8 = |v| = 11/16, we similarly consider 3x, Here, | v| is replaced by
9| v| — 6 which lies between — 3/8 and 3/16, so we can simplify unless |v | =
2/3. .

If 11/16 < |v | < 3/4, we use 2z, and have 3/4 < 4/v| — 2 < 1, which
reduces us to the final case 3/4 < |v| < 1. Here we use a different technique.

Let nax = 0, so on surgery ne_ — ¢.nv(l + T). Suppose for definiteness v > 0.
Decrease ¢_ by 2¢.; then

ne_ = e {(nv — 2n) + nvT} .
Now perform surgery. The order of G is multiplied by
{(mv) —(mv —2n)} P =v* — (v — 2 =41 —v) < 1.

Thus in all cases claimed, we can decrease the order of G. This completes the
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proof of (i).
As to (ii), we first observe that for every x € G we have

q(x) (6 + 6T) = 0= q(x) (6 — 6T)

(note that if b(x, x) = 0, we already have 2¢(x) = 0). Hence if a denotes either
of 6 + 6T, we have, for z, y € G,

2b(x, y) a = {b(x, y) + by, 2)} a = {g(x + y) — q(x) — q(x)}a =0

modulo 2, so 0 = b(x, y) @ = b(x, ya). As b is non-singular, ya = 0. In partic-
ular, 12y = 0, so G only has 2-torsion and 3-torsion; these clearly form an
orthogonal direct sum in G.

Now suppose 2T = & and ¢(x) = (3/4)(1 + T'). By the previous paragraph,
we may suppose ¢ an element of 2-torsion, and that x(2 + 2T) = 0. Hence
for any y € G, b(y, ) is annihilated by <1 — T, 2 + 2T, hence is of the form
X + AT, with \ divisible by 1/4. The map y — —(4\)x retracts G onto the
submodule generated by x, which is therefore a direct summand. By (6.4),
this case cannot occur,

We now know that for « in G, 6¢(x) = 0. We deduce, as in the last para-
graph but one, that 6 annihilates G. This completes the proof of the lemma,

THEOREM 6.8. If k is even and M orientable, the Grothendieck group of
(5.7) has order 2.

Proor. We first deal with the Sylow 2-subgroup of G. By (6.7), this isa
vector space over the field with two elements, hence (as in an earlier case) a
direct sum of modules on one generator x, with annihilator <{2> or <1 + T,
1 — T; by (6.4) the second case cannot occur. Since 27T == =+ z, by (i) of (6.7)
we have b(xz, ) = 0. Choose y with b(x, y) = % (by non-singularity).

Now perform surgery starting with «. We can lift y ton € K,(IN, 0N) such
that 27 =-¢,; we also have 2¢_ = ¢, (2¢q(x)), where ¢(x) may be 0,1, T or
1+ T.

If g(x) is zero, the order of the torsion subgroup is decreased on surgery
by a factor of 16 (neither x nor y continues to contribute), so it is easy to
decrease | G | by a further surgery.

If q(x) is 1 or T, the order of G is unchanged by surgery, but we acquire
an element of order 4. By (6.7), we can perform further surgeries to reduce
|G .

If q(®) =1 + T, the order of the torsion subgroup is decreased on surgery
by a factor of 4 (by considering %), and we acquire a subgroup Z_. By (6.6),
we can perform further surgeries to return to a finite group of order less than
|G .
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We shall use (5.7) to deal with the 3-torsion. Suppose T = « and ¢(x)=
{(2/3) (1 + T)}; also (by (ii) of (5.7)) we may suppose 3z = 0. For any y € G,
b(y, x) is annihilated by <8, T' — 1), hence is a multiple {(v/3) 1 + T)}. The
map y — — vx retracts G onto the submodule X generated by x; the com-
plement is orthogonal to X, so we have an orthogonal split as in (5.7). Split
off as many such summands as possible; then in the residue, b(x, ) vanishes,
8o the residue is annihilated by 2, hence vanishes.

Thus G is an orthogonal direct sum of submodules of one of four types;
determined by a generator x with

8¢ =0 aT=ux, q(x):i%(l—i— T)

or
3z =0, 2T = — z, q(x):i—Z—(l—T).

We assert that the sum of any two such modules is always equivalent to zero.
There are essentially three cases to verify. If we have one submodule with
2T = x and one with yT = — y, we perform surgery on z =« + y, with
A(z) = 3 and q(z) = *+ 2/3 or + (2/3)T; say q(z) = (2/3)U, where U is a unit
in A, On surgery, we have 3¢_ = 2¢, U, so obtain a module generated by x.,,
with A(z,) = 2. A further surgery gives 2¢_ = 3¢, U; replacing e_by e_—2¢, U
we have 2¢_ = — ¢, U, and so G is killed altogether.

This shows that the first two types listed above determine some element
X in the Grothendieck group, and the second two each determine — X, We
next prove 2X — 0; for this it is enough to show that the sum of the first two
modules listed above is null-equivalent, But this follows from (5.4). We could
also easily give a direct proof. Finally, we assert X + 0.

The proof is by contradiction. If X = 0, there is a free A-module F', and
a symmetric bilinear form @ on F' (with values in A) with each o(z,x) € J, i.e.,
divisible by 2, such that the cokernel of the associated map Ap : F'— F'is the
module above. Hence the determinant of ¢ is (up to a unit in A) the generator
of the annihilator of z, i.e., 1 + 27T, Thus there is a matrix (a;;) with a;; =
a;; and a;; = 2b;, say, with determinant + (1 + 27) or + (T + 2). This, we
shall see, does not exist.

First calculate modulo 2A. Then we can replace a,; by zero and a;(if ¢ <j)
by — a;;, so making the matrix skew. If it has odd order, the determinant
then vanishes. If even order, the determinant is the square of the pfaffian
form, which has, say, value » + sT. The square is (r* + s*) + 2sT. Thus r
and s have opposite parity, and the determinant can never be + (T + 2).

Now calculate modulo 4A. The order of the matrix is even; the cofactor
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of a;;, by the above, lies in 2A. Thus we can replace a;; = 2b;, by 0. We now
replace a;;(if © < 7) by — a;;, and calculate the effect on the terms in turn.
First let ¢ be a term involving some a,; without the corresponding a;;. There
is a symmetric term ¢’ obtained by reflecting in the diagonal: by symmetry,
t' =t. Now ¢ is a product of (say) 2n terms, If j of these have the sign
changed, the terms of ¢’ whose signs are changed are the reflections of the
remaining (2n — j). So 2t becomes (— 1)7 2¢, which is the same (modulo 4) as
2t—or as (—1)" 2t. The remaining terms are products of » factors a;,a;;; these
have sign multiplied by (— 1)".

Thus we obtain a skew-symmetric matrix, whose determinant agrees
(modulo 4A) with (— 1)" times the given determinant, hence with + (1 4+ 27).
So we have

P4 s+ 2rsT= 4 (L +2T)  (mod. 4) .

Since r* + s* is odd, one of r and s is even. But then 2rs is divisible by 4. We
have obtained a contradiction; this completes the proof of the theorem.

Summary 6.9. Recall that we assume that = is of order 2.

If M is non-orientable, we can perform surgery to kill G, and obtain a
homotopy equivalence,

If M is orientable and % is odd, the parity of the rank of G is a surgery
invariant: if the rank is even, we can perform surgery to kill G.

If M is orientable and % is even, we can always perform surgery to make
G finite, and even of order at most 3. There is a mod 2 obstruction to complet-
ing the surgery.

We do not know how to describe this mod 2 obstruction in general. How-
ever, suppose G finite and of odd order. Then (cf. [13 pp. 106-7]) the de-
terminant of the A-module G is defined, as an element of A which is a unit in
A. We can multiply by a unit to normalise this determinant as » + sT, where
r =1 (mod 4) and s is even. Then the parity of is is our mod 2 obstruction.

7. Relative surgery

In the preceding chapters, we have concentrated on one manifold at a
time, with the typical hypothesis: « induces a homotopy equivalence of 6 on
0X. We shall now (following [7] and [24]) consider the situation where we are
allowed to change by surgery both M and oM. For all the results in this
chapter, we make the following hypothesis and notation,

Hypothesis (71.0). (X, 0X) is a Poincaré pair, with X connected. M is

a compact smooth manifold of dimension m. + : (M, 0M) — (X, 0X) is a map
of degree 1. w : X — BO 1is such that w o + is a classifying map for the stable
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tangent bundle of M.
We can also, of course, alter the last sentence of the hypothesis to suit the
relative situation of (1.5) and (1.6).

To illustrate the kind of thing we have in mind, we start with a com-
paratively straightforward result.

THEOREM 7.1. Suppose that X is finite, that the pair (X, 0X) is 1-
connected, and that m = 2k = 6. Then we can do surgery to make + a
homotopy equivalence M — X and, if 7 (0X)= n/(X), also of the pairs
(M, oM)— (X, 0X).

ProOF. We may suppose X connected. By Theorem 1.4, we can do
surgery to 0M to make the induced map (k — 1)-connected. Note that such
surgery involves constructing a cobordism N with d_N = oM, If we attach
N to M along oM, giving M’, and extend +r in the obvious way from M over
N (mapping N to dX) we obtain +: (M’, 6M') — (X, 6X), as above, but now
inducing a (k — 1)-connected map oM’ — 6X. In future, we shall always
understand this construction when we speak of doing surgery on oM.

Again by (1.4), we can suppose the map M — X to be k-connected. As
k = 3, and (X, 0X) is 1-connected, it now follows that all four of 0.X, X, oM,
M are connected; the maps M — 0X and M — X induce isomorphisms of
fundamental groups, and the map dM — M an epimorphism. Write (as usual)
A for the integral group ring of 7, the fundamental group of M, The only
non-vanishing groups K; (coefficients A understood) are

0— K, (0M) — K, (M) — KM, M) — K,_(0M) — 0 ;

by (2.4), as X is finite, we may suppose the middle two modules free. Choose
a basis {e;} of K,(M, oM).

We assert that the elements e; can be represented by disjoint imbeddings
fa: (D*,8D*)— (M,0M). Granted this, we first deform - to map a neighborhood
of each f;(D*) to the base point (possible since f; represents ¢; € K.(M,0M)); then
take disjoint neighborhoods N; = D* x D* of the fi(D*), and delete their inte-
riors from M, leaving M,. Then « induces a map +: (M,, 6M,) — (X, 0X) with
the same properties; indeed, our construction is the inverse of that of the
first paragraph of the proof: write N = |JN,. As N is mapped to the base
point, we have an exact sequence

Kk+1(My a]‘4)_)1{k+1(]‘4y N)'_)Hk(Ny aM)—')Kk(My aM)'_)Kk(MyN)'_)Hk—I(N’aM)'
Here, the extreme terms evidently vanish; the central map is an isomorphism,

since H(N, 0M) also has a free basis represented by the f;. So, for 1 =k or
k + 1 (and it is clear for other values of 1)
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0 = KM, N) = K,(M,, 0M,) by excision.

Now in the exact sequence for (M, 0M,), all terms K,(M,, 0M,) vanish; by
duality, so do the K,(M,), and by exactness also the K;(0M,). By (2.3), the
map M, — X is a homotopy equivalence; the same applies to oM, if it has the
same fundamental group.

It remains to prove our assertion. Write ® for the quadruple

oM — M
O lwm 1%{
0X — X
and consider the commutative exact diagram

7Tk+1("/f’cw) I 77-'k+1(’\1fu) — 77-'k+1((b)“‘—_’ 77-'k("/f’c)zrl) E— nk(”‘l’m) =0

l ] l l

K.(0M) — K (M) — KM, 0M) — K,_,(6M) — K, (M) = 0

where the vertical maps are Hurewicz homomorphisms, Let 7’ = 7,(0M), and
write A’ for the integral group ring of 7’. Then the penultimate vertical map
is a composite 7 (Yoy) = K,_,(0M; ') — K,_,(0M; A) with the first map a
Hurewicz isomorphism. By hypothesis, 7’ maps onto 7, hence A’ maps onto A,
so by the universal coefficient theorem (here we use (K — 1)-connectivity of
vou), Kioi(0M; A’) maps onto K, (0M; A') @i A = K, _,(0M; A). Thus the
penultimate vertical map in the diagram is surjective; by the Five Lemma, so
is the preceding map 7, ,(®) — K, (M, 0M). We lift e; to an element of 7, ,(P);
it is then represented by a map f;: (D*, 0D*) — (M, 0M), and a null-homotopy
of o fi.

Put the maps f; in general position. They are then imbeddings, except
for isolated self-intersections (and mutual intersections). For each such
intersection P, join it by an arc « to the boundary along each branch of D*
(or each of the two D*'s) which meet at P. These two arcs «, «’ define a
(necessarily zero) element of 7,(M, M), so we can find a (singular) dise D*
joining a U &’ to dM. Butas k = 3, if we put D*in general position, it becomes
imbedded disjointly from our D*’s. We can now get rid of the intersection
point P by deforming a neighborhood of « across D*, to end up disjoint from
o' (piping the singularity across the boundary) in the usual way. We can
thus get rid of all intersections and self-intersections, which justifies our
assertion and completes the proof.

We could enunciate and prove a similar result for the odd-dimensional case,
by the same method. This would be somewhat weaker, for we need (X,0X)
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to be 2-connected, We can obtain stronger theorems by combining relative
surgery with the results of previous chapters. In fact, the first point to
observe in the odd-dimensional case is that we can kill one further group before
we need to consider duality.

THEOREM 7.2, Suppose (7.0) and that m = 2k + 1. Then we can do
surgery such that +, and oy are k-connected, and also K, (M, 0M) = 0.

Proor. All but the last assertion follow from (1.4). We note that K, (M)
is finitely generated (e.g. by (1.1)), hence so is its quotient group K,(M, 0M).
We kill each of a set of generators in turn,

To kill x € K\(M, 0M), first lift to ye K,(M). Add a k-handle to M, by
forming the boundary-connected sum with S* x D*™'; we can extend + by
mapping the latter to the base point. The effect on K,(M) is to form the direct
sum with a copy of A, generated (say) by e; K, (M, 0M) is unaltered. We will
do surgery on z = ¢ + y. Note that projection on the new copy of A sends z
to e; hence zA is a free direct summand of the new K,(M), and z has image
xe K. (M, oM).

In order to compute the effect of surgery, we really need an extension of
(2.5) to the case when + does not induce a homotopy equivalence of L on W;
this we shall leave to the reader, as no new principle is involved, Write N for
the cobordism; M, for . N; P for the quadruple

oM — M
P: l l
M, — N,
Then we have, first, an exact sequence
K, ,(M,oM)— K, (N, M,)— K, .,(P)—> K,(M, M) — 0,
where the first map K,(M, 6M)— A is induced by intersection numbers with

2, hence is surjective (by duality, since z generates a free direct summand). So
K, .(P) = K,.(M,oM). We have a dual exact sequence

A=K, (N, M)— K, (P)—> K,(M.,0M)— 0,
and the commutative square
A=K, (N, M) — K, (P)
l lnz
K,(M) —— K,(M, 0M)

(where the map A — K, (M) is induced by z) shows that the kernel of the
induced epimorphism
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K(M,oM) = K,..(P) — KM, oM)
is generated by the image of z, i.e., by x, as required. This completes the
proof,

Note that the above makes no assumption about the connectivity or the
fundamental groups of the spaces involved. By (2.4), we may now suppose, if
X is finite (at the expense of adding a few handles S* x D*' to M), that
K, (M) and K, (M, 0M), hence also K, (0M), are free A-modules.

Now recall the Grothendieck group of § 4; as we wish here to emphasise
its dependence on 7, we write it as ®(x). (Strictly speaking, it depends not
only on 7, but also on w: 7 — {# 1} and on 7 = (— 1)*). We assert that S(r)
is a covariant functor of 7; a homomorphism f: 7 — 7/, such that w(z’) o f =
w(r) induces f,: G(r) — ®(x’). For an element of &(r) can be represented by
a matrix over Z[rz]; we take the image of the matrix under f. The desired
properties are then easily checked. Geometrically, if ® = (G, ¢, #) represents
the element of &(r), we replace G by G ® . Z[7'], and take the maps induced
by ¢ and g (note that f(I;) C I., so f induces a map V. — V_,; this defines p
on the new basis, and hence, by (4.2), everywhere).

From the theorem, we can now make deductions about the obstructions to
surgery on boundary components, Let 60X have components W, with funda-
mental groups 7;, and inclusions ¢;: 7; — 7; let L; be the corresponding com-
ponents of 6M, and let 6, € &(x;) be the surgery obstruction for +;: L; — W,

LEMMA 7.3, Assume (7.0), that X is finite, and that m = 2k + 1 = 5.
Perform surgery as in (1.2). Then

Ei i:.(0:) = 0e &(x) .

Proor. Let A; = Z[r;]. Then K, (L;; A)= K,(L;; A;)) @i, A, and as
K,.(L;; A;) (with the induced ¢ and p¢) represents 6;, K,(L;; A) represents 4, (6;).
And K,(0M; A) is the direct sum of all these, and so represents »_.4;(6;). On
the other hand, by the theorem, we have

0 — K, (M, 6M) —— K,(06M) — K,(M) — 0 ,

where each term is a free A-module and the extreme terms are dual, hence of
the same rank. By (4.3) it will be enough to show that ¢ and g vanish
identically on the image of a.

Now, as in the proof of (7.1), consider the ladder

T P) — Tpio(P) ——— nk+1("/faM) — T Y)

l l l |

K, (M) = 0— K, (M, M) — K,(06M) — K.(M) .
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Here, the vertical maps need not be epimorphisms: 6 need not even be con-
nected! However, the images of the Tii(Vz,) generate K, (0M) as a A-module,
so any element of this group may be represented as the sum of spheres S* in
various components of 3}, joined to the base point by paths in M (and null-
homotopies in the W;). If we had an element of Im &, it becomes zero in K, (M),
thus the maps of spheres S* in M extend to a mapping of a (k + 1)-sphere,
with several k-discs removed (the S¥’s being the boundaries of these discs);
say T*"', Also, as m,,,(vy) = K,(M), we may choose the map of T to be null-
homotopic in X, But then, using @, we have a framing of the bundle over T’
induced from 7,, so as 7 is parallelisable, an injection of 7, in 7, and now
(as in (1.3)), we can use Hirsch’s theorem to say that the mapping of 7 can
be taken as an immersion, unique up to regular homotopy.

Now consider z; to define this, we consider self-intersections of spheres.
But if the immersion of T is in general position, as k& = 2 there are no triple
points, so the double lines are a non-singular 1-chain, with boundary the self-
intersections of the spheres. Similarly for mutual intersections ¢; the inter-
sections of the spheres form the boundary of the 1-chain given by the
transverse intersection of the corresponding manifolds 7.

We now observe that the Kronecker index of the boundary of a 1-chain
vanishes (there is no ambiguity about elements of , since T is simply-
connected); similarly for self-intersections, provided that along each double
line of T we make a choice of order of the two branches. Hence ¢ and p
vanish identically on the image of «, as asserted.

COROLLARY 7.4, With the hypothesis of (7.3), suppose 0.X connected, and
with the same fundamental group as X. Then if k = 3, we can perform
surgery to make oM — 0 X a homotopy equivalence.

The above lemma gives a sort of cobordism criterion, in that the obstruc-
tion for a bounding manifold dM satisfies a restriction; we note that the
vanishing of the signature of a boundary is closely related to this.

COROLLARY 7.5. Suppose (7.0), that m = 2k = 4, that X is finite, that
Vrox 18 & homotopy equivalence, and that «y is k-connected. Then the surgery
obstruction 0 € &(x) is not altered by any surgery which leaves OM fixed.

PROOF. Suppose N a cobordism of (M, oM) to (M., M), with L k-
connected. After surgery on N, we may suppose +, k-connected; then M, N,
and M, have the same fundamental group. If oM is empty, (7.3) gives
0(M) + 6(M,) = 0; but we conventionally change the orientation of M, so
O(M) = 6(M,) (using (4.5)). If 6M is non-empty, we are not interested in
6(oN) but in 4,0(0N) which, since K,(0N)= K.(M)PK,(M,), is just
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0(M,) — 6(M), and vanishes,

We next note that, even if +, is a homotopy equivalence, it may be
advantageous to alter oM in our efforts to make +-, a homotopy equivalence:
this might happen, for example, in the proof of (7.1).

THEOREM 7.6. Assume (7.0) with m = 2k = 4. Let W be a component
of 0X, with fundamental group ', and incluston i: ©’ — w. Let G' be a free
n'-module, and ¢': G’ x G — N, ¢/: G — I' satisfy the conditions of (3.1);
suppose G, @, 1t formed by tensoring (over A') with A, as above. Then we can
perform relative surgery, to replace K, (M) by K.(M) P G, with the maps ¢
and pt of the orthogonal direct sum.

Proor. Choose a basis e}, - -+, e,, for G’ over A’; this induces a free basis
e, +++,e, for G over A. Select disjoint (k + 1)-discs &, - -+, {, in the component
L of M with (L) = W: write & = 4(; for the boundary k-spheres. Now (as
in §5) we will perform simultaneous regular homotopies of all the &. If

P'(¢}, e)) = iy, and ('(ef) = i,
we choose regular homotopies, with tracks »; in L and 7; in L x I, such that
on; = & — & with the &} all disjoint, and the self-intersection invariant of 7;
is pi; for ¢ < g, ,~9; = @i;.

Now perform relative surgeries (as in the first paragraph of (7.1)) using
the spheres &.. This has the effect of adding r k-handles to L by homo-
topically trivial maps, and hence replacing K, (M) by its direct sum with a
free module of rank r, which we may identify with G (by identifying the ¢*
generator with e;). Imbedded k-spheres in the resulting manifold, represent-
ing the ¢;, may be constructed as follows.

It is more convenient to use as a model the manifold obtained from M by
attaching a collar L x I before attaching the handles. Let d; be the core of
the ¢™ handle. Then 7; is a cylinder in L x I, with 07, = & x 1 — & x 0,
hence (§; U7;U{;) is a sphere ¢; imbedded with some corners which can easily
be smoothed. This sphere o; represents ¢;. Note that o, is disjoint from the
interior of M, hence ¢; is orthogonal to K, (M).

It remains to compute @(e;, ¢;) and p(e;). As the d; and {; are all disjointly
imbedded, the only intersections and self-intersections that arise are those of
the 7;. But, by definition, the self-intersection in L x I of 7, is z¢; the inter-
section of 7; and 7, is ¢!, (for ¢ < j, hence also by symmetry for 7 > j). The
intersections and signs are exactly the same in M, but elements of 7’ are
replaced by their images in 7. Thus the values of ¢ and p on G are as as-
serted.
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COROLLARY 7.7, Suppose in (7.6) that +ry 1S @ homotopy equivalence.
Then, by relative surgery preserving this property, we can add to 0, any
element of the form Y_1,0;, with 6,¢ G(x;), where ; are the fundamental
groups of the components of 60X, 1; the inclusions.

For, on applying the theorem, K,_,(L) is replaced by its direct sum with
the cokernel of Ap, the map associated to . Thus if we choose @ non-singular,
4r; remains a homotopy equivalence.

COROLLARY 7.8, Suppose in (7.6) that +rox ts a homotopy equivalence,
and that for some component W of 60X, n,W = n,X. Let k = 3. Then by
relative surgery affecting only the corresponding component L of oM, we
can make +r,, a homotopy equivalence too.

By the preceding corollary, we can reduce the surgery obstruction for M
to zero; then by §3, since k¥ = 3, we can make -, a homotopy equivalence
without further alternation to oM.

For further development, we ought to prove two results analogous to
(3.3) and (5.6). However, it is perhaps even more desirable that (5.6) itself
should first be strengthened.
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