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1. Introduction and statement of results
According to A. Haefliger and M. W. Hirsch in (6)* if M and M' are
homeomorphic smooth w-manifolds and if M admits a tangent fc-field with
k < \{n— 1), then so does M'. Hirs.cn has asked whether 'homeomorphic'
can be replaced by 'homotopy-equivalent' in the above assertion. This
note gives a partial answer.

Let the term 'manifold' be restricted to mean one which is compact,
connected, arientable, differentiable of class C00, and without boundary.
Let SO(r) denote the rotation group in r dimensions. Let © denote
Whitney addition of vector bundles. According to context, the integer m
will denote either itself or the trivial m-plane bundle over the appropriate
space. Throughout, let M, M' be homotopy-equivalent n-manifolds with
tangent vector bundles T, T \ let w^ denote the ith mod 2 Stiefel-Whitney
class of M, and suppose that k ^ \{n — 1). The assertion that there exists
a continuous field of tangent jfc-frames to M will be abbreviated to
'M admits a jfc-field'. Let Sn denote the standard w-sphere.

THEOREM (1.1). If the group of T© 1 is reducible to SO(n — k), then so is
the group of T'® I.

THEOREM (1.2). Suppose that M admits a k-field and that one of the
following holds:

(a) n is even;
(b) Sn admits a k-field;
(c) n = 2 r ( 2 m + l ) — 1 for some integers r , m ^ l ; and ^ = 0 for

1 < i ^ 2r and, if r > 3, for i •= 2r+*m.
Then M' admits a k-field.

The proofs take as point of departure Theorem (3.6) of (1). In fact
Hirsch's question could be answered affirmatively if the fibre homotopy
type of the tangent sphere-bundle were known to be a homotopy invariant
of manifolds. The truth of this in special cases is used in (1.2).

There is a conjecture of W. Hurewicz that any two simply connected
homotopy-equivalent manifolds are homeomorphic, and I am not aware
of any two homotopy-equivalent w-manifolds with n > 3 which are known
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not to be homeomorphic. It is therefore difficult to say to what extent the
above results are new, or how sharp (1.2) is.

Preliminaries and notation are contained in §2. We prove (1.1) in §3,
and (1.2) in §4 and §5. Related topics are discussed in §6; for example
the tangent sphere-bundle of a 7r-manifold M is shown to be fibre-homotopy
trivial if and only if M is parallelizable (cf. Theorem 2 of (14)).

I t is a pleasure to make some acknowledgements: to Dr S. Gitler and
Professor F. P. Peterson for showing me (2) and (4) in typescript; to
Dr J. D. Stasheff for (a) and (b) of §2; and to all three for helpful
discussions.

2. Preliminaries and notation
The w-manifold M has the homotopy type of a CW-complex N\J0e,

where N is a subcomplex of dimension less than n, and e is an ?i-cell
attached by a map 6: S11'1 -> N (see for example (15)). Such a CW-
complex will be called a principal decomposition of M. The Puppe
sequence of 6 (§ 1 of (17)) will be written:

Let the basepoint in Sn be the 'north pole' when Sn is identified with
the unreduced suspension of an 'equatorial' S71'1. Let H(n) denote the
space of homotopy equivalences of S71*1, with the compact-open topology.
Let SH(n) be the component of H(n) consisting of maps of degree + 1 .
There is a natural inclusion of SO(n) in SH(n). Let F(n) be the subspace of
SH(n + 1) consisting of basepoint-preserving maps. Unreduced suspension
of maps defines an injection of SH(n) into F(n).

Since H(n), SH(n), F(n) are associative.//-spaces, with multiplication
defined by composition of maps, the results of (5) give corresponding
'classifying spaces' BH(n), BSH(n), BF(n), and maps between them
induced by i/-maps of the ^-spaces. A map induced in this way by a
canonical injection will be referred to as 'the natural map' between the
appropriate classifying spaces.

Given spaces A, B, with basepoints, let [A,B]* denote the set of
homotopy classes of maps from A to B, and let [A,B] denote the
corresponding set in which maps and homotopies preserve basepoints.
The basepoint in any CW-complex is assumed to be a vertex. When A is
a CW-complex, and B is connected and simply connected, [A,B]* may
be replaced by [A,B].

The following can be proved by the methods of (19).
(a) If K is a CW-complex, then [K,BSH{n)] is in natural one-to-one

correspondence with the set of oriented fibre homotopy equivalence
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classes of oriented Hurewicz fibrings over K in which the fibres are
homotopy in—\)-spheres. The analogous unoriented result is a special
case of the classification theorem in (19). >,

(b) For even n, there is an Euler class E in the integral cohomology
group Hn(BSH(n),Z) such that Hi: BSO[n) -+ BSH(n) is the natural map
then i*(E) is the universal Euler class in Hn{BSO(n), Z).

Observe that (a) can be twisted around to give a definition of 'oriented'
as applied to fibrings and fibre homotopy equivalence.

LEMMA (2.1). Let K be an n-dimensional CW-complex and let
j : BSH(r) -> BSH(r+l) be the natural map. Then

j , : [K,BSH{r)] -* [K,BSH(r+l)]

is surjective for r = n and bijective for r > n.

Proof. Replace j by a Hurewicz fibre map with fibre Q. (See for example
p. 241 of (19).) When r > 3, it follows from Corollary (2.2) of (9) and the
exactness of the homotopy sequence of the triple (SH(r+1), F(r), SH(r))
that Q is (r— l)-connected. A short special argument gives the same
result when r = 2. For n ^ 2 the lemma now follows by obstruction
theory, and the case n = 1 is trivial.

Let BH denote the direct limit of the BH(ri), with the weak topology,
and define BSO, BSH similarly. The natural maps of BSH(n) to BH(n)
induce a map i: BSH -» BH.

LEMMA (2.2). Let K be a connected, finite-dimensional CW-complex.
Then i+: [K,BSH] -> [K,BH]* is injective.

Proof. When considering maps of a finite-dimensional complex into
BSH or BH, one may, in view of (2.1) and the results of (19), regard these
spaces as //-spaces and i as an //-map. Observe that i*: rrr{BSH) -> irr(BH)
is injective for r = 1 and bijective for r > 1. Replace i by a Hurewicz
fibre map with fibre W. From the homotopy sequence of i it follows that
irr(W) = 0 for r > 0. Let Wo denote the path-component of the basepoint
in W. Since K is connected, [K, W] = [K,WQ]. The latter set consists of a
single element, by obstruction theory. Hence i*: [K, BSH] ->- [K, BH]
has trivial kernel, and since it is a loop homomorphism (Theorem (1.1)
of (10)) it is therefore injective. Let g, h: K -> BSH be basepoint-
preserving maps such that iog and ioh represent the same element of
[K,BH]*. Then by Corollary (4.4) of (10), iog and iof represent the
same element of [K,BH]. Since i*: [K, BSH] -> [K, BH] is injective
the result follows.
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The same name will often be given to a map and its homotopy class,
to a bundle or fibring and the appropriate classifying map.

Let K be an w-dimensional CW-complex, and let £, 77 be oriented
r-plane bundles over K. Let J: BSO(r) -> BF(r), G: BSO{r) -> BSH(r)
be the natural maps. If J*(£) = J+(i)) (<?*(£) = G*{r))), then £ and 77 will
be said to be J-equivalent (G-equivalent). Thus by (a) above, ^-equivalence
of £ and r) coincides with oriented fibre homotopy equivalence of the
associated sphere-bundles. If • £, 77 are 6r-equivalent they are clearly
J-equivalent; when n < 2r — 4, the converse is true by Corollary (2.2) of (9)
and obstruction theory. If the stable forms of £, 77 are J-equivalent
((•r-equivalent) then £, 77 will be said to be stably J-equivalent {stably
G-equivalent). Analogous terminology will be used for homotopy sphere
fibrings.

3. A key lemma, and the stable case
The following key lemma depends on consequences of (21) deduced

in (9).

LEMMA (3.1). Let £, 77 be J-equivalent oriented r-plane bundles over an
n-dimensional CW-complex. Suppose that £ = £'®(r-s)for some oriented
s-planebundle £' ,withr ^ s ^ %(n+l). Them) = r)'©(r — s) for some oriented
s-plane bundle 77'. If s > %{n+ 1), then this rj' may be chosen J-equivalent
to £'.

The proof will be given later in this section.

In the next lemma, all maps and homotopies are to preserve basepoints
unless the contrary is stated. Suppose given a commutative square of maps

in which each space is pathwise-connected. For r > 1, let TTT{I) denote
the rth relative homotopy set (group, if r > 1) of the mapping cylinder
of i, mod A, and define TTT(J) similarly. Together h and g induce a function

LEMMA (3.2). With the above notation, suppose that {h,g)^ is bijective for
1 ^ r ^ n. Let K be an n-dimensional CW-complex, and let b in [K,B] and
x in [K, X] be such thatj%(b) — h*(x). Then there exists an a in [K, A] with
**(#) = x. If moreover {h,g)% is surjective when r = n+ 1, then this a may
be chosen so that g*(a) = b.
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Proof. Let / denote the closed interval [0,1] on the real line. Given
spaces P ^Q, R, let ClP(Q, R) denote the space of paths in P which begin
in Q and end in R. (The points of such a space are not required to be
basepoint-preserving maps.) Let Z denote the (n— 1)-skeleton of K.
Using mapping cylinders, we may suppose that g, h, i, j are inclusions.

Suppose that the hypotheses of the first part of the lemma hold. Let
F: {Kxl,Kx 1) ->• (Y,B) be a homotopy from hox to job. Define
<p: K -> ClY(X,B) by <p(k)(t) = F(k,t). Consider the fibrings of QX(X,A),
Q.Y(X,B) over X defined by taking the initial point of each path. The
'five lemma' applied to the homotopy sequences of these fibrings shows
that the inclusion of Clx(X,A) in D.Y(X,B) induces a bijection of rth
homotopy sets for 0 ̂  r ^ n — 1 (injectivity in dimension n — 1 will not
be used). Hence, by obstruction theory (cf. Appendix to (18)), there is a
deformation F: Zxl -* £lY(X,B) of the restriction <p\Z to a map into
QX(X,A). Define G: Zxlxl ^ Y by G{z,s,t) = T(z,s)(t). (The reader
may find it helpful to sketch the associated map of / x I into the space
of maps from Z to Y.) Define H: {Z x I, Z x 1) -> {X, A) by

H(z,t) = \
[G(z,l,2t-l) if 1 < 2t < 2,

and E: Zxl -* B by E(z,t) = G(z,i,l). Then H is a homotopy of x\Z
through X to the map a': Z ->• A defined by a'(z) = G(z, 1,1); while E
is a homotopy of b\Z through B to a'. I t is easy to see that
hoH: (ZxI,Zxl)^ (Y,B) may be deformed to F\(ZxI,Zxl) by a
homotopy of pairs leaving 2 x 0 pointwise fixed. It follows that if
P: {ZxI\JKxO,Zxl) ^(X,A) is defined by

P(z,t) = H{z,t) iizeZ,

P(k,0)=x(k),

then hoP is homotopic to Q = F\{ZxIuKxO,Zxl) by a homotopy
of pairs. Consider the obstruction to extending P to a map
R: (K x I,K x 1) -> (X,A). For each closed n-ce\\ e of K, the obstruction
c to extending P over (ex I,ex 1) lies in irn(X,A), and since hoP is
homotopic to Q, (h,g)%(c) = 0. But (h,g)% is injective in dimension n, so
an extension R exists. The map a: K -» A required for the first part of
the lemma may be defined by a(k) = R(k, 1).

Now suppose that in addition {h,g)# is surjective in dimension n+l.
Then Z may be replaced by K in the first part of the above argument,
and the analogue of a' will have the properties required for the second
part of the lemma.
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Proof of (3.1). Apply (3.2) with X = B80(r), A = BSO{s), Y = BF(r),
B = BF(s), g, h, i, j the natural maps, x = 77, and b = /*(£')• The
hypotheses on (A,sr)* follow from Theorem (3.2) of (9).

Proof of (1.1). L e t / : M' -> M be a, homotopy equivalence, and choose
orientations so that / preserves orientation. By Theorem (3.6) of (1), and
(2.1) and (2.2) above, /*(T)© 1 and r'@ 1 are J-equivalent. By hypothesis
the group of T © 1 is reducible to SO(n — k); hence so is the group of
/ * ( T ) @ 1 . Theorem (1.1) now follows from the first part of (3.1), with
r = n+l and s = n — k.

The second part of (3.1) yields

THEOREM (3.3). Let f:M'->M be an orientation-preserving homotopy
equivalence, and suppose that k < \{n—\). If T©1 = o®(k+l) then
T '© 1 = a'© (k+ 1), where a' may be chosen J-equivalent to f*(a).

We note explicitly the following corollary of (3.1).

COROLLARY (3.4). / / T and T' are J-equivalent and if M admits a k-field
with k ^ \{n— 1), then so does M'.

4. The even-dimensional case

Throughout this section let n be even. The following theorem will be
proved later in the section.

THEOREM (4.1). If f'- M' -> M is an orientation-preserving hotnotopy
equivalence of even-dimensional manifolds, then T' and /*(r) are
G-equivalent.

Theorem (1.2) (a) and the unstable analogue of (3.3) for even n follow
from (4.1) and (3.1).

Let K = L Ude be a CW-complex, where L is a subcomplex of dimension
less than n, and e is an w-cell attached by the map 6: Sn~1 -> L. Suppose
that the integral homology group Hn(K, Z) is non-zero. Let the result of
acting, as in (4.3) of (17), by a in irn{B8H{n)) on x in [K,BSH(n)], be
written a.x. Recall that E denotes the Euler class.

LEMMA (4.2). With the above notation and hypotheses, if E(a.x) = E{x)
then E(a) = 0.

Proof. Let Y be an Eilenberg-MacLane space of type {Z,n), and write
BSH(n) = B. Let V denote disjoint union with basepoints identified.
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Consider the following homotopy-commutative diagram:

7 x 7

Here A is the diagonal map, V the 'folding' map, m the multiplication,
i, j , k the inclusions, Q9 as in § 2, and 77 the 'pinching' map used for defining
a.x. The diagram yields

E(a.x) =Qd*(E{a)) + E(x).

Since Hn(K,Z) ^ 0, Q6* is injective, and the lemma follows.

LEMMA (4.3). Let x e 7rn(BSH(n)), with n even. Then the stable class
and the Euler class of x together determine x uniquely.

Proof. Since 7Tn(BSH(n)) is a group, on which the Euler class is additive
(special case of (4.2)), it is sufficient to suppose that x has stable class
and Euler class both zero, and prove that x is zero. Let y in irn_x{SH{n))
be the image of such an x under transgression in the universal principal
quasifibration for SH(n) (see (5)). The following diagram commutes up
to sign:

j

+ 2)) ^- -nn_x{F{n + I))

Here i, j , k, u, v are induced by inclusions, A is transgression in the
principal tangent bundle of Sn, 8 denotes suspension, and / is the iso-
morphism defined in (2.10) of (20). From the homotopy sequence of the
standard projection of SH(n + 2) on Sn+1 it follows that u is injective,
and hence kj(y) = 0 since v{y) = 0. Thus SIj(y) = 0, and, by (21),
Ij(y) = q[i, 1] for some integer q, where [t, t] is the Whitehead square of a
generator t of TTn(S

n). Hence Ij{y) = Ijik(qi), by ((20) (22)). Now / is
bijective, and by Corollary (2.2) of (9) j is injective (a short special
argument is used when n = 2). Hence y = *A(gi). Thus y characterizes a
stably trivial w-plane, bundle (over Sn) whose Euler class is zero. The
Thorn complex of this bundle consists of a 2n-cell attache4 to Sn by
±q[t,t] (§1.3 and §3 of (11)). Since [i,t] has Hopf invariant ±2, the
square of a generator of Hn(T,Z) is ± 2q times a generator of H2n(T,Z).
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The definition of E by means of the Thom isomorphism (p. 41 of (13))
shows that q = 0. Hence x = 0, as required.

LEMMA (4.4). Let K be the CW-complex considered in (4.2). Suppose
that x, y are stably O-equivalent oriented Hurewicz homotopy (n— l)-sphere
fibrings over K, with E(x) = E(y). Then x and y are G-equivalent.

Proof. Write BSH(n) = Bn. Let Bn
L be the space of maps from L to

Bn, with the compact-open topology. Let u, in Bn
L, be a map which

extends to K. There is a homomorphism au: TTx(Bn
L, u) -» TTn(Bn) such

that for any extension v of u to K, a.v = v if and only if a is in the image
of au (see the proof of (3.3) in (3)). In the following commutative diagram,
j$ and j% are induced by the natural map j : Bn^> Bn+1:

First note that a is in the image of aM if and only if both E(a) — 0 and
j*(a) is in the image of <xiu. For suppose the latter conditions hold. Since
SxxL has dimension at most n, j% is surjective, _by an obvious relativiza-
tion of (2.1). Thus j#(a) =j*oiu(x) for some z in Trx{Bn

L,u). By (4.2),
Eau(z) = 0; hence, by (4.3), a = aM(z). Necessity of the conditions is
immediate.

Now consider the following commutative diagram:

where P9, Q9 are as in §2. Suppose that x, y, in [K,Bn], are as in the
hypotheses of the lemma. Then j*(x) =j*{y), so j4.P6*(x) =j*Pd*(y),
and by (2.1), P9*(x) = P8*(y). Hence y = a.x for some a in Trn(Bn), by
(4.5) on p. 326 of (17). Then j*(x) =j*(y) =j*(a).j*{x) by naturality;
i.e. j*(a) is in the image of ocju, where u = P6*(x). Also E(a) = 0 by (4.2);
hence a is in the image of <xu and x = a.x = y, as required.

Proof of (4.1). From the hypotheses of the theorem, r' and / * ( T ) are
stably 6r-equivalent as in §3, and they have the same Euler class. The
conclusion now follows by (4.4), if we use a principal decomposition
of M'.
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5. The odd-dimensional case

Recall that M, M' are homotopy equivalent w-manifolds with tangent
vector bundles T, T', that wi denotes the ith. mod-2 Stiefel-Whitney class
of M, and that k ^ \{n — 1). All cohomology groups in this section will be
taken with mod-2 coefficients.

Theorem (1.2) (b) follows immediately from (1.1) and the following
lemma.

LEMMA (5.1). Suppose that the group of r®\ is reducible, to SO{n-r),
and that Sn admits an r-field, for sow.e r ^ n. Then M admits an r-field.

Proof. Assume n odd, since otherwise there is nothing to prove. Write
BSO{n) = Bn, BSO = B. In the following commutative diagram, g, h, i, j
are induced by natural maps, and Q6 is as in § 2:

QO* QO* QO*

v i v
[M,Bn_r)-U [M,Bn]-U [M,B].

By hypothesis, J(T) = ji(x) for some x in [M, Bn_r], so T = a.i(x) for some
a in TTn(Bn), as in the proof of (4.4). By naturality it is therefore sufficient
to prove g surjective. Since the kernel of h is generated by the tangent
bundle of Sn, which is by hypothesis in the image of g, it is sufficient to
prove hog surjective. When n =£ 1 mod8, Trn{B) = 0; while if n = 1 mod S
then r ^ 1 since Sn admits an r-field, and the homotopy sequence of the
standard projection of S0(n+l) on S0(n+ \)/SO(n— 1) shows that
hog is surjective.

THEOREM (5.2). Let f: M' -» M be an orientation-preserving homotopy
equivalence. Suppose that n = 2r(2m+l) —1 for some integers r, m ^ 1.
Suppose that wi = 0 for 1 ̂  i ^ 2r and for i = 2r+1w. Then r and / * (T)
are G-equivalent.

Proof. Let n have the above form, and let <I>M be the operation deli noil
in (4) to detect the Whitehead square of a generator of vn(S"); <!>„ may
be taken to be an unstable secondary cohomology operation associated
with an Adem relation

where bj is a binomial coefficient taken mod 2, and the sum is over
1 ^ j ^ 2r~1. Thus <I>n is of degree n, and is defined on those w-dimensional
cohomology classes on which Sq} vanishes for 1 ̂  j ' ^ 2'"1 and for
j = 2r+1m. In particular, O,t is defined on the fundamental class (' in
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the Thorn complex T of T, and (cf. § 1 of (2)) a secondary characteristic
class of r is defined by <Dn(T) = ^-^(U), where iji\ H*{M) -> H*{T) is
the Thorn isomorphism. Two lemmas are required for the proof of (5.2).
Let jtf denote the mod-2 Steenrod algebra.

LEMMA (5.4). Let n be as in (5.2), and let 1 ^ j ^ 2r~1. Then Sqn+1~J is
in the right ideal of stf generated by all Sqi with 1 ^ i ^ 2 r - 1 .

The other lemma is a secondary analogue of (4.2). Let ai5 & be elements
of positive degree in s/ such that S a ^ vanishes on all w-dimensional

i

cohomology classes, and let O be a secondary characteristic class associated
with this unstable relation in the manner indicated above. Suppose that
K = I u e is a CW-complex in which L is a subcomplex of dimension less
than n, and e is an n-cell attached by a map 6: /Sn-1 -» L. Suppose that
x in [K, BSH(n)] classifies a fibring for which O is defined and consists of
a single element. Suppose that a e irn{BSH{n)). Let Hn(K) # 0.

LEMMA (5.5). With the above notation and hypotheses, <&(a.x) is defined
and consists of a single element. Moreover <&(a.x) = O(x) if and only if
O(a) = 0. (For the application, the first two conclusions could be
assumed.)

Assuming these lemmas, and freely using the naturality of On, we
proceed with the proof of (5.2). Let E be the total space of T, and let Eo

be the complement of the zero cross-section in E. Since H*(T) is naturally
isomorphic with H*(E,E0), there is an injection A: H*(T) -+ H*{MxM)
as on p. 47 of (13) (cf. §4 of (2)). Let U = X(U). Define U', A', U'
similarly. By Theorem (4.10) of (2), <Dn(U) is defined. By (5.3), (5.4), and
(4), On can be chosen so that the indeterminacy of ^ ( U ) is contained in
2 SqjH2n-j(M x M), where the sum is over 1 < j < 2r. Now

SqW*n-\M xM) = Vj.H^-^M x M),

where Vj is the j th Wu class of M x M. It is easy to check that vi = 0 for
1 < j ^ 2r. Thus On(U) has zero indeterminacy. Hence, since A is injec-
tive, On(U), or equivalently On(r), has zero indeterminacy. Similarly
On(U'), ®n(T') are defined and have zero indeterminacy. The same is true
of On(/*(r)), since / * : H*(M) -+ H*(M') is bijective. Since U is a
homotopy invariant of M (see e.g. Theorem 15 of (13)), On(U') = 0 if and
only if On(U) =? 0. Thus, since A, A' are injective, On(r) = 0 if and only if
On(r') = 0. But /* : Hn(M) -» Hn(M') is an isomorphism of groups of
order 2, so On(r') =/*On(r) = On(/*(r)). Also, r' and /* (T) are stably
6r-equivalent as in § 3. Theorem (5.2) now follows by replacing E by On

and (4.2) by (5.5), in the proofs of (4.3) and (4.4).
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Proof of (1.2) (c). First let n = 1 mod 4. Each of M, M' admits a 1-field.
If wn_x ^ 0 then neither admits a 2-field. If wn_! = 0, then the conclusion
follows by (5.2) and (3.1). Next let n = 3 mod 8. If M admits a fc-field
with k < 3, then so does M' by (1.2) (b). If wn_3 ^ 0, then neither M nor
M' admits a 4-field. If V)n_3 = 0, apply (5.2) and (3.1). The argument
when n = 7 mod 16 is similar. For other odd n I am unable to make the
transition from using (1.2) (b) to using (5.2), and only the latter method
is employed.

Proof of (5.4). The proof is by induction on r. For r = 1, it is sufficient
to observe that Sqn = SqxSqn~1 since n is odd. Suppose the lemma holds
for r < s, let n = 2s(2ra+ 1 ) - 1, and let 1 ̂  j ^ 28"1. When n+l-j is
odd, Sq71*1-! = Sqt-Sq71'*. When n+l—j is even the result follows by (5.3)
and the inductive hypothesis, since 2s does not divide n+ 1 —j.

Proof of (5.5). Let

h h

be the canonical retractions and inclusions. Let

V: BSH{n)vBSH(n) -> BSH(n)

be the 'folding' map, and let j 3 : K -» SnvK be the 'pinching' map used
for defining a.x. Then r2 ô *3 is homotopic to the identity map of K, and
rxoj3 = Q8, where the latter is as in §2. Let Tm (1 ̂  m ^ 4) denote the
Thorn complexes of a, x, a.x, and Vo(aVa;). Let Um be the fundamental
cohomology class of Tm, and ifjm the appropriate Thorn isomorphism. All
the fibrings considered are induced from the universal fibring analogous
to that on p. 243 of (19), so there are maps t.m: Tm -> T4 (1 ^ m ^ 3) such
that £TO*«/'4 = ipmjm*' I t follows that the map

is injective.
Since <D(aj) is defined, &(£/2) = 0 for each i; and yŜ (C7x) = 0 for dimensional

reasons. Hence, by injectivity of t1*®t2*, and naturality, ^(C^) = 0.
Hence ^i(U3) = 0, for each i, and O(t/3) is defined.

To see that O(C/3) has zero indeterminacy, let F -> P -> K(Z2,n) be the
fibring and <p the element of H2n(P), used for defining O (see (4)). Let
F4: T4 -> P be a lift of Ut. Then Fm = Vtotm is a lift of Um (1 ̂  w < 3).
Let A,w be the diagonal map of Tm, and p: FxP -+ P the action as in (16).
By (16), we require to show that for any map g3: T3 -> F, the following
holds with m = 3:

K*iffm x ^ ) V ( P ) = ^*(P). (6-6)m

Since t3*: [Ti3F] -+ [T3,F] is bijective, it is sufficient to show that (5.6)4
fi
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holds for any gr4: T4 -> F. Since O.(a), O(rc) have zero indeterminacy, and,
by naturality, both sides of (5.6)4 have the same image under tm*
(ra= 1,2). Hence (5.6)4 holds since ^*©£2* is injective.

Finally it will be shown that ®(a.x) = Q0*<D(a) + O(z). Since Q6* is
injective, (5.5) will follow. By naturality,

Thus

as required.

6. Further remarks

Lemma (3.1) has implications for differentiable immersions and em-
beddings. I shall mention only cases where something new seems to
emerge. Let M be an n-dimensional homotopy 7r-manifold (i.e. the
tangent sphere-bundle of M is stably fibre-homotopy trivial). Suppose
2m > 3n. As a corollary of work of W. Browder, R. V. Desapio, and
A. Haefliger it follows that M immerses in Euclidean space Rm, and if
TT^M) = 0 for U ^ n then M embeds in Rm+1—with a restriction when
n = 2 mod 4. The same is true without the restriction, by (3.1),
Theorem (3.6) of (1), Theorem (6.4) of (7), and Theorem 1 of (12).

With the notation of §1, suppose that 2 (T©1) is trivial. Then it is
known that M immerses in R2n~k (k < n) if and only if the group of
r®\ is reducible to SO{n — k). By §3, if k ^ \{n—\) then 'trivial' here
can be replaced by 'J-equivalent to the trivial bundle'.

Using (3.1), partial results on fields of tangent planes are obtained as
follows. The notation of § 1 will be used, except that k is now allowed to
be any integer between 1 and n.

THEOREM (6.1). / / the group of T© 1 is reducible to SO{k) x SO(n+ 1 — k)
then so is the group of T' © 1.

THEOREM (6.2). If either n is even or the hypotheses of (5.2) hold, and
if M admits a continuous field of tangent k-planes, then so does M', except
possibly in the following cases: n even and 2k = n; n odd and 2k = n— 1 or
n+ 1.

Nothing was claimed in (3.1) about uniqueness of 77''. An obstruction
theory relating to this might be interesting (cf. (8)). The following relies
on the vanishing of the first obstruction, for a homotopy 7r-manifold.
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THEOREM (6.3). The tangent sphere-bundle of a ir-manifold M is fibre-
homotopy trivial if and only if M is parallelizable.

The proof requires a lemma.

LEMMA (6.4). Let M be a c-connected (c > 0), n-dimensional homotopy
TT-manifold, and suppose that.r ^ n— 1 — 2c. Let QO be as in §2. Then
QO*: 7rn{BF(r)) -> [M,BF{r)] has trivial kernel.

Proof. Let N(J0e be a principal decomposition of M (§2). It is
sufficient to show that 80*: [SN,BF{r)] -> -nn{BF{r)), or equivalently
6*: [N,F(r)] -> TTn_x(F{r)), is zero. By the isomorphisms in (2.10) of (20)
the latter transforms into (8r0)*: [SrN,Sr] -+ rn+r_1(8

r). Since i f is a
homotopy 7r-manifold, 0 is stably trivial. The result follows since Sr6 is
stable when r ^ n — 1 — 2c.

Proof of (6.3). Sufficiency is obvious. Suppose that the tangent
sphere-bundle of M is fibre-homotopy trivial. By Lemma (3.2) of (10) and
the method of proof of (2.2), T is J-equivalent to the trivial bundle. Write
BS0{n) = Bn, BSO = B, BSH(n) = B'. In the following commutative
diagram, i and J are induced by natural maps.

[M, B] ^— [M, Bn] - ^ [M, B'].

Since M is a 7r-manifold, i(r) = 0. Thus T = Q6*(x) for some x in irn{Bn).
Since Qd*i(x) = 0 and M is & spin manifold, i(x) = 0. Since Q9*J(x) = 0,
J(x) = 0 by (6.4). It follows quickly that x = 0, so T = 0, as required.
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