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1. Introduction

Let M be a smooth closed manifold of odd dimension ¢. Consider all
g-plane bundles over M which are stably bundle equivalent to the tangent
bundle 7 of M. By a special case of Theorem 1.6 in [7], these fall into
either one or two bundle equivalence classes, and there is a method for
deciding, given M, which case occurs. When there are two classes, we
may ask for an invariant to distinguish between them. Similar questions
are posed by, for example, (a) fibre homotopy equivalence classes of
(9 — 1)-sphere bundles or fibrings over M which are stably fibre homotopy
equivalent to the tangent sphere bundle and (b) the analogue for spherical
fibrings over a Poincaré complex.

These questions have a feature in common with the Kervaire-Arf
invariant question for 2¢-manifolds: to tackle them, it is convenient to
have an operation or characteristic class which is widely defined, has small
indeterminacy, and detects the tangent bundle of the ¢g-sphere 82 (¢ odd,
g # 1,3,7). In [5], Dupont exploited this similarity, adapting Browder’s
technique from [3] to construct a mod 2 number b(£) for certain bundles ¢
over M. He concentrated on case (a) above, and gave a homotopy-
theoretic proof of a result of Benlian, Hirsch, and Wagoner (see [2]).

Concentrating on the bundle equivalence case, we construct a version
bp(€) of b(£) which has less indeterminacy than the original one. (Dr
Dupont has confirmed the observation that the type II indeterminacy in
§4 of [5] is non-zero whenever the type I indeterminacy is zero; but he
points out that this does not invalidate the proof of the main Theorem 5.1
of [5], since consistent lifts may be chosen there. For further remarks
concerning [5] see §7 below.) We show that if there are two distinct
classes of g-plane bundles over M stably equivalent to =, then by distin-
guishes between them, and bz(7) is the Kervaire mod 2 semi-characteristic
of M. As an application, we strengthen some known results about fields
of tangent k-frames on a g-manifold. - :

One could more generally consider the g-plane bundles in any fixed
stable class over any ¢-dimensional complex, again say for ¢ odd. However,
although Theorem 1.6 of [7] enumerates such bundles, the invariant by is
not obviously susceptible to generalization.
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The reason we restrict to odd ¢ is that the Euler class provides a
suitable invariant for answering the analogous questions when ¢ is even,
at least for oriented bundles.

In §2 we state the main results; these are slightly sharper than is
indicated above. In §§3 and 4 we prove some auxiliary results about Wu
orientations. The main results are proved in §§5 and 6. An essential
ingredient in the evaluation of b5 on tangent bundles is the technique used
in [4] to extend the definition of Kervaire invariants. Indeed, Ed Brown
has shown (private communication) how to describe much of the present
work in the framework of [4]. We retain the language of [3] in order to
make clear how this work relates to [5]. In §7 we comment on cases (a)
and (b) above, and in § 8 we give the application to vector fields.

It is a pleasure to acknowledge the benefit of conversations with
E. H. Brown, J. L. Dupont, F. Quinn, and J. D. Stasheff, and to thank the
Yale Mathematics Department for hospitality while this work was in
preparation.

2. Construction of b; and main results

In this section we recall Dupont’s construction of b(¢), and describe
how to refine it. We then state the main results.

All homology and cohomology groups will be taken with mod 2
coefficients. Throughout, ¢ will denote a fixed odd integer. An Eilenberg—
Maclane space K(Z,,r) will be denoted by K,. The product m-plane
bundle over any space will be denoted by m.

Let B be a classifying space for the orthogonal group O(n), with n > ¢,
and let ¥ be the canonical n-plane bundle over B. From §4 of [3] recall
that if =: B — B is any fibring over B and if y = #*(y), then an E-
orientation of an n-plane bundle 7 is a bundle map from » to y. If an
E-orientation of n exists we say that n is E-orientable. Two E-orientations
of 7 are equivalent if they are homotopic through bundle maps. In
particular, still following [3], let =: B{v,,,> - B be the principal fibring
classified by a representative map v,,,: B - K, , for the universal Wu
class v,,,. When the value of ¢ is understood, we refer to B{v,,;)-
orientations as Wu orientations. In this case, the Thom complex 7'(y) is
part of a Wu spectrum, in the terminology of [3]; in particular
H™T(y)) ~ Z, and xSqi*! is zero on H*(T(y)), where y is the canonical
anti-automorphism of the mod 2 Steenrod algebra. An S-dual X of (a
finite skeleton of ) 7'(7) is then part of the corresponding Wu cospectrum ;
if dimensions are chosen so that H"+4(X) is dual to H,(T'(y)), then
Hn+2(X)) x Z, and Sq?*! is zero on H"+271(X).



96 W. A. SUTHERLAND

Now following [5], we let M be a smooth closed connected g-manifold
with tangent bundle = and stable normal bundle v. Then 2v is Wu
orientable; let a: 2v — y be a Wu orientation. Since a is a bundle map, it
gives rise to a map of Thom complexes,

T(a): T(2v) - T(F).

Suppose that £ is a g-plane bundle over M which is stably bundle
equivalent to 7. By choosing a trivialization of £®v we specify an
S-duality between 7'(2v) and Z*T'(£), where Z denotes suspension (cf. [1]).
We choose also a fixed S-duality between X and (a finite skeleton of)
T(y). Then the S-dual of T'(a) is a map

g: X - ZrT'(§),

called an X-orientation of &.

Next let U;: T'(§) - K, represent the Thom class of ¢, let f: X — ZnK,
denote the composition Z"U;og, and let ¢« denote the fundamental class
in H(K,). Then (cf. [5, §4]) the functional Steenrod square Sg,*! is
defined on X% and Sq2+1(Z™) lies in H**%(X) x Z,.

In [5] Dupont described the analogue of this construction for ¢ a
(¢g—1)-sphere fibring which is stably fibre homotopy equivalent to the
tangent sphere bundle 7g, and denoted Sgq,2*}(X™) by b(£) in that case.
He pointed out the choices involved in the construction of b(¢), and proved
the beautiful result that the choice of (fibre homotopy) trivialization of
the Whitney join £+7g causes indeterminacy in the value of b(£) only
if all such ¢ are fibre homotopy equivalent to 7g. However (cf. §1 above),
the choice of Wu orientation of 2» also causes indeterminacy. We therefore
restrict this choice by imposing a symmetry condition.

Given a vector bundle { over a space 4, let t: { x { - {x { denote the
bundle map which switches the factors in the product bundle {x{.
Reverting to the context of general E-orientations as in § 4 of [3], we say
that an E-orientation a: { x { — 7 is symmetric if @ and a ot are equivalent.
(Recall that equivalent means homotopic through bundle maps.) Let
A: L@ - {x{ denote the natural bundle map covering the diagonal
map of 4. The following proposition will be proved in §4.

PrOPOSITION 2.1. Let w: E — B be the principal fibring over the classifying
space B induced by @ map

r
v:B—~> Hqu‘+1,
=

where the q; are odd integers. Let A be a space having the homotopy type of a
countable connected CW-complex, and let { be a vector bundle over A. Then
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for any two symmetric E-orientations a,,a, of {x{, the E-orientations
a,0A and ay0A of L ® { are equivalent.

- PrOPOSITION 2.2. Let v be the stable normal bundle of a g-manifold (q odd).
Then there exists a symmetric Wu orientation of v x v.

With these propositions in mind, we define bz(£) by going through the
bundle equivalence case of Dupont’s construction, except that we restrict
ourselves to using a Wu orientation of 2v of the form aoA, where a is a
symmetric Wu orientation of v x v. An X-orientation of ¢ arising from such
a Wu orientation of 2v (and some trivialization of ¢®v) will be called
allowable. -

Before stating the main results, we introduce an alternative point of
view on the choices involved in the above construction which allows
sharper statements to be made. I am grateful to J. Morgan and F. Quinn
for drawing my attention to this. Instead of considering g-plane bundles
which are stably equivalent to 7, we consider reductions of the stable
tangent bundle to a g-plane bundle. One way of defining such a reduction
is as an equivalence class of pairs (¢, §), where £ is a g-plane bundle over M,
0: {2 > 7@ 2 is a bundle equivalence, and the pairs (&,,6,), (&, 0,) are
equivalent if there exists a bundle equivalence ¢: £, - £, such that 6,
and .0,0(p@® 1) are homotopic through bundle equivalences. Now there
is a canonical trivialization of +@v, obtained by embedding M in a high-
dimensional euclidean space. Using this, we may associate with any pair
(§,0) as above a distinguished homotopy class of trivializations of £@v.
The allowable X-orientation of ¢ arising from a trivialization in this
distinguished class is thus unique up to homotopy. We define bg(£,8) by
going through the construction of b5(£), using at the appropriate stage an
allowable X-orientation in this unique class. In §5 we shall prove the
following sharp version of Corollary 4.5 of [5] (stated here in the bundle
equivalence case). .

THEOREM 2.3. The above bg(&,0) ts well defined on equivalence classes
of pairs.

When stating results in the bg(£€) terminology, it will be convenient to
say that M has James—Thomas number ¢ if there are precisely ¢+ bundle
equivalence classes of g-plane bundles over M which are stably bundle
equivalent to 7.

CoroLrLARY 2.4. If the James-Thomas number of M is 2, then bg(£) is
well defined for any q-plane bundle ¢ which is stably bundle equivalent to .

In § 5 we shall also check that by does the job it is designed for.
5388.3.33 G
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THEOREM 2.5. Suppose that (&,,0,), (&,,0,) are inequivalent pairs. Then
bB(fl’ol) # bB(§2!02)-

CorROLLARY 2.6. If £ is a g-plane bundle over M which is stably equivalent
but not equivalent to =, then bg(€) # by(r).

The next result, which will be proved in § 6, is a more precise form of the
evaluation result mentioned in §1. We recall that the Kervaire mod 2
semi-characteristic k(M ; Z,) of M is the congruence class mod 2 of
> rank Hy, (M ; Z,).

THEOREM 2.7. Let 1 denote the identity map of r@2. Then
bg(r,1) = k(M ; Z,).

CoroLLaRY 2.8. If the James-Thomas number of M s 2, then
bp(r) = k(M ; Z,).

ExampLe 2.9. Let 7, denote 7(8?). Then bg(r,) = 1forq # 1,3,7.

3. Homotopy-symmetric lifts

We now establish some facts about homotopy-symmetric lifts which
will be used in the study of symmetric orientations in §4. Throughout
this section let A4 be a space having the homotopy type of a countable
connected CW-complex and let B be any space. The maps in this section
and the next will generally not be required to preserve basepoints, but in
this section we need to compare basepoint-preserving and free homotopy
sets. For any spaces X, Y with basepoints, let [X, Y], [X, Y] denote the
sets of homotopy classes of maps from X to Y, where the maps and
homotopies are basepoint-preserving in the first set, free in the second
set. Let j: [X, Y], = [X, Y] denote the function which forgets about
basepoints.

Let t: A x A - Ax A denote the factor-switching map. We shall say
that a map f: 4 x A - B is homotopy-symmetric if f is homotopic to fot.
Suppose that f is homotopy-symmetric and let H: AxAxI - B be a
homotopy from f to fof. We shall say that a map ®: 4 x4 xI? - Bisan
H,-structure extending H if

Q(ay, ap, 0,3) = f(ay, a,),
D(a,,a,,1,s) = f(a,, a,),

D(ay, @y, 7, 0) = H(a,, ay, 1),
D(a,,ay,7,1) = H(ay, ay,1 —1),

for all a;,a,in 4 and r,sin I.
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Let K = [}, K,,,,, where the g, are odd integers, and let w: E — B be
the principal fibring classified by some map v: B - K. For convenience
we shall use Hi(X) to denote Hi(X) if ¢ # 1, and [X, K,] (free homotopy
classes) if ¢ = 1.

ProrosiTioN 3.1. (a) Suppose that f: A x A — B is a map which lifts
to B, and that H is a homotopy from f to fot which extends to an H,-structure.
Then there exists a lift f': A x A - E of f such that f' is homotopic to f'ot
by a homotopy covering H.

(b) Suppose that f: A x A - B is a map and that H,, H, are homotopies
from f to f ot which are homotopic (through homotopies from f to fot). Suppose
also that for © = 0,1, fi: Ax A — E is a lift of f such that f; is homotopic
to f; ot by a homotopy covering H;. Then the homotopy classes of fq and f, (as
lifts of f) differ by the action of a symmetric element of 3_, H#(A x A).

For simplicity, we make an extra assumption in proving this proposition:
that if ¢; = 1 for some %, then H(4) = 0. (In Remark 3.4 we shall indicate
how to proceed in general.) Even assuming this extra condition, we need
to take further notice of basepoints. As basepoint in a product space
Y = [1,Y; we take the point {y,}, where y, is the basepoint in ¥;. We make
the identifications [X, Y], = I1;[X,Y;],, [X,Y]=T1I;[X.Y;]. We now
consider the forgetful function

ji [Ax 4,QK, )y~ [Ax 4,QK, 1.

Since 4 x 4 is a CW-complex (with basepoint a vertex, say), and QK .,
is path-connected for ¢; > 1, it follows that j; is onto for ¢; > 1. For
q; > 1, QK ., is simply-connected and j; is one-to-one. For ¢; = 1, the
extra assumption ensures that [4 x 4,QK ], # H}(4 x A) = 0, and that
Jg s trivially one-to-one. From the previous remarks about the case where
Y is a product space, it follows that

J:[AxA4,QK], >[4 xA4,QK]

is an isomorphism, and we may therefore identify [4 x 4,QK] with
T 1 HU(A x 4).

Proof of 3.1(a). The function spaces in the proof will all be supposed to
have the compact-open topology. We shall use the same notation for a
map and its homotopy class.

We are given that f lifts to Z. For some (provisional) choice of a lift f’,
let « denote the obstruction to the existence of a homotopy from f’ to
f'ot covering H. Then « € [A x A,QK] and as above we may identify «
with an element of }7_, H%(A4 x A). We now show that « is symmetric.

LemMMma 3.2. With the above notation, t*a = «.
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Proof. Let * denote the basepoint in K, ZK the space of paths in K
beginning at *, and p: £ K — K the endpoint map. There is a one-to-one
correspondence between maps g into £ and pairs of maps (g9g,g5) into
ZK, B such that pogg = vogp. ‘

We are given g =H: AxAxI > B. Let gx: AxAx0l - £K be
the map given by fx on 4 x 4 x {0} and by fgot on A x A x {1}, where
f' is the provisional choice of lift of f. Then « is the obstruction to the
extension of g% to a map gx: 4 x AxI - ZK such that pogx = vegy.
Let KI denote the space of (free) paths in K, and let h: A x A — KI
denote the adjoint of vogy. As a map of 4 x 4 into the loop space QK,
o = fr.h.(frot)™, where the dot denotes composition of paths and the
inverse means that the path runs backwards. It is convenient to describe
a by means of a diagram showing the adjoint map of the boundary oI2
into the function space K4x4,

ficot

fx
The labels indicate suitable adjoints of the maps named.
Now since H extends to an H,-structure, it follows that « is homotopic

to B, where
B =fr(Rot)(frot)™.
On the other hand,

t¥a = (fgot).(hot).(fi) = B,

But each factor in the product K is a K(Z,,q;+ 1), so B~ = B, and hence
t*o = o as required.

We now return to the proof of 3.1(a). Using the Kiinneth formula,
Lemma 3.2, and the oddness of ¢;, we may write « = a +¢*a for some (not
necessarily unique) @ in X7_; H%(4 x A). We now alter f' by the action
of a, where this action is defined as usual by the principal fibre space
structure of =: E — B. This alters the obstruction diagram to the
following:

ol f’Kot
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The obstruction to a suitable homotopy covering H is now
a+o+t*a = 0.
Proof of 3.1(b). This may be summed up by & diagram as follows:

f(’),Kot ’Uofot 'fi’Kot

| Hox | ¥ | Hyg |*

fox vof  fix

Here ¥ corresponds to a homotopy from H, to H, through homotopies
from f to fot, and Hj is a homotopy from f; to f;of covering H;. The
difference d between the lifts f, and f; is. represented by the bottom edge

of the diagram, and the whole diagram represents a homotopy from d
to dot.

ReMARK 3.3. We have presented the above proofs as if [4 x 4,QK],
and [4 x 4,QK] were identical. This is justified since the isomorphism
j: [AxA,QK], > [4A x A, QK] is natural with respect to ¢* and u,, where
u: QK — QK denotes inversion of loops.

ReMARK 3.4. Suppose that ¢; = 1 for some ¢, and we do not assume
that H(4)=0. It is clear that in proving 3.1(a), we may consider
separately the obstruction corresponding to each factor K ,. Suppose
that the obstruction « liesin [4 x 4, QK,]. The latter group may no longer
be isomorphic to H1(4 x 4), but a ‘Kiinneth’ formula still holds: there is
an isomorphism ¢: [4,QK,]x[4,QK,] - [4 x A,QK,] defined by

Ploy, og) = Mo (o X ),

where m denotes the multiplication (loop composition) in QK,. Moreover,
t*op = @ot, where ¢t switches the factors in [4,QK,]x[4,QK,]. Using
this, and the fact that ¥« = «, we get that « = ¢(x, ;) for some o, in
[4,QK,). We alter the provisional choice of lift by the action of o;0p;,
where p,: A x A - A denotes projection on the first factor, and check
that the new obstruction class is zero.

The proof of 3.1(b) is unaffected when H(A4) # 0, and we have only to
note that H(4 x 4) may no longer be equal to H%(4 x A) in this case.

4. Symmetric orientations

Throughout this section we use the notation and the methods of §4
of [3]. In particular, p: y — y denotes the natural bundle map covering
the fibre map =: £ — B, where B is a classifying space as in § 2 above. We
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shall deal with vector bundles over CW-complexes but, as observed by
Browder, these could be replaced by ‘bundles’ in some other suitable
category.

We begin by recalling an alternative description of E-orientations. Let
7n be a vector bundle with base space X (a CW-complex). Then there is a
canonical one-to-one correspondence between E-orientations of % and
pairs (¢, f') such that ¢: n - y is a bundle map and f': X - F is a lift of
the map f: X — B covered by c¢: to the E-orientation a: % —> 7y we
associate the pair (c,f’) where ¢ = poa and f': X — F is the map covered
by a. Itiseasily checked that this does set up a one-to-one correspondence,
since y = w*(y). If the E-orientation @ corresponds in this way to the pair
(c,f'), then in the terminology of [3], a is canonical (with respect to c). If
for ¢ = 0,1 the E-orientation a; of # corresponds to the pair (c,,f;), then
there is a similar one-to-one correspondence between equivalences from
a, to a, and pairs (6, H') where 8 is a homotopy through bundle maps
from ¢, to ¢,, and H': X xI - E is a homotopy from f; to f; such that
H = mwoH' is the homotopy covered by 6. Suppose in particular that
Co = ¢, = ¢, and that f: X — B is the map covered by c; thus ¢, and a,
are both canonical (with respect to ¢) and mofy = mofy; =f. Then a
canonical equivalence between @, and a,, as defined by Browder, corre-
sponds to a pair (8, H') where 0 is the constant homotopy of ¢ and H' is a
homotopy from f; to f; through lifts of f.

Proof of Proposition 2.1. Suppose that a,,a,: { x{ — y are symmetric
E-orientations as in the hypotheses of Proposition 2.1. Then by the ‘onto’
part of Lemma 4.1 in [3], @, is equivalent to an E-orientation a, such that
o = ¢, = ¢, say, where (c;,f;) is the pair corresponding to a; in the way
described above. Since a, is symmetric, so is a@,. For 3= 0,1, let (6;, H;)
be a pair corresponding to an equivalence from a; to a@;o¢. Thus 8, and 6,
are homotopies from ¢ to cof through bundle maps. Let f: Ax4 - B
denote the map covered by ¢, and let H;: A x AxI — B denote the
homotopy covered by 8,. We shall show that H, and H, are homotopic
(through homotopies from f to fo¢). For let us define a bundle map 4 from
{x{xI%|AxAxdI?to y as follows. For z in the total space of { x { and
r,sin I, let

h(z,0,s) = c(z),
hiz, 1,8) = c(¢(x)),
h(z,r, %) = 0,(x,7) (¢=0,1).

Since y is universal,  extends to a bundle map %: {x { x I? > y. The map
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from A x A x I2 to B covered by % is a homotopy from H, to H, through
homotopies from f to fot.

The hypotheses of Proposition 3.1(b) are now satisfied, and we conclude
that the homotopy classes of f, and f; (as lifts of f) differ by the action of a
symmetric element of 37_, H%(A4 x A). As in the proof of 3.1(a), any such
symmetric element may be written 8+¢%8 for some 6. If A: 4 > A x4
denotes the diagonal map then

A*(5+1%8) = 2A*(5) = 0,

the latter equality holding because the coefficients are mod 2. Thus
fooA and f oA are homotopic through lifts of foA. This implies that the
E-orientations @yoA and a,0A are (canonically) equivalent. Thus a,0A
and a,0A are equivalent, since @, and a, are equivalent.

REMarRk 4.1. Remarks 3.3 and 3.4 apply, with appropriate
modifications, to the above proof.

Proof of Proposition 2.2. The proof is by universal example. Let B be a
classifying space for O(2n), and let y,y be as before. Let B; be the
n,-skeleton of a classifying space B, for O(n,), where n > n, > n, > q. Let
y; be the restriction to B, of the canonical n,-plane bundle over B,, and
let y, = 91 ® (R —ny). Then the product bundle y, x vy, is classified by a
bundle map c: y, xy, > y. Let f: B, x B, > B denote the map covered
by c¢. Using the universality of y as in the proof of Proposition 2.1, we
first get a homotopy 8 (through bundle maps) from ¢ to ¢of, and then a
bundle map ¥': y; Xy, x I2 — y, satisfying

¥(x,r,0) = 0(x,7),
W(x,r,1) = 0(¢x), 1 —7),
¥(z,0,s) = c(z),
W(z,1,s) = c(t(x)),

for r,s in I and x in the total space of y; xy,. At the base-space level, §
covers a homotopy H from f to fot, and ¥ covers an H,-structure @
extending H.

Next, following an idea used by Dupont in [5], we let B; be the space
formed from B, by killing off the Wu classes v; for ¢+1 < 2¢ < 2¢+2.
Thus there is a principal fibring =, : B; - B, with fibre []3%42,; K; ;. Let
y1 = 7§ (y,), and let p;: y; - y; be the natural bundle map covering .
As observed in [5], fo(m xm): By x By - B lifts to B{v,,,>. For any
such lift f’, the pair (co(p, X p;),f’) corresponds to a Wu orientation of
¥1X7;. Moreover, ®o(m, xm x1) is an H,-structure extending the
homotopy Ho(m, xm;x1). Hence by Proposition 3.1(a), there is a lift
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S+ Byx By = B, of fo(m; x m;) such that f’ is homotopic to f'ot by
a homotopy H' covering Ho(m xm, x1). Let a: y, xy; - 7 be the Wu
orientation corresponding to the pair (co(p; x p),f’), where f’ is such a
lift. Then the pair (fo(p, x p;x1),H’) corresponds to an equivalence
between a and ao¢. Hence a is a symmetric Wu orientation of y, x ¥,.
Now on dimensional grounds, v is Bj-orientable. Let o:v -y, be a
Bi-orientation of v. Then @o(axa):vxv—>y is a symmetric Wu
orientation of v x v, as required.

5. Proofs of Theorems 2.3 and 2.5

We first observe that Corollaries 2.4 and 2.6 follow immediately from
Corollary 4.5 and Lemma 5.2 of [5], together with Proposition 2.1 above.
The aim of this section is to prove the sharper versions of these results
stated in Theorems 2.3 and 2.5.

Proof of Theorem 2.3. Suppose that (£;,0,) and (&,,0,) are equivalent
pairs as in the hypotheses of Theorem 2.3. Thus there exists a bundle
equivalence @: &, — £, such that 6, and 6,0 (p@ 1) are homotopic through
bundle equivalences. Let i, denote the trivialization of £;®v associated
with 8; as described in §2. It follows easily that ¢, and ¢,0(p@ 1) are
homotopic through bundle trivializations, where 1 denotes the identity
map of v, and hence that the following diagram commutes up to homotopy:

q
X — ()

T
91J y lanz
Z‘n(]l
In(§,) — K,

Here g; is the allowable X-orientation, constructed with the use of the
trivialization y;;, and U, is the Thom class of ;. The conclusion of Theorem
2.3 now follows by homotopy invariance of the functional Steenrod square.

Because of the remark at the beginning of this section, we omit the
deduction of Corollary 2.4 from Theorem 2.3.

Proof of Theorem 2.5. As observed at the beginning of this section, the
result is known when £, and ¢, are not equivalent as bundles. Suppose
that there is a bundle equivalence ¢: ¢, — £,. Then by definition of the
equivalence of pairs, (§,,0,) is equivalent to (§,,0,) where 8, = 6,0 (p @ 1).
It is therefore sufficient to show that bg(¢,0,) # bg(é,6,) when the pairs
(&,6,) and (£, 6,) are not equivalent. This is implicit in [5] and [7], and we
shall only sketch the method.
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We recall from §2 of [5] that given a self-equivalence o of a vector
bundle 7 over a (paracompact) space X, we may form the mapping-torus
bundle 7, over X x 8%, and it makes sense to write w,,(x) when we mean

wq+1(7]a)'

Lemma 5.1. Suppose that ¢ is a g-plane bundle over a q-dimensional
CW-complex (q odd) and that « is a self-equivalence of €®2. Then o ts
homotopic (through bundle equivalences) to ¢ ® 1 for some self-equivalence ¢

of & if and only if wy,,(x) = 0.

The proof is straightforward; for example, one can use the methods
of §4 in [7] and of §4 above. We omit the details.

CoroLLARY 5.2. Pairs (£,0,), (£,0,) of the type described in §2 are
equivalent if and only if w,,,(637200,) = 0.

Returning to the sketch proof of Theorem 2.5, we have inequivalent
pairs (&,6,) and (¢,6,), so by Corollary 5.2, w,,;(0,7106;) # 0. As in the
proof of Theorem 2.8, if g: X — X#7T(§) is the allowable X-orientation
corresponding to (£,6,), then the allowable X-orientation corresponding
to (£,0,) is T'(6,100,)0g, and the required result now follows by Theorem
4.4 of [5].

6. Evaluation of by(7)

This section is devoted to the proof of the evaluation Theorem 2.7. An
essential ingredient is Brown’s technique for generalizing the Kervaire
invariant (see [4], particularly Example 1.27). For a 2¢-manifold @,
Brown defined ¢,: H4(Q) - Z, satisfying

en(u+v) = @p(u) +@u(v) +5(u v v[Q)),

where J: Zy, - Z, is the non-zero homomorphism and [¢] is the funda-
mental homology class of Q. The construction of ¢, is by means of a
composition

D w
HYQ) — {Q, K} — {8, T(-(@))r K} —>

/
—_— {Sn+2q, T(7) A Kq} _1'> Z,,

where the braces denote stable homotopy classes of stable maps. The
first function assigns to » in H%4Q) the S-class of a representative map
u:Q - K,; in the notation of [4], u+> F(u,0). The other functions are
homomorphisms: D is given by S-duality, and W is induced by a choice
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of Wu orientation, say a, of v(@). Finally, A satisfies A(A) = 2 in the
notation of [4]; for convenience we shall call such an & admissible.

Now let 4 denote Browder’s quadratic function (see [3]), constructed
using the same Wu orientation a of v(@). Thus ¢ takes values in Z,, and
does not depend on a choice of admissible 4, but the domain of  may be a
proper subset of H%(Q). The following proposition is implicit in [4], and
we omit the proof.

ProrositioN 6.1. Let ¢, and  as above be constructed using the same Wu
orientation of v(Q) (and some admissible h in the case of @,). If (u) is

defined, then pn(u) = j(h(w)).

Proof of Theorem 2.7. The technique of this proof is similar to that used
by Dupont in [5] and by Thomas in [11].

We construct ¢ and ¢, for M x M using a symmetric Wu orientation a
of v(M x M) = v x v (where as before v denotes the stable normal bundle of
M). The S-dual of the corresponding map 7'(a) of Thom complexes, with
respect to the canonical S-duality between T'(vxv) and Z*((M x M)*),
is an X-orientation g: X - Z*((M x M)*). The S-dual of

TA): T(2v) > T(vxv)

with respect to the S-duality between 7'(2v) and Z*T'(r) corresponding to
the identity bundle equivalence of 7@ 2 is well known to be Z»f, where
[ (M x M)+ - T(=) collapses the complement of a tubular neighbourhood
of the diagonal in M x M to the compactification point in T'(r). Hence
the allowable X-orientation of Z»T'() corresponding to the pair (r,1) is
Z"fog, the S-dual of T(aoA). It follows by naturality of the functional
Steenrod square that by(r, 1) = (f*U,) = Y(U), where U = f*U,. Hence
by Proposition 6.1, j(bg(r, 1)) = ¢,(U). Now there exists 4 in HY(M x M)
such that U = 4 +t*4 and (Aut*A)[ M x M| = k(M ; Z,) (see [10, §4]).
The point of introducing ¢, is that ¢,(4) is defined, whereas (4) may
not be. We now have

J(bg(r, 1)) = @p(U)
= on(4) +n(t*4) +j((A vt*A)[M x M])
= on(4) +nt*4) +j(k(M; Zy)).

To complete the proof of Theorem 2.7 it is sufficient to show that ¢,(4)
and ¢,(t*4) cancel each other out. We shall prove this using the
symmetry of the Wu orientation «. In fact signs are not important,
since zuz = 0 for all z in HY(M x M), so (cf. [4]) g (HUM x M)) < 2Z,.
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Let us consider the diagram

D
Ho(M x M) —> (M x M, K} ——>

D
Ho(M x M) — {M x M, K} ——>

w
—— {82, Ty xv) A K} —> {82, T'(7) A K}

(T(t) A 1)*l /

—— {820, T(v xv) A K}
(6.2)

where the horizontal maps are those used in the construction of ¢,.
If (6.2) commutes, then @, ot* = ¢, as required. The first square in (6.2)
obviously commutes. The triangle commutes since the symmetry of a
implies that T'(a) and T'(a)oT(t) are homotopic. It remains to show that
the second square commutes. Since 2{M x M, K ;} = 0, we shall ignore
signs. For u in {M x M, K} consider the diagram

BAB T(d)

Sntta —Z 5 Po)AT(y) ——>

N ;
- T(d)

Tw) A T(y) ———>

s TEATW) A X M) —2% T()AT()A K,

[t/\t tanl

e Pe)ATE) A x My 22D DK,

where B is the normal invariant of M (so BAf is the normal invariant of
MxM), d: M x M - M* is the diagonal map, and each ¢ represents a
factor-switching map. The triangle homotopy-commutes up to sign, and
the squares clearly commute. The upper composition represents D(u) and
the lower composition represents D(t*u), hence (¢A 1), D(u) = D(t*u) as
required. This completes the proof of Theorem 2.7.



108 W.'A. SUTHERLAND

7. The fibre homotopy case

It is fairly clear how the analogous theory proceeds to define bF(f)
or bp(¢,0) when

(a) £is a (g—1)-sphere bundle or ﬁbrmg over M whlch is stably fibre

homotopy equivalent to the tangent sphere-bundle 7g, and 6 is a
stable fibre homotopy equivalence of ¢ with g, or

(b) M is a Poincaré complex and § is as in (a), where g now denotes

the negative of the Spivak normal fibring of M.

The step from (a) to (b) merely enlarges the domain of definition of b.
To examine the relation between by and by, let £y denote the sphere-
bundle associated with (some choice of riemannian metric on) a vector
bundle ¢. If by(€) is well defined then so is bg(§) and the two are equal.
However, bg(€) may be well defined when by(£g) is not. In other words, it
can happen that ¢ is stably bundle equivalent to = and £g is fibre homotopy
equivalent to 7g but ¢ is not bundle equivalent to =. Using [7] (see also
[10]) we may show that there exists such a bundle ¢ over 83 x P, where
P is the real projective plane.

This is perhaps an appropriate place for a comment which has been
communicated to me by J. L. Dupont, concerning Theorem 5.4 of [5].
The statement of that theorem refers to a homotopy equivalence
f: M — M’ of smooth closed odd-dimensional manifolds such that =~ and
f*(=') are stably bundle equivalent. The conclusion asserts that = and
f*(r') are bundle equivalent. Dupont notes that the proof contains a
gap: the snag is that bgz(7) and bg(f*(')) may not be equal, for by [1], f
determines a unique stable fibre homotopy equivalence ¢ of 7+1 with
J*(r')+1 (called the homotopy differential of f) and one can prove that

by(r) —bp(f*(7')) = Wera (¥ o)

in the notation of §5 above, where i is a stable bundle equivalence
between 7 and f*(v'). Dupont points out that there are three
possibilities:
(i) the James-Thomas number of M is 1, in particular f*(') = 7;
(ii) all stable bundle equivalences i satisfy

Wea(hlo@) =0, f¥*')=1; |

(iti) all such ¢ satisfy w, ., (fop) # 0, f*(') & 7.

We do not know whether case (iii) can actually occur; if it occurs for
f: M - M’, then M must be a manifold, such as S8 x P above, for which
the indeterminacy in bg(7) is zero and the indeterminacy in bu(rg) is
non-zero.
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8. An application
In this section, we apply the foregomg theory to strengthen slightly a
theorem of Frank and Thomas

THEOREM 8:1 (cf. [6, Theorem 1]) Suppose

(a) g+1 =27(2m+1) for integers r,m with r > 0, m > 0, and M s @
 g-manifold with w; = 0 for 0 < i < 21, : :

(b) M admits a tangent 27-field.

Then k(M ; Z,) =

As Thomas has observed in [12], the converse is not true in general.
However the following stable-to-unstable result holds.

,' PROPOSITION "8 2. Suppose that M satisfies Theorem 8.1(a), that
k(M; Z,) = 0, and that M stably admits a tangent 27-field (that is, the
geometric dimension of v 18 at most q—27). Tken M admits a tangent
2r-field. '

As a preliminary to clarify the situation, we note that a manifold
satisfying the hypotheses of Theorem 8.1 or of Proposition 8.2 has James—
Thomas number 2. This follows, for example, from. [7]; we omit the
details, since the result is not needed for the proofs of Theorem 8.1 or
Proposition 8.2.

We next modify the construction of by to suit manifolds satisfying
Theorem 8.1(a). For orientable manifolds, the previous theory may be
carried through in an oriented context, with appropriate changes. (The
cohomology coefficients are still Z,, however.) By [7, 7.2], if §,7 are
oriented g-plane bundles (¢ odd) which are bundle equivalent then they
are oriented bundle equivalent. Because of this, and since the results in
§2 hold in the oriented case also, we may compute bg(£) in the oriented
context. :

Let 7: B{w,.;) = B, p: 7=y be as in §2, but taken in the oriented
context. Let w; = n*(w,;). Let n': B — B{v,,,> be the principal fibring
obtained by killing off in B{v,,;> the w; for ¢ =25 1<s<r. Let
7z B — B be the composite fibring mwon’, and let ygz = n§(y) = =’ *(y).
Let p’, pz be the natural bundle maps covering #', m5. Thus pg = pop'.

Suppose that M satisfies Theorem 8.1(a). Just as in the proof of
Proposition 2.2 we may show that v x v admits a symmetric E-orientation
a:vXv->yp. Then p’oa is a symmetric Wu orientation of v x v. Suppose
that ¢ is an oriented ¢-plane bundle over M which is stably bundle
equivalent to 7. By passing to the Thom map 7T'(p’ ca) and then to S-duals
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we get an allowable X-orientation of ¢ of the form

’

x 2 1L, s,
where g’ is S-dual to T'(aoA) and % is S-dual to T'(p’).

Since ¢ is oriented, we have an integral Thom class Ug for ¢, and then
Uy = roU: T(¢) > K,, where r: K(Z,q) > K, denotes mod 2 reduction.
Let 7 denote the mod 2 reduction of the fundamental class of K(Z,q)
and let

[ =3200g": X' - Z"K(Z,q).

Then f'*(Z") = g'*(Z"U,) = 0, where the second equality follows by
S-duality since @ covers a homotopy-symmetric map 4: M x M — E, so
koA induces the zero homomorphism of H%(E) as in the proof of Proposi-
tion 2.1. As in [3] it follows that f'*H»+2(Z"K(Z,q))=0 and
Sqr1H™-Y(X') = 0. Hence Sq%(Z") is defined and takes a value in
Hn+2(X') ~ Z,, with zero indeterminacy. Since 7'(p’) has degree 1 (mod 2)
in dimension n, h* has degree 1 in dimension n+2g. Hence

bp(§) = Sgiti(Zm™).

Proof of Theorem 8.1. Now assume that 8.1(b) also holds, and write
2" =¢. Thus 7 = {@s for some oriented (¢—s)-plane bundle {. By [1]
there is a natural homeomorphism

a: T(r) > ZT(D).

Let ng T() > K(Z,q—s) represent the Thom class of {. Then U, is
represented by the composition

a Zsﬂg Z&
T(r) — ZT({) —> XK(Z,q—s) — K(Z,q),
where ¢ is the (integral) fundamental class of K(Z,q—s). Thus
f'=3Zrsof, where f=Zn+0,0Z%x0g’: X' - ZnHK(Z,q—s). Hence
Sq¥+1(Ent,) = Sgd+(En+%i,_,) modulo the maximum indeterminacy in-
volved, which is SgetiHn+e-Y(X')+ f*Hn+2(Zn+sK(Z,q—s)), and this is
zZero.
For ¢+ 1 as in Theorem 8.1(a) we may write

8ga+ = Sqs8qa+i-s 4 3 b, Sqr+1-iSg’, (8.3)

where the b; are mod 2 binomial coefficients and the sum is over
1<j<3s=2-1 Each term a, = 8¢38¢?*~3, a; = Sq?*1-i8¢’ on the
right-hand side of (8.3) annihilates T»+%,_ for dimensional reasons, so
the functional operations (a;);, (a;); are defined on Z"+si,_.. Moreover,
each Sg?+1-7 in (8.3) is in the right ideal of the mod 2 Steenrod algebra
generated by the Sg* with 1 < ¢ < 1s (see [6] or [9,5.4]),and for 1 <4 < s,



THE BROWDER-DUPONT INVARIANT 111

SqiHn+2-4(X') = 0 by S-duality, since each such Sg* (and hence each
such xS8¢%) is zero on H™T(yy)). Hence (a;), and each (a;), is
defined on Z"+%, . with zero indeterminacy. We may therefore calculate
8qit1(Zn+9, ) by calculating separately (a,), and (a;), on Z**+% _. and
summing.

Now (a,)/(2"*%,_,) = Sq3(Sqe+1-3En+%,_ ) = 0 modulo the maximum
indeterminacy involved, which is

Sq*Hn+2-5(X') + f*Hn+2a(En+eK (Z, q — 5)) = 0.
Similarly for each j with 1 <j < 3s,
(aj)](zn+szq—s) = Sq<fl+1-j(‘gqun+gzq—s)

modulo maximum indeterminacy, which is again zero.

Let t: K(Z,q—s) > K,_.; represent Sg,_;, and let e = Zn+sf, Then
e*(Zrtey, ) = Sg(En+s, ), and Sqifr—i(Zn+e.,_..,) is defined, since
Sqat1—i(Xn+s,,_, ;) is zero on dimensional grounds. Hence

Sqgt-1(SgfEnte) = SqUit—1(Znteey_g.9)
modulo maximum indeterminacy, which is again zero. But
tolp: T(0) > K,_oyy

represents Sq/U,, which is zero since w;({) = w;(r) = 0. Thus 800; is
null-homotopic, and hence eof = eo X700, 0 Em+5x0g’ is null-homotopic.
Hence Sqgi~#(Z™t;_,,;) = 0. This completes the proof that bg(r) = 0.
Hence by Theorem 2.7, k(M ; Z,) = 0.

Proof of Proposition 8.2. Suppose that @1 = {@® (2"+1), where { is
some (¢—27)-plane bundle over M. As in the proof of Theorem 8.1,
bp(t®27) = 0. By hypothesis and Theorem 2.7, bg(r) = k(M ; Z,) = 0.
Hence by Corollary 2.6, 7 is bundle equivalent to { @ 27, as required.

ReMARKS. (a) When » > 1, the hypotheses of Theorem 8.1 do not
imply that the Kervaire semi-characteristic with rational coefficients
k(M ; Q) is zero. For example, the Stiefel manifold 2 of 2-frames in
2r-1(2m + 1)+ 1-space is parallelizable yet k(M ; Q) = 1.

(b) The connection between this section and the unstable secondary
operations used in [6] and in § 5 of [9] is as follows. Let ® denote one of
these secondary operations and suppose that ¢ is a g-plane bundle over
M which is stably equivalent to 7, where ¢ and M are as in the hypotheses
of Theorem 8.1 or Proposition 8.2. Then @ is defined on the Thom class
Ug, and with the aid of the second Peterson—Stein formula, it can be proved
that o=2(®(U;))[M] = bp(£), where @ is the Thom isomorphism for £.
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+ (c) When m = 0, the analogues of Theorems 8.1 and 8.2 are the results
of Kervaire relating parallelizability of odd-dimensional 7-manifolds with
vanishing of the Kervaire mod 2 semi-characteristic (see [8]).

(d) It is possible that comparison of the methods of this section with
forthcoming work of M.-L. Welland would be interesting.
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