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1. Introduction

Let M be a smooth closed manifold of odd dimension q. Consider all
g-plane bundles over M which are stably bundle equivalent to the tangent
bundle T of M. By a special case of Theorem 1.6 in [7], these fall into
either one or two bundle equivalence classes, and there is a method for
deciding, given M, which case occurs. When there are two classes, we
may ask for an invariant to distinguish between them. Similar questions
are posed by, for example, (a) fibre homotopy equivalence classes of
(q— 1) -sphere bundles or fibrings over M which are stably fibre homotopy
equivalent to the tangent sphere bundle and (b) the analogue for spherical
fibrings over a Poincare complex.

These questions have a feature in common with the Kervaire-Arf
invariant question for 2g-manifolds: to tackle them, it is convenient to
have an operation or characteristic class which is widely denned, has small
indeterminacy, and detects the tangent bundle of the g-sphere Sq (q odd,
q =£ 1, 3, 7). In [5], Dupont exploited this similarity, adapting Browder's
technique from [3] to construct a mod 2 number b(£) for certain bundles £
over M. He concentrated on case (a) above, and gave a homotopy-
theoretic proof of a result of Benlian, Hirsch, and Wagoner (see [2]).

Concentrating on the bundle equivalence case, we construct a version
bB(£) of b(£) which has less indeterminacy than the original one. (Dr
Dupont has confirmed the observation that the type II indeterminacy in
§ 4 of [5] is non-zero whenever the type I indeterminacy is zero; but he
points out that this does not invalidate the proof of the main Theorem 5.1
of [5], since consistent lifts may be chosen there. For further remarks
concerning [5] see §7 below.) We show that if there are two distinct
classes of g-plane bundles over M stably equivalent to r, then bB distin-
guishes between them, and bB(r) is the Kervaire mod 2 semi-characteristic
of M. As an application, we strengthen some known results about fields
of tangent fc-frames on a g-manifold.

One could more generally consider the g'-plane bundles in any fixed
stable class over any g-dimensional complex, again say for q odd. However,
although Theorem 1.6 of [7] enumerates such bundles, the invariant bB is
not obviously susceptible to generalization.
Proc. London Math. Soc. (3) 33 (1976) 94-112
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The reason we restrict to odd q is that the Euler class provides a
suitable invariant for answering the analogous questions when q is even,
at least for oriented bundles.

In §2 we state the main results; these are slightly sharper than is
indicated above. In §§ 3 and 4 we prove some auxiliary results about Wu
orientations. The main results are proved in §§5 and 6. An essential
ingredient in the evaluation of bB on tangent bundles is the teclinique used
in [4] to extend the definition of Kervaire invariants. Indeed, Ed Brown
has shown (private communication) how to describe much of the present
work in the framework of [4]. We retain the language of [3] in order to
make clear how this work relates to [5]. In § 7 we comment on cases (a)
and (b) above, and in § 8 we give the application to vector fields.

It is a pleasure to acknowledge the benefit of conversations with
E. H. Brown, J. L. Dupont, F. Quinn, and J. D. Stasheff, and to thank the
Yale Mathematics Department for hospitality while this work was in
preparation.

2. Construction of bB and main results
In this section we recall Dupont's construction of &(£), and describe

how to refine it. We then state the main results.
All homology and cohomology groups will be taken with mod 2

coefficients. Throughout, q will denote a fixed odd integer. An Eilenberg-
Maclane space K(Z2,r) will be denoted by Kr. The product m-plane
bundle over any space will be denoted by m.

Let B be a classifying space for the orthogonal group 0(n), with n > q,
and let y be the canonical w-plane bundle over B. From § 4 of [3] recall
that if 77: E -> B is any fibring over B and if y — 7r*(y), then an E-
orientation of an w-plane bundle -q is a bundle map from r) to y. If an
l£-orientation of rj exists we say that rj is E-orientable. Two i£-orientations
of rj are equivalent if they are homotopic through bundle maps. In
particular, still following [3], let TT: B(vq+1} -> B be the principal fibring
classified by a representative map vq+1: B -> Kq+1 for the universal Wu
class vq+1. When the value of q is understood, we refer to B(vq+1}-
orientations as Wu orientations. In this case, the Thorn complex T(y) is
part of a Wu spectrum, in the terminology of [3]; in particular
Hn(T(y)) x Z2 and x^qq+1 is zero on Hn{T(y)), where x is the canonical
anti-automorphism of the mod 2 Steenrod algebra. An #-dual X of (a
finite skeleton of) T(y) is then part of the corresponding Wu cospectrum;
if dimensions are chosen so that Hn+2Q(X) is dual to Hn(T(y)), then

Z2 and Sq«+1 is zero on Hn+«-\X).
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Now following [5], we let M be a smooth closed connected g-manifold
with tangent bundle T and stable normal bundle v. Then 2v is Wu
orientable; let a: 2v -> y be a Wu orientation. Since a is a bundle map, it
gives rise to a map of Thorn complexes,

T(a): T(2v)->T{y).

Suppose that | is a g-plane bundle over M which is stably bundle
equivalent to r. By choosing a trivialization of £®v we specify an
^-duality between T(2v) and ?,nT(£), where 2) denotes suspension (cf. [1]).
We choose also a fixed ^-duality between X and (a finite skeleton of)
T(y). Then the £-dual of T(a) is a map

called an X-orientation of f.
Next let Vg: T(f) -> Kq represent the Thorn class of £, le t / : X -> ?,nKq

denote the composition 2n?7gogr, and let t denote the fundamental class
in H*{Kq). Then (cf. [5, §4]) the functional Steenrod square 8qf+1 is
denned on Snt and Sqf+^i) lies in Hn+2«(X) « Z2.

In [5] Dupont described the analogue of this construction for £ a
(#—1)-sphere fibring which is stably fibre homotopy equivalent to the
tangent sphere bundle T^, and denoted Sqf

q+1(Lni) by 6(£) in that case.
He pointed out the choices involved in the construction of b(tj), and proved
the beautiful result that the choice of (fibre homotopy) trivialization of
the Whitney join £ + r(g causes indeterminacy in the value of &(£) only
if all such | are fibre homotopy equivalent to rs. However (cf. § 1 above),
the choice of Wu orientation of 2v also causes indeterminacy. We therefore
restrict this choice by imposing a symmetry condition.

Given a vector bundle £ over a space A, l e t £ : £ x £ - > £ x £ denote the
bundle map which switches the factors in the product bundle £ x £.
Reverting to the context of general 2£-orientations as in § 4 of [3], we say
that an J57-orientation a: £ x £ -> y is symmetric if a and a at are equivalent.
(Recall that equivalent means homo topic through bundle maps.) Let
A: £©£->"£x£ denote the natural bundle map covering the diagonal
map of A. The following proposition will be proved in § 4.

PROPOSITION 2.1. Let TT: E -> B be the principal fibring over the classifying
space B induced by a map

where the qi are odd integers. Let A be a space having the homotopy type of a
countable connected CW-complex, and let £be a vector bundle over A. Then
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for any two symmetric E-orientations av a2 of £ x £, the E-orientations
axo A and a2o A of £© £ are equivalent.

PROPOSITION 2.2. Let v be the stable normal bundle of a q-manifold (q odd).
Then there exists a symmetric Wu orientation of vxv.

With these propositions in mind, we define bB(£) by going through the
bundle equivalence case of Dupont's construction, except that we restrict
ourselves to using a Wu orientation of %> of the form ao A, where a is a
symmetric Wu orientation of v x v. An X-orientation of £ arising from such
a Wu orientation of 2v (and some trivialization of |©v) will be called
allowable.

Before stating the main results, we introduce an alternative point of
view on the choices involved in the above construction which allows
sharper statements to be made. I am grateful to J. Morgan and F. Quinn
for drawing my attention to this. Instead of considering g-plane bundles
which are stably equivalent to T, we consider reductions of the stable
tangent bundle to a g-plane bundle. One way of denning such a reduction
is as an equivalence class of pairs (£, 6), where £ is a g-plane bundle over M,
0 : £ © 2 - > r © 2 i s a bundle equivalence, and the pairs (£ls 6^), (|2>^2) a r e

equivalent if there exists a bundle equivalence <p: £x -» £2
 s u c n that #i

and .02°(g2©l) are homotopic through bundle equivalences. Now there
is a canonical trivialization of r ® v, obtained by embedding M in a high-
dimensional euclidean space. Using this, we may associate with any pair
(£, 6) as above a distinguished homotopy class of trivializations of £©v.
The allowable X-orientation of | arising from a trivialization in this
distinguished class is thus unique up to homotopy. We define bB($,6) by
going through the construction of bB(£), using at the appropriate stage an
allowable X-orientation in this unique class. In §5 we shall prove the
following sharp version of Corollary 4.5 of [5] (stated here in the bundle
equivalence case).

THEOREM 2.3. The above bB(g,O) is well defined on equivalence classes
of pairs.

When stating results in the bB(g) terminology, it will be convenient to
say that M has James-Thomas number i if there are precisely i bundle
equivalence classes of g-plane bundles over M which are stably bundle
equivalent to r.

COROLLARY 2.4. If the James-Thomas number of M is 2, then bB(£) is
well defined for any q-plane bundle £ which is stably bundle equivalent to r.

In § 5 we shall also check that bB does the job it is designed for.
5388.3.33 G
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THEOREM 2.5. Suppose that (gv8^,(^,62) are inequivalentpairs. Then

ha(iiA)*l>B(t*A)>

COROLLARY 2.6. If g is a q-plane bundle over M which is stably equivalent
but not equivalent to T, then bB{£) # ^ ( T ) .

The next result, which will be proved in § 6, is a more precise form of the
evaluation result mentioned in § 1. We recall that the Kervaire mod 2
semi-characteristic k(M;Z2) of M is the congruence class mod 2 of
Xi^nk H2i(M; Z2).

THEOREM 2.7. Let 1 denote the identity map O / T © 2 . Then

COROLLARY 2.8. / / the James-Thomas number of M is 2, then
bB(r) = k(M; Z2).

EXAMPLE 2.9. Let rq denote T(£«). Then bB{rq) = 1 for q ^ 1,3,7.

3. Homotopy-symmetric lifts
We now establish some facts about homotopy-symmetric lifts which

will be used in the study of symmetric orientations in § 4. Throughout
this section let A be a space having the homotopy type of a countable
connected CW-complex and let B be any space. The maps in this section
and the next will generally not be required to preserve basepoints, but in
this section we need to compare basepoint-preserving and free homotopy
sets. For any spaces X, Y with basepoints, let [X, Y]o, [X, Y] denote the
sets of homotopy classes of maps from X to Y, where the maps and
homotopies are basepoint-preserving in the first set, free in the second
set. Let j : [X, Y]o -> [X, Y] denote the function which forgets about
basepoints.

Let t: Ax. A ->AxA denote the factor-switching map. We shall say
that a map / : A x A -> B is homotopy-symmetric if/ is homotopic to fot.
Suppose that / is homotopy-symmetric and let H:AxAxI->B be a
homotopy from / to /o t. We shall say that a map O: A x A x I2 -> B is an
H^-structure extending H if

®{a1)a2,O,s)=f{a1,a2),

®(ava2,l,s) =f(a2)a1),

$(«!, a2, r, 0) = H(ax, a2, r),

Q>(ava2,r,l) = H{a2, avl-r)}

for all Oj, a2 in A and r, s in / .
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Let K = Y[ri=\ ^g,+i> where the qi are odd integers, and let IT : E -*• B be
the principal fibring classified by some map v. B -> K. For convenience
we shall use H^X) to denote H{(X) if i # 1, and [X,Kj] (free homotopy
classes) if i = 1.

PROPOSITION 3.1. (a) Suppose that f:AxA->Bisa map which lifts
to E, and that H is a homotopy from f to f ot which extends to an H2-structure.
Then there exists a lift f: AxA-+Eoff such that f is homotopic to fot
by a homotopy covering H.

(b) Suppose that f: Ax A -^ B is a map and that Ho, Hx are homotopies
fromf tofo t which are homotopic (through homotopies from fto fo t). Suppose
also that for i = 0,1, /^: A x A -* E is a lift of f such that f\ is homotopic
to frothy a homotopy covering H^ Then the homotopy classes off0 andf[ (as
lifts off) differ by the action of a symmetric element of ^r

i=xH
qi(A xA).

For simplicity, we make an extra assumption in proving this proposition:
that if qi = 1 for some i, then H^A) = 0. (In Remark 3.4 we shall indicate
how to proceed in general.) Even assuming this extra condition, we need
to take further notice of basepoints. As basepoint in a product space
Y = Wi^iwe take the point {y^, where yi is the basepoint in Yv We make
the identifications [X, Y]o = Ili[^5^i]o» lx> Y~\ = Ud^»Yt\- We now
consider the forgetful function

U: [A x A, ClKq{+1]0 -> [A x A, ClKqt+1\.

Since A x A is a CW-complex (with basepoint a vertex, say), and ClKq(+1

is path-connected for qt^ 1, it follows that j t is onto for qt ̂  1. For
& > 1, O.Kq{+x is simply-connected and j t is one-to-one. For qt = 1, the
extra assumption ensures that [^4x^4,0.Kqt+1]0 « HX(A x A) = 0, and that
j t is trivially one-to-one. From the previous remarks about the case where
Y is a product space, it follows that

j: [AxA,QK]0-*[AxA,aK]

is an isomorphism, and we may therefore identify [AxA,Q.K\ with

Proof of 3.1 (a). The function spaces in the proof will all be supposed to
have the compact-open topology. We shall use the same notation for a
map and its homotopy class.

We are given that/ l if ts to E. For some (provisional) choice of a lift/ ' ,
let a denote the obstruction to the existence of a homotopy from / ' to
f ot covering H. Then a e [Ax A, £IK] and as above we may identify a
with an element of Jfi^H^A xA). We now show that a is symmetric.

LEMMA 3.2. With the above notation, t*ot = a.
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Proof. Let * denote the basepoint in K, ££?K the space of paths in K
beginning at *, and p: ££K -> K the endpoint map. There is a one-to-one
correspondence between maps g into E and pairs of maps (gK,gB) into
J£K, B such that p o gK = v o gB.

We are given gB = H: AxAxI^-B. Let g'K: A x A x 81 -> £PK be
the map given by f'K on A x A x {0} and by f'Kot on .4 x A x {1}, where
/ ' is the provisional choice of lift of/. Then a is the obstruction to the
extension of g'K to a map gK: A x A x / ->• J£7f such that p<>gK = v<>gB.
Let J£7 denote the space of (free) paths in K, and let ft: A x .4 -» K1

denote the adjoint of VogB. As a map of A x A into the loop space ClK,
a. =fK-h-{fKot)~1, where the dot denotes composition of paths and the
inverse means that the path runs backwards. It is convenient to describe
a by means of a diagram showing the adjoint map of the boundary dP
into the function space KAxA.

f'K

The labels indicate suitable adjoints of the maps named.
Now since H extends to an £T2"

s^ructure> i* follows that a is homotopic
to jS, where

p=rK.{hot)-\{f'Kot)-\
On the other hand,

But each factor in the product K is a K(Z2,qi+ 1), so j8-1 = j8, and hence
t*a = a as required.

We now return to the proof of 3.1(a). Using the Kiinneth formula,
Lemma 3.2, and the oddness of qi} we may write a = a + t*a for some (not
necessarily unique) a in ^r

i=ilH.qi{A xA). We now al ter / ' by the action
of a, where this action is defined as usual by the principal fibre space
structure of n: E -> B. This alters the obstruction diagram to the
following:

dot f'j£ O t
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The obstruction to a suitable homotopy covering H is now

a + a + t*a = 0.

Proof of 3.1(b). This may be summed up by a diagram as follows:

f'0tKot Vofot f'liKot

101

H0,K H1,K

fo,K V°f fl,K

Here T corresponds to a homotopy from Ho to Hx through homotopies
from / to fot, and H[ is a homotopy from /^ to f^ot covering HP The
difference d between the lifts f'o and / i is represented by the bottom edge
of the diagram, arid the whole diagram represents a homotopy from d
to dot.

REMARK 3.3. We have presented the above proofs as if [A xA,QK]0

and [A xA,QK] were identical. This is justified since the isomorphism
j : [Ax A, Q.K]0 -> [Ax A, Q,K] is natural with respect to t* and u#, where
u: Q.K ~> Q.K denotes inversion of loops.

REMARK 3.4. Suppose that qi — 1 for some i, and we do not assume
that -5T1 (̂ 4) = 0. It is clear that in proving 3.1 (a), we may consider
separately the obstruction corresponding to each factor KQ(+V Suppose
that the obstruction a lies in[AxA, QK2]. The latter group may no longer
be isomorphic to H\A xA), but a 'Kiinneth' formula still holds: there is
an isomorphism cp: [A,Q.K2] x [A, CIK2] -> [^4x^4, Q.K2] defined by

?>(«!, a2) = mo(a1xa2),

where m denotes the multiplication (loop composition) in QK2. Moreover,
t*o<p = <pot, where t switches the factors in [A,Q,K2] x [A,Q.K2]. Using
this, and the fact that t*ot = a, we get that a = ?((*!, c )̂ for some ax in
[A,C1K2]. We alter the provisional choice of lift by the action of ajo^j,
where px: A x A ->• A denotes projection on the first factor, and check
that the new obstruction class is zero.

The proof of 3.1(b) is unaffected when H^A) # 0, and we have only to
note that HX{A xA) may no longer be equal to Hl(A x A) in this case.

4. Symmetric orientations
Throughout this section we use the notation and the methods of §4

of [3]. In particular, p: y -> y denotes the natural bundle map covering
the fibre map IT: E -> B, where B is a classifying space as in § 2 above. We
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shall deal with vector bundles over CW-complexes but, as observed by
Browder, these could be replaced by 'bundles' in some other suitable
category.

We begin by recalling an alternative description of ^-orientations. Let
i jbea vector bundle with base space X (a CW-complex). Then there is a
canonical one-to-one correspondence between ^-orientations of 77 and
pairs (c,f) such that c: r) -» y is a bundle map a n d / ' : X -> E is a lift of
the map f-.X-^-B covered by c: to the J^-orientation a:r)-+y we
associate the pair (c,/') where c = poa and / ' : X -» E is the map covered
by a. It is easily checked that this does set up a one-to-one correspondence,
since y = 7r*(y). If the J^-orientation a corresponds in this way to the pair
(c,f), then in the terminology of [3], a is canonical (with respect to c). If
for i = 0,1 the ^/-orientation ai of r\ corresponds to the pair (fy,/^), then
there is a similar one-to-one correspondence between equivalences from
a0 to ax and pairs {6,H') where 6 is a homotopy through bundle maps
from c0 to cv and H': X x I -» E is a homotopy from f'o to f[ such that
H = TTOH' is the homotopy covered by 9. Suppose in particular that
c0 = cx = c, and that / : X -> B is the map covered by c; thus a0 and ax

are both canonical (with respect to c) and TT of0 = TT O/J = / . Then a
canonical equivalence between a0 and a1} as defined by Browder, corre-
sponds to a pair (6, H') where 6 is the constant homotopy of c and H' is a
homotopy from f'o to / i through lifts of/.

Proof of Proposition 2.1. Suppose that a^G^: £ x £ -» y are symmetric
J^-orientations as in the hypotheses of Proposition 2.1. Then by the 'onto'
part of Lemma 4.1 in [3], a2 is equivalent to an i2-orientation a0 such that
c0 = cx = c, say, where (ci5/^) is the pair corresponding to ai in the way
described above. Since a2 is symmetric, so is a0. For i = 0,1, let (O^H^)
be a pair corresponding to an equivalence from at to a^t. Thus d0 and 6X

are homotopies from c to Cot through bundle maps. Let f:AxA->B
denote the map covered by c, and let H€: A x A x I -> B denote the
homotopy covered by 0^ We shall show that Ho and H± are homotopic
(through homotopies from / to /o t). For let us define a bundle map h from
£ x I x P | A x A x dl2 to y as follows. For x in the total space of £ x £ and
r, s in / , let

h(x,0,s) = c(x),

h(x,l,s) = c(t{x)),

h{x,r,i) = di{x,r) (i = 0,1).

Since y is universal, h extends to a bundle map %: £ x £ x /2 -»• y. The map
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from Ax Ax I2 to B covered by K is a homotopy from Ho to Hx through
homotopies from/ to fot.

The hypotheses of Proposition 3.1(b) are now satisfied, and we conclude
that the homotopy classes o£f0 and/ i (as lifts of/) differ by the action of a
symmetric element of Tii=iHQi{A x A). As in the proof of 3.1(a), any such
symmetric element may be written 8 + £*S for some 8. Ifh:A->AxA
denotes the diagonal map then

the latter equality holding because the coefficients are mod 2. Thus
/QO A and/[o A are homotopic through lifts of /oA. This implies that the
2£-orientations a0oA and axoA are (canonically) equivalent. Thus axoA
and a2 o A are equivalent, since a0 and a2 are equivalent.

REMARK 4.1. Remarks 3.3 and 3.4 apply, with appropriate
modifications, to the above proof.

Proof of Proposition 2.2. The proof is by universal example. Let B be a
classifying space for O(2n), and let y, y be as before. Let Bx be the
w-L-skeleton of a classifying space B2 for O(n2), where n > nx > n2 > q. Let
y"x be the restriction to Bx of the canonical ?i2-plane bundle over B2, and
let yx = y'i®(n — n2). Then the product bundle yxxyx is classified by a
bundle map c: yx x yx -> y. Let / : Bx x Bx -» B denote the map covered
by c. Using the universality of y as in the proof of Proposition 2.1, we
first get a homotopy 6 (through bundle maps) from c to Cot, and then a
bundle map \P: yx x yx x I2 -> y, satisfying

for r, s in / and x in the total space of yx x yx. At the base-space level, 6
covers a homotopy II from / to fot, and T covers an £T2-structure <D
extending H.

Next, following an idea used by Dupont in [5], we let B'x be the space
formed from Bx by killing off the Wu classes vi for q+ 1 ^ 2i ^ 2q + 2.
Thus there is a principal fibring irx: B'x -> Bx with fibre Ilifig+i&t-v ^e^
7x = ^ (y i ) ' an(^ ^e* Pi: 7i ""̂  7i ^ e *n e natural bundle map covering TTX.
As observed in [5], /o ( ^ x nx): B'x x B'x -> JB lifts to jB<vg+1>. For any
such lift / ' , the pair (co(pxx px),f) corresponds to a Wu orientation of
yj^xyj. Moreover, Oo(7r1X7r1x 1) is an ^-structure extending the
homotopy HO{TTXXTTXX 1). Hence by Proposition 3.1 (a), there is a lift
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/ ' : B[ x B[ -> B(vq+1} o f / o ( ^ x TTJ) such that / ' is homotopic to / ' o t by
a homotopy H' covering Ho{TTX X irx X 1). Let a: yx xy t -> y be the Wu
orientation corresponding to the pair (co(p1 x ft),/'), where / ' is such a
lift. Then the pair (9o(p1x pxx l),H') corresponds to an equivalence
between a and a o t. Hence a is a symmetric Wu orientation of yx x yv

Now on dimensional grounds, v is i?i-orientable. Let <x: v -*• y1 be a
jB^-orientation of v. Then ao(axa) :vxi / -»-y is a symmetric Wu
orientation of v x v, as required.

5. Proofs of Theorems 2.3 and 2.5
We first observe that Corollaries 2.4 and 2.6 follow immediately from

Corollary 4.5 and Lemma 5.2 of [5], together with Proposition 2.1 above.
The aim of this section is to prove the sharper versions of these results
stated in Theorems 2.3 and 2.5.

Proof of Theorem 2.3. Suppose that (£v6^) and (|2, #2) are equivalent
pairs as in the hypotheses of Theorem 2.3. Thus there exists a bundle
equivalence <p: £x -> £2 such that 0X and 62o(<p@l) are homotopic through
bundle equivalences. Let ^ denote the trivialization of ^ © v associated
with Qt as described in §2. I t follows easily that ijjx and «/r2o(^©l) are
homotopic through bundle trivializations, where 1 denotes the identity
map of v, and hence that the following diagram commutes up to homotopy:

Here gi is the allowable JC-orientation, constructed with the use of the
trivialization j/ri5 and TJi is the Thorn class of ^ . The conclusion of Theorem
2.3 now follows by homotopy invariance of the functional Steenrod square.

Because of the remark at the beginning of this section, we omit the
deduction of Corollary 2.4 from Theorem 2.3.

Proof of Theorem 2.5. As observed at the beginning of this section, the
result is known when £L and £2 are not equivalent as bundles. Suppose
that there is a bundle equivalence (p: ̂  -> £2- Then by definition of the
equivalence of pairs, (|2>^2) is equivalent to (gv 80) where 90 = d%o{<p® 1).
I t is therefore sufficient to show that bB{^ 0O) ^ &#(£, #i) when the pairs
(£, 60) and (£, dj) are not equivalent. This is implicit in [5] and [7], and we
shall only sketch the method.
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We recall from §2 of [5] that given a self-equivalence a of a vector
bundle rj over a (paracompact) space X, we may form the mapping-torus
bundle 7ja over X x S1, and it makes sense to write wq+1(<x) when we mean

LEMMA 5.1. Suppose that £ is a q-plane bundle over a q-dimensional
CW-complex (q odd) and that a is a self-equivalence of g®2. Then a is
homotopic (through bundle equivalences) to <p® 1 for some self-equivalence <p
of £ if and onty if Wg+i(a) = 0.

The proof is straightforward; for example, one can use the methods
of § 4 in [7] and of § 4 above. We omit the details.

COROLLARY 5.2. Pairs (|,0O), {^,6-^ of the type described m §2 are
equivalent if and only if wq+1{6o~1°Qi) = 0-

Returning to the sketch proof of Theorem 2.5, we have inequivalent
pairs (|, 0O) and (1,^), so by Corollary 5.2, ^3+i(0o~lo^i) ^ 0. As in the
proof of Theorem 2.3, if g: X -> SnT(|) is the allowable X-orientation
corresponding to (1,^), then the allowable X-orientation corresponding
to (|, 0O) is T(d0-

Io91)og, and the required result now follows by Theorem
4.4 of [5].

6. Evaluation of bB(r)
This section is devoted to the proof of the evaluation Theorem 2.7. An

essential ingredient is Brown's technique for generalizing the Kervaire
invariant (see [4], particularly Example 1.27). For a 2g-manifold Q,
Brown defined <ph: Ha(Q) -> Z4 satisfying

where j : Z2 ->• Z4 is the non-zero homomorphism and [Q] is the funda-
mental homology class of Q. The construction of <ph is by means of a
composition

D W
H«{Q) > {Q, KQ} > {&»*, T(v(Q))AKq} >

> {8»*», T(y) A Kq} > Z4,

where the braces denote stable homotopy classes of stable maps. The
first function assigns to u in Ha(Q) the $-class of a representative map
u: Q -> Kq; in the notation of [4], u\-^F(u, 0). The other functions are
homomorphisms: D is given by ^-duality, and W is induced by a choice
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of Wu orientation, say a, of v{Q). Finally, h satisfies h(X) = 2 in the
notation of [4]; for convenience we shall call such an h admissible.

Now let tp denote Browder's quadratic function (see [3]), constructed
using the same Wu orientation a of v(Q). Thus ifj takes values in Z2, and
does not depend on a choice of admissible h, but the domain of ifj may be a
proper subset of Ha(Q). The following proposition is implicit in [4], and
we omit the proof.

PROPOSITION 6.1. Let <ph and tfj as above be constructed using the same Wu
orientation of v(Q) (and some admissible h in the case of <ph). If tp(u) is
defined, then <ph{u) = j{ip{u)).

Proof of Theorem 2.7. The technique of this proof is similar to that used
by Dupont in [5] and by Thomas in [11].

We construct if* and <ph for MxM using a symmetric Wu orientation a
of v(M x M) = v x v (where as before v denotes the stable normal bundle of
M). The #-dual of the corresponding map T(a) of Thorn complexes, with
respect to the canonical ^-duality between T(vxv) and *Ln((M x M)+),
is an Z-orientation g: X -> ?>{(M x M)+). The £-dual of

with respect to the ^-duality between T(2v) and SnT(r) corresponding to
the identity bundle equivalence of T © 2 is well known to be S71/, where
/ : (M x M)+ ->• T(T) collapses the complement of a tubular neighbourhood
of the diagonal in M x M to the compactification point in T(r). Hence
the allowable Z-orientation of SnT(r) corresponding to the pair (T, 1) is
Sn/o0, the #-dual of T(aoA). It follows by naturality of the functional
Steenrod square that bB(r, 1) = ifj(f*UT) = *p(U), where U =f*Ur. Hence
by Proposition 6.1, j(bB{r, 1)) = <ph{U). Now there exists A in H9(M x M)
such that U = A + t*A and (Aut*A)[MxM] = k{M; Z2) (see [10, §4]).
The point of introducing <ph is that <ph{A) is defined, whereas ^(^4) may
not be. We now have

h(t*A)+j((Aut*A)[M xM])

= ?h(A) + <ph(t*A)+j(k(M;Z2)).

To complete the proof of Theorem 2.7 it is sufficient to show that <ph{A)
and <ph(t*A) cancel each other out. We shall prove this using the
symmetry of the Wu orientation a. In fact signs are not important,
since x u x = 0 for all x in H«{M x if), so (cf. [4]) <ph{Hq{M x M)) <= 2Z4.
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Let us consider the diagram

D
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W{M x M)

t

W{MxM)

{MxM,Kq}

t

{M x M, Kq)
D

, T(v XV)A Kg}

{Sn+2*,T{vxv)AKg}
(6.2)

where the horizontal maps are those used in the construction of <ph.
If (6.2) commutes," then <phot* = <ph as required. The first square in (6.2)
obviously commutes. The triangle commutes since the symmetry of a
implies that T(a) and T(a) o T(t) are homotopic. It remains to show that
the second square commutes. Since 2{M x M, Kq} = 0, we shall ignore
signs. For u in {M x M, Kq} consider the diagram

$7i+2<7 T(V)AT(V)

T{V)AT(V)

T(d)

T(d)

T{V)AT(V)A{MXM)+

tAt

T(V)AT{V)A{MX

IAU
T{V)AT{V)AKQ

tAl

where p* is the normal invariant of M (so JSAJS is the normal invariant of
MxM), d: MxM -> If4 is the diagonal map, and each t represents a
factor-switching map. The triangle homotopy-commutes up to sign, and
the squares clearly commute. The upper composition represents D(u) and
the lower composition represents D(t*u), hence (tAl)*D(u) = D(t*u) as
required. This completes the proof of Theorem 2.7.
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7. The fibre homotopy case

It is fairly clear how the analogous theory proceeds to define bF(£)
or 6p.(£, 0) when

(a) £ is a (q— l)-sphere bundle or fibring over M which is stably fibre
homotopy equivalent to the tangent sphere-bundle T^, and 6 is a
stable fibre homotopy equivalence of | with rs, or

(b) M is a Poincare" complex and £ is as in (a), where rs now denotes
the negative of the Spivak normal fibring of M.

The step from (a) to (b) merely enlarges the domain of definition of bF.
To examine the relation between bB and bF, let £s denote the sphere-
bundle associated with (some choice of riemannian metric on) a vector
bundle £. If bF(gs) is well defined then so is bB(£) and the two are equal.
However, bB{^) may be well defined when bF(£s) is not. In other words, it
can happen that £ is stably bundle equivalent to r and £s is fibre homotopy
equivalent to T^ but £ is not bundle equivalent to T. Using [7] (see also
[10]) we may show that there exists such a bundle £ over $13 x P, where
P is the real protective plane.

This is perhaps an appropriate place for a comment which has been
communicated to me by J. L. Dupont, concerning Theorem 5.4 of [5].
The statement of that theorem refers to a homotopy equivalence
f:M-> M' of smooth closed odd-dimensional manifolds such that T and
/*(T ' ) are stably bundle equivalent. The conclusion asserts that T and
/*(T ' ) are bundle equivalent. Dupont notes that the proof contains a
gap: the snag is that ^ ( T ) and bB(f*(r')) may not be equal, for by [1], /
determines a unique stable fibre homotopy equivalence <p of r +1 with
/*(T ' ) + 1 (called the homotopy differential of/) and one can prove that

in the notation of §5 above, where ^ is a stable bundle equivalence
between T and / * ( T ' ) . Dupont points out that there are three
possibilities:

(i) the James-Thomas number of M is 1, in particular / * ( T ' ) = T;

(ii) all stable bundle equivalences </r satisfy

(iii) all such ip satisfy Wq-ui^1 <> <p) # 0, f*(r') ^ T.
We do not know whether case (iii) can actually occur; if it occurs for

f:M-+ M', then M must be a manifold, such as $1 3 x P above, for which
the indeterminacy in bB(r) is zero and the indeterminacy in bF(rs) is
non-zero.
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8. An application

In this section, we apply the foregoing theory to strengthen slightly a
theorem of Frank and Thomas.

THEOREM 8.1 (cf. [6, Theorem 1]), Suppose
(a) q + l = 2r(2m+l) for integers r,m with r > 0, m > 0, and M is a

q-manij'old with wi = 0 for 0 < i ^ 2r,
(b) M admits a tangent 2r-field. :
Then k(M; Z2) = 0.

As Thomas has observed in [12], the converse is not true in general.
However, the following stable-to-unstable result holds.

PROPOSITION 8.2. Suppose that M satisfies Theorem 8.1(a), that
k(M; Z2) = 0, and that M stably admits a tangent 2r-field (that is, the
geometric dimension of r is at most q — 2r). Then M admits a tangent
2>'-field. V

As a preliminary to clarify the situation, we note that a manifold
satisfying the hypotheses of Theorem 8.1 or of Proposition 8.2 has James-
Thomas number 2. This follows, for example, from [7]; we omit the
details, since the result is not needed for the proofs of Theorem 8.1 or
Proposition 8.2.

We next modify the construction of bB to suit manifolds satisfying
Theorem 8.1 (a). For orientable manifolds, the previous theory may be
carried through in an oriented context, with appropriate changes. (The
cohomology coefficients are still Z2, however.) By [7, 7.2], if £,r) are
oriented g-plane bundles (q odd) which are bundle equivalent then they
are oriented bundle equivalent. Because of this, and since the results in
§2 hold in the oriented case also, we may compute bB(£) in the oriented
context.

Let TT: B(vq+iy -*• B, p: y -^ y be as in §2, but taken in the oriented
context. Let w\ — 7r*(w )̂. Let TT' \ E -> B(vq+1)> be the principal fibring
obtained by killing off in B(vq+iy the w\ for i = 2s, 1 ^ s ^ r. Let
7TE: E -» B be the composite fibring TTOTT', and let yE = ir%(y) = 7r'*(y).
Let p', pE be the natural bundle maps covering TT', TTE. Thus pE = p o p.

Suppose that M satisfies Theorem 8.1 (a). Just as in the proof of
Proposition 2.2 we may show that v x v admits a symmetric 2£-orientation
a: v x v -> yE. Then p o a is a symmetric Wu orientation of v x v. Suppose
that £ is an oriented g-plane bundle over M which is stably bundle
equivalent to T. By passing to the Thorn map T(pfoa) and then to #-duals
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we get an allowable X-orientation of £ of the form.

h g'
X > X' -£-> S"JP(flf

where g' is #-dual to T(ao A) and h is #-dual to T(p').
Since £ is oriented, we have an integral Thorn class Ug for £, and then

Us = roU^: T{£) -> i£g, where r: K(Z,q) -> Kq denotes mod 2 reduction.
Let I denote the mod 2 reduction of the fundamental class of K(Z} q)
and let

Then /'*(SnI) = gr'*(InC/§) = 0, where the second equality follows by
^-duality since a covers a homotopy-symmetric map h: M x M -» E, so
& o A induces the zero homomorphism of Hq(E) as in the proof of Proposi-
tion 2.1. As in [3] it follows that f'*Hn+^(LnK{Z,q)) = 0 and

-i(X') = o. Hence S$+1(Sni) is denned and takes a value in
a Z2> with zero indeterminacy. Since T(p') has degree 1 (mod 2)

in dimension n, h* has degree 1 in dimension n + 2q. Hence

Proo/ of Theorem 8.1. Now assume that 8.1(b) also holds, and write
2r = s. Thus T = £©s for some oriented (g-s)-plane bundle £. By [1]
there is a natural homeomorphism

Let C :̂ T(0 ->• ̂ ( Z ^ — s) represent the Thorn class of £. Then t)r is
represented by the composition

8 ft

where t is the (integral) fundamental class of K(Z,q — s). Thus
/ ' = 5>+si of, where / = En+S!%o S^ao^': X' -+ I,n+SK(Z, q-s). Hence
$($+1(2nig) = 5g^+1(Sn+sTg_s) modulo the maximum indeterminacy in-
volved, which is ^+1^+«-1(Z')+/*^n+2«(2TC+sJK'(Z,g-s)), and this is
zero.

For #+1 as in Theorem 8.1 (a) we may write

A S ^ 1 = Sq8Sq«+1-s + 2 bjSqQ+^Sqi, (8.3)

where the bj are mod 2 binomial coefficients and the sum is over
1 ^ j ^ | s = 2r-1. Each term a8 = SqsSq*+1-s, a, = Sqv+^Sq* on the
right-hand side of (8.3) annihilates 5>+sig_s for dimensional reasons, so
the functional operations (as)f, (a^f are defined on Sn+Sig_s. Moreover,
each <Sg9+i-i in (8.3) is in the right ideal of the mod 2 Steenrod algebra
generated by the Sq* with 1 < i ^ %s (see [6] or [9,5.4]), and for 1 ^ i < s,
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8qiHn+2q-i(X') = 0 by ^-duality, since each such Sq* (and hence each
such xStf) *S z e r 0 o n Hn{T(yE)). Hence (as)f and each (a^j is
defined on Sn+Sta_s with zero indeterminacy. We may therefore calculate
Sq$+1(2in+8iq_s) by calculating separately (aa)f and (a^ on Sn+Stg_8 and
summing.

Now (a8)f(?:n+%_8) = Sqs,(8q<*+1-8I,n+8~iQ_8) = 0 modulo the maximum
indeterminacy involved, which is

Sq8Hn+i*-8(X')+f*Hn+2°(Ln+aK{Z,q-s)) = 0.

Similarly for each j with 1 ^ j ^ %s,

modulo maximum indeterminacy, which is again zero.
Let t: K(Z,q-s) -» Kq_8+j represent 8qjlq_s, and let e = I,n+St. Then

e*(L"+*iq_H) = 8qH^+%_8), and Sqt+i-*(Z"+\_s+j) is denned, since
-;(2>+stga+^) is Zero on dimensional grounds. Hence

modulo maximum indeterminacy, which is again zero. But

represents 8qjt)^, which is zero since ity(£) = W^T) = 0. Thus toV^ is
null-homotopic, and hence eo /= eoSTC+sC^oSn+saogr' is null-homotopic.
Hence /S'^1^(2n+8tg_s+i) = 0. This completes the proof that bB{r) = 0.
Hence by Theorem 2.7, k(M; Z2) = 0.

Proof of Proposition 8.2. Suppose that T© 1 = £© (2r-f 1), where £ is
some (q — 2r)-plane bundle over M. As in the proof of Theorem 8.1,
bB{t,®2r) = 0. By hypothesis and Theorem 2.7, bB(r) = k{M\ Z2) = 0.
Hence by Corollary 2.6, T is bundle equivalent to £© 2r, as required.

REMARKS, (a) When r > 1, the hypotheses of Theorem 8.1 do not
imply that the Kervaire semi-characteristic with rational coefficients
k{M; Q) is zero. For example, the Stiefel manifold M of 2-frames in
2r~1(2m+1) +1-space is parallelizable yet k(M; Q) = 1.

(b) The connection between this section and the unstable secondary
operations used in [6] and in § 5 of [9] is as follows. Let <D denote one of
these secondary operations and suppose that | is a ^-plane bundle over
M which is stably equivalent to T, where q and M are as in the hypotheses
of Theorem 8.1 or Proposition 8.2. Then O is defined on the Thorn class
Ug, and with the aid of the second Peterson-Stein formula, it can be proved
that <p-1(<b(Ug))\M'\ = &B(£), where <p is the Thorn isomorphism for £.
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(c) When m = 0, the analogues of Theorems 8.1 and 8.2 are the results
of Kervaire relating parallelizability of odd-dimensional Tr-manifolds with
vanishing of the Kervaire mod 2 semi-characteristic (see [8]).

(d) It is possible that comparison of the methods of this section with
forthcoming work of M.-L. Welland would be interesting.
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