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PEEFATORY NOTE UBRARY

present volume contains Sylvester s Constructive Theory of

Partitions, papers on Binary Matrices, and the Lectures on the Theory
of Reciprocants. There is added an Index to the four volumes, and a

Biographical Notice of Sylvester. The Mathematical Questions in the

Educational Times are as yet unedited, but an Index to them is appended
here. I have to acknowledge the kindness of Dr J. E. McTaggart, F.B.A.,

who secured for me the loan of the Essay on Canonical Forms, from the

Library of Trinity College, Cambridge, for Vol. I, and that of Mr R. F.

Scott, M.A., Master of St John s College, Cambridge, for the use of the

volume called The Laws of Verse, from which the matter contained in the

Appendix to Vol. n was reprinted, who supplied also the Autograph on the

Frontispiece of this Volume. To the latter gentleman, as well as to Major
P. A. MacMahon, Professor E. B. Elliott and Sir Joseph Larmor, I owe my
best thanks for reading through the Biographical Notice. In carrying

through the task of editing the Papers, I have, in general, thought it most

fitting not to offer any remarks of my own in regard to Sylvester s text,

though many times at a loss to know how best to act. In the Appendix to

Vol. i I have departed from this rule, giving there an account of Sylvester s

chief theorems in regard to determinants. For two other cases the reader

may find notes, Proceedings of the London Mathematical Society, Vol. iv,

Ser. ii (1907), pp. 131135, and Vol. vi (1908), pp. 122140
;
these refer

respectively to the paper No. 36, p. 229, and to the paper No. 74, p. 452,

both in Vol. n of the Reprint. Many corrections of errors in the printing of

algebraical formulae have been introduced, though many, it is to be feared,

still remain; but no alterations of Sylvester s statements have been made

without definite indication, by square brackets or otherwise. To the Readers

and Staff of the University Press the very greatest credit and gratitude for

their watchful carefulness are assuredly due, many of the corrections in the

volumes being due to them.

H. F. BAKER.

June 1912.

ST7773O4





TABLE OF CONTENTS
PAGES

PORTRAIT OF J. J. SYLVESTER .... Frontispiece

MEDALLION Head of Biographical Notice

BIOGRAPHICAL NOTICE xv xxxvii

1. A constructive theory ofpartitions, arranged
in three acts, an interact and an exodion 1 83

(American Journal of Mathematics 1882, 1884)

2. Sitr les nonibres de fractions ordinaires in-

egales qu on pent exprimer en se servant

de chiffres qui riexcedent pas un nombre

donne 8487
(Comptes Kendus de 1 Academie des Sciences 1883)

3. Note sur le theoreme de Legendre cite dans

une note inseree dans les Comptes
Rendus 8890

(Comptes Rendus de 1 Academie des Sciences 1883)

4. Sur le produit indefini lx.lx2.lx3
... 91

(Comptes Rendus de 1 Academie des Sciences 1883)

5. Sur un theoreme de partitions ... 92
(Comptes Rendus de 1 Academie des Sciences 1883)

6. Preuve graphique du theoreme d Eider sur

la partition des nombres pentagonaux . 93, 94
(Comptes Rendus de 1 Academie des Sciences 1883)

7. Demonstration graphique d un theoreme

d Eider concernant les partitions des

nombres 95, 96
(Comptes Rendus de 1 Academie des Sciences 1883)

8. Sur un theoreme de partitions de nombres

complexes contenu dans un theoreme de

JacoU 97 100
(Comptes Rendus de 1 Academie des Sciences 1883)

S. IV.



Vlll Contents

PAGES

9. On the number offractions contained in any

&quot;Farey series&quot; of which the limiting

number is given .....
(Philosophical Magazine 1883)

10. On the equation to the secular inequalities in

the planetary theory ....
(Philosophical Magazine 1883)

11. On the involution and evolution of quater

nions . . . .

(Philosophical Magazine 1883)

12. On the involution of two matrices of the

second order ......
(Southport British Association Report 1883)

13. Sur les quantites formant un groupe de

nonions analogues aux quaternions de

Hamilton ......
(Comptes Eendus de 1 Academie des Sciences 1883)

14. On quaternions, nonions, sedenions, etc.

(Johns Hopkins University Circulars 1884)

15. On involutants and other allied species of
invariants to matrix systems

(Johns Hopkins University Circulars 1884)

16. On the three laws of motion in the world of
universal algebra .....

(Johns Hopkins University Circulars 1884)

17. Equations in matrices.....
(Johns Hopkins University Circulars 1884)

18. Sur les quantites formant un groupe de

nonions analogues aux quaternions de

Hamilton ......
(Comptes Bendus de 1 Academic des Sciences 1884)

19. Sur une note recente de M. D. Andre
(Comptes Rendus de 1 Academie des Sciences 1884)

20. Sur la solution d une classe tres etendue

d equations en quaternions .

(Comptes Rendus de 1 Academie des Sciences 1884)

101109

110, 111

112114

115117

118121

122132

133145

146151

152, 153

154159

160, 161

162



Contents ix

PAGES

21. Sur la correspondence entre deux especes

differentes de fonctions de deux systemes
de quantites, correlatifs et egalement
nombreux 163 165

(Comptes Eendus de 1 Academie des Sciences 1884)

22. Sur le theoreme de M. Brioschi, relatif aux

fonctions symetriques . . . . 166 168

(Comptes Bendus de 1 Acadeinie des Sciences 1884)

23. Sur une extension de la loi de Harriot

relative aux equations algebriques . 169 172

(Comptes Bendus de 1 Academie des Sciences 1884)

24. Sur les equations monothetiques . . . 173 175
(Comptes Bendus de 1 Academie des Sciences 1884)

25. Sur I equation en matrices px = xq . . 176 180
(Comptes Bendus de 1 Academie des Sciences 1884)

26. Sur la solution du cas le plus general des

equations lineaires en quantites binaires,

c est-a-dire en quaternions ou en matrices

du second ordre 181, 182
(Comptes Bendus de 1 Academie des Sciences 1884)

27. Sur les deux methodes, celle de Hamilton et

celle de I auteur, pour resoudre Tequation
lineaire en quaternions . . . . 183 187

(Comptes Bendus de 1 Academie des Sciences 1884)

28. Sur la solution explicite de Vequation quad-

ratique de Hamilton en quaternions ou
en matrices du second ordre . . . 188 198

(Comptes Bendus de 1 Academie des Sciences 1884)

29. Sur la resolution generate de Tequation
lineaire en matrices d un ordre quelcon-

que
;

. . 199205
(Comptes Bendus de 1 Academie des Sciences 1884)

30. Sur ?equation lineaire trinome en matrices

dun ordre quelconque .... 206, 207
(Comptes Bendus de 1 Academie des Sciences 1884)



X Contents

31. Lectures on the principles of universal

algebra .......
(American Journal of Mathematics 1884)

32. On the solution of a class of equations in

quaternions ......
(Philosophical Magazine 1884)

33. On Hamilton s quadratic equation and the

general unilateral equation in matrices

(Philosophical Magazine 1884)

34. Note on Captain MacMahon s transforma
tion of the theory of invariants .

(Messenger of Mathematics 1884)

35. On the D Alembert-Carnot geometrical para
dox and its resolution ....

(Messenger of Mathematics 1885)

36. Sur une nouvelle theorie de formes algebriques
(Comptes Eendus de 1 Academic des Sciences 1885)

37. Note on Schwarzian derivatives .

(Messenger of Mathematics 1886)

38. On reciprocants
(Messenger of Mathematics 1886)

39. Note on certain elementary geometrical no

tions and determinations

(Proceedings of the London Mathematical Society 1885)

40. On the trinomial unilateral quadratic equa
tion in matrices of the second order

(Quarterly Journal of Mathematics 1885)

41. Inaugural lecture at Oxford, on the method

of reciprocants
(Nature 1886)

42. Lectures on the theory of reciprocants
(American Journal of Mathematics 1886 )

43. Sur les reciprocants purs irreductibles du

quatrieme ordre .....
(Comptes Rendus de PAcademie des Sciences 1886)

PAGES

208224

225230

231235

236, 237

238241

242251

252254

255258

259271

272277

278302

303513

514



Contents xi

PAGES

44. Sur une extension du theoreme relatif au
nombre dinvariants asyzygetiques d un

type donnd a une classe de formes ana

logues 515 519
(Comptes Eendus de 1 Academie des Sciences 1886)

45. Note sur les invariants differentiels . . 520 523
(Comptes Eendus de 1 Academie des Sciences 1886)

46. Sur ^equation differentielle d une courbe

d ordre quelconque . . .&quot; . 524 526
(Comptes Bendus de 1 Academie des Sciences 1886)

47. Sur une extension d un theoreme de Clebsch

relatif aux courbes du quatrieme degre 527, 528
(Comptes Eendus de I AcadSmie des Sciences 1886)

48. On the differential equation to a curve of
any order 529, 530

(Nature 1886)

49. On the so-called Tschirnhausen transforma-
r tion 531549
(Crelle s Journal fur die reine und angewandte Mathematik 1887)

50. Sur une decouverte de M. James Hammond
relative a une certaine serie de nombres

qui figment dans la theorie de la trans

formation Tschirnhausen . . . 550 552
(Comptes Eendus de 1 Academie des Sciences 1887)

51. On Hamilton s numbers .... 553 584
(Philosophical Transactions of the Eoyal Society of London 1887, 1888)

52. Sur les nombres dits de Hamilton . . 585587
(Compte Eendu de 1 Assoc. Francaise (Toulouse) 1887)

53. Note on a proposed addition to the voca

bulary of ordinary arithmetic . . 588 591
(Nature 1888)

54. On certain inequalities relating to prime
numbers 592603

(Nature 1888)

55. Sur les nombres parfaits .... 604 606
(Comptes Eendus de 1 Academie des Sciences 1888)



xii Contents

PAGES

56. Sur line classe speciale des diviseurs de la

somme d une serie geometrique . . 607 610
(Comptes Rendus de 1 Academie des Sciences 1888)

57. Sur limpossibilite de Iexistence d un nombre

par/ait impair qui ne contient pas au
moins 5 diviseurs premiers distincts . 611 614

(Comptes Rendus de 1 Academic des Sciences 1888)

58. Sur les nombres par/aits . . 615 619
(Comptes Eendus de 1 Academie des Sciences 1888)

(Mathesis 1888)

59. Preuve elementaire du theoreme de Dirichlet

sur les progressions arithmetiques dans
les cas oil la raison est 8 ou 12 . . 620 624

(Comptes Rendus de 1 Academie des Sciences 1888)

60. On the divisors of the sum of a geometrical
series whose first term is unity and
common ratio any positive or negative

integer 625 629
(Nature 1888)

61. Note on certain difference equations which

possess an unique integral . . . 630 637
(Messenger of Mathematics 1888 9)

62. Sur la reduction biorthogonale d une forme
lineo-lineaire a sa forme canonique . 638 640

(Comptes Rendus de I Academie des Sciences 1889)

63. Sur la correspondance complete entre les

fractions continues qui expriment les

deux racines d une equation quadratique
dont les coefficients sont des nombres

rationnels . 641 644
(Comptes Rendus de 1 Academie des Sciences 1889)

64. Sur la representation des fractions continues

qui expriment les deux racines d une

equation quadratique .... 645, 646
(Comptes Rendus de 1 Academie des Sciences 1889)



Contents xiii

PAGES

65. Sur la valeur d une fraction continue finie

et purement periodique .... 647 649

(Comptes Bendus de 1 Acad^mie des Sciences 1889)

66. A new proof that a general quadric may be

reduced to its canonical form (that is, a

linear function of squares) by means of
a real orthogonal substitution . . 650 653

(Messenger of Mathematics 1890)

67. On the reduction of a bilinear quantic of the

nth order to the form of a sum of n

products by a double orthogonal substi

tution 654 658

(Messenger of Mathematics 1890)

68. On an arithmetical theorem in periodic
continued fractions. .... 659 662

(Messenger of Mathematics 1890)

69. On a funicular solution of Buffon s &quot;problem

of the needle
&quot;

in its most general form 663 679
(Acta Mathematica 18901)

70. Sur le rapport de la circonference au dia-

metre 680, 681

(Cornptes Kendus de PAcadmie des Sciences 1890)

71. Preuve que TT ne peut pas etre racine

d une equation algebrique a coefficients

entiers 682686
(Comptes Eendus de 1 Academic des Sciences 1890)

72. On arithmetical series 687 731

(Messenger of Mathematics 1892)

73. Note on a nine schoolgirls problem . . 732, 733
(Messenger of Mathematics 1893)

74. On the Goldbach-Eider theorem regarding

prime numbers ..... 734 737
(Nature 18967)



xiv Contents

PAGES

75. On the number of proper vulgar fractions in

their lowest terms that can be formed
with integers not greater than a given
number 738 742

(Messenger of Mathematics 1898)

INDEX TO PROFESSOR SYLVESTER S CONTRIBUTIONS
TO &quot;MATHEMATICAL QUESTIONS FROM THE
Educational Times&quot; 743 747

INDEX TO THE FOUR VOLUMES OF THE &quot;COLLECTED

MATHEMATICAL PAPERS&quot; OF JAMES JOSEPH
SYLVESTER . . . 748756



BIOGRAPHICAL NOTICE*

Lord of himself and blest shall prove
He who can boast &quot;

I ve lived to-day,

To-morrow let dispensing Jove

Cast o er the skies what tint he may.

&quot; Sunshine or cloud ! the work begun
And ended may his power defy,

He cannot change nor make undone

What once swift Time has hurried
by.&quot;

Laws of Verse, p. 73 (from Horace).

JAMES JOSEPH SYLVESTER was born in London on 3 September 1814, 1814

of a family said to have been originally resident in Liverpool. He was

among the youngest of several brothers and sisters, and the last to survive.

His father, whose name was Abraham Joseph, died while he was young.
His eldest brother early in life established himself in America and assumed

the name of Sylvester, an example followed by all the brothers.

If we attempt to realise the scientific circumstances of the time of

Sylvester s birth by recalling the dates of some of those whose work might

* The chief authority for the outward facts of Sylvester s life used in this record is the

Obituary Notice by Major P. A. MacMahon, E.A., F.B.S., Royal Society Proceedings, LXIII,

1898, p. ix. There is also an article in the Dictionary of National Biography, by Professor

E. B. Elliott, F.B.S. and Mr P. E. Matheson, M.A., which gives a list of authorities, and an
earlier article by Major MacMahon, Nature, 25 March 1897. Other sources of information are

referred to in the course of the following.
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naturally come before him, either in connexion with his subsequent career at

Cambridge, or with his own later investigations, we find it difficult to make
a choice. Of Englishmen Henry Cavendish (1731 1810) was dead, Thomas

Young (17731829) was forty-one, Faraday (1791 1867) was twenty-three,
and had just exchanged (in 1813) a bookbinder s workshop for the laboratory
of the Royal Institution, Sir John Herschel (1792 1871) was twenty-two,
and George Green (1793 1841), who was afterwards to be examined with

Sylvester at Cambridge, was twenty-one. Cayley, with whom he was to be

so much associated, was born in 1821, and was Senior Wrangler in 1842. The

year 1814 was &quot;the year of
peace,&quot;

and was the year in which Poncelet (1788

1867) returned to Paris from the Russian prison in which he had recon

structed the theory of conic sections; Lagrange (1736 1813) had just died,

but there were living Laplace (17491827), Legendre (17521833), Fourier

(17681830), Ampere (17751836), Poisson (17811840), Fresnel (1788

1827), Cauchy (17891857). J. C. F. Sturm (18031855), whose theorem

was to have such an importance for Sylvester, was eleven years his senior
;

Hermite s life extended from 1822 to 1901. In Germany there were Gauss

(1777 1855), whose Disquisitiones Arithmeticae is dated 1801, Steiner

(17961863), von Staudt (17981867), Jacobi (18041851), W. Weber

(18041891), Dirichlet (18051859), Kummer (18101893), while Weier-

strass was born in 1815
;
and then there were Helmholtz (1821 1894),

Kirchhoff (18241886), Riemann (18261866), and Clebsch (18331872).
In Italy Brioschi, who took part in the development of the theory of in

variants, was born in 1824 and died in 1897; and the name of Abel (1802

1829) cannot be omitted. All these, and many others, went to form the

atmosphere in which Sylvester s life was spent.

Until Sylvester was fifteen years of age he was educated in London
from the age of six to the age of twelve with Mr Neumegen, at Highgate,

subsequently, for a year and a half, with Mr Daniell at Islington, then, for

five months, at the University of London (afterwards University College),
where apparently he met Professor De Morgan, who (except from 1831 to

1835) taught at this institution from 1828 to 1867; for Sylvester speaks
in 1840 (l 53) of having been a pupil of De Morgan s. His gift for Mathe
matics seems undoubtedly to have been apparent at this time

;
for

Mr Neumegen sent him at the age of eleven to be examined in Algebra

by Dr Olinthus Gregory, at the Royal Military Academy, Woolwich, and

it is recorded that this gentleman was writing to Sylvester s father two years
later to enquire for him, with a view to testing his progress in the interval.

1829 In 1829, at the age of fifteen, Sylvester went to Liverpool ;
here he attended

the school of the Royal Institution, residing with aunts. The Institution,

it appears, was founded in 1814, largely by the exertions of William Roscoe

(1753 1831), and its school in 1819
;

it must not be confounded with the

Liverpool Institute, which grew out of the Mechanics Institute, founded in
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1825, by Mr Huskisson. The Head-master at this time was the Rev. T. W.

Peile, afterwards Head-master of Repton, and the mathematical master was

Mr Marratt. A contemporary at the school was Sir William Leece Drinkwater,

afterwards First Deemster, Isle of Man. At this school Sylvester remained

less than two years. In February 1830 he was awarded the first prize in the

Mathematical School, and was so far beyond the other scholars that he could

not be included in any class. While here, also, he was awarded a prize of

500 dollars for solving a question in arrangements, to the great satisfaction of

the Contractors of Lotteries in the United States, the question being referred

to him by the intervention of his elder brother in New York. At this early

period of his life, too, he seems to have suffered for his Jewish faith at the

hands of his young contemporaries ; possibly this may account for the episode

recorded, of his running away from school and sailing to Dublin. Here,

with only a few shillings in his pocket, he was accidentally accosted by the

Right Hon. R. Keatinge, Judge of the Prerogative Court of Ireland, who,

having discovered him to be a first cousin of his wife, entertained him, and

sent him back to Liverpool.

The indications were by now sufficient to encourage him to a mathe- 1831

rnatical career. After reading for a short time with the Rev. Dr Richard

Wilson, sometime Fellow of St John s College, Cambridge, afterwards Head

master of St Peter s Collegiate School, Eaton Square, London, Sylvester was

entered* at St John s College on 7 July, as a Sizar, commencing residence on

6 October 1831, when just over seventeen, his tutor being Mr Gwatkin.

He resided continuously till the end of the Michaelmas Term, 1833, though

he seems to have been seriously ill in June of this year. For two years from

the beginning of 1834 his name does not appear as a member of the College,

and apparently he was at home on account of illness. In January 1836 he

was readmitted, this time as a Pensioner, and resided during the Lent and

Michaelmas Terms, being also incapacitated in the intervening term. In

January 1837 he underwent his final University examination, the Mathe

matical Tripos, and was placed second on the list. The first six names of

that year were Griffin, St John s; Sylvester, St John s; Brumell, St John s;

Green, Gonville and Caius
; Gregory, Trinity, and Ellis, Trinity. Of these,

George Green, born at Sneinton, near Nottingham, in 1793, was already the

author of the famous paper,
&quot; An essay on the application of Mathematical

Analysis to the theories of Electricity and Magnetism,&quot; which was published

at Nottingham, by subscription, in 1828. He died in 1841, more than fifty

years before Sylvester.

Of the general impression which Sylvester produced upon his con

temporaries at Cambridge, it is difficult to judge. It is recorded that

he attended the lectures of J. Gumming, Professor of Chemistry in the

* The Eagle, the College Magazine, xix (1897), p. 603. A list of Sylvester s scientific dis

tinctions is given in this place (p. 600).
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University from 1815 to 1861, and, as required by College regulations,
the Classical lectures of Bushby. We know how keen was his interest in

Chemistry many years later in Baltimore (cf. his paper on The New Atomic

Theory, in 148) : and his writings furnish evidence of the pleasure he took in

introducing a Classical allusion. When he became Editor of the Quarterly
Journal of Mathematics in 1855 he secured the printing of a Greek motto on

its title-page :

o TI ovcrta irpbs yevecnv, eVtcrr^^u) rrpos iricmv

KOI Suivoia irpos (luafriav tori
;

later on, the American Journal under his care also had (iv 298) a Greek

motto :

in his older age the reading and translation of Classical authors was one of his

resources.

He was, in later life at least, well acquainted with French, German and

Italian, and rejoices (n 563) because these with Latin and English &quot;may

happily at the present day be regarded as the common property and inherit

ance of mathematical
Europe.&quot;

He was also much interested in Music. We
are told that at one time he took lessons in singing from Gounod, and was

known to sing at entertainments given to working men. &quot;

May not Music,&quot;

he asks (il 419), &quot;be described as the Mathematic of sense, Mathematic as

Music of the reason ?...&quot; Or again (in 123),
&quot;

It seems to me that the whole

of aesthetic (...) may be regarded as a scheme having four centres, ..., namely

Epic, Music, Plastic and Mathematic &quot;

;
and he advocated &quot; a new method of

learning to read on the pianoforte
&quot;

(ill 8).

Of his interest in general literature, and his keen relish for a striking

phrase, no reader of his papers needs to be reminded. To his first long paper
on Syzygetic Relations, published in the Philosophical Transactions of the

Royal Society (i 429), he prefixes the words

How charming is divine philosophy !

Not harsh and crabbed as dull fools suppose,
But musical as is Apollo s lute

And a perpetual feast of nectar d sweets,

Where no crude surfeit reigns !

In his paper on Newton s rule, also in the publications of the Royal Society

(n 380), he quotes

Turns them to shapes and gives to airy nothing
A local habitation and a name.

In his Constructive Theory of Partitions (iv 1) he leads off with

seeming parted,

But yet a union in partition ;
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the Second Act, in which the Partitions are transformed by cunning opera

tions performed on the diagrams which represent them, is introduced by

Naturelly, by composiciouns
Of anglis, and slie reflexiouns ;

as the plot thickens he begins to feel more need of apology, and Act III

begins with

mazes intricate,

Eccentric, intervolved, yet regular

Then most, when most irregular they seem ;

while, when he comes to the Exodion, and feels that, after fifty-eight pages,
direct appeal may have lost its power, he takes refuge in Spenser s fairyland

with the lines

At which he wondred much and gan enquere
What stately building durst so high extend

Her lofty towres, unto the starry sphere.

Of his clever sayings we all remember many :

&quot;

Symmetry, like the grace
of an Eastern robe, has not unfrequently to be purchased at the expense of

some sacrifice of freedom and rapidity of action
&quot;

(i 309) ;
or again, in support

of the contention, that to say that a proposition is little to the point is not to

be taken as demurring to its truth (ll 725),
&quot;

I should not hesitate to say, if

some amiable youth wished to entertain his partner in a quadrille with agree
able conversation, that it would be little to the point, according to the German

proverb, to regale her with such information as how

Long are the days of summer-tide

And tall the towers of Strasburg s fane,

but should be surprised to have it imputed to me on that account that I

demurred to the proposition of the length of the days in summer, or the height
of Strasburg s towers.&quot; More direct still (ill 9), disclaiming the idea that

the simplicity of Peaucellier s linkwork should discredit the difficulty of its

discovery,
&quot; The idea of the facility of the result, by a natural mental illusion,

gets transferred to the process of conception, as if a healthy babe were to be

accepted as proof of an easy act of parturition.&quot; Some others will be found

referred to in the index.

It is also recorded that among the friends of his earlier life was

H. T. Buckle, author of the History of Civilisation, with whom, in addition

to more serious reasons for sympathy, chess playing was a link of friendship.

Whether the many sides of Sylvester s character, indicated by these

gleanings from his later life, were much in evidence at Cambridge, we do not

know. The intellectual atmosphere of the place at the time was extremely

vigorous in some ways. The Philosophical Society was founded in 1819,

largely on the initiative of Adam Sedgwick and J. S. Henslow, and
obtained a Charter in 1832

;
its early volumes are evidence of the great



xx Biographical Notice

width and alertness of scientific interest in Cambridge at this time
; papers

of George Green were read at the Society in 1832, 1833, 1837 and 1839
;

James Gumming, whose chemical lectures Sylvester attended, Sir John

Herschel, De Morgan, and Whewell are among the early contributors.

Sir John Herschel s Preliminary Discourse on the Study of Natural Philo

sophy is dated 1831. The third meeting of the British Association was in

Cambridge, on 24 June 1833. Whewell s History of the Inductive Sciences

was published at Cambridge in 1837, the Philosophy of the Inductive Sciences

in 1840. But we find* that in 1818 Sedgwick gave up his assistant tutor

ship, whose duties were mainly those of teaching the mathematical students

of Trinity College, on the ground that &quot;as far as the improvement of the

mind is considered, I am at this moment doing nothing I am...very sensibly

approximating to that state of fatuity to which we must all come if we

remain here long enough.&quot;
This was before Sylvester s student time, and

while mathematics at Cambridge was still suffering, partly from the long

consequences of the controversy in regard to Leibniz and Newton, and more

immediately from the loss of communication with the mathematicians of

the Continent due to the war. Yet Sir John Herschel f, writing in 1833,

feels compelled to speak very decidedly of the long-subsisting superiority of

foreign mathematics to our own, as he phrases it, and there seems to be no

doubt that mathematics, as distinct from physics, was then at a very low ebb

in Cambridge, notwithstanding the success of the struggle, about a quarter

of a century before, to introduce the analytical methods then in use on the

Continent. C. Babbage, in his amusing Passages from the Life of a Philo

sopher, describes how he went (about 1812) to his public tutor to ask the

solution of one of his mathematical difficulties and received the answer that

it would not be asked in the Senate House, and was of no sort of con

sequence, with the advice to get up the earlier subjects of the university

studies
;
and how, after two further attempts and similar replies from other

teachers, he acquired a distaste for the routine of the place. His connexion

with the translation of Lacroix s Elementary Differential Calculus (1816), and

his association with George Peacock, Sir John Herschel and others in the

Analytical Society, is well known
;
the title proposed by him for a volume

of their Transactions,
&quot; The principles of pure D-ism in opposition to the

Dot-age of the University,&quot;
has often been quoted.

In addition to the better known accounts, there is an echo of what is

usually said about Cambridge in this connexion in an Eloge on Sir John

Herschel, read at the Royal Astronomical Society, 9 February 1872, by a

writer who compares the work of Lagrange on the theory of equations with

that of Waring, who was born in the same year, and was Senior Wrangler
at Cambridge in 1757. We may add to this the bare titles of two continental

*
Life of Adam Sedgwick, by J. W. Clark, i, p. 154.

f Collected Essays, Longmans, 1857, pp. 30 39.
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publications of 1837, the year of Sylvester s Tripos Examination : C. Lejeune

Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression,

deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor

sind, unendlich viele Primzahlen enthdlt] E. Kummer, De aequatione

sc^ + y^ = z2* per numeros integros resolvenda. Augustus De Morgan, who

was fourth Wrangler in 1827, speaking in 1865, at the inaugural meeting

of the London Mathematical Society, pronounces that &quot;The Cambridge
Examination is nothing but a hard trial of what we must call problems

since they call them so between the Senior Wrangler that is to be of this

present January, and the Senior Wrangler of some three or four years ago.

The whole object seems to be to produce problems or, as I should prefer

to call them, hard ten-minute conundrums It is impossible in such an

examination to propose a matter that would take a competent mathematician

two or three hours to solve, and for the consideration of which it would be

necessary for him to draw his materials from different sources, and see how

he can put together his previous knowledge, so as to bring it to bear most

effectually on this particular subject.&quot;
This is the mathematician s criticism

of the system then, and, to a large extent, still in vogue. A criticism from

another point of view is found in a letter* of Sir Frederick Pollock, written

in 1869, to De Morgan: &quot;I believe the most valuable qualities for practical

life cannot be got at by any examination such as steadiness and perse

verance I think a Cambridge education has for its object to make good

members of society not to extend science and make profound mathema

ticians
&quot; These criticisms appear to agree in one implication, the dominance

of the examination in the training offered by the University ;
and they are

necessary to a right appreciation of Sylvester s university life and subsequent
work. Accordingly, we do not hear, as frequently we do in the case of young
students at continental universities, of Sylvester being led to study for himself

the great masters in Mathematics. We find him, in 1839 (i 39), disclaiming
a first-hand knowledge of Gauss s works

;
there is no anecdote, known to me,

to put with that he himself tells of Riemann. In a sheet of verses issued

by himself, in February 1896 one of many such sheets, I believe there is a

footnote containing the following:
&quot;

...the hotel on the river at Nuremberg,
where I conversed outside with a Berlin bookseller, bound, like myself, for

Prague....He told me he was formerly a fellow pupil of Riemann, at the

University, and that, one day, after receipt of some numbers of the Comptes
rendus from Paris, the latter shut himself up for some weeks, and when he

returned to the society of his friends, said (referring to newly-published

papers of Cauchy), This is a new mathematic.
&quot; We find Sylvester, how

ever, writing in 1839 of &quot; the reflexions which Sturm s memorable theorem

had originally excited
&quot;

(I 44), and we know how much of his subsequent

thought was given to this matter. Whether he read Sturm s paper of
* W. W. B. Ball, History of Mathematics at Cambridge, 1889, p. 113.
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23 May 1829 (Bulletin de Ferussac, xi, 1829, p. 419
; Memoires par divers

Savans, vi, 1835, pp. 273 318), or in what way he learnt of the theorem, there

seems to be no record. It is not referred to in the Report on Analysis by

George Peacock, Cambridge British Association Report, 1833, pp. 185 352,

which deals at length with Fourier s method. Sylvester records (li 655 6)

that Sturm told him that the theorem originated in the theory of compound

pendulums, but he makes no reference to Sturm s recognition of the applica

tion of his principles to certain differential equations of the second order.

Another aspect of Sylvester s time at Cambridge must be referred to.

At this time, and indeed until 1871, it was necessary, in order to obtain the

Cambridge degree, to subscribe to the Articles of the Church of England ;

one of the attempts, in 1834, to remove the restriction, is recorded in the Life
of Adam Sedgwick, already referred to (l 418; Sedgwick writes a letter to

the Times, 8 April 1834). Sylvester was, in his own subsequent bitter

phrase (ill 81), one of the first holding &quot;the faith in which the Founder of

Christianity was educated
&quot;

to compete for high honours in the Mathematical

Tripos ;
not only could he not obtain a degree, but he was excluded from the

examination for Dr Smith s mathematical prizes, which, founded in 1769, was

usually taken by those who had been most successful in the Mathematical

Tripos. Most probably, too, had the facts been otherwise, he would have been

shortly elected to a Fellowship at St John s College. To obtain a degree he

removed to Trinity College, Dublin, from which, it appears, he received in

turn the B.A. and the M.A. (1841). He finally received the BA. degree
at Cambridge, 29 February 1872, the M.A. (honoris causa) following 25 May
of the same year.

1838 In the year succeeding his Tripos examination at Cambridge, he was

elected to the Professorship of Natural Philosophy at (what is now) University

College, London, and so became a colleague of Professor De Morgan. The
list of the supporters of his candidature includes the names of Dr Olinthus

Gregory, who had examined him in Algebra when a schoolboy of eleven, of

Dr Richard Wilson, who had taught him before his entrance at St John s

College, of the Senior Moderator and Senior Examiner in his Tripos examina

tion, of Philip Kelland, of Queens College, Senior Wrangler in 1834, after

wards Professor at Edinburgh, and of J. W. Colenso, afterwards Bishop of

Natal
;
the two last had been private tutors of Sylvester at some portions of

his career at Cambridge. He held the post of Professor of Natural Philosophy
for a few years only; Professor G. B. Halsted (Science, 11 April 1897) makes

a statement suggesting that the examination papers set by him during his

tenure of the office are of a nature to indicate that he did not find his subject

congenial. During these years he was elected a Fellow of the Royal Society

(25 April 1839), at the early age of twenty-five. About this time also an oil-

painting of him was made by Patten, of the Royal Scottish Academy, from

the recorded description of which it appears that he had dark curly hair and
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wore spectacles. It has been said that he took his Tripos examination in

January 1837; he at once began to publish, in the Philosophical Magazine

of 183738. The first four of his papers are on the analytical develop

ment of Fresnel s optical theory of crystals, and on the motion and rest of

fluids and rigid bodies
;
but the papers immediately following contain the

dialytic method of elimination, and the expression of Sturm s functions in

terms of the roots of the equation, as well as many results afterwards included

in the considerable memoir on the theory of the syzygetic relations of two

polynomials, published in the Philosophical Transactions of 1853.

Leaving University College in the session of 184041, he proceeded 1841

as Professor of Mathematics across the Atlantic, to the University of

Virginia, founded in 1824 at Charlottesville, Albemarle Co., where* his

colleague, Key, of University College, had previously occupied the chair of

Mathematics. Such a considerable change deserved a better fate than befell
;

in Virginia at this time the question of slavery was a subject of bitter con

tention, and Sylvester had a horror of slavery. The outcome was his almost

immediate return
; apparently he had intervened vigorously in a quarrel

between two of his students.

On his return from America Sylvester seems to have abandoned mathe- 1844

matics for a time. In 1844 he accepted the post of Actuary to the Legal and

Equitable Life Assurance Company, and threw himself into the work with

great energy. He did not accept another teaching post for ten years, until

1854, but seems to have given some private instruction, as it is related f that

he had, what was unusual at that time, a lady among his pupils whose name

was afterwards famous Miss Florence Nightingale. He entered at the Inner

Temple 29 July 1846, and was called to the Bar 22 November 1850.

He also founded the Law Reversionary Interest Society. It was in 1846 1846

that Cayley, who had been Senior Wrangler in 1842, left Cambridge and

became a pupil of the famous conveyancer, Mr Christie, entering at Lincoln s

Inn. He was already an author, and had in fact entered upon one of the

main activities of his life
;

for in 1845 he had published his fundamental

paper &quot;On the Theory of Linear Transformations,&quot; in which he discusses

Boole s discovery of the invariance of a discriminant. To us, knowing how

pregnant with consequences the meeting was, it would be interesting to have

some details of the introduction of Cayley and Sylvester; the latter lived,

then or soon after, in Lincoln s Inn Fields, and we are told j that during the

following years they might often be found walking together round the Courts

of Lincoln s Inn, discussing no doubt many things but among them assuredly
the Theory of Invariants. Perhaps it was particularly of this time that

Sylvester was thinking when he described Cayley (i 376) as
&quot;

habitually

*
J. J. Walker, Proc. Land. Math. Soc. xxvni (189697), p. 582.

t The Eagle, xix (1897), p. 597.

i Biographical notice of Arthur Cayley, Cayley s Collected Papers, Volume vm.

S. IV. C
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1846 discoursing pearls and rubies,&quot; or when, much later (iv 300), he spoke of
&quot;

Cayley, who, though younger than myself, is my spiritual progenitor who

first opened my eyes and purged them of dross so that they could see and

accept the higher mysteries of our common mathematical faith.&quot; It is in

a paper published in 1851 (i 246) that we find him saying, &quot;The theorem

above enunciated was in part suggested in the course of a conversation with

Mr Cayley (to whom I am indebted for my restoration to the enjoyment of

mathematical life)
&quot;

;
and Sylvester s productiveness during the latter part of

this period is remarkable. In particular there are seven papers whose date of

publication is 1850, including the paper on the intersections, contacts and

other correlations of two conies, wherein he was on the way to establish

the properties of the invariant factors of a determinant, afterwards recog

nised by Weierstrass
;
and there are thirteen papers whose date is 1851,

including the sketch of a memoir on elimination, transformation and canonical

forms, in which the remarkable expression of a cubic surface by five cubes is

given, the essay on Canonical Forms, and the paper on the relation between

the minor determinants of linearly equivalent quadratic functions, in which

the notion of invariant factors is implicit ;
while in 1852 is dated the first

of the papers
&quot; On the principles of the Calculus of Forms.&quot; Dr Noether

remarks* how important for the history of mathematics these years were in

other respects ;
Rummer s memoir,

&quot; Ueber die Zerlegung der aus Wurzeln

der Einheit gebildeten complexen Zahlen in ihre Primfactoren,&quot; appeared
in 1847 (Crelle, xxxv); Weierstrass s

&quot;

Beitrag zur Theorie der Abel schen

Integrale
&quot;

(Beilage zum Jahresbericht ilber das Gymnasium zu Braunsberg}
is dated 1849

;
Riemann s Inaugural-dissertation,

&quot;

Grundlagen fur eine

allgemeine Theorie der Functionen eiuer veranderlichen complexen Grb sse,&quot;

is dated 1851. Referring to the discovery of the Canonical Forms in order

to enforce the statement that observation, induction, invention and experi

mental verification all play a part in mathematical discovery (n 714), Sylvester

tells an anecdote which has a personal interest :

&quot; I discovered and developed

the whole theory of canonical binary forms for odd degrees, and, as far as yet

made out, for even degrees too, at one evening sitting, with a decanter of port

wine to sustain nature s flagging energies, in a back office in Lincoln s Inn

Fields. The work was done, and well done, but at the usual cost of racking

thought a brain on fire, and feet feeling, or feelingless, as if plunged in an

ice-pail. That night we slept no more&quot;

To Englishmen, in whose minds the modern developments of physical

mathematics are associated with many familiar names, who recall Thomas

Young, Faraday, Herschel, George Green, Stokes, Adams, Kelvin, Maxwell,

the activity of Cayley and Sylvester may at first sight seem very natural.

But in fact the aim of such men as those first named was primarily the

coordination of the phenomena of Nature, not the development of any
* Charles Hermite, Math. Annalen, LV, p. 343.
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mathematical theory. And if we think of such names as those of De Morgan, 1846

Warren, Peacock, their interest perhaps was either systematic or didactic;

their endeavours were necessarily largely directed to criticising, and expounding
to their countrymen, the proposals of continental mathematicians. But Cayley
and Sylvester were in a different position at the time of which we are

speaking ;
neither of them had any official duties as teacher of mathematics

;

to Cayley, as he afterwards said (in 1883) to the British Association, mathe

matics was &quot; a tract of beautiful country seen at first in the distance, but

which will bear to be rambled through and studied in every detail of hillside

and valley, stream, rock, wood, and flower.&quot; To him and to Sylvester, Pure

Mathematics was an opportunity for unceasing exploration; or, in another

figure, a challenge to carve from the rough block a face whose beauty should

for all time tell of the joy there was in the making of it
;
or again, it was the

discernment and identification of high peaks of which the climbing might be

in the years to come the task of those to whom strenuous labour is a delight
and fine air an intoxication. And this spirit was a new one in England at

this time, of which we may easily miss the significance. It may therefore

help if we quote, without expressing any opinion as to its proportionate

justice, the impression of an American observer, Dr Fabian Franklin, who
succeeded Sylvester as Professor at Baltimore. Speaking* at the memorial

meeting held immediately after Sylvester s death, 2 May 1897, he says of

Sylvester, &quot;His influence upon the development of mathematical science

rests chiefly, of course, upon his work in the Theory of Invariants. Apart
from Sir William Rowan Hamilton s invention and development of Qua
ternions, this theory is the one great contribution made by British thought
to the progress of Pure Mathematics in the present century, or indeed

since the days of the contemporaries of Newton. From about the middle
of the eighteenth century, until near the middle of the nineteenth, English
mathematics was in a condition of something like torpor....And, accordingly,
it proved to be the case that in the magnificent extension of the bounds of

mathematics which was effected by the continental mathematicians during
the first four decades of the present century, England had no share. It is

almost literally correct to say that the history of mathematics for about a

hundred years might be written without serious defect with English mathe
matics left entirely out of account.

&quot; That a like statement cannot be made in regard to the past fifty years is

due pre-eminently to the genius and labours of three men : Hamilton, Cayley
and Sylvester....Not only did other English mathematicians join in the work,
but Hermite in France, Aronhold and Clebsch in Germany, Brioschi in Italy,
and other continental mathematicians, seized upon the new ideas, and the

theory of invariants was for three decades one of the leading objects of

mathematical research throughout Europe. It is impossible to apportion
* Johns Hopkins University Circulars, June 1897.

c2
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between Cayley and Sylvester the honour of the series of brilliant discoveries

which marked the early years of the theory of invariants....&quot;

It would not be right to omit reference to another factor in the mathe

matical life of the time we are dealing with the influence of George Salmon.

At what time Sylvester first became acquainted with him, I have not ascer

tained
;
but we know that the theory of the straight lines lying upon a cubic

surface was worked out in a correspondence between Cayley and Salmon

in 1849. Readers of Salmon are aware of the intimate way in which he

followed Sylvester s work, while Sylvester, in his papers, makes frequent

reference to Salmon s books. There is a personal letter* from Salmon to

Sylvester, of date 1 May 1861, which exhibits the relations of the two

men in an interesting light, &quot;...I should be very glad if there was any
chance of your preparing an edition of your opuscula. There have been, of

course, occasional little statements in your papers requiring verification.

Written, as they were, in the very heat of discovery, they are rather to be

compared to the hurried bulletins written by a general on the field of battle

than to the cool details of the historian. Honestly, however, I don t think

there is the least chance of your going back to these former studies. I shall

be content to let you off some of these if you will do justice to what you have

done on the subject of partitions. I wish you would seriously consider

whether it is not a duty everyone owes to Society, when one brings a child

into the world, to look to the decent rearing of it. I must say that you have

to a reprehensible degree, a cuckoo-like fashion of dropping eggs and not

seeming to care what becomes of them. Your procreative instincts ought to

be more evenly balanced by such instincts as would inspire greater care of

your offspring and more attention to providing for them in life, and producing

them to the world in a presentable form.
&quot;

Hoping you will meditate on this homily and be the better for it, I

remain, yours sincerely, GEO. SALMON.&quot;

Salmon himself did a great deal for the rearing of many of Sylvester s

offspring, and I suppose it would be hard to estimate how much of Sylvester s

and Cayley s reputation in their lifetime was due to his large-minded and

genial exposition.

Sylvester himself, in a paper of 1863 (II 337), supplies some answer to

such criticisms as this of Salmon s :

&quot;

in consequence of the large arrears of

algebraical and arithmetical speculations waiting in his mind their turn to

be called into outward existence, he [the author] is driven to the alternative

of leaving the fruits of his meditations to perish...or venturing to produce

from time to time such imperfect sketches as the present, calculated to

evoke the mental cooperation of his readers....&quot;

1854 It was not until 10 June 1863 that Cayley returned to Cambridge,

as Sadlerian Professor of Pure Mathematics. In 1854, Sylvester was a

* Printed in the Eagle, the Magazine of St John s College, xxix (1908), p. 380.
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candidate for the Professorship of Mathematics at the Royal Military

Academy, Woolwich. At this time he had published the papers now reprinted

in Volume I, the Theory of Invariants had an existence firmly established,

and Sylvester had an European reputation. But his candidature was

unsuccessful. This was in August of 1854. In December of the same year

he gave his Probationary lecture on Geometry before the Electors to the

Professorship of Geometry in Gresham College, London (n 2). In this he

was also unsuccessful. Professor G. B. Halsted has recorded that Sylvester

often deplored the time he had lost &quot;fighting
the world,&quot; and he would

feel these disappointments keenly. However, the successful candidate at

Woolwich died a few months after being appointed, and Sylvester was

again a candidate. A letter on his behalf by Lord Brougham, of date

28 August 1855, speaks of him as my &quot;learned and excellent friend and

brother mathematician Mr Sylvester.&quot;
This time he was elected. He took

up the appointment on 15 September 1855, being, for a year, lecturer in

Natural Philosophy as well as Professor of Mathematics. There is record

of the exact emoluments of the post, a salary of 550, a Government

Residence (K Quarters, Woolwich Common), medical attendance and right

of pasturage on the Common. The house was a pleasant one, with a good

garden, in which he could enjoy the shade of his own walnut tree, we

are told, and he was able to entertain his scientific friends. The conver

sations with Cayley still went on
;
we hear of them walking to meet one

another, Cayley from 2 Stone Buildings and he from his home, their meeting

point falling near Lewisham. Sylvester retained this post until July 1870,

sometimes justifying, we are led to believe, the original hesitation of the

electors in regard to his efficiency as an elementary teacher; there are stories

such as that of his housekeeper pursuing him from home carrying his collar

and necktie. His publications during this time are, approximately, those

reprinted in Volume II.

Sylvester gave seven lectures on the Theory of Partitions at King s

College, London, in 1859 (n 119), not published until 1897, and then only

from outlines privately circulated at the time of delivery; Capt. (now Sir

Andrew) Noble collaborated with him in an important degree in his work

on the Theory of Partitions. He wrote the paper on the involution of lines

in space considered as axes of rotation (n 236). The long paper on Newton s

rule and the invariantive discrimination of the roots of a quintic was

published in the Philosophical Transactions, 1864 (II 376). His work on

the proof of Newton s rule made its appeal in various directions Todhunter

remarks in his Theory of Equations,
&quot;

If we consider the intrinsic beauty
of the theorem, the interest which belongs to the rule associated with the

great name of Newton, and the long lapse of years during which the reason

and extent of that rule remained undiscovered by mathematicians among
whom Maclaurin, Waring and Euler are explicitly included we must regard
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Professor Sylvester s investigations as among the most important contribu

tions made to the Theory of Equations in modern times, justly to be ranked

with those of Fourier, Sturm and Cauchy.&quot;

1855 Sylvester s outward life also contained points to be remarked. In April
1855 appeared the first number of the Quarterly Journal of Pure and

Applied Mathematics, edited by J. J. Sylvester, M.A., F.R.S. and N. M.

Ferrers, M.A.
;
this replaced the Cambridge and Dublin Mathematical Journal

which had first been edited by W. Thomson, M.A. (the late Lord Kelvin)
and then by W. Thomson, M.A. and N. M. Ferrers, M.A. In the Preface,

the plea is put forward that a more ambitious journal was necessary in view

of the growing state of the subject, and might render British mathematicians

less dependent on the courtesy of the editors of Foreign journals. Assisted

by Stokes, Cayley and Hermite, this joint editorship continued unchanged
until June 1877.

1856 In 1856 Sylvester was elected* to the Athenaeum Club, under the

special Rule II. The fact is worth recording. Sylvester was never married,

and in subsequent years this was the address he frequently appended to his

writings.

1859 In 1859 he delivered seven lectures on the Partition of Numbers, at

King s College, London, as noted above.

1861 In 1861 he was awarded a Royal Medal by the Royal Society, Cayley

having received that honour in 1859.

1863 On 7 Dec.f 1863 he was chosen correspondent in mathematics by the

French Academy of Sciences, in place of the great geometer Steiner, who
had died in the preceding April. We notice that he had just commenced

(in 1861) what was to be a long series of communications to the Academy,
and his paper on Involutions of lines in space had been presented to the

Academy by M. Chasles (n 236). His closely following paper on the Double

Sixes of lines on a Cubic surface (II 242) he himself afterwards (n 451)
notes as being an unconscious plagiarism from a paper of Schlafli, which

he had read as editor before its publication in the Quarterly Journal (Vol. II

(1858), p. 116).

1864 His memoir in the Phil. Trans, on Newton s rule is of date 1864

(ll 376). In 1865 he delivered a lecture on the subject at King s College,

London (11 498). A syllabus of this lecture forms the first mathematical

paper published by the London Mathematical Society. This Society was

inaugurated by a speech of Professor De Morgan 16 Jan. 1865, with &quot;the great
aim of the cultivation of pure Mathematics and their most immediate applica

tions.&quot; The Society consisted at its formation of twenty-seven members,

nearly all of whom were members of University College. Sylvester was

elected the second President at the Annual General Meeting held at Burlington
* As I have been able to verify by the courtesy of the Secretary.

t J. J. Walker, Proc. Lond. Math. Soc. xxvm (189697), p. 585.
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House on 8 November 1866 (in the rooms of the Chemical Society), and

held office until November 1868. He served on the Council for many years.

In 1869 Sylvester was President of the Mathematical and Physical 1869

Section of the British Association at Exeter. He took as the subject of his

Presidential address the charge that Huxley had brought against Mathe

matics, of being the study that knew nothing of observation or induction

(n 650), nothing of experiment or causation. An incidental reference in

this address to Kant s doctrine of space and time led to a lively controversy

in the pages of Nature, in which Sylvester s trenchant style and wide range

of intellectual alertness may be well seen (n Appendix). Characteristically

enough Sylvester reprinted the address, with annotations, and the cor

respondence in regard to Kant, as an Appendix to his volume on the Laws

of Verse (Longmans, 1870) a volume which should be consulted for an

appreciation of a side of Sylvester s activity which occupied him to the end

of his life.

In 1870 Sylvester retired from his post at Woolwich, in consequence 1870

of what he regarded as an unfair change in the regulations. As may be

seen in the article of G. B. Halsted, above quoted, Science, 11 April 1897,

and in the Leading Article which appeared in the Times, 17 August 1871

(see also Sylvester s own letter to the Times, 24 August 1871, and Nature,

Vol. iv (1871), pp. 324, 326), there was much bitterness as to the question

of pension, which was however finally secured to him, if not on the scale

desired. For the next few years Sylvester resided near the Athenaeum

Club, apparently somewhat undecided as to his course in life. We hear

of him as reciting and singing at Penny Readings (cf. his remarks on the

utility of these in the Laws of Verse, p. 70), and as being a candidate for the

London School Board*, and, in The Gentleman s Magazine for February 1871,

there appears &quot;The Ballad of Sir John de Courcy,&quot;
translated from the

German by
&quot;

Syzygeticus.&quot;

In 1874 Sylvester gave a Friday evening discourse at the Royal Insti- 1874

tution on Peaucellier s link bar motion. He was then sixty years old, yet,

even in the abstract of the lecture which remains (ill 7), the vivacity with

which he dealt with the matter is very striking. His enthusiasm evoked a

wide interest in the subject.

In 1875 the Johns Hopkins University was founded at Baltimore. A 1875

letter to Sylvester from the celebrated Joseph Henry, of date 25 August

1875, seems to indicate that Sylvester had expressed at least a willingness

to share in forming the tone of the young university; the authorities seem

to have felt that a Professor of Mathematics and a Professor of Classics

could inaugurate the work of an University without expensive buildings or

*
Sylvester s election address as candidate for the London School Board for Marylebone in

the place of Professor Huxley, with a list of his scientific supporters, is found in Nature,

21 March 1872, p. 410.
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elaborate apparatus. It was finally agreed that Sylvester should go, securing,

besides his travelling expenses, an annual stipend of 5000 dollars
&quot;

paid in

gold.&quot;
And so, at the age of sixty-one, still full of fire and enthusiasm, as

appears abundantly from the work he devoted to the papers here reprinted in

Volume III, he again crossed the Atlantic, and did not relinquish the post
for eight years, until 1883. It was an experiment in educational method

;

Sylvester was free to teach whatever he wished in the way he thought best
;

so far as one can judge from the records, if the object of an University be

to light a fire of intellectual interests, it was a triumphant success. His

foibles no doubt caused amusement, his faults as a systematic lecturer must

have been a sore grief to the students who hoped to carry away note-books

of balanced records for future use
;
but the moral effect of such earnestness

as we see him shewing for instance in the papers 19 21 of Volume in (on
the true number of irreducible concomitants for the cubic and biquadratic),

and in paper 34 (on the system for two cubics), must have been enormous.
&quot; His first pupil, his first class,&quot; was Professor George Bruce Halsted

;
he

it was who, as recorded in the Commemoration-day Address (in 76)
&quot; would have the New Algebra.&quot; How the consequence was that Sylvester s

brain &quot; took
fire,&quot; is recorded in the pages of the American Journal of

Mathematics. Others have left records of his influence and methods.

Major MacMahon quotes the impressions of Dr E. W. Davis, Mr A. S.

Hathaway and Dr W. P. Durfee. Professor Halsted s Article in Science

has already been quoted. From Dr Fabian Franklin s long commemorative

address*, already referred to, another paragraph may be given: &quot;One of

the most striking of Sylvester s achievements was his demonstration and

extension of Newton s improved rule concerning the number of the imaginary
roots of an algebraic equation We who knew him well in later years can

find no difficulty in understanding the hold this problem had upon him.

It was the good fortune of his early hearers in this University to be present
when he came into the lecture-room, flushed with the achievement of a

somewhat similar task. A certain fundamental theorem in the Theory of

Invariants (in 117, 232), which had formed the basis of an important
section of Cayley s work, had never been completely demonstrated. The
lack of this demonstration had always been, to Sylvester s mind, a most

serious blemish in the structure. He had, however, he told us, years ago

given up the attempt to find the proof, as hopeless. But, upon coming
fresh to the subject in connection with his Baltimore Lectures, he again

grappled with the problem, and by a fortunate inspiration, succeeded in

solving it. It was with a thrill of sympathetic pleasure that his young
hearers thus found themselves in some measure associated with an intel

lectual feat, by which had been overcome a difficulty that had successfully

resisted assault for a quarter of a
century.&quot;

* Johns Hopkins University Circulars, June 1897.
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The same writer gives an anecdote illustrating another side of the

picture, which may be repeated here.
&quot; The reading of the Rosalind poem

at the Peabody Institute was the occasion of an amusing exhibition of

absence of mind. The poem consisted of no less than 400 lines, all rhyming

with the name Rosalind (the long and short sound of i both being allowed).

The audience quite filled the hall, and expected to find much interest or

amusement in listening to this unique experiment in verse. But Professor

Sylvester had found it necessary to write a large number of explanatory

footnotes, and he announced that in order not to interrupt the poem he

would read the footnotes in a body, first. Nearly every footnote suggested

some additional extempore remark, and the reader was so interested in each

one that he was not in the least aware of the flight of time, or of the amuse

ment of the audience. When he had dispatched the last of the notes, he

looked up at the clock, and was horrified to find that he had kept the

audience an hour and a half before beginning to read the poem they had

come to hear. The astonishment on his face was answered by a burst of

good-humoured laughter from the audience
;
and then, after begging all his

hearers to feel at perfect liberty to leave if they had engagements, he read

the Rosalind
poem.&quot;

It may be noted here that it was at Baltimore he

wrote &quot;Spring
s Debut, a Town

Idyll,&quot;
two centuries of lines all rhyming

with &quot;Winn.&quot; (January 1880.)

Sylvester s own account of his life at Baltimore, and many other matters,

are sufficiently given in the Commemoration-day Address, 22 February 1877

(ill 72) ;
it is not necessary to dwell on this further here.

In 1878 appeared the first volume of the American Journal of Mathe- 1878

matics established by the University under Sylvester s care. His first paper

is a long account of the application of the new atomic theory to the graphical

representation of the concomitants of binary quantics (ill 148).

In 1880 he was awarded by the Royal Society the highest honour 1880

possible, the Copley Medal
;
on 11 June 1880, he was elected Honorary

Fellow of his old College of St John at Cambridge, Benjamin Hall Kennedy,
the famous schoolmaster and Greek scholar, being elected on the same day.

Their portraits are now both preserved in the College.

It is to this period of his life we must refer also the beginning of his

investigations in regard to matrices, especially binary matrices. He says

(iv 209)
&quot;

my memoir on Tchebycheff s method concerning the totality of

prime numbers within certain limits, was the indirect cause of turning my
attention to the subject, as (through the systems of difference equations
therein employed to contract Tchebycheff s limits) I was led to the discovery

of the properties of the latent roots of matrices, and had made considerable

progress in developing the theory of matrices considered as quantities, when

on writing to Professor Cayley upon the subject he referred me to [his own]
memoir.&quot; Here also, in the interesting communications to the Mathematical
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Club reprinted in the Johns Hopkins University Circulars, arose a new
interest in developing the Theory of Partitions, which issued in the Con

structive Theory of Partitions (iv 1 83) printed in the American Journal

(1883). In the course of the year 1883 the University of Oxford conferred

upon Sylvester the honorary degree of D.C.L.
;
and in December of that year,

soon after his sixty-ninth birthday, his great distinction was recognised
further in the same University by his election to succeed the illustrious

H. J. S. Smith as occupant of the chair of Savilian Professor of Geometry.
The Professorship had been founded in 1619 by Sir Henry Savile, Warden
of Merton College, the first professor being obtained by promoting Henry

Briggs from the post which Sylvester had vainly sought in 1854, that of

Gresharn Professor of Geometry in London, so that, as Mr Rouse Ball remarks,

Briggs held in succession the two earliest chairs of mathematics that were

founded in England the college founded by Sir Thomas Gresham having
been opened in 1596. Other holders of the Savilian chair were John Wallis,

1649, and Edmund Halley, 1704. The companion chair at Oxford, of Savilian

Professorship of Astronomy, was held from 1870 to 1893 by the Rev. Charles

Pritchard, who was also an alumnus at St John s College, Cambridge. These

two were now to be again members of the same house, as Fellows of New

College.

The election of Sylvester to Oxford was a matter of importance at Balti

more. On 20 December 1883, a goodbye meeting was held in Hopkins Hall,

Baltimore, by invitation of the President, the guests including Mr Matthew

Arnold, Professor Newcomb and others. The following address was agreed

to, in Professor Sylvester s presence*.
&quot; The teachers of the Johns Hopkins University, in bidding farewell to

their illustrious colleague, Professor Sylvester, desire to give united expression

to their appreciation of the eminent services he has rendered the University
from the beginning of its actual work. To the new foundation he brought
the assured renown of one of the great mathematical names of our day,

and by his presence alone made Baltimore a great center of mathematical

research.

&quot;To the work of his own department he brought an energy and a devotion

that have quickened and informed mathematical study not only in America,

but all over the world
;
to the workers of the University, whether within his

own field or without, the example of reverent love of truth and of knowledge
for its own sake, the example of a life consecrated to the highest intellectual

aims. To the presence, the work, the example of such a master as Professor

Sylvester, the teachers of the Johns Hopkins University all owe, each in his

own measure, guidance, help, inspiration ;
and in grateful recognition of all

that he has done for them and through them for the University, they wish

for him a long and happy continuance of his work in his native land, for

* Johns Hopkins University Circulars, January 1884, p. 31.
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themselves the power of transmitting to others that reverence for the ideal

which he has done so much to make the dominant characteristic of this

University.&quot;

And thus at length, crowned with the gratitude of his American colleagues, 1884

Sylvester was acknowledged in one of the two ancient English Universities,

though not his own. And to this, at the age of seventy years, he did not

come without something new to say! On 12 December 1885, he delivered

an Inaugural lecture, On the Method of Reciprocants (iv 278), that is

of functions of differential coefficients whose form is unaltered by certain

linear transformations of the variables. This he followed up by a course

of lectures which, as finally edited, extend over more than two hundred pages
of the present Reprint. The matter evidently appealed to him as a general

isation of the theory of concomitants, and he worked hard and enthusiastically

at the relations of the two theories, gathering round him a school of advanced

students. This was the last great continent of thought to be won by him,

though he wrote, in 1886, for the centenary volume of &quot;the leading Mathe

matical Journal in the world,&quot; Crelle s Journal, a paper on the so-called

Tschirnhausen Transformation, which he ascribed to the inspiration of Bring

(1786) (iv 531), and a paper on a funicular solution of Buffon s &quot;problem

of the needle&quot; in 1890 (iv 663), besides other papers. In the Theory of

Reciprocants he had been anticipated in detail by Halphen (These, 1878),

as he acknowledges. The general idea of differential invariants had been

already formulated by Sophus Lie (see his paper on Differential Invariants,

Math. Ann. xxiv (1884) in which he states that his investigations go
back to 1869 72), as an application of his theory of Continuous Groups ;

to this Sylvester paid but scant attention. On the other hand it may
be recalled that Sylvester had himself in cooperation with Cayley long
before stated and frequently employed the principle of infinitesimal trans

formations, and in his first paper on Schwarzian Derivatives (iv 252) he

employs the idea of &quot;extended&quot; infinitesimal variations without remark.

One striking note in his Inaugural address at Oxford is the fulness of his

references to his colleagues in mathematical work and of these, what he

said about Hammond, fully borne out as it was by the help he gave in the

Theory of Reciprocants, seems worthy of being recalled :

&quot;

I should not do

justice to my feelings if I did not acknowledge my deep obligations to

Mr Hammond for the assistance which he has rendered me, not only in pre

paring this lecture which you have listened to with such exemplary patience,
but in developing the theory ;... saving only our Cayley (...) there is no one

I can think of with whom I ever have conversed, from my intercourse with

whom I have derived more benefit...&quot; (iv 300)*.

* Another worker to whom he referred in warm terms was Arthur Buchheim. It was his

melancholy duty a few years later to write an Obituary Notice of this distinguished young
mathematician, who died at the age of twenty-nine. Nature, 27 September 1888, p. 515.
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1887 In 1887 the Council of the London Mathematical Society made the

second award of the De Morgan medal to Sylvester, the first award (in 1884)

having been made to Cayley.
1889 In 1889, at the request of a few College friends at Cambridge and

elsewhere, he sat to A. E. Emslie for an oil-painting, now hanging in the

Hall of St John s College, which was exhibited in the Academy of that

year*. It is stated to be a good portrait, though, as he himself writes

(Eagle, Vol. xix, 1897, p. 604), &quot;I was in much trouble at that time...and
could scarcely keep awake from the effect of the light on my wearied

eyes.&quot;

This portrait is reproduced at the commencement of the present volume.

A copy of it is at New College, Oxford. An oil-painting by Patten, made
when he was twenty-six, has already been referred to. An engraving by
G. J. Stodart, from a photograph by Messrs I. Stilliard & Co., Oxford, appeared
in Nature, accompanying an appreciation by Cayley (Nature, Vol. xxxix,
1889

; Cayley s Collected Papers, xm, p. 43 gives the appreciation) ;
he

himself is said to have much prized a particular photograph taken at Venice.

On the occasion of his leaving Baltimore a medal was struck in his honour,

of which an exemplar is in the library of St John s College, Cambridge,

giving in profile an idea of powerful features. Another medal, struck shortly
after his death, is now awarded triennially by the Royal Society of London,
for the encouragement of Mathematical Research. This also is a profile

with the same impression of strength. It is one side of this medal which

is reproduced at the beginning of this Notice (p. xv).

1890 On 10 June 1890 he was awarded the Honorary Degree of Sc.D. by the

University of Cambridge. Honorary degrees were conferred on this occasion

upon Benjamin Jowett, Henry Parry Liddon, Andrew Clark, Jonathan

Hutchinson, George Richmond, John Evans, James Joseph Sylvester and
Alexander John Ellis. The speech delivered upon Sylvester by the Public

Orator, with his own footnotes, is as follows (Orationes et Epistolae Canta-

brigienses (18761909), Macmillan, 1910, p. 83):
&quot; Plus quam tres et quinquaginta anni interfuerunt, ex quo Academiae

nostrae inter silvas adulescens quidem errabat, populi sacri antiquissima

stirpe oriundus, cuius maiores ultimi, primum Chaldaeorum in campis, deinde

Palestinae in collibus, caeli nocturni Stellas innumerabiles, prolis futurae

velut imaginem referentesf, non sine reverentia quadam suspiciebant. Ipse
numerorum peritia praeclarus, primum inter Londinienses Academiae nostrae

studia praecipua ingenii sui lumine illustrabat. Postea trans aequor Atlan-

ticum plus quam semel honorifice vocatus, fratribus nostris transmarinis

doctrinae mathematicae facem praeferebat|. Nuper professoris insignis in

locum electus, et Britanniae non sine laude redditus, in Academia Oxouiensi

* Graves Catalogue nf the Royal Academy, 1769 1904.

t Genesis, xv. 5.

J University of Virginia, 184145 ; Johns Hopkins University, 187783.
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scientiae flammam indies clariorem excitat*. Ubicumque incedit, exemplo
suo nova studia semper accendit. Sive numerorum OewpLav explicat, sive

Geometriae recentioris terminos extendit, sive regni sui velut in puro caelo

regiones prius iflexploratas pererrat, scientiae suae inter principes ubique

conspicitur. Nonnulla quae Newtonus noster, quae Fresnelius, lacobius,

Stunnius, alii, imperfecta reliquerunt, Sylvester noster aut elegantius expli-

cavit, aut argumentis veris comprobavit. Quam parvis ab initiis argumenta

quam magna evolvit
; quotiens res prius abditas exprimere conatus, sermonem

nostrum ditavit, et nova rerum nomina audacter protulitf! Arte quali
numerorum leges non modo poetis antiquis interpretandis sed etiam carmini-

bus novis pangendis accommodat \ \ Neque surdis canit, sed respondent
omnia silvae, si quando, inter rerum graviorum curas, aevi prioris pastores

aemulatus,

Silvestrem tenui musam meditatur avena||.

Duco ad vos Collegii Divi loannis Socium, trium simul Academiarum

Senatorem, quattuor deinceps Academiarum Professorem, lacobum losephum

Sylvester!

During his residence at Oxford he founded the Oxford Mathematical

Society.
&quot; Members of that Society, even more perhaps than the attendants

at his formal lectures, have been impressed and excited to emulation as they
have seen his always commanding face grow handsome with enthusiasm, and
his eyes flash out irresistible fascination, while he expounded his latest dis

covery or brilliant anticipation,&quot; writes the Oxford Magazine (5 May 1897).
From the same source we gather that,

&quot;

despondent over his lecturing work

he undoubtedly was, and the feeling of discouragement grew upon him.&quot; In

1893 his eyesight began to be a serious trouble to him, and in 1894 he applied 1893

for leave to resign the active duties of his chair. After that he lived mainly
in London or at Tunbridge Wells, sad and dejected because his mathematical

power was failing. About August 1896 a revival of energy took place and 1896

he worked at the theory of Compound Partitions, and the Goldbach-Euler con

jecture of the expression of every even number as a sum of two primes. He
was present at a meeting of the London Mathematical Society on 14 January
1897, and spoke at some length of his work, answering questions put to him
in regard to it. On 12 February he sent a paper, on the number of fractions

in their lowest terms that can be formed with limited integers, to the editor

of the Messenger of Mathematics, and corrected the proofs about the end of

the month (iv 742). At the beginning of March, he had a paralytic seizure 1897
while working in his rooms at Hertford Street, Mayfair. He never spoke

again, and died 15 March 1897. He was buried with simple ceremonial at

* Succeeded H. J. S. Smith as Savilian Professor, 1883 97.

t Prof. Cayley in Nature, 3 Jan. 1889.

The Laws of Verse, 1870 ; Eagle, xiv 251, xv 251, xix 601 f., 604.

Virgil, Ed. x 8.
||

ib. Ed. i 2.
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the Jewish Cemetery at Dalston on March 19, the Royal Society, the London

Mathematical Society, and New College, Oxford, being represented (Nature,

25 March 1897).

One rises from the task of editing Sylvester s mathematical writings

for the Press, with a feeling that here was a great personality as well as a

remarkable mathematician, wide and accurate in thought, deep and sensitive

in feeling, and inspired with a great faith in things spiritual.
&quot;

. . .is a very

great genius,&quot;
he is reported to have said when pressed on one occasion,

&quot;

I only wish he would stick to mathematics, instead of talking atheism.&quot;

Of the detailed relations of his work with that of contemporary writers,

especially for the Theory of Equations, Dr M. Noether has written a masterly
and easily accessible account (Math. Annalen, Bd L, 1898). In his Presi

dential address to the London Mathematical Society (Proceedings, xxvm,
1896 97) Major MacMahon has given an appreciation of his work on the

Theory of Partitions, which should be consulted. Sylvester s long devotion

to the Theory of Invariants, in conjunction with Cayley, transforming the

whole analysis of Projective Geometry, has left an ineffaceable mark on

Mathematics
;
but in all questions of algebraical form, working more often

by divination than by computation, he is wonderful his theorems in regard
to Sturm s Functions, Canonical Forms, and Determinants suggest themselves

at once. So general are some of his results that even the recognition of other

theorems as particular cases of them may sometimes be difficult, as very

distinguished writers have found.

But another aspect of his mathematical work must, I think, be referred

to, if only to place in due proportion what has been said already. It would

seem that the multiplicity of the ideas which pressed upon Sylvester s mind

left him little leisure to read, more than cursorily, the writings of other

mathematicians. He gives a proof of the theorem for six points lying upon
a conic section, known as Pascal s theorem, by the method of indeterminate

coordinates, and no theorem of analytical geometry seems strange to him,

but he makes no reference to the philosophical interest of Poncelet s imaginary
elements at infinity. He deals with von Staudt s formulae for the mensuration

of pyramids, but von Staudt s scheme for dispensing with the notion of length
in geometrical theory does not attract him. The ferment and broad con

clusions as to the foundations of geometry, surely one of the most important
of nineteenth century speculations, stir no echo in his pages. Again, he

gives remarkable formulae in the Theory of Numbers, but Rummer s investi

gations in regard to ideal numbers, and the vast new regions opened by
them, even Gauss s consideration of complex integers, he does not speak of.

His silence as to Lie s theory of continuous groups has already been remarked
;

he is also silent as to the theory of systems of linear partial differential

equations ;
and though he gives important results as to the permutations of
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an assigned number of elements, he does not refer to the question of the

algebraic solution of the quintic equation, and writes nothing as to the

abstract theory of groups. Most remarkable of all, though he gives, and

evidently values, an evaluation of an elliptic integral, and proves, in a

wonderful way, by partitions, formulae of theta-functions, the majesty of the

new world which we associate with such names as those of Cauchy, Abel and

Jacobi, of Riemann and Weierstrass and others, does not greatly stir his

longing, so far as his writings declare. Indeed the abstract notion of a

function whether for a real, or a complex variable, never occurs in his papers ;

such a definite instance as Fourier s use of trigonometric series in the Theory

of Heat, of 1822, fails to draw him from his combinatorial standpoint ;
to

him the solution of a differential equation is its solution in explicit form
;

and his formula for the quotity of a partition is an isolated result. For an

ordinary man, trained in a country where the importance attached to time

examinations tends to discourage the study of all mathematical doctrine,

this might be easy to understand
;
but in Sylvester s case it is very notice

able, and should not be passed over without mention.

Sylvester s position however is secure. As the physicist glories in the

interest of his contact with concrete things, so Sylvester loved to mark his

progress with definite formulae. He was however before all an abstract

thinker, his admiration was ever for intellectual triumphs, his constant

worship was of the things of the mind. This it was which seems to have

most impressed those who knew him personally. And because of this, his

work will endure, according to its value, mingling with the stream fed by
the toil of innumerable men, of which the issue is as the source. He is of

those to whom it is given to renew in us the sanity which is called faith.

H. F. BAKER.





1.

A CONSTRUCTIVE THEORY OF PARTITIONS, ARRANGED IN
THREE ACTS, AN INTERACT AND AN EXODION.

[American Journal of Mathematics, v. (1882), pp. 251 330;

vi. (1884), pp. 334336.]

ACT I. ON PARTITIONS REGARDED AS ENTITIES.

seeming parted,

But yet a union in partition.

Twelfth-night.

(1) IN the new method of partitions it is essential to consider a par
tition as a definite thing, which end is attained by regularization of the

succession of its parts according to some prescribed law. The simplest law

for the purpose is that the arrangement of the parts shall be according to

their order of magnitude. A leading idea of the method is that of corre

spondence between different complete systems of partitions regularized in

the manner aforesaid. The perception of the correspondence is in many
cases greatly facilitated by means of a graphical method of representation,

which also serves per se as an instrument of transformation.

(2) The most obvious mode of graphically representing a partition is by
means of a network or web formed by two systems of parallel lines or

filaments. Any continuous portion of such web will serve to represent a

partition, as for example the graph

will represent the partition 3 5 5 4 3 of 20 by reading off the successive

numbers of nodes parallel to the horizontal lines of the web. This, however,
is not a regularized partition ;

the partition will be represented in its

regularized form by such a graph as the following :

s iv.
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which corresponds to the order 55433, but it may be represented much
more advantageously by the figure

which is a portion of the web bounded by lines of nodes belonging to the two

systems of parallel filaments. Any such portion becomes then subject to the

important condition that the two transverse parallel readings will each give a

regularized partition, one being in the present example 55433, and the

other 55532. Any such graph as this will be termed a regular partition-

graph, and the two partitions which it represents will be said to be conjugate
to one another. The mere conception of a regular graph serves at once by

effecting an interchange (so to say) between the warp and the woof, through
the principle of correspondence, to establish a well-known fundamental

theorem of reciprocity. In the last figure, the extent* of (meaning the

number of nodes contained by) the uppermost horizontal line or filament is

the maximum magnitude of any element (or part) of the partition, and the

extent of the first vertical line is the number of the parts. Hence, every

regularized partition beginning with i and containing j parts is conjugate to

another beginning with j and containing i parts. The content of the graph

(that is, the sum of the parts) of the partition is the same in both cases (it

will sometimes be convenient to speak of the partible number as the content

of the elements of the partition). From the above correspondence it is clear

that if two complete partition-systems be formed with the same content in

one of which the largest part is i and the number of parts j, and in the other

the largest part is j and the number of the parts i, the order (that is, the

number of partitions) of the first system will be identical with the order of

the second: so that calling the content n, it follows that n i may be decom

posed in as many ways into j 1 parts as n j into i1 parts.

(3) This, however, is not the usual nor the more convenient mode of

expressing the reciprocity in question. We may, for the two partition

systems spoken of, substitute two others of larger inclusion, taking for the

first, all partitions of n in which no one part is greater than i, and the

number of parts is not greater than j (that is, is j or fewer), and for the

second system, one subject to the same conditions as just stated, but with i

and j (as before) interchanged : it is obvious that each regularized partition

* Extent may be used to denote the number of nodes on a Hue or column or angle of a graph;
content the number of nodes in the graph itself; but I have by inadvertence in what follows

frequently applied content alike to designate areal and linear numerosity.
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of one system will be conjugate to one regularized partition of the other

system, and accordingly the order of the two systems will be the same*.

(4) When i = oc it follows from the general theorem of reciprocity last

established, that the number of partitions of n into j parts or fewer will be

the same as the number of ways of composing n with the integers 1, 2, ... j,

and is therefore the coefficient of xn in the expansion of

1

1 - X . 1 - X* ... IXJ

Thus, then, we can at once find the general term in

expanded according to ascending powers of a
; for, if the above fraction be

regarded as the product of an infinite number of infinite series arising from

the expansion of the several factors

1 1 1

l-a l-ax l-ax2
&quot;

it will readily be seen that the coefficient of aPa* will be the number of ways
in which n can be resolved into j parts or fewer, that is, by what has been

just shown is the coefficient of xn in

1

1 X . 1 X* . . . 1 %J
;

and this being true for all values of n, it follows that the entire coefficient of

a-* is the fraction last written developed in ascending powers of x
;
so that

1

(l-a)(l-aaO(l-cwj
2

)...

= 1 +
i

a + a2 +
1 x 1 x.l x2

I -x.l x2 .1

as is well known.

The general term in

(I -a) (I -ax) ...(1 -ax*)

is also well known to be

1 - xi+1 . 1 - xi+2
... 1 - xi+i .

JL
^~ vC J. tX/ J. OC

* The above proof ef the theorem .of reciprocity is due to Dr Ferrers, the present head of

Gonville and Caius College, Cambridge. It possesses the double merit of having set the first

example of graphical construction and of putting into salient relief the principle of correspond
ence, applied to the theory of partitions. It was never made public by its author, but first

promulgated by myself in the Lond. and Edin. Phil Mag. for 1853. [Vol. i. of this Eeprint,
p. 597.]

12
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or in other words, the number of ways of resolving n into j parts none

greater than i is the coefficient of xn in the fraction

which [denoting 1 afl by (q)] is the same as

(1)(2) ...(*).(!) (2) ...(?)

and furnishes, if I am not mistaken, Euler s proof of the theorem of reci

procity already established by means of the correspondence of conjugate

partitions.

(5) [It may be as well to advert here to the practical method of obtain

ing the conjugate to a given partition. For this purpose it is only necessary

to call a-i the number of parts in the given partition not less than i] al5 a2 ,

a3 ,
... iii ... continued to infinity (or which comes to the same thing until i

is equal to the maximum part), will be the required conjugate.]

(6) The following very beautiful method of obtaining the general term

in question by the constructive method is due to Mr F. Franklin of the

Johns Hopkins University* :

He, as it were, interpolates between the theorem to be established in

general and the theorem for i = oo
,
and attaches a definite meaning to the

above fraction regarded as a generating function when the factors in the

numerator are limited to the first q of them, q being any number not exceed

ing i, so that in fact the theorem to be proved, according to this view, is only

the extreme case of (the last link in the chain to) a new and more general

one with which he has enriched the theory of partitions. The method will

be most easily understood by means of an example or two : the proof and

use to be made of the construction will be given towards the end of the Act.

Let n = 10, i = 5, j = 4.

Write down the indefinite partitions of 10 into 4 or fewer parts, or say

rather into 4 parts, among which zeros are admissible : they will be

* For a vindication of the constructive method applied to this and an allied theorem, see

p. [18] et seq.
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The partitions to which (1) is prefixed are those in which the first excess,

that is, the excess of the first (the dominant) part over the next is too great

(meaning greater than i, here 5); those to which (2) is prefixed are those in

which after the batch marked with (1) are removed, the second excess, that

is, the excess of the first over the third element is
&quot; too great

&quot;

;
those to

which (3) is prefixed are those in which after the batches marked (1) and (2)

are removed, the third excess is
&quot;

too
great,&quot;

and lastly those (only one as it

happens) marked with j (here 4) are those in which, so to say, the absolute

excess of the dominant, that is its actual value, is
&quot;

too
great,&quot;

that is, exceed

ing i (here 5) ;
the partitions that are left over will be the partitions of n

(here 10) into 4 parts, none exceeding i (here 5) in magnitude.

It is easy to see from this how to construct the partitions which are to be

eliminated from the indefinite partitions of the n (10) into 4 ( j) parts so as to

obtain the quaternary partitions in which no part superior to 5 (i) appears.
To obtain the first batch we must subtract i + 1 (6) from n (10) and form the

system of indefinite partitions of 4 into four parts, namely :

4.0.0.0
3.1.0.0
2.2.0.0
2.1.1.0
1.1.1.1

and adding to each of these 6.0.0.0 (term-to-term addition) batch (1) will

be obtained.

To obtain the second batch, form the quaternary partitions of n (i + 2),

that is, 3, namely :

3.0.0.0
2.1.0.0
1.1.1.0

[but omit those in which the first excess is &quot;too
great&quot; (greater than i); here

there are none such to be omitted] and bring the second element into the

first place ;
thus we shall obtain the system

0300
1200
1110

The augments of those obtained by adding 6.1.0.0 to each of them will

reproduce batch (2).

Again, form the quaternary partition-system of n (i + 3), rejecting all

those (here there are none such) in which the second excess is
&quot;

too
great.&quot;

We thus obtain

2000
1100
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and now bringing the third element in each of these into the first place so as

to obtain

0200
0110

The augments of these last partitions obtained by adding 6.1.1.0 to each

of them will give the third batch, and finally taking the quaternary partition-

system to n (i+j), that is, 1, rejecting (if there should be any such) those

in which the third excess is
&quot;

too
great,&quot;

we obtain 1.0.0.0, and bringing
the fourth element to the first place so as to get 0.1.0.0, and adding
6.1.1.1, the fourth batch 6.2.1.1 is reconstructed.

As another example take n=I5, i= 3, j
= 3.

The indefinite ternary partitions of 15 are

There are, of course, no

partitions left in which no

part exceeds 3, as the maxi

mum content subject to that

condition would be only 9.

The partitions marked (1) (2) (3) are those in which the first, second and

absolute excess respectively exceed 3.

Firstly, the indefinite ternary partitions of 15 4 or 11 augmented by
4.0.0 will obviously reproduce the system of partitions marked (1).

Secondly, taking the indefinite ternary partitions of 10 in which the

first excess, and those of 9 in which the second excess, does not exceed 3, we

shall obtain

6.4.0 and 5 . 2 . 2

6.3.1

5.5.0

5.4.1

5.3.2

4.4.2

4.3.3

4.4.1

4.3.2

3.3.3
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which by metastasis become

4.6.0 2.5.2
3.6.1 1.4.4
5.5.0 2.4.3
4.5.1 3.3.3
3.5.2
4.4.2
3.4.3

and adding to each term of these two groups 4.1.0 and 4.1.1 respectively,

the systems of partitions marked (2) and (3) respectively result.

(7) It may, I think, be desirable to give here my own construction for

the case of repeated partitions, which, having regard to its features of

resemblance to the one preceding, it is proper to state preceded it in the

date of its discovery and promulgation. The problem which I propose to

myself is to construct a system of partitions of a given number into parts

limited in number and magnitude, by means of partitions of itself and other

numbers into parts limited in number but not in magnitude.

As before, let i be the limit of magnitude, j the number of parts (zeros

admissible), and n the partible number
;
form a square matrix of the jth

order in which the diagonal elements are all i + 1, the elements below the

diagonal all of them unity, and those above the diagonal all of them zero,

say M1 .

From this matrix construct Mlt M2 ,
M3 ,

... Mj, such that the lines in Mq

(q being any integer from 1 to j inclusive) are the sums of those in Mly

added (term-to-term) q and q together.

Let (r, q) be the rth line in M
q
and [r, q] the sum of the numbers which

it contains.

Form the complete system of the partitions of n [r, q] into j parts, and

to each such add (term-to-term) (r, q).

In this way, by giving r all possible values we shall obtain a system of

partitions of n into j parts corresponding to M
q ,

which may be called P
q

.

I say that Pj P2 + P3 . . . + ()i~
l

Pj will be the complete system of partitions

of n into j parts in which one element at least exceeds i
;
where it is to be

observed that having regard to the effect of the and + signs (which are

used here to indicate the addition and subtraction, or say rather the ad

duction and sub-duction not of numbers but of things), each such partition

will occur once and once only ;
so that calling P the complete system of

indefinite partitions of n into j parts, the complete system of partitions of n

into j parts in which no part exceeds i in magnitude will be

p-p1+ p2 ...+(-yp,-*.
*

It must, however, be understood that the same partition is liable to appear in more than

one, and not exclusively in its regularized phase, or as it may be expressed, the regularized

partition undergoes metastasis.
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(8) This construction, which I will illustrate by two examples, proceeds

upon the fact which, although confirmed by a multitude of instances, remains

to be proved, that if klt k2 ,
... kj be any partition of n into j parts and the

number of unequal parts greater than i be
p,, then the number of times in

which this partition, in its regular or any other phase, appears in P
q

is

- -------
(interpreted to mean 1 when

&amp;lt;?

=
0), and consequently

its total number of appearances in P P1 + P2 . . . is (1 I)*
1

,
that is, is 0.

From this it follows that the total number of partitions of n into j parts

none exceeding i in magnitude will be G C1 + G2 ..., where Gq
is the sum of

the number of ways in which the various numbers nl} n 2 ,n 3 ... can be decom

posed into j parts, the numbers nlt n2 ,
n3 , ... being n diminished by the sums

of the quantities i +l,i + 2, ..., i +j added q and q together ;
G

q
is therefore

s f ...
the coefficient of xn in ^--^

-
j-
-

^ ;
and consequently the number

( J.
^~ OC ) ( L ~~ Qu ) ^ -L

*~~ 00 j

of partitions of n into j parts none exceeding i in magnitude will be the

1 _ fti+i 1 _ xi+2 1 _ gA+j
coefficient of xn in---- - as was to be shown.

\ x.\ a?...\xJ

(9) As a first example let i = 2, j
= 3, n=12, the matrices and the

partitions corresponding to their several lines will be as underwritten
;
the

indefinite partitions of the reduced contents, n [r, q], are written opposite

to the respective matrix lines to which they correspond, and their augments,
found by adding the line to this partition system, are written immediately

under them. The zeros are omitted for the sake of brevity.

In 6.3.3 there are two unlike elements greater than 2; accordingly 6.3.3

occurs 2 times in Pj and 1 time in P2 .
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In 7.3.2 there are again two unlike elements greater than 2, and 7.3.2,

7.2.3 (the metastatic equivalent to the former) are found in P
l
and 7.2.3

inP2 .

Again, in 5.4.3 there are 3 unlike elements greater than 2, and we find

5.4.3 5.3.4 4.3.5 in Pl

5.4.3 4.5.3 3.5.4 P2

5.4.3 P,.

But such terms as 11 . 1 10.1.1 9.2.1 8 . 2 . 2 in which there is only

one distinct element greater than 2 are found 1 time only in P1 and not at

all in P2 or P3 .

As another example let n = 12, i = 4, j = 3, then a similarly constructed

table to the foregoing will be as follows, in which, however, all matrices or

lines of matrices which have a sum too large to give rise to partition systems
are omitted.

7 . 5 and 6.5.1 are the only two partitions of 12 into 3 parts in which there

are two unlike parts greater than 4
;
each of these accordingly is found twice

(in one or another phase) in Px and once in P2 . Every other partition of 12

into 3 parts in which one of them at least is greater than 4 will be found

exclusively and only once in P1 .

(10) The two expansions for (1 ax) (1 ax2
) ... (1 ax1

} and its

reciprocal may readily be obtained from one another by the method of

correspondence.

The coefficient of xnai in the former is the number of partitions of n into

j unequal, and in the latter into j equal or unequal parts none greater than i

or less than unity. The correspondence to be established has been given by
Euler for the case of i = oc (Comm. Arith., 1849, Tom. I. p. 88), and is

probably known for the general case, but as coming strictly within the pur
view of the essay, seems to deserve mention here.
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If k1} k2) k3 , ..., kj be a partition of n intoj equal or unequal parts written

in ascending order, none exceeding i, on adding to it 0, 1, 2 ... (j 1),

it becomes a partition of n -K into j parts none exceeding i+j 1, and

J2
_ n

conversely, if X,, X,, . . ., X,-
be a partition of n + s~ into j unequal parts none

exceeding i +j -
1, written in ascending order, on subtracting from it

0, 1, 2 ... (j 1), it becomes a partition of n into equal or unequal (say rela

tively independent) parts none exceeding i.

Hence the complete system of partitions of n into j unlike parts none

exceeding i has a one-to-one correspondence with the complete system of the

i
2

j

partitions of n ^ into j parts none exceeding ij+1. Consequently

the coefficient of a-? in the expansion of (1 ax) ... (1 ax1

) may be found

from that of a,i in the expansion of its reciprocal by changing i into i j + 1

tdl
and introducing the factor x 2

.

(11) The expansion of the reciprocal may of course be found algebrai

cally from the multiplication of the expansion which has been given of

7i
--

a\n ^A
-

T\~ &amp;lt;\
ky (1

-
a), or immediately by the correspondence

( A ~~
CtJ ^

J. OjSU J . . .
^_L

&quot;~~~ Q.CC J

between partitions into an exact number j of parts limited not to exceed i,

and partitions into j or fewer parts so limited.

By subtracting a unit from each term of klt k2 , ..., kj, a partition of n
where no k exceeds i, results a partition qly q2 , ... q^, a partition of n j
where no q exceeds i 1. Hence the coefficient of ai in_1_

1 ax . 1 o#2
... 1 axi

may be found from that in

1 a . 1 ax ... 1 ax1

by introducing the factor xi and changing i into i 1, so that choosing for

the latter the alternative form

1 x.l x2
... I xi

the former becomes

1 - arJ
+1

. 1 - a?J+8
... 1 - x^ 1

and consequently the coefficient of a-? in 1 ax . 1 ax&quot;
2

... 1 ao? will be
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(12) Before quitting this part of the subject it is desirable to make

mention of Dr F. Franklin s remarkable method of proving Euler s celebrated

expansion of (1 x) (1 a?) (1 a?} ... ad inf. by the method of correspond

ence. This has been given by Dr Franklin himself in the Comptes Rendus of

the Institut (1880), and by myself in some detail in the last February
Number of the J. H. U. Circular*. The method is in its essence absolutely

independent of graphical considerations, but as it becomes somewhat easier

to apprehend by means of graphical description and nomenclature, I shall

avail myself here of graphical terminology to express it.

If a regular graph represent a partition with unequal elements, the lines

of magnitude must continually increase or decrease. Let the annexed figures

be such graphs written in ascending order from above downwards.

In A and B the graphs may be transformed without altering their con

tent or regularity by removing the nodes at the summit and substituting for

them a new slope line at the base. In G the slope line at the base may be

removed and made to form a new summit; the graphs so transformed will be

as follows :

A and B may be said to be derived from A, B by a process of contrac

tion, and C from G by one of protraction.

Contraction could not now be applied to A and B ,
nor protraction to C

without destroying the regularity of the graph ;
but the inverse processes

may of course be applied, namely, of protraction to A and B and contraction

to C
,
so as to bring back the original graph A, B, C.

In general (but as will be seen not universally), it is obvious that when

the number of nodes in the summit is inferior or equal to the number in the

base-slope, contraction may be applied, and when superior to that number,

protraction : each process alike will alter the number of parts from even to

[* Vol. in. of this Reprint, p. 664.]
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odd or from odd to even, so that barring the exceptional cases which remain
to be considered where neither protraction nor contraction is feasible, there

will be a one-to-one correspondence between the partitions of n into an odd
number and the partitions of n into an even number of unrepeated parts; the

exceptional cases are those shown below where the summit meets the base-

slope line, and contains either the same number or one more than the number
of nodes in that line

;
in which case neither protraction nor contraction will

be possible, as seen in the annexed figures which are written in regular order

of succession, but may be indefinitely continued :

for the protraction process which ought, for example, according to the general
rule, to be applicable to the last of the above graphs, cannot be applied to it,

because on removing the nodes in the slope line and laying them on the

summit, in the very act of so doing the summit undergoes the loss of a node

and is thereby incapacitated to be surmounted by the nodes in the slope, which

will have not now a less, but the same number of nodes as itself; and in like

manner, in the last graph but one, the nodes in the summit cannot be removed
and a slope line be added on containing the same number of nodes without

the transformed graph ceasing to be regular, in fact it would take the form

and so the last graph transformed according to rule [by protraction] would

become :

which, although regular, would cease to represent a partition into unlike

numbers.

The excepted cases then or unconjugate partitions are those where the

number of parts being j, the successive parts form one or the other of the

two arithmetical series

- or

in which cases the contents are -- and ^ ^
respectively, and consequently
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since in the product ofl x.l x2 .I-a?... the coefficient of xn is the

number of ways of composing n with an even less the number of ways of

composing it with an odd number of parts, the product will be completely

_ #
represented by 2 ( )

j x
j= + 00

(13) It has been well remarked by Prof. Cayley that barring the uncon-

jugate partitions, the rest really constitute 4 classes, which using c and x to

signify contractile and extensile and e and o to signify of-an-even or of-an-odd

order, may be denoted by
c. e c .0

x .e x . o.

Hence as each c . e is conjugate to an x o and vice versa, and each c . o to

an x . e and vice versa, the theorem established really splits up into two, one

affirming that the number of contractile partitions of an odd order is the

same as the number of extensile ones of an even order, the other that the

number of contractiles of an even is equal to the number of extensiles of an

odd order. It might possibly be worth while to investigate the difference

between the number of partitions which each set of one couple and the

number of partitions which each set of the sub-contrary couple contain : the

sets which belong to the same couple and contain the same number of

partitions being those both of whose characters are dissimilar.

(14) There are one or two other simple cases of correspondence which

are interesting, inasmuch as the construction employed to effect the corre

spondence involves the operations of division and multiplication, which have

not occurred previously.

If /* = (!- *)(!
~ O (1 -O (1 -O (1 -O

and
&amp;lt;^

= (1 +#)(1 +O
fx .

&amp;lt;f)tc

= 1
,

from which we obtain
(f&amp;gt;x

=
1/fx and

The first of these equations has been noticed by Euler as involving the

elegant theorem that a number may be partitioned in as many ways into

only-once-occurring odd-or-even integers as into any-number-of-times-occur-

ring only-odd integers.

* Another proof of this theorem, deduced as an immediate algebraical consequence of a more

general one, obtained by graphical dissection, will be given in Act 2; and in the Exodion

I furnish a purely arithmetical proof by the method of correspondence of Jacobi s series for

(lxn~m
) (lxn+m) (l-z

2n
) (lar&quot;

-m
) (Ix8n+m

) (1
- x4

&quot;)

...

(which includes Euler s theorem as a particular case). I prove this theorem in a more extended

sense than was probably intended by its immortal author, inasmuch as I regard m and n as

absolutely general symbols.
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The second, which I think he does not dwell upon, expresses that the
difference between the number of partitions with an even number of parts
and that of partitions with an odd number of parts of the same number n is

the same as the number of partitions of n into exclusively odd [unrepeated]
numbers (such difference being in favour of the partitions of even or of odd
order, according as the partible number is even or odd).

This latter theorem brings out a point of analogy between repetitional
and non-repetitional partition systems which appears to me worthy of notice.

Any one of the former contains a class of what may be termed singular
partitions, in the sense that they are their own associates, or more briefly,

self-conjugate in respect to the Ferrers transformation. Any one system of
the latter may also be said to contain a set of singular partitions (0 or 1 in

number) in the sense of being unconjugqte in respect to the Franklin process
of transformation. Since then in this case the difference between the
number of partitions of an odd and those of an even order of the same
number is equal to the number (1 or 0) of singular partitions of that number,
so we might anticipate as not improbable that the like difference for the

repetitional partitions of a number should be equal to the number of singular
partitions of that number and such is actually the case; for it will be shown
in a future section that the number of self-conjugate partitions of a number
is the same as the number of ways in which it can be composed with odd

integers.

(15) The correspondence indicated by the equation &amp;lt;^x

=
l/fx can be

established as follows :

Let 2* .1, 2*. m, 2&quot; . n, ... be any partition of unrepeated general numbers,
where I, m, n ... are any odd integers not exceeding unity ;

and let k^ ] in

general denote q parts k, then without changing its content the above parti
tion can be converted into l&\ m^\ n^&quot;\ . . . which consists exclusively of odd
numbers.

It will of course be understood that the original partition may contain

any the same odd number as I multiplied by different powers 2X
,
2A/

,
2V/ ...

of 2, with the sole restriction that the X, X
, X&quot;,

... must be all unequal.

Conversely, any such partitions as U-*\ m, n^ may be converted back
into one and only one partition of the former kind. For there will be one
and but one way of resolving a into the sum of powers of 2 (the zero power
not excluded), and supposing cr to be equal to 2X + 2* + 2 A &quot;

+ ... ,
JM may be

replaced by 2*1, 2A
7, 2x/

7, and the same process of conversion may be simul

taneously applied to each of the other products wH, nl&amp;gt;
J

, ....

Hence each partition of either one kind is conjugate to one of the other,
and the number of partitions in the two systems will be the same, as was to

be shown.
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(16) But we have here another example of the fact that the theory

of correspondence reaches far deeper than that of mere numerical congruity

with which it is associated as the substance with the shadow. For a corre

spondence exists of a much more refined nature than that above demonstrated

between the two systems, and which, moreover (it is important to notice)

does not bring the same individuals into correlation as does the former

method.

The partition system made up of unrepeated general numbers may be

divided into groups of the first, second, . . . ith . . . class respectively, those of

the ith class containing i distinct sequences of consecutive numbers having
no term in common, with the understanding that no two sequences must form

part of a single sequence (so that the largest term of one sequence and the

smallest one of the next sequence must differ by more than a single unit),

and that a single number unpreceded and unfollowed by a consecutive

number is to count as a sequence.

The partition system, made up of repeatable odd numbers may, in like

manner, be resolved into groups of the 1st, 2nd, ... ith, ... class respectively,

those of the tth class containing i distinct numbers
;
and the new theorem of

correspondence is that there is a correlation between the numbers of the zth

class of one system and the ith class of the other
;
so that the number of

partitions in a class of the same name must be the same to whichever system
it belongs ;

and thus Euler s theorem becomes a corollary to this deeper-

reaching one, obtained from it by adding together the number of partitions in

all the several classes in the one system and in the other.

(17) As regards the first class, the theorem amounts to the statement

that the number of single sequences of consecutive numbers into which n

may be resolved is equal to the number of odd factors which n contains
;
so

that if N= 2 C
. 1

K
, m^ . n v

... where I, m, n, ... are odd numbers, N can be

represented by (A, + 1) (yu,+ l)(v + ])... such sequences; thus, for example,
if N= 15 = 3 . 5 we have

1+2 + 3 + 4 + 5 = 4 + 5 + 6 = 7+8 = 15.

So 30 = 4 + 5 + 6 + 7 + 8 = 6 + 7 + 8 + 9 = 9+10 + 11,

27 = 2 + 3 + 4 + 5+6 + 7 = 8 + 9 + 10 = 13 + 14,

45 = 1 + 2 + 3+. ..+9 = 5 + 6 + 7 + 8 + 9 + 10

= 7 + 8 + 9 + 10 + 11= 14 +15 +16 = 22 + 23.

So too if J\
T
is a prime number it can only be resolved into the two sequences

N-l N + l
~ H ~ and &quot; More generally N can be resolved into as many

different sets of i distinct sequences as there are solutions in positive integers



16 A Constructive theory of Partitions, arranged in [1

of the equation 2 (xlyl -f xzyz + ... + xiyi ) + xl + x2 + . . . + Xi = N, of the truth

of which remarkable theorem, in its general form, I have for the present only

obtained empirical evidence, bat may possibly be able to discover the proof

in time to annex it in the form of a note at the end, so as not to keep the

press waiting*.

(18) The proof for the case of the first class and the mode of establish

ing the correspondence between the partitions of this class of the two kinds

is not far to seek. I use as previously a (b) to signify a repeated b times.

Consider then any sequence of consecutive numbers for the cases where

the number of terms is odd and where it is even separately, calling s the

sum of the first and last terms, and i the number of terms
;
where i is odd, so

(-)
that s is even, the sequence may be replaced by t

V2
,
and where i is even (so

(-)
that s is odd) by s 2

. Hence each partition of the first class of the first

kind may be transformed into one of the first class of the second kind.

It is necessary to show the converse of this, which may be done as

follows : Let XM be any partition of the second kind so that X is necessarily

odd. I say that this must be transformable into one or the other (but not

into both) of two sequences, namely, one of X terms of which the sum of the

first and last is 2/i, the other of which the sum of the first and last terms is

X and the number of terms 2/i. The former supposition is admissible if 2/z, is

equal to or greater than X + 1, inadmissible if 2/z is less than X + l. The

second supposition is admissible if X is equal to or greater than 2/z, + 1,

inadmissible if X is less than 2/z + 1.

The two conditions of admissibility coexisting would imply that 2/i is

equal to or greater than 2/z + 2
;
the two conditions of inadmissibility the

one that 2/u-
is equal to or less than X 1, the other that X is equal to or less

than 2/A 1, that is, X 1 equal to or less than 2/z 2, which are inconsistent.

Hence one of the two transformations is always possible and the other

impossible to be effected
;

which proves the correlation that was to be

established. A single example will serve to show that this correspondence is

entirely different from that offered by the first and (so to say) grosser method ;

suppose ^=15, then 1.2.3.4.5 will be a partition of the first kind and will

be converted by the new rule into 5.5.5, whereas, by the former rule, it would

be inverted into 1.1.1.3.1.1.1.1.5, that is, into Y . 3 . 5 belonging to the

third class instead of to the first.

(19) I will now pass on to the conjugate theorem corresponding to

fx !/&amp;lt;/&amp;gt;#.

* A complete proof of the general theorem will be given in the 3rd Act.
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It may be well here to recall that this identity essentially depends upon
the identity 1 x = 1/(1 +x) (1 +#2

) (1 + a?) ... which, interpreted*, signifies

that any number greater than unity may be made up in as many ways with

an odd as with an even number of numbers restricted to the geometrical

progression 1, 2, 4, 8 .... This may be called, for brevity, a geometric

partition. The correspondence to which this points is itself worthy of notice
;

one mode of establishing it would be to proceed to decompose N into such

parts in regular dictionary order it would easily be seen that each pair of

partitions thus deduced would be of contrary parities, but it would not be

easy, or at all events evident, how to determine at once the conjugate to

a given partition by reference to this principle; but if we observe that it is

possible to pass from the geometric partitions of n immediately to those of

n + 1 by the addition of a unit to each of the former, and consequently to

71 ft &quot; 2 7i __ /L

those of n + 2 from the partitions of E ~, E ,
E

,
... 2, 1, by an

A Z i

obvious process of doubling and adding complementary units, another rule or

law of correspondence, which proves itself as soon as stated (and is not

identical in effect with that supplied by the dictionary-order method), looms

into the field of vision, than which nothing can be simpler. Hence we may
derive a transcendental equation in differences for un ,

the number of geo
metric partitions (with radix 2) to n, namely, to find the conjugate of any
geometric partition, look at its greatest part if it is repeated add two of

them together: if it is unrepeated split it into two equal parts; these

processes are obviously reversible, just as in Dr Franklin s method of

correspondence for the pentagonal-series-theorem ;
and the method is equally

open to the remark made thereon by Prof. Cayley ;
that is to say, there

will be four classes, extensile even, extensile odd, contractile even and con
tractile odd, and the number of partitions in any class will be the same
as in the class in which both the characters are reversed.

The application of this transformation to the construction indicated

by the equation fa = !/&amp;lt;/&amp;gt;#

will be obvious. Let any partition containing
only unrepeated numbers consist of odd numbers p, q, r, ... t, each

multiplied by one or more powers of 2; form batches of these terms
which have the same greatest odd divisor (p, q, r, ...

t), and arrange those
batches in a line according to the order of magnitude of p, q, r, ... t.

Then we may agree to proceed either from left to right or from right to

left in reading off the batches, and that convention being established once
for all, as soon as a batch is reached which does not consist of a single
odd term, if it contain one term larger than all the rest that term is to be

split into two equal parts, but if it contain two terms not less than any
* Just so the equation 1/(1 -x) = (l + x) (l + z2

)(l +&) ... teaches that there is one and only
one way of effecting the unrepetitional geometric partition of any number a theorem which has
been applied in the preceding theory.

8. IV. 2
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others in the batch, those two are to be amalgamated into one. In this way
the order of a partition consisting of terms not all of them distinct odd

numbers, will have its parity (quality of being odd or even) reversed, and it

is obvious that if A has been under the operation of the rule converted into

B, B by the operation of the same rule will be converted back into A.

Hence it follows that (making abstraction of the partitions consisting

exclusively of unrepeated odd numbers) all the rest will be separable into as

many contractile of an odd as into extensile of an even order, and into as

many extensile of an odd as into contractile of an even order, so that the

difference between the entire number of the partitions of N into an odd and

those of an even order of repeatable numbers (odd or even) will be the

number of partitions of N into unrepeated odd numbers, and those of an odd

or of an even order will be in the majority according as N itself is odd or even*.

It will be convenient to interpolate here Dr F. Franklin s constructive

proof of the theorems referred to in p. [4] of what precedes, as there will be

frequent occasion to refer to them in what follows. The theory is thus made

completely self-contained. I give the proofs in the author s own words, which

I think cannot be bettered.

(20) Constructive Proof of the Formula for Partitions into Repeatable

Parts, limited in Number and Magnitude. The partitions herein spoken

of are always partitions into a fixed number, j, of parts, written in descending

order.

Take any partition of w in which the first excessf is greater than i
;

subtracting i + 1 from the first part we get a partition of w (i + 1) ;
and

conversely if to the first part in a partition of w (i + 1) we add i + I we get

a partition of w in which the first excess is greater than i. Hence the

number of partitions of w in which the first excess is greater than i is equal

to the whole number of partitions of w (i + l); so that if the generating

* Dr F. Franklin has remarked that &quot;the theorem admits of the following extensions,&quot;

which the method employed in the text naturally suggests, and &quot;which are very easily obtained

either by the constructive proof or by generating functions
&quot;

:

1. The number of ways in which w can be made up of any number of odd and k distinct

even parts is equal to the number of ways in which it can be made up of any number of

unrepeated and k distinct repeated parts.

2. The number of ways in which w can be made up of parts not divisible by m is equal to

the number of ways in which it can be made up of parts not occurring as many as in times.

3. The number of ways in which w can be made up of an infinite number of parts not

divisible by m, together with k parts divisible by m, is equal to the number of ways in which it

can be made up of an indefinite number of parts occurring less than m times, together with k

parts occurring m or more times. (3) of course comprehends (1) and (2) as special cases.

Dr Franklin adds, &quot;another extension is naturally contained in the mode of proof, which it

is perhaps not worth while to state.&quot; See Johns Hopkins Circular for March, 1883.

f The first excess signifies the excess of the largest part over the next largest ; the second

excess the excess of the largest over the next part but one, and so on.
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function for the partitions of w is /(#), that for those partitions in which the

first excess is not greater than i is (1 xl+l
)f(x). Confining ourselves now

to this class of partitions, consider any one of them in which the second

excess is greater than i
; subtracting i + 1 from the first part and 1 from the

next, and putting the reduced first part into the second place we have a

partition of w (i + 2) in which the first excess is not greater than i; and

conversely if in any partition of w (i + 2) in which the first excess is not

greater than i, we add i + 1 to the second part and 1 to the first part and

transfer the augmented second part to the first place, we get a partition of w
in which the first excess is not greater than i and the second excess is greater

than i. Hence the generating function for those partitions in which the

second excess is not greater than i is (1 #i+1
)(l xi+^)f(x). Considering

now exclusively the partitions last mentioned, any one of them in which the

third excess is greater than i may be converted into a partition of w (i + 3)

in which the second excess is not greater than i, by subtracting i + 1 from

the first part, 1 from the second part, and 1 from the third part, and

removing the reduced first part to the third place, and, as before, by the

reverse operation, the latter class of partitions are converted into the former.

Hence the generating function for the partitions in which the third excess is

riot greater than i is

So in like manner, the generating function for the partitions in which the

A&amp;gt;th excess is not greater than i is

and for the partitions in which the J-th or absolute excess is not greater
than i, that is in which the greatest part does not exceed i, the generating
function is

(21) Constructive Proof of the Formula, for Partitions into Unrepeated

Parts, limited in Number and Magnitude. All the partitions to be con

sidered consist of a fixed number, j, of unrepeated parts, written in descending
order.

Take any partition of w in which the first excess is greater than i + 1
;

subtracting i+l from the first part we get a partition of w (i+l);
conversely, if to the first part in any partition of w (i+l) -we add i + l, we

get a partition of w in which the first excess is greater than i + l; hence the

number of partitions of w in which the first excess is greater than i + l is

equal to the whole number of partitions of w (i+l); so that, if the

generating function for all the partitions is
&amp;lt;(#),

the generating function

for partitions whose first excess is not greater than i + l is (1 xi+l) $ (x).

22
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Considering now only partitions subject to this condition, if in any such

partition of w the second excess is greater than i + 2, we obtain by subtract

ing i + 2 from the first part and removing the part so diminished to the

second place a partition of w (i + 2) subject to the condition; and con

versely from any partition of w (i + 2) in which the first excess is not

greater than i + l, we obtain, by adding i + 2 to the second part and

removing the augmented part to the first place, a partition of w, in which

the first excess is not greater than i + l and the second excess is greater

than i + 2; hence the generating function for the partitions in which the

second excess is not greater than i + 2 (which restriction includes the con

dition that the first excess is not greater than i + 1) is

Confining ourselves now to this class of partitions, and taking any partition

of w in which the third excess is greater than i + 3, we obtain, by subtracting

i + 3 from the first part and removing the diminished part to the third place,

a partition of w (i + 3) belonging to the class now under consideration ;

and reversely. Hence the number of partitions in which the third excess

is not greater than i + 3 is given by the generating function

(1
- xi+l) (1

- xi+2
) (1

- xi+3) (a;).

Proceeding in this manner, we have finally that the generating function

giving the number of partitions into j unrepeated parts, in which the

absolute excess, that is the magnitude of the greatest part, is not greater

than i+j, is

For example, if w = 18, j
=

3, i = 4, the partitions

15, 2, 1 14, 3, 1 13, 4, 1 13, 3, 2 12, 5, 1 12, 4, 2 11, 5, 2 11, 4, 3

in which the first excess is greater than 5, become by subtraction of 5 from

their first part,

10, 2, 1 9, 3, 1 8, 4, 1 8 3, 2 7, 5, 1 7, 4, 2 6, 5, 2 6, 4, 3

which are all the partitions of 13
;
the partitions

11, 6, 1 10, 7, 1 10, 6, 2 10, 5, 3 9, 8, 1 9, 7, 2

in which the first excess is not greater than 5, but the second excess is

greater than 6 become, by the subtraction of 6 from the first part and its

removal to the second place,

6, 5, 1 7, 4, 1 6, 4, 2 5, 4, 3 8, 3, 1 7, 3, 2

which are all the partitions of 12 whose first excess is not greater than 5;

the partitions
9, 6, 3 9, 5, 4 8, 7, 3 8, 6, 4

in which the second excess is not greater than 6, but the third excess (the
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greatest part) is greater than 7, become, by the subtraction of 7 from the first

part and its removal to the last place,

6, 3, 2 5, 4, 2 7, 3, 1 6, 4, 1

which are all partitions of 11 whose second excess is not greater than 6. The

only remaining partition of 18 is 7, 6, o.

INTERACT.

Notes on certain Generating Functions and their Properties.

(22) (A) It may be as well to reproduce here (so as to keep the whole

subject together) the entire proof of the well-known expansions of

1 + ax . 1 + ax* . 1 + ax3
. . . 1 + axi

,

and of the reciprocal of

1 a . 1 ax ,\ ax* . 1 ax3
... 1 ax1

,

which appeared in part in the Johns Hopkins Circular for February* last.

This is, I think, distinguishable from the ordinary proofs as being, so to say,

classical in form (using the word in an algebraical sense), inasmuch as it

establishes the identity of two rational integral functions, one explicitly, the

other implicitly given, by comparison of their zeros.

Let the coefficient of a* in the expansion of

(1 + ax) (1 + ax2

) . . . (1 + ax1

),

say in the expansion of F(x, a), be called Jx ,
and

1 - a* . 1 - ar*-1
... 1 - a^+1

1 x . 1 x- ... 1 xi

be called Xj.

Jx being the sum of the j-ary combinations of x, x^, ... x1 will necessarily
f-+j

contain a?
1+2+-+-?

,
that is x 2

,
and will be of the degree

in x, and therefore of the same degree as XjX
2

.

All the linear factors of Xj are obviously of the form x p, where x p
is a primitive factor of some binomial expression xr 1 : the number of times

that any x p occurs in Xj will obviously be equal to E E^ E -

which is either 1 or 0. Now consider F(p, a), the value of F (x, a) when x

becomes p. Let i = kr + 8, where 8 &amp;lt; r
;
then F(p, a) = (1 + ar

)* multiplied

[* Vol. in. of this Reprint, p. 677.]
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by 8 linear functions of a, and consequently if j = k r + 8
,
where 8

&amp;lt;r,

Jx vanishes when 8 &amp;gt; 8, in which case

Hence any linear factor x p of Xj possesses the two-fold property of

being unrepeated and of being contained in Jx . Hence Jx must contain

XjX
2

,
and being of the same degree as it is in x must bear to it a constant

ratio, which, by making x = I, is seen to be that of the coefficient of aJ in

i (i 1) ({ 2) (i, j + 1)
(1 +a}\ that is of

/v &quot;

. 4 to the product of the fractions
i.Z.d...j

in their vanishing state

J-
&quot;~~ 3C -L

&quot;~~ OC X ~~ OC J

1 -x ~l-x2
&quot;

1 - at

ff+j
that is, is a ratio of equality, so that Jx XjX

2
. Q.E.D.

(23) Again let Xj and Jx now stand respectively for

1 x . 1 x2
. . . 1

and the coefficient of a-? in the reciprocal of 1 a. 1 ax ... 1 ax1

(say
F (x, a)); this latter is the sum of homogeneous products of the jth order

of 1, x, a2
,... a

1
, and is therefore of the degree ij which is also the degree

(as is obvious) of Xj in x. For like reason as in what precedes x p, any
linear factor of xr -

1, is contained 1 or times in Xj according as

E--E--E=l orO.
r r r

Let the minimum negative residue of i + l to modulus r be 8
;
F (p, a)

may be expressed as the product of 8 linear functions of a, divided by a

power of 1 ar
, and the only power of a (say a&quot;)

which appears in its

development will accordingly be those for which the residue of Q in respect
to r is 0, 1, 2, ... 8, and consequently if ae

appears in the development

r,i+0 ^i ^QE-- E--E- = 0,
r r r

or conversely if x - p is a factor of Xj so that

r

Jx vanishes. Hence Jx contains each linear factor of Xj, and these being

simple, contains Xj itself, and on account of their degrees in x being the

same must bear to it a ratio independent of a, which, by making #=1,
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so that the things to be compared are the coefficient of ai in r. TV- and
( 1 a)

l+1

1 _ x^1 1 _ x*+z 1 _ x*~^i
the product of the vanishing; fractions -= rs~ * -;

-T, is
1 x \ x* 1 x*

readily seen to be a ratio of equality, so that Jx = Xj. Q.E.D.

(24) (B) On the General Term in the Generating Function to Partitions

into parts limited in number and magnitude, by Dr F. FRANKLIN.

To prove that the coefficient of a-7 in the development of

(1 -x)(l -a?} ... (1 -x*)

I showed that the number of partitions of w into i or fewer parts, subject

to the condition that the first excess (the excess of the first part over the

second) is not greater than j, is the coefficient of xw in

and in general that the number of partitions in which the rth excess (the

excess of the first part over the (? l)th) is not greater than j, is the

coefficient in

(1
- xi+1) (1

-
si-*) ... (1

- xi

If we look at the question reversely, namely, the coefficient of oj in_ ___
(1
-

a)(l
-

ox) (I
- ax2

) ... (1
- oa;4)

being known to be

if we ask what is the significance of the fractions

the answer is immediately given by the generating function itself. For

_
-X3

)...(l-X
i

) l-X

-r- ( co. of ai in
,

- ,-
&quot;
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But the coefficient of aixw in the last written fraction is obviously the

number of ways in which w can be composed of the numbers I, 2, 3, ... i,

using not more than j 1 s. And the number of 1 s in a given partition is

equal to the excess of the first part over the second part in its conjugate.

In like manner

= co. of a-7 in
(1
-

a)(l -ax) ... (1 -a&amp;lt;)(l
- af+1 ) ... (1 -*)

and the coefficient of a^w in the fraction on the right is the number of ways
in which w can be composed of the parts 1, 2, 3, ... i, not more than j of the

parts being as small as r. But the number of 1 s in a given partition is

equal to the excess of the first part over the second in its conjugate ;
the

number of 2 s to the excess of the second part over the third, and so on.

Hence the number of 1 s plus the number of 2 s ... plus the number of r s in

a given partition is equal to the excess of the first part over the rth part

in its conjugate ;
and we have thus proved that the coefficient of xw in the

development of

(1
_

may be indifferently regarded as the number of partitions of w into parts

none greater than i and not more than j of them as small as r or as the

number of partitions of w into j or fewer parts, the excess of the first part

over the rth part being as small as j. These results may obviously be ex

tended by introducing the a in non-consecutive factors of the product

(25) (C) On the theorem of one-to-one and class-to-class correspondence
between partitions of n into uneven and its partitions into unequal parts,

by Dr F. FRANKLIN.

The number of partitions of w into k distinct odd numbers, each repeated
an indefinite number of times, is evidently the coefficient of akxw in the

development of

l-asj\ 1-oVV 1-

It is not easy to form the generating function for the number of

partitions containing k sequences, but it is plain that the number of

partitions of w containing one sequence is the coefficient of xw in
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X* +OfJ + X4 + X* + ... =

25

+X7 + X9

+ X18 + ...=

S. = x + x- + x2* + x30 + x35 + . . . =

and in general

Sr
= #2+3+4+...+ (r

1 -X

Xs

1-x*

of

l-x3

xw

l-x*

X15

I -of

So much of Prof. Sylvester s theorem as relates to a single sequence
if*

follows from inspection of the above scheme. For Sl
= -

; adding to S3
J.

~~ Uu

the first term of $2 ,
we get ; adding to S5 the first term of S4 and the

A ~~* UU

second term of S.
2&amp;gt;

we get , ; adding to S^n+1 the first term of $.w ,
the

I x6

second term of S2(m-D the third term of S2(m_$, ..., and the mth term of Sit

1
thus the proposition is proved. The fact is made more

evident to the eye if we write the scheme as follows :

we
i
-L

~-

S1
= x +a? +X3 +x* +x* + ... +x7 +x9

S,=a? +X12 +

.Q
7&amp;gt;15

I /20 I /y.25 I ,^30 I ~35 i

MS // T 1*
I * T &quot;V T 1^ T

,Si 7
= ar

28 + x35 + x42 + x49 + x56 + . . .

S9
= x45 + x&quot; + x63 + x72

-f x91 + . . .

a?

Ss
=

S10
=

Here
,
for instance, is obtained by adding the fourth column on the

right to the fifth row on the left.

It may be noted that we have thus found that

i

a? Xs

T ;i . . T1-* l-x3 I-afi

x x* of

lx lx* I x3 -x
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(26) [Compare Jacobi s theorem contained in the last-but-one two lines

of the last but one page of the Fundamenta Nova, which may be easily
reduced to the form

x J*_ & x & _^L T T CM
1+a? l + a?^l+a?&quot; 1+* 1 + X*

+
1 + a?

&quot;&quot; J

ACT II. ON THE GRAPHICAL CONVERSION OF CONTINUED PRODUCTS
INTO SERIES.

Naturelly, by composiciouns
Of anglis, and slie reflexiouns.

The Squieres Tale.

(27) The method about to be explained of representing the elements

of partitions by means of a succession of angles fitting into one another

arose out of an investigation (instituted for the purpose of facilitating the

arrangement of tables of symmetric functions)* as to the number of par
titions of n which are their own conjugates. The ordinary graphs to such

partitions must obviously be symmetrical in respect to the two nodal

boundaries, as seen below.

Let the above figure be any such graph ;
it may be dissected into a

square (which may contain one or any greater square number) of say i
2
nodes,

and two perfectly similar appended graphs, each having the content ^ ,

I
and subject to the sole condition that the number of its lines (or columns),
that is that the number (or magnitude) of the parts in the partition which

n i2

it represents, shall be i or less
;
such number is the coefficient of x 2 in

ii which is the same as that of #w~ f! in
1 - x . 1 - x? . . . 1 x 1

ft ..

or ot xn in

1 -tfM-tf4
... 1 -

X*

*
By Mr Durfee, of California (Fellow of the Johns Hopkins University), to whom I suggested

the desirability of investigating more completely than had been done the method of arrangement
of such tables founded upon the notion of self-conjugate partitions, which M. Faa de Bruno had

the honour of initiating. The very valuable results of Mr Durfee s inquiries, embodying, system-

atisiug and completing the theory of arrangement originated by Professor Cayley, and further

illustrated by the labours of Professors Betti and De Bruno, will probably appear in the next

number of the Journal.
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Hence giving i all possible values we see that the coefficient of xn in the

infinite series

x x1 a?
* I -i a

1 _ ^ l _ a? . l _ 3.* l-aM-a-.l-a?
is the number of self-conjugate partitions of n, or which is the same thing

of symmetrical groups whose content is n.

(28) But any such graph, in which there is a square of i
2 nodes with its

two appendices, may be dissected in another manner into i angles or bends,

each containing any continually decreasing odd number of nodes, and vice

versa, any set of equilateral angles of nodes continually decreasing in number

(which condition is necessary in order that the lower lines and posterior

columns may not protrude beyond the upper lines and anterior columns)
when fitted into one another in the order of their magnitudes will form

a regular graph. Thus the actual figure (where there is a square of 9 nodes)

formed by the intersections of the lines and columns may be dissected into

3 angles containing respectively 13, 11, 3 nodes
;
and so in general the number

of ways in which n can be made up of odd and unrepeated parts will be the

72, 7
&quot;

same as the number of ways in which *- can be partitioned into not more
z

than j parts ;
hence we see that the coefficients of xn ai in

(1 + ax} (1 + ax3
) . . . (1 + a^- 1

) . . .

V?
and in .

1-arM-o4
... I -g?l

are the same, so that the continued product above written is equal to

x x^
* + r~ ^ a+ +^~- r^r~ -^i ai + ~-Ia? 1 #2

. 1 #b
. . . 1 a?*

as is well known.

(29) In like manner if the expansion in a series of ascending powers of

a of the finite continued product

(1 + ox)(l+ ax3
) ... (1 + ax*-1

}

be required, the coefficient of xn in the coefficient of a-? will be the number
of ways in which n can be made up with j of the unrepeated numbers

1, 3, ... 2i 1, and as 2i 1 is the number of nodes in an equilateral angle

whose sides contain i nodes, it follows that this coefficient will be the number
U vi

of ways in which - can be composed with parts none exceeding ij in

magnitude, and will therefore be the same as the coefficient of x 2 in

1 _ yA-j+i . 1 _ xi-i+z ... 1 - x*

L-x.l-x2
... l-x&amp;gt;

and consequently the finite continued product above written is equal to
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(30) If it be required to ascertain how many self-conjugate partitions

of n there are containing exactly i parts, this may be found by giving j all

77,
^ 9^

possible values and making pj equal to the number of ways in which =r*-

can be composed with j or fewer parts the greatest of which is i j, that is

(nj2 + 2j 2i)/2 with j 1 or fewer parts none greater than i j, so that

will be the coefficient of a;&amp;lt;-3*+tf-2*)/a in

or of #n in

1 _ ^-2J+2 _ ! _ ^2i-2J+4 . . 1 _ #21-2__
&amp;lt;7y

27+21

1-tfM-ar4
... l-a^-

the sum of the values of pj for all values of j will be the number required :

this number, therefore, writing &&amp;gt; for 2i 1, will be the coefficient of xn in

1 - x&quot;-
1 1 - a^-1

. I - AM
~3

y?&amp;gt; + -
x&quot;+

l + - - a^+4 + etc.
;

1 as
2 1 x2

. 1 a?

the outstanding factor in the #th term in this series being #&amp;gt;+(9-i)

2 we may
suppose q the least integer number not less than l+\/(w &&amp;gt;)

and then

the subsequent term to the
(&amp;lt;?

+ l)th being inoperative may be neglected.

(31) In order to see how any self-conjugate graph may be recovered, so

to say, from the corresponding partition consisting of unrepeated odd numbers,

consider the diagrammatic case of the partition 17, 9, 5, 1 represented by the

angles of the graph below written

The number of angles is the number of the given parts, that is 4, and the first

four lines of the graph will be obtained by adding 0, 1, 2, 3 to the major half

(meaning the integer next above the half) of 17, 9, 5, 1, that is will be

9, 6, 5, 4, the total number of lines will be the major half of the highest

term (17) and the remaining lines will have the same contents, namely

3, 2, 1, 1, 1, as the columns of the graph found by subtracting 4 (the number of

the parts) from the numbers last found, that is will be the lines of the graph
which is conjugate to 5, 2, 1. And so in general the self-conjugate graph

corresponding to any partition of unrepeated odd numbers qlt q^, ... qj will be

found by the following rule:
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Let P be the system of partitions k1} k2 ,
... kj,

in which any term k6 is the

major half of qg augmented by 1, and P another system of &/, k2 ,
... kj,

obtained by subtracting j from each term in P, then P and the conjugate to

P will be the self-conjugate partition corresponding to the given q partition.

Thus as an example, 19, 11, 7, 5 being given, P, P will be 10, 7, 6, 6
;

6, 3, 2, 2 respectively, and the self-conjugate system required will be 10, 7,

6, 6, 4, 4, 2, 1, 1, 1. Of course P might also be obtained by taking the minor

halves of the given parts in inverse (ascending) order and subtracting from

them the numbers 0, 1, 2, ... respectively.

To pass from a given self-conjugate to the corresponding unrepeated odd

numbers-partition is a much simpler process, the rule being to take the

numbers in descending order and from their doubles subtract the successive

odd numbers in the natural scale until the point is reached at which the

difference is about to become negative ;
thus the partition 665432

is self-conjugate, and the correspondent to it is 11 9 5 1.

(32) The expansion of the reciprocal to (1 ax) (1 ax3

) ... (I aa?{~1

)

may be read off with the same facility as the direct product. In this case we

are concerned with partitions of odd numbers capable of being repeated in

the same partition ; now, therefore, if we use the same method of equilateral

angles as before, and fit them into one another in regular order of magnitude,
it will no longer be the case that their sum will form a regular graph, for if

there be 6 parts alike, each line and column which ranges with either side of

any (but the first one) of these will jut out one step beyond the anterior line

and column (respectively), so that the line joining the extremities of the lines

or columns will be parallel to the axis of symmetry. The figure then corre

sponding to i odd parts can no longer be dissected into a square of nodes and

two equal regular graphs, but it may be dissected into a line of nodes lying

in the axis of symmetry, and two regular graphs one of which has for its

boundaries one of the original boundaries and a line of nodes parallel to the

axis of symmetry, and the other one the other original boundary and a line of

nodes parallel to the same axis, as seen in the annexed figure, where the axial

points are distinguished by being made larger than the rest.

#

The graph read off in angles represents the partition 11 11 11 7 3 3.

On removing the six diagonal nodes it breaks up into two regular graphs, of
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which one is 5 5 5 3 1 1, and the other the conjugate thereto
;
hence the

coefficient of xn in the coefficient of a* in the expansion of the reciprocal of

1 ax . 1 ax3 1 ax*-1 in ascending powers of a is the number of ways
fl 7

in which ~ can be resolved into j parts limited not to exceed i 1, which

is the coefficient of x 2 in

1 - xi
. 1 - xi+1 ... 1 - afo?-i

1 # . 1 x1
... 1 xi

or of #M in

(33) Although I shall not require any intermediate expansion whatever
in order to obtain the transcendant

}
x product in the form of a series, I will

give another of those which are sometimes employed together in combination

(see Cayley, Elliptic Functions, pp. 296 7) to obtain this result: thus to

prove that the continued product of the reciprocal of

(1
-

ax) (1
-

ax*} (1
- ax3) . . .

is identical with

, x a x4 a2

1 x \ xa 1 x.l x2 I xa .1 x*a

if n is partitioned into j parts, the regular graph which represents the result

of any such partition must consist either of 1, 2, 3, ...jl or of not less

than j columns, and its graph may accordingly in these several cases be dis

sected into a square of 1, 4, 9, ... j
2 nodes

; suppose that such square consists

of 6 parts, then there will be n #2 nodes remaining over subject to distribu

tion into two groups limited by the condition as to one of the groups that it

may contain an unlimited number of parts none exceeding 6 in magnitude,
and as to the other that it must contain jB parts none exceeding 6 in

magnitude, as seen in the following diagrams :

XX XX
X XX
X X
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in all of which the partible number is 26, andj and 6 are 7 and 3 respectively.
Now the number of such distributions is the coefficient of xn~elai~e in

1

1 -x. 1 -a? ... l-x^l-ax.l-ax2 ...l-ax e&amp;gt;

that is of xn a.i in

1x.Lar... i x8
1~. ax . 1 ax2

. . . 1 ax*

and consequently giving 6 all values from 1 to oo
, the proposed equation

is verified.

(34) It may be desired to apply the same method to obtain a similar

development for the reciprocal of the limited product

(1
-

ax) (1
- ax2

) ... (1
- ax1

) ;

the construction will be the same as in the last case
;
the distribution into

two groups can be made as before
;
the second group will remain subject to

the same condition as in the preceding case (seeing that the number of parts

being less than^ 6, will necessarily be less than i 6, forj cannot exceed i),

but the first group will be subject to the condition of being partitioned not
now into an unlimited but into i 6 (or fewer) parts none exceeding 6 in

magnitude, and the number of such distributions into the two groups will

accordingly become the coefficient of xn~giaj
~e in

1 _ 3*-+i . i _ {gi-e+s ... i - a i
i

1 ax . 1 ax2
. . . 1 cur

or of xn a&amp;gt; in the last written fraction multiplied by xe\ae
, so that the re

quired expansion will be

1 - xi xa 1 - xi
. 1 - a;*-

1 T i- . ^
--hl-x l-ax 1 - x . 1 - a;* 1 - ax . 1 - ax2

1 - a? . 1 - a*-1
. 1 - a*- a^a3

l-x.l -x\ l-x* l-ax. i-ax2
. l- ax

(35) It is interesting to investigate what will be the form of the mixed
development resulting from an application of the same method to the direct

product
1 + ax . 1 + ax2

. . . I + ax\

For greater clearness I shall first suppose i indefinitely great. Consider the

diagram :
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In the above graph j arid 6 used in the same sense as ante are 5 and 3

respectively, so that there is a square of 9 points ;
an appendage to the right

of and another appendage below the square, which I shall call the lateral

and subjacent appendages respectively. The content of the graph being

25, there are 16 points to be distributed between these two appendages.
What now are the conditions of the distribution of the n 2

points between

them ?

I say that there will be two sorts of such distribution one in which the

lateral appendage will consist of 6 unrepeated parts, none of them zero, as

in the graph above, and the subjacent appendage of j unrepeated parts,

limited not to exceed 6 in magnitude, and another sort as in the graph below

written,

in which the Jth line of the lateral appendage is missing, and consequently
the subjacent graph will consist of j unrepeated parts limited not to

exceed 1 in magnitude, for there could not be a part so great as with

out the last line of the square having the same content as the first line of the

subjacent appendage.

It should be observed that only the last admissible line of the lateral

appendage can be wanting, for if more than this were wanting, two lines of

the square would belong to the graph, and consequently there would be two

equal parts 0.

Hence there are two kinds of association of the appendages, one leading

to a distribution of n 2 between one group of unrepeated but unlimited

parts, and another of j unrepeated parts limited not to exceed
;
the

other to a distribution of n 2 between one group of 1 unrepeated but

unlimited parts, and another of j unrepeated parts limited not to exceed

0-1.

The number of distributions of the first kind is the coefficient of xn~6\ ai~ 6

in

1 X .\ X2 ...I X6

the other of xn
~

ffl
. a^~s in

rp t* -
ri .(I + ax)(l + aa?)...(l +

I x.l x2
.., I xe~l v



1] three Acts, an Interact and an Exodion 33

hence the sum of the distributions of the two kinds is the coefficient of the

same argument in

02-3

I
-
T^_T

__{*(! + ax ) + (I -of)} {I + ax.l+ax2
... 1 +o-H

that is of xn ai in

^ ,/l + ax.l+ax2
. ..I + axe~* 1 + axze

\
X

( l-X l-X2 1 _ fltf-l 1_ y* }

and consequently we obtain the equation

., 1 n n
1 + CM?

2 1 + aa; . 1 + a^4

1 -(- ax . 1 + ax2
. 1 + cwr . . .

= 1 + fl + : a^a2 + . . .

1 - a? l-x. l-x2

I + ax . 1 + ax2
. . . 1 + ax*-1

. 1 -f- aa& Sj~
}

and thus by a very unexpected route we arrive at a proof of Euler s

celebrated pentagonal-number theorem
;

for on making a = 1 the above

equation becomes

1-x.I -x2
. 1 -x3

... = !-(! + x)x + (l + x2

)x
5
... + (-)i (I + XJ) a;

2 +....

Such is one of the fruits among a multitude arising out of Mr Durfee s

ever-memorable example of the dissection of a graph (in the case of a

symmetrical one) into a square, and two regular graph appendages.

Even the trifling algebraical operation above employed to arrive at the

result might have been spared by expressing the continued product as the

sum of the two series (which flow immediately from the graphical dissection

process), left uncombined, namely,

1 + ax 1 + ax . 1 + ax2 1 + ax . 1 + ax2
. 1 + ax3

,*
,

-
...,

1 - x 1 x.l x2 1 x.l x2 .! x3

together with
1 + ax

,
1 + ax . 1 + ax2

,+ xa + --- x5a 2 + -xl2a3
+...,lx 1 x.l x2

which for a = 1 unite into the single series

1 x x2 + x5 + x 1 x12 x15
etc.

(36) I will now proceed to find the expression in a mixed series of the

limited product
1 -f ax . 1 + ax* . . . 1 4- ax\

In each of the two systems of distribution (as shown already in the theory
of the reciprocal of such product) the second group will remain unaffected by
the new limitation, but the first group will now consist of partitions (limited
in number as before), but in magnitude instead of being unlimited, limited

s. iv. 3



34 A Constructive theory of Partitions, arranged in [1

not to exceed (i 0), so that we will have to take the coefficient of #n
~e2

. ai~6

in the sura of

and

This will be the same as the coefficient of xn ai in

3fl2 ~ 9 -_ _ _
x &amp;gt; a (1 + oa) (1 + oo?) . . . (1 4- GW~) _ x ^-,.,l-&quot;-^l-^

ax26
)},

where the quantity within the final bracket is equal to

1 - xi+l a - #i-fl+1 + x-6 a.

Hence the required series is

--*-*
xa-\i

1 X I B.I it

1 - a;*-
8

. 1 - a;*-8 . 1 - ^~4
,

H--=
----^---

. 1 +ax. 1 + aa?.
1 x . 1 x* . I x3

i _ .i

, ,
1 # 1 iC.l iC

2

1 _ 7.18 I _ 7-f 4 1 _ 7.1-5

+ .

A
. ^ / -.

I x.l x2 .! Xs

the indices in the outstanding powers of x being the pentagonal numbers

in the first, and the triangular numbers trebled, in the second of the above

series.

In obtaining in the preceding articles mixed series for continued products,

it will be noticed that the graphical method has been employed, not to

exhibit correspondence, but as an instrument of transformation. The graphs
are virtually segregated into classes, and the number of them contained in

each class separately determined. (The magnitude of the square in the

Durfee-dissection serves as the basis of the classification.)

(37) Now let us consider the famous double product of

(1 + ax) (I + ax3

) (I +ax*)...

by (1 +a-1 x)(l+a-1 x3

)(l + a-l x5
)....

Here it will be expedient to introduce a new term and to explain the mean

ing of a bi-partition and a system of parallel bi-partitions of a number. The

former indicates that the elements are to be distributed into two groups, say
into a left and right-hand group : the latter that the number of the elements
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(on one, say) on the left-hand side of each bi-partition of the system is to be

equal to or exceed by a constant difference the number (on the other, say) on

the right-hand side of the same bi-partition. If we use dots, regularly spaced,

to represent the elements (themselves numbers and not units), we get a figure

or pair of figures such as the following :

for which the corresponding lines of the contour are respectively parallel

hence the name. When the numbers of elements on the two sides are identical,

I call the system an equi-bi-partition-system in the general case, a parallel

bi-partition-system to a constant difference j, where j is the excess of the

number of elements in the left-hand over that in the right-hand part of any
of the bi-partitions.

(38) Consider now the given double product it is obvious that it may
be expanded in terms of paired powers a* + a~i of a, and the coefficient of xn

in the term not involving a will evidently be the number of equi-bi-partitions

of n that can be formed with unrepeated odd numbers
;
and so the coefficient

of xn associated with aj or a~i will be the number of parallel bi-partitions of n

to the constant difference j that can be so formed.

For the equi-bi-partitions; suppose 11} lz ...li, \lf \2 ...\i is an equi-

bi-partition, all the elements being odd and unrepeated ;
take successive

angles whose (say horizontal and vertical) sides are the major halves of llt Xa ;

12 ,
X2 ...

; li, \i\ these angles will fit on to one another so as to form a regular

graph by reason of the relations

Conversely any regular graph may be resolved into angles whose horizontal

sides shall be the major halves of one set of odd numbers, and their vertical

sides the major halves of another set of as many odd numbers, and these

two sets of odd numbers will each form a decreasing series
;
hence there is a

one-to-one conjugate correspondence between any bi-partition of n written in

regular order, and the totality of regular graphs whose content is ^ ,
so that

n

the number of the equi-bi-partitions of n will be the coefficient of a? in

1

that is of xn in

\-x.l -a?.l -a? ...

1

1-arM-a^.l -x...

which fraction is therefore equal to the totality of the terms not involving a.

32
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(39) Next for the coefficient of ai.

Let 11} Z2 ,
...

lj,
lj+1 ,

lj+2 ,
...

lj+6 \ \i, \2, ^e be an equi-parallel bi-partition

to the difference j (with the elements on each side written in descending

order); with the equi-bi-partition lj+1 , lj+z ,
...

lj+0 ;
X1( X2 ,... X fl ,

form a graph,

as in the preceding case; say, for distinctness, with major halves of the

I series horizontal and of the X series vertical; over the highest horizontal

line the successive quantities*

lj-l fr-i
- 3 fr_

- 5 S,-(2j-l)
2

&quot;

2 2
&quot;

2

may be laid so as to form a regular graph of which the content will be
q&amp;gt;*

77 _ jz

Conversely every regular graph whose content is . will correspond to

a parallel bi-partition of unrepeated odd numbers to a differenqe j ;
to obtain

the bi-partition the first j lines of the graph must be abstracted f, and the

graph thus diminished resolved into angles ;
the doubles of the contents

of each vertical side of these angles diminished by unity will constitute the

right-hand side of the bi-partition, and the doubles of the contents of each

horizontal side preceded by the doubles of the lines of the abstracted portion

of the graph increased by 1, 3, 5, ...2j 1 respectively, will form the left-

hand portion. Hence the number of such bi-partitions will be the number

7?
___

J
^

of ways of resolving g*
8- into unrestricted parts, that is, will be the

2p

coefficient of xn in

and this being true for all values of n and j, we see that the double product

in question will be identical with the infinite series

-- {l+x(a + a 1

) + x4
(a? + a~2

) + a? (a
3 + a~3

) + ...}.

(40) To expand the limited double product

(1 + ox) (1 + ax3
) . . . (1 + ax2i~l

)

into (1 + or1

x) (1 + a-1

a?) . . . (1 + or1 x21 1

)

the procedure and reasoning will be precisely the same as in the extreme

case of i infinite, the only difference being that the elements of the bi-

partition instead of being unlimited odd numbers will be limited not to

exceed 2i - 1. In the case of j = the equi-bi-partition will furnish a series

of nodal angles in which neither side can exceed the major half of 2i 1,

*
Any number of these quantities may happen to become zero.

t If the actual number of horizontal lines in the graph is less than j, it must be made to

count as
;&quot;, by understanding lines of zero content to be supplied underneath the graph.
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that is i, and the coefficient of xn in the term not containing any power of a

will consequently be the number of ways in which n can be divided into

parts limited as well in number as in magnitude not to exceed i, and will

therefore be the same as the coefficient of x^
n
in the development of

1 _ fc^1 1 _ X^2
] _ X^

1 X . 1 X2
... \Xi

or, which is the same thing, of xn in the development of

and when the bi-partition system has a constant difference j, the correspond

ing graph will be of the same form, except that it will be overlaid with

j lines, obtained as in the preceding case by subtracting 1, 3, ... 2j 1 from

the first j left-hand elements, and taking the halves of the remainders
;
the

graphs thus formed will be subject to the condition of having a content

?i i J
&quot;^

= -
,
and parts limited not to exceed ij in magnitude nor i+jm number

[ij in magnitude because the topmost line cannot exceed - -=

in content; i+j in number because without reckoning the ^ superimposed
lines the subjacent portion of the graph cannot contain more than i lines].

The converse that out of every regular graph fulfilling these conditions may
be spelled out a parallel bi-partition with a difference

_; ,
and containing only

unrepeated odd numbers limited not to exceed 2i 1 in magnitude may be

shown as in the preceding case. Hence the coefficient of xn in the coefficient

^ _ J2
of a3 + a~i in the expansion, is the number of ways of resolving

J into
25

parts none exceeding ij in magnitude nor i+j in number, that is, is the

coefficient of xn in

Hence by the process of reasoning, which has been so often applied, we see

that the finite double product

1 + ax. I + ax3
... 1 + axzi~l

into 1+ a-1 x . 1 + a~l a? . . . 1 + a 1 x-^1

-*- I _ jt ,v,2i+2 1 _
. J.

*X/

1 -x*.l-x*... 1-

Compare Hermite, Note sur les fonctions elliptiques, p. 35, where Cauchy s

method is given of arriving at this and the preceding identity.
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ACT III. ON THE ONE-TO-ONE AND CLASS-TO-CLASS CORRESPONDENCE
BETWEEN PARTITIONS INTO UNEVEN AND PARTITIONS INTO UNEQUAL
PARTS.

. . . mazes intricate,

Eccentric, intervolved, yet regular
Then most, when most irregular they seem.

Paradise Lost, v. 622.

(41) It has been already shown that any partition of n into unequal

parts may be converted into a partition consisting of odd numbers equal or

unequal by, first, expressing any even part by its longest odd divisor, say its

nucleus and a power of 2, and, second, adding together the powers of 2 belong

ing to the same nucleus, so that there will result a sum of odd nuclei, each

occurring one or more times
;
a like process is obviously applicable to convert

a partition in which any number occurs 1, 2, ... or (r 1) times into one in

which only numbers not divisible by r occur with unrestricted liberty of

recurrence. The nuclei will here be numbers not divisible by r multiplied

by powers of r, and by adding together the powers of r belonging to the

same nucleus there results a series of nuclei, each occurring one or more

times. Conversely when the nuclei and the number of occurrences of each

are given, there being only one way in which any such number can be

expressed in the scale whose radix is r, it follows that there is but one

partition of the previous kind in which one of the latter kind can originate,

and there is thus a one-to-one correspondence, and consequently equality of

content between the two systems of partitions.

(42) To return to the case of r = 2, with which alone we shall be here

occupied, we see that the number of parts in the unequal partition which

corresponds after this fashion with a partition made up of given odd numbers

depends on the sum of the places occupied when the number of occurrences

of each of the odd numbers is expressed in the notation of dual arithmetic.

Such correspondence then is eminently arithmetical and transcendental in

its nature, depending as it does on the forms of the numbers of repetitions

of each different integer with reference to the number 2.

Very different is the kind of correspondence which we are now about to

consider between the self-same two systems, as well in its nature, which is

essentially graphical, as in its operation, which is to bring into correspond
ence the two systems, not as wholes but as separated each of them into

distinct classes; and it is a striking fact that the pairs arithmetically and

graphically associated will be entirely different, thus evidencing that cor

respondence is rather a creation of the mind than a property inherent in the

things associated*.

* Just so it is possible for two triangles to stand in a treble perspective relation to each other,

as I have had previous occasion to notice in this Journal.
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(43) I shall call the totality of the partitions of n consisting of odd

numbers the U, and that consisting of unequal numbers the V system.

I say that any U may be converted into a V by the following rule : Let

each part of the given U be converted into an equilateral bend, and these

bends fitted into one another as was done in the problem of converting the

reciprocal of

(1
-

ax) (I
-

aa?) (1 -oaf)...

into an infinite series, considered in the preceding section. We thus form

what may be called a bent graph. Then, as there shown, such graph may
be dissected into a diagonal line of points and two precisely similar regular

graphs. The graph compounded of the diagonal and one of these, it is

obvious, will also be regular, and I shall call it the major component of the

bent graph ;
the remaining portion may be called the minor component.

Each of these graphs will be bounded by lines inclined to each other at an

angle one-half of that contained between the original bounding lines, and

each may be regarded as made up of bends fitting into one another. The

contents of these bends taken in alternate succession, commencing with the

major graph, will form a series of continually decreasing numbers, that is to

say, a V partition. As an example let 11 11 9 5 5 5 be the given U partition ;

this gives rise to the graph
A D

A 1

%*
B

Q

Reading off the bends on the major and minor graphs alternately, com

mencing with BAD, GA E respectively, there results the regularized partition

into unequal numbers
11 10 9 8 6 2.

(44) The application of the rule is facilitated to the eye by at once

constructing a graph, the number of points in whose horizontal lines are

the major halves of the given parts, and construing this to signify two

graphs, one the graph actually written down, the other the same graph
with its first column omitted

;
for instance in the case before us the graph

will be*

* This may be regarded as a parallel-ruler form of dislocation of the figure produced by

making the portion to the right of the diagonal of larger asterisks revolve about that diagonal
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If we call the lines and columns in the directions of the lines and columns of

the Durfee-square appurtenant to the graph a1 a,l ...ai, a^...^ [i (here 3)

being the extent of the side of the square], the partition given by the rule

will be

ft \ /y - 1 n i ft O n \ O i A. _j
*&quot;

f ci i fi / oy Q\~I r/7 i n / $)n 9\i r/&quot; _i_ /o *

i \n r *i

and inasmuch as

ttj
= or &amp;gt; 2

= or &amp;gt; 0.3 ... and o^ = or &amp;gt; a.2
= or &amp;gt; as . . .

the above series is necessarily made up of continually decreasing numbers, at

all events until the last term is reached. But this term will form no excep
tion, for the fact of i being the content of the side of the square belonging to

the transverse graph alt a
2 ..., ;, ai+l ... implies that ;= or &amp;gt; i, hence

\cn + a{
-

(2i
- 1 )]

-
(cti

-
i)
= a

{ -i + l&amp;gt;0.

In the above example the side of the square nucleus in the original total

graph was supposed to be the same for the major and minor graphs of which
it is composed. If we suppose that graph to contain only i nodes in the tth

line, then the side of the square to the minor graph which it contains will

be i - I, and the number of parts given by the angular readings of the two

graphs combined will be 2t - 1 instead of 2i, as for example if the 3rd line

in the graph above written be 3 instead of 5, the resulting partition will be

11 10 9 8 2, but we may, if we please, regard this asll!09820 and the

last term will then still be ; i, and the general expression will remain

unchanged from what it was before.

Next I proceed to the converse of what has been established, namely, that

every U may be transformed by the rule into a F, and shall show that any V
may be derived from some one (and only one) U.

Whether the number of effective parts in the given F be odd or even, we

may always suppose it to be even by supplying a zero part if necessary, and

may call the parts 11} \, lz ,
\2 ...

,
li} \t . Suppose that it is capable of being

derived from a certain U: form with the parts of U a graph expressed in the

usual way by equilateral bends or elbows, then the side of the square appurte
nant to the regular graph formed by the major half of this, say G, must have

for content the given number i.

until it coincides with the portion to the left of the diagonal ; the graph thus formed (merely as

a matter of convenience to the eye) may be then made to revolve about an axis perpendicular to

the plane, so as to bring the diagonal out of its oblique into the more usual horizontal position.
All this trouble of description might have been saved by beginning not with a bent graph but

with a graph formed with straight lines of points written symmetrically under each other, which
is made possible by the fact of there being an odd number of points in each line. The graph so

formed then resolves itself naturally into a major and minor regular graph.
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Let Oj, a2 ...a;, alt a2 ...a; be the contents of the first i rows and first

i columns respectively of G, then the equations to be satisfied are

Hence

a _ ; \ ._ 1 a a = I A, 1

and for all values of 6,

Hence a 1( a2 ... a^ are all positive, and alf a2 ... i are all at least equal to i.

There will therefore be one and only one graph G satisfying the required

conditions, namely a graph the contents of whose lines are

[where A 1} A 2 , ... A ai i is the conjugate partition to ctj i, flu t, ...| i] ,

the partition U will be found by subtracting unity from the doubles of each

of those parts. Thus then it has been shown that every U will give rise to

some one F, and every F be derived from a determinate U; hence there

must exist a one-to-one correspondence between the U and F systems. In

a certain sense it is a work of supererogation to show that there is a If cor

responding to each F; it would have been sufficient to infer from the linear

form of the equations that there could not be more than one U transformable

into a F; for each U being associated with a distinct Fit would follow that

there could be no F s not associated with a U, since otherwise there would be

more F s than U s, which we know aliunde is impossible.

As an example of what precedes let the partible number be 12. The

U system computed exhaustively will be

11.1 9.3 9. 1 3 7.5 7. 3. 1 2 7 . 1 5 5 2 .1 2 5. 3. 1 4

5.3M 5. 1 7 34 3s
. 1

s 3 2 .1 6 3. 1 9 I 12

Underneath of these partitions I will write the major component graph,
and underneath this again the corresponding F; we shall thus have the

table

11.1 9.3 9. 1 3 7.5 7. 3. 1 2 7 . 1 5

* * *

7.5 6.5.1 8.4 5.4.2.1 7.4.1 9.3
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52 .1 2 5. 3. 1 4 5.3M 5. 1 7 3 4 3 3 .P 3 2 .1 6 3 . 1 9 I 12

* * * *** ****** , ..,, ()W
* * * * * * * (*)

7 * * * * * * (*)
9

* * ** **** (*)
6

(*)* *

16.3.2.1 8.3.1 6.4.2 10.2 5.4.3 7.3.2 9.2.1 11.1 12

Thus we obtain for the V system :

7.5 6.5.1 8.4 5.4.2.1 7.4.1 9.3 6.3.2.1 8.3.1
6.4.2 10.2 5.4.3 7.3.2 9.2.1 11.1 12

which are all the ways in which 12 can be broken up into unequal parts*.

The Ts corresponding to those given by the arithmetical method of

effecting correspondence would be :

7.5 1.3 2 .5 I 12 I 7
. 5 I 5

. 7 3.9 P.33 I 9
. 3 1 6 .3 2

1 2 .5 2 3. 1 4
. 5 I 2

. 3. 7 P.3 3 11.1 3 4

instead of

11.1 9.3 9. 1 3 7.5 7. 3. 1 2 7 . 1 5 5 2 .1 2 5. 3. 1 4

5.3M 5. 1 7 34 33 .P 32 .P 3 . I 9 I 12

so that there is absolutely not a single pair the same in the two methods
of conjugation.

(45) The object, however, of instituting the graphical correspondence is

not to exhibit this variation, however interesting to contemplate, but to find

a correspondence between the two systems which shall resolve itself into

correspondences between the classes into which each may be subdivided.

Thus we may call Ui that class of LTs in which there are i distinct odd

numbers, and Ff that class of F s in which there are i sequences with a gap
between each two successive ones : the theorem now to be established is that

the V corresponding to any Ui is a Vt ,
so that class corresponds with class,

and as a corollary, that the number of ways in which n can be made up by a

series of ascending numbers constituting i distinct sequences is the same as

the number of ways in which it can be composed with any i distinct odd

numbers each occurring any number of times. This part of the investigation
which I will presently enter upon is purely graphical. A few remarks and

illustrations may usefully precede.

In the example above worked out it will be observed that there are three

classes of U s, namely,
I 12 34

: 11.1 9.3 9.P 7.5 7 . 1 5 5 2 .1 2

33 .P 32 .1 6 3. 1 9
: 7. 3. 1 2 5. 3. 1 4 5.3-.1

* In Note D, Interact, Part 2, I show how this transformation can be accomplished by the

continual doubling of a string on itself.
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and three classes of Vs agreeing with those above in the number of parti

tions in each, namely,

12 3.4.5: 11.1 9.3 10.2 8.4 7.5 9.2.1
7.3.2 6.5.1 5.4.2.1: 8.3.1 7.4.1 6.4.2.

So again for w = 16 there will be found to be eleven partitions into odd

parts of the third class, which, with their quasi-graphs and corresponding

partitions into unequal parts are exhibited below :

11. 3. P 9. 5. 1 2 9.3M 9. 3. 1 4 7 . 5 . 1 4

The transformed partitions above written are all of them of the third

class (that is consist of three distinct sequences) and comprise all that exist

of that class. 16 will correspond to I 16 and 1.3.5.7 to itself. All the

other partitions of each of the two systems will be of the second class, and

will necessarily have a one-to-one graphical correspondence inasmuch as the

entire systems have been proved to have such correspondence.

It is worthy of preliminary remark that the association of the first classes

of Z7 s and F s given in the previous section will be identical with the

association furnished by the graphical method but whereas in converting V
into U by the antecedent process, the two cases of the sequence being of an

odd or even order had to be separately considered, the graphical method is

uniform in its operation.

Thus 9 8 7 6 a sequence of an even order will be given graphically by

corresponding to 15 2
,
and 9 8 7 6 5 a sequence of an odd order will be

given graphically by
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4

corresponding to 57
,
whereas it will be observed that 152 =

(9 + 6)
5 and

9+5

5 7 = 5 2
.

It may be noticed that when the major component is an oblate rectangle

it gives rise to a sequence of an even order, and when a quadrate or prolate

rectangle to one of an odd order.

I subjoin an example of the algorithm by means of which a given V
can be transformed into its corresponding U, taking as a first example
V= 10 9 8 5 4 1.

The process of finding U is exhibited below :

3355 (9)

2233 (8)

442 (7)

133 (6)

10 8 4 (1)

951 (2)

1 1 1 (3)

444 (4)

777 (5)

3 2
. 5 2

. 7 s will be the U required.

As a second example let F= 12 10 9 8 5 4 1; the algorithm will be

as shown below :

1 7 11 15 15 will be the U required. Lines (1) and (2) are the parts of

the given V written alternately in the upper and lower line
;
lines (3) and

(6) are obtained by oblique and direct subtraction performed between (1)

and (2); line (4) is obtained from (3) by adding the number of terms in (1)

to the last term in (3) which gives the last term in (4) and then adding in

successively the other terms in (3) each diminished by one unit; (7) is

derived from (6) by diminishing each term in the latter by a unit and taking
the continued sum of the terms thus diminished

; (8) is found by the usual
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rule of
&quot;calling&quot;*

from its conjugate (7); and finally (5) and (9) are

obtained by subtracting a unit from the doubles of the several terms in

(4) and (8).

It thus becomes apparent that the passage back from a V to a U is

a much more complicated operation than that of making the passage from

a U to a V, so much more so that it would seemingly have been labour in

vain to have attacked the problem of transformation by beginning from the

F end.

(46) I now proceed to the main business, which is to show that any U
containing i distinct odd numbers will, by the method described, be graphically
converted into a V containing i distinct sequences.

Let G be any regular graph ;
H what G becomes when the first column

of G is removed; a, b, c, d ... the contents of the angles of G, H taken in

succession.

Also let i be the number of lines of unequal content in G,j the number
of distinct sequences in a, b, c, d, e, ... .

The two first lines of G, say L, L ,
and also the two first columns, say

K, K , may be equal or unequal +.

If L = L and K = K
,
a - I = b, b - 1 = c.

If L = L and K &amp;gt; K
, a-l=b, b-l&amp;gt;c.

If L &amp;gt; L and K = K
,
a - 1 &amp;gt; b, b-l = c.

If L &amp;gt; L and K&amp;gt;K
, a-l&amp;gt;b, b-l&amp;gt;c.

Let G ,
H represent what G, H become on removing the first bend, that

is the first line and the first column, and let i
, f be the values of i, j for

G
,
H

,
so that j is the number of sequences in c, d, e ... .

It is obvious from what precedes that in the four cases considered j =j,

j =j 1, j =j 1, f=j 2 respectively. But in these four cases i = i,

i = i 1, i = i 1, i = i 2 respectively.

Hence on each supposition i j i j ,
and continuing the process by

removing each bend in succession, i j must for any number of bends have

the same values as it has for one bend
;
but in that case if h and k are the

contents of the line and column of the bend, the reading of the corresponding

G, G will be h + k I, h 1, so that for that case j will be 1 or 2 according
as h and k are not or are both greater than 1, that is according as i is

1 or 2J.

*
I borrow this term from the vernacular of the American Stock Exchange.

t For brevity I use line and column to signify the extent of (that is, the number of nodes in)
either.

J The final graph after denudation pushed as far as it will go must be either a single bend, a

column, a line or a single node. In the first case i = 2, j= 2, in each of the remaining three cases



46 A Constructive theory of Partitions, arranged in [1

Hence i j is always equal to zero, consequently a U of the tth class will

be transformed by the graphical process into a Fof the uh class, as was to be

proved.

(47) I have previously noticed [p. 25 above] that the simplest case of

i =j = 1 leads to the formula

q q
3

&amp;lt;/

5
q
7

q q
3

q
s

q
10

r^ + T^ 3
+ rH; +

T ir
+-= T^ + r*^3 + ini

+ r~s +
&amp;gt;lq 1 q 1 - q I q

7 1 ~ g 1 ~ g 1 g 1 ~~
g

which is a sort of pendant to Jacobi s formula

q q
3

q
5

q
7

q q
3

q
8 a10

__JZ J I J 2 I J J I J J i #In i Q * i i *; T i *7
&quot; -tit o T &amp;lt;+ q I + q

3 I + q
5 1 + q

7 1 + q 1+y2 1+g3 l+g4

These formulae may be derived from one another or both obtained simul

taneously as follows : From addition of the left-hand sides of the two

equations there results the double of

g
4*&quot;3

g
81-2

and from addition of the right-hand sides of the same there results the

double of

q q
5

q
6

q
u

,
*=

-i nTi ..&quot;r-i a T ^ a T or oi ^

Consequently in order by the operation of addition of the two equations to

deduce one from the other we must be able to show that these expressions
are identical : observing then that 4&amp;lt;i 3 and 8i 2 are odd and even

respectively for all values of i, but i(2i l) and z(2i + 3) odd or even,

according as for i, 2i 1 or 2i be written, it has to be shown that

oo
qii3

oo
/02i 1.418 2* 1.41+lv

-
=

and

00 1 _ .-.i 1.81 6

is equivalent to 2^ --e^ = 2-

&amp;gt;

_

4t
_ 0t (8i+2) oo

^21
1 . 41+1

=

Hence if i signify any number from 1 to oo and k signify any number
from to i 1, it has to be shown that

(4&amp;gt;i
+ 1)(2&+ 1) contains the same

integers and each taken the same number of times as (2m 1) (4m + 1 + 4w),

where m is any number from 1 to oo and n is any number from to oo . But
the (4i + 1) (2& + 1) is the same as (2k + 1) {4 (k + I + 1) + 1} where k and I

* My formula is what Jacobi s becomes when every middle minus sign in it is changed into

plus and every inferior plus sign into minus.
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each extend from to oo
,
and the (2m l)(4ra + 4w -f- 1) is the same as

(2m + 1) {4 (ra+ n + 1) + 1} where m and n each extend from to oo
, and

the two latter expressions on writing k = m, l = n become identical.

Again (B) is equivalent to

oo 1 _ ni 1 . 8i2 oo ni (8f+6)
v 8i-2

A y _ _ v i

7 *
i _ ^-2

*
i - g*

Hence we have to show that (81 2)(l+j) when i=2, 3, ... oo and

j = 0, 1, 2, ... , (i
-

2), or say (8* + 6)(1 + j), where i = 1, 2, ... oo and j = 0,

1, 2, ...(i l) is identical with (8 + 6 + 8m), where 1=1, 2, ... oo arid

m =
0, 1, 2, ... oo

;
the former of these is identical with

(1 +.7) {8 + + !) + 6),

where j = 0, 1, ... oo
;
k = 0, 1, ... oo

,
and the latter is identical with

where 1 = 0, 1, ... oo
;
m = 0, 1, ... oo, consequently the two expressions are

coextensive, which proves (B), and (A) has been already proved. Hence we
see that either of the two original equations can be deduced from the other

from the fact that their sum leads to an identity.

In like manner subtraction performed between the two allied equations
leads to the fissiparous equation

which gives birth to the pair
oc

rf^i+3
oo (.21+3.41+3 /p3t+1.4t+3

oo ^+2 oo
(&quot;^,21+2.41+1 ^21+2 . 41+5

1

? i=pft
-
! |r^*T

+ r^
((7) is equivalent to

which is an identity by virtue of the equivalence of

where j, k, \, p each extend from zero to infinity, and

(D) is equivalent to

o 1 - #&quot;*

+

which is an identity by virtue of the equivalence of

(81 + 2) (1 -i- (j &amp;lt;

i)} that is {8 (j + k + 1) + 2} (1 +j) to (2X + 2) (4\ + 5 + 4/4
each symbol j, k, /j, having as before the same, range, namely from zero to

infinity. Thus then the difference of the two allied equations (as previously
their sum) is reduced to an identity which establishes the validity of each

of them.
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INTERACT, PART 2.

With notes of many a wandering bout,

Of linked sweetness long drawn out.

L A llegro.

(48) D. Transformation of Partitions by the Cord Rule. The figures

below are designed to show how it is possible by means of the continuous

doubling of a string upon itself to pass from an arrangement of groups of

repetitions of r distinct odd integers to the corresponding one with like sum,

made up of r distinct sequences. Each of the two figures duplicated by
rotation about its upper horizontal boundary of nodes through two right

angles will represent an arrangement of repeated odd numbers, the parts

being represented by the contents of the vertical lines in the figures so

duplicated.
Fig. 1. Fig. 2.

RT

.A A

TR

Q

M

G M

The first duplicated figure represents the arrangement 33, 292
, 23, 21, 93

,

7, 5 2
, 3, 1 whose sum is 183

;
its correspondent will be the contents of the

lengths of * ABC, CDE, EFG, GHK, KLM, MNO, OPQ, QRS, STU, UV,

namely the arrangement 29, 27, 24 (22, 21,), 18, 14, 12, 10, 6 which is the

same number 183 partitioned into (ten parts but) nine sequences : the second

duplicated figure represents the arrangement 25, 23, 17, 15, 9 2
,
7 3

,
52

,
I 2

,

whose sum is 130
;

its correspondent is represented by the lengths of

ABC, CDE, DEF, FGH, HKL, LMN, NOP, PQR, RST, TU, which is

the same number 130 partitioned into the (nine parts but) eight sequences

25, 22 (20, 19,), 15, 12, 10, 6, 1.

* A line containing i units of length represents (i + 1) nodes.
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(49) E. On Graphical Dissection. It may be not unworthy of notice

that there is a sort of potential anticipation of Mr Durfee s dissection of

a symmetrical graph, iu a method which, whether it is generally known

or not I cannot say, but is substantially identical with Dirichlet s for finding

approximately 2 - and other such like series (a bracketed quantity being
i |_* J

used to signify that quantity s integer part). Constructing the hyperbola

xy = n, drawing its ordinates to the abscissas 1, 2, 3, ... n, and in each of

them planting nodes to mark the distances 1, 2, 3, ... from its foot, there

results a symmetrical graph included between one branch of the curve, its

two asymptotes, and lines parallel to and cutting each of them at the

distance n from the original. Its content will be the sum in question.
The Durfee-square to it will be limited by the square whose side is [\/n],

arid this added to the original area gives twice over the area in which the

number of nodes is 2 -
, and consequently neglecting magnitudes of the

order \/n.

2(7-1)

and as a corollary

V

where C is Euler s number 57721, so that 1 - C for large values of n will be
the average value of the fractional part of n divided by an inferior number.
Furthermore a similar graph, but with xy=2n diminished by the portion
contained between a branch of the new curve, one of its asymptotes and two

parallel ordinates cutting that asymptote at distances n and 2n from the

origin (which portion obviously contains (2n n) that is n nodes) will

represent 2 -?
,
and consequently the sum 2-H -? -22 - I that is

1 L l J i IL J LOJ

(see Berl. Abhand. 1849, p. 75) the number of times that ? - -] equals or
1 LvJ

exceeds
,
as i progresses from 1 to n (within the same limits of precision

as previously)
= 2n (log 2w + 2(7 - 1)

- n less 2n (log n + 20 - 1), that is

=
(log 4 - l)n, so that the probability of the fractional part of n divided by

an inferior number not falling under is log 4 1*.

What precedes I recall as having been orally communicated to me many years ago by the
late ever to be regretted Prof. Henry Smith, so untimely snatched away when in the very zenith
of his powers, and so to say, in the hour of victory, at the moment when his intellectual

eminence was just beginning to be appreciated at its true value, by the outside world. I was
under the impression until lately that he was quoting literally from Dirichlet when so communi
cating with me, but as the geometrical presentation given in the text is not to be found in the

S. IV. 4
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(50) F. Mr Elys method of finding the asymptotic value of the number

of improper fractions with a very large given numerator which are nearer to

the integer below than to the integer above*.

&quot;Let a number n be divided by all the numbers from 1 to n; then a

value is required for the number of residues which are equal to or greater

than . An example will make evident a method by which we may obtain

limits to the value sought. If n be 100 the residues = &amp;gt; i areO t

49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34

memoir cited from the Berlin Transactions, I infer that it originated with himself. In compar

ing Mortens memoir, Crelle, 1874, with Dirichlet s (1849), upon which it is a decided step in

advance, one cannot fail to he struck with surprise that the point to which the closer drawing of

the limits to the values of certain transcendental arithmetical functions achieved by the former

is owing, should have escaped the notice of so profound and keen an intellect as Dirichlet s, and

those who came after him in the following quarter, of a century. The point I refer to is the

almost self-evident fact that if in the cases under consideration

S&amp;lt; (Fi ,x) = \f/x
then

&amp;lt;/&amp;gt;#

=
S/u. (i) $ (Fi . x)

where
/JL (i) means 0, if i contains any repeated prime factors, but otherwise 1 or 1 according as

the number of prime factors in i is even or odd. Dirichlet works with a function given implicitly

by an equation, Meitens with the same function expressed in a series, wherein exclusively lies

the secret of his success.
*

It is proper to state that what follows in the text was handed in to me by Mr Ely on the

morning after I had proposed to my class to think of some &quot;common sense method&quot; to explain

the somewhat startling fact hrought to light by Dirichlet, of more than three-fifths of the

residues of n in regard to i= l, 2, 3, ... n being less than -
. Mr Ely s method shows at once, in

a very common sense manner, why the proportion must be considerably greater than the half,

n n n
inasmuch as whilst the terms in the first few harmonic ranges are approximately

-
, ^^ , ^

etc., in number, the number of them which employed as denominators to n give fractional parts

greater than ,
instead of being the halves of these are only ^3, 35. ^ 7,

etc. The mean

value in both methods to quantities of the order of /Jn inclusive, turns out to be the same,

whichever method is employed, but the margin of unascertained error by the use of Mr Ely s

method (as compared with Dirichlet s) is reduced in the proportion of 1 : l + v/2, that is, nearly

2:5.
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In which it will be observed that the residues =
&amp;gt; | occur in batches. Let

X be the whole number, and Xi the number in batch i. In batch i the

numerators decrease by i and the denominators increase by 1. (Those
marked (a) of which the denominators are less than \/200 are left out of

account for the present.) It is evident for the general case we have

approximately

~2
+ /*.

^i

or accurately
r n i

or ,. . ,, ,^. =-7 + 1[(i

Mr Ely is then able to show that by limiting the calculation of #f to the

values of i which do not exceed [0i/2], so that roughly speaking the character

of \/2n of the remainders is left undetermined (and no account taken of

them in finding the value of X), and giving to x{ its approximate value

7? 7? 7? &quot;7?

T- ~T^~- 7^ &amp;gt;

and then extending the series ^ ~ + -^ = + -7 * beyond the
(* + l)(2t + l) 2.3 3.5 4.7 J

[\/n/2]th term, where it ought to stop, to infinity, the errors arising from

each of these three sourcesf and therefore their combined effect will be

of the order \Jn, so that the asymptotic value of X will be

1
+ n - + ~A K + }

n
V2.3 3.5 4.7

which is (2 log 2 \}n, with an uncertainty of the order \/n, as was to be

shown.

(51) It may be seen that Mr Ely s method consists in distributing the

n numbers from n to 1 into what I have elsewhere termed harmonic ranges
and determining what portions of the several ranges employed as denomi
nators to n give fractional parts, greater or less than ^. It may assist in

forming a more vivid idea of this kind of distribution, if the reader takes a

definite case, say of n = 121, the first (10) harmonic ranges will then comprise
*

I find by an exact calculation that if R is the remainder of n in regard to (i + 1) (2t + 1) and

R= \(i + l) + H, where \&amp;lt;2i + l and
fjt&amp;lt;i + l, then for X = 20-l or 26, Xt = Y &quot;1+1

L(i + l)(2i + l)J
71 &quot;1

if
ft.
= i - 1 or i - 2 ... or i - 6, and x

t
= for all other values of /*. Heuce it follows

\_(i + i) (4i + i)j
that out of (2t

a + 3i + 1) successive values of n, (i
2 + i) and (i

2 + 2i + 1) will be the respective numbers
of the cases for which the one or the other of these two values of x

t is employed, so that for

larger values of i the chances for the two values are nearly the same, but with a slight prepon
derance in favour of the smaller value. See p. [54J.

t The error from the first cause makes the determination of X too small by an unknown
amount, that from the third cause too large by a known amount, and that from the second too

large or too small (as it may happen) by an unknown amount.

42
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all the numbers from 121 to 12 inclusive, and the remaining 111 harmonic

ranges will comprise the remaining 11 numbers from 11 to 1
;
that is to say

11 of them will contain a single number, and the remaining 100 ranges be

vacant of content.

So again if n = 20 the first four ranges will contain all the numbers from

20 to 5 inclusive
;
the 5th, 6th, 9th and 20th range will consist of the sole

numbers 4, 3, 2, 1, and the remaining 12 ranges will be vacant. I shall

proceed to compare the precision of Mr Ely s result with that of Dirichlet s

for this purpose it will be enough to determine the asymptotic value of the

uncertainty and to take no account of quantities of a lower order than ^n.

Let us then suppose that \/(kn) ranges are preserved, and consequently

4/(x) fract i ns left out (k being an arbitrary constant which will eventuallyV \ft -

be determined so as to make the uncertainty a minimum).

The first cause of error necessitates a correction of which the limits are

and T I
the second cause a correction of which the limits are \f(kn) and

v \KJ

^/(kn) ;
and the third, namely the overreckoning of

where j
= J(kn), a correction of which the value is . or - / ( -=-

] .

2j 2V \kJ

Hence making (log 4 1) n = U, the superior limit of X is

and the inferior limit U -= A/IT) \/(kri). Consequently X = U + pri
2 where

p &amp;lt; \Jk + o * / ( r &amp;gt;

f which the minimum value is found by making k = ^ ,

2i
&amp;gt; \fc/ 2*

so that p &amp;lt; \/2 and the uncertainty is V2 . Adopting Mertens asymptotic
n

I~w~l
value of the uncertainty of S -

, namely \/n, and using Dirichlet s formula,
i L*J

i
f2/i~i

*
r?i~i

SM^r- 2 S -
,
-3T has the same mean value as above, but the uncertainty

n L l J I_M

becomes (\/2 + 2) n- which is nearly two and a half times as great as that

given by the direct method employed by Mr Ely.

I use the word uncertainty, it will be noticed, in a different sense from

error; the latter is objective, referring to fact, the former subjective, referring

to knowledge. Both methods in the case here presented give the same mean

value, and therefore the error is the same, but the uncertainty is widely
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different according to the method made use of. Of two formulae referring to

the same fact one might very well give the smaller error and the other the

smaller uncertainty.

I have shown above that for considerable values of i, the average value

of x . is----
1-
-

;
if then it may be assumed (and there seems no

(i + 1) (Zt + 1) 2

reason for suspecting the contrary) that for i = l, 2, ... , */2n, the mean value

Of !! _
I

- is i If will not only be the mean value of the known limits of
i L*J 2&amp;gt;

X but also the mean value of X itself. The value found for k shows that the

most advantageous mode of employing Mr Ely s method is to make the

+ JL + ... ^, - + ... stop at one of the terms which
~~

series 2.33.5
is approximately equal to unity.

(52) It is not without interest to consider the exact law for the extent

of a harmonic range of a given denomination, say i : this it is easily seen will

f n 1 f n 1
be always equal to . or .

2
. + 1.

L +^] |_* TJ
I shall regard i as given and determine the values of n which correspond

to the one or the other of the two formulae : this will depend not on the

absolute value of n but on its remainder in respect to the modulus i
2 + i.

To hx the ideas, let i = 4 so that f +i = 20, and let n take in successively all

values from 40 to 59 inclusive.

Then corresponding to n equal to

40 44 48 52 56

41 45 49 53 57

42 46 50 54 58

43 47 51 55 59

the fourth range will be

10, 9 11, 10, 9

10, 9 11, 10

10, 9 11, 10

10, 9 11, 10

[&amp;gt;
^ : and in the other half

i J
n

^ . + 1 gives the extent of the range.
[i -\- ij

So in general, if n = k (t
2 + i) + \i -f fi t

where X = 0, 1, 2, ...i, and
/j,
= 0,

1, 2, ... (i- 1), when the remainder of n to modulus (i
2 + i) is of the form
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X(t
2 + t)+{0, 1, 2, ... (X 1)} that is in cases the extent of the *th

T n ~]
harmonic range to n is

| -^
: +1, and when of the form

i
2 + i r n

that is in the remaining s cases it is .

2 [/ + 1

As the sum of the harmonic ranges to n is n itself, and
in, n n

i
c&quot;k o &quot;T&quot; ~T _ , /t-

1.2 2.3 w(n+l)~ n+1
it follows that if we separate all the numbers from 1 to n into two classes,

say i s and
; s, i being any number for which n is of the form

k (i + i) + Xi + 0, 1, 2, ... (X- 1),

and j any other number within the prescribed limits, then

= number of i s z .

n+ 1

and consequently the number of the i terms has (1 G)n for its asymptotic
value.

(53) In like manner the law previously stated in a footnote, p. [51], for

giving the extent of that portion of the ith range for which - contains
t

a fractional part not less than may be verified. Thus let i = 3 then

+ l)(2i + 1)
= 28, let n = 56, 57, ... 83. Then for the values of n

28 32 36 40 44 48 52

29 33 37 41 45 49 53

30 34 38 42 46 50 54

31 35 39 43 47 51 55

the portion of the third range having the required character will contain the

numbers

8

8

so that there are 2(1+2 + 3), that is 3 . 4 forms of n out of 7 . 4 for which

f* n 1
the formula - ^ + 1 nas to be employed, and so in general if R is the

residue of n in respect to (t+l)(2i + l), there are i? + i cases where the

formula ,. , | + 1 and (i + I)
2 where the formula

has to be employed.
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G. On Farey Series.

(54) This note is a natural sequel to and has grown out of the two

which precede ;
it has also a collateral affinity with the subject-matter of the

Acts, inasmuch as a graph affords the most simple mode of viewing and

stating the fundamental property of an ordinary Farey series, and any series

ejusdem generis. For instance, let A, B, C be a reticulation in the form of an

equilateral triangle, where B is a right angle, and n the number of nodes in

the base or height of the triangle ;
if the hypothenuse be made to revolve in

the plane of the triangle about (either end say about) A, the triangle formed

by joining A with any two consecutive nodes of greatest proximity to the

centre of rotation traversed by the rotating line will be equal in area to the

minimum triangle which has any three nodes for its apices, that is its double

will be equal to unity. This law of uniform description of areas, (say of equal

areas in equal jerks) is identical with the characteristic law of an ordinary

Farey series which deals with terms whose number is the sum-totient rn:

but it will also hold good if the triangle be scalene instead of equilateral,

which corresponds to Glaisher s extension of a Farey series, to the case where

the numerator and denominator of each term has its own separate limit

(Phil. Mag. 1879), or again, when the rotation takes place about the right

angle B as centre, which gives rise to a Farey series of a totally different

species, defined by the inequality ax + by &amp;lt; n, or again when the hypothenuse
is replaced by the quadrant of a circle or ellipse, and in an infinite variety

of other cases, as for example when the graph is contained between a branch

of an equilateral hyperbola and the asymptotes, which case corresponds to

the subject-matter of the theory of Dirichlet (Berl. Abhand. 1844) concerning

the sum of the number of ways in which all integers up to n can be resolved

into the product of two relative primes, which is the same thing as the half of

the number of divisors (containing no repeated prime factors) which enter

into the several integers up to n, or as the entire number of solutions in rela

tive primes of the inequality xy = or &amp;lt; n. The law of equal description of

areas (pq p q= + 1), Mr Glaisher has shown very acutely, is an immediate

inference (by an obvious induction) from the well-known fact that between a

fraction and its two nearest convergents (namely the one ordinarily so called

and that which is obtained by substituting 8 1 and 1 for the last partial

quotient), no. other fraction can be interposed whose denominator is not greater

than that of the one first named.
_

From the areal-law obviously follows the equation ,
= -. *- (where

q xq q
^

^77 are any three consecutive terms of the series), so that in order to

construct explicitly such a series from the two first terms, all we have to do

is to give to x at each step the highest value it can assume, consistent with
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the imposed limit or limits. Thus for example I have found by this method
when the limiting inequality is x + y = or &amp;lt; 15, the series

.

15
_

14 13 12 11 10 9 8 7 6 II

94TT7103TT85792T
and the complements in respect to unity of the several terms which precede

- taken in reverse order, and again for xy = or &amp;lt; 15 the series (which mightz

be called the Dirichlet-Farey series)

J^
1 15

In general if we agree to understand respectively by the decernent and

the secernent to ao, the number of divisors without restriction, and the number

of divisors restricted to contain no square number, that go into x, and denote

the sum-secernent and sum-decernent of n by Sn and Dn respectively,

Dirichlet s mode of looking at the question leads immediately to the equation
n n n

n~\2$ -
z
= Dn. Mertens equation Sn = 2/nD-^ obtained by a longer and

i * L i * J

somewhat more difficult process is in point of fact merely that equation

reverted. On pointing out to Mr F. Franklin this elegant passage in

Dirichlet s memoir, he remarked to me to the effect that it was an example,
which might admit of wide generalization, of a concept resembling that

inherent in the subject-matter of the ordinary Farey series; which excellent

and keen-witted observation led me to look into the subject from the point
of view herein explained. The present theory diverges from the ordinary
one in quite another and more natural direction (I imagine) than that pursued

by M. Darboux, whose article on the subject of quasi-Farey series (Bulletin

de la Societe Mathematique de France, tome vi.) I have not been able to obtain

sight of, and can only conjecture its purport through the reference made to it

in a subsequent article which I have been able to procure in the same journal

by M. Edouard Lucas.

*
It is advisable for the purpose of securing generality in reasoning upon Farey series not to

omit the initial and final terms
f-, { which seem generally to have been lost sight of by previous

writers on the subject Even then the series is only half complete, for after J should follow the

reciprocals of the preceding terms until is reached. Thus a complete ordinary Farey series

beginning with f and ending with consists of two symmetrical branches with { as their point

of junction, each made up of two symmetrical sub-branches meeting respectively in the terms

| and f, and such that the sum of a corresponding pair of fractions on the one side of { and of

their reciprocals on the other side is equal to unity : whereas in the two complete branches the

product of each corresponding pair is unity.
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(55) I prove the persistency of the fundamental property of ordinary

Farey series for such series generalized in the manner supposed above, as

follows.

Let us use 0. F. S{ to denote an ordinary Farey series for which the

limit is i, and G. F. 8. a Farey series in which, calling the numerator and

denominator of any term x, y, &amp;lt;f&amp;gt; (x, y) &amp;lt;
=

i,
&amp;lt;/&amp;gt; (x, y) meaning a rational

function which increases when either x or y increases. If in an 0. F. Si any
{1C* T)

two consecutive terms be
j , -j,

and in an 0. F. 8i+l
- intervenes between

o a o

a c
r ,

-j
we know, p being greater than b and d, the two nearest convergents to

71 C1 (*

- must be contained in 0. F. S{, and consequently must be T ,
-, them-

q o a
ct c

selves, so that p = a + c, q = b + d, and as a corollary if -.
,

-^
be consecutive

CL

terms in any 0. F. S., and - be any one of the terms which subsequently

fl {*

intervene between r , -, ,
we must have p = or &amp;gt; a 4- c, q = or &amp;gt; b + d. In

o d
order to fix the ideas let us suppose &amp;lt; (x, y) to represent x + y, so that

x + y &amp;lt;
= n.

For the values 2, 3, 4, 5, 6, 7, 8, 9 ... of n, the G. F. S. will be

1. 9/^1. 9 /T\ 1 L 9 (]} 1 1 (?\ 1 9 /T\ i 1 1 ? 1
11 1 U/ 1 1 UJ 2 1 1 U/ 3 2 (3) 1 1 \5j 4 3 2 3 1

9 (*} 1 1 1 ^ 1 ? /^ i. 9/1^ 1
i 1 1 ? I ^ ? ? 1.

1 U/ 5 4 3 UJ 2 3 U/ 1 1 W 6 5 4 3 5 2 U/ 3 4 1

9 (1\ 1 1 1 1 (?\ 1 ? 1 ? ? ?
I V8J 7 6 5 4 WJ 3 5 2 5 3 4

where the terms in parenthesis are the new terms which intervene as n

increases from any value to the next following integer, and where it will be

T} d
noticed that if - be any such parenthesised fraction lying between =- and

-j, p = a + c and q = b + d, just as in the successive form of an 0. F. S.

The theorem to be proved may be made to depend on the following lemma.

If for any given value of n every two consecutive terms in a G. F. S.

appear as consecutive terms in an 0. F. S. for the same or any smaller value

of n; this will continue to be true for all superior values of n.

The proof is immediate, for let
j-

,
-^

be any two consecutive terms in
CL

the G. F. Sj which are also consecutive terms in 0. F. Si where i = or &amp;lt; ; .
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If a term - intervene between -, -, in G. F. &+,. = or &amp;gt; a + c, a= or
q b d -

&amp;gt; b + d, by virtue of the remark made. But if p &amp;gt; a + c and q &amp;gt; b + d,

&amp;lt; (a + c, b + d) &amp;lt;

&amp;lt;j&amp;gt; (p, q) &amp;lt;j
+ 1,

but i j is intermediate in value between T ,
-, . hence -= -, must haveb+d b d b+d

appeared in a G. F. Sf , where / &amp;lt; j, which is contrary to hypothesis.

Ct T) C
Hence r, -, -

7
will have been consecutive terms in some 0. F. S.,

b q d

and in like manner any two consecutive terms in G. F. S. either remain con

secutive in G. F. 8j+i or admit a new term between them which is consecutive

to each of them in some 0. F. S., so that the supposed relation if it holds

good for j is true for all superior values of j ;
but -

,

- will in any of

the supposed cases be a G.F.S.; consequently in all these cases no two terms

are consecutive in any G. F. S. which are not so in some 0. F. S., and there

fore the law of equal description of areas will apply to them equally as to the

0. F. S., as was to be proved.

The theory may be extended to G. F. 8., defined by several concurrent

limiting equations. Thus for example Mr Glaisher has proved this for the

case of x &amp;lt;
= m, y &amp;lt;

= n : I have not had time as yet to consider what are

the restrictions to which the limiting functions may be subject, but the

theorem is obviously an extremely elastic one, and the above proof suffices

for all the special cases which I have enumerated*.

(56) I am indebted to Mr Ely for the following additional examples of

Farey series, in the enlarged sense, which may interest some of my readers.

Ex. (1). x + y= or &amp;lt; 20

* Since the above was in type I have discovered the true principle of Farey series, for which

see Note H following the Exodion.



1] three Acts, an Interact and an Exodion 59

Ex. (3). y-V#= or &amp;lt;15

1 12121_2__3_1_3_2_3__4_1_4__3_2
16

*&quot;

8 15 7 13 6 II 16 ,5 14 9 13 17 4 15 11 7

5 3 ^Jt;-ij^AA?A?jLA?JK*AJL
17 10 13 W&amp;gt;3 17 14 IT 8 13 5 17 12 7

lf&quot;;C|

11 13

j^j^lj*_8__I.A5J!-*-l.l??ii-?- ?_L
15 17 2 17 15 13 11 9 16 7 12 17 5 18 13 8 11

j^ n * ri j^ jr 12 s 13 j^ 11 s is 10 7 11

14 17 3 16 13 TO 17 7 18 11 15 4 17 13 9 14

413^1451611613715817^10111213
5 16 II 17 6 19 13 7 15 8 17 9 19 10 11 12 13 14

14151617181
15 16 17 18 19 1

EXODION. On the Correspondence between certain Arrangements

of Complex Numbers.

At which he wondred much and gan enquere
What stately building durst so high extend

Her lofty towres, unto the starry sphere.

Faerie Queene I. x. 56.

(.57) Starting from the expansion in a series of l x, multiplying in the

usual notation both sides of the equation by

(l-9
2

)(l-9*)(l-&amp;lt;2
6

).--&amp;gt;

and intercalating the factors of this product between those of

(1
-

qz)(l
-

q
3

z)...(l
-

q*-*)(l
-

f&amp;lt;r*)...

taken in alternate order, there results the equation

(1
-

9*-i)(l
-

qz)(l
-
5)(1

-
g*-i)(l

-
&amp;lt;?z}(l

- ?) ... =&quot;:T (-)V*.
i oo

and writing q
n in place of q and making z = + q

m
, Jacobi (Crelle, Vol. XXXII.

p. 166) derives the identity
+ 00

(1 +
2&quot;-) (1 + q

n+m
) (1

- q) (1 + q3n-m) (1
_

gSn+m) (1 -jf*)...- 2 ()* g&quot;*+*.
00

3 1
From this equation, using the lower sign and making n =

,
m =

^ ,

2*

he observes, may be deduced Euler s expression in a series for

and using the upper sign and making n =
,
m =

^ ,
another known series

&quot;given by Gauss in the first volume of the Gottingen Commentaries for the

years 1808-11.&quot;
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It is not without interest, I think, to observe that by making n = ^ ,

JL

in = = + e (where e is an infinitesimal), and using the lower sign we may

immediately deduce Jacobi s own celebrated postscript (so to say) to Euler s

equation, namely,

(1
_ ^3 (1

- 97 (1
_

^3)3 m . ^
=

+
f (_y J-+*^ _

2-*)

the general term being

+i

which is -*2i

(58) It is obvious, that by the same right and within the same limits of

legitimacy as the equation involving q, n, m (or if we please to say so in q, m)
has been derived from the equation in (q, z), the equation in q,

z may be

recovered from the equation in q and m, if this latter can be shown to be

true, morphologically interpreted for general values of m. I shall show that

regarding m and n as absolutely general symbols, such as \/( 1) or \/2 or p

or the quaternion units, or any other heterogeneous or homogeneous units

we please, the equation in question which I shall write under the equivalent
form

.__ it i

(1 + ? )(1 + q
b
)(l -qc

)(l + q
a+c

)(l + q
b+c

)(l -fc
) ... = V (^q^^i=x

[where c = a + b, and a, b are absolutely general symbols or species of units

entirely independent of one another] does hold good as a morphological

identity *. Thus interpreted, it amounts to a theorem in complex quantities,

dealing with arrangements of three sorts of elements which I shall call
C&quot;s,

S s, A s respectively, meaning by a C any non-negative integer (that is zero

or any positive integer) multiple of c, by a B such multiple augmented by a

single b, and by an A such multiple augmented by a single a.

The
C&quot;s, the .B s and the A s in any such arrangement will be regarded

as three separate series, the terms in each of which flow from left to right in

descending order, that is the multiples of c which represent totally or with

the exception of a single 6 or a single a, the terms in each such series taken

in severalty are to form a continually decreasing series.

* This theorem is less transcendental than Newton s binomial theorem when the same latitude

is given to the meaning of the symbols in either case: for (l + z)
m = l + m.zH--- z2 + ... does

I
not admit of direct interpretation when m is a general symbol. The passage from numerical

proximate equality to absolute identity, prepared but not perfected nor capable of being explained

by infinitesimal gradation, brings to mind the analogous transfiguration of sensibility into

sensation, or of sensation into consciousness, or of consciousness into thought.



1] three Acts, an Interact and an Exodion 61

The total number of elements and the number of C s will be called the

major and minor parameters respectively the relation to the modulus 2

(that is the parity or imparity) of either one of them its character : and for

brevity, the terms major and minor character will be used to signify the

character of the major or minor parameter. The totality of all arrange

ments whatever of A s, B s, C s in which no element is repeated, will

constitute the sphere of the investigation, limited only by the absence of

what I term the exceptional or isolated arrangements, consisting exclusively

of a series of consecutive B s ending in b, or of consecutive A s ending in a.

Within the prescribed sphere I shall prove that a process may be instituted

for transforming any arrangement which shall satisfy the five following

conditions:

(1) That it shall be capable of acting on every licit and unexceptional

arrangement.

(2) That it shall transform it into another such arrangement.

(3) That operating once upon an arrangement, and then again upon the

operate, it brings back the original arrangement.

(4) That it leaves the sum of the elements in the arrangement un

altered.

(5) That it reverses each of its two characters*.

From (3) it will follow that all the arrangements within the prescribed

sphere are associated in pairs, and from (1) that the sum of the elements in

each such pair is the same. This being so, it is obvious from the fact of the

parity of the total number of elements being opposite for any pair of associated

arrangements, that in the development in a series of

no term will appear in which the index of q is other than the sum of the

terms in one of the exceptional (we may now call them unconjugated or

unconjugable) arrangements, and from the fact of the parity of the number
of the C s being opposite in any pair, the same will be true of the develop
ment in a series of

(1 + q
a
} (1 + q

b
) (1

-
q
c
) (1 + q

a+c
) . . . .

As regards the coefficient in this latter series of any term whose index is

*
It will presently be seen that all the licit and unexceptional arrangements will be divided

into 3 classes and a specific operator be found for each class capable of acting on each arrange
ment of that class and converting it into another of the same class, and which will satisfy
also the 3rd, 4th and 5th of the enumerated conditions. The total operator contemplated in the

text may then be regarded as the sum of these specific ones, each of which, within its own sphere,
will have to fulfil the five conditions of Catholicity, Homoeogenesis, Mutuality, Inertia and

Enantiotropy (the last a word used in the school of Heraclitus to signify
&quot; the conversion of

the primeval being into its opposite &quot;).
See Kant s Critique of Pure Reason by Max Miiller,

Vol. i., p. 18.
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the sum of the elements in an unconjugate arrangement it will manifestly be

the number of ways in which the same complex number can be thrown under

the form of a sum of the arithmetical series

a, a + c, ..., a + (i l)c,

, - , i*-i
which is - c + ia,

z

i
2

i
that is

-^
c + ~ (a

-
b),

Zt

or of b, b + c, ...
,

b + (i l)c,

i
2

i
which is -=- c ~ (a b).

If
ji+j(-)-^i+j{&amp;lt;i-i

t
2 + i i

2

-ij J
2

+J ,J
2 ~Jthen __ a+ ___6 =^_^ a+^_^

&amp;gt;

which necessitates i=j, and if

*-

2

c + |(a-&)
=
|

2

c
-|(a-&),

i
2 + i t

2 - i , j
2

j j
2 +j .

then a + = b = * a + &,
Z

, 25 .jt Z

so that i
2

-f- i (i
2

i) (j
2

-j) (j
2

+j) or i = j.

-c-, 6)
Hence the general term is q

2 2
,
where i is an integer stretching

from zero to infinity, and in like manner, and for the same reason, the

*
I -M

general term in the former series will be ( Yq*
C

* with the like in

terpretation : or which is the same thing, comprising both cases in one and

interpreting i to be integer stretching from oo to +00, the general term
i2

,

i
, ,.

11 u /-vi 2
c+

a (a~ 6)

will be ( + )
l

&amp;lt;?

2 2

(59) The task before us then is to show the possibility of instituting, by

actually instituting, a law of operation which shall satisfy the five preliminary

conditions of catholicity, homoeogenesis, reciprocity, reversal of characters and

conservation of sum.

The following notation will be found greatly to conduce to clearness in

effecting the needful separation into classes or species. A capital letter with

a point above, as X, will be used to signify the greatest value, and with a

point below, as X, the least value of any term in a series which that letter

is used to denote. X = 0. X &amp;gt; 0, X +Y = 0, X + Y&amp;gt; will signify respec

tively that there are no X s, that there are X s, that there are no X s and
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no F s, that there are either X s or F s or both in any arrangement under

consideration. B s will be separated into B and B&quot;s, or as we may write it

B = BB
,
where B is the general name for all the B s, which beginning with

the highest term B form an arithmetical series of which c is the common
difference. If there is a gap of more than one c between B and the next

lowest B, B is of course the single term B : B is any B which is not a B.

So again, A l
is any A which belongs to a series of A s forming an arith

metical series whose constant difference is c and lowest term a, so that

unless 4 = a, A 1
= 0: any other A will be designated by ^A. The signs

of accent and point may of course be separate or combined : thus for example

(7 will mean the smallest C in any given arrangement, B will mean the

greatest B, 4- will mean the lowest A, j4 will mean the lowest of the ^ s

and A l the highest of the AJs. Every B is necessarily greater than any B ,

and every ^A than any A l . If B b = 0, this will indicate that all the B&quot;s

will form a consecutive series of terms (that is having a constant difference c)

and ending in 6, so that here B =
0, that is there are no B s except those

that belong to the regular arithmetical progression ending in 6. If ^ = 0,

all the A s will form an arithmetical progression ending in a. Thus we see

that the arrangements belonging to the 1st terms (those that I have called

exceptional) will consist of two species denoted respectively by

1A+B + C=0 and ( B -
b) + A + C = 0.

It may sometimes be found convenient to use a point to the left centre of a

quantitative letter to signify that the quantity denoted is to be increased,

and a point to the right centre to signify that the quantity denoted is to be

diminished, bye. Thus B- will mean B c, and -4i will mean A
1 + c, the

first signifying the greatest B diminished by and the second the smallest A 1

increased by c. When any general letter, say X, is wanting as indicated by
the equation X = 0, X must be understood to mean zero. So for instance

if A = 0, and consequently ^A = and A
l
=

0, j4 = 0. Again, when there is

a gap between the highest B and the one that follows it in any arrangement,
the arithmetical progression of B s reduces as above remarked to a single
term and there results B = B. It may be noticed also that always B = B,
and 4i = 4-

The arrangements which are comprised under the forms

(a) A, A-c, A -
2c, ...

, a,

(13) B, B-c, B-2c,..., b,

may be regarded as belonging to what I shall term the first genus.

The second genus, namely that consisting of unexceptional combinations
of unrepeated A s, B s, C s, may then be divided into the following three species,
the conditions by which they are severally distinguished being attached to

each in its proper place.
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1st Species. Conditions (7) B b &amp;gt; 0,

or (7 ) 5-6 =
0, (7&amp;gt;0, C-c&amp;lt; = B-b.

2nd Species. (B) B - b = 0, A + C &amp;gt; 0, (7 = or C-o B-b,
or (8 ) B = 0, (7 &amp;gt; 0, A=0, or a4 - a = &amp;gt; C.

3rd Species, (e) B =
0, A&amp;gt;0, 1

A + G&amp;gt;Q, (7 = 0, or C&amp;gt; 1
A-a.

Where it is to be understood that the conditions set out in the same line

are simultaneous conditions. Tims for example the conditions of an arrange

ment being of the second species are when all the conditions of the upper or

else all the conditions of the lower of the two lines written under that species

are fulfilled : the conditions of the upper line (be it noticed) are that B is b,

and that there are either some A s or some
C&quot;s,

and that if there are some (7 s,

C c &amp;gt; B b, and of the lower line, that there are no B s and some (7 s, and

that if there are A s, A a=&amp;gt; C, and so for the interpretation of the conditions

of the existence of each of the other two species.

To these (7) systems of conditions a, /3, 7, 7 , 8, 8
,
e may be joined the

trivial system (&&amp;gt;)
A = 0, B = Q, (7 = 0*; the (8) systems thus constituted will

easily be seen to be mutually exclusive and between them to comprehend the

entire sphere of possibility, leaving no space vacant to be occupied by any
other hypothesis. I will now proceed to assign the operators &amp;lt;, i/r,

^ appro

priate to the three species of the second genus.

Office of the Operator &amp;lt;. &amp;lt;

=
( +

&amp;lt;f&amp;gt;

.

When in Genus 2, Species 1, (7=0 or C c &amp;gt; B B, &amp;lt; is to be per

formed, meaning that for each B, B- is to be substituted, and the inertia

kept constant by forming a new (7 with the sum of the c s thus abstracted.

In the contrary case &amp;lt; is to be performed, meaning that (7 is to be resolved

into simple c s and as many of the B s, commencing with B and taken in

regular order to be converted into -B as are required to maintain the inertia

constant, that is c is to be added to each B in succession, until all the c s

which together make up (7 are absorbed.

Office of the Operator ^r. ^ =
^r + -fy

.

When in Genus 2, Species 2, (7= or C &amp;gt; B + A, ^r is to be performed,

meaning that for B and A their sum is to be substituted, producing a (7

[which, on the second hypothesis, will be a new C]. In the contrary case
i/r

is

to be performed, meaning that for C is to be substituted -B (which will form

a new B) and C -B which will form a new 4i-

*
It would be perfectly logical, and indeed is necessary to regard the trivial case as belonging

to the cases of exception, and then we might say that there are two genera, each containing

three species, those of the first genus solitary, and those of the second, each of them comprising

two sub-species, namely the sub-species subject to the action of the left-accented and that

subject to the operation of the right-accented operators. The trivial species of the first genus

consists of a single individual.
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Office of the Operator ^. ^ = ^ + .

When C &amp;gt; and C + A l &amp;lt; 1A, ^ is to be performed, meaning that for C
and A t their sum is to be substituted, producing a new ^A. In the contrary

case ^ is to be performed, meaning that for 1A, A l forming a new A l and

j4 A} forming a new are to be substituted.

(60) It will be seen that every species of the second genus consists

of two contrary sub-species having opposite characters, and it will presently

appear that any arrangement belonging to one of these sub-species under the

effect of its appropriate operator passes over into the other, which operated

upon in its turn by its appropriate operator becomes identical with the

original one, so that any two contrary sub-species may be said to be of equal

extent : in fact if the sum of the parts is supposed to be given there will be

as many arrangements in any sub-species as in its opposite, for each one will

be conjugated with some one of the others.

It may not be amiss to call attention here to the fact that the scheme

of classification adopted is, in a certain sense, artificial. Thus, for instance,

it proceeds upon an arbitrary choice between which shall be regarded as

the A and which as the B series, so that by an interchange of these letters a

totally different correspondence would be brought about between the arrange
ments of the second genus, those of the first genus remaining unaltered. Nor
is there any reason for supposing that these are the only two correspondences

capable of being instituted between the arrangements of the second genus
in particular there is great reason to suspect that a symmetrical mode of

procedure might be adopted, remaining unaffected by the interchange between

A and B. As a simple example of the effect of interchange, applying the

method here given, suppose A = 0, B = 0, a case belonging to the second

species and that sub-species thereof to which ty is applicable, and imagine
further that the series is monomial. Then C will be associated according
to the scheme here given with b,Cb, but in the correlative scheme it would

be associated with a, G a.

(61) I need hardly say that so highly organized a scheme, although for

the sake of brevity presented in a synthetical form, has not issued from the

mind of its composer in a single gush, but is the result of an analytical

process of continued residuation or successive heaping of exception upon
exception in a manner dictated at each point in its development by the

nature of the process and the resistance, so to say, of its subject-matter.
The initial step (that applicable to species 7) is akin to the procedure applied

by Mr F. Franklin to the pentagonal-number theorem of Euler, of which
I shall have more to say presently. It will facilitate the comprehension of

the scheme to take as an example the particular case where a and b represent
actual and real quantities, say, to fix the ideas, 6 = 1, a = 2. Nothing, it will

s. iv. 5
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be noticed, turns upon the fact of this specialization, which is adopted solely

for the purpose of greater concision and to afford more ready insight into the

modus operandi.

To illustrate the classes and laws of transformation consider (with 6 = 1,

a = 2*, c = a + b = 3) all the arrangements, the sum of whose parts is 12,

namely 12, 11.1, 10.2, 9.2.1, 8.4, 8.3.1, 7.5, 7.4.1, 7.3.2, 6.5.1,

6.4.2, 5.4.3, 5.4.2.1.

One of these, 7.4.1, belongs to the exceptional genus. The rest will be

conjugated and fall into species in the manner shown below, where the first

species means where the conditions (7) or (7 ),
the second that where (8) or

( ),
and the third where the conditions (e) are satisfied. The C s, B s, A s

are now numbers whose residues are 0, 1 or 2 in respect to the modulus 3.

For greater clearness in each arrangement, numbers belonging to the same

series are kept together, the law of descent only applying in this theory to

elements belonging to the same series.

Species 1. 10.2 3.7.2; 4.8 3.1.8; 7.5; 3.4.5; 6.4.2 6.3.1.2;

5.7 3.2.7.

Species 2. 9.1.2 9.3; 6.1.5 4.1.5.2;

Species 3. Caret.

Or again let the collection of arrangements be one in which the sum is 18.

The partitions of 18 are 18 17.1 16 . 2 15.3 15.2.1 14 . 4 14 . 3 . 1

13.5 13.4.1 13.3.2 12.6 12.5.1 12.4.2 12.3.2.1 11.7 11.6.1

11.5.2 11.4.3 11.4.2.1 10.8 10.7.1 10.6.2 10.5.3 10.5.2.1

10.4.3.1 9.8.1 9.7.2 9.6.3 9.6.2.1 9.5.4 9.5.3.1 9.4.3.2

8.7.3 8.7.2.1 8.6.4 8.6.3.1 8.5.4.1 8.5.3.2 8.4.3.2.1

7.6.5 7.6.4.1 7.6.3.2 T. 5.4.2 7.5.3.2.1 6.5.4.3 6.5.4.2.1.

In this case there are no exceptional arrangements.

IstSpecies. 16.2 3.13.2; 4.14 3.1.14; 13.5 3.10.5; 13.4.1

3.10.4.1; 7.11 3.4.11; 10.8 3.7.8; 12.4.2 12.3.1.2; 10.7.1

6.7.4.1; 6.10.2 6.3.7.2; 10.1.5.2 3.7.1.5.2; 9.4.5 9.3.1.5;

6.7.5 6.3.4.5; 7.1.8.2 3.4.1.8.2; 6.4.8 6.3.1.8; 7.4.5.2

6.4.1.5.2;

2nd Species. 18 17.1; 15.3 15.1.2; 12.6 12.5.1; 6.1.11

4.1.11.2; 9.1.8 4.1.8.5; 9.7.2 9.3.4.2; 9.6.3 9.6.1.2;

11.5.2 3.8.5.2.

3rd Species. Caret.

If the partible number is 11, of which the partitions are 11 10 . 1 9.2

8.3 8.2.1 7.4 7.3.1 6.5 6.4.1 6.3.2 5.4.2 5.3.2.1, there will

be no exceptional arrangements and the pairs of unexceptional ones will be

as below.
* No use it will be seen is made of the accidental relation a= b + b.
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1st Species. 10.1 3.7.1; 7.4 6.4.1; 4.5.2 3.1.5.2.

2nd Species. 3.8 1.8.2.

3rd Species. 11 9.2; 6.5 6.3.2.

By interchanging a and b, that is making a = 1, 6 = 2, the correspondence

changes into the following :

1st Species. 11, 3.8; 6.3.2, 6.5; 8 . 2. 1, 3. 5 .2 . 1
; 7.4, 6.4.1.

2nd Species. Caret.

3rd Species. 10.1,6.4.1; 7.4,3.7.1.

According to Mr Franklin s process the correspondence takes a form quite

distinct from either of the above, namely 11, 10.1; 9.2, 8.2.1; 8.3,

7.3.1; 7.4, 6.4.1; 6.5, 5.4.2; 6.3.2, 5.3.2.1, all these arrange
ments constituting one single species.

A careful study of the preceding examples will sufficiently explain to the

reader the ground of the divisions into species with their appropriate rules

of transformation, and might almost supersede the necessity of a formal proof
of the operator supplying the conditions of catholicity, homoeogenesis and

mutuality ;
from their very definition they are seen to comply with the other

two essential conditions of inertia and enantiotropy.

Signifying by H the total operator &amp;lt;f&amp;gt;

+ T/T + S-, it has been already remarked

that fi will in the general case have two values which only come together
when a = b, or which is the same thing, each of them is 1

;
a special case of

the special case when the complex reduces to simple numbers, namely, it is the

case indicated in the well-known equation

But besides the two correspondences given by the two values of H, if we
take the actual (no longer a diagrammatic case) 6 = 2, a = l, we revert to

Euler s theorem concerning the partitions of all pentagonal and non-

pentagonal numbers, and can obtain by Dr Franklin s process, given in

Art. (12), a totally different distribution into genera and species, namely the

first genus instead of containing arrangements of the species

1,4, 7, ... 3i-2; 2, 5, 8, ...3i-l

will, as previously shown, consist of the very different arrangements (giving
the same infinite series of numbers as those for other sums)

i,i + l,i + 2,...2i-l; i + 1, i + 2, i + 3 ...
;

2i.

The character of each arrangement in the new solution depends in part on
the relation to the modulus 2 of the whole number of parts and of the number
of parts which are divisible by 3, so that we may divide the conjugate arrange-

52
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ments into four groups* designated respectively by Oo, Oe; Eo, Ee, using the

capital letters to signify the oddness or evenness of the whole set of parts, and

the small letters the same for the parts divisible by 3. There will thus be a

cross classification of the arrangements of the second genus into groups over

and above that into species, each species in fact consisting of four groups,

which may be denoted as above, and of which Oo and Ee are one associative

couple, and Oe, Eo the other f.

(62) The following elegant investigation has been handed in to me by

Arthur S. Hathaway, fellow and one of my hearers at the Johns Hopkins

University, to which, although it does not exactly strike at the object

of the constructive theory here expounded, I gladly give hospitality in

these pages.

&quot; The theorem to be proved is as follows :

-f

X 1-^.1-^.1-^.

where e
2 = 1 and h = a + b, a and b being any quantities whatever.

&quot; The general term contains, say i exponents of x selected from the first

line, j from the second line, and k from the third line, namely

a + a h, ... a + i_1 A,

where eto .{-!, & j-i , 7i...7t are respectively sets of i, j,
k unequal

integers arranged in ascending order, none representing a less integer than

its subscript. This term is (remembering that h = a + b)

ei+j
/_\k ma+nb

where

m =
[( + 1) + -. (i-i+ 1)] + [#&amp;gt;+... A-i] + [7i + ... 7*] (!)

n = [ + ... a^] + [(A + 1) + ...(&_! + 1)] + [7i + .- 7*1 (2)

*
It will be seen later on that there is a division into sixteen groups analogous to the

division into four groups first noticed by Prof. Cayley arising under the Franklin process.

t The Oe and Eo conjugation has a very striking analogue in nature (as I am informed) in

the existence of dissimilar hermaphrodite characters in two sorts of the wild English primrose

and the American flower Spring-beauty or Quaker-lady it being the law of nature that only

those of different sorts can fertilize one another. Possibly the double symbolic character of Oo and

Ee will justify or suggest the inquiry whether there may not be a latent duality in the unisexual

specimens of such flowers as those just mentioned, where male and female are found codomiciled

with the bisexual florets. There is also, it seems, a trace of analogy to the sparsely distributed

unconjugate individuals of my first genus in Darwin s
&quot;

complemental males.&quot;
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In addition to these we obtain by subtraction

m n = ij = i +j mod 2. (3)

Whence (since e
2 = 1) ei+-&amp;gt; = e

m~w
.

&quot; Thus all the above general terms having the same m and the same n

divide themselves into positive and negative groups (corresponding to even

and odd values of k), a term from one group cancelling a term from the other

group. I propose to prove that the number of terms in each of these groups
are equal, except when a certain relation exists between m and n, namely

(m-n)(m-n+l)m - -^ =0, (or m = if m =
n),

2

corresponding to which there is but one general term having the same m and

the same n which falls into the positive group (k
=

0). This establishes the

theorem in question, as we see by putting m n = 8.

&quot;

It is sufficient to consider (1) in connection with (3). In the first place
the first two partitions in (1) may be converted by a (1 : 1) correspondence
into an indefinite partition (bearing in mind (3)) with a decrease (ra n &amp;gt; 0)
in the sum or content of the integers by ^(m n)(m n + 1), as follows:

extend or + 1 in a horizontal line of dots, and under the first dot extend /3 in

a vertical line of dots, thus forming an elbow; in a similar manner form

elbows out of
! + 1, & &c. until one of the partitions is exhausted

;
this will

be according to (3), the first or the second, according as m &amp;lt; or &amp;gt; n, leaving
in the inexhausted partition m n integers ; place these elbows successively
one without the other, and place on top (m ?i&amp;gt;0)

horizontal lines of dots

corresponding to the successive unmatched integers decreased respectively by
0, 1, ... (n m 1) or 1, 2, ... (m n), according as m&amp;lt; or &amp;gt; n

;
in either case

the total decrease is (m - n) (m n+ 1). In other words, the above tri-

partition of m has a (1 : 1) correspondence with a bi-partition of

(m-n)(m-n + 1)m - -
, (or m if m =

n),z

consisting of an indefinite partition on one side and a partition of unrepeated

integers on the other (7^ ... 7*). Such a bi-partition (on removing the line

of demarcation) is an indefinite partition ; and, conversely, every indefinite

partition involving 6 different integers gives rise as follows to (1 + l)
fl such

bi-partitions, the number of those involving even and odd values of k being

respectively the positive and negative parts of the expansion of (1 I)
9
,

which are equal: namely, first, the indefinite partition itself (
= 0); second,

the 6 bi-partitions obtained by placing each of the 6 integers successively on
the k side (k = 1) ; third, the \6 (6

-
1) bi-partitions obtained by placing the

\ 6 (6 1) pairs of the 6 integers successively on the k side (k = 2), and so on.
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The only exception to this equality of the number of partitions for even and

odd values of k is when the partible number,

(m n} (m n + 1 )m ^ - or m,
f

is zero, for which case there is but one bi-partition [0] + [0] (k = 0). Q. E. D.

The tri-partition of m corresponding to the celibate case reduces to the

natural sequence above subtracted whose content is

which is the second or the first partition (according as m&amp;lt; or &amp;gt; n), the others

being wanting.&quot;

(63) The same infinitesimal method which applied to the expansion of

!# gives rise as was shown to the expression for the cubes of the successive

rational binomial functions may be applied to the development of

given in Art. (35), but will not lead to any new result. Making a =
where e is infinitesimal, we obtain from the general theorem

(1 -) (1
-

a?) (1- *) (!-)...

_ 1 - #e 1 - # . 1 - x . 1 af.l d?.l-0*
1 ___ /y. J__ /y&amp;gt;5 _ _____- ,12

l-x X+ l-a.l-rf* l-x.l-tf.l-o?

1 Of 1 Of .1 X
-xf + - -a^-y- j

---
1 x 1 x.l a;

2

/y ^^ /y*3 /y5 ^_ vi9

a\y- \ y- v - *** **s \AJ

-x)(\

the same equation as results from writing a = 1.

To arrive at any new result it would be necessary to have recourse to

processes of differentiation
;
the above calculation serves, however, as a

verification if any were needed of the accuracy of the theorem to which

it refers.

(64) Since sending what precedes to press I have thought it would be

desirable in the interest of sound logic to set out the marks or conditions

of the several species of the arrangements of unrepeated A, B, C&quot;s,
somewhat

more fully and explicitly than before. And first, I may observe that since

it has been convenient to understand that when there are no X terms X shall

signify zero, the quantitative equation X =
dispenses with the necessity of
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using the symbolical one X = 0, and in like manner X &amp;gt; supersedes the

symbolical inequality X &amp;gt; 0, and, of course, the same remark extends to the

equality or inequality X + Y = or &amp;gt; 0.

We have then for what I shall term the first, second and third species of

genus 1, the conditions

respectively the first, the trivial case of vacuous content
;
the second, of

only a complete natural B progression, that is, one ending with 6 (the

minimum value of B), and the third, the same for A similarly ending with

the minimum a. In what follows the conditions in each separate line are to

be understood to be not disjunctive but simultaneous or accumulative
; they

of course refer to the species of the second genus.

Marks of species (1) (a) B b &amp;gt; 0,

or (ft) 5-6 = 0, B- B = &amp;gt;C-c, C &amp;gt; 0.

(2) (a) 5-6 = 0, C-o B- B,

or (/3) 5-6 = 0, (7=0[4&amp;gt;0],

or (7) 5 =
0, 4 - =

&amp;gt;(?, C?&amp;gt;0,

or (8) 5 = 0, 4=0[(7&amp;gt;0].

(3) (a) 5 = 0, C&amp;gt;A-a, 4&amp;gt;0,

or (/3) 5 = 0, (7=0[14-a&amp;gt;0].

The three inequalities included in brackets are only required in order

to exclude arrangements belonging to the first genus. Leaving these out of

account for the moment, merely for the sake of greater concision of state

ment, it is easy to see by mere inspection of the above table that the three

species are mutually exclusive and share between them the total sphere

of possibility, for (1) a exhausts the hypothesis of there being other 5 s

besides those forming a complete natural progression, (1) /8 and (2) a of the

5 s forming such progression when there are existent (7 s, and (2) /3 when

there are not. Also ((2) 7, (2) B), (3) a exhaust between them the hypothesis

of there being no B s when there are some existent (7 s, and (3) /3 of neither

-B s nor (7 s appearing in an arrangement.

Thus all unexceptional arrangements must bear the marks occurring in

one or the other of the first four lines of the table, and all those where no B s

occur, either of the last line when there are neither B s nor (7 s, and of the

three preceding ones when there are no B s but some (7 s, and the total sum
of these hypotheses plus the hypothesis of the first genus together make up

necessity, as was to be shown.

The convention X = when an arrangement contains no X with the

consequent reduction of the conditions to a purely quantitative form has lent
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itself very advantageously to the above bird s-eye view of the completeness
of the scheme (as covering the whole ground of possibility) ;

it also will be

found to simplify the expression of the proof. I did not employ it until the

necessity for so doing forced itself upon my notice, for a very obvious reason,

namely that X is a B (or an A), which is defined to be congruous to 6 (or a)

[mod c], which zero is not: there is thus an apparent paralogism in ad

mitting that any X of these two where there is a B (or when there is an A)
is congruent to b (or to a), but that when there is no B (or no A) then the

conventional least B (or A) is zero. It will be seen, however, ex post facto,
that no inconvenience in working the scheme results from this extended

definition which constitutes an important gain to the perfect evolution of the

method. It is usually in the form of some apparent contradiction or paradox
that a scientific advance makes its first appearance.

(65) Aided by this clearer and fuller expression of the definitions of the

genera and species, I will now set out a logical proof that the respective

operators fulfil the three additional necessary conditions. I may observe

preliminarily that the Greek letterings a, /3 ; a, /9, 7, 8
; a, /?, do not express

sub-species, for one distinguishing mark of species (or sub-species) may be

taken to be that conjugation cannot take place except between individuals of

the same species or sub-species, but it will be presently seen that individuals

belonging to the differently lettered divisions of the above species are

susceptible of mutual conjugation and are therefore in conformity with

biological precedent to be regarded as mere varieties. Besides these varieties

of each of the species there is another entirely different principle of cross

classification applicable to each of them, namely in general an arrangement
must belong to one of sixteen groups designated by combining together one

out of each of the four pairs of opposite symbols X, C
; x, c; 0, E ; o, e,

where the large 0, E refer to the oddness or evenness of the major, and the

small o, e to the same for the minor parameter ;
and in like manner the large

X and large C to the result of the operation appropriate to any arrangement,

being to extend or contract the major, and &, c to extend or contract the

minor parameter. There are thus eight pairs of groups, and conjugation can

only take place between individuals belonging to the same pair.

The pairs are as follows :

fXxOo\ fXxOe\ fXxEo\ fXxEe\
\GcEe) (CcEo) (CcOe) \CcOo)

,

fXcOo\ fXcOe\ (XcEo\ fXcEe\
\CxEel \CxEer \CxOe) \GxOo)

Species (1) and species (3) it will be seen may each be separately divided

into four sub-species denoted by the upper four, and species (2) into the four

sub-species denoted by the lower four pairs of combined characters, so that

there will be in all twelve (and not as might at first be supposed twenty-four)
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sub-species of conjugable arrangements. The different sub-species of the

same species do not admit of cross-conjugation ;
it is the property which they

have in common of being subject to the same law of transformation when

passage is made from an individual to its conjugate, which binds them

together into a single species. In the arrangements peculiar to Euler s

problem, we see that there was no division of the second genus at the outset,

but that a separation would be made of it into two pairs of groups with con

jugation possible only between individuals belonging to the same pair, and

consequently there may be said in this case to be two species of the second

genus, analogous, however, not to the species but the sub-species in the more

general theory. The final separation of a pair of groups into its component
elements has nothing to do with the concept of species, sub-species or variety,

but may be regarded as similar to the separation of the sexes.

In what follows, a bracket enclosing a letter will be used to denote that it

belongs to an arrangement after it has been operated upon by its appropriate

operator, or what may be called its operate.

Species (1). When B - b &amp;gt; 0, if (7
-

c&amp;gt; B - B or C = 0,
&amp;lt;j&amp;gt;

may be per

formed, giving [(7]
= B B + C &amp;lt; C so that the law of descending magnitude

is maintained
;
we have then [B] [ B] = or &amp;gt; B B =

&amp;gt; [C] c
;
hence

&amp;lt;/&amp;gt;

has to be performed and will obviously restore the original arrangement.

Again if in the original arrangement B B = &amp;gt;Cc and (7 &amp;gt; 0, &amp;lt; has to

be applied ;
a resolution of (7 can take place into c s and the C/c first B s,

and will each be increased by c and [B] [B] = C c, so that either [C] =
or [C] c &amp;lt; (7 c &amp;lt; [B] [B], and

&amp;lt;f&amp;gt; being applicable to the new arrange
ment will convert it back to the original one.

First Species (). When B-b=0 and B - B =
&amp;gt; C- c and C &amp;gt; 0,

&amp;lt;j&amp;gt;

can be performed, and the new arrangement as before may be operated upon

by &amp;lt;f)

and so brought back to its original value. If (7
= or Cc&amp;gt;B B,

&amp;lt;f&amp;gt;

could not be performed, for then B = 6 and has no c to part with to help
make up [C].

These two hypotheses belong to Species (2), which we will now proceed
to consider throughout its full extent. When B -6 = 0, then B =

b, and I

shall first suppose [(a) and ()] that (7=0 or Cc&amp;gt;B-b. When (7
= or

B + 4 &amp;gt; (7, then ^r will be applicable, making [C] = B + 4 I
if now [B] &amp;gt;

and
[4]&amp;gt;0, [B] +[]=&amp;gt; (B - c)+(A+c) = &amp;gt;B + 4- = &amp;gt;[C],

and

[C]
- c = B + 4 - c = [B] + A &amp;gt; [B]

- b.

Hence we are still within Species 2 and have fallen upon the case to

which the reversing operator ^r has to be applied. If [B] = 0, [4] =0 we
must have B [C] &amp;gt; 0, inasmuch as the original content (or inertia) is originally

greater than zero and is kept constant, and this is a case which still belongs
to Species 2 and falls under the operation of i//.
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If [B] = so that B = B = b and [4] &amp;gt; 0, then

[A]-a = &amp;gt;A+c-a=&amp;gt;A+B=&amp;gt;C,

which also falls within the second species and is amenable to the reversing

operator ^ .

Finally, if [B] &amp;gt; 0, that is B - b = and [4] = 0,

that is =
&amp;gt; [B] B, and we are still within Species (2) and in the case

amenable to the reversing operator -fy-
.

If now on the other hand we begin with an arrangement of the second

species in the case amenable to ty we must suppose either B = or A = 0, or

else (7&amp;gt;0 and C&amp;lt;=B + A.

Take first this last supposition. The operation of
i/r gives [C] = &amp;gt; C + c,

[B] = B+c and [4]= C- c- B &amp;gt;B- b-B &amp;gt;- b = &amp;gt; c- b= &amp;gt; a.

And [B]+[A] = B + C-B=C&amp;lt;[C],

Hence the operate is licit, belongs to the second species and is amenable to

the reversing operator ty,

If 5=0 and 4 = 0, [B] = [B] = 6 and [A]=C-b and [(7]
=

0or&amp;gt;(7.

If [C] = since [4] &amp;gt; 0, the operate is included in variety (/3) of the

second species and amenable to the reversing operator ty, and if

[C]&amp;gt;C[C-c]&amp;gt;C-c&amp;gt;0,

that is &amp;gt; [B] B which belongs to variety (a) of the second species ;
and

since [C] &amp;gt;C&amp;gt; [B] + [4] is amenable to the reversing operator ^r.

If B &amp;gt; and 4 = 0, then C &amp;gt; [otherwise it would be an arrangement in

Genus 1, Species 2] [C] = or &amp;gt; C, [B] = B + c,

and either [(?]
= and

[4]&amp;gt;0
or

[C]-c&amp;gt;(C-c)+c&amp;gt;B + c-b&amp;gt;[B]- B
and [4] + [B] = C &amp;gt; [C]. Hence in either hypothesis the operate is still in

Species (2) and amenable to the reversing operator ty.

Lastly, if 5 = 0, A a = &amp;gt; C and C &amp;gt; 0, the arrangement is amenable to

the operator ty ,
which will make [B] = b, [A] = C b &amp;lt; C + a &amp;lt; A. We

have then [B] -6 = and [C] 0, and consequently also A &amp;gt; or

[C] -0(7-00,
that is &amp;gt; [B] [B], and the result is still contained within Species (2) and is

amenable to the reversing operator -^r.

(66) The following are examples of paired arrangements belonging to

the first species, adapted to the case of a = 2, 6 = 1. The C and B terms are
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expressed ;
the A line is the same for each of any pair of this species, and

may be filled in at will.

X.9. )CX.
|

16. 13. 10. Fj (19. 16. 13. Fj
where X, Y represent any licit series of C&quot;s and B s respectively.

X.9. 6. ) .,(X.9 ) (X
13. 10. 7. F 16.13.10.4 19.16.13.4

= (16.7.4.1

(16. 13. 7. F
X.9
7.4.1 f

~
[10.7.4

3.

13.7.4.1

The following are examples of paired arrangements of the second species

with a = 2 and 6 = 1 as usual.

X.12.,9

4.1
(X.12.
J 7.4.1.

F.2

7.4.1

F.5.

f-J

X.9 U

1 .

F J

11,1
4.1.

F J

X
1.

rX.9., rX.
,

,^/
J

. . .1= i .
L

iF.llJ IF. 11. 8)

We come now to the third species. Here, I think, the reader will find it

a great relief to the strain upon his attention if I invite him before attacking
the demonstration to consider the annexed diagrammatic cases accommo
dated to the supposition a = 2, 6 = 1. The B s it will be remembered^in this

species do not exist, and the action neither of ^ nor ^ introduces any B
into the transformed arrangement. In the examples given below the C and

A terms occupy the higher and lower lines respectively the comma is used

in the latter to mark off the ^A s from the AiS.

9.6.
) 9.6.3. f 6.3. )_ 6.

14.11.8.5, j

~
14. 11. 8, 2

*
(14.11.8, 2

j &quot;14.11.8.5,

8.5.2 =
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The left-hand accent is used here as elsewhere to signify that phase
of the operator which brings about an increase and the right-hand one a

decrease in the number of (7s. It will readily be seen that the action of the

operator in each of the above examples prepares the arrangement for the

action of the contrary one which will restore it to its original value. It is

worthy of notice that in any two associated arrangements above, an a

(here 2) may appear in each and must appear in one of them. I will now

proceed to the general demonstration.

(67) Let us first suppose 4i = 0, then j4 &amp;gt; 0, otherwise we shall be

dealing with the antecedent species and S- will be applicable, making
[4] = Mi] = a[C] A. a&amp;lt;G and &amp;gt; (4 - a)- Thus the generated arrange
ment is licit and belongs still to the third species; but now [C] + [4j = 4
and [j4]

=
&amp;gt; 4- Hence the reversing operator V is applicable to the new

arrangement ;
the remaining cases to consider (in which A.=a for the

arrangement as well before as after being operated upon) may be separated
into those where C. &amp;gt; 0, and at the same time either C + A 1 &amp;lt; X4 or a

4 = 0,

which are amenable to the operator S- and the complementary cases which

are amenable to S-.

In the cases first considered [4 1 ]
= 4 1 -c, [j4]

= C= 4i & [C] + or

&amp;gt; C (and a fortiori &amp;gt; 0), consequently the new arrangement is licit and still

belongs to the third species, and since either [C] = or else

and [j4] &amp;gt; 0, it is one of the complementary cases and is subject to the

reversing operator &quot;^.

Again, any arrangement for which 4 = a belonging to the complementary
cases is defined by the conditions ^A &amp;gt; and C + A 1

=
&amp;gt; j4 and is by

hypothesis to be subjected to the operator S- which will make [4j = A l + c,

^4] = or &amp;gt; i4 [C] = j4 - 4j - c, and since C = &amp;gt; j4 - A 1 , [C] &amp;lt; C, so that

the operation leads to a licit new arrangement.

Also [C] + [4j = J4, and consequently either ^4] = or [C + A,] &amp;lt; [j4],

which is a condition belonging to the first considered class of cases, subject to

the reversing operator ^ ,
and thus for the third as for both the antecedent

species of the second genus, it has been proved that each designated operator

prior to any arrangement being performed does not take away its licit

character nor carry it out of the species to which it belongs, and on being

repeated brings it back to its original form, and that the effect of any single

operation is to maintain the content (or inertia) of the arrangement constant

but to reverse each of its characters. This is the thing that was to be proved
and brings my wearisome but indispensable task to an end.
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(68) Another and perhaps somewhat clearer image of the classification

of the numbers of the second Genus may be presented as follows : The com
binations of the characters XCOExcoe give rise to eight pairs of groups, say

eight classes. Of these classes four belong to Species 2, and may be repre
sented by four indefinite vertical parallelograms, set side to side, and sub

divided each of them into four, (say) black, white, grey and tawny stripes,

corresponding to the four varieties of the second species. The other four

classes may be similarly represented by four such parallelograms as before,

but separated by a transverse horizontal line into eight sub-classes, four

corresponding to the first species and four to the second. The upper

parallelograms may then be each divided into blue and green, the lower

into yellow and red stripes to represent the respective couples of varieties of

the first and third species. There will thus be in all thirty-two stripes,

namely four blue, green, yellow and red, and four black, white, grey and

tawny, each of which is bifid, representing two groups of opposite sexual

characters, which may be fittingly represented by the upper and under sides

of the sixteen unlimited single-coloured stripes of the first and the eight
unlimited double-coloured stripes of the second set of parallelograms.

The above logical scheme is not intended to convey any notion of the

relative frequency of the three species. The general case is that of the first

species. The second is conditioned by B = b or B = 0, and the third by B = 0.

When B = b it is about an even chance whether the arrangement is of the

second or first species, and when B = of the second or third. Either equality
is a particularization of the B series, the latter signifying that there are no
B s in the arrangement, the former that there are B s descending in rational

progression down to 6 : this supposition is apparently infinitely more general
than the former, because there is no limit to the number of terms in the

progression, and the case of a natural progression of B s of the kind men
tioned with any given number of terms as regards the probability of its

occurring in an arrangement seems to be on a par with the case of the B s

being all wanting. Hence the first species is infinitely more frequent than
the second, and the second than the third. According to Prof. Max Mliller s

theory of the relation of thought to language (if I interpret it rightly)
I ought to have thought out my divisions and schemes of operation in

language, but I certainly had formed in my mind a dim abstract of them
before I had found the language that was competent to give them expression.

In conclusion, I may remark that whilst the experience of the past indi

cated the probability that there did exist (if one could find it) a method of

distributing the arrangements of the second genus into pairs, in such a way
that in each pair the total or partial character should be reversed in passing
from the one to the other, there was nothing to induce a reasonable degree of

assurance that both those characters should be found simultaneously reversed
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in one and the same distribution
;
for aught that could have been foreseen to

the contrary, it might very well have happened that one mode of distribution

might have been needed to prove Jacobi s theorem for the case of only

negative signs appearing in the factors on the left-hand side of the equation,

and a different one for the other case where only every third factor contains

such sign indeed upon the principle of divide et impera or doing one thing
at a time (as invaluable a maxim to the algebraist as to the politician) I had

completed the proof for the former case without thinking of the latter, and

only when on the point of attacking it was agreeably surprised to find that

there was nothing left to be done, for that the proof found for the one

extended to the other in familiar phrase, I had hit two birds with one

stone. We may now ask whether this was a happily found chance solution

or was predestined by the nature of things, and that simple necessarily

implies double enantiotropy of conjugation. Probably I think not, and if so,

a question arises as to the number of solutions for each of the two sorts of

enantiotropy and whether the number of each kind of simply-enantiotropic

conjugations is the same.

Viewed merely as a question of direct multiplication, I think it must be

allowed that what I have here called Jacobi s theorem (including Euler s

marvellous one, as the ocean a drop of water) is the most surprising revela

tion that has been made in elementary algebra since the discovery of the

general binomial theorem, and that the space devoted to its independent, and

so to say, materialistic proof in these pages, although considerable, is not out

of proportion to its intrinsic importance.

H. Intuitional Exegesis of Generalized Farey Series*.

(69) The demands of the press will only admit of a rapid sketch of what

appears to me to be the true underlying principles of the theory initiated by

Farey, honoured by the notice of Cauchy, and to a certain extent generalized

by Mr Glaisher, whose inductive method in the cases treated by him finds its

full development in the method of continuous change of boundary, explained

in the course of what follows. Let us start from the conception of an infinite

cross-grating formed by two orthogonal systems of parallel lines in a plane,

the distance between any two parallels being made equal to unity. The

intersections of any two lines of the grating may, as heretofore, be termed

nodes. A triangle which has nodes at its apices and at no other point on or

within its periphery, may be termed an elementary triangle, and the double

of the area of any such triangle will be unity. If any finite aggregate of

nodes be given it must be possible to pick out a certain number of them

which may be formed together by right lines so as to form a sort of ring-

fence, within which all the rest are included : the area thus formed, if it

* Continued from note G, Interact, Part 2.
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admits of being mapped out into elementary triangles, may be termed a

complete nodal aggregate. Any other contour consisting of lines of any form

(curved or straight) drawn outside of this ring-fence in such a manner that

no nodes occur between the two, may be termed a regular contour.

If any node be taken as origin and any nodal lines through as axes

of coordinates, and if A, A are the nearest nodes to in the radial lines on

which they lie, and if no nodes of the given aggregate are passed over as an

indefinite line rotating round 0, passes from one of these radial lines to the

other, AOA is an elementary triangle, and if p, q ; p, q be the coordinates

of A, A respectively, pq p q
= e where e is + 1 or 1 but is fixed in sign

when the direction of the rotation is given.

When the aggregate is complete, if the values of the coordinates of the

successive points passed over by the rotating line be called . . .
&quot;p, &quot;q ; p, q ;

p, q ; p , q , p&quot;, q&quot; ;
. . .

,
we shall have a Farey series formed by the successive

couples p, q, that is
p&quot; q

- p q&quot;

= e
; p q -pq = e

; pq -p q
= e . . . . Thus

we see that the Farey property is invariantive in the sense of being inde

pendent of the position of the origin.

Next I say, that if any contour to a given aggregate is regular, every
contour similar thereto in respect to any node of the aggregate regarded as
the centre of similitude is also regular, provided the boundary is simple;
meaning that there are no interior limiting lines giving rise to holes or

perforations in aggregate, and no loops formed by the boundary cutting
itself.

In the above figure BOB is any triangle whose sides are bisected in

A, A, A . Suppose to be the origin, A, A two nodes of greatest
proximity to successively passed over by the rotating line for a given
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contour. As this contour expands uniformly in all directions through 0, the

line AA remains parallel to itself. Since AOA is an elementary triangle
so also must the similar triangles AAA

,
A AB

,
AA B be all elementary,

consequently A will be the first new node intervening between A, A
brought into the enlarged aggregate as AA moves continuously parallel

to itself, and AOA, AOA will be elementary triangles ;
it may be noticed in

order to bring this method into relation with that indicated by Mr Glaisher,

that the coordinates of this new node A are the sums of the coordinates

of its neighbours A, A . If the contour were not supposed to be simple,

this condition could not be drawn
;
for if there were a hole round the middle

point of AA the node A would be missing in the enlarged aggregate, and if

the first node to intervene as the contour went on enlarging be called (A),

AO(A) or (A)OA or each of them would be a multiple of the elementary

triangle, so that the constancy of the value of the successive determinants

would no longer hold. In like manner it will be seen that on the same

supposition as above made, if in consequence of the contour contracting about

as the centre of similitude, two points A, A which originally are non

contiguous, at any moment become contiguous, at the moment previous

to this taking place A (and no other point) must have intervened, and after

A has disappeared from the reduced aggregate, no other point can make its

appearance between A, A .

(70) Hence we may contract at pleasure the given contour about any
node as origin, and if the contour so contracted contains at least one node

besides the origin, it will suffice to determine whether the given contour is or

is not regular.

Thus for example in the case of a triangle limited by the axes and by the

right line x + y = n, we may make n = 1 and the trial series will then become

_ _ _ which possesses the Farey property. Hence this will hold good for

a triangular boundary of any size and wherever the origin is situated : this

includes the case of the ordinary Farey series when the origin is taken at

either extremity of the hypothenuse. So again for the area contained within

the axes and the hyperbola xy = n, we may take xy = 1 and the trial series

is the same as before.

(71) It is easy to form unperforated areas of any magnitude which shall

not satisfy the Farey law: for example we may as in the annexed figure

draw a curve passing through the origin, the point (0, 1), and the point (2, 3),

- does not satisfy the Farey law, and consequently no similar contour
1 o

obtained by treating any one of the three nodes which it contains as a centre

of similitude will be a
&quot;

complete contour,&quot; and the successive values of (p, q)
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obtained by the rotation of a line round the origin in such contour will not

constitute a Farey series.

The theory will, I believe, admit of being extended to solid reticulations,

formed by the intersections of three systems of equidistant parallel planes,

determinants of the third order between the three coordinates of successive

points, replacing the pq p q of the plane theory. The chief difference will

consist in the introduction of a new element in the multiplicity of the
&quot; normal orders

&quot;

in which a given set (of points in a plane or) of radii in

solido may be taken. (Points in a plane arranged in any order of sequence,

such that the successive determinants formed by their trilinear coordinates

are of uniform sign, are said to be in a normal order. Rays of a conical

pencil arranged in any order of sequence, such that their intersections by
a plane satisfy the above condition, are also said to be in a normal order : see

privately printed syllabus* of my lectures on Partitions, 1859, or M. Halphen s

theory of Aspects.) But as far as I can see this will in no way militate

against the existence of the laws of invariance and similitude established

for the case of a plane reticulation, but will only introduce a further principle

of invariance, namely that the law of unit-determinants if satisfied by one

normal arrangement of the points of the solid reticulation will be satisfied by

every other.

APPENDIXt
LIST OF CORRECTIONS SUGGESTED BY M. JENKINS TO

PROFESSOR SYLVESTER S CONSTRUCTIVE THEORY OF PARTITIONS.

Page 5, 5 lines from end, 2n (i + 3) should be n (i + 3).

6, between 2nd and 3rd rows of sinister table insert 13.2.0.
7th and 8th 11.2.2.

in 6th row of dexter table, for 8 . 4 . 3 (2) write 8.4.3 (1).

11, line 8 from the end, interchange protraction and contraction

so as to read &quot;contraction could not now be applied to A
and B nor protraction to C .&quot;

13, line 25. If /(#) = (1
-

ar) (1
- O(l -a?) (1 -a?) (1 -a*), for

the second a? read of.

[* Vol. n. of this Reprint, p. 119.]

[t These corrections have been included in those made in the text preceding.]

8. IV. 6
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Page 13, line 29, for
&quot;

latter&quot; read &quot;former.&quot;

15, line 11 from end, for 1
T read /\

20, line 4, for 1 + 2 read i + 2.

line 5, for 1 + 2 read i + 2.

f+i j*+j

22, line 11, for X,x
2 read XjX

2
.

line 20, for
&quot; the minimum negative residue of i I

&quot;

read

25, line 7, for - read .

1 xn 1 xr

line 4 from the end, for
&quot;

to the 5th now &quot;

read &quot;

to the 5th row

now.&quot;

27, line 15, for 15, 7, 3 read 13n ll, 3.

line 19, for (1 + ax) (1 ax3
) (1 ax ) . . . read

(1 + ax) (1 + ax3
) . . . (1 + ax 2̂ 1

).

line 22, for a read _ a.
1 x 1 x2

line^30, for
&quot;

angle whose nodes contain i nodes
&quot;

read whose sides.

28, line 5, for
&quot; with j i or fewer parts

&quot;

read ; 1.

line 12, for 1 + -
,

of + ^ ~ X
-

#&amp;lt;&quot;

+1 etc.
I rr& _ &amp;lt;T* I T**J. w J. // JL IAJ

read of* +~
,

w+1
-I ,

~
.

U) + 4 + etc.
__ /y&amp;gt;^ /v&amp;gt;* _ /r4

J. \AJ -L t/ JL

If in the expression in line 9, namely in

1 x*- y .I a?1
. . . 1 x21

^js-g+si

we put j
= 3 we*[obtain

1 op-* . 1 x^-*
9_ 6+2; _

1 -3*. 1 -X*
X

1 x2-
. 1 x*

since o&amp;gt;
= 2i 1, and similarly for other terms when we put j = 2 and j = 1.

The correction which I offer seems to me to be right, and the expre8sion

in the paper to give a wrong result in the case when n happens to be equal

to G) + 2
;

for then the number of parts being supposed to be exactly i, the

first bend contains 2t 1 or &&amp;gt; nodes, and there is then no way of placing the

remaining 2 nodes so as to make the partition a conjugate partition sup

posing I have not misunderstood the article.

Page 29, line 8, for 19, 7, 6, 6 read 10, 7, 6, 6.

figure, either insert a node at junction of 5th column and 7th row

or remove a node from junction of 7th column and 5th row.

lines 7 and 8 from the bottom, if we remove a node from the

figure no change is required in these two lines; but if we
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insert a node in the figure, then 111111733 should be

11 11 11 7 5 3 and 5 5 5 3 1 1 should be 5 5 5 3 2 1.

Page 31, line 15 from end, after ----- -T- insert &quot;or of
1 ax . 1 oaf ... 1 axd

xn ai.&quot;

,, 34, line 7, for a-7 read ae
.

line 8, for (x
6 + ax16

)} read (x* + #2e
).

37, line 4, for xn read x* .

line 7, for a?i+l read a,-
2i+s

.

40, line 6, a^ i is, I believe, the right final term
;
but it appears as

if it were the first of a pair instead of the last of a pair,

i i being a quantity which may vanish.

If the pair of expressions which in the text precede at i, if definitely

expressed and not left to be understood, should be

[Oi-l + ;_:
-

(2l
-

3)], [&amp;gt;;_!
+ Ot;_2

-
(2l

-
2)],

and not as in the text

the factor which should precede a{ i is [a{ + a{ (2i I)].

I do not quite follow lines 9 13 of p. 40, possibly from the oversight
in the subscripts I do not see what is intended. But it seems to me the

following proof would be right :

The expressions of the same form succeeding a^ + a^ l and at + 2 2

must be continued so long as they are positive, and must be rejected when

they become negative.

Now from the fact of i being the content of the side of the square belong

ing to the transverse graph a{
= or &amp;gt; i, a

t
- = or &amp;gt; i, therefore af + af (2i 1)

is positive and is therefore one of the terms of the series. Also ai+l = or &amp;lt; i

and ai+l = or
&amp;lt;i,

therefore ai+l + Oi+1 (2i+ 1) is negative and must conse

quently be rejected.

The intermediate expression is a { + ai+1 2i
;
and for this we may in all

cases put at i as the last term of the series for the following reason :

If the extreme inside bend have more than one node in the row, then

Oi+1
= i and a; + a

t
-

+1 2i is = a; i, which is not negative since at
- = or &amp;gt; i.

If the extreme inside bend degenerate, so that it consists only of a vertical

line or of a single point, then a; = i
;
and since ai+l &amp;lt; i in this case, therefore

di + ai+l 2i is negative and inadmissible as a term in the series
;
but since

di
- i = there is no harm in putting it as the final term in the series.

Page 601, Vol. ill. of this Reprint, line 6 from the end, for 3100 read 3110.

62



2.

SUR LES NOMBRES DE FRACTIONS ORDINAIRES INEGALES

QU ON PEUT EXPRIMER EN SE SERVANT DE CHIFFRES

QUI N EXCEDENT PAS UN NOMBRE DONNE.

[Comptes Rendus, xcvi. (1883), pp. 409413.]

DANS le Philosophical Magazine, 1881, p. 175, M. Airy, associe etranger

de 1 Institut, annonce qu il a calcule, pour 1 usage de 1 Institution of civil

Engineers, a Londres, les valeurs logarithmiques de toutes les fractions

7YI

ordinaires
,
dans lesquelles m et n ne contiennent nul facteur commun et

71

n excedent pas 100, arrangees dans 1 ordre de leurs grandeurs, et que le

nombre de ces fractions est 3043.

Je vais montrer qu on peut appliquer la methode dont M. Tchebycheflf

s est servi dans sa theorie celebre sur les nombres premiers, avec 1 addition

que j y ai faite*, pour trouver des limites superieures et inferieures au

nombre d un systeme pareil de fonctions quand la limite des valeurs de m et

de n est un nombre quelconque donne&quot;.

1. Je dis que si Ti signifie le nombre de nombres inferieurs et premiers

a i, nombre entier (ce que nous nommons, a Baltimore, le totient de i), on

aura 1 identit^

C est une consequence du theoreme plus general que &quot;si a1} a2 , ..., at

sont des nombres entiers quelconques, et si Ton nornrne le nombre des a

qui contiennent r la frequence de r par rapport au systeme des a, et qu on

prenne le produit de la frequence de r par son totient, la somme de ces

produits (quand r prend toutes les valeurs de 1 jusqu a 1 infini) sera la

somme des a&quot;

* Voir American Journal of Mathematics. [Vol. m. of this Reprint, pp. 530, 605, 672.]
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2. Nommons Jx la somrne-totient de x, c est-a-dire la somme des

totients de tous les nombres qui n excedent pas la valeur de Ex (la partie

entiere de x).

fl)\ V
Je me servirai desormais de

(

-
j pour signifier la partie entiere de -

.

Or ecrivons les suites successives

- 1 -

/x\ fx\ fx\ fx\ fx\ fx\

(D- (s)-
1

(i)
+l;

(*) (i)-
1

-

(B)
+I;

I 1
4&quot; ~

&quot;

X

g augmentant ad libitum.

Je dis que, &quot;si r est un nombre entier quelconque qui se trouve dans les

(y&amp;gt;\

fffi\

5 j ,

-
,

. . . ,
et si

o/ \o/

j
= 2t ou 2i + 1, on aura

et que, si r appartient a une suite quelconque d ordre pair, on aura

E(
J- }-2E -

=0.&quot;

\rJ \r

Consequemment, en appliquant le theoreme precedent, on aura

JO + i) o* (*+!)_ , ,

2 2

ou $
29_i est la somme des totients des nombres qui sont en meme temps

egaux ou inferieurs a E - et plus grands que E~, c est-a-dire

f 1 \ f 1

Si done on ecrit

4 .

3 4 o b

on aura, quand ic = un nornbre entier pair (soit 2i),

Ox = (2i
2 + t)

-
(i

2 + 1)
= i

2 =
T̂T

et, quand x = un nombre entier impair (soit 2i + 1),
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Avec 1 aide de ces egalites, si x est un nombre positif quelconque entier

ou fractionnel, on obtient facilement les inegalites

Qx = ou &amp;gt; ;

6x = ou &amp;lt;

4

En appliquant a ces deux inegalites la m^thode d approximation successive

que j ai appliqude, dans* le Memoire cite, aux inegalites auxquelles est

assujettie la fonction ^r(x) (voir Serret, Algebre superieure, edition de 1879,

t. II. p. 233), je parviens facilement et rigoureusement a demontrer que,

etant donn^e une quantite e aussi petite qu on veut, on peut trouver une

limite superieure L et une limite inferieure A a Jx, ou

/3 \
L =

(
+ i) )

a? A x + R (log x)
\7T /

A =
(-.

-
rj } x2 - A x +# (log*),

yrr J

ou R(\ogx), R (\ogx) sont tousles deux fonctions rationnelles et entieres de

log a; d un degre fini, dont les coefficients aussi bien que A et A restent

toujours finis et ou 77, 77 sont tous les deux plus petits que e.

J(x] 3
II s ensuit que la fraction -~-

possede une valeur asymptotique

drx

(ce qui n est pas demontre pour la fraction analogue ,
dans la theorie

Jx
parallele de M. Tchebycheff) et que la valeur de approche indefiniment

3u

pres quand x est pris suffisamment grand de
,
c est-a-dire de 30396....

II est facile de voir que la quantite Jx diminuee de 1 unite n est autre

chose que le nombre des fractions dans les Tables pareilles a celles de

M. Airy. Ainsi, pour le cas de x = 100 selon M. Airy, Ja;=3044. Pour
o

ce cas a2 =3039-6.
7T

2

Avec 1 aide de ces limites on peut calculer la probabilite que deux

nombres dont la limite superieure est tres grande soient premiers entre

eux. Car si cette limite est x, le nombre total des cas qui peuvent arriver

est x*, et le nombre des cas pour lesquels les nombres choisis sont premiers

entre eux sera 2Jx 1. Consequemment, la probabilite en question

6
sera

7T&quot;

M. Franklin, 1 auteur de la belle demonstration, inseree dans les Comptes

rendus, du th^oreme d Euler sur le produit (1 -x) (1 -a2

) (1
- x3

) ..., a bien

[* Vol. in. of this Eeprint, p. 532.]
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voulu m adresser la remarque que cette conclusion peut etre au moins con-

firmee, peut-etre meme absolument demontree, de la maniere suivante :

x e*tant pris tres grand, la probabilite que deux nombres inferieurs

a x, pris au hasard, ne contiennent pas tous les deux le nombre premier p,

sera 1 . Done, la probability cherchee sera

qui est la reciproque de

c est-a-dire est dgal a
6

II y a une suite doublement infinie d equations fonctionnelles exactes

qu on peut former avec les J(x). En particulier, il y a une serie simplement
infinie de telles fonctions ou les signes sont alternativement positifs et

negatifs, et consequemment peuvent servir chacun a donner une suite infinie

de limites a Jx.

Ainsi, si Ton dent

6x = Jx J- x=2J - 3J - +ZJ - J-

on aura toujours, quand

x = (k
2 + k) i,

et quand x = (k
2 + k) i

x-

2 (k- + k)

et, quel que soit le residu de x par rapport au module k* + k, on peut calculer

la valeur de 6k x. Enfin, si x est une quantite positive quelconqne, on trouvera

a? + 1x + 1
kx ou &amp;gt; = ou &amp;lt;



3.

NOTE SUR LE THEOR^ME DE LEGENDRE CIT& DANS UNE
NOTE INSEREE DANS LES COMPTES RENDTJS.

[Comptes Rendus, xcvi. (1883), pp. 463465.]

LE theoreme de Legendre, cite par MM. de Jonquieres et Lipschitz, est

une consequence immediate d un theoreme logique bien connu, lequel, mis
sous forme sensible, dquivaut a dire que, si A, B, C, ... sont des corps avec

la faculte de s entrecouper, contenus dans un vase d eau, et si a, ab, abc, ...

represented symboliquement les volumes de A, de la partie commune a
A et a B, de la partie commune a A, B, C, ..., alors le volume du liquide

ddplace par la totalite des corps sera

Consequemment, ce theoreme admet une generalisation infinie dont je
donnerai un seul exemple.

Nommons les nombres premiers qui n excedent pas n, nombres premiers
subordonnes a n, et distinguons entre eux ceux qui sont plus grands que
*Jn comme superieurs.

Le theoreme de Legendre equivaut a dire que, si p1} p2 , ..., p{ sont

les nombres premiers subordonnes a \/X le nombre des nombres premiers
subordonnes a n du genre superieur augmente de 1 unite est egal a

7i-2 -j+2{ 12
Or, repr^sentons la fonctiou #(# + 1) par A#; alors on aura le theoreme

que la somme des nombres premiers subordonnes a n du genre superieur

augmente de 1 unite sera egale a

n \ ^ / n \
+2pj 2A ---- -....

J \PipJ
Par exemple, si ft = 11, les nombres premiers subordonnes a 11 du genre

superieur seront 5, 7, 11, et les nombres premiers subordonnes a \/ sont 2, 3.
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On doit done trouver, et en effet on trouve

(11 . 12)
- 2 (5 . 6)

- 3 (3 . 4) + 6 (1 . 2) = 2 (1 + 5 + 7 + 11).

Je saisis cette occasion pour dire que j ai fait calculer la valeur de J (n),

&quot; somme-totient de
w,&quot; pour toutes les valeurs entieres de n jusqu a 500, et je

g
trouve que sans aucune exception J(n) est toujours plus grand que ^(n

2
)

3
et plus petit que (n + 1)

2
.

II reste a demontrer que ces limites sont d application universelle pour

un nombre entier quelconque n.

On peut faire une extension illimitee du theoreme donne dans le numero

precedent des Comptes rendus sur les sommes-totients, tout a fait analogue

a 1 extension ci-dessus don nee au theoreme de Legendre sur les nombres

premiers. Nommons, par exemple, u (j) la somme de tous les nombres

premiers et inferieurs a j, et Uj la somme

M(l) + w(2) + ... + M(j).

On etablit facilement* Fidentite

ou A# signifie le nombre triangulaire ^x(oc+ 1), et avec ce theoreme, en se

servant, comme dans la theorie des sommes-totients, du principef de la

division harmonique et en ecrivant

j ~j 2 3 4 5

on en deduit facilement Vj
i =^ ^ quand j est pair,

/ o
_|_ i \3

? + l

T^ =
-/ + 77- quand j est impair, etc.

1

Dans ma NoteJ $wr le nombre des fractions ordinaires inegales, etc., j ai

omis de dire que 1 equation

peut etre ecrite sous la forme

[* With M (r)
= ^rT(r), u (1)

=
^, T (r) being the totient of r, we have

22
A^^u(r)

= ii(t + l)(2t + l).]

[t Vol. in. of this Reprint, p. G73.] [ p. 84 above.]
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De meme, 1 equation

(2)

r 6

equivaut a 1 dquation
*

II est facile de demontrer, avec 1 aide des equations (1) et (2), que les

valeurs asymptotiques de -^ et ^ pour j indefiniment grand sont et
/ /

respectivement.

Cauchy, MM. Halphen et Lucas ont ecrit sur les suites de Farey. II est

done bon de faire remarquer que Jj est le nombre des fractions et Uj la

somme des numerateurs des fractions dans une telle suite pour laquelle la

limite donnee est j.

[* For iJ(j + l)(j + 2) read &j (j + 1) (2j + l).]



4.

SUR LE PRODUIT INDEFINI 1 -x . I - x&amp;gt; . 1 -a? ....

[Comptes Rendus, xcvi. (1883), p. 674]

DANS le Johns Hopkins Circular, numero de fevrier*, on trouvera 1 ex-

plication d une methode graphique pour convertir les produits continus en

series. J ai applique cette methode pour obtenir la formule connue (Cayley,

Elliptic Functions, p. 296)_1_
1 ax . 1 ax* . 1 ax3

. . .

xa= 1 +
1 x.I ax 1 x .1 of .1 ax .1 ax2

x?a3

1 x.I x2 .1 x3 .1 ax.\ ax* . 1 ax3

Je me suis demand^ quelle serait 1 expression obtenue en appliquant la

meme construction (ou dissection) graphique (qui fournit la formule citee en

haut), au produit 1 + ax. 1 +ax2
. 1 + ax3

..., et j ai trouve sans aucune

difficulte 1 expression suivante :

En faisant a = 1, on obtient

1 x.l #2 .1 x3
...

C est le theoreme bien connu d Euler, lequel, sous ce point de vue, n est

qu un corollaire d un theoreme plus general.

Par la meme methode, j obtiens la serie pour les theta fonctions et

d autres series beaucoup plus generales, sans calcul algebrique aucun.

[* Yol. in. of this Reprint, pp. 669, 686; and above pp. 30, 33.]
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SUR UN THEOREMS DE PARTITIONS.

[Comptes Rendus, xcvi. (1883), pp. 674, 675.]

SOIENT St, s2 , ..., Si des suites de nombres consecutifs, telles que le plus

petit terme dans aucune d elles n excede de plus de 1 unite le plus grand
terme dans la suite qui precede ;

bien entendu que t peut devenir 1 unite et

qu une suite quelconque peut se reduire a un seul terme. On peut envisager
ce systeme de suites comrne une partition de la somme des nombres contenus

dans leur totalite : alors on aura le theoreme suivant :

Le nombre de systemes de i suites de nombres consecutifs dont la somme
est N est le meme que le nombre de partitions de N qu on peut former avec les

repetitions de i nombres impairs. Comme exemple, en faisant N= 10 et

* = 1, 2, 3 successivement, on aura d un cotd les divers groupes de partitions

10 9, 1 1, 2, 7 1, 3, 6

1, 2, 3, 4 8, 2 2, 3, 5

7, 3 1, 4, 5

6, 4

et de 1 autre (en se servant d un indice superieur pour signifier le uombre
des reflexions de sa base),

5 2
9, 1 3 s

,
1 I 2

, 3, 5

I 10
7, 3 3 2

,
I 4

7, I 3
3, I 7

5, I 5

En ajoutant ensemble les equations qui, pour la me&quot;me valeur de N,

repondent a toutes les valeurs possibles de i, on retombe sur le thdoreme
bien connu d Euler que le nombre des partitions de N, en excluant seulement

les repetitions, est le meme que le nombre de ses partitions en excluant

seulement les nombres pairs. Ainsi, on peut envisager ce dernier theoreme
comme un corollaire d un theoreme bien autrement profond et qui n est pas
du tout facile a demontrer, sinon pour le cas le plus simple, c est-a-dire quand
il n y a qu une seule suite. Pour ce cas, le theoreme peut s exprimer en
disant que le nombre de suites de nombres consecutifs dont la somme est N est

egal au nombre de diviseurs impairs de N.



6.

PREUVE GRAPHIQUE* DU THEOREMS D EULER SUR LA
PARTITION DES NOMBRES PENTAGONAUX.

[Comptes Bendus, xcvi. (1883), pp. 743 745.]

UNE partition quelconque de n peut etre representee par un assemblage
de points uniformement distribues sur un plan et limites par deux lignes

droites. Ainsi, par exemple, 1 arrangement suivant:

sera la representation graphique de la partition du nombre 22 dans les parties

7, 5, 5, 3, 2.

Mais, de plus, un tel arrangement de points peut etre distribue dans un carre

et deux groupes que je nommerai lateral et inferieur. Ainsi, 1 arrangement
ecrit ci-dessus peut etre decompose dans un carre de neuf points, dans un

groupe lateral de huit et dans un groupe inferieur de cinq points.

Considerons les partitions de n dans j parties inegales. Tons les arrange
ments de points qui correspondent a ces partitions peuvent etre classifies

selon la valeur du cote du carre qui y correspond et que je nommerai 6.

Alors, pour une valeur donnee de 6, le groupe lateral contiendra ndces-

sairement ou 6 ou 6 1 lignes de points, car autrement il y aurait des

parties egales dans 1 arrangement. Dans le premier cas, le nombre de

colonnes dans ce groupe inferieur peut etre un nombre quelconque, mais pas

plus grand que 6
;
dans le second cas, pas plus grand que 6 1. Done, en

se rappelant que le nombre de partitions de v en 6 parties inegales est le

coefficient de x dans le developpement de

X

et que le nombre de partitions de v dans j 6 parties inegales et pas plus

grandes que est le coefficient de xv ai~e dans le developpement de

(1 + ax) (1 + ax*) . . . (1 + ax6
},

on voit que, quand le nombre de lignes dans le groupe lateral est 0, le nombre

[* See p. 32 above.]
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total d arrangements de n dans
; parties inegales qui correspondent a cette

espece de distribution sera le coefficient de xn-^^~6 dans le developpement de

l+ax.l+ax2 ...l+ax9 ^
1-x.l -x* ...l-x6

X

De meme, le nombre des partitions qui correspondent a la seconde hypothese
sera le coefficient de x^^a^-6 dans le developpement de

1 + ax . 1 + axz
. . . 1 + ax8 1

e~
1 -x.l -x2

... 1 -x-1
X

En donnant a 6 toutes les valeurs depuis 1 jusqu a I mfini, on obtiendra

toutes les partitions de n dans ; parties inegales. Les cas ou 6 excede j
n offrent rien d exceptionnel, car, pour ces cas, le coefficient de ai~6 dans les

deux fonctions generatrices sera nul.

Or le coefficient de xn-eaaJ~e dans chacune de ces deux fonctions est le

meme que le coefficient de aPaJ dans les produits qui resultent de leur

multiplication par xffi a6
.

En comparant les coefficients de xn ai pour toute valeur de n et i, on

trouve done

(1 + oca) (1 + x*a) (1 + x3

a) + . . .

1 + ax
.

1 + ax . I + ax2
;= 1+ -- a?a + -i -a;7 a2 +...

I * I- x.l-x*
l + ax.~

1 + ax
.+ xa + a?o? + ...

I x

l+ax.l + ax2
... 1 + ax*-1 ^

-4 fp .

1 x.l x* ... L xe~l

En mettant a = 1, on obtieut ainsi
302+

2 +X 2

ce qui est le theoreme d Euler.

En reunissant les deux series dans une seule, on obtient, pour le cas

general,

1 + aa? 1+ax.l+aat 1 + ax . 1 + ax2
. 1 + ax6

T^r* -r--^i *-** + i- a,.i-#.i-*-*
a
*+-&amp;gt;

c est-a-dire 1 equation que j ai donn^e dans la Note precedente [p. 91].

Je dois dire que c est M. Durfee, eStudiant a Baltimore, qui, le premier
(dans un tout autre probleme), a fait usage du genre de decomposition
d une assembles reguliere de points dans uri carre et deux groupes supple-
mentaires dorit j ai profile dans 1 analyse precedente (voir Johns Hopkins
Circular, [Vol. in. of this Reprint, pp. 661 ff.J).



7.

DEMONSTRATION GRAPHIQUE* D UN THEOREMS D EULER
CONCERNANT LES PARTITIONS DES NOMBRES.

[Comptes Rendus, xcvi. (1883), pp. 11101112.]

COMME confirmation de la puissance de la methode graphique appliquee

a la theorie des partitions, la preuve suivante d un theoreme que je crois e&quot;tre

nouveau ne sera pas, je 1 espere, tout a fait depourvue d interet pour les

geometres ;
car il serait, il me semble, assez difficile d en trouver une preuve

directe analytique au moyen de la comparaison de fonctions generatrices,

comme on le fait ordinairement pour des thdoremes de ce genre.

Euler a trouve facilement, par une comparaison de telles fonctions, que
le nombre de partitions de n en nombres impairs est le meme que le nombre

de partitions de n en nombres inegaux ; je precise ce theoreme en ajoutant

que le nombre de partitions de n en nombres impairs, qui se divisent en

i groupes de nombres distincts, est egal au nombre de partitions de n en i

suites tout a fait distinctes de nombres consecutifs.

Nommons U une partition en nombres impairs et F une partition en

nombres inegaux.

Je dis qu on peut passer de U a V par la methode suivante. Supposons,

par exemple, que U soit la partition 11. 11. 7. 7. 7. 5.

Je forme deux assemblages reguliers de points en prenant dans Tun

d eux, sur chaque ligne, un nombre de points egal a
, , ,222

2
&amp;gt; 9 ~i&amp;gt;

&amp;gt;

et 1 autre assemblage en diminuant de 1 unite chacun

de ces nombres de points. On forme ainsi ces deux assemblages :

i. 2.

et, en comptant le nombre de points dans les angles successifs de chaque
figure, on obtient, dans Tun, 11, 9, 5, 2, et, dans 1 autre, 10, 8, 3; en les

reunissant, on obtient la partition

11.10.9.8.5.3.2,
qui est un V.

[* See p. 39 above.]
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Or il est facile de voir que dans cette methode de transformation U
devient F, et Ton demontre (en construisant un certain systeme d equations

lineaires) que, pour un V quelcouque donne, on peut trouver un et un seul U
qui se transformera dans ce V, de sorte qu il y a correspondance un a un

entre la totalite des U et la totalite des V, ce qui sert a demontrer le

theoreme original d Euler. Mais si tel etait le but de cette recherche,

cette methode de transformation serait peine perdue, car il existe une tout

autre methode, infiniment plus simple, d etablir une telle correspondance :

on la trouvera expliquee dans le cahier de VAmerican Journal of Mathe

matics qui va paraitre. L utilite de cette methode speciale de creer la

correspondance consiste en ceci : que le V ainsi conjugue avec un U
contiendra le meme nombre de suites distinctes de nombres consecutifs que
le U contient de nombres impairs distincts : cela veut dire que le nombre des

lignes inegales (disons i) dans Fun ou 1 autre assemblage de points est

toujours egal a j, nombre de suites distinctes obtenu en operant de la maniere

expliquee ci-dessus. La preuve en est facile
;
car si Ton enleve Tangle

exterieur a Tun et a 1 autre des assemblages, on verra facilement que quatre
cas se presenteront : pour un de ces cas, j ne change pas de valeur, a cause

du changemerit opere dans les deux assemblages; dans un autre cas, j
subira une diminution de deux unites, et dans les deux cas intermediaires

d une seule unite. Ces cas correspondent aux quatre suppositions qui
resultent de la combinaison des hypotheses que les deux premieres lignes

ou les deux premieres colonnes dans 1 un ou 1 autre des assemblages sont ou

ne sont pas dgales entre elles : de sorte qu on verra facilement que le j et le

i seront toujours diminues de la meme quantite ,
ou 0, ou 1 ou 2, et

consequemment on aura i j constant
;

si Ton enleve 1 un apres 1 autre les

angles des deux assemblages jusqu a ce qu on arrive a un assemblage qui

sera de 1 une ou 1 autre des quatre formes suivantes :

l. 2. 3. 4.

pour lesquels cas i = 2, j
= 2

;
i = 1,^=1; i=l, j = I

,
i = l, j=l; re-

spectivement on aura toujours ainsi i =j, de sorte qu il y a correspondance

une a une entre les partitions du meme nombre n qui contiennent justement
i nombres impairs repetes (ou non) a volonte, et celles qui contiennent

justement i suites distinctes de nombres consecutifs, et consequemment il y
aura le meme nombre des unes et des autres : ce qui est le theoreme que j

ai

voulu demontrer.



8.

SUR UN THEOREMS DE PARTITIONS*DE NOMBRES COMPLEXES
CONTENU DANS UN THEOREME DE JACOBI.

[Comptes Rendus, xcvi. (1883), pp. 1276 1280.]

DANS le Journal de Crelle, t. xxxn. p. 166, Jacob! fait la remarque que
le developpement en serie de j# donne lieu a un theoreme que j exprirne
de la maniere suivarite.

Soient a et b deux quantites c = a + b
;
alors le produit infini

Ce theoreme etant vrai pour un nombre infini de valeurs de
j- sera, par

sa forme meme, necessairement vrai quand a et b sont de symboles
absolument arbitraires, et Ton voit facilement que, pour le montrer dans

ce sens universel, il suffira d enoncer un certain theoreme sur les nombres

complexes dont voici I enonce :

Designons par C, B, A des nombres complexes de la forme fc, fc + b,

fc + a, ou f est on zero ou un nombre entier et positif quelconque.

Considerons un arrangement compose avec des C, des B et des A non repetes
ou avec des C, B, A pris seuls ou combines deux d deux, en excluant les

arrangements (que je nomme exceptionnels) qui ne contiennent que des B formant
une serie arithmetique dont b est le dernier terme et c la difference constante,

ou des A formant une serie semblable dont a est le dernier terme,

Par le caractere majeur et le caractere mineur d un tel arrangement, je

designe la parite ou I imparite du nombre total des termes et du nombre des C

quit contient. Je dis qu d chaque arrangement (non exceptionnel) on peut en

associer un autre pareil dont la somme totale des eUments (les A, B, C) sera

la meme, mais dont les caracteres seront tons les deux opposes.

La demonstration deviendra plus claire en se servant de la notation

suivante. En designant par X un symbole d une serie de termes, je me
servirai de X et de X pour signifier le terme le plus haut et le terme le plus

[* See above, p. 59 ff.]

S. IV. 7
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has de la serie, et en me servant de Y ou Z pour signifier un symbole ou

simple ou affecte de marques quelconques, j emploie les notations

F=0, Y+ Z=0, F&amp;gt;0, Y+Z&amp;gt;0,

pour signifier que les F rnanquent, que les Y et les Z manquent tous les

deux, que les Fne manquent pas, que les F et les Z ne manquent pas tous

les deux.

Je divise les B (d un arrangement quelconque) en deux especes, E et B
,

dont B represente un B appartenant a la serie arithmetique (la plus grande

qu on puisse former) commencant avec le plus grand B, et B les autres B
qui se trouvent dans 1 arrangement.

Ainsi je divise les A en
t
A et euA

t ;
A

t signifie un A appartenant a la

serie arithmetique la plus grande qu on puisse former, dont a est le terme

minimum (de sorte que, si 1 arrangement ne contient pas un a, A / manque)
et A signifie les autres A de 1 arrangement.

Finalement un point au centre d un symbole a droite ou a gauche

signifiera ce symbole diminue ou augmente respectivement de c.

On voit que dans cette notation les arrangements exceptionnels seront

exprimes ainsi : ceux qui appartiennent a 1 une des deux classes par les

conditions B b = avec A + C=0, et les autres par les conditions B =
avec ^ + (7=0.

Je divise les arrangements non exceptionnels en trois classes, dout les

conditions seront respectivement les suivantes:

Premiere classe :

B-b &amp;gt;0 ou (B-b = avec C-c^ B-b).

Deuxieme classe :

B-b = avec (C-o B-b ou (7=0, mais A + C&amp;gt;Q),

ou B = avec (A = ou 4 a
&amp;gt; C).

Troisieme classe :

5 = avec A&amp;gt;0 et A-a&amp;lt;C et
/
A + C&amp;gt;Q.

Toutes les hypotheses possibles se trouvent comprises dans ces tableaux

des arrangements exceptionnels et non exceptionnels.

A chacune des trois classes des derniers je vais assignor un operateur qui

peut etre applique a chaque arrangement de cette classe et qui le trans-

formera dans un autre arrangement appartenant a la meme classe; cette

disposition, appliquee deux fois successivement, reproduira 1 arrangement
sur lequel on opere, lequel ne changera pas la somme des Elements, mais

changera chacun des deux caracteres en sens oppose : c est-a-dire que chacun

des trois operateurs que je vais definir, et que je nommerai
&amp;lt;, -v/r, S-, doit
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satisfaire a cinq conditions qu on peut nommer catholicite, homceoyenese,

mutualite, inertie et enantiotropie.

1.
(f&amp;gt; signifie que, si C = ou (7 c &amp;gt; B B, on doit former un nouveau

C, en substituant, pour chaque B, B- (c est-a-dire sa valeur diminuee de c),

et reconstituer 1 inertie originale en ajoutant ensemble les c ainsi soustraits

pour former un nouveau (7, et que, dans le cas contraire, C doit etre

decompos^ en simples c, dont on ajoutera un au premier B (le B le plus

grand), un au second B, etc., jusqu a ce que tous les c dont on a a disposer
soient epuises.

2.
-v/r signifie que, si B&amp;gt;0 ou (7 = 0, ou C&amp;gt; B + A, on doit former un

nouveau C en substituant a B et A leur somme et que, dans le cas contraire,

C doit etre decompose en -B et A si B &amp;gt; et en b et A si B = 0.

3. S- signifie que, si (7=0 ou C + A / -&amp;gt;A, il faut decomposer ,A en

A
t
et (7 ou en a et (7, selon que A

f

= ou &amp;gt; 0, et que, dans le cas contraire,

pour (7 et A
/}

il faut substituer leur somme. On sera satisfait en etudiant

les conditions des trois classes que les
&amp;lt;f&amp;gt;, ty, ^ possedent tous les trois cinq

attributs voulus : la preuve en est facilitee en supposant que, dans chaque
seVie des C, des B et des A, prise separement, on suit un ordre regulier de

grandeur dans 1 arrangement de ces termes respectivement au multiple
de c qui entre dans chacun d eux.

Si Ton donne a a et a b des valeurs quantitatives (ce qui est toujours

permis), et en particulier les valeurs 1 et 2 respectivement, on retombe
sur le theoreme d Euler, rnais (chose a noter) la correspondance donnee

par le procede general applique a ce cas ne sera nullement identique a la

correspondance donnee par le procede de Franklin. En effet, les arrange
ments exceptionnels ne seront pas les memes dans les deux methodes :

selon le procede de Franklin, les arrangements non conjugables sont de
la forme

i, i+l, ..., 2i-l ou i+I, i + 2, ..., 2i,

tandis que la methode actuelle donnera, comme non conjugues, les arrange
ments de la forme

1, 4, ..., 3i-2 ou 2, 5, ..., 3t-l.

La methode employee ici fournira elle-meme toujours deux systemes de

correspondance absolument distincts, dont on obtient 1 un, qui n est pas

exprime ,
en echangeant entre eux les a, A et les b, B, car la methode n est

pas symetrique dans son operation sur ces deux systemes de lettres.

Ce cas est analogue a celui de la correspondance perspective entre deux

triangles, laquelle peut etre simple ou triple, comme je 1 ai montre ailleurs.

Jacobi, dans 1 endroit cite, a fait la remarque que, pour a = 1, 6 = 2, en se

servant du signe superieur (+) dans son theoreme, on retombe sur le

72
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theoreme d Euler et que, pour le cas de a = 1, b = 1, en se servant du signe

inferieur, sur un thdoreme donne (il y a longtemps par Gauss). On peut

ajouter que, si avec cette supposition on se sert du signe superieur, on obtient

=
0, mais si Ton ecrit a = 1 e, 6 = 1, en faisant e infinitesimal, on tombe

(chose singuliere) sur 1 equation de Jacobi elle-meme,

Puisque j
ai introduit le nom de 1 auteur des Fundamenta nova, qu on

me permette la remarque que, dans les deux avant-dernieres lignes de

1 avant-derniere page de cet immortel Ouvrage, on trouve un theoreme qui

equivaut a 1 equation

q q
3

q
5

q &amp;lt;?

1+2
q
1+z+s

&quot;* T i _ K
* * *

&quot;~~

1 i 1 i -.9 *^ T i *,A
* &quot;

3

l + q l+q3 l+q5 l+q l+q2

or, le premier cas du theoreme intitule: Sur un theoreme d Euler, contenu

dans une Note precedente des Comptes rendus*, affirme que le nombre des

series arithmetiques avec lesquelles on peut exprimer n est egal au nombre

des diviseurs impairs de n, laquelle consideration mene immediatement

a une consequence qu on ne pourrait manquer d observer (mais que M.

Franklin, effectivement, a remarqude le premier) et qui s exprime par

1 equation

T^q
+
l^q3

+
T^q5

+ &quot;
=
l-~q

+
I - q

2
+
l^q3

+ &quot;

equation tres ressemblante a 1 autre et qui peut etre combinee avec elle de

maniere a donner naissance a quatre autres Equations de la meme espece.

On n a pas besoin de dire que le theoreme qui constitue la matiere

principale de cette Note, en faisant a = I et en considerant 6 comme une

quantite arbitraire, contient ou au moins conduit immediatement au de-

veloppemerit de S^ dont Jacobi 1 a traite* comme consequence.

[* p. 95 above. Cf. p. 25 above.]



9.

ON THE NUMBER OF FRACTIONS CONTAINED IN ANY
&quot;FAREY SERIES&quot; OF WHICH THE LIMITING NUMBER IS

GIVEN.

[Philosophical Magazine, xv. (1883), pp. 251257 ;
xvi. (1883),

pp. 230233.]

A Farey series
(&quot;

suite de Farey &quot;)

is a system of all the unequal vulgar

fractions arranged in order of magnitude, the numerator arid denominator of

which do not exceed a given number.

The first scientific notice of these series appeared in the Philosophical

Magazine, Vol. XLVII. (1816), pp. 385, 386. In 1879 Mr Glaisher published
in the Philosophical Magazine (pp. 321 336) a paper on the same subject

containing a proof of their known properties, an important extension of the

subject to series in which the numerators and denominators are subject to

distinct limits, and a bibliography of Mr Goodwyn s tables of such series.

Finally, in 1881 Sir George Airy contributed a paper also to the Philosophical

Magazine of that year, in which he refers to a table calculated by him &quot;some

years ago,&quot;
and printed in the Selected Papers of the Transactions of the

Institution of Civil Engineers, which is in fact a Farey table with the

logarithms of the fractions appended to each of them. Previous tables had

only given the decimal values of such fractions. The drift of this paper is to

point out a caution which it is necessary to observe in the use of such tables,

and which limits their practical utility : this arises from the fact of the

differences receiving a very large augmentation in the immediate neighbour
hood of the fractions which are a small aliquot part of unity a fact which

may be inferred a priori from the well-known law discovered by Farey
applicable to those differences, but to which the author of the paper makes
no allusion.

In addition to the tables of Farey series by Goodwyn, Wucherer, an

anonymous author mentioned in the Babbage Catalogue, and Gauss, referred

to by Mr Glaisher in his Report to the Bradford Meeting of the British

Association (1873), may be mentioned one contained in Herzer s Tabellen
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(Basle, 1864) with the limit 57, and another in Hrabak s Tabellen-Werk

(Leipsic, 1876), in which the limit is taken at 50.

The writers on the theory are : Cauchy (as mentioned by Mr Glaisher),
who inserted a communication relating to it in the Bulletin des Sciences par
la Societe Philomathique de Paris, republished in his Exercices de Mathe-

matiques ;
Mr Glaisher himself (loc. cit.) ; M. Halphen, in a recent volume of

the Proceedings of the Mathematical Society of France
;
and M. Lucas, in the

next following volume of the same collection. I am indebted to my friend

and associate Dr Story for these later references.

For theoretical purposes it is desirable to count { as one of the fractions

in a Farey series. The number of such fractions for the limit j then becomes
identical with the sum of the totients of all the natural numbers up to j
inclusive a totient to x (which I denote by rx) meaning the number

-p_- ^

of numbers less than x and prime to it. Such sum, that is, 2 rx, I denote

by Tj. My attention was called to the subject by this number Tj expressing
the number of terms in a function whose residue (in Cauchy s sense) is the

generating function to any given simple denumerant (see American Journal of
Mathematics, [Vol. in. of this Reprint, p. 605]) ;

and I became curious to know

something about the value of Tj. I had no difficulty in finding a functional

equation which serves to determine its limits (see Johns Hopkins University

Circular, Jan. and Feb. 1883*). The most simple form of that equation

(omitted to be given in the Circular) is

; ...,O 4 Z

(where, when a; is a fraction, Tx is to be understood to mean Tj, j being the

integer next below x) ;
and from this it is not difficult to deduce by strict

demonstration that Tj/j
2

,
when j increases indefinitely, approximates

indefinitely near to 3/?r
2

.

I have subsequently found that if ux be used to denote the sum of all

x = l

the numbers inferior and prime to x, and Uj = 2 ux, thenf

. ..

(where Ux, when x is a fraction, means the U of the integer next inferior to

x). From this equation it is also possible to prove that Uj/j
3

,
when j becomes

indefinitely great, approximates to l/7r
2

. Uj, it may be well to notice, is the

sum of all the numerators of the fractions in a Farey series whose limit is

j, just as Tj is the number of these fractions.

In the annexed Table the value of rx (the totient), of Tx (the sum-totient),
and of 3/7T

2
. x2

is calculated for all the values of x from 1 to 1000
;
and the

[* See pp. 84, 89 above.] [f The right side should be frj (j + 1) (2j + 1).]
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remarkable fact is brought to light that Tx is always greater than 3/7T
2
.o;

2

(the number opposite to it), and less than 3/Tr
2

. (x + ] )
2

,
the number which

comes after the following one in the same table.

I have calculated in my head the first few values of Ux, and find (if

I have made no mistake) that it obeys an analogous law, namely is always

intermediate between 1/Tr
2

. at? and 1/Tr
2

. (x+ I)
8
.

It may also be noticed that when n is a prime number, Tn is always

nearer, and usually very much nearer, to the superior than to the inferior

limit as might have been anticipated from the circumstance that, when this

is the case, in passing from n l to n the T receives an augmentation of

3
n 1, whereas its average augmentation is only (2w 1).

In like manner and for a similar reason, when n contains several small

factors Tn is nearer to the inferior than to the superior limit. For instance,

when n = 210, Tn = 13414 and 3/Tr
2

. n2 = 13404 79.

TABLE of Totients, of Sum-totients, and o/3/vr
2 into the Squares of all the

Numbersfrom 1 to 1000 inclusive.

- = -30396355
7T

2
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TABLE (continued).
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TABLE (continued).
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TABLE (continued).
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TABLE (continued}.
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TABLE (continued}.
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TABLE* (continued).

* In the extended as well as in the original Table it will be seen that the sum-totient is

always intermediate between 3/7r
2

. n2 and 3/ir
2

. (n + I)
2

.

The formula of verification applied at every tenth step to the T column precludes the

possibility of the existence of other than typographical errors or errors of transcription.
Accumulative errors are rendered impossible.
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ON THE EQUATION TO THE SECULAR INEQUALITIES
IN THE PLANETARY THEORY.

[Philosophical Magazine, xvi. (1883), pp. 267269.]

A VERY long time ago I gave, in this Magazine*, a proof of the reality of

the roots in the above equation, in which I employed a certain property of the

square of a symmetrical matrix which was left without demonstration. I will

now state a more general theorem concerning the product of any two matrices

of which that theorem is a particular case. In what follows it is of course to

be understood that the product of two matrices means the matrix corre

sponding to the combination of two substitutions which those matrices

represent.

It will be convenient to introduce here a notion (which plays a conspicuous

part in my new theory of multiple algebra), namely that of the latent roots of

a matrix latent in a somewhat similar sense as vapour may be said to be

latent in water or smoke in a tobacco-leaf. If from each term in the diagonal

of a given matrix, X be subtracted, the determinant to the matrix so modified

will be a rational integer function of \
;
the roots of that function are the

latent roots of the matrix
;
and there results the important theorem that the

latent roots of any function of a matrix are respectively the same functions of

the latent roots of the matrix itself: for example, the latent roots of the square

of a matrix are the squares of its latent roots.

The latent roots of the product of two matrices, it may be added, are the

same in whichever order the factors be taken. If, now, m and n be any two

matrices, and M=mn or nm, I am able to show that the sum of the products

of the latent roots of M taken i together in every possible way is equal to the

sum of the products obtained by multiplying every minor determinant of the

ith order in one of the two matrices m, n by its altruistic opposite in the other :

the reflected image of any such determinant, in respect to the principal

diagonal of the matrix to which it belongs, is its proper opposite, and the

corresponding determinant to this in the other matrix is its altruistic

opposite.

[* Vol. i. of this Eeprint, p. 378.]
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The proof of this theorem will be given in my large forthcoming memoir
on Multiple Algebra designed for the American Journal of Mathematics.

Suppose, now, that m and n are transverse to one another, that is, that the

lines in the one are identical with the columns in the other, and vice versa,

then any determinant in m becomes identical with its altruistic opposite in

n
;
and furthermore, if m be a symmetrical matrix, it is its own transverse.

Consequently we have the theorem (the one referred to at the outset of this

paper) that the sum of the z-ary products of the latent roots of the square of

a symmetrical matrix (that is, of the squares of the roots of the matrix itself)

is equal to the sum of the squares of all the minor determinants of the order

i in the matrix
;
whence it follows, from Descartes s theorem, that when all

the terms of a symmetrical matrix are real, none of its latent roots can be

pure imaginaries, and, as an easy inference, cannot be any kind of imaginaries ;

or, in other words, all the latent roots of a symmetrical matrix are real, which
is Laplace s theorem.

I may take this opportunity of stating the important theorem that if

\j, X.2 ,
... \i are the latent roots of any matrix m, then

d&amp;gt;m = 2 2 3 ...---*
This theorem of course presupposes the rule first stated by Prof. Cayley

(Phil. Trans. 1857) for the addition of matrices.

When any of the latent roots are equal, the formula must be replaced by
another obtained from it by the usual method of infinitesimal variation. If

i

&amp;lt;f&amp;gt;m

=
m&quot;, it gives the expression for the cwth root of the matrix

;
and we see

that the number of such roots is
&&amp;gt;*,

where i is the order of the matrix.

When, however, the matrix is unitary, that is, all its terms except the

diagonal ones are zeros, or zeroidal, that is, when all its terms are zeros, this

conclusion is no longer applicable, and a certain definite number of arbitrary

quantities enter into the general expressions for the roots.

The case of the extraction of any root of a unitary matrix of the second
order was first considered and successfully treated by the late Mr Babbage ;

it reappears in M. Serret s Cours d Algebre superieure. This problem is of

course the same as that of finding a function
aX+

. of any given order of
cx + d

periodicity. My memoir will give the solution of the corresponding problem
for a matrix of any order. Of the many unexpected results which I have
obtained by my new method, not the least striking is the rapprochement
which it establishes between the theory of Matrices and that of Invariants.

The theory of invariance relative to associated Matrices includes and transcends
that relative to algebraical functions.



11,

ON THE INVOLUTION AND EVOLUTION OF QUATERNIONS.

[Philosophical Magazine, xvi. (1883), pp. 394396.]

THE subject-matter of quaternions is really nothing more nor less than

that of substitutions of the second order, such as occur in the familiar theory

of quadratic forms. A linear substitution of the second order is in essence

identical with a square matrix of the second order, the law of multiplication

between one such matrix and another being understood to be the same as

that of the composition of one substitution with another, and therefore

depending on the order of the factors
;
but as regards the multiplication of

three or more matrices, subject to the same associative law as in ordinary

algebraical multiplication.

Every matrix of the second order may be regarded as representing

a quaternion, and vice versa; in fact if, using i to denote V( 1); we write

a matrix m of the second order under the form

a + bi, c + di,

c + di, a bi,

we have by definition,

m = aa. + b/3 + cy + dS,

10 i 01.0*
where a =

Q r
=

Q _., 7 =^ Q
,

-
i Q

.

Now a2 =
a,

= 7
s = 8 2 = ~ a,

a/3 = /3a = /3, ay = 73 = 7, aS = 8a = 8,

{3&amp;lt;y

=
7/3

= a, 7&amp;lt;5

= 87 = /3, B/3 = /38 = 7 ;

so that we may for 2, 0, 7, 8, substitute 1, h, k, I, four symbols subject to the

same laws of self-operation and mutual interaction as unity and the three

Hamiltonian symbols. Now I have given the universal formula for expressing

any given function of a matrix of any order as a rational function of that

matrix and its latent roots
;
and consequently the gth power or root of any
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quadratic matrix, and therefore of any quaternion, is known. As far as I am

informed, only the square root of a quaternion has been given in the text

books on quaternions, notably by Hamilton in his Lectures on Quaternions.

The latent roots of m are the roots of the quadratic equation

X2 - 2a\ + a2 + 62
-f c

2 + d2 = 0.

The general formula

_ v (m - \,)(m - Xg) ... (m - \{)~9
(Xi-X.KXi-X,)...^-^)

5

1

where i is the order of the matrix m, when i = 2 and
&amp;lt;j&amp;gt;m

= mq
,
becomes

I I 11
|=V - V X2V ~ xiV

A.J A/2 Aj A.2

where X1( X2 are the roots of the above equation. If
/j,

is the modulus

of the quaternion, namely is V(
2 + 62 + c

2 + d2

), and /z cos = a, the latent

roots X,, X2 assume the form

/A (cos 6 i sin 6).

When the modulus is zero the two latent roots are equal to one another, and
to a, the scalar of the quaternion ;

so that in this case the ordinary theory of

vanishing fractions shows that

\a q J

In the general case there are q
2 roots of the

&amp;lt;?th
order to a quaternion. Calling

TT
l
-

- =
&&amp;gt;,

and writing mq = Am + B,

- +
2ka&amp;gt;)

+ i sin
(

- + 2fa] - cos (- + 2k co
} -f i sin (- + 2&

/_Vg / Vy_/_Vg

-cos
\q / \q ~

2i sin 6

cos I

* + MM } + i sm
~

q J

cos
fa 1 \ la \ \

P Q + 2tfa&amp;gt; + i sin * 6 + 2k w
\ q / \ q J

2i sin 6

For the q system of values k= k = 1, 2, 3 ... q, the coefficients A and B will

be real, for the other q
2

q systems of values imaginary ;
so that there are q

quaternion-proper qth roots of a quaternion-proper in Hamilton s sense, and

q
z

q of the sort which, by a most regrettable piece of nomenclature, he terms
i

pi-quaternions. The real or proper-quaternion values of ntf are

sin

s iv.

n (
- + 2*.)

- + sin
f
tJ g + 2i

\y IP \ q
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i

fjfl meaning the or (when there is an alternative) either real value of the qih

root of the modulus.

In the
&amp;lt;?th

root (or power) of a quaternion m, the form Am + B shows

that the vector-part remains constant to an ordinary algebraical factor pres ;

and we know a priori from the geometrical point of view that this ought to

be the case. When the vector disappears a porism starts into being ;
and

besides the values of the roots given by the general formula, there are others

involving arbitrary parameters. Babbage s famous investigation of the form

of the homograph ic function of of x, which has a periodicity of any
rx + s

given degree q, is in fact (surprising as such a statement would have

appeared to Babbage and Hamilton) one and the same thing as to find the

^th root of unity under the form of a quaternion !

It is but justice to the eminent President of the British Association to

draw attention to the fact that the substance of the results here set forth

(although arrived at from an independent and more elevated order of ideas)

may be regarded as a statement (reduced to the explicit and most simple

form) of results capable of being extracted from his memoir on the Theory of

Matrices, Phil Trans. Vol. CXLVIII. (1858) (vide pp. 3234, arts. 4449).
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ON THE INVOLUTION OF TWO MATRICES OF THE
SECOND ORDER.

[British Association Report, Southport (1883), pp. 430 432.]

IF m, n be two matrices of any order i, then, taking the determinant of

the matrix z + yn + xm, there results a ternary quantic in the variables

x, y, z, which may be termed the quantic of the corpus m, n.

In what follows I confine myself almost exclusively to the case of a corpus
of the second order

;
the quantic may be written

z2 + 2bzx + 2cyz 4- dx2 + 2exy +fy
2

:

it is then easy to establish the identical relations

m2 - 26m + d = 0,

mn -f nm 2bn 2cm + 2e = 0,

n2 2cn +f= 0.

It hence easily appears that any given function of m, n can, by aid of the

five parameters 6, c, d, e,f, be expressed in the form A +Bm+ Cn + Dmn.

This form containing four arbitrary constants, it follows that in general any

given matrix of the second order can be expressed as a function of m and n ;

for there will be four linear equations between A, B, C, D and the four

elements of the given matrix. But this statement is subject to two cases of

exception.

The first of these is when n and m are functions of one another : for in

this case A + Em + Cn + Dmn is reducible to the form P + Qm, and there

will be only two disposable constants wherewith to satisfy the four linear

equations.

The second case is when the determinant of the fourth order formed by

the elements of the four matrices vanishes ; writing
1

n, mn

,
To

J Tl

82
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respectively, it is not difficult to show that the value of this determinant is

(t2Ts
- T24)

2 + {(*i
-

&amp;lt;4) T2
-

(T!
- T4) *2} {(1

- *4) T3
-

(TJ
- T4) 3 }.

This expression is a function of the five parameters b, c, d, e,f, as may be

shown in a variety of ways.

Thus it is susceptible of easy proof that if fi1 , /*2 are the roots of the

equation p? Zbp + d = 0, and z/i, v2 the roots of the equation v- 2ci/ +/= 0,

then, the two matrices being related as above, we must have

(m /ij) (n
-

i/j)
= 0,

(n
-

i/s) (m - /AJJ)
=

0,

and consequently, by virtue of the middle one of the three identities,

Writing this in the form

(/iii/! + /Xoi/a 2e) (/u.ji/2 + /t2 ^i 2e)
=

0,

this is 4e2 2e . 4&amp;gt;bc + (^ + pf) v^v^ + (vi
2 + v.f) ^p^ = 0,

which gives e
2 - 26ce -f

b&quot;f
+ c

2d - df= ;

the function on the left hand is the invariant (discriminant) of the ternary

quantic appurtenant to the corpus, and we have this invariant =0 as the

necessary and sufficient condition of the involution of the elements of the

corpus ;
the invariant in question is for this reason called the involutant.

Expressing the values of the coefficients in terms of the elements of the

two matrices, namely
2b = t1 + tt ,

2c = T
1 + r4 ,

d = t1 t^ t2 t3 ,
26 = ^T4 + Tji4 t2T3 ^3T2 , /=T1 T4 ToT3)

it at once appears that the two expressions for the involutant are, to

a numerical factor pres, identical.

It can be shown a priori that the involutant of a corpus of the second

order must be expressible in terms of the coefficients of the function
;
and

therefore, being obviously invariantive in regard to linear substitutions

impressed on in, n, it must be also invariantive for linear substitutions

impressed on z, x, y, and must therefore be the invariant of the function.

The corresponding theorem is not true, it should be observed, for the

involutant of a corpus beyond the second order
;

for such involutant cannot

in general be expressed in terms of the coefficients of the function.

The expression for the involutant in terms of the t s and T S may also be

obtained directly from the equation (m /ij) (n i/x )
= 0. To this end it is

only necessary to single out any term of the matrix represented by the left-

hand side of the equation and equate it to zero : the resulting equation

rationalised will be found to reproduce the expression in question.
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I have thus indicated four methods of obtaining the involutant to a

matrix-corpus of the second order
;
but there is yet a fifth, the simplest of all,

and the most suggestive of the course to be pursued in investigating the

higher order of involutants.

I observe that for a corpus of any order the function mn nm is invarian-

tive for any linear substitution impressed on m and n. Its determinant will

therefore be an invariant for any substitution impressed on m and n. When

m and n are of the second order, reducing each term of (mn wra)
2

,
that is

mnmn mn-m nm2n + nmnm, and of mn nm, by means of the three

identical equations, to the form of a linear function of mn, m, n, 1, it will be

found without difficulty that there results the identical equation

(mn nm)
2 + 1=0,

the coefficient of mn nm vanishing. Consequently the determinant of the

matrix mn nm is equal to /, which on calculation will be found to be

identical with the invariant of the ternary quadric function.

It is obvious from the three identical equations that if m, n are in

involution that is, if their, involutant is zero every rational and integral

function of m. n will be in involution with every other rational and integral

function of m, n. Hence follows this new and striking theorem concerning

matrices of the second order: Iff(m,ri) and &amp;lt; (m, n) are any rational

functions whatever of m, n, the determinant to the matrix mn nm is

contained as a factor in the determinant to the matrix
f&amp;lt;f&amp;gt; &amp;lt;/.

It may be noticed that /, (f&amp;gt;

need not be integer functions by stipulation,

because any linear function of mn, m, n, 1, divided anteriorly or posteriorly by
a second like function, can itself be expressed as a linear function of the same

four terms.

As a very simple example of the theorem, observe that the determinant

of m~n mnm will contain as a factor the determinant of mn nm.
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SUR LES QUANTITES FORMANT UN GROUPS DE NONIONS
ANALOGUES AUX QUATERNIONS DE HAMILTON.

[Comptes Rendus, xcvu. (1883), pp. 13361340.]

ON sait qu on peut tout a fait (et tres avantageusement) changer la base
de la theorie des quaternions en considerant les trois symboles i, j, k de
Hamilton comme des matrices binaires.

Si h, j sont des matrices binaires qui satisfont a 1 equation hj
=

jh, on
demontre facilement que, en ecartant le cas ou hj =jh = 0, h2 et k- seront de
la forme

c 7

c 7

c est-a-dire cu, yu, ou u est 1 unite binaire

1

1

On peut ajouter, si Ton vent, les deux conditions c
2 =

1, y- = 1
; alors, en

supprimant, pour plus de brievete, le u, qui jouit de proprietes tout a fait

analogues a celles de 1 unite ordinaire, on obtient facilement les Equations
connues

h* = i, j*
=

I, P = T,

hj
= jh = k, jk = kj

=
i, ki = ik =j.

De plus, en supposant que (i, j) soit un systeme particulier qui satisfait a

1 equation ij
=

ji, on peut deduire les valeurs universelles de /, J qui
satisfont a 1 equation IJ = JI en termes de i, j. En effet, on demontre

rigoureusement que, en ecartant toujours la solution mn = nm = 0, on aura

/ = ai + bj + cij,

J = ai + fij + yij,

avec la seule condition aa + b/3 + cy = 0. De plus, si Ton suppose i
2

=j* = u

et aussi I 2 = J 2 = u, on aura
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de sorte que, en ecrivant ij
= k, U = K et K = Ai + Bj + Ck, la matrice

a b c

a. /3 7

ABC
formera une matrice orthogonale. Une solution, parmi les plus simples, des

equations ij
=

ji, i* = it, j-
= u, est la suivante :

i =

et conse&quot;quemment

e o

-6

En ecrivant une quantite binormale quelconque (c est-a-dire une matrice

binaire) sous la forme
a + bd, -c- dB,

c dd, a bd,

on voit qu elle peut etre mise sous la forme au + bi + cj + dk, ou il est souvent

commode de supprimer (c est-a-dire de sous-entendre) sans ecrire 1 unite

binaire u.

On peut construire d une maniere tout a fait analogue un systeme de

nonions en considerant 1 equation m = pn, ou m, n sont des matrices ternaires

et p une racine cubique primitive de 1 unite (voir* la Circular du Johns

Hopkins University qui va prochainernent paraitre), en prenant pour les

nonions fondamentaux u (1 unite ternaire)

100
010
001

et les huit matrices m, m-; n, ft
2

; m?n, mn2
; mn, m*ri&amp;gt; construites avec les

valeurs les plus simples de m, n qui satisfont aux equations

nm = p mn, m 3 = u, n3 = u.

Les valeurs

peuvent etre prises pour les valeurs basiques du systeme de nonions.

Une quantite ternaire (c est-a-dire une matrice) quelconque s exprime
alors sous la forme

a + bm + f3m* + en + 7ft
2 + dm*n + Smn* + emn 4- em2

;i
2

;

[* Vol. in. of this Reprint, p. 647. Also below, p. 122.]
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mais, quand cette matrice M est capable de s associer avec une autre N dans
I equation NM= pMN, alors il devient necessaire que

a = 0, 6/9 + cy + dS + ee = 0.

Je n entrerai pas ici dans les details de la methode d associer la solution

generale de 1 equation NM = pMN avec une solution quelconque particuliere
de cette equation, mais je me bornerai a expliquer quelles sont les conditions

auxquelles les Elements de M et de N doivent satisfaire afin que cette

Equation ait lieu.

M. Cayley a resolu la question analogue pour les matrices binaires dans

le beau Me&quot;moire, qu il a publie dans les Transactions of the Royal Society de

1858. En supposant que m et n sont les matrices

a b a V

c d c d

il trouve que, afin que nm = inn, il faut avoir

a + d = 0, a + d = 0, aa + be + cb + dd = 0.

Au lieu de cette troisieme equation (en la combinant avec les deux

precedentes), on peut ecrire

ad + a d - be - b c = 0.

Alors ces trois conditions equivalent a dire que le determinant de la matrice

xu + my + nz (u etant 1 unite binaire), qui, en general, est de la forme

x- + 2Bxy + 2Cxz + Df + 2Eyz + Fz\

se reduira a la forme

a? + Dy
2 + Fz*,

car, dans le determinant de ocu + my + nz, c est-a-dire de

x + ay + a z by + b z

cy + c z a; + dy + d z

les coefficients de xy, xz, yz seront evidemment

a + d, a + d
,

ad + a d be b c

respectivernent.

Passons au cas de m et n, matrices ternaires qui satisfont a 1 equation

nm = pmn.

Formons le determinant de xu + ym + zn, ou u represente 1 unite ternaire

1

010
001
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Ce determinant sera de la forme

a? + SBx^y + SCtfz + Way* + QExyz + SFxz* + Gy
3 + 3Hy2z + 3Kyz* + Lz3

,

et je trouve que, dans le cas suppose, il faut que les sept conditions souscrites

soient satisfaites; 5 = 0, 0=0, D = 0, E = 0, F=0, H = 0, K =
0, de sorte

que la fonction en x, y, z devierit une somme de trois cubes, mais ces

sept conditions, qu on pourrait nommer conditions parametriques, quoique

necessaires, ne sont pas suffisantes; il faut y ajouter une huitieme condition

que je nommerai Q = 0.

Pour former Q, voici la maniere de proceder:

En supposant que

m =
c

f
k

et TI =
a

d

9

b

e

h

c

f
K

on ecrit, au lieu de m, son transversal

tf

e

f

9

h

k

et Ton forme neuf produits en multipliant chaque determinant mineur du

second ordre contenu dans m avec le determinant mineur semblablement

pose dans le transversal de n : la somme de ces neuf produits est Q.

Ces huit conditions que je demontre sont suffisantes et necessaires (en

ecartant comme auparavant le cas ou nm = mn = 0) pour que nm = pmn.

On pourrait tres bien se demander ce qui arrive dans le cas ou les sept

conditions parametriques sont satisfaites, mais non pas la huitieme condition

supplementaire.

Dans ce cas, je trouve* que mn et nm restent fonctions 1 une et 1 autre et

qu on aura

nm = A + B^nn + (7 (mn)
2
,

mn = A + B2nm + C(nmf,

ou B!, B2 sont les racines de 1 equation algebrique

B&quot; + B+l=0,
A, C etant deux quantitds arbitraires et independantes, sauf que 1 une d elles

ne peut pas s evanouir sans 1 autre, les deux s evanouissant ensemble pour le

cas (et settlement pour le cas) ou Q (qui fournit la condition supplementaire)
s evanouit.

[* See footnote [f], p. 154 below.]
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ON QUATERNIONS, NONIONS, SEDENIONS, ETC.

[Johns Hopkins University Circulars, ill. (1884), pp. 7 9.]

(1) SUPPOSE that ra and n are two matrices of the second order.

Then if we call the determinant of the matrix x + my + nz,

x1 + 2bxy + Zcxz + dy
2 + 2eyz + fz-,

the necessary and sufficient conditions for the subsistence of the equation
nm = mn is that b = 0, c = 0, e = 0, and if we superadd the equations
in- + 1 = 0, n- + 1 = 0, then d = 1 and /= 1, or in other words in order to

satisfy the equations mn = nm, m2 = 1, n2 = 1, where it will of course

be understood that in these (as in the equations m- + 1 = 0, n2 + 1 = 0) 1 is

the abbreviated form of the matrix . , and 1 of* the form ^ T , the necessary01 01 J

and sufficient condition is that the determinant of x + my + nz shall be equal
to x- + y* + z*.

i
The simplest mode of satisfying this condition is to write m= .

,

i

-1 . . . . -i
, in= ,

,
i meaning y( 1), which gives mn . and nm= . .

J- v/ ii \J 1i \)

It is easy to express any matrix of the second order as a linear function

of 1 I meaning j
m, n, p, where p stands for mn.

For if , be any such matrix it is only necessary to write
Cj Ct

a =f+ ig, b = h ki,

d =fig, c = h + ki,

and then . =f+gm + hn + kp.
C, Ct

The most general solution of the equations MN = NM, M2 = N2 = 1,

must contain three arbitrary constants, namely, the difference between the

number of terms in m and n, and the number of conditions 6 = 0, c = 0,

e = 0, d =!,/=!, which are to be satisfied.

[* 1 denotes --!.]
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Suppose M, N to be the most general solution fulfilling these conditions;
we may write

M = f + gm + hn + kp,

N =/ + g m + h n + k p,

where m, n is any particular solution and p = ran, and we shall have inas

much as M 2 = 1,

f2 -g2 -h2 -k2 + 2fgm + 2fhn + *2fkp
= the matrix 1,

and consequently g- + h2 + k2 = 1 +/ 2
,

fg = 0, fh = 0, /fc
= 0.

Hence /= and g
2 + h2 + k2 = 1.

Similarly / = and
g&quot;

2 + A 2 + k 2 =
1,

and also inasmuch as MN NM,

gg + hh + kk = 0,

and since the equations M2 =
I, JV 2 = 1, MN =-NM imply if we make

MN=P that P 2 = -l, and MP = -PM, and NP = -PN, it follows that

.Af, ^r
, P, are connected with m, n, p, in the same way as the coordinates of

a point referred to one set of rectangular coordinates in space are connected
with the coordinates of the same point referred to any other set of the
same *.

Herein lies the ground of the geometrical interpretation to which

quaternions lend themselves and it is hardly necessary to do more than
advert to the fact that the theory of Quaternions is one and the same

thing as that of Matrices of the second order viewed under a particular

aspect f .

(2) Let TO, n now denote matrices of the third order.

We might propose to solve the equation mn = nm.

The result of the investigation is that we must have m2 = n2
,
m3 = 0,

ns =
0, and writing mnp, m2 = n2 =

q, there results a set of quintans,
1, m, n,p, q, for which the multiplication is that marked (a5) p. 144 of the
late Prof. Peirce s invaluable memoir in Vol. iv. of the American Journal

of Mathematics.

There is another solution possible, obtained by writing

-/=?-?=! /+*++
;

: &quot; : &quot;

but this leads to a linear relation between m and n, so that mn =nm and consequently mn= nm=
which is not the kind of solution proposed in the question.

t See my article in the Land, and Edin. Phil. Mag. on &quot;Involution and Evolution of

Quaternions,&quot; November, 1883. [Above, p. 112.]
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But instead of this let us propose the equation ran = pnm, where p is

one of the imaginary roots of unity; if now we write the determinant of

x + my + nz under the form

of + 3bx2
y + 3cx2z + Sdxz2 + Qexyz + Sfyz* + gy

s + 3hy
2z + 3kyz

2 + Iz3
,

it may be shown [cf. p. 126, below] that we must have

6 = 0, c = 0, d = Q, e = 0, /=0, h = 0, & = 0,

and if we superadd the conditions ras =l, ws = l, we must also have g=l,
1 = 1, or in other words the determinant to x + my + nz must take the form

x3 + y
3 + z3

;
but this condition (or system of conditions) although necessary

is not sufficient (a point which I omitted to notice in my article entitled

&quot;A Word on Nonions&quot; inserted* in a previous Circular}.

It is obviously necessary that we must have (mn)
3 = 1.

Now if the identical equation to mn be written under the form

(mn)
3 - SB (mn)- + Wmn - E = 0,

B may be shown to be a linear homogeneous function of b, c, and e; also

E =
gl = \; but D is not a function of b, c, d, e, f, g, h, k, I, and will not in

general vanish (as it is here required to do) when b, c, d, e, f, h, k vanish.

Its value is the sum of the products obtained on multiplying each quadratic
minor of ra by its altruistic opposite in n : (the proper opposite to a minor

of m means the minor which is the reflected image of such minor viewed in

the Principal Diagonal of m regarded as a mirror
;
and the altruistic opposite

is the minor which occupies in n a position precisely similar to that of the

proper opposite in m). There are, therefore, 10 equations in all to be

satisfied between the coefficients of m and n when m3 = n3 = 1 and

nm = pmn.

These ten conditions I have demonstrated are sufficient as well as

necessary. There remains then 18 10 or 8 arbitrary constants in the

general solution. If m, n is a particular solution we may take for M, N
(the matrices of the general solution),

M= a + @m+ ym2 + a!n + $ mn + jm^n + a&quot;n
2 + /3&quot;mn

2 +y m2n2
,

and 10 relations between the 18 coefficients must be sufficient to enable to

be satisfied the equations M3 =N3 =
1, NM=pMN: but what these relations

are and how they may most simply be expressed I am not at present in a

condition to state f.

[* Vol. in. of this Eeprint, p. 647.]

t The solution of this problem would seem to involve some unknown expansion of the idea

of orthogonalism. Unless MN=NM=0, a solution to be neglected, it may be proved that

a= 0, a
1
= 0.
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I showed in &quot;A Word on Nonions&quot; that the 9 first conditions are

satisfied by taking 100 001
7?i = p n = p

p\ p
2

0.

The 10th condition is also satisfied; for the only quadratic minors (not

having a zero determinant) in m are
, ^ , ,; the altruistic

Op Op- Op-
Op Op- 00

opposites to which in n are
ft ^ , ^ ,

1 n &amp;gt;

the determinants to each

of which are zeros, and accordingly we find

100

so that mn = pnm and m 3 = n3 =l as required.

I subjoin an outline proof of the fundamental portion of the theory of

Quaternions and Nonions above stated as it will serve to throw much light

upon the nature of the processes employed in that new world of thought to

which I gave the name of Universal Algebra or the Algebra of multiple

quantity : a fuller explanation will be found in the long memoir which I am

preparing on the entire subject for the American Journal of Mathematics.

(1) As regards the equation nm = mn, where m, n are matrices of the

second order.

As before let the determinant of (x + ym + zn) be

a? + 2bxy + Icxz + dy- + Zeyz +fz*.

I may observe here parenthetically that the Invariant of the above

Quantic is equal to the determinant of mnnm, and that when it vanishes

1, m, n, mn, as also 1, n, m, nm are linearly related or, as I express it, this

Invariant is the Involutant of the system m, n or n, m. When m, n are of

higher than the second order, the Involutant of m, n, say /, is that function

whose vanishing implies that the 9 matrices (I, m, m2

]l, n, ?i
2
) are linearly

related, and the Involutant of n, m, say J, that function whose vanishing

implies that the 9 quantities (1, n, w2

$l, m, m2
) are so related (/, J being

two distinct functions), and so for matrices of any order higher than the

second.
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By virtue of a general theorem for any two matrices m, n of the second
order, the following identities are satisfied:

m- 2bm + d = 0,

mn + nm 2bn 2cm + 2e = 0,

n2 - 2cn +/= 0.

If then mn + nm =
0, since m and n cannot be functions of one another

(for then mn = nm), the second equation shows that 6 = 0, c = 0, e = 0, and
conversely if 6 = 0, c = 0, e=0, mn + nm =

0, and m2 + d = 0, w 2 +/= 0,

where, if we please, we may make d 1, /= 1.

(2) Let m, w be matrices of the third order, and write as before,

Det. (x + ym + zn} = a? + Sbtfy + Sctfz + Sdxy*

+ Qexyz + 3fxz
2 +gf + 3hy

2z + 3kyz
2 + lz

3
.

Then by virtue of the general theorem last referred to* there exist the
identical equations

m3 - 3bm- +Mm -g = 0,

m2n + mnm + nm? - 36 (mn + nm) - 3cm2 + 3dn + Gem -3h = 0,

mn2 + nmn + n*m - 3c (mn + nm) - 36w2 + 3/ra + Qen - 3k = 0,

n3 - 3cw2 + 3fn -1 = 0.

Let now nm = pmn, where p is either imaginary cube root of unity, then

(1) m2n + mnm + nm 2 = and (2) mn2 + nmn + n2m =
;

for greater simplicity suppose also that m3 = n*= 1, where 1 means the matrix

100
010.
001

From the 1st and 2nd of the four identical equations combined it may be

proved that 6 = 0, d = 0; I do not produce the proof here because to

make it rigorous, the theory of Nullity would have to be gone into which
would occupy too much space; and in like manner from the 3rd and 4th
it may be shown that c = 0, /=0t. Hence returning to the two middle

equations it follows that e = 0, h = 0, k = 0, and from the two extremes that

&amp;lt;7=U
= 1.

If then nm = pmn, m3 =
I, and n3 = 1, it is necessary that

6 = 0, c = 0, d = 0, e = 0, /=0, g=l, h = 0, k = 0, 1=1.
But these equations although necessary are manifestly insufficient

;
for

they lead to the equations m3 - 1 = 0, n3 1 = 0, and

(1) m2n + mnm + nm2 = 0; (2) m
[* By Cayley s theorem, if in Det. (x + ym + zn) we replace x by -ym-zn, the result vanishes

identically in regard to y and z.]

t Except when m, n are functions of one another, so that mn and nm are identical and
consequently are each of them zero.
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but not necessarily to nm = pmn. In fact the supposed equations between

m and n involve as a consequence the equation (??m)
3 = 1. Now the general

identical equation to (mri) is

(mn)
3 - 35 (mnf +W (mn) -F=0,

where B is the sum of each term in ra by its altruistic opposite in n

= 36c 2e = 0, F = gl \, and D is the sum of each first minor in m

by its altruistic opposite in n which sum does not necessarily vanish when

b, c, d, e, f, h, k, all vanish. Hence there is a 10th condition necessary not

involved in the other 9, namely, D = 0. These 10 conditions I shall show

are sufficient as well as necessary. For when they are satisfied since

(mn)
3 =

1, mn . run = n2m2
.

Hence from (1) m2
ri* -f- ri*m

2 + nm 2 n = 0,

and from (2) m-n2 + n2m2 + mn2m 0.

Hence nm . mn = mn . nm *, and consequently nm is a function of mn [cf. p. 149,

below]. Hence we may write

nm = A + Bmn + C (mn)
2
.

But the latent roots of mn and nm (which are always identical) are

1, p, p
2
,
hence

A+B + C, A + Bp + Cp
2

, A+BP
2 + Cp,

must be equal to 1, p, p
2
,
each to each taken in some one of the 6 orders in

which these quantities can be written f.

Solving these 6 systems of linear equations there results :

A=0, B = 0, (7=1, p or p-

or 4=0, B =
1, p or p

2
, C = 0.

Hence nm = dmn, or 6 (mnf where 6 = 1, p, p
2

.

If nm = 6 (mnf, nmrnn = 6 (raw)
3 = 0.

Hence m2 = 6n- . 6n2 = 2n
;

and m2n + mnm + nm2 = Win* = 3#ra = 0,

so that ra = 0, and ra3 = = 1
;
and again if nm = mn,

m2n + mnm + nm2 = 2ra2 n + mnm = 3ra 2 n = 0,

* This equation is independent of the equation (wm)
3=l ; for

nm2n win2m= (m
2n + mnm + nm2

)
n - m (mn

2 + nmn + n2m) =

by virtue of equations (1) and (2) above : accordingly these equations taken alone imply the

equations
nm=A+B1mn + C (mn)-, mn= - A + J&amp;gt; 2nm - C (nm)

2

AC
where Blt

B
2 are the roots of B2 + B + l-~ = 0; A, C being arbitrary and independent except

I

that each vanishes when and only when the cube of mn and (as a consequence) of nm, is a scalar

matrix. [See below, p. 154. Footnote [f].]

t By virtue of the general theorem that the latent roots of any function of a matrix are the

like functions of the latent roots of the original matrix.
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so that m?n = 0, n = 0, and ns = = 1 as before, where it should be noticed

000 100
that = 1 means that is identical with 010.

000 001
Hence the only available hypothesis remaining is the equation nm = v . mn,

where v is one of the imaginary cube-roots of unity as was to be proved.

(3) It remains to say a few words on the general equation nm = kmn,
where TO, n are matrices of any order o&amp;gt;. To avoid prolixity I shall confine

my remarks to the general case, which is, that where the determinants (or as

I am used to say the contents) of TO and n are each of them finite
;
with this

restriction, the proposed equation is impossible for general values of k as will

be at once obvious from the fact that the totalities of the latent roots of mn
and of nm are always identical, but the individual latent roots are by virtue

of the proposed equation in the ratio to one another of 1 : k, which, since by

hypothesis no root is zero, is only possible when k&quot; = 1.

When the above equation is satisfied the o&amp;gt;

2

equations arising from the

identification of nm with kmn cease to be incompatible and (as is necessary
or at all events usual in such a contingency) become mutually involved.

Thus, for example, when to = 1 and k = 1, the number of independent

equations is 0, that is, 1 1, when to = 2 and k = 1 the number is 3, that

is, 4 1, when &amp;lt;w
= 3 and k = p or p

2 the number is 8, that is, 9 1
;

it is

fair therefore to presume (although the assertion requires proof) that for

any value of w when & is a primitive &&amp;gt;th root of unity the number of

conditions to be satisfied when nm = kmn is &&amp;gt;

2
1. Of these the condition

that the content of x + my + nz shall be of the form x&quot; + cy + c z&quot; will

supply

and there will therefore be

w2 -3&)
(a&amp;gt; -!)(- 2)---h 1 or ---+-

to be supplied from some other source.

When k is a non-primitive wth root of unity, the number of equations of

condition is no longer the same. Thus when k = 1 we know that n may be

of the form
A -f Bm + Cm? + . . . + Lin&quot;-

1

,

where A, B, ... L, and all the &&amp;gt;

2 terms in m are arbitrary, and consequently
the number of conditions for that case is 2&amp;lt;u

2

(&&amp;gt;

2 +
&&amp;gt;)

or &amp;lt;u

2
o&amp;gt;. It seems

then very probable that if k is a qth power of a primitive &&amp;gt;th root of unity

the number of conditions required to satisfy nm = kmn is or 8 where 8 is
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the greatest common measure of q and &amp;lt;o : but, of course, this assertion awaits

confirmation.

When &&amp;gt;
= 4 besides the case of nm = mn, that is, of n being a function

of in of which the solution is known, there will be two other cases to be

considered, namely, nm = mn and nm = imn : the former probably requiring
14 and the latter 15 conditions to be satisfied between the coefficients of m,

the coefficients of n and the two sets of coefficients combined.

It is worthy of notice that the conditions resulting from the content of

x -f my + nz becoming a sum of 3 powers are incompatible with the equation
nm = vmn when v is other than a primitive &&amp;gt;th root of unity (o&amp;gt; being of

course the order of m or n).

Thus suppose to = 4
;
the conditions in question applied to the middle one

of the 5 identical equations give

m2
?*

2 + w2ra2 + mnzm + nm-n + mnmn + nmnm = ;

when nm = imn the left-hand side of this equation becomes

(1 + i* + i
2 + i- + i + i

3

) m2
ri&amp;gt;,

that is, is zero, but when nm = mn, the value is

(1 + 1-1 -1-1 -I)m2w2

which is not zero, and so in general. Thus the pure power form of the

1ft
r
fY\j

content of x + my + nz is a condition applicable to the case of being a
mn

primitive root of unity and to no other.

The case of nm being a primitive root of ordinary unity is therefore the

one which it is most interesting to thrash out.

There are in this case, we have seen,
(&amp;lt;o

2 + 3&&amp;gt; 4) simple conditions

expressible by the vanishing of that number of coefficients in the content

of x + my + nz and
(&amp;lt;w

-
l)(co

-
2) supplemental ones. What are these

last ? I think their constitution may be guessed at with a high degree
of probability. For revert to the case of &&amp;gt;

= 3 in which there is one

such found by equating to zero the second coefficient in the identical

equation

(mn)
5 - SB (raw)

2 + Wmn -G=0.

Suppose now (m
2n2

)
3 - SB (ra n

2
)
2 +Wm2

ri* - G =

is the identical equation to ra2w2
. By virtue of the 8 conditions supposed to

be satisfied we know that nm = pmn as well as m3 =
1, n3 = 1, and consequently

that
(m&quot;n-)

3 = 1. Hence B =
0, D = 0, by virtue of the 7 parameters in the

oft-quoted content and of D being all zero, and thus the evanescence of B or

D imports no new condition.

s iv. 9
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Now suppose (o 4, and that

(ran)
4 - 4B (mn)

3 + 6D (ran)
2 - 4Gran + M = 0,

(ra
2O4 - 45 (ra

2n2

)
3 + 6D (m-n^ - 4&amp;gt;G m2n* +M = 0.

Here we know that B vanishes by virtue of b, c and e vanishing, but D = 0,

G = 0, which must be satisfied if nm = imn, will be two new conditions not

implied in those which precede. It seems then, although not certain, highly

probable that Jb = 0, D = 0, will be implied in the satisfaction of the

antecedent conditions but that G = Q will be an independent condition, so

that Z&amp;gt;
= 0, G = 0, G = 0, will be the three supplemental conditions: and

again when &amp;lt;

= 5 forming the identical equations to mn, m2n2
,
msn3

,
and

using an analogous litteration to what precedes, the supplemental conditions

will be
Z) = 0, G = 0, M = 0,

G =
0, M = 0,

Jf&quot; = 0,

and so in general for any value of &&amp;gt;.

The functions D, G, M, etc., above equated to zero are known from the

following theorem of which the proof will be given in the forthcoming

memoir*.

If
(ran)&quot; + &! (raw)

&quot;-1 + . . . + k{ (run)&quot;-* + . . . =

is the identical equation to mn, then ki is equal to the sum of the product of

each minor of order i in ra multiplied by its altruistic opposite in n.

The annexed example will serve to illustrate in the case of &&amp;gt;
= 3 that

unless the supplemental condition is satisfied we cannot have nm = pmn.

Write ra = 1 0, n = c k,

p 0, k cp,

p
2

, cp
2 k 0,

then the determinant to x + my + nz will be easily found to be

a? + y
3 + (c

3 + A:
3

)
z3

;

but D becomes 3pck, and does not vanish unless c = or k = 0, and

accordingly we find

nm =0 pc p
z
k, mn =0 c k,

k c, pk p
2
c,

/o

2c pk 0, pc p*k 0.

When k = mn = p
2
nm, when c = nm = p*mn, but on no other supposition

72771

will - - be a primitive cube root of unity.mn

* This theorem furnishes as a Corollary the principle employed to prove the stability of the

Solar System. (See Lond. and Edin. Phil. Mag., October, 1883.) [Above, p. 110.]
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ADDENDUM.

Referring to the equation MN= NM, and to the eight equations

expressing M and N in terms of the combinations of the powers of m with

those of n, in which it is to be understood that M and N are non-vacuous,

we know that the sums of the latent roots of M and of N must each vanish

and consequently, as may be proved, that a = 0, a = 0, leaving 8 2 or

6 conditions to be satisfied. If we further stipulate that M 3 = l, N3
=~\,

there will be 8 relations connecting the coefficients b, c, ... k and b
,
c

y
... k

,

so that the 64 coefficients in the 8 equations connecting M, M2
; N, N 2

;

MN, M 2N2
; M-N, MN\ or say rather M, M*; N, N 2

; p
2MN, P

2M 2N 2 -

pM2
N, pMN 2

,
with like combinations or multiples of combinations of powers

of m, n * will be connected together by 56 equations ;
the coefficients in

the expression for any one of the above 8 terms may then be arranged in

pairs fi} //; giy g{ ;
At-, A/; kit &/ ;

and in the expression for its fellow by
Fi, Fi ; Gi, G/ ; Hi, HJ ; Ki, K{\ so that the Matrix is resolved as it were

into 4 sets of paired columns and 4 sets of paired lines : the 4 different sets

of paired lines being found by writing successively i = 1, 2, 3, 4.

It is then easy to see that there will be 4 equations of the form

and 6 quaternary groups (that is, 24 equations) of the form

with liberty to change / into F or G into g or each into each : together
then the above are 28 of the 56 conditions required. But inasmuch as the

8 [m, n] arguments may be interchanged with the 8 [M, N] ones, we may
transform the above equations by substituting for each letter/ its conjugate
d log A

(where A is the content of the Matrix) and thus obtain 28 others,

.

giving in all (if the two sets as presumably is the case are independent) the

required 56 conditions : the latter 28, however, may be replaced by others of

much simpler formf.

*
It is easy to see that the sum of the latent roots of M*Ni must be zero for all values of i, j

so that it is a homogeneous linear function of the 8 quantities m, ?
2
, ..., mn, m?n2

.

t I am still engaged in studying this matrix, which possesses remarkable properties. Is it

orthogonal? I rather think not, but that it is allied to a system of 4 pairs of somethings drawn
in four mutually perpendicular hyperplanes in space of 4 dimensions. In the general case of

MN=pNM where p is a primitive wth root of unity, there will be an analogous matrix of the
order w2 - 1 where each line and each column will consist of w + 1 groups of w - 1 associated
terms.

The value of the cube of any one of the 8 matrices M, M*; ... ; MN, M2N2 may be expressed
as follows : It is P into ternary unity. Such a quantity may be termed by analogy a Scalar. To
find P

iti
I imagine the 8 letters corresponding to M*NJ (but without powers of p attached) to be

set over 8 of the 9 points of inflexion to any cubic curve, the paired letters being made suitably

92
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To me it seems that this vast new science of multiple quantity soars as

high above ordinary or quaternion Algebra as the Mecanique Celeste above

the &quot;

Dynamics of a Particle
&quot;

or a pair of particles, (if a new Tait and Steele

should arise to write on the Dynamics of such pair,) and is as well entitled to

the name of Universal Algebra as the Algebra of the past to the name of

Universal Arithmetic.

collinear with the missing 9th point. Then among themselves the 8 letters may be taken in

8 different ways to form collinear triads and the product of the letters in each triad may be called

a collinear product ; Ptj (which is identical with the Determinant to H i
N^) will be the sum of

the cubes of the 8 letters less 3 times the sum of their 8 collinear products, and its 8 values will

be analogous to the 3 values of the sum of 3 squares in the Quaternion Theory. Each of these

8 values is assumed equal to unity.

It may be not amiss to add that the product of four squares by four is representable rationally

as a sum of four squares, so if we place (not now 8 specially related but) nine perfectly arbitrary

letters over the nine points of inflexion of a cubic curve the sum of their 9 cubes less three times

their 12 collinear products multiplied by a similar function of 9 other letters may be expressed

by a similar function of 9 quantities lineo-linear functions of the two preceding sets of 9 terms.

By the 8 letters of any set as, for example, b, ..., h being
&quot;

specialized,&quot; I mean that they are

subject to the condition bb + dd +ff + hh = 0. When this equation is satisfied, and not otherwise,

M3 will be a Scalar, and it must be satisfied when MN=pNM.



15.

ON INVOLUTANTS AND OTHER ALLIED SPECIES OF
INVARIANTS TO MATRIX SYSTEMS.

[Johns Hopkins University Circulars, in. (1884), pp. 9 12, 34, 35.]

To make what follows intelligible I must premise the meaning and laws

of vacuity and nullity.

A matrix is said to. be vacuous when its content (the determinant of the

matrix) is zero, but it may have various degrees of vacuity from up to to

the order of the matrix.

If from each term in the principal diagonal of a matrix A, be subtracted,

the content of the resulting matrix is a function of degree &&amp;gt; in A.
;
the a&amp;gt; values

of A. which make this content vanish are called its latent roots, and if i of

these roots are zero, the vacuity (treated as a number) is said to be i. This

comes to the same thing as saying that the vacuity is i when the determinant,
and the sums of the determinants of the principal minors of the orders eo 1,

&) 2, ...
(.fc&amp;gt;

i + I) are each zero. A principal minor of course means one

which is divided into 2 [equal] triangles by the principal diagonal of the

parent matrix.

Again the nullity is said to be i when every minor of the order ( i + 1),

and consequently of each superior order, is zero. It follows therefore that

it means the same thing to predicate a vacuity 1 and a nullity 1 of any
matrix, but for any value of i greater than 1, a nullity i implies a vacuity i

but not vice versa
;
the vacuity may be i, whilst the nullity may have any

value from 1 up to i inclusive.

The law of nullity which I am about to enunciate is one of paramount
importance in the theory of matrices*.

* The three cardinal laws or landmarks in the science of multiple quantity are (1) the law
of nullity, (2) the law of latency, namely, that if \, X2 , ...

X&amp;lt;o
are the latent roots of m, then

.Ai f\, ... /Xw are those of fm, including as a consequence that

fm= -Zf\ (
m ~ X2) (m-\3) ... (m-Xq.)

Al
(X1

-X
2)(X1

-X
3)...(X1

-Xw)

and (3) the law of identity, namely, that the powers and combinations of powers of two
matrices vi, n of the order w are connected together by (w + 1) equations whose coefficients

are all included among the coefficients of the determinant to the Matrix

x + ym + zn.



134 On Involutants and other allied species of [15

The law is that the nullity of the product of two (and therefore of any
number of) matrices cannot be less than the nullity of any factor nor greater
than the sum of the nullities of the several factors which make up the

product.

Suppose now that X1; X,, ... Xw are the latent roots of any matrix with

unequal latent roots of the order eo. It is obvious that any such term as

m-Xj will have the nullity 1, for its latent roots will be 0, Xj-Xj,
X3 X1} ... Xu X1} and consequently its vacuity is 1.

Moreover we know from Cayley s famous identical equation that the

nullity of the product of all the w factors is eo.

Hence it follows that if Mt contains i, and Mj the remaining &&amp;gt; i of

these factors (so that i+j =
&&amp;gt;),

the nullity of Mt must be exactly i and of

MJ exactly j.

For the theorem above stated shows that Mi cannot have a nullity

greater than i, nor Mj a nullity greater than j.

Hence if the nullity of the one were less than i or of the other less than^ ,

the nullity of MtMj would be less than i +j, that is, less than a, whereas its

nullity is w
;
hence the two nullities are respectively i and j as was to be

shown.

Furthermore we know that the latent roots of (m Xj)&quot;
are (Xj XI)

B
;

(X-.-XO&quot;; ... (\v-\Jr.

Hence if the latent roots of m are all distinct, the nullity of (m Xj)
a

is

unity and consequently by the same reasoning as that above employed it

follows that the nullity of

(m Xj)
a

. (m X2)
2

. . . (m X;)
a

i

is exactly i.

I will now explain what is meant by the Involutant or Involutants of a

system of two matrices of like order.

It will be convenient here to introduce the term &quot;

topical resultant
&quot;

of a

system of &&amp;gt;

2 matrices each of order o&amp;gt;.

We may denote any matrix say

^*to, 1
^&amp;lt;o,2

by the linear form

2, 1 ^2, 1 &quot;T&quot; 0^2, 2 ^2, 2 &quot;l I

0), 1 u),l i O
ta, 2 ^w, 2 &quot;T&quot; i
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where the t system is the same for all matrices of the order w. If, then, we

have o&amp;gt;

2 such matrices, their topical resultant is the Resultant in the ordinary

sense of the &&amp;gt;

2 linear forms above written, proper to each of them re

spectively.

Suppose now that m, n are two independent matrices of the order
&&amp;gt;,

we

may form &&amp;gt;

2 matrices by taking each power of m from to w 1 as an

antecedent factor, and can combine it with similar powers of n as a con

sequent factor, and in this way obtain &&amp;gt;

2
matrices, of which the first will be

the w-ary unity, that is, a matrix of the order &&amp;gt; in which the principal

diagonal terms are all units and the other terms all zero. The topical

resultant of these &&amp;gt;

2 matrices I shall for brevity denote as the Involutant

to m, n.

In like manner, inverting the position of the powers of m and of n so as

to make the latter precede instead of following the former in the &&amp;gt;

2

products

above referred to, we shall obtain another topical resultant which may be

termed the Involutant to n, m.

The reason why I speak of these topical resultants as involutants to m, n

or n, m is the following :

In general if m, n are two independent matrices, any otber matrix p, by

means of solving &&amp;gt;

2 linear equations, may obviously be expressed as a linear

function of the &amp;lt;u

2

products

(1, m, m2
, ...

,
mw- 1

)(l, n, n\ ...
,
n 10 &quot;1

).

There are, however, exceptions to this fact.

The most obvious exception is that which takes place when n is a

function of m
;

for then any o&amp;gt; of the &&amp;gt;

2

products will be linearly related,

and there will be substantially only &&amp;gt; disposable quantities to solve to
2

equations.

Another exception is when the m, n Involutant, that is, the topical

resultant of the &&amp;gt;

2
matrices, is zero

;
in which case the general values of

the &&amp;gt;

2

disposable quantities each becomes infinite. So that m, n may be

said to be in a kind of mutual involution with one another. So, again, p may
in general be expressed as a linear function of the &&amp;gt;

2 matrices

(1, n, n2
,

...
,

n&quot;-
1

) (1, m, m2
,

...
,

m&quot;-
1

),

but when the n, m Involutant vanishes this is no longer possible.

When &) = 2 the two involutants, considered as definite determinants, are

absolutely equal in magnitude and in Algebraical sign, but when to exceeds

2 this is no longer the case
;
the two Involutants are then entirely distinct

functions of the elements of m and n.
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100 p k
Thus to take a simple example : if m = p and n = k p

2
it will

p
2

1 k
be found by direct calculation of two topical resultants of the 9th order,

that the two involutants will be

81 (p
- ft (fr

-
PY and 81 (p

-
p) (*

- ft

respectively. The reason why the two involutants coincide in the case of

G) = 2 is not far to seek. It depends upon the fact of the existence of the

mixed identical equation

mn + nm 26 2cm + 2e =
;

from which it is obvious that the topical resultant of 1, m, n, mn is the

negative of that of 1, m, n, nm or identical with that of 1, n, m, nm.

By direct calculation it will be found that the Involutant m, n, or n, m,

where m = { g
. n=\, 9

.
, is

n K n k

-
(gh

-
g k? + {(/- k)g - (/

- k )g] {(/-&) h - (/ - k ) h],

which is the same thing as the content of the matrix (mn nm). It may
also be shown a pinion or by direct comparison to be identical (to a numerical

factor pres) with the Discriminant of the Determinant to the matrix

(x + ym + zri) which is a ternary quantic of the second order. Its actual

value is 4 times that discriminant.

Let us consider the analogous case of Mechanical Involution of lines in

a plane or in space. There are two questions to be solved. The one is to

find the condition that the Involution may exist, that is, that a set of

equilibrating forces admit of being found to act along the lines
;
the second,

to determine the relative magnitudes of the forces when the involution

exists, and this is the simpler question of the two.

In like manner we may consider two questions in the case of m, n being
in either of the two kinds of involution; the one being to find what the

condition is of such involution existing, the other what are the coefficients of

the or coefficients in the equation which connects the a&amp;gt;

2

products, when the

involution exists.

This latter part of the question (surprising as the assertion may appear
and is) admits of a very simple and absolutely general direct and almost

instantaneous solution by means of the Law of Xullity, above referred to,

as I will proceed to show.

The determination of the Involutants, or at all events of their product,
will then be seen to follow as an immediate consequence from this prior

determination of the form of the equations which express the involutions of

the two kinds respectively.
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But first it may be well to explain why and in what sense I refer in the

title to Involutants as belonging to a class of invariants. I say, then, that

universally involutants are invariants in this sense, that if for m and for n,

any function of m, or any function of n be substituted, the ratio of the two

Involutants, say / and J, remains unaltered. By virtue of the Identical

Equation (mf will be of the form of

Ai + Bi + Cim? + . . . -f Liin&quot;-
1

and as a consequence it is easy to see that when ra* is substituted for m,
I and / will become respectively PI, PJ where P is the o&amp;gt;th power of the

determinant to the matrix formed by writing under one another the
(&amp;lt;w 1)

lines of terms, of which the line B{ ,
Cit ...

; Li is the general expression.

Moreover, in the particular case where co = 2 and I=J*, besides being an

Invariant in this modified sense, / will be an invariant in a sense including
but transcending the more ordinary conception of an Invariant

;
for if when,

for m and n, f(m, n) and &amp;lt; (m, n) are substituted, / becomes /
,
then I will

contain / as a factor
;
this is a consequence of the fact that when m and n

are in involution f(m, n) and
&amp;lt;f&amp;gt;(m, n) will also be in involution, for in

consequence of the identical equation

ran + nm 2bn 2cm + 2e =

/and &amp;lt;&amp;gt; and/0 will each be reducible to the form

A + Bm + Cn + Dmn
and it is obvious from the ordinary theory of the determinants that the

topical resultant of 1, (meaning j,
and three linear functions of 1, m,

n, nm, will contain as a factor the topical resultant of 1, m, n, mn.

Nor must it be supposed that Involutants are the only species of

invariants in the modified sense first described which appertain to the

* I for some time had imagined, and indeed thought I had proved, that the two involutants

were always identical. When crossing the Atlantic last month on board the &quot;

Arizona,&quot; having
hit upon a pair of matrices of the third order, for which the two topical resultants admitted of

easy calculation, I found, to my surprise, that they were perfectly distinct. The cause of the

failure of the supposed proof constitutes a paradox which will form the subject of a communication

to a future meeting of the Johns Hopkins Mathematical Society.

I will here only premise that the seeming contradiction between the logical conclusion and
the facts of the case takes its rise in a sort of mirage with which invariantists are familiar,

namely : the apparent a priori establishment of algebraical forms as the result of perfectly valid

processes, which forms have no more real existence in nature than the Corona of the Sun under
our Dr Hastings scrutinizing gaze : the contradiction between the logical inference and the

truth being accounted for by the circumstance that any such supposed form on actual per
formance of the operations indicated, turns out to be a congeries of terms, each affected with a

null coefficient
;
we are thus taught the lesson that all a priori reasoning until submitted to the

test of experience, is liable to be fallacious, and it is impossible to prove that a proof may not
be erroneous by any other method than that of actual trial of the results which it is supposed to

yield.



138 On Involutants and other allied species of [15

system m and n. Thus, for example, when &amp;lt;w
= 2 it is not only true that

the determinant of the matrix mn nm is such a kind of Invariant (which
for greater clearness it may be desirable to denote by the term Perpetuitant*),
but each element of that matrix will also be a perpetuitant, and these 4 per-

petuitants, when for m, n pm, &amp;lt;f&amp;gt;n

are substituted, will be in an invariable ratio

to one another and to either square root of the Involutant.

In like manner it will eventually be seen that for two matrices m, n of any
order

&&amp;gt;,
it is possible to form a matrix of the order to analogous to mn nm

(
which be it observed may be regarded as the Determinant of the matrix

m
]

\ m n)
each of whose 2 terms will be in a constant ratio to each other and to any
eoth root of / and of J.

I will now return to the problem of finding what is the form of the

equation which connects the &&amp;gt;

2 matrices denoted by

(1, m, m2
,

... m&quot;-
1

) (1, n, n2
, ... n&quot;-

1

)

when such an equation admits of being formed, that is, /= 0.

To fix the ideas let us suppose that m, n are matrices of the 3rd order of

perfectly general form so that the m, n involution necessitates the satisfaction

of one single condition, 7=0.
Let A + Bn + Cn2 = be the equation whose form is to be determined

where A, B, C, are each of them quadratic functions of m. I say that neither

A, B, nor C, can contain a non-vacuous linear factor. For suppose that any
one of them as A should contain the non-vacuous factor m + q, and that

A = (m + q) (am + p).

Then we may multiply the equation by (m + q)~* and thus obtain the

equation

(am + p) + B n + C n* = 0,

that is, we have an equation in which not all 9 but only 8 of the terms

signified by (1, m, m2

) (1, n, ?i
2

)
= are linearly related. But this obviously

implies, contrary to the hypothesis, the existence of two equations of

condition instead of one.

Hence then A must be of the form c (m X) (m X ) where X, X are

each of them a latent root of m
;
whether the same or different remains to

be determined.

In like manner it may be shown that B is of the form d (m Xx ) (m X/)
and C of the form c2 (m X2) (m X*/). But now I say further that

(m X) (m X
), (m Xj) (m X/), (m X2) (m X/)

must be identical.

*
Perpetuitant formed from perpetuity by analogy to Annuitant from Annuity. Perpetuant

would have been better, but that it has already been applied by myself in the theory of Invariants

in a sense recognized and adopted by Cayley, Hammond, and MacMahon.
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For, firstly, suppose that any one pair of the X s, say X, X ,
are distinct.

If any other pair, say X2 ,
X2 , is not identical with this pair, on multiplying the

equation, by m X&quot;,
where X&quot; is the 3rd latent root of M, the term containing

the term .4(X...X&quot;) will vanish, but 5(X...X&quot;) will not vanish and conse

quently there will be an equation, if (7(X...X&quot;) does not vanish, between 6

only, and if C(\ ...
X&quot;)

does vanish, between 3 only of the 9 terms denoted

by (1, m, ra2
) (1, n, n2

), contrary to hypothesis.

The only remaining supposition is that A, B, C are each perfect squares.

Suppose, then, that any one of them as A is a multiple of (m X)
2

;
unless

B, C are each of them also multiples of the same, on multiplying the equation

by (m X ) (m X&quot;),
one of the three coefficients of 1, n, ri* will vanish but

one at least of the other two will not vanish, which is impossible for the same

reason as before. Hence the left-hand side of the equation of involution

must contain (m \)(m X ) as a sinister factor where X, X (whether the

same or different) are latent roots of X. And in like manner precisely, by

arranging the equation of involution under the form A + mB + m2
C&quot; where

A
,
B

,
C are quadratic functions of n, it may be found that the same

function must contain (n p,} (n p!) where p,, p! are latent roots of n as a

dexter factor.

Hence the form of the equation must be

(m X) (m X ) (n p,} (n pf}
= 0.

It is easy to see that we cannot have X and X the same latent root of m
and at the same time p, p! the same latent root of n, for then the above

product would have at most the nullity 2 whereas it is an absolute null,

that is, has the nullity 3.

But I will now show that X, X and
//,, p! must each consist of unlike

roots. Let t be any term of the matrix

(m X) (m X ) (n p,) (n //),

where t will be a known function of the elements of m, n, of X, X entering

symmetrically, and of
/t, p! also entering symmetrically : this is the same

thing as saying that t will be a function of the elements of m and n, of
X&quot;, // ,

and of the coefficients of the equations which contain the 3 latent roots of X
and p. respectively.

Consequently the product of the 9 values of t found by writing X&quot;,
X

,
X

for
X&quot;,

and
p,&quot;, p!, p, for

p.&quot;,
will be a rational integer function of the elements

of ra, n which vanishes when the Involutant / vanishes and must conse

quently contain / as a factor. If then, in any single instance, the matrix

(ra
- X)

2

(n
-

p!} (n
-

p! )

does not vanish for some one value of X and p, when / vanishes, it cannot

be the form, or one of two conceivably possible coexisting forms, of the
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left-hand side of the general equation of involution,

course applies to

(TO
-

Xj) (m - X2) (n
-

fa)
2

.

A similar remark of

I

Let now 0,

p, pThe latent roots of TO are

=
j/(I + ks

); we have also

100
m2 = p

2
0,

00/3
The three values of (TO X ) (TO X&quot;)

are

300 00
000, 3p

2

000 00
and the three values of (n fa) (n fa) are

-p2k+02 k2 +p0

p
2 +0k - k + fr

k2 + p +0k

k2

+ 0k

+ p*0

-pk
k2 +
-k +

P +

The general value of

(TO Xj) (m X2) (n fa) (n fa)

will (to a numerical factor pres) be a matrix consisting of a single column

accompanied by two columns of zeros, the non-zero column being some one

of the 9 columns found in the above 3 matrices.

Now by direct calculation we know that the n, m Involutant in this case

is a numerical multiple of (k
s

p
2
)
3 and vanishes when k3 = p

2
,
which gives

= \/(I + p
2

),
that is, p

3
,
and if we please k = 2

.

Hence not merely one but three of the products of

(TO X ) (TO X&quot;) (n p ) (n p&quot;)

will in this case vanish, for the above equations will cause the 2nd, 4th and

9th columns all to become columns of nulls.

If now instead of the factor (TO X ) (TO X&quot;)
we substitute the factor

(m X)
2

, the three values of (TO X)
2 will become

00 -300 -300
-3p 000 0-3/30

-3/3
2 -3p2 00
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so that if (m - X)
2
(n - /* ) (n

-
// )

is to vanish, it will readily be seen that each of two columns of one or the

other of the two matrices representing (n /* ) (n p&quot;)
will have to vanish

simultaneously, and that this cannot be brought to pass when O3 =
p and

I* = ^2
= 06 whether we make k = 6* or - s or 6s

.

Hence (m X)
2

(n //) (n /j,&quot;)

=

is not an admissible general involution form of equation. Similarly by

interchanging the above special values assigned to m and n, it may be

shown that

(m - X ) (m - X&quot;) (n
-

/*)*
=

is not an admissible form, and consequently that the one universal form of

the involution equation is expressed by saying that

(m -\ )(m- X&quot;) (n
-

/* ) (n
-

/&&quot;)

is an absolute null. If no connexion exists between the elements of m and n,

we know from the law of nullity that the above matrix has a nullity 2, that

is, that all its minors except the elements themselves have zero contents.

The effect of the vanishing of / is to make the elements themselves one and

all vanish when the two sets of latent roots are duly selected.

So in general if

F= X&quot;
-

A^&quot;-
1 + A 3\-* - A 3\-3

..; = 0,

and G = fjL- B^- 1 + B^-* - B3^~3
... = 0,

are the two equations to the latent roots of m, n matrices of order
&amp;lt;u,

and if

M = m&quot;-
1 -

(At.
-
X) ra&quot;-

2 + (A* Aj\ + X2

) m&quot;

&quot;3
. . .

and N = n- 1 -
(B,

-
/*) re--8 + (Bs

- B,\ + X2

) n~3
. . .

,

MN = for some value of X and of
/ju

is the one equation of involution,

and NM for some value of X and some value of
//,

is the other such

equation.

I will now show how to deduce from the above statement the following

marvellous theorem.

Let H represent the sum of the product of each term in the matrix M by
its altruistic opposite in N (so that H is a function of X and p and of degree
w - 1 in each of them) then will the ordinary Algebraical Resultant of

F, G, H* be exactly equal (in magnitude as well as form) to the product
of the two involutants to the corpus m, wh

* The system of equations whose resultant expresses the undifferentiated condition of

involution, may be written under the form (x, ?/)

w = 0; (z, t)

&amp;lt;a = 0; (x,y)
u&amp;gt;
~ 1 = 0. Quccre whether

such a resultant may not be written under the form of a determinant by an application of

the Dialytic Method?

t If I and J be the two involutants, 1=0 will be the condition of left-handed involution of

m, n or right-handed of n, m, and J=Q of right-handed involution of m, n or left-handed of n, m,

for Involution, like light,
&quot; has sides.&quot; But IJ=0 will be the condition of one or the other kind,

or so to say of undifferentiated Involution.
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By the theorem proved at the beginning of this note, the nullity of M
and that of N are each w 1, hence the nullity of MN and consequently
a fortiori its vacuity cannot be less than &amp;lt;a 1, and accordingly the identical

equation to MN may be written under the form

(MNy - H(MNY~l = 0,

where H is the sum of the product of each element in the Matrix M or the

Matrix N multiplied by its altruistic opposite in the other. Suppose now
that 7=0 then for some one system of X, //,

out of the to
2

systems given by
the equations F=0, G = 0, H must vanish (for the nullity and a fortiori the

vacuity of MN in that case becomes
&&amp;gt;) ;

hence the double norm of H, that is,

the product of the &amp;lt;w

2 values of H, or, which comes to the same thing, the

resultant of F, G, H, must vanish when I vanishes and must therefore

contain I; in like manner because the nullity of NM and a fortiori its

vacuity is &&amp;gt; when J=0, it follows that the same resultant, say R, must
contain also

J&quot;;
R will therefore contain IJ, from which it may readily be

concluded that it can differ from //, if it differ at all, only by a numerical

factor.

I need hardly pause to defend the assumption that /, J have no common
factor, and that it is the first and not necessarily any higher power of R
which contains IJ

;
the single instance, when

100 p k

m =
p 0, n = k p~,

p
2 1*0

of J, J being respectively (to a numerical factor pres) the cubes of It? p and

k3

p
2 which have no common factor, settles the first part of this assumption

at all events for the case of = 3, and as regards the second, it is only

necessary to show that neither / nor J is equal to, or contains a square or

higher power of a function of the letters in m and n as may be done easily

enough when &&amp;gt;
= 3 by another simple instance*. We may then at once

proceed to compare the dimensions of R with those of / and J.

*
Limiting ourselves to the case of matrices of the third order, if we take for m, n the matrices

060 B
d /, D F, it may be shown by direct computation that one of the Involutants

h OHO
becomes

(bH-hB)*(fD-dF)*(bd+fh) (BD-FH) (dB-fH) . {(hF+bD)*- (bd+fh) (BD+FH)},
and consequently if there were any square factor in either involutant such factor would contain

the elements belonging to the two sets indecomposably blended, but on the other hand, if we
100 / F

take for m, n the matrices p 0, G g, either involutant to m, n may easily be shown

p
2 h H

(also by direct computation) to be made up of three factors, each of which is an indecomposable
cubic function of /, g, h, F, G, H. Hence it follows that neither involutant can in its general
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R being the product of w- values of A,&quot;&quot;

1 ^~l + etc., where X, //,
are

codimensional with the elements in m and n respectively, is obviously of

the degree &&amp;gt;

2
. (eo 1) in regard to each set of elements, that is, of the degree

2or(&amp;lt;w 1) in regard to the two sets taken together.

Consider now the degree of/; this is the topical resultant of &amp;lt;o

2 matrices

of the form ni1
. ni, where

t = 0, 1, 2, ... -l, j = 0, 1, 2, ... co-l,

so that each term in / will consist of a combination of eo
2 elements selected

2

respectively from these o&amp;gt;

2 matrices. If co is even, there will be pairs
z

of matrices, one of any such pair of the form m^ni, the other of form

w &amp;lt;o-i-&amp;lt;

_ w
o&amp;gt;-i-^

an(j t^ combination of elements taken from any such pair
will be of the collective degree 2

(&&amp;gt; 1) in the two sets of elements, so that

the total degree of the Involutant will be -= . 2
(o&amp;gt; 1) or o&amp;gt;

2

(to 1). If
z

again CD is odd, there will be
(o&amp;gt;

2 + 1) such pairs, and one factor (unpaired)
0)-1 CO-l

belonging to the matrix m 2
. n 2 of the collective degree (&amp;lt;w 1). Hence

the degree of the involutant will be

(cy
2 -

1) O -
1) + (to

-
1) or w2

(o&amp;gt;

-
1)

as before.

Hence the product of IJ is of the degree 2o&amp;gt;

2

(&&amp;gt; 1), or the same as R,
and consequently (at all events to a numerical factor pres) R and IJ coincide,

which is the essential thing to be proved.

N.B. As regards to = 3, the above proof is exact
;
for higher values of w

to make it valid, it must be demonstrated as a Lemma that the two general
twin involutants (even were they decomposable forms, which they un

doubtedly are not) could not have any common factor, nor either of them
contain any square factor. The Resultant of F, G, H may be compared to

a cradle just large enough to contain the twin forms in question, so as to

give assurance that no other form is mixed up with them
;
and the proof

given above shows that this must be the case if neither twin is doubled

form contain any square factor. As a matter of fact, not only for ternary matrices but for

matrices of any order, there can be no reasonable doubt whatever in any sane mind that every
Involutant is absolutely indecomposable. One must try, however, to obtain a strict proof of this

upon the general principle of crushing every logical difficulty regarded as a challenge to the
human reason, which falls in our way; it is in overcoming the difficulties attendant upon the

proof of negative propositions that the mind acquires new strength and accumulates the materials
for future and more significant conquests. To prove that involutants in their general form are

indecomposable may possibly, I imagine, prove to be a hard nut to crack, or it maybe exceedingly
easy.
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up upon itself, and if the two do not grow into one another, but like such

creatures each possesses a perfectly distinct organization.

A single instance will serve to establish the fact that the Resultant of

F, G, H is the very product // itself, without any numerical multiplier.
I have made this verification for binary and ternary matrices, and as the

point is not one of an essential importance need not dwell here further

upon it.

To pass to a much more important subject, I am inclined to anticipate as

the result of a long and interesting investigation into the relations of the

involutants of a certain particular corpus of the third order that the sum of

the two involutants of any corpus admits of being represented by means of

invariants similar in kind to that which expresses the single involutant to a

binary corpus (m, n), namely, the content of (that is, the determinant to) the

matrix mn - nm, which itself (as previously observed) may be written as the

determinant to the matrix
-j

n
\ ,

or say (m, n\\ and in some similar way\m n\ J
\ j

it is, I think, not unlikely that the product also of the two involutants (the
resultant of F, G, H) is capable of being expressed; but I must for the

present content myself with exhibiting the bare fact of the existence of

invariants of the kind referred to for matrices of any order.

Suppose then that m, n is a, corpus of the third order. Form the deter

minant

m n m2 n?\

m n m2 n2

\

.&amp;gt;
, say (m, n, m2

,
n2\.m n m2 n 2

{

m n in2 n2
}

The number of terms, half of them positive and half of them negative,
in such determinant is 24; but of these, all but 8 will obviously appear
as pairs of equal terms affected with opposite signs and so cancel one

another : the 8 excepted ones are those in which no m and n come together,
to wit :

mnm2n2 + nmn2m2 + m2n2mn + n 2m2nm
m2nmn2 nm2n2m mn2m2n n 2mnm2

.

The determinant to this matrix will be of the total degree 18 in the two

sets of elements belonging to m and n respectively, that is, of the degree 9

in respect to each set of elements per se. And so in general if m, n be of the

order o&amp;gt; the determinant

(m, m2
,

... m&quot;&quot;
1

, n, n2
, ... n&quot;~

l

)2&amp;lt;a

will contain only 2 (jra))
2 effective terms, of which half will bear the positive

and the others the negative sign.
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The determinant to this matrix will be of the order

&&amp;gt;[2{l
+ 2+ ... +(o&amp;gt;-l)}],

that is, (&)-l)w
1

,

in regard to the combined elements in ra and n, that is, equi-dimensional

with either involutant to the corpus m, n.

Whatever else may be its properties (on which I do not dare yet to

pronounce), it is certain that such determinant (and over and above that,

every term in the matrix of which it is the content) will be an Invariant to

the corpus in the same sense in which either Involutant has been previously

shown to be entitled to bear that name. And here for the present it becomes

necessary for me to break off, bidding au revoir to any reader who may

peruse this sketch, and trusting to meet him again in the broader field of the

American Journal of Mathematics, where I hope to be spared to set out this

portion of the theory with more certainty, and the whole doctrine of multiple

quantity with much greater completeness and in more ample detail than is

possible within the limits of the Circulars and in the short interval re

maining between the present time and the date of my intended departure

for Europe.

s iv. 10



16.

ON THE THREE LAWS OF MOTION IN THE WORLD OF
UNIVERSAL ALGEBRA.

[Johns Hopkins University Circulars, III. (1884), pp. 33, 34, 57.]

IN the preceding Circular allusion was made to the three cardinal prin

ciples or conspicuous landmarks in Universal Algebra ;
these may be called,

it seems to me (without impropriety), its Laws of Motion, on the ground that

as motion is operation in the world of pure space, so operation is motion in

the world of pure order, and without claiming any exact analogy between

these and Newton s laws, it will be seen that there is an element in each of

the former which matches with a similar element in the latter, so that there

is no difficulty in pairing off the two sets of laws and determining which in

one set is to be regarded as related by affinity with which in the other.

They may be termed the law of concomitance or congruity, the law of

consentaneity and the law of mutuality or community.

The law of congruity is that which affirms that the latent roots of a

matrix follow the march of any functional operation performed upon the

matrix, not involving the action of any foreign matrix
;

it is the law which

asserts that any function of a latent root to a matrix is a latent root to that

same function of the matrix
;

in so far as it regards a matrix per se, or with

reference solely to its environment, it obviously pairs off with Newton s first

law.

The law of consentaneity, which is an immediate inference from the rule

for combining or multiplying substitutions or matrices, is that which affirms

that a given line (or parallel of latitude) can be followed out in the matrices

resulting from the continued action of a matrix upon a fixed matrix of the

same order, that is, in the series M, mM, m?M, msM, ... (which may be

regarded as so many modified states of the original matrix) without reference

to any other of the lines or parallels of latitude in the series, or again any

column or parallel of longitude in the correlated series M, Mm, Mm2
,

...

without reference to any other such column or parallel of longitude.
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An immediate consequence of this obvious fact (a direct consequence for

the rule of multiplication) obtained by dealing at will with either of the

systems of parallels referred to, is that a system of simultaneous linear

equations in differences may be formed for finding each term in any given

line or in any given column at any point in the series, and the integration

of these equations leads at once to the conclusion that any term of given

latitude and longitude in the tth term of either series is a syzygetic function

of the ith powers of the latent roots of m.

If, then, M be made equal to multinomial unity, this at once shows that

supposing a) to be the order of m, on substituting m for the carrier (or latent

variable) in the latent function to m, and multiplying the last term by the

proper multinomial unit, the matrix so formed is an absolute null, which

proves the proposition concerning the &quot;identical equation&quot; first enunciated

by Professor Cayley in his great paper on Matrices in the Philosophical

Transactions for 1858.

This proposition admits of augmentation, (1), from within, as shown in a

former note, by applying to it the limiting law of the nullity of a product

(a branch of the 3rd law), which leads to the very important conclusion that

the nullity of any factor of the function of a matrix which is an absolute

null, or more generally of any product of powers of its linear factors, is

exactly equal to the number of distinct linear factors which such factor or

product contains, at all events, in the general case where the latent roots are

all unequal ;
and (2), from without, by substituting for m, m + en where n is

any second matrix whatever and e is an infinitesimal. This leads to the

catena of identities, to which allusion has been made in the preceding
Circular. Then, again, the endogenous growth of the theorem (that which

determines the exact nullity of any factor of the left-hand side of the identical

equation) in its turn seems to lead to a remarkable theorem concerning the

form of the general term of any power of m into M.

Observe that every such term is expressed as a syzygetic function of

powers of the o&amp;gt; latent roots, and contains, therefore, o&amp;gt; constants, so that the

total number of syzygetic multipliers is y3
;
but the number of variables in m

and M together is 2eo
2

; and, consequently, apart from the &&amp;gt; arbitrary latent

roots the number of independent constants in rr^M should be 2o&amp;gt;

2
a). The

a)
3

syzygetic multipliers ought then to contain only &amp;lt;o(2&&amp;gt; 1) arbitrary

constants, and such will be found to be the case by virtue of the following

hypothetical theorem : Calling \ any one of the latent roots, the multipliers
of X* in mW will form a square of &amp;lt;w

2

quantities ;
the theorem in question* is

that every minor of the second order in such square is zero, so that the

o&amp;gt;

2 terms in the square is given when the bounding angle containing
*

I have not had leisure of mind, being much occupied in preparing for my departure, to reduce
this theorem to apodictic certainty. I state it therefore with all due reserve.

102
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2&amp;lt;u 1 terms is given ;
and the same being true for the multipliers of

each latent root (which resolve themselves into &&amp;gt; squares) the number of

arbitrary quantities in all is
&&amp;gt;(2&amp;lt;w 1) as has to be shown.

The law of consentaneity in so far as it relates to the decomposition of the

motion of a matrix into a set of parallel motions, has an evident affinity with

Newton s second law*.

Remains the law of mutuality, which is concerned with the effect of the

mutual action upon one another of two matrices, and so claims kindred with

Newton s third law.

This law branches off into two, one of which may be termed the law

of reversibility, the other that of co-occupancy or permeability.

The law of reversibility affirms that the latent function of the product of

two matrices is independent of the sense in which either of them operates

upon the other, that is, is the same for mn as for nm, just as the kinetic

energy developed by the mutual action of two bodies is not affected by their

being supposed to change places.

As regards the second branch of the third law, the word co-occupancy

refers to the fact that although the space occupied by two similarly shaped

figures (say two spheres) is not absolutely determined (in the absence of other

data) by the spaces occupied by them each separately (for they may intersect

or one of them coincide with or contain the other), a superior as well as an

inferior limit to such joint occupation is so determined
;
the inferior limit

being the space occupied by either such figure, that is, the dominant of these

two given spaces, and the superior limit their arithmetical sum. So the

nullity resulting from the action in either sense of two matrices upon one

another is not given when their separate nullities are assigned, but has for an

inferior limit the dominant of these two nullities and for a superior limit

their sum
;
the nullities of the two component matrices may also be conceived

under the figure of two gases or other fluids which are mutually permeable

and capable of occupying each other s pores.

Although the limits spoken of are independent of the sense in which the

two matrices act on one another, it must not however be supposed that the

actual resultant nullity is unaffected by that circumstance
; thus, for example,

if the latent roots of a ternary matrix m are X, X , X&quot;,
the nullity resulting

from (m X) (m X ) acting sinistrally upon (m X&quot;) n, that is, of

(m _
x) (TO

_ V) (m - X&quot;)
n is 3, but from the same acting dextrally upon

the same, that is, of (m - X&quot;)
n (m -

X) (m - X ),
need not necessarily

exceed 2.

* For another and closer bond of affinity between the two laws see concluding paragraph of

this note.
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Such then are the three primary Laws of Algebraical Motion
;
but as

Conservation of areas, Vis viva, D Alembert s Principle, the principle of

Synchronous Vibrations, of Least action, and various other general laws

may be deduced from Newton s three ground laws, so, of course, various

subordinate but very general laws may be deduced from the interaction of

the above stated three ground laws, namely, the law of Congruity, the law of

Consentaneity, and the law of Mutuality.

The deduction of the catena of identical equations connecting two

matrices m and n from the second and third laws combined, affords an

instance of such derivative general laws. Another instance of the same is

the theorem that when the product resulting from the action upon one

another of two matrices, is the same in whichever of the two senses the

action takes place, the matrices must be functionally related, unless one of

them is a scalar, that is, a multiple of multinomial unity, at all events when

neither m nor n possesses a pair of equal latent roots.

This very important and almost fundamental law (seemingly so simple

and yet so hard to prove) may be obtained as an immediate inference from

that identical equation in the catena of such equations connecting the

matrices m and n, in which one of the two enters only singly at most in

any term. As for example if m and n are of the 3rd order, beside the

identical equation m3 36m2 + 3dm g = we have* the identity

m*n + mnm + nm2 36 (mn + nm) 3cm* + 3dn + Gem &quot;3h
= 0.

But if nm = mn then mnm = m*n, nm* = mnm = m&quot;n,
so that this equation

becomes

07 7 cm2 2em + h
,m2n 2bmn +dn = m2c 2em + h, or n = ^ -

7 t.m2 -2bm + d

unless m2 26m + d is vacuous.

The first branch of the third law, namely, the law of reversibility, is an

almost immediate inference from the rule for the multiplication of matrices,

and becomes intuitively evident when the process of multiplication in each

of the two senses between m and n is actually set out. The second branch,

namely, the law of co-occupancy or permeability, as it is the most far-reaching

so it is the most deep seated (the most cache) of all the primary laws of

[* See p. 126 above.]

t Whence it follows that n must be a function of m convertible into an integral polynomial
form, unless the numerator and denominator of the fraction to which n is equated vanish simul

taneously, which is what happens when m is scalar. If the numerator exactly contains the

denominator n becomes a scalar. Seeing that a constant c is a specialized case of a function of

a variable x although the converse is not true, we may say that whenever nm = mn, one at least of

the two matrices m and n is a function of the other, and that each is a function of the other

unless that other is a scalar. Compare Clifford s &quot;

Fragment on Matrices in the posthumous
edition of his collected works.
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motion. I found my proof of it upon the fact that the value of any minor

determinant, say of the tth order, in either product of m and n (two matrices

of the order
o&amp;gt;) may be expressed as the quantitative product of a certain

couple of rectangular matrices (in Cauchy s sense of the term), of which one

is formed by i columns and the other by i lines in the two given matrices

respectively. Such rectangle as shown by Cauchy (and as may be intuitively

demonstrated by the simplest of my urnbral theorems on compound deter

minants) is the sum of the

7T (d) i) TTl

complete determinants of the one rectangle multiplied respectively by the

corresponding complete determinants of the other rectangle.

This shows at once the truth of the proposition in so far as relates to the

lower limit, that is, that if mn=p, and m, n have the nullities e, ,
and p the

nullity 0, then 6 must be at least as great as e and at least as great as . As

regards the superior limit the proof is also founded on the theorem in deter

minants already cited, and the form of it is as follows. If e be any number r,

it may be shown that must be at least as great as & r
;
hence giving r all

values successively from to 1, it follows that e+ cannot be less than 6,

that is, that 6 cannot be greater than e + .

The proof of the first law, that of concomitance or congruity, I ought to

have stated antecedently, is a deduction from the theory of resultants and

the well-known fact that the determinant of a product of matrices is the

product of their determinants. Thus each of the three laws of motion is

deduced independently of the two others.

As another example of a derivative law of motion, I may quote the very

notable one which results from the interaction of the first and second funda

mental laws upon one another, and which gives the general expression for

any function whatever of a matrix in the form of a rational polynomial

function of the same and of its latent roots, to wit, the magnificent theorem

that whatever the form of the functional symbol &amp;lt;,
and whether it be a

single or many valued function, if Xj, X2 ,
... \u be the latent roots of m,

(m - X,) (m - X,) . . . (m - \u)

p p

As for example if
&amp;lt;f&amp;gt;m

= mq
,
mq will have

&amp;lt;p

roots which are completely

determined by the above formula.

The first law, as already stated, regards a single body or matrix, un

influenced by the action of any external force. The second law regards

the effect upon a single matrix, subject to external impulses, taking their

rise in an external source
;

whilst the third law has regard to the mutual
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action or joint effect of two bodies or matrices simultaneously operating upon
one another.

Note. Making [in p. 149] m3 36m2 + 3dm g = F(m), we found

(F m) n = cm2 2em + g.

When two of the latent roots of m are equal, it is easy to prove that

F m is vacuous, and conversely, that when F m is vacuous, two of the latent

roots of m are equal ;
but when F m is vacuous it is no longer permissible to

drive it out of the equation, and accordingly the true statement of the

theorem in question is that when m, n are two matrices of (any) the

same order, such that mn = nm, n must in general be a function of m, but

that this ceases to be true, when and only when m has two equal roots. The

theorem requires further investigation in order to make out what happens

when, or how it can happen that, two of the latent roots of one and only one

of the two convertible matrices are equal ;
for supposing this to happen it

would seem to lead to the conclusion that n may be a function of m, but m
not a function of n

; which, however, is not quite so paradoxical as it looks,

inasmuch as in ordinary algebra a constant may be regarded as a specialized

function of a variable, whilst a variable in no sense can be regarded as a

function of a constant. The following example of two matrices not functions

of one another, but forming commutable products, has recently occurred to

me in practice, and led to the discovery of the oversight I had committed in

stating the theorem in question in too absolute terms.

p p
2 Oil

If x = 1 1, y = p p
z where p

2 + p + 1 = 0, it will be found that xy = yx,

p*pO pp^Q
but that neither x nor y is a function of the other; this may easily be

deduced from the fact that x* p*x 2p = 0, so that if y were any function

of x, it would be reducible to the form of a linear function thereof, and con

sequently (on account of the zeros in the two matrices) y must be a multiple
of x, which is absurd.

In like manner it will be found that y
2 -

p*y
-

2p = 0, and that conse

quently x cannot be a function of y.
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EQUATIONS IN MATRICES.

[Johns Hopkins University Circulars, III. (1884), p. 122.]

I HAVE been lately considering the subject of equations in matrices.

Sir William Hamilton in his Lectures on Quaternions has treated the case of

what I call unilateral equations of the form a? + px + q 0, or x* + xp + q = 0,

where we may, if we please, regard x, p, q as general matrices of the second

order. He has found there are six solutions, which may be obtained by the

solution of an ordinary cubic equation. In a paper now in print and which

will probably appear in the May number of the Philosophical Magazine,
I have discussed by my own methods the general unilateral equation, say

a? + paf-
1 +

qx&quot;-

2 + . .. + 1 = 0,

where x, p, q ...I, are quaternions or matrices of the second order, and have

shown, by a method satisfactory if not absolutely rigorous, that the number
of solutions is &&amp;gt;

3
&&amp;gt;

2 +
&&amp;gt;,

that is to say, the nearest superior integer to the

general maximum number of roots (w
4

) divided by the augmented degree

( + 1).

But after I had done this it occurred to me that there were multitudinous

failing cases of which neither Hamilton nor myself had taken account, as for

example a? + px =
0, besides the solutions x 0, x = p, will admit of a

solution containing an arbitrary constant, I think
;

but that is a matter

which I shall have to look further into before committing myself to a

positive assertion about it. I have only had time to pass in review the

more elementary case of a unilateral simple equation, say px = q, where p, q
are matrices of any order &amp;lt;o.

If p is non-vacuous there is one solution, namely, x = p~
l

q; but suppose

p is vacuous : what is the condition that the equation may be soluble ?

(1) Suppose q =(), p being vacuous has for its identical equation pP = 0,

and consequently we may make x = \P where \ is an arbitrary constant.

(2) Suppose q is finite and that x= r is one solution, then obviously the

general solution is x = r + \P.
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We have now to inquire what is the condition that r may exist. I find

from the mere fact of x being indeterminate (and confirm the result by
another order of considerations) that the determinant of q + \p must vanish

b c
identically ;

so that for instance when p, q are of the second order and , -

dej
are the parameters to the corpus (p, q), we must have when d = 0, which is

implied in the vacuity of p, /=0 and e = 0. The first of these conditions is

known d priori immediately from my third law of motion
;
but not so, without

introducing a slight intervening step, the intermediate one (I mean the con

nective to d and f, namely) e = 0.

So in general in order that px + q
= may be soluble, that is, in order

that p~
l

q where p is simply vacuous may be Actual and not Ideal, q must

satisfy as many conditions as there are units in the order of p or q, all implied
in the fact that the determinant to p + \q, where X is an arbitrary constant,

vanishes identically. When these conditions are satisfied p~
l

q becomes

actual but indeterminate. (This, by the way, shows the disadvantage of

calling a vacuous matrix indeterminate, as was done in the infancy of the

theory by Cayley and Clifford for we want this word as you see to signify a

combination of the inverse of a vacuous matrix with another which takes the

combination out of the ideal sphere and makes it actual.)

So in general in order that p~
l

q where p is a null of the tth order (that is

where all the (i + l)th but not all the ith minors of p are zero) shall be an

actual (although indeterminate) matrix, it is necessary and sufficient that

p + \q, where X is arbitrary, shall be a null of the same (zth) order. What
will be the degree of indeterminateness in p~

l

q, that is, how many arbitrary

constants are contained in the value of x which satisfies the equation px = Q

remains to be considered.

The law as to the conditions is an immediate corollary to my third law

of motion, for if px = q then p -f \q = p (1 + X#) ; consequently p + \q, what

ever X may be, must have at least as high a degree of nullity as p. Q.E.D.



18.

SUR LES QUANTITES FORMANT UN GROUPE DE NONIONS
ANALOGUES AUX QUATERNIONS DE HAMILTON.

[Comptes Rendus, xcvin. (1884), pp. 273276, 471475.]

DANS une Note precedente*, j ai fait allusion au cas ou le determinant de

x + ym + zn devient une fonction lineaire de a?, y
s

,
z3 sans que la quantite*

nommee Q s eVanouisse. Dans ce cas, on aura

(mn)
3 + Q(mn)-R = 0, (1)

R etant le determinant de mn. C est bien la peine, comme on va le voir,

de donner plus de precision aux equations qui lient ensemble mn et nm pour

ce cas.

En suivant la meme marche que pour le cas particulier ou Q = 0, on

trouvera sans difficulte les resultats suivants :

3Q/ v, +9 2Q2
,

9
,

nm =-~ (mn)-
- * mn

-J-,
(2)

3Q. S-9R 2Q2

mn= r- (nmy ^ nm -\

^-, (o)

etant le produit des differences des racines de la fonction \3 + QX R, de

sorte que ^ = - (4Q
3 + 27^2

).

Consequemment on peut ecrire

nm = A (mn)
2 + Bmn + C, (4)

mn = - A (nmf + B nm - G, (5)

ou A et G peuvent etre tous les deux z^ro, ou tous les deux des quantites

finies quelconques, mais non pas 1 un d entre eux une quantite finie et 1 autre

zero, et B, B les deux racines par rapport a B de liquation

Ot. (6)

*
Comptes rendus, t. xcvu. p. 1336.

[t It follows from n (mn-d) = (nm + 0)n that M, =mn and N, =nm both satisfy equation (1) ;

further MN=NM (footnote
*

p. 127 above), so that (p. 149 above) there exists an equation

N=pM 2 + qM+r; from (1), if \M-N\*Q, follows M 2 +MN+N 2 + Q= 0. Hence (2), (3) can be

deduced.]
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On peut verifier, comme je 1 ai fait, par un calcul algdbrique direct, que
les Equations (4) et (5), en vertu des equations (1) et (6), sont compatibles.

Or une chose digne de remarque, c est ce qui arrive quand % =0, car cela

servira a reveler un phdnomeue d Algebre universelle d un genre que personne
n avait encore ineme souponne.

Dans ce cas, les deux equations (4) et (5) changent leur caractere et

deviennent

Q (nm)
2 + SRnm + f Q

2 = 0,

de sorte que mn et nm cessent d etre fonctions Tun de 1 autre.

Nommoris, pour le moment, mn = u, nm =v, on aura, comme auparavant,
uv = vu, sans que v et u soient forictionnellement lids ensemble. Dans le

Johns Hopkins Circular de Janvier 1884 (dans 1 article intitule On the three

laws of motion in the world of universal Algebra, [above p. 146]), on trouvera

le moyen d etablir qu en general cette equation amene a la conclusion que ou

COO
u doit etre un scalar, c est-a-dire de la forme C 0, ou bien v un scalar, ou

o o a
sinon que nm, mn doivent etre fonctions 1 un de 1 autre

;
mais on remarquera

(ce qui m avait alors echappe) que, si Fu est 1 equation identique en u et

que la derivee fonctionnelle F u est une matrice vide (vacuous), c est-a-dire

dont le determinant est zero, le raisonnement est en defaut
;

cette vacuite* a

lieu dans le cas, et seulement dans le cas, ou deux des racines latentes

(larnbdaiqties) de m sont egales. On peut gdneValiser cette conclusion et

1 etendre a deux matrices u et v d un ordre quelconque au-dessus du

deuxieme
;

c est-a-dire quand les racines latentes de u (ou bien de v) ne

sont pas toutes inegales, il est des cas ou uv = vu, sans que u ou v soient des

scalars et sans que v et u soient fonctions 1 un de 1 autre. Par exemple, si

Ton fait

u = V = P

P

1

p
2

uv =

-
P

P

on trouvera

P !

p 1 = vu.

P
2 -P

Mais on demontrera sans difficult^ que v ne peut pas s exprimer comme
somme de puissances de u, ni vice versa v comme somme de puissances de u.

On n a pas besoin de remarquer que la seule condition de 1 existence de

racines latentes egales en u ou en v ne peut pas suffire en elle-meme pour



156 Sur les quantitds formant un groupe de nonions [18

assurer que uv = vu, mais il faut reserver pour une autre occasion la pleine

discussion de la totalitd des solutions de cette equation importante.

J ajouterai seulement cette remarque, qui est essentielle. En supposant
1 existence des Equations

m2n + mnm + nnt* = 0,

n 2m + nmn + mn2 = 0,

(ran)
3 + Qmn - R = 0,

(nm)
3 + Qnm - R = 0,

qui ont lieu necessairement quand le determinant de x + ym -4- zn devient

une fonction lineaire de x3
, y

s
,
2s

,
et en regardant nm comme fonction de mn

(en vertu de 1 equation mn . nm = nm . mn), alors, en additionnant aux deux

valeurs de nm (exprime comme fonction de raw) donn^es ci-dessus, qui corre

spondent aux deux valeurs de
,
c est-a-dire V~ (4Q

3 + 27 .R2
),
on a a considerer

quatre autres valeurs, le nombre total en etant six. Car si Ton suppose

nm A (raw)
2 + Bmn + C et si \lt \2

&amp;gt;

^3 sont les trois racines de X3 + QX -R = 0,

les valeurs de A, B, C sont determinees en mettant

ou i,j, k sont respectivement 132231123 ou ou bien 321312 213
Les valeurs de A, B, C donnees ci-dessus correspondent au deuxieme de

ces groupes de valeurs de i,j, k.

Si Ton ecrit i=l,j = 2, k 3, on trouvera nm = mn.

Si Ton ecrit i = 1, j 3, k = 2, en faisant \ = A, on trouvera

nm =

Dans le cas critique ou = 0, de sorte que 3A2 + Q 0, 1 equation devient

(ran)
2 + Aran 2A2 = 0, comme dans le cas deja traite. Quand on suppose

Q egal a zero et R (c est-a-dire le determinant de ran) fini, les seules solutions

possibles avec ces conditions sont celles fournies en e*crivant i, j, k=2, 3, 1,

ou 3, 1, 2
; mais, pour le cas general, il n y a pas de raison (au moins tres

evidente) pour exclure aucune des trois classes de solution. Si Ton admet la

legitimite des solutions de la troisieme classe, en ecrivant

nm = A (mn)
2 + Bmn + C,

AC
on trouvera B2 + B + -- =
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au lieu de 1 equation

qui est applicable aux solutions de la deuxieme classe.

Avant de considerer 1 equation xy = yx, il importe d avoir une idde nette

d une certaine classe de matrices que je nomme priviltgiees ou derogatoires,

en taut qu elles
de&quot;rogent

a la loi generale que toute matrice est assujettie a

satisfaire a une Equation identique dont le degre ne peut pas etre moindre

que 1 ordre de la matrice.

Les matrices derogatoires sont justement celles qui satisfont a une

Equation d un ordre inferieur a leur ordre propre; on peut les nommer

simplement, doublement, triplement, ... derogatoires, selon que le degre de

1 equation identique a laquelle elles satisfont differe par une, deux, trois, ...

unites du degre minimum ordinaire.

Pour le cas des matrices du deuxieme ordre, il n y a que les scalars
a

a
qui soient derogatoires.

Pour le cas des matrices du troisieme ordre, en dcartant les scalars de la

a

forme a 0, toute matrice x derogatoire peut etre ramenee ou a la forme
a

a + b(e + e
2

),

ou e est une matrice qui satisfait a 1 equation e
3 = 1, c est-a-dire une matrice

dont les racines latentes sont 1, p, p
2
, ou a la forme

ou
&amp;gt;=!,

3 = 1 et e

p signifiant une racine cubique primitive de 1 unite&quot;. Dans le premier cas,

et dans le second

#2 - 2ax + a? = 0,

car on trouvera facilement que

Pour le cas du quatrieme ordre, en ecartant les scalars et en se bornant
au cas ou 1 equatiou identique derogee (vue pour le moment cornme une
equation ordinaire en x} ne contient pas des racines egales, toute matrice
x peut etre ramenee a 1 une ou a 1 autre des deux formes suivantes :

oubien a + b U+
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ou U est une matrice du quatrieme ordre telle que U* + 1 =
; a, b, k sont

des scalars arbitraires et i est une racine primitive biquadratique de I unite
;

quand, pour la seconde forme k = 1, on trouvera qu il y aura une derogation
double de 1 ordre de 1 equation satisfaite par x, 1 equation identique pour x ne

sera que du deuxieme degre.

En reservant les details du calcul, voici le resultat general qu& j ai

demontrd rigoureusement (en m aidant de la notation des nonions) pour
les matrices du troisieme degre qui satisfont a 1 equation xy = yx.

A moms que x ne soit une matrice privilegiee ou derogatoire, y sera

toujours une fonction rationnelle et entiere quadratique de x, et de meme,
a moins que y ne soit privilegiee, x sera une fonction pareille de y.

II est bien entendu que le caractere derogatoire d une seule des deux

matrices n empeche pas qu elle ne soit une fonction entiere et rationnelle

quadratique de 1 autre. Dans le cas ou x et y sont tous les deux derogatoires,

ni 1 un ni 1 autre ne peut etre exprime comme fonction explicite 1 un de

1 autre, mais ils seront lies ensemble par une equation lineVlineaire.

II parait peu douteux qu une regie semblable doive etre applicable a

1 equation xy = yx, quel que soit 1 ordre des matrices x et y, sauf quand
1 equation qui lie ensemble x et y pourra etre d un degre moindre que 1 ordre

de chacune d elles.

II est bon de remarquer que nulle matrice ne peut etre derogatoire, sauf

pour le cas ou il existe des egalites entre ses racines latentes
;

mais ces

egalites peuvent parfaitement subsister sans que la matrice a laquelle elles

appartiennent soit derogatoire. En general, si x = a + by + cy*, on peut, par
une formule generale que j

ai deja donnee, exprimer y sous la forme

a + fix + yx
2

;

avec 1 aide des racines latentes de x, cette formule ne cesse pas en general

d etre valable, meme pour le cas ou x contient des racines egales, en regardant

leur difference comme une quantite infinitesimale
;

settlement le nombre des

racines finies subira dans ce cas une diminution
; mais, dans le cas ou

liquation xy = yx (x etant ddrogatoire) menerait a 1 equation

x = a + by + cy
2

,

on trouverait que nulle fonction explicite de x avec des coefficients finis ne

peut exprimer le y cherche&quot;.

II est a peine necessaire d aj outer que rien n empeche, dans le cas ou 1 un

ou 1 autre de x et y ou tous les deux sont derogatoires, qu on puisse satisfaire

a xy = yx, en supposant que x et y soient des fonctions explicites chacune

1 une de 1 autre : tout ce qu on affirme, c est que, dans le cas admis, cette

supposition cesse d etre obligatoire ;
c est un cas tres semblable a ce qui

arrive dans le cas de deTaut (failing case) du theoreme de Maclaurin : c est
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celui ou une variable est une fonction sans pouvoir etre deVeloppee dans une

serie de puissances d une autre variable.

Dans ce qui precede, on a vu un exemple du fait general que, m dtant une

matrice donne e, liquation &amp;lt;f&amp;gt;(x, m) = 0, pour certaines valeurs de m, cesse

d admettre la solution ordinaire x = Fm.

Mais il existe encore une classe assez etendue d e*quations entre x et m
pour lesquelles, quand m prend certaines valeurs, x n a aucune existence

actuelle
; par exemple, m etant une matrice vide d un ordre quelconque, si

mx = 1, la matrice x devient inexprimable et n a, pour ainsi dire, qu une

existence ideale.

Je citerai encore 1 exemple a? = m, m tant une matrice du deuxieme

ordre; si les racines latentes de m sont inegales, on trouvera, par la formule

generale, quatre valeurs de x. Si les deux racines latentes sont dgales et

finies, ces quatre valeurs se reduisent a deux
; mais, si les deux racines sont

toutes les deux egales a zero, il n y aura aucune valeur de x qui satisfasse a
a

I equation donnee, c est-a-dire si m k\ 1 ^quation devient absolument

ka a

insoluble, ou, si Ton peut s exprimer ainsi, les quatre racines carrees de m
sont toutes ideales.

Dans le cas suppose, on verifiera aisement que m2 = et, vice versa, toute

a

racine carree du zero binomial est de la forme k
,
de sorte que Ton peut

ka a
dire qu une racine carree quelconque du zero binomial ne possede pas elle-

meme des racines algebriques quelconques, ou, en d autres termes, une racine

algebrique quelconque du quaternion i + ^( I)j est purement ideale et

n admet pas d etre reprdsentee sous la forme d un quaternion. Finalement

je remarque que toute matrice est d un certain ordre et d une certaine classe;

1 ordre, c est le nombre total de ses racines latentes
;

la classe, c est le degre
minimum de 1 equation latente (c est-a-dire de liquation identique a laquelle
la matrice satisfait), lequel ne peut etre plus petit que le nombre des racines

latentes inegales.

Je dois ajouter (ce que j aurais du dire auparavant) que, quand x est une

matrice ternaire derogatoire dont toutes les racines latentes sont egales,

I dquation xy = yx peut subsister sans que ni x ni y ne soit une fonction

explicite Fun de 1 autre, meme quand y n est pas une matrice privilegiee ;

c est le cas ou, e et faisant partie d un groupe de nonions elementaires, on a

x= a + 6(1 + e + e
2

) Les calculs sont un peu compliques pour ce cas

special, mais je crois ne pas me tromper en faisant cette correction. Le

champ de la theorie de la quantite multiple est tellement nouveau et inex-

ploite que, sans les plus grandes precautions, on est toujours en danger de se

heurter contre quelque cause imprevue d incertitude ou meme d erreur.
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SUR UNE NOTE R^CENTE DE M. D. ANDRE*

[Comptes Rendus, xcvm. (1884), pp. 550, 551.]

LE theoreme de M. Andrd est une consequence immediate de la gene -

ralisation que j ai donnee du theoreme de Newton (Arithmetique universelle,

2
e

Partie, Ch. n.) sur les racines imaginaires des Equations.

On verra, en consultant mon travail f sur ce sujet (Proceedings of the

London Mathematical Society, No. 2), que si u
,
ult uz , ... um sont les co

efficients d une Equation du degre ra et si

r_ ur+l

ou yr =
r 1

v + r

7r etant une quantite reelle quelconque qui n est pas intermediate entre

et m, 1 equation aura ne&quot;cessairement au moins autant de racines imaginaires

qu il y a de variations de signes dans la serie G
,
G1} G.2 ,

...
, Gm .

En faisant v*= m, on a le theoreme de Newton
;
en faisant v = 1, on voit

qu on peut prendre Gr
= u? ur^ ur+l . Consequemment le theoreme de

M. Andrd subsiste, quel que soit le signe de la quantite qu il nomme a et

quels que soient les signes des quantites qu il nomme u
,
ult ..., um .

De plus, le theoreme subsistera encore quand, outre ces modifications,

au lieu de liquation

on ecrit

ou

identiques avec

M
,

vn = ayn_j + y3vn_2

VQ&amp;gt; Vi, V2 , ...
,
Vm ,

U2 U3

m I

(m. TTi-

*
Comptes rendus, stance du 18 fevrier 1884.

[t Vol. n. of this Eeprint, pp. 501, 507.]
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II y a encore une autre extension importante a ajouter, en considerant

liquation
- =

dont j ai donne&quot; une solution particuliere dans 1 American Mathematical

Journal, Vol. IV. [Vol. III. of this Reprint, pp. 546, 633.]

II est peut-etre digne de remarque que si, dans la formule etablie pour &amp;lt;y
r&amp;gt;

on fait v infini, la regie calquee sur celle de Newton (mais plus generale)

enseigne que, quels que soient a, b, c ou ra, 1 equation

x2 a? xm

(^2
/j^3 rftn \

l_^ +4_^^ + ... ^- -)+c=02 1.2.3 1 . 2 . . . ml

ne peat jamais avoir plus de deux racines reelles.

s. iv. 11
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SUR LA SOLUTION D UNE CLASSE TRfiS ETENDUE
D ^QUATIONS EN QUATERNIONS.

[Comptes Rendus, xcvm. (1884), pp. 651, 652.] f

LIQUATION parfaitement generale du deuxieme degre en quaternions
sera de la forme

2 (axbxc + dxe} +f =

et admettra seize solutions, qu on pourrait obtenir d une maniere directe au

moyen de quatre Equations, chacune du deuxieme degre, contenant les quatre
elements de x comme inconnus. De meme, 1 equation en quaternions ou en

matrices du deuxieme ordre du degre o&amp;gt; admettra o&amp;gt;

4 solutions. Parmi ces

formes generales, on peut distinguer celles dans lesquelles tous les quaternions

donnes se trouvent du meme cote du quaternion cherche, par exemple
aa? + bx + c = 0. On peut nommer de telles equations equations uni-

laterales. Hamilton a considere le seul cas de liquation quadratique

(voir Lectures on Quaternions, art. 636, pp. 631 2), et a determine le

nombre (6) des racines.

Or, je trouve que ma methode generale de traiter les matrices amene

directement a la solution d une equation unilaterale d un ordre quelconque

G) (c est-a-dire la fait dependre de la solution d une equation algebrique

ordinaire) et donne sans la rnoindre difficult^ et sans aucun effort d in-

vention le nombre des racines. Ce nombre est exprime par la fonction

tyS _ ,2 _j_ ^ de sOr fce que le nombre des racines, pour ainsi dire evanouies

par suite de I unilateralisme de la forme, est o&amp;gt;

4
to

3 + or a), c est-a-dire

(o)2_ w) (&)
2 + 1). On comprend bien qu en certains cas le nombre des

racines subit une reduction
; par exemple, le nombre des racines de

a*&amp;gt; + I = est G)
2 et celui de x + kx + I = est 2&&amp;gt;

2
&amp;lt;. II semble que le

nombre, pour 1 equation

doit etre (6 + 1)&&amp;gt;

2
6w, lequel, quand =

o&amp;gt; 1, devient le nombre general

o)
3

co
2 + a). Les details de ce petit travail seront donnes dans un prochain

numero du London and Edinburgh Philosophical Magazine.
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SUR LA CORRESPONDANCE ENTRE DEUX ESPECES DIF-

F^RENTES DE FONCTIONS DE DEUX SYST&MES DE

QUANTITES, CORRELATIFS ET ^GALEMENT NOMBREUX.

[Comptes Rendus, xcvm. (1884), pp. 779 781.]

Voici le theorems a de&quot;montrer, dans lequel, par somme-puissance, on

sous-entend une somme de puissances de quantitys donnees:

A i quantites on pent en associer i autres telles, que chaque fonction syme-

trique (qui est une fonction des differences) des premieres sera une fonction des

sommes-puissances du
2&quot;,

du
3&quot;,

. . .
, du i^me ordre des dernieres.

Faisons, pour plus de clarte, i = 3.

Soient r1} r2 ,
r3 les racines de 1 equation

fr = ar5 + br3 + cr + d = 0.

En prenant b, c, d; r1} r2,r3 comme deux systemes correlatifs de variables

independants, on trouve

8& = 2
-jr

&r, Bc ^
-jr

Sr , 8d = 2
-jr

Sr .

Done 3a86 + 2bSc + cSd =-2Sr ,

aSb +

Soient a = a, b = 3/3, c = 3 . 2 . 7, d = 3 . 2 . 1 . 8, et soient plt
/&amp;gt;

2 , ps les racines

de liquation

Alors, si S Sr = 0, on aura (a&p + @8y + 785) &amp;lt;/&amp;gt;

= 0. C.Q.F.D.

L integrale gen^rale de la premiere Equation est

&amp;lt;/&amp;gt;

=
JF (ri

~ r2, *!
- rs),

et celle de la derniere est

112
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Ces deux integrates sont done identiques, et, le raisonnement etant general

pour une valeur quelconque de i, on voit que chaque fonction des differences

des r doit pouvoir s exprimer comrae une fonction de i 1 sommes-puissances
consecutives des p (commen^ant avec la seconde), les r et les p etant lies

ensemble par les Equations

ari + iri-i + cri-z + dri-s + = Q
5

x &amp;lt;(&amp;lt;-i)(- 2)
-&quot;-

et consequemment une fonction symetrique des differences des r sera une

fonction rationnelle et entiere des i 1 puissances consecutives (dont on a

deja fait mention) des p.

En prenant i = oo
,
on voit que le theoreme equivaut a dire que tous les

sous-invariants, sources des covariants de (a, b, c$#, y)
2
, (a, b, c, dfyx, y)

3
, ...

(a I mfini), seront des fonctions des sommes-puissances prises a 1 infini, avec

la seule exception de la somme lineaire, des racines de 1 equation

c d
a + bx + -

^ a? + x3 + . . . (a 1 infini).
1 . L JL . L . o

Tel est le theoreme capital decouvert par M. le capitaine Mac-Mahon, de

1 Artillerie royale anglaise, dont il a fait le plus heureux usage en developpant

la theorie des perpetuants (voir American Journal of Mathematics). II est

evident que le meme principe peut etre applique aux invariants de toute

espece, de sorte que, grace a la belle decouverte de M. Mac-Mahon, avec la

generalisation (qui en sort presque intuitivement) que j
ai donnee, on est

aujourd hui en tat de trailer les parties les plus difficiles et les plus

essentielles de la theorie des formes algebriques, comme M. Schubert 1 a

fait avec sa Zahl- Geometric pour les figures dans 1 espace, en faisant abs

traction, pour ainsi dire, de toute question de substance (de matiere contenue

dans les formes), et en se bornant a un calcul purement arithmetique.

Je dois avertir que le theoreme de correspondance, tel que M. Mac-Mahon

1 a donne, a paru dans \ American Journal of Mathematics (Vol. VI. p. 131).

M. Mac-Mahon affirme (mais sans aucune preuve) que, si (a, /3, 7, ... etant

des nombres entiers plus grands chacun que 1 unite)
&amp;lt;/&amp;gt;

est de la forme

y
&amp;gt;

...
,
ou r, s, t, ... sont les racines de I equation

fa IV* -
( ^

alors (^o^tt! + ai$a2 + a2&as + ) &amp;lt;/&amp;gt;

=
0&amp;gt;

et il donne a
&amp;lt;f&amp;gt;

le nom de fonction symetrique non unitaire des racines. Ce

theoreme est vrai seulement pour le cas ou n est iufini (ce que M. Mac-
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Mahon a oublie de dire), et dans ce cas il conduit a la consequence que les

differentiants (c est-a-dire les sous-invariants) de

(a,, o^o,, ...)0, 1)

sont des fauctions symetriques non unitaires des racines de 1 equation

a + a, ar1 +^ #-2 +
j-^-g

.-3 + . . . =

et vice versa. Or il est evident que chaque fonction symetrique non unitaire

d un nombre infini de quantites n est autre chose qu une fonction des sommes
de toutes les puissances de ces quantites au dela de la premiere. Voila

pourquoi j
ai attribue a M. Mac-Mahon, dans ce qui precede (pour le cas

d une Equation dont le degre est infini), la connaissance du thdoreme que j ai

demontre dans toute sa generalite.

&amp;gt;: *r:;.C[



22.

SUR LE THEOREMS DE M. BRIOSCHI, RELATIF AUX
FONCTIONS SYMETRIQUES.

[Comptes Rendus, xcvm. (1884), pp. 858 862.]

DANS la demonstration du theoreme sur une correspondance algebrique,
insure dans les Comptes rendus de la semaine derniere [p. 163 above], j ai

eu occasion de considerer 1 integrale de liquation

d d d

Je me suis aper9u depuis que cette integrate peut se deduire immedia-

teinent du beau theoreme de M. Brioschi, sur les fonctions symetriques, a

savoir que :

d&amp;lt;h dd&amp;gt; dd) dd) _
T

-j
1- + C1 -r- h d] -j (-+ Q&quot;nr ~j

== &quot;

CLSf \LOjf Ct(Zj_|_i CkQyi

On en tire cette consequence immediate que, si &amp;lt; est une fonotion des n

premieres sommes-puissances des racines de 1 equation

avec exclusion de la puissance ri6me
,
on aura

et consequemment F(slt s2 ,
...

, Sr^, sr+1 ,
...

,
sn) sera 1 equivalent complet

de 1 expression
f d d d V1

.

a j I- a,! -j h . . . + an_r -j . 0.
\, aar aar+i dan/

Dans le cas que j ai considere, r = 1, et nous avons trouve

d d d \~l

On peut trouver aussi facilement 1 integrale complete de 1 equation

/ d d d \**
,

I a -j- + 0! -j
+ . . . + an_! j &amp;lt;p

= 0,
V da^ daz daj
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ou 1 asterisque signifie qu on doit prendre le produit complet de 1 action de la

forme lineaire agissant i 1 fois sur elle-meme. Ainsi, par exemple,

/ d
,

, d\*2
. ., /dy ,

, d d ^, 2^\ 2 d
a ji + & j~ signihe a*( TJ; + 2a6

-yy-
-r- + 62

-r-
)
+ a -r- .

V ao ac/ V0/ ao ac \ac/ ac

On trouvera sans difficulte que la valeur de cette intdgrale est

oil chaque F est une fonction exclusivement de s2 ,
s3 ,

... ,sn .

Consequemment le i
i6me coefficient d un covariant quelconque de

pent etre mis sous cette forme, si Ton se sert de su pour exprirner la somme

des &amp;lt;u

i6mes
puissances des racines de

o Q

1 . -^ X A O
n~3

-f . . . = 0.

o

En effet, en ecrivant =
s, tout covariant de degre arbitraire v apparte-

naut a ce quantic sera de la forme

[MO, (MO, u&s, 1), (MO, ult u&s, I)
2
, (MO, Mlf u2 ,

u3^s, I)
3

,
. ..] (x, y)

v
,

ou, en general,
due due dug

va ^tant une fonction exclusivement de w, ;
s2 , 53 ,

...
,
sn du poids o&amp;gt; + 1.

J ajoute encore cette observation que tout differentiant (c est-a-dire sous-

invariant ou seminvariant) d un systeme de i quantics des degrds m, p, ..., M
sera fonction exclusivement de s2 ,

s3 , ..., sm ;
o-2 ,

o-3 , ..., crM , ..., S2 ,
S3 , ..,, Sj/

et de t 1 fonctions lineaires independantes de la forme

ls1 + \Tl + ... + L8lt

soumises a la condition que I + \+ ... 4- L = 0.

Je ne sais s il vaut la peine de dire, comme conclusion, qu en combinant

le theoreme de M. Brioschi avec le mien sur les puissances (avec asterisque)

on trouve, pour 1 equation

f d d d
i + i ;/~ + a2 T- + . . .

V da1 da^ da3

(ou le i est sans asterisque), 1 integrale partielle

ou chaque F est une fonction arbitraire de S{+1 , Si+2 , ..., sn .

En effet, cette expression est 1 integrale complete du systeme forme par
1 equation supposee conjointe avec les equations
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On voit aussi facilement que 1 int^grale de

/ d d \*i
OO-T- +al

-
i +... =

V dar dar+1 )

ou chaque U est une fonction arbitraire de s1 ,s2 , ... , s^, sr+1 , ... sn .

On peut former un nombre infini de systemes construits au moyen des

operateurs i ao^-
+ ...

j
dont on connaitra d avance les integrales ; ainsi, par

exemple, le systeme de r Equations

aura pour integrale complete

&amp;lt;/&amp;gt;

= U + s, l\ + sa*U2 + ...+ s2
-&amp;gt;

Ui_, ,

ou chaque i7 represente une fonction arbitraire de (s^s, ... s^s* ... sn ), en
omettant celles des quantites s,, s

3&amp;lt; ..., s2l-_! dont les sous-indices excedent n.

Pour indiquer le moyen de justifier ces enonces, prenons comme exemple
le cas des Equations simultan^es

(a Ba, + ... + an_, San)
3

&amp;lt;f&amp;gt;

=
0, ou Ef

&amp;lt;/&amp;gt;

= 0,

(a Sa.2 + ... + an_2 San)
&amp;lt;f&amp;gt;

= 0, ou E2
&amp;lt;f&amp;gt;

=
0,

(a 8as + . . . + an_3 8an) = 0, ou E3
&amp;lt;f&amp;gt;

= Q.

On trouvera facilement qu en general E1

3 = E*
1

3 -2E*
1

1E2 + E3 , de sorte

que le systeme donne equivaut au systeme

E**&amp;lt;}&amp;gt;

= 0, E2
&amp;lt;{&amp;gt;

=
0, Es

&amp;lt;f&amp;gt;

= 0.

Pour que ces equations soient satisfaites separement, il faut et il suffit

que &amp;lt;f&amp;gt;

soit respectivement de la forme

F (s2 s3 s4 ...sn ) + s1Fl (s2 s3 s4 . . . *B) + s^F2 (s,s3s4 . . . sn ),

G (S^St . . . Sn),
H (s&St . . . Sn ).

Consequemment, afin que les trois equations soient toutes satisfaites

simultanement, la condition suffisante et necessaire sera que (f&amp;gt;

soit de la

forme

F(S, . . . Sn) + Sl F, (84 ... Sn) + Sl
2F.2 (s4 . . . Sn),

laquelle est consequemment 1 integrale complete du systeme donne. De
meme, on ddmontre facilement que 1 integrale complete des equations

(a 8^ + ... + _! 8an)
2

&amp;lt;t&amp;gt;

=
Q,

(a Sa2 + . . . + an_2 San) = 0,

sera

= F(S3 S5 SS . . . Sn) + SiFj. (S3S5SS ... Sn).
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SUR UNE EXTENSION DE LA LOI DE HARRIOT RELATIVE

AUX EQUATIONS ALG^BRIQUES.

[Comptes Rendus, xcvni. (1884), pp. 10261030.]

ON peut envisager la loi de Harriot comme une loi qui affirme la possibilite

de decomposer d une seule maniere un polynome en x dans un produit de

facteurs lineaires composes avec les differences entre x et les racines du

polynome. En reflechissant sur la cause de cette possibilite et la maniere

de la demontrer, on voit facilement que le meme principe doit, avec une

certaine modification, s appliquer a toute equation en matrices d un ordre

quelconque dont les coefficients sont transitifs entre eux-memes, c est-a-dire

qui agissent les uns sur les autres exactement comme les quantites de

1 Algebre ordinaire, si chaque coefficient, par exemple, est une fonction

rationnelle de la meme matrice. On peut nommer les Equations dont les

coefficients satisfont a cette condition equations monothetiques : on remarquera

que de telles Equations forment une classe speciale des equations que j ai

nommees unilaterales dans une Note precedente.

Pour fixer les idees, prenons comme exemple une Equation monothetique
du second degre en matrices binaires, laquelle peut toujours etre ramenee a

la forme

-

En supposant que p
2

(ct + ft)p + a/3 = soit VEquation identique de p,

on aura

Faisons

Alors les quatre racines de p seront

p + u + v, p u v; p

Disons 7*!, r2 ,
r3 ,

r4 .

v, p u + v,
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On trouve

et de meme (p a)
2 =

(/3
-

a) (p a),

de sorte que

-aft-Ap-B =p2 -Ap-B.
On a aussi uv et consdqueminent (u + v)

2 = u2 + v2 =(u v)
2
. Done

(a;
-

rj) (a?
- ra)

= (x
-
p}

2 -(u+ v)
2 = a? - 2px + Ap + B,

(a r3) (x
- r4)

= (x-pf-(u - v)
2 = a? 2px + Ap + B.

Or consideYons le cas general d une equation monothetique du degr6 n

en matrices de 1 ordre w.

Cette Equation (que j ecrirai fx = 0), en vertu de ce que j
ai nomine* la

seconde loi de mouvement algebrique (c est-a-dire la formule

(m b) (ra c) . . . (m I) .

$m = 2 V

7
-

BT^
--r--7--j~ 0,

(a b) (a c) ... (a I)

ou a, b, c, ..., I sont les racines latentes de la matrice m), aura nu racines

qu on peut representer par les symboles composes

r
l&amp;gt;

r
2&amp;gt; &amp;gt;

ra

ou chaque r parcourt les valeurs 1, 2, 3, ..., n.

En reflechissant sur la maniere de de&quot;montrer le principe de Harriot, on

arrivera facilement a la conclusion suivante : en prenant une combinaison

quelconque de n symboles ra , r2 , ..^r^, de telle maniere que chaque r

parcoure toutes ses n valeurs, R1} Rz , ...,Rn ,
on aura

/* = (*- R,) (x-R,)...(x- Rn\

Ainsi on arrive au theoreme suivant :

Toute fauction monothetique rationnelle et entiere de x du degre n en

matrices de 1 ordre o&amp;gt; peut etre representee de (1 . 2 . 3 ...
fi)&quot;&quot;

1 manieres

differentes comme un produit de n facteurs lineaires dont chacun sera la

difference entre x et une des racines de la fonction donnee.

Telle est la loi de Harriot, etendue au cas des quantites multiirration-

nelles.

Dans le cas de 1 Algebre ordinaire, w = 1, et le nombre des decompositions

defx en facteurs, selon la formule, devient unique, comme il doit etre.

De merne, pour les quaternions, le nombre des decompositions d une

fonction monothetique du degre n en facteurs lineaires sera TTH. Par
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exemple, si n = 3, les racines de fx peuvent etre exprimees par les neuf

symboles
0.0 0.1 0.2

1.0

2.0

1.1

2.1

1.2

2.2

La fonction (comme on le demontrera facilement) peut etre mise sous la

forme x 0.0 multiplied par une fonction quadratique dont les racines

seront des racines de fx, et cons^quemment, par raison de symetrie, seront

les quatre racines

1.1 1.2,

2.1 2.2;

done la fonction quadratique dont j ai parld sera 4gale a

eta O- 1.2)0-2.1).

Ainsi il y aura deux decompositions de fx qui correspondent aux deux

diagonales . 0, 1 . 1, 2 . 2
;

. 0, 1 . 2, 2 . 1, et de meme il y aura des decom-

positions qui respondent aux diagonales 0.1,1.2, 2.0; 0.1,1.0, 2.2; 0.2,
1 . 0, 2 . 1

;
. 2, 1 . 1, 2 . 0, de sorte que le nombre total est egal a 1 . 2 . 3.

De meme, quand fx est monoth^tique et matrice du troisieme ordre, on

peut prendre les diagonales d un cube. Par exemple, les racines de liquation
moDothetique du second degre en matrices du troisieme ordre peuvent etre

representees par

0.0.0

1.1.1

0.0.1

1.1.0

0.1.0

1.0.1

0.1.1

1.0.0

et Ton aura les quatre decompositions

(*-0.0.0$*- 1.1.1);
-

- .

O -
. 1 . 0$# -1.0.1); O -

. 1 .

# -1.1.0);

tf - 1 . . 0) ;

et de merne, en general, pour le degr6 n, le nombre des diagonales (en se

servant de ce mot dans le sens analytique, bien entendu) sera

C est ainsi qu on trouve 1 expression generale que j ai donnee
(THi)&quot;&quot;

1

pour le

nombre des decompositions quand le degre est n et que 1 ordre des matrices

est w.

En multipliant ensemble toutes les Equations de decomposition, et en

nommant v chacune des 11&quot; racines, on parvient a 1 equation

TT -
v)

ff(n
-

1)&amp;lt;u

~1 =
O)&quot;&quot;

1

;

done, quoiqu on ne puisse pas en general conclure que, si X$ = Yi (X et F
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tant des matrices), X est necessairement egal a F, il y a toute raison de
croire qu on pourra demontrer que, dans le cas actuel, on aura

Tr(x-V) = (fxy~\

Ainsi la regie de Harriot se reproduira de nouveau sous la forme tres peu
modifiee qu un polynome (monothetique) en x (eleve a une puissance

convenable) est egal au produit des differences eutre x et toutes les

racines en succession de ce polynome.

On aura
remarque&quot;,

dans ce qui precede, qu en appliquant la seconde des

trois lois du mouvement algebrique aux equations monothetiques, on a

trouve que le nombre des racines est nu
, et consequemment est n? dans

le cas des quaternions, tandis que le nombre des raciues pour la classe des

equations en quaternions unilaterales (a laquelle les formes monothetiques

appartiennent) est en general n3
ri* + n (voir le numero d avril 1884 du

London and Edinburgh Phil. Mag.), de sorte qu ii y a une elimination

n(n I)
2 de racines en passant du cas general au cas particulier.

II reste a examiner s il n est pas possible d etendre la loi de Harriot aux

equations unilaterales polythetiques. C est ce que je vais etudier, mais sans

cela, et en me bornant au cas monothetique, il me semble qu en attribuant

aux elements des matrices des valeurs entieres (simples ou complexes), comme
le fait M. le professeur Lipschitz pour les quaternions, on voit s ouvrir un

nouveau champ immense de recherches arithmetiques fondees sur la loi

fondamentale de Harriot generalisee de la man!ere indiquee dans ce qui

precede.

C.I.O r
.&amp;lt;

- 00
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SUR LES AQUATIONS MONOTHETIQUES.

[Comptes Rendus, xcix. (1884), pp. 13 15.]

DANS une Note precedents sur une extension de la loi de Harriot, j
ai eu

occasion de consideVer les equations dites monothetiques dont tous les coeffi

cients sont des fonctions d une seule matrice. Or il y a une circonstance tres

inte&quot;ressante et importante relative aux Equations de cette forme qu il est

essentiel de faire connaitre
; car, a defaut d une telle explication, le lecteur

de la Note citee pourrait facilement etre induit dans une erreur tres grave.

Voici en quoi consiste 1 addition a faire.

Supposons que tous les coefficients d une equation donnee soient des

fonctions d une seule matrice m. En appelant x 1 inconnue, on peut resoudre

1 equation en regardant x comme fonction de m, et Ton trouvera ainsi n

racines, en supposant que n soit le degre de 1 equation et &amp;lt;o 1 ordre de m.

Ces racines seront parfaitement determinees : mais on n a nullement le droit

de supposer qu il n y a pas d autres racines qui ne sont pas des fonctions

de m, qu on peut nommer racines aberrantes, et un exemple, des plus simples

qu on puisse imaginer, suffira a ddmontrer que de telles racines, en effet,

existent
; je me servirai, pour cet objet, de liquation en quaternions (ou

matrices binaires) #2

px 0.

En effet, on connait deja, a priori, la possibilite de 1 existence des racines

aberrantes, car 1 equation en matrices xn +q Q, quand q est une matrice

scalar
/ f

?00
\

I
comme si, par exemple, q = &amp;lt;0 q I, possede, on le sait, bien des

V (0 q/
racines qui ne sont pas scalars et consequemment ne sont pas des fouctions

de
q, et, de plus, ces racines contiennent des constantes arbitraires. Comme

on va le voir, c est aussi le cas pour 1 equation x*px= 0, qui possede une

seule constante.

Si Ton veut trouver ses racines normales (ou non aberrantes), on n a qu a

resoudre cette equation comme une equation ordinaire, et Ton trouve ainsi
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En nommant r et s les racines latentes de p, on obtient par ma formule

d interpolation (pour ainsi dire), recemment citee par M. Weyr,

1 / ,p s ,P~ r
s~

s r

ft* ( nf\ r o\ o
( /V) i ._,_ * \

c est-a-dire x = 0, p, ,

-^-
,
et il n y a pas d autres racines de

r s sr
ce caractere. Mais sortons de cette restriction arbitraire (produit de la

paresse de 1 esprit humain, qui se fatigue enfin en voyant sans cesse se

reproduire des horizons nouveaux et inattendus), et posons hardiment

_ a 8 _a b

70 c d

ou a, 8, 7, B sont les quantite*s a determiner.

Puisqu on fait abstraction des solutions # = 0, x=p, on sent, en vertu de

la troisieme loi du mouvement algebrique, que x et x p auront chacun un

degre de nullitd (car leur produit possede deux degres) ; ainsi, si a + 8 = 0,

on aura

done aussi px = 0,

et p sera aussi une matrice vide, c est-a-dire qu on aura

adbc = 0.

La solution pour ce cas (dont, dans ce qui suit, je veux faire abstraction)

sera

&amp;gt; \
ac ~~ ^

|a
2 - ac

X etant arbitraire.

Dans tout autre cas, en egalant la raison du second au troisieme membre
de a? avec la meme pour px, on trouve sans difficulte que x sera de la forme

-\(d-r) \b

/uc yu, (a r)

ou r et s sont les racines latentes de p, c est-a-dire les racines de liquation

r2 -
(a + d) r + ad - be = 0.

Alors, en calculant xz et px, et en les egalant terme a terme, on obtient

les quatre equations suivantes :

\(d r)
2 + /jibe =bc a(d r),

b[\(d-r)+/j,(a-r)]=- br,

\bc + p, (a rf = be d (a r).
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En ecartant le cas special pour lequel 6 = et c = 0, on voit (et c est

M. Franklin, de Baltimore, qui le premier s est apercu de cette conclusion

capitale) que toutes ces Equations seront satisfaites avec la seule supposition

\ (d
-

r) + /u, (a
-

r) + r = 0,

de sorte qu une constante reste parfaitement libre dans la solution aberrante

de 1 equation x*px = Q.

Dans le cas ou p = _
,
on trouvera facilement les deux solutions deter-

a

minees
a 00

* =
o o

et * =
o d-

Dans ses Lectures sur les quaternions, Hamilton n a pas mis le doigt sur

les cas ve&quot;ritablement singuliers des equations quadratiques unilaterales. La
condition de singularite, c est-a-dire de la presence de Tun ou de 1 autre des

cas ou une ou plusieurs des trois paires de racines de 1 equation px
2+qx+r=Q

disparaissent ou deviennent inddterminees (c est-a-dire atfectees de constantes

arbitraires), peut se resumer dans la seule equation 7=0, ou I est 1 invariant

quartique ternaire quadratique (en w, v, w) qui exprime le determinant d une

matrice up + vq + wr.
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SUR L EQUATION EN MATRICES px = xq.

[Comptes Rendus, xcix. (1884), pp. 6771 ; 115, 116.]

SOIENT p et q deux matrices de 1 ordre &&amp;gt;.

Pour resoudre 1 equation px = xq, on obtiendra o&amp;gt;

2

equations homogenes
lineaires entre les &&amp;gt;

2 elements de 1 inconnue x et les elements de p et de q,

de sorte que, afin que 1 equation donnee soit resoluble, les elements de p et

de q doivent etre lies ensemble par une et une seule equation.

Mais, si Yequation identique en p est ecrite sous la forme

p + Bp&quot;-

1 + Cp-2 + . . . + L = 0,

on aura apparemment, en vertu de 1 equation p = xqx~^,

xq^x-
1
-f Bxq^x-1 + Cxq^-^x

1 + . . . + L =

ou bien
q&quot;
+

Bq&quot;

1 + Cq-2 + . . . + L =
;

done les &&amp;gt; racines de q seront identiques avec celles de p et, au lieu d une

seule equation, on aura en apparence (au moins) to equations entre les ele&quot;-

ments de p et de q.

Pour faire disparaitre ce paradoxe, il n y a qu une seule supposition a

faire : c est que x, sous les suppositions faites, devient une matrice vide, car

alors x~l n a plus une existence actuelle, et 1 equation p=xqx~l n aura pas

lieu
;
c est ce qu on va voir arriver dans le cas general, ou px = xq.

Pour fixer les idees, supposons &&amp;gt;

= 1 et faisons

P = x = f*

IT

En egalant px a xq, on obtient les quatre equations sirnultanees et homo-

genes entre X, /*, v, IT suivantes :

(a
-

a) X + op
- $v + OTT = 0,

6X + (d
-

a) fi + Qv - PIT = 0,

- 7\ + 0/i + (a 8) v + CTT = 0,

OX + 7/i + bv + (d
-

8) TT = 0,
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et Consequemment on aura*
2

Zbcfiy 2abcd 2ot@y8 + (be + $7) (a 4- d) (a + 8)

- be (a
2 + S2)

- 7 (a
2 + d2

) + a8 (a
2 + d2

) + ad (a
2 + S2

)

+ 2adaS + a-d2 + a2 S2 -
(a + d) (a + 8) (ad + ct8)

= 0,

ou, en ecrivant a + d = B, ad bc= D, a. + 8 = C, a& fiy
= F,

(D _ F)
2 + (B-C) (BF- CD) = ;

c est-a-dire, si R est le resultant de X 2 - Ex + D, X 2 - Cx + F, R = sera la

condition g6nerale de la possibilite de satisfaire a 1 equation px = xq.

II est facile de faire voir que ce rdsultat peut etre etendu au cas general

ou p et q sont des matrices de 1 ordre o&amp;gt; : on n a qu a demontrer que si une

des racines latentes de p est egale a une de q, 1 equation px = xq est resoluble;

et de plus, sans que cette condition soit satisfaite, 1 equation est irresoluble.

Soient done X1} X 2 , ..., X,,, les raciues latentes de p et
yu,1; /i2) ..., /& de q et

supposons que Xj = fa ,
alors

(p ^-i) x = x(q /ttj),

et Ton peut satisfaire a cette equation en ecrivant

Consequemment, si les racines latentes de p et de q sont les racines des

deux formes algebriques X&quot; + BX&quot;
1 + ...+L, X&quot; + CX&quot;-

1 + ...+M, quand
R (le resultant de ces deux formes) s evanouit, le resultant des &&amp;gt;

2

equations

homogenes lineaires obtenues en egalant px = xq s evanouira; mais R est

indecomposable et du meme degre (a)
2

) que ce dernier resultant dans les

Elements de p et q. Consequemment les deux resultants (a un facteur

numerique pres) sont identiques : ce qui demontre que la condition R =

est non pas seulement necessaire, mais de plus suffisante afin que px = xq
soit resoluble.

Pour ce qui regarde la valeur de x, posons x= UV, ou

U =
( p X2) (p X3) . . . (p XM ) ;

V =
(q /z2) (q /i3) ... (q /^w).

le seul fait que x contient U comme facteur ou que x contient V comme

facteur suffit a constater que x n est pas seulement vide, mais de plus possede

au moins &amp;lt;w 1 degres de nullite, c est-a-dire que tons ses determinants

mineurs du second ordre sont des z^ros.

Cela est la consequence d un theoreme que j
ai demontre dans le Johns

Hopkins Circular^ relatif au degre de nullite des combinaisons des facteurs

latents d une matrice, dont le thdoreme relatif a I equation dite identique de

Cayley ou de Hamilton n est qu un cas particulier, ou pour mieux dire le cas

extreme; seulement il faut y ajouter un theoreme qui fait partie de ma
troisieme loi de mouvement algebrique, c est-a-dire que le degre de nullite

d un facteur ne peut jamais exceder le degre de nullite du produit auquel il

appartient.

[* The expressions for p, q in line 7 from the bottom of p. 176 should be interchanged; in

the last line of p. 176, for +7^01 read -7/1*.] [t p. 134 above.]

S. IV. 12
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Nous avons done completement resolu le paradoxe qui etait a expliquer.

Mais, sur-le-champ, une uouvelle contradiction surgit, car il semble que nous

avons demon tre* que, dans tout cas sans exception, si px = xq, x est ne&quot;cessaire-

ment une matrice vide, ce qui est evidemment faux, car on sait bien que, si,

to etant de 1 ordre de p et de q, q = tf(l)p, alors, aim que 1 equation px = xq

soit resoluble, il n est jamais necessaire que x soit vide. Ainsi, par exemple,

pour les matrices binaires, 1 equation qx = xq est satisfaite quand x est une

fonction quelconque de q, et 1 equation qx=xq est resoluble, pourvu que q
2

soit scalar, en imposant deux conditions (dont une que son carre soit scalar)

sur x. Pour lever cette contradiction, revenons au cas ou o&amp;gt;
= 2 et aux

Equations fondamentales

(a a) X + G/J, /3i&amp;gt;

= 0,

b\ + (d
-

a) p - (3-jr
= 0,

y\ + (a 8) v + CTT = 0,

-
7/t + bv + (d

-
8) TT = 0.

Certes, si ces equations donnent des valeurs determinees aux rapports

X, p, v, TT, le raisonnement precedent rend certain que x doit etre vide,

c est-a-dire que XTT pv = 0, mais cette conclusion devient fausse aussitdt

que p et q sont pris tels que ces rapports deviennent indetermines, ce qui

arrive quand tous les premiers determinants mineurs de la matrice

(a -a) c -p
b (d-a) -/3

7 (a S) c

_ 7 6 (d-S)

s evanouissent simultanement.

Dans ce cas, quoique la solution generale qui donne x vide tienne bon,

rien n empeche qu il n existe d autres valeurs de x, c est-a-dire de
,

pour lequels cela n est pas vrai.

La matrice 6crite en haut doit posseder et possede, en effet, la propriete

remarquable que, en supprimant une ligne horizontale quelconque et en

nommant A, B, C, D les quatre determinants mineurs de la matrice rect-

angulaire qui survient, affectes de signes convenables, la quantitd AD EG
contiendra le determinant complet comme facteur. II sera peut-etre utile,

avant de conclure, de donner un exemple d un genre nouveau de subsistance

de 1 equation px = xq avec une valeur finie du determinant de x. Faisons

done
a - 8 = 0, d-oL = 0, be - 7 = 0,

on aura (a d) \ + C(JL @v = 0,

b\ - /3-n-
= 0,

- 7\ + CTT = 0,

y/j, + bv + (d a) TT = 0,



25] Sur I equation en matrices px = xq 179

Equations qui n equivalent qu a deux,

b\ - PTT = 0, (a-d)\ + (cfi
-

/3v)
= 0,

et le determinant de x, c est-a-dire XTT pv, aura en general une valeur finie.

Dans la derniere Note (inseree dans les Comptes rendus*) qui roule sur

1 ^quation en matrices binaires #2

px = 0, j ai remarque qu en addition aux

solutions normales

n p s p r
x=Q, x = p, x = r--

,
x = s--

r s sr
(ou r, s sont les racines latentes de p), on a la solution indeterminee (due en

grande partie a la sagacite de M. Franklin)

x= {-\(d- r) \b
|

\ \
{ pc -fi(a-r)}

avec la condition A (d r) + /j, (a r) + r = 0. videmment on a aussi la

solution tout a fait distincte

f
X. (d s) \b

p.c fji (a 5)]

avec la condition X (d
-

s) + /A (a
-

s) + s =
;
mais on doit noter que, quand

on prend \=fA, on reprend les deux valeurs normales x = rrs sr
le fait curieux que, quand 6 = et c = 0, les deux solutions aberrantes

forment un troisieme couple tout a fait determine a dte deja note, et Ton

pent y aj outer la remarque que si, en addition a b = 0, c = 0, on a aussi

a-d=0,
alors 1 indetermination reparait a pas redouble, la solution entiere etant
dans ce cas extra-specialement constitute par une paire de solutions dont
1 une et 1 autre contiennent deux constantes arbitraires au lieu d une seule.

Je dois ajouter que, dans le cas ou i racines de p (\1} X2 , ..., \i) sont

identiques avec i de q (X, yu2 , ..., /^), 1 equation

px = xq,

qui amene a p*x = xq
2
, ..., p

lx = x(f

et, par consequent, a

(p - \} . . . (p - \i) x = x (q
-

fr) . . . (q
-

^-),

sera satisfaite si Ton fait x= UV, oil

U = (p
- \i+l) ...(p- XJ, V=(q- ^.+1 ) . . . (q

-^
[* p. 174 above.]

122
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de sorte que x (en vertu du theoreme deja cite&quot;)
aura au moins degres

de nullitd, c est-a-dire tous ses determinants mineurs de 1 ordre + 1 s eva-

nouiront. Mais on sait, pour le cas oil 6 = w (et Ton a toute raison de croire

pour le cas ou 6 a une valeur quelconque au-dessus de 1 unit^), qu il existe

pour des valeurs spdciales de p et de q des solutions singulieres de liqua
tion px = ocq, lesquelles (comme dans le cas de 1 equation de Riccati) sont

bien autrement interessantes et beaucoup plus importantes que la solution

generale.

On remarquera que, quand 6 =
o&amp;gt;,

la solution generale disparait, tandis

que les solutions singulieres pour des valeurs particulieres de p et de q,

ayant toutes les racines latentes de Fun identiques avec celles de 1 autre,

forment la base de la presentation des matrices sous la forme de quaternions,

nonions, etc.



26.

5UR LA SOLUTION DU CAS LE PLUS GENERAL DES EQUA
TIONS LINEAIRES EN QUANTIT^S BINAIRES, C EST-A-

DIRE EN QUATERNIONS OU EN MATRICES DU SECOND
ORDRE.

[Comptes Rendus, xcix. (1884), pp. 117, 118.]

SOIENT p, q deux matrices d un ordre donne et servons-nous du symbole

p( )q pour signifier 1 operateur, lequel, applique a une autre matrice x du

meme ordre, donne pxq.

Alors, si Ton pose

&amp;lt;f&amp;gt;x

sera une matrice dont chaque element sera une fonction lineaire des

elements de x
;
consequemment, en supposant que les matrices p, q sont de

1 ordre w, on parvient ainsi a une matrice de 1 ordre &&amp;gt;

2
,
et consequemment

&amp;lt;/&amp;gt;

sera assujetti a une Equation identique de 1 ordre to
2

;
disons F=0.

Je vais donner la valeur de F pour le cas ou w = 2, c est-a-dire ou F sera

une fonction du quatrieme degre. Supposons que P et P sont deux quantics
du second ordre dans les deux systemes de variables x1} x2 , ..., xn \ ^, ^2 , ..., fn

contragredients. Alors, si Ton represente par P ce que devient P/

quand on

ecrit 8
Xl , 8^, ...,83^ au lieu de ^, ^2 , ..., %n , (P Y . P1 sera un invariant du

systeme donne pour toute valeur de i.

Considerons le cas ou P = aa? + bxy + cy* et P = ot
2 + ftgij + &amp;lt;yrf.

Dans
ce cas, on trouvera que ^ [(P )

2 Pz ~ 4(P . P)
2

] sera identique avec le resultat

de ax- + bxy + cy
2
, yx

2

f3xy + at/
2
, de sorte qu on peut le nommer le contra-

resultant des formes (a, b, c), (a, /3, 7). Je nommerai done, en general,
1 invariant ^ [(P )

2 P2 4 (P . P)
2

] le quasi contra-resultant des deux formes

P, P quand elles contiennent un nombre quelconque de variables.

Or, en revenant a 1 expression &amp;lt;/&amp;gt;,

nommons P le determinant de

Uipi + u2 p-2 + - + unpn + (f&amp;gt;.v

et Q le determinant de

Uiqi + Uzq* + . . . + unqn
-

v,
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ou
(/&amp;gt;, pour le moment, est traitd comme une quantite ordinaire. J ai trouve*

que le quasi contra-resultant de P, Q, quand &amp;lt; appartient a des matrices du

second ordre (lequel sera une fonction biquadratique de
&amp;lt;/&amp;gt;),

egale a zero, est

liquation identique cherchee en &amp;lt;.

II est probable, mais je n en suis pas encore absolument convaincu, qu une

methode analogue donnera 1 equation identique de
&amp;lt;f&amp;gt; pour des matrices d un

ordre quelconque.

Si Ton suppose que les p et les q sont des quaternions, rien ne change
avec 1 exception que P et Q seront defmis comme etant les modules (les

tensors Carres) au lieu d etre les determinants de
&amp;lt;f&amp;gt;v

+ 2pw, v + ^.qu

respectivement.

Connaissant ainsi 1 equation identique de 0, on peut resoudre immediate-

ment 1 equation

car, en ecrivant p ( ) q = $, on a liquation connue

&amp;lt;/&amp;gt;

4 +
B&amp;lt;f&amp;gt;

3 + C^ + D(f) + E=Q,

et, consequemment, en exceptant toujours le cas ou E = (dans lequel cas

1 equation devient ou impossible ou indeterminee), on trouve

Par exemple, si 1 equation donnee est pxq + rxs T,

&amp;lt;f&amp;gt;T

= pTq+rTs,

$&amp;gt;T

= p*Tq* + prTsq + rpTqs + rz
Ts\

&amp;lt;f&amp;gt;

3T =ps

Tq
3

+p*rTsq
2 + prpTqsq

+ rp*Tq
2
s + pr*Ts

2

q + rprTsqs

et, eventuellement, en ne se servant que des coefficients qui entrent dans les

fonctions P et Q par le moyen de formules connues, on reduit x a une somme

de multiples de termes de la forme

pT, rT, prT; pTq, rTq, prTq; pTqs, rTqs, prTqs,

et ainsi en general. Done le probleme de la resolution des equations lineaires

est completement resolu
;
seulement il reste a traiter en detail le cas singulier

ou la matrice appartenant a est vide.
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SUR LES DEUX METHODES, CELLE DE HAMILTON ET CELLE

DE L AUTEUR, POUR RESOUDRE L EQUATION LINEAIRE

EN QUATERNIONS.

[Comptes Rendus, xcix. (1884), pp. 473476, 502505.]

UN celebre quaternioniste m ayant demande de lui expliquer la portee de

ma solution de 1 equation lineaire en matrices sur la solution du meme

probleme en quaternions, il me semble desirable de donner explicitement

le moyen de passer d une solution a 1 autre. Prealablement, il sera bon

cependant de remarquer que, faute d un examen suffisamment attentif de la

forme du resultat obtenu ou plutot indique par Hamilton (Lectures on

Quaternions, pp. 559 561), on pourrait attribuer a sa solution une pro-

priete qu elle ne possede pas, celle de fournir le moyen de trouver la

solution de liquation lineaire en quaternions sous une forme reduite

semblable a celle que fournit ma metbode : mais, en effet, 1 examen d un

seul terme de m (voir au bas de la page 561), par exemple SrJrz
,
suffit a

montrer que le denominateur m de Hamilton est du douzieme degre dans les

Elements des quaternions (b et a) de son equation bqa = c (p. 559), tandis

que le degre pour la forme reduite n est que huit. II s ensuit que le

numerateur (si Ton avait la patience de le deduire des formules de

Hamilton), aussi bien que le denominateur obtenu par ce moyen, serait

affecte d un facteur Stranger a la question, du quatrieme degre, dans les

elements nommes.

J ajoute qu il est parfaitement possible de donner la valeur de x dans

1 equation ^pxp = T comme fonction settlement des p et p et des coefficients

des deux formes associees sans aucune irrationnalite. Car le determinant

du nivellateur 2p( )p ,
disons .A

7
,
etant obtenu sous la forme fl2 + VX^). IG

determinant du nivellateur -10 ^0
2p()l&amp;gt; + O0-1 N

(disons FN) sera aussi exprim^ sous une forme semblable a celle-la, disons
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Or, au lieu de 1 dquation identique FN =
0, on peut se servir d un

multiple quelconque de cette Equation pour obtenir 1 inverse de N comme
fonction de puissances positives de N. Ainsi Ton peut, dans ce but, se servir

de 1 equation 3&amp;gt;2
2 -

3&amp;gt;4
4 = 0, au lieu de FN= 0, et, avec 1 aide de cette Equation,

on obtiendra x exprime en fonction des p et p et de fonctions rationnelles

des coefficients des deux formes associees
;
mais alors, au lieu d etre obtenu

sous sa forme la plus simple, son numerateur et son denominateur con-

tiendront un facteur commun qui sera une fonction du huitieme degre
des Elements des p et des p .

Je passe a la regie pour traduire ma solution de 1 equation en matrices

^pxp = T en solution de cette meme equation quand les p, les p et le T, au
lieu d etre matrices, sont donnes comme quaternions, lilvidemment tout ce

qui est necessaire, c est de connaitre 1 equation qui serait identique pour
^P( }p ) J e vais donner la regie pour 1 obtenir.

Sous le signe 2, je suppose compris p, q, r, ...,p, q ,
r

,
____

Ecrivons la forme symbolique \Nx + (p)y + (q)z + ...]
2

,
disons X; les co

efficients de xy, xz, ..., symboliquement ecrits, sont

a (P\ (?)&amp;gt;
il faut substituer Sp, Sq, ...

;
le coefficient de y

2 est (p)
a
auquel

il faut substituer Tp
2

;
finalement le coefficient de yz est (p)(q\ auquel il

faut substituer S(Vp. Vq)*.

De meme, on construit et Ton interprete la forme

(disons X ).

On calculef la valeur de X *X-- 4 (X X}\ Ce resultat (une fonction du

quatrieme degrd en N) (disons flN) sera une partie de la fonction qui doit

tre identiquement zero. Le reste de cette fonction (disons 640^) sera

[28 (VpVqVr)S( Vp Vq Vr )]
N-2SpSp f S ( Vp Vq Vr) S ( Vp Vq Vr

),

et je dis que :

sera 1 equation identique en N, et servira pour trouver la valeur de x, c est-

a-dire N~1 T comme fonction du quaternion T, des quaternions p, q, ...,

p , q, ... et des symboles 8, V, T ;
de plus la valeur ainsi obtenue sera x

sous sa forme reduite.

II y a encore une petite observation a ajouter a mes remarques sur la

solution de Hamilton de 1 equation Zbqa = c (Lectures, p. 559). II divise q
en deux parties, le scalar w et le vecteur p.

-p

C est cette derniere quantite (p) qu il exprime sous la forme
;
alors

8(c)-an pw = vo/ IA &amp;gt;

de sorte que, a defaut d avoir recours a des reductions
2)0 (ao)

[* See first note on p. 191 below.] [+ See p. 181 above and p. 202 below.]
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ulterieures, le d^nominateur de q contiendra, non seulement le facteur

Stranger du quatrieme degre dans les elements des a et des b dont j ai

deja parte, mais encore le facteur etranger 28 (ab).

On remarquera que, dans cette solution, on aura des combinaisons des b

avec des a et des fonctions quaternionistiques de ces combinaisons, tandis

que, dans la solution infiniment plus simple que je donne du probleme, il ne

se trouve nulle part des melanges de cette nature, mais seulement des

fonctions quaternionistiques de combinaisons des a entre eux-memes et des

b entre eux-memes. Le vice fondamental de la methode de Hamilton, c est

la reduction du probleme donne a un autre, oil, au lieu de q, il n entre que sa

partie vectorielle. Neanmoins le travail de Hamilton (quoique sa raison

d etre ne subsiste plus) meritera toujours d etre regard^ comme un monument
du genie de son grand et admirable auteur.

C est la, pour la premiere fois dans 1 histoire des Mathematiques, qu on

rencontre la conception de 1 equation identique (voir Lectures, pp. 566, 567)

qui est la base de tout ce qu on a fait depuis et de tout ce qui reste a faire

dans 1 evolution de la Science vivante et remuante de la quantite multiple,
c est-a-dire I Algebre universelle, nee a peu pres 250 ans apres 1 organisation
definitive de sa sosur ainde VArithmetique universelle, dans le Memoire de

M. Cayley sur les matrices, dans les Philosophical Transactions, vol. 148.

Dans une Note precedente, on a vu que dans la nouvelle et seule bonne

methode pour resoudre, par rapport a x, 1 equation en quaternions

pxp + qxq + rxr + sxs + . . .
= F,

on fait trois operations. La premiere, a laquelle on peut donner le nom de

nivellation, consiste a trouver le nivellant, c est-a-dire le determinant de la

matrice du quatrieme ordre appartenant a un nivellateur donne du second

ordre. La seconde, qu on peut appeler deduction, consiste a obtenir 1 ^quation

identique, a laquelle un nivellateur correspond au moyen d un autre nivel

lateur qu on obtient du nivellateur donne en y adjoignant un couple de plus

de la forme N( ) Bs, ou, ce qui revient au meme, le couple V( -^0 ( )&amp;gt;*/( N),
ou N est considere comme un scalar. Finalement, on arrive a la derniere

operation, que je nommerai substitution et reduction, et qui consiste a sub-

stituer a 1 inverse du nivellateur sa valeur en fonction rationnelle du

troisieme ordre de lui-meme, puis a faire des reductions dont je parlerai

tout a 1 heure.

Au moyen de ces operations, on arrive a la valeur de 1 inconnue de

1 equation sous sa forme reduite la plus simple qu elle puisse prendre.

Pour obtenir la forme de 1 equation identique, voici ce que j ai trouve en

appliquant la methode indiquee dans la Note precedente.
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Pour plus de simplicite, je me sers de la notation suivante, qui s applique
a des lettres quelconques, accentuees ou non, representant des quaternions.

Je pose

Sp = (p), Tp*=p2 , S(VpVq) = (pq\ S(VpVqVr) =
Alors, en ecrivant

P( )p + q( )q + r( )r + s( ) + .. .=N,
on aura

^4 - 4*2 (p}(p }N* + 2 [4(p)y2 + 4 (pjp,
-
2p2p 2] N*

+ 8 [(p)(q )(pq).p 2 + (p }(q)p q .p,}
-

4,(p)(p ) q2 q 2

+ 4
t(?)G&amp;gt;W2 + (P) teV.fr] ~ 8pp (qr) (qV)

+ 8 [(P)(q )(qr)p r + (p )(q)(q r }(pr}] + 82 (pqr)(p q r
)} N

-
4&amp;gt;p2p 2pq.p q

q r + 8 [pa (qr)(p q )(p r
} + p\ (q r )(pq)(pr}]

+ 8[pq.rs. p r . q s + p q . r s .pr.qs]-S (p}(p }(qrs)(q r s ) }
= 0,

ou le dernier terme de la partie fonctionnelle de 1 equation est le nivellant
de N.

Quant a la substitution, si, dans liquation precedente

^4 - AN3 + BN* + CN-D =
*,

on remplace N^T par la fraction

- cr

tous les termes du numerateur de cette fraction seront des multiples connus
de la forme PYP

,
ou P est de 1 une des formes suivantes : p

3
; p^q, pqp, qp* ;

p2
, pq; p; ..., et ou de merne P a des types semblables avec des lettres

accentuees. II ne reste plus qu a reduire chaque P a sa forme la plus
simple, c est-a-dire a 1 exprimer comme fonction lineaire de I, p, q,pq-qp,
et de meme pour P . Alors le numdrateur de x ne contiendra plus que des
termes dont les arguments seront tous d un des types suivants (je remplace
la moitie de pq - qp par [pq]) :

T, ^F, Tp t pTp, pTq&amp;gt;,

[ Pq]r, r[p q ], pT[p q ], [pq]Yp , [pq]T[p q ];

il faut y ajouter le type pqrTr qp , qui est deja sous sa forme la plus simple
et n exige aucune formule de reduction.

* D est le determinant de la matrice qui appartient au nivellement N. Quand D = 0, la

solution de 1 equation NX = r devient ou ideale (ce qui a lieu en general), ou (ce qui a lieu pour
des cas particuliers) actuelle, mais indeterminee.
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Je n entrepreridrai pas pour le moment de calculer les coefficients de ces

arguments, mais j indiquerai du moins les formules de reduction qui seules

sont necessaires pour effectuer ce calcul. Ce travail, bien digne d attirer

1 attention de quelque jeune gdometre, peut tres probablement amener & des

resultats qui, a 1 aide d une notation symbolique, pourront etre presentes sous

une forme d une simplicite tout a fait inattendue et pour ainsi dire pro-

videntielle. J en ai eu 1 experience pareille dans d autres recherches du

meme genre, dans la solution de certains cas d equations quaternionistiques
du second degre.

Voici toutes les formules de reduction dont on aura besoin :

pq = [pq] + (p)q+(q)p-( pq),

qp=- [pq] + (p)q + (q)p
-

(pq),

p*q = 2 (p)[pq] + 2 (p)(q)p + (2p
2

-p,) q-2 (p)(pq),

pqp = 4, (p)[pq] + [8 (p)(q)
- 2 (pq)]p

~
[4 (pT+pJ q

~
[2 (q)p2 + 4 (p)(pq)} ;

dans les formules on peut, au lieu de [pq], ecrire V (VpVq).

Remarque. Quand un nivellateur devient symetrique, c est-a-dire quand
p = p , q = q ,

...
, alors les deux formes associees coincident en une seule dont

le nivellant devient un invariant orthogonal.

Qu il me soit permis, avant de conclure, d ajouter encore une petite
reflexion sur 1 importance de la question traitee ici. Elle constitue, pour
ainsi dire, un canal qui, comme celui de Panama, sert a unir deux grands
oceans, celui de la theorie des invariants et celui des quantitys complexes
on multiples : dans Tune de ces theories, en effet, on considere 1 action des

substitutions sur elles-memes, et dans 1 autre, leur action sur les formes;
de plus, on voit que la theorie analytique des quaternions, etant un cas

particulier de celle des matrices, cesse d exister comme une science inde-

pendante ; ainsi, de trois branches d analyse autrefois regardees comme
e&quot;tant independantes, en voila une abolie on absorbee, et les deux autres

reunies eri une seule de substitution algebrique.
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SUR LA SOLUTION EXPLICITS DE LIQUATION QUADRATIQUE
DE HAMILTON EN QUATERNIONS OU EN MATRICES DU
SECOND ORDRE.

[Comptes Rendus, xcix. (1884), pp. 555 558, 621631.]

HAMILTON, dans ses Lectures on quaternions (p. 632), a fourni un moyen
de resoudre 1 equation (en quaternions ou en matrices binaires) de la forme

a? - 2px + q
=

;

mais les circonstances les plus interessantes de la solution ne se font pas voir

dans sa methode de traiter la question. Voici la maniere analytique directe

que nous employons pour obtenir x sous sa forme explicite.

On suppose a? 2Bx + D =
1 dquation identique pour x, on B et D sont des scalars a trouver.

En combinant ces deux equations en x, on obtient

et, en supposant que la forme associee a [1], p, q, c est-a-dire le determinant
de A, + fip + vq, soit

X2 + 2b\fji + 2cXi&amp;gt; + dp? + 2e/j,v + /^
2
,

on aura*

4 (d
- 2bB + &) x? - 4 (e

- bD - cB + BD) XQ +/- 2cD + D- = 0.

Consequent] ment, en ecrivant u = B 6, v = D c,

et, en comparant cette Equation avec 1 equation donnee, on voit qu on peut
ecrire

w2 + a = X, uv + fi
= 2\(u + b), v2 + 7 = 4&amp;gt;\(v + c).

De plus, puisque p*
-
2bp + d = 0, on aura

(p-b + u)(q-c-v) _ _ (p - b + u) (q
- c v)~~

[* The determinant of 2Bx -D -2x p + q being zero, if x is a latent root of x.]
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En eliminant u, v entre les trois equations qui les lient avec b, c, a, /3, 7,

on trouvera liquation bien remarquable

e^c-V .7=0,

ou 7 est le discriminant de la forme associee donnee plus haut, c est-a-dire

1 b c

1= b d e = df+ 2bce - d& - e2

-fb~,

c e f
de sorte que la quantitd exponentielle symbolique represente une fonction

cubique et donne lieu a une equation cubique eri A,.

A chaque valeur de X correspondent les deux valeurs + ^( X. a) de u

et a chaque valeur de u (autre que u = 0) correspondra la seule valeur

,

,

2A, + - - de v.
u

Quand u = 0, X, = a = d b2
,
et 1 equation

v2 -
4&amp;lt;\v + 7 - 4A.C =

a ses deux racines finies. Done, quand u = 0. il faut que-
ti

prenne la forme -
,
et a cette valeur de u (qu on peut envisager comrne

deux valeurs de u reunies en une) correspondront pour v les deux valeurs

donnees par 1 equation quadratique ci-dessus.

Ainsi Ton voit qu en general # a trois paires de valeurs determinees et

qu aucune de ces valeurs ne cesse d etre actuelle et determinee que pour le

seul cas ou 1 une des trois valeurs de A, est egale a zero, c est-a-dire ou /,

1 invariant de \& pleine* forme associee a (p, q), s evanouit.

Cela revient a dire que I est le criterium de la normalite de 1 equation
donnee.

Si Ton regarde p et q comme des quaternions, on aura

b=Vp, c=Vq, d = Tp*, e = SpSq-S(VpVq), f=T&amp;lt;f.

II est bien digne de remarque que 47 est identique avec (pq qp)
2
.

On peut demontrer que, si p et q sont des matrices d un ordre quelconque,
les racines de 1 equation #2

2px + q = seront toujours (comme ici) associees

en paires ; car, si Ton dcrit x + xl
=

2p, on aura

et consequemment, si
p&quot; wbp- 1 + . . .

= est 1 equation identique connue en

p et XM wBx&quot;-
1 + ... = 1 equation identique a trouver en #, a chaque valeur

Nous avons deja defini la forme associee au corps p, q, r, ... . Par la pleine forme, on peut
sous-entendre ce que devient la forme associee quand on adjoint au corps une matrice unitaire.
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de B b correspondra une valeur egale de b B, c est-a-dire que 1 dquation

pour trouver B sera de la forme F(B b)
2 = 0.

En se servant de 1 equation conjuguee (c est-a-dire en x^ dont la somme
des racines sera evidemment la meme que pour 1 equation en x, on obtient

immediatement, dans le cas ou p et q sont du second ordre, par le raoyen de

la formule

(p+b-u)(q-c-v)
*JU ~ ~~-~-

2X

et de 1 equation en X, la valeur de %x*.

Cette valeur sera 6 [p + (28C 8d) /^], de sorte que la valeur moyenne
d une racine de 1 equation x2

2px + q = est p (la valeur moyenne pour le

cas ou p et q sont scalars), augmentee de (28C 8d) I*, ou I* doit avoir le

signe qui le rend egal a (pq qp). De meme on trouve

2#2 = ZpZx - 6q,

et ainsi la valeur moyenne de x* sera

et Ton peut trouver successivement, par la meme methode, la valeur moyenne
d une puissance quelconque de x. Les details du calcul precedent, et encore

d autres proprietes de liquation en x, seront donnes prochainement dans le

Quarterly mathematical Journal ou quelque autre recueil mathematique.
Ici on n a voulu que produire les re&quot;sultats principaux obtenus par notre

rnethode.

Liquation de Hamilton en quaternions ou en matrices binaires est celle

que nous avons traitee dans une Note precedente. C est 1 equation

x2 + 2qx + r = 0.

Nous avons trouve que la solution de cette equation depend d une

equation cubique ordinaire en X, a chaque valeur de laquelle correspondent

deux valeurs de x, et qu elle est normale ou reguliere quand le dernier terme

de cette equation differe de zero, L equation est dite reguliere ou normale

quand sa solution depend du nombre maximum de racines determinees, c est-

a-dire de trois paires de racines determinees
; chaque paire est alors connue

comme fonction de \, q, r et des parametres b, c, d, e,f qui dependent de q

* On aura 2x= - S (p
~

mn

On retranche une Equation de 1 autre, on substitue pour S sa valeur tiree de 1 equation
A

cubique en X, et on ecrit pq-qp= 2F.
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et r et sont definis au moyen du determinant de u + vq + wr* qu on a sup

pose etre mis sous la forme

u2 + 2buv + 2cuw + dv2 + 2evw + fw
2
,

d ou

b = Sq, c = Sr, d = Tq
2
, f= Tr2

e = SqSr - S(Vq. Vr)
*

Dans ce cas, on peut dire que la solution elle-meme est reguliere.

En nommant / 1 invariant de la forme ternaire, ecrite plus Ijaut, c est-a-

dire en posant
I = df+ 2bce - b*f

- c
2d - e\

nous avons trouve que I equation en X peut etre mise sous la forme

eAO / = 0,

ou n = 2SC
- Bd ,

c est-a-dire qu on aura

4X3 + (4c
-
4d) X

2 +
(4&amp;gt;be

- 4cd + c2 - /) X + / = Q.

Ainsi, afin que la solution soit reguliere, il faut et il suffit que / differe de
ze&quot;rot.

De la il suit que, dans le cas d une equation reguliere, deux x ne peuvent
etre egaux, a moins qu ils n appartiennent a la meme paire ou bien que deux
X ne deviennent egaux; car x peut etre exprime comme une fonction lineaire

de qr, q, r, 1, dans laquelle le coefficient de qr est ^- .

ZA

Done, si deux des x sont egaux sans que deux X le soient, une equation
lineaire subsistera entre pq, p, q, 1, mais dans ce cas nous avons trouve
ailleurs que 7 = 0, et la solution cesse d etre reguliere.

Nous aliens pour le moment nous borner au cas ou I equation est re

guliere, et consequemment nous n aurons qu a considerer les cas ou il y a

e&quot;galite
ou entre deux racines de X ou bien entre deux valeurs de # qui corre

spondent a la meme valeur de X.

Si Ton suppose que deux valeurs de X soient egales, il en resultera que
deux des paires de valeurs de as deviendront identiques, de sorte qu une seule
condition suffira a reduire le nombre des racines distinctes de 6 a 4, c est-a-

* Par un oubli trs regrettable nous avons pris, dans une Note precedente, pour le coefficient
de 2xy dans la forme associee a

(up + vq + wr +...),

S (VpVq) au lieu de sa vraie valeur, SpSq - S (VpVq),
et de meme pour les autres coefficients des termes mixtes, de sorte que le calcul du determinant
du nivellateur Zp ( )p dans la Note sur 1 achevement de la solution de liquation lineaire en
quaternions est errone&quot; et a besoin d etre fait de nouveau.

t Cons6quemment, quand 1 equation est reguliere, ni q ni v ne peut devenir zro
; car, dans

1 un et 1 autre de ces deux cas, 7=0 ; aussi, pour la meme raison, r ne peut pas Stre une fonction
de q.
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dire que les valeurs de x, qui, en general, sont de la forme m, m ; n, n; p,p ,

deviendrorit de la forme m, m \ n, n ; n, n.

Au lieu de calculer directement le discriminant de 1 equation en X, qui
donnera un resultat tres complique ,

nous allons montrer qu on peut substituer

le discriminant de la forme tres simple biquadratique

(, , c + 2d ,\,
X4

(i,
6, -3-, ,/]&amp;lt;*-,

sy.

Mais prealablement il sera utile d operer une transformation lineaire sur

I equation eri X.

Ecrivons X =
//, + d

; liquation en p, sera

4ya
3 + 4 (c + 2d)p? + [(c + 2d)

2 + 4be /]//. + 2b(c + 2d)e b-f e2 = 0.

On voit done que le discriminant qu on veut calculer est une fonction

complete de b, c + 2d, e, f.

Nous avons trouve u2 = X d + b2
,
c est-a-dire

//, -f b2
. On aura done

264 - 8 (c + 2d)b
2 + (c

Dans 1 equation donnee, substituons # + e, ou e est un infinitesimal

6

(scalar si Ton parle de quaternions ou representant la matrice si 1 on
e

parle de matrices) ;
alors p sera augmente par e et q par 2ep, et ainsi

(X + /j,p -f- vq) deviendra (X + e/n) + (/&quot;
+ 2ev)p + vq, de sorte qu en designant

le discriminant cherche par D, 1 accroissement de D est nul quand X et
/u,

deviennent X+ e/i, /j, + ev simultanement, c est-a-dire quand la forme ternaire

en u, v, w devient

u2 + 2 (b + e) uv + 2 (c + 2eZ&amp;gt;)
uw + (d + 2eb) v2

+ (2e + 2ec + 4ted) vw + (f + 4ee) w2
.

Done [aSb + 2bSc + 2c8d + (c + 2d) Be + eSf]D = 0.

Ecrivons c + 2d = 3m. On sait que D est une fonction complete de b, w,

e,f, de sorte que, par rapport a D (comme op^rande), 3C + ^ = Sm ; ainsi, en

ecrivant 1 = a, on aura

= 0.

D sera done on un invariant ou un sous-invariant de la forme biqua

dratique (a, 6, m, e, f).

* u sera la partie scalar de x si 1 equation est donnee sous la forme quaternionique, ou bien

la moitie de la somme du premier et du quatrieme element de x si 1 equation est donnee entre

des matrices. Hamilton a trouv^ 1 equation e&quot;quivalente a celle donnee pour u dans le texte ;

mais, dans sa formule, les coefficients sont exprimes sous une forme compliquee et assez difficile

a debrouiller.
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Mais, en faisant attention a 1 equation en /A, on voit que D sera de 1 ordre

6 dans les coefficients et du poids 12; il est done un invariant et une fonction

lineaire de s3 et t* (ou s et t sont les deux invariants irreductibles) de la forme

biquadratique.

En nommant A le discriminant de cette forme, on a

A = s3 - 27 2
,

dont une partie sera f3 2764/2
;

mais on voit, par 1 examen de liquation eu
/i, qu une partie de D sera

et, consequemment, D =

II s ensuit que la condition ndcessaire et suffisante pour 1 egalite de deux

des racines de I dquation donnee avec deux autres est tout simplement A = 0,

comme nous 1 avons deja enonce.

Cherchons la condition pour laquelle les trois paires coincideront toutes

dans une seule paire ;
alors les trois racines de

/JL
deviennent toutes egales, et

Ton a non seulement

A = 0,

mais encore (12m
2

) (9m
2 + 4&amp;gt;be /) = 0,

c est-a-dire / 4be + 3m2 = Q ou 5 = 0.

Done les conditions necessaires et suffisantes, pour qu il n y ait que deux

racines distinctes chacune, prises trois fois dans la solution de 1 equation

donnee, seront

s=(), t=Q.

On peut aussi demander quelle est la condition ou plutot quelles sont les

Equations de condition pour que deux racines de la meme paire soient egales.

Dans ce cas, nous avons trouve que u = 0; cela exige que le dernier

terme dans 1 equation a u2 devienne zero. On aura done, en vertu de liqua
tion en u2

,

ae - Sbm + 263 = 0,

c est-a-dire que le sous-invariant gauche ou bien le premier coefficient du

Hessien a la forme biquadratique s evanouit. Mais cela ne suffit pas pour

que les deux x d une paire deviennent parfaitement identiques. II faut aussi

que les deux valeurs de v, qui correspondent a la valeur ze&quot;ro de u, ou que les

deux racines de 1 ^quation

v2 -
4&amp;gt;\ (v + c) + 7 = 0,

ou X = a = d - b2
,

deviennent egales, c est-a-dire que

7 + c
2 -

(2a + c
2

)
= 0,

s. iv. 13
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ou bien, puisque j =f c2
, que

/-(3m-262
)
2 = 0;

a cette Equation il faut joindre 1 ^quation deja trouvee

ae - 3bm + 263 =
;

le systeme de ces deux equations exprime la condition de la coincidence des

deux x d une paire. Quoiquey (3m 262

)
2 = ne soit pas en elle-meme un

sous-invariant, les deux equations ci-dessus constituent (comme elles doivent

le faire) un plexus sous-invariantif
;
car on trouvera

(aSb + 26Sm + 3mSe + 4eS/) [of- (3am - 262

)
2

]
= 4 (ae

- 36m + 263

)
= 0.

En effet, puisque / - (3m - 262

)
2 ne differe de / - 9m2 + 2abe + 662m (le

second coefficient du Hessien) que par 26 (ae 36m + 263

),
on peut sub-

stituer, pour le plexus ecrit plus haut, le plexus Hl
= Q, H2

= Q, ou Hl ,
H2

sont le premier et le second coefficient du Hessien de la forme quadratique.

Or il est facile de demontrer que, quand dans la forme (a, 6, m, e, f ) (x, y)

a n est pas zdro, mais que les deux premiers coefficients du covariant irre-

ductible gauche le sont, le covariant s evanouit completement*, et la forme

biquadratique a deux paires de racines egales.

On sait aussi que, quand les deux invariants irreductibles s evanouissent,

il y a trois racines egales, et, quand en meme temps les deux invariants et le

covariant gauche s evanouissent, toutes les racines de la biquadratique sont

egales.

Ainsi on voit que les seuls cas d egalite possibles entre les racines de

liquation quadratique donnee, quand sa solution est reguliere, correspondent

aux quatre cas d egalite entre les racines de la biquadratique ordinaire qui s y

est associee.

En prenant les quatre cas : 1 ou la quadratique a deux racines egales ;

2 ou elle a deux paires de racines egales ;
3 trois racines egales ;

4 toutes

ses racines egales ;
alors la quadratique donnee aura, dans le premier cas,

deux paires de racines egales ;
dans le deuxieme, quatre racines egales ;

dans

le troisieme, trois paires de racines egales, et dans le dernier cas toutes ses

racines seront egales.

Quant au rapport de la biquadratique binaire a la forme ternaire quadra

tique, on passe de la seconde a la premiere, en se servant de la substitution

dont s est servi notre tres honore collegue, M. Darboux, dans sa belle Note

sur la resolution de 1 equation biquadratique (Journal de Liouville, t. xviii.

p. 220). On n a qu a faire a? = w2
, y = Zuv, z = v*, et la forme ternaire passe

dans la forme binaire biquadratique. On voit ainsi que les genres de

solutions regulieres de 1 equation en quaternions donnee dependent ex-

*
Quand les deux premiers coefficients du covariant irreductible gauche d une biquadratique

binaire s evanouissent, le discriminant s evanouit necessairement : nous avons trouve que ce

discriminant pris negativement egale 16 fois le produit des coefficients extremes, rnoins le

produit du second et 1 avant-dernier coefficient du covariant gauche.
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clusivement de la relation entre la conique qui s y est associee avec la

conique absolue y
2

4&amp;gt;xz. Dans le cas le plus g^neVal, les deux courbes

se coupent en quatre points ;
dans les quatre autres cas, il y aura Tune ou

1 autre des quatre especes de contact entre les deux coniques.

Mais, de plus, on voit 6videmment que cette idee des deux coniques peut
etre etendue a I equation de Hamilton, meme pour le cas ou la solution

devient irreguliere.

Dans ce cas, la forme ternaire, associee a 1 equation X* + qoc + r, perdra sa

forme de conique et deviendra un systerne de deux lignes droites qui se

croisent ou de deux lignes coincidentes. Dans la premiere supposition, il

y aura le cas ou les deux droites toutes les deux coupent et les cas ou 1 une

ou toutes les deux touchent la conique fixe
;

il y aura aussi les cas ou la

conique fixe passe par le point d intersection des deux droites en les coupant
toutes les deux ou en touchant une. Dans la seconde supposition, il y aura

les deux cas ou les droites coincidentes coupent ou toucheot la conique
fixe.

Ainsi done il nous parait qu on peut affirmer avec pleine confiance que,
dans 1 equation de Hamilton*, il y a exactement douze cas, ou au moins

douze cas principaux, a considererf. Nous devons cette methode si simple
*
Quant a liquation plus generate px

2 + qx + r 0, dans le cas ou le discriminant ou le

tenseur de p devient zero et que, par consequent, la forme ne rentre pas dans celle de

Hamilton (puisqu on ne peut plus diviser 1 equation par p), il peut se presenter encore un

grand nombre de cas singuliers que nous n avons pas encore e&quot;tudi^s a fond.

t Cela donne lieu a une reflexion curieuse. Si Ton considere tous les genres de rapports qui

peuvent avoir lieu entre une vraie conique et une conique variable et capable de de&quot;gnerer en
n excluant pas les deux cas ou la conique variable coincide avec 1 autre ou s evanouit tout a fait,

le nombre de ces genres sera 14, qui est le nombre de doubles decompositions du nombre 4,

savoir :

4: 3,1: 2,2: 2,1,1: 1,1,1,1: 3:1 2,1:1 1,1,1:1 2:2 1,1:2 1,1:1,1
2:1:1 1,1:1:1 1 : 1 : 1 : 1.

De meme on trouvera facilement que, pour le cas de formes binaires, le nombre de genres
semblables sera 6, car, ayant sur une ligne droite deux points fixes et deux points variables, ces

derniers peuvent Sire distincts entre eux-memes en comcidant avec un ou tous les deux ou
avec ni 1 un ni 1 autre des deux premiers, ou bien ils peuvent 6tre reunis dans un seul point
qui peut comcider ou ne pas coincider avec un des points fixes, et finalement ils peuvent
disparaitre; or le nombre de decompositions doubles du nombre 3, c est-a-dire

3: 2,1: 1,1,1: 2:1 1,1:1 1 : 1 : 1,
est aussi 6.

Mais nous avons de&quot;montre autrefois, dans le Philosophical Magazine, que pour le cas de deux
formes quadratiques de n variables dont chacune reste

gene&amp;gt;ale, c est-a-dire n a pas le dis^

cnminant zero, le nombre des genres de rapport est exactement le nombre de doubles d^com-
positions du noinbre n. C est une question qui merite d etre examinee, si cette identity entre le

nombre de genres pour n variables dans le second cas avec celui pour le nombre n - 1 dans le

premier, reste vraie pour toute valeur de n. Une consideration qui s y oppose, c est que, dans le

premier cas, quand (n- 1 = 1) le nombre de genres, au lieu d etre 3 (le nombre de decompositions
doubles de 2), n est que 2, mais il peut arriver que pour ce cas (le cas d une seule variable), la
forme generate etant la meme que la forme de coincidence parfaite, ce genre doit compter pour
deux, et ainsi la loi se maintiendra.

132
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de ddnombrement a la connaissance que nous avons acquise du Me&quot;moire ci-

dessus cite de M. Darboux*.

Mais ce qui plus est, on peut beaucoup simplifier, comme on va voir, la

solution de 1 equation quadratique fa; px* + qx + r = Q.

En regardant pour le moment x comme une quantite ordinaire, soient

Fx le determinant de la matrice a?p + xq + r et
&amp;lt;j&amp;gt;x

un quelconque des six

facteurs quadratiques de Fx; alors
&amp;lt;/&amp;gt;#

= sera 1 equation identique d une des

racines de fx = 0, et ces deux equations, en eliminant x2
,
donneront la valeur

precise de cette racine }. De meme nous ferons voir qu en general, quel que

soit le degre (n) de fx (fonction rationnelle entiere et unilaterale de x),

lequel, comme aussi chaque coefficient, est une matrice d un ordre donn^

(to) quelconque, en prenant le determinant Fx defx (ou pour le moment on

regarde x comme une quantite ordinaire), chaque facteur du degre &&amp;gt; de Fx

sera la fonction identiquement zero d une des racines (prise negativement) de

1 equation fx = 0, et reciproquement.

Ce beau theoreme^, pulcherrima regula, repose sur les considerations

suivantes :

Soit &amp;lt;X le determinant de A. + x; alors on peut demontrer facilement que

(j&amp;gt;x

= Q sera 1 equation identique de x.

Or soit fx = 0, alors /(- X) =/( X)
-
f(x) et consequemment contiendra

le facteur x + X. Done le determinant de /( X) contiendra le determinant

de (X + as),
c est-a-dire contiendra

&amp;lt;/&amp;gt;X,

ou
&amp;lt;j&amp;gt;x

= est 1 equation identique.

Ainsi
(f)X (la fonction de x qui est identiquement zero) ne peut qu etre un

facteur du determinant de /( x) pris comme si x e^ait une quantite

ordinaire. De plus, puisqu en general ce determinant sera une fonction ir-

reductible de x, de sorte qu on ne peut plus distinguer une racine d avec une

autre, tout facteur qu il contient dont le degre est egal a 1 ordre de x sera la

fonction identiquement nulle d une des racines de 1 equation fx = 0.

* On doit remarquer que le discriminant de 1 equation en X ou n ou u2 est le meme que celui

de la biquadratique associee a 1 equation donnee ; en effet, 1 equation en /j.
a pour racines

biquadratique ;
) &amp;gt;444

ainsi on peut dire que les six racines cherchees sont associees respectivement aux six cotes du

quadrangle complet forme par les quatre points d intersection de la conique appartenant aux co

efficients de 1 equation donnee avec la conique absolue ?/
2 - 4xz.

On comprend que la forme appartenant a p, q, r veut dire le determinant de la matrice

xp + yq + zr qui est une courbe dont 1 ordre sera toujours celui des matrices^), q, r.

t Ainsi on possede une methode immediate, et qui s applique a tous les cas qui peuvent se

presenter pour re&quot;soudre 1 equation de Hamilton. L analyse precedente suffit pour en donner

une demonstration qui a ete passee dans le texte.

I On peut donner a cet enonce une autre forme, a savoir: Toute racine latente de chaque

racine de fx (fonction rationnelle entiere et unilaterale par rapport a x) est une racine (prise

negativement) du determinant defx (ou x est traite comme une quantite&quot; ordinaire) et reciproque

ment chaque racine ainsi prise de ce determinant est une racine latente d une des racines de fx.
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II parait done (s il n y a aucune erreur dans ce dernier raisonnement) que
le nombre des racines de fx sera le nombre exact de combinaisons de nw

choses prises &&amp;gt; a a&amp;gt; ensemble, ou n est le degre de fx en x et o&amp;gt; 1 ordre des

matrices qui paraissent la-dedans; consequemment le nombre des racines sera

irnw ^

7r(n 1) to . TT&)

ainsi, par exemple, le nombre des racines dans le cas d une Equation du degre
n en quaternions sera 2n2

wf*.

Pour trouver ces racines, on n a qu a combiner les deux Equations fx = Q

qui ne change pas, avec fyx
= 0, qui varie avec chaque combinaison des racines

de Fx [c est-a-dire le determinant de f( x}\ et, en 61iminant les puissances

superieures de x, on trouvera une Equation lineaire qui sert a donner x sous

la forme d une fraction : par des precedes qui ne presentent nulle difficult^,

cette fraction peut etre ramenee (au moins pour le cas des matrices binaires)

a la forme d une autre fraction dont le denominateur sera une fonction ex-

clusivement des coefficients de la forme associde a 1 ensemble des coefficients

de 1 equation donnee dont nous nous proposons d essayer de trouver la valeur

generale. Ce denominateur sera toujours (comme dans le cas que nous avons

traite en detail dans ce qui precede) le criterium de la rfyularitede liquation
donnee. Quand ce criterium s evanouit (et pas autrement), quelques-unes des

racines vont a 1 infini, c est-a-dire cessent d etre actuelles et deviennent pure-
ment conceptuelles.

En general, pour resoudre 1 dquation unilaterale du degre n et 1 ordre to,

on n aura besoin que de resoudre une equation ordinaire du degre nta. Si

une racine de liquation donnee est connue, on n aura qu a resoudre deux

Equations ordinaires des degrtSs &&amp;gt; et (n- !)&&amp;gt; respectivement. Dans le cas

d une Equation quadratique, quand une racine est donnde, on peut trouver

immediatement 1 equation identique d une seule autre qui y est associ^e, et

consequemment en determiner la valeur sans resoudre une Equation d un

degre superieur au premier. Quand deux racines de 1 equation resolvante

(celle du degrd rco&amp;gt;)
sont ^gales, on a ^ r/

~
\, ^ paires de

TT(&) l).7r[(n 1) o&amp;gt; 1]
r

racines egales dans 1 equation du degre n qui est a resoudre.
* Dans le cas le plus general d une equation en x du

degre&quot;
n et de 1 ordre w par rapport aux

matrices, on peut supposer un nombre indefini de termes dans liquation. Chacun de ces termes
sera compost d un nombre pas plus grand que n des x dont chacun sera suivi et precedtS par une
matrice multiplicatrice. En appliquant la me&quot;thode algebrique directe pour resoudre cette

equation, on sera amen&amp;lt;5 a un systeme de w2
Equations du degr6 n chacune. Ainsi le nombre des

racines sera en general n&quot;

2
.

t Cela d^montre que le nombre 21 que nous avions trouve&quot; pour le cas de n=3 dans le

Philosophical Magazine (mai 1884) [p. 229 below] et la formule ge&quot;nerale que nous avons base&quot;e

la-dessus sont errones
; la raison en est 6videmment que 1 ordre apparent du systeme d e&quot;quations

qui nous a fourni ce re&quot;sultat surpasse 1 ordre actuel de 6 unite s.

Nous n avions pas discute&quot; en detail ces Equations, et ainsi cet abaissement du
degre&quot;

nous a
6chapp4. C est un point curieux qui reste a discuter.
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Prenons comme exemple de 1 application de la methode liquation en

quaternions

La fonction rdsolvante sera

+ (2 . + 1 . 1) a? (1 . 0)a? + (0 . 0) = 0,

ou en general i.i et i.j signlfient

zy 2[8qiqj -S(vqivqj)]

respectivement.

Les quinze facteurs quadratiques de cette fonction egales a zero don-

neront chacun une equation quadratique a laquelle doit satisfaire une des

quinze racines de 1 dquation donnee, et, en combinant se&quot;parement
chacune

de ces Equations avec la cubique donnee, on peut eliminer a? et x* et

obtenir ainsi quinze equations lineaires pour determiner les quinze racines

voulues.
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SUE LA RESOLUTION GENERALE DE L EQUATION LINEAIRE
EN MATRICES D UN ORDRE QUELCONQUE.

[Comptes Rendus, xcix. (1884), pp. 409412, 432436.]

CE qui interesse le plus dans les r^sultats nouvellement acquis que j ai

1 honueur de presenter a 1 Academic, c est 1 union ou bien 1 anastomose dont

ils offrent un exemple frappant et tout a fait inattendu entre les deux

grandes theories de I Algebre moderne et de I Algebre nouvelle, dont 1 une

s occupe des transformations lineaires, et 1 autre de la quantite generalised,

de sorte qu au meme titre que Newton d^finit I Algebre ordinaire comme
e&quot;tant 1 Arithmetique universelle, on pourrait tres bien caracteriser cette

Algebre-ci comme etant I Algebre universelle, ou au moins une de ses

branches les plus importantes.

En general, un invariant de deux formes signifie une fonction de deux

systemes de coefficients qui reste invariable, a un facteur pres, quand les

deux systemes des variables sont ou identiques ou assujettis a des substitu

tions semblables; mais rien n empeche qu on n applique ce me1me mot au

cas ou les substitutions sont reciproques : ainsi, sans parler du cas de deux

formes mixtes, on aura des invariants de deux formes donnees a mouvement
semblable et des invariants a mouvement contraire; on peut tres bien

nommer ces derniers (comme titre distinctif) contrariants. C est a une classe

speciale de contrariants que nous aurons affaire dans la solution de 1 equation

generale lindaire en matrices d un ordre quelconque.

En supposant que chaque p et p soit une matrice de 1 ordre
&&amp;gt;,

1 operateur

qui contient i couples

/&amp;gt;i( )P\ + P*( )p *+-&amp;gt;+pi( )p i

peut etre nomme provisoirement un nivellateur de 1 ordre o&amp;gt; et de 1 etendue i,

et on peut le caracteriser par le symbole flUti . Servons-nous toujours du

symbole pour signifier une matrice dont tous les elements sont des zeros, et

designons par 1 (ou bien par v indifferemment) une matrice dont tous les
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elements sont z^ro, a 1 exception des elements de la diagonale qui seront des
unites: ce sont les matrices nommees matrice nulle et matrice unitaire

respectivement.

J ai deja explique comment un nivellateur general, de 1 ordre w, donne
naissance a une matrice de 1 ordre &&amp;gt;

2
: je nomme le determinant de cette

matrice le determinant du nivellateur*. Ces determinants possedent des

proprietes tout a fait analogues a celles des determinants des matrices

simples; ainsi, par exemple, je demontre la propriety dont je me suis servi

avec grand avantage dans les recherches actuelles, que le determinant du

produit de deux nivellateurs est
e&quot;gal

au produit de leurs determinants separes,
et que le determinant d une fonction rationnelle d un nivellateur, disons

Fl, est egal au resultant (par rapport a O regarde comme une quantite

ordinaire) de Fl et /O, ou 7H = represente 1 equation identique du degr
&amp;lt;o

2 a laquelle H est assujetti.

En general, a un systeme ou corps de matrices plt p2 , ...,p{ de 1 ordre a&amp;gt;

correspond un quantic de 1 ordre w, c est-a-dire le determinant de

Xipi + Xapa + .-. + aiipi.

Je nomme les coefficients de ce quantic les parametres du corps. Ces

parametres doivent etre regardes comme des quantites connues. Ainsi, par

exemple, si au corps p, q (deux matrices binaires) on adjoint la matrice

unitaire v, et qu on forme le determinant de la matrice a; + yp + zq, on

obtiendra un quantic

a? + Bxy + Cxz +
Dy&amp;gt;

+ Eyz + Fz\

ou, si Ton regarde p, q comme des quaternions, on aura, dans le langage
du grand Hamilton,

B = Sp, C = Sq, D = T*p, F=T*q, E = S(Vp.Vq).

II rdsulte de cette definition qu a chaque nivellateur fl
Wi f appartiennent

deux quantics de 1 ordre o&amp;gt; et avec i variables, dont 1 un appartient au corps

PI&amp;gt; Pz, ---ipi et 1 autre au corps p\, p 2 , ...,p i.

Si Ton connait 1 equation identique 7O = a laquelle le nivellateur H
obdit, on peut immediatement, comme je 1 ai deja montre, resoudre 1 equation
lx = T.

Mais il est tres facile de voir que JO n est autre chose que le determinant

du nivellateur O \v ( }v, quand dans ce resultat on substitue fi a

DODC la question de la solution lineaire la plus generale est ramenee a ce

seul probleme:

Exprimer le determinant d un nivellateur en termes de quantites connues.

Or la premiere conclusion et la plus difficile a etablir dans cette recherche,

mais que j ai enfin reussi a demontrer, c est que ce determinant est toujours
*

Quelquefois ce determinant sera nomm^ un nivellant.
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une fonction entiere, mais pas necessairement rationnelle, des coefficients des

deux quantics qui sont associ^s au nivellateur.

Cela etant convenu, on d^montre aveo une extreme facilite&quot; que ce

determinant est un contrariant du degre* &&amp;gt; dans chaque systeme de coeffi

cients des deux quantics associe&quot;s.

Cela ne suffit pas ou peut ne pas suffire en soi-meme a definir com-

pletement le contrariant cherche; nommons, en general, ce contrariant le

nivellant des deux quantics.

Supposons que Nx&amp;gt; y&amp;gt;
z, t

s it le nivellant pour deux quantics d un ordre

donne
&&amp;gt;,

et representons par Nx&amp;gt; y&amp;gt;
... Z)

ce que ce nivellant devient quand on

reduit a zero tous les coefficients qui appartiennent aux termes dans les

deux quantics qui contiennent t; alors il est facile de voir que

N
x, y, ..., z, o

=
***, y, ... z-

Cette propriete seule est suffisante (avec 1 aide d un quelconque des ope-

rateurs differentiels qui servent pour annuler un contrariant) pour preciser

le contrariant (nivellant) dans le cas de deux quantics du second ordre,

et c est ainsi que j ai obtenu la solution de 1 equation lineaire pour le cas

des matrices binaires donne
7

dans la Note precedente. Or il est bien con-

cevable que cette loi ne peut pas suffire a determiner les parametres

arbitrages qui entreut dans le contrariant d ordre (to, &&amp;gt;) appartenant a deux

quantics de 1 ordre &&amp;gt;.

Mais il y a encore une autre loi (constituant par elle-rneme un tres

beau theoreme) qui doit suffire surabondamment a cette fin.

C est une loi qui etablit une liaison entre les nivellants de deux systemes

de quantics contenant chacun le meme nombre de variables, mais dont 1 un

est d un ordre plus grand par unite que 1 ordre de 1 autre.

Supposons que N soit le nivellant de deux quantics de 1 ordre
o&amp;gt;,

F(x,y, ...,z) et G (x,y,...,z)\

soit N ce que devient N quand

et G(x,y,... t z) = (\x + iiy+ . . . + vz) G, (as, y,...,z);

alors je dis que, quand
IX + mfj, + . . . + nv = 0,

le nivellant de (Flt GI) sera contenu comme facteur dans le nivellant

modifie N .

A 1 aide de ces principes, je me propose de calculer les nivellants pour
les degres superieurs au second. On voit par ce qui precede que la solution

de 1 equation lineaire ^pxp = T sera alors counue en termes des p, des p , de

T et des parametres des deux corps plt p^, ..., pi} p\, p .,, ..., p i, augmentes
1 un et 1 autre d une matrice unitaire.
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C est dans les Lectures, publiees en 1844, que pour la premiere fois a

paru la belle conception de 1 equation identique appliquee aux matrices

du troisieme ordre, enveloppee dans un langage propre a Hamilton, apres
lui mise a nu par M. Cayley dans un tres important Memoire sur les matrices

dans les Philosophical Transactions pour 1857 ou 1858, et etendue par lui aux

matrices d un ordre quelconque, mais sans demonstration; cette demonstra

tion a ete donnee plus tard per feu M. Clifford (voir ses oeuvres posthumes),

par M. Buchheim dans le Mathematical Messenger (marchant, comme il

1 avoue, sur les traces de M. Tait, d Edimbourg), par M. Ed. Weyr, par nous-

meme, et probablement par d autres; mais les quatre methodes citees plus
haut paraissent etre tout a fait distinctes 1 une de 1 autre.

Par le moyen d une chaine de matrices couplees (disons N), operant non

pas sur une matrice generale, mais sur une matrice x (disons du degre o&amp;gt;)

d une forme speciale suivie par un autre operateur F qui aura 1 effet de

reduire la matrice du degre &&amp;gt; de NX (dont les elements sont des fonctions

lineaires des elements de x) a une forme identique a celle de a, il est facile

de voir qu a 1 operateur compose VN on peut faire correspond re une matrice

d un ordre quelconque non superieur a w2
, et c est ainsi virtuellernent que

Hamilton, a cause d une transformation qu il effectue sur 1 equation lineaire

gdnerale, est tombe dans ses Lectures sur la matrice du troisieme ordre, et ce

n est que dans les Elements publics en 1866 (apres sa mort) qu on trouve

quelque allusion a 1 equation identique pour les matrices du quatrieme ordre.

On pourrait nommer 1 operateur compose VN, pour lequel I equation

identique est d un degre
7

moindre que o&amp;gt;

2
, nivellateur qualifie, mais il est

essentiel de remarquer que ces operateurs ne possederont pas les proprietes

analogues a celles des matrices que possedent ces nivellateurs purs dont il

est question dans ma methode. Comme exemple d un nivellateur qualifie,

on pourrait adrnettre que le x (matrice du deuxieme ordre), sur lequel opere
le N, aura son quatrieme element zero, et que 1 effet du V sera d abolir le

quatrieme element dans NX, ou Ton peut supposer (et cette supposition est,

dans son essence, a peu pres identique a la methode des vecteurs de

Hamilton) que le premier et le quatrieme element de x sont egaux, mais

de signes contraires, et que 1 effet de V est de substituer dans la matrice du

second ordre N (x} la moitie de la difference entre le premier et le quatrieme
Element au lieu du premier et, au lieu du quatrieme, cette meme quantite

avec le signe algebrique contraire.

Evidemment un tel operateur donnera naissance a une matrice et sera

assujetti a une equation identique du troisieme ordre. Avant de conclure.

pour convaincre de la justesse de la formule importante

Pour rendre intelligible cette formule, il est necessaire de dire que 1 expression
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applicable au cas d un nivellateur du second ordre a quatre couples de

matrices, il sera bon d en donner une demonstration parfaite a posteriori, ce

qu une transformation
le&quot;gitime

rend tres facile a faire. Remarquons que le

est le determinantdeterminant du nivellateur du second ordre S 7 ( ) ^
c a y o

de la matrice suivante:

Sea

Say Scy

S&y Sdy S&S SdS

laquelle contiendra dans le cas suppose* 144 termes, puisque chaque S com-

prend 4 produits : mais, sans perdre en generalite, on pent prendre une

forme de nivellateur dont le determinant ne comprendra pas plus de 24

termes
;

car il est facile de demontrer que, si aux 4 matrices de gauche
on substitue 4 fonctions line&quot;aires quelconques, pourvu que sur les 4 de

droite on opere une substitution contragrediente a la substitution prece*-

dente, la valeur du determinant ne subira nul changement. On peut done

supposer que les 4 matrices de gauche sont

10 01 00 00

00 00 10 01

respectivement, et, si la formule est verifiee dans cette supposition (vu que
les contravariants des deux quantics associes ne sont pas affectes par les sub

stitutions contragredientes operees sur les deux systemes de matrices), elle

donn^e dans la Note du 21 juillet [pp. 181, 184 above], a besoin d une correction (dont je

pensais avoir fait mention dans le texte) : il fait lui ajouter la ratine carree d un contrariant

connue du quatrieme degre (appartenant aux deux formes associees), laquelle sera une fonction

rationnelle des elements des matrices du nivellateur. Pour le cas d un nivellateur a quatre

couples de matrices, c est la racine carre&quot;e du produit de I et I
,
les discriminants des deux formes

associees prises separement ; en nommant les quatre matrices a gauche

a b a b a&quot; b&quot; a 1

c d c d c&quot; d&quot; c&quot;

la racine carree de I sera egale au determinant

ab
a b

a&quot; b&quot;

a &quot;

b
&quot;

qu on peut nommer le developpant de ces quatre matrices
; de meme la racine carre&quot;e de I sera

egale au developpant des quatre matrices correspondantes a droite, de sorte que le terme irration-

nel dans la formule pour le nivellant a quatre couples de matrices est
e&quot;gal

au produit de ces

deux developpants; dans le cas general, la partie relativement irrationnelle de la formule pour
un nivellant sera egale a la somme de tous les produits de developpants accouples qu on peut
former en combinant quatre a quatre, ensemble, les couples de matrices qui en dependent.
Dans le cas ou le nivellateur contient moins de quatre couples, la racine carre&quot;e disparait entiere-

ment de la formule pour le nivellant. Je nommerai P . P et (P )

2 P2
, ^ et ^2 respectivement.

d

d

d&quot;

d&quot;
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sera non pas seulement verifife, mais absolument demontrde pour les valeurs

parfaitement generales des deux systemes.

Avec ces valeurs des matrices gauches, la matrice ecrite plus haut, en

prenant

a /8 a & ax & a &
70 78 7i 8i 78

pour les matrices a droite, devieut

7 7j B 8j

7 7 8 8

dont je nommerai le determinant Q.

De plus, le quantic a gauche deviendra xt yz, et le quantic a droite

(a8
-

yS7) *
2 + (a 8

-
7) *

2 + (a 8 -
/3V) 2/

2 + (
-&7l) ^

2

+ (1 . 2) a^ + (3 . 4) ^ + (1 . 3)^ + (2 . 4) y + (1 . 4) art + (2 . 3) y*,

ou (1.2) = a8
/ +Sa/

-/37
/

-/3
/

7, (3 . 4)
= $ + ^a - ^7

Done S-j = (erg + a5 -
/S&amp;lt;y

-
y87)

-
(a ^ + OL& - ^ - fry

2 (a 8 /3V) (ai$i
~~ &7i)

3tj8 + 8jS /3l7 /87l)

(a 8 + 8 a - /8 7 - /87 )

et *J(I . / ) (pris avec le signe convenable) sera le determinant de la matrice

a /3 7 8

a /3 y 8

ai A 7i ^
a. /3 78.

En faisant les multiplications necessaires, on trouvera que

ce qui d^montre 1 exactitude de la formule donnee pour un nivellateur du

deuxieme ordre a quatre couples de matrices.

D ici a pen de temps, j espere avoir Fhonneur de soumettre a 1 Aca-

d^mie la valeur du determinant du nivellateur du troisieme ordre a trois

couples de matrices. Pour presenter 1 expression generale de ce determi

nant pour une matrice d un ordre et d une etendue quelconques*, il faudrait

avoir une connaissance des proprietes des formes qui va beaucoup au dela

* G est-a-dire pour resoudre 1 equation lineaire en matrices dans toute sa generalite .
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des limites des facultes humaines, telles qu elles ne sont manifestoes jusqu au

temps actuel et qui, dans mon jugement, ne peut appartenir qu a 1 intelli-

gence supreme.

Post-scriptum. Qu on me permette d aj outer une petite observation

qui fournit, il me semble, une raison suffisante a priori pour le signe

ambigu du terme \/(I . / ) qui entre dans la formule donnee pour un nivel-

lant (c est-a-dire determinant d un nivellateur) du deuxieme ordre.

Les determinants d un nivellateur et de son conjugue dtant identiques

en signe algebrique tout autant qu en grandeur, ce n est pas dans cette

direction qu on peut chercher 1 origine de 1 ambiguitd

Mais, si, en se bornant aux matrices correspondantes d un nivellateur

de la meme espece, c est-a-dire & main droite ou & main gauche du symbole

( ),
on echange entre eux, dans chacune de ces matrices, le premier terme

avec le quatrierne et le deuxieme avec le troisieme, on verra facilement que
le nivellant et en rneme temps les deux quantics associes restent absolument

sans alteration; mais, si Ton execute 1 une ou 1 autre de ces substitutions

separement, alors, tandis que les deux quantics associes restent constants,

le nivellant (quand son nivellateur possede plus de trois couples) subira un

changement de valeur (et, pour 1 une et 1 autre substitution, le meme change-
ment), de sorte que pour les quatre positions qu on peut assigner simul-

tanement aux elements des matrices de la meme espece sans changer en rien

les quantics associes, le nivellant aura deux valeurs distinctes. Voila, il me
semble, 1 explication suffisante et la veritable origine de l ambiguite dont il

est question.

A peine est-il necessaire de remarquer qu on peut faire 4 autres dis

positions semblables et simultanees des matrices a 1 un ou 1 autre cote

du symbole ( ), dispositions qui donneront naissance a des nivellants identi

ques en valeur avec les deux dont j ai parle (c est-a-dire deux a une valeur

et deux a 1 autre), et pour lesquelles les deux quantics associes seront sans

autre changement que celui du signe algebrique.

En combinant les 24 dispositions semblables des matrices d un cote d un
nivellateur donne avec les 24 de 1 autre cote, on obtiendra un systeme de
576 nivellateurs correlatifs dont les determinants ne prendront que 3 paires
de valeurs; de plus, les deux valeurs d une quelconque de ces paires seront
les racines d une equation quadratique dont les coefficients seront des con-
trariants rationnels et entiers d une des trois paires de formes quadratiques ;

mais le discriminant de ces trois equations sera le meme certainement quand
les nivellateurs du systeme seront formes avec quatre couples de matrices et

probablement quel que soit le nombre de ces couples. Quand ce nombre est

moindre que 4, le discriminant de ces trois quadratiques devient nul pour
toutes les trois.
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SUR L EQUATION LINEAIRE TRINOME EN MATRICES
D UN ORDRE QUELCONQUE.

[Comptes Rendus, xcix. (1884), pp. 527 529.]

POUR resoudre 1 dquation trindme pxp + qxq + r = (ou toutes les lettres

designent des matrices du meme ordre
&&amp;gt;)

sous sa forme symetrique, on a

besom de cormaitre 1 equation identique a un nivellateur de cet ordre a deux

couples de matrices, ce qui equivaut virtuellement a connaitre le determinant
d un nivellateur a trois de ces couples. Mais, sans avoir recours a cette

methode geneYale, il existe, comme on va le voir, un moyen plus court et plus
direct pour resoudre 1 equation et exprimer x sous la forme essentiellement
bonne d une fraction reduite, si Ton est d accord a se dispenser de la condition

que le numerateur soit symetrique.

A cet effet, on peut multiplier 1 equation, a volont^, ou par q~
l

( ) p
~l

ou par p~
1

( )g-
-1

. Choisissons le premier de ces deux multiplicateurs et

dcrivons
q~^p=^, q p

-i =-^ -
q
-i
rp

-i = ^. a]ors on obt ient l^quation

fa
-
xty = p (mais deja avec une breche de

syme&quot;trie, par la raison du choix
d une entre deux choses pareilles). En multipliant cette Equation par le

nivellateur &amp;lt;* ( ) +
&amp;lt;j&amp;gt;

i~1

( )^ + ^
-2

( )^ + ...+( ) ^ (disons Ui) et en
ecrivant Uifju

=
/jL i+l , on obtient la suite d equations

Soient B
, B^,.,.,BM et C

,
Clt ...,Cu les coefficients des deux formes

associees aux deux systemes p, q et p , q respectivement; alors, en vertu
d un theoreme general en matrices*, on aura

CLf + C^Vr 1 + . . . + G =
0, B - B^ + . . . + (-)5 &amp;lt;B

= 0.

Avec 1 aide de ces deux equations et de la suite precedente, on peut
ddduire une equation de 1 une ou de 1 autre des deux formes Mx =N
ou xM=N. Faisons le choix (qui amene encore une fois une breche de

symetrie) de la premiere.

On aura (Ca &amp;lt;j&amp;gt;

+ C^--1 + . . . + C^ +Q x = C^ + C^fi^ + ...+C^
Or, selon la theorie ordinaire d elimination, on peut determiner ^ et H deux
fonctions chacune du degre (w

-
1) en

&amp;lt;/&amp;gt; (trait^ comme une quantitd ordi

naire), telles que

^ [BQ
- B^ + . . . + (-y^-] +H(C^ + C^ 0-i + ...+C,)

*
Ainsi, par exernple, si p, q sont des quaternions, on a
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sera egal a R, le centre-resultant des deux formes associees a (p, &amp;lt;?)et (p , q )*

respectivement, et Ton aura

ClHfj, + C2_ ~

R
et ainsi x sera determine.

Si
fjb

est zero, alors, afin que x ne soit pas zero, le R doit devenir z^ro,

comme nous avons deja trouve dans une Note precedente. En general, si R
(le centre-resultant des deux formes adjointes a p, q et p , q dans 1 equation

pxp + qxq + r = 0) s evanouit, 1 equation ne peut pas admettre une solution

en meme temps actuelle et d^terminee; sans autres conditions, la solution

deviendra ideale] avec conditions convenables, elle peut redevenir actuelle,

mais contiendra (selon les circonstances) une on plusieurs constantes

arbitraires.

Hamilton, dans ses Lectures, a considere 1 equation trindme pour les

quaternions, mais il n en a pas pousse la solution, c est-a-dire la valeur de

1 inconnue, a sa forme finale dans laquelle le denominateur doit etre un

scalar (je dis doit etre), parce que, ici comme dans toutes les Equations
en matrices, c est le denominateur de 1 inconnue convenablement exprime
dont 1 evanouissement est le criterium pour distinguer le cas ou la solution

est actuelle et determinee d avec les cas ou elle devient ou ideale ou inde-

terminee.

En cornbinant le resultat ici obtenu avec celui de notre Note prece&quot;dente,

on voit qu on est entre en pleine possession de la solution de 1 equation
NX = F dans les deux cas ou le nivellateur N est de 1 ordre 2 et d une

4tendue quelconque ou bien de 1 dtendue 2 et d un ordre quelconque.

Remarque. On peut objecter que le numeVateur de 1 expression trouvee

pour x dans 1 equation trinome contient des combinaisons de q~
l

p, q p ~*,

q~
l

rp
~l et que, consequemment, x pourrait devenir ideal a cause de 1 eva

nouissement du determinant de p ou de q sans que le contre-resultant R
s evanouisse. Pour rdpondre a cette objection, soient D

,
A les determinants

de p et de q~
l

; alors, en se servant des equations identiques a p et a q, on

peub substituer pour leurs inverses des fonctions rationnelles de 1 un et de

1 autre divisees respectivement par D et A, et alors le numerateur de x sera

une quantity incapable de devenir infinie, tandis que son denominateur sera

R multiplie par des puissances de D et de A
; mais, vu qu on peut repre-

senter x tout aussi bien par une autre fraction dont le numerateur sera aussi

incapable de devenir infini et dont le denominateur sera R multiplie par
des puissances de D et de A (les determinants de p et de q },

il est evident

que ces deux fractions doivent toutes les deux admettre d etre simplifiees
et que dans leurs formes r^duites le denominateur sera tout simplement
R et qu ainsi ce contre-resultant est le seul criterium pour distinguer le

cas de 1 actuel et determine d avec le cas de Tid^al ou indetermine.

* C est-a-dire le resultant des fonctions multiplies par ^ et H ci-dessus.
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LECTURES ON THE PRINCIPLES OF UNIVERSAL ALGEBRA.

[American Journal of Mathematics, vi. (1884), pp. 270 286.]

LECTURE I.

PRELIMINARY CONCEPTIONS AND DEFINITIONS.

Apotheosis of Algebraical Quantity.

A MATRIX of a quadrate form historically takes its rise in the notion of a

linear substitution performed upon a system of variables or carriers; regarded

apart from the determinant which it may be and at one time was almost

exclusively used to represent, it becomes an empty schema of operation, but

in conformity with Hegel s principle that the Negative is the course through

which thought arrives at another and a fuller positive, only for a moment

loses the attribute of quantity to emerge again as quantity, if it be allowed

that that term is properly applied to whatever is the subject of functional

operation, of a higher and unthought of kind, and so to say, in a glorified

shape, as an organism composed of discrete parts, but having an essential

and undivisible unity as a whole of its own. Naturam expellas furcd,

tamen usque recurret*. The conception of multiple quantity thus rises

upon the field of vision.

At first undifferentiated from their content, matrices came to be regarded

as susceptible of being multiplied together; the word multiplication, strictly

applicable at that stage of evolution to the content alone, getting transferred

by a fortunate confusion of language to the schema, and superseding, to some

extent, the use of the more appropriate word composition applied to the

reiteration of substitution in the Theory of Numbers. Thus there came

into view a process of multiplication which the mind, almost at a glance,

is able to recognize must be subject to the associative law of ordinary

* Chassez le naturel, il revient au galop, a familiar quotation which I thought was from

Boileau, but my friend Prof. Rabillon informs me is from a comedy of Destouches (born in 1680,

died 1754).
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multiplication, although not so to the commutative law; but the full signi

ficance of this fact lay hidden until the subject-matter of such operations

had dropped its provisional mantle, its aspect as a mere schema, and stood

revealed as bona-fide multiple quantity subject to all the affections and

lending itself to all the operations of ordinary numerical quantity. This

revolution was effected by a forcible injection into the subject of the

concept of addition, that is, by choosing to regard matrices as susceptible of

being added to one another
;
a notion, as it seems to me, quite foreign

to the idea of substitution, the nidus in which that of multiple quantity
was laid, hatched and reared. This step was, as far as I know, first made

by Cayley in his Memoir on Matrices, in the Phil. Trans. 1858, wherein he

may be said to have laid the foundation-stone of the science of multiple

quantity. That memoir indeed (it seems to me) may with truth be affirmed

to have ushered in the reign of Algebra the 2nd
; just as Algebra the 1st,

in its character, not as mere art or mystery, but as a science and philosophy,
took its rise in Harriot s Artis Analyticae Praxis, published in 1631, ten

years after his death, and exactly 250 years before I gave the first course

of lectures ever delivered on Multinomial Quantity, in 1881, at the Johns

Hopkins University. Much as I owe in the way of fruitful suggestion to

Cayley s immortal memoir, the idea of subjecting matrices to the additive

process and of their consequent amenability to the laws of functional

operation was not taken from it, but occurred to me independently before

I had seen the memoir or was acquainted with its contents; arid indeed

forced itself upon my attention as a means of giving simplicity and gene
rality to my formula for the powers or roots of matrices, published in the

Comptes Rendus of the Institute for 1882 (Vol. xciv. pp. 55, 396). My memoir
on Tchebycheff s method concerning the totality of prime numbers within
certain limits, was the indirect cause of turning my attention to the subject,
as (through the systems of difference-equations therein employed to contract

Tchebycheff s limits) I was led to the discovery of the properties of the
latent roots of matrices, and had made considerable progress in developing
the theory of matrices considered as quantities, when on writing to Prof.

Cayley upon the subject he referred me to the memoir in question: all this

only proves how far the discovery of the quantitative nature of matrices
is removed from being artificial or factitious, but, on the contrary, was bound
to be evolved, in the fulness of time, as a necessary sequel to previously
acquired cognitions.

Already in Quaternions (which, as will presently be seen, are but the

simplest order of matrices viewed under a particular aspect) the example
had been given of Algebra released from the yoke of the commutative

principle of multiplication an emancipation somewhat akin to Lobat-

chewsky s of Geometry from Euclid s noted empirical axiom; and later on,

s. iv. 14
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the Peirces, father and son (but subsequently to 1858) had prefigured the

universalization of Hamilton s theory, and had emitted an opinion to the

effect that probably all systems of algebraical symbols subject to the

associative law of multiplication would be eventually found to be identical with

linear transformations of schemata susceptible of matricular representation.

That such must be the case it would be rash to assert
;
but it is very

difficult to conceive how the contrary can be true, or where to seek, outside

of the concept of substitution, for matter affording pabulum to the principle

of free consociation of successive actions or operations.

Multiplication of Matrices.

A matrix written in the usual form may be regarded as made up of

parallels of latitude and of longitude, so that to every term in one matrix

corresponds a term of the same latitude and longitude in any other of the

same order.

Every matrix possesses a principal axis, namely, the diagonal drawn from

the intersection of the first two parallels to the intersection of the last two

of latitude and longitude ;
and by a symmetrical matrix is always to be

understood one in which the principal diagonal is the axis of symmetry.

If there were ever occasion to consider a symmetrical matrix in which

this coincidence does not exist, it might be called improperly symmetrical.

This designation might and probably ought to be extended to matrices

symmetrical, not merely in regard to the second visible diagonal, but to all the

(o&amp;gt; 1) rational diagonals of a matrix of the order
&&amp;gt;,

a rational diagonal

being understood to mean any line straight or broken, drawn through w

elements, of which no two have the same latitude or longitude.

The composition of substitutions directly leads to the following rule for the

multiplication of matrices. If m, n, be matrices corresponding to substitutions

in which m is the antecedent or passive, and n the consequent or active,

their product may be denoted by mn (that is, m multiplied by n), and then

any term in the product of the two matrices will be equal to its parallel of

latitude taken in the antecedent or passive and multiplied by its parallel

of longitude taken in the consequent or active matrix. Cauchy has taught

us what is to be understood by the product of one rectangular array or

matrix by another of the same length and breadth, and we have only to

consider the case of rectangles degenerating each to a single line and column

respectively, to understand what is meant by the product of the multipli

cation of the two parallels spoken of above. It may, however, be sometimes

convenient to speak of the disjunctive product of two sets of the same number

of elements, meaning by this the sum of the products of each element in the
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one by the corresponding element in the other. Thus (\l) mn denoting the

term in mn of latitude A and longitude I, we have the equation

(\l) mn = \m x In,

where, of course, \m means the Ath parallel of latitude, and In the /th

parallel of longitude, in ra and n respectively. This notation may be extended

so as to express the value of any minor determinant of mn; such minor may
obviously be denoted by

A-! tj , Ar| |, . . Xf If j

&quot;2^1) ^2 2; ^2&quot;i&amp;gt;

and its value will be the product of the two rectangles (in Cauchy s sense)

formed respectively by the AJ, A2 ,...A; parallels of latitude in m, and the

li,l&amp;lt;i,...li parallels of longitude in n.

Any other definition of multiplication of matrices, such as the rule for

multiplying lines by lines, or columns by columns, sins against good method,

as being incompatible with the law of consociation, and ought to be in

exorably banished from the text-books of the future. It is almost unnecessary
to add that by a pih power of a matrix m is to be understood the result of

multiplying p ms together; and by the qth root of m, a matrix which multi

plied by itself q times produces m: hence we can attach a clear idea to any

positive integral or fractional power. The complete extension of the ordi

nary theory of surds to multinomial quantity will appear a little further on.

But it is well at this point to draw attention to the fact that at all events,

if M, M are positive integer powers of the same matrix m, the factors M, M
are convertible, that is, MM = M M, this commutative law being an imme
diate consequence (too obvious to insist upon) of the associative law of

multiplication.

On Zero and Nullity.

The absolute zero for matrices of any order is the matrix all of whose

elements are zero. It possesses so far as regards multiplication (and as will

presently be evident as regards addition also) the distinguishing property of

the ordinary zero, namely, that when entering into composition with any
other matrix, either actively or passively, the product of such composition is

itself over again; so that it may be said to absorb into itself any foreign
matrix (of its own order) with which it is combined. This is the highest

degree of nullity which any matrix can possess, and (regarded as an integer)
will be called

&&amp;gt;,
the order of the matrix. On the other hand, if the matrix

has finite content, its nullity will be regarded as zero. Between these two

142
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limits the nullity may have any integer value
; thus, if its content, that is,

its determinant, vanishes without any other special relation existing between

its elements, the nullity will be called 1; if all the first minors vanish, 2;

and, in general and more precisely, if all the minors of order w-i + I vanish,

but the minors of order w i do not all vanish, the nullity will be said to

be i: as an example, if the elements are not all zero, but every minor of the

second order vanishes, the nullity is w 1.

In general, a substitution impressed on a set of variables may be reversed,

and the problem of reversal is perfectly determinate; but when the matrix

the schema of the substitution is affected with any degree of nullity, such

reversal becomes indeterminate. Hence the use of the word indeterminate

employed by Cayley to characterize matrices affected with any degree of

nullity, in which he has been followed by Clifford, who goes a step further

in distinguishing the several degrees of indeterminateness from one another.

On Addition and Monomial Multiplication of Matrices.

The sum of two matrices of like order is the matrix of which each element

is the sum of the elements of the same latitude and longitude as its own in

the component matrices; thus, as stated by anticipation in what precedes,

the addition of a zero matrix to any matrix of like order leaves the latter

entirely unchanged.

Addition of matrices obviously will be subject to the same two associative

and commutative laws as the addition of monomial quantities. This seems

to me a sufficient ground for declining to accept associative as the dis

tinguishing name of the algebra of multinomial quantity; for the emphasis

thereby laid on association would seem to imply the entire absence of the

commutative principle from the theory, whereas, although not having a place

in multinomial multiplication, it flourishes in full vigour in the not less

important, and, so to say, collateral process of multinomial addition. If

k is any positive integer, the addition of the same matrix taken k times

obviously leads to a matrix of which each element is k times the corre

sponding element of the given one; and if p times one matrix is q times

another, the elements of the first are obviously
- into the corresponding

ones of the other: hence, if k is any positive monomial quantity, k times

a given matrix, by a legitimate use of language, should and will be taken

to mean the matrix obtained by multiplying each element in the given one

by k. And as the negative of a given matrix ought to mean the matrix

which added to the given one should produce the zero-matrix previously

defined, the meaning of multiplying a matrix by k may be extended, with

the certainty of leading to no contradiction, to the case of any commen

surable value of k positive or negative, and consequently, by the usual and
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valid course of inference, to the case of k being any monomial symbol what

ever, whether possessing arithmetical content or not.

On the Multinomial Unit and Scalar Matrix.

On subjecting a matrix of any order w to a resolution similar to that by

which one of the second order may be resolved into a scalar and a vector, it

will be shown hereafter that the o&amp;gt;

2

components separate into a group of

a)
2 1 terms analogous to the vector and to a single term analogous to the

scalar of a quaternion. This outstanding single term is of an invariable

form, namely, its principal diagonal consists of elements having the same

value, which may be called its parameter, and all the other elements

are zeros.

A matrix of such form I shall call a scalar. When the parameter is unity

it may be termed a multinomial unity and denoted by T*, or in place of &&amp;gt; we

may write w dots over T, or for greater simplicity when desirable write

simply T. Any scalar, by virtue of what precedes, is a mere monomial

multiplier of some such T.

Let kT be any scalar of order &amp;lt;a. It will readily be seen, by applying the

laws of multiplication and addition previously laid down, that

&amp;lt;/&amp;gt;
(kT) = $ (k} . T, and that kT.m = m.kT = km.

Thus a scalar possesses all the essential properties of a monomial quantity,

and a multinomial unity of ordinary unity; in particular, the faculty of being

absorbed in any other coordinate matrix with which it comes in contact.

A scalar whose parameter vanishes of course becomes a zero-matrix.

The properties stated of a scalar kT serve to show that in all operations

into which it enters the T may be dropped, and supplied or understood to be

supplied at the end of the operations when needed to give homogeneity to

an expression. Thus, for example,

(m + hT) (m + kT) = m* + (h + k) Tm + hkT&amp;gt; = m* + (h + k)m + hkT;

but this result may be obtained by the multiplication of (m -f h) (m + k), and

supplying T (or imagining it to be supplied) to the final term in order to

preserve the homogeneity of the form. In like manner, Ou or with m points

over it may be used to denote the absolute zero of the order &&amp;gt;

;
but it will

be more convenient to use the ordinary 0, having only recourse to the addi

tional notation when thought necessary or desirable in order to make obvious

the homogeneity of the terms in any equation or expression. Thus, for example,
such an expression as m2

-f 26m + d = 0, where m is a matrix, say of the 2nd

*
Perhaps more advantageously by !,. I shall hold myself at liberty in what follows to use

whichever of these two notations may appear most convenient in any case as it arises.
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order, and b and d monomials, set out in full would read ra2 + 26ra + dT = 0,

meaning ra.ra + 26m+ =
\j a u \)

On the Inverse and Negative Powers of a Matrix.

The inverse of a matrix, denoted by ra&quot;
1

,
means the matrix which multi

plied by ra on either side produces multinomial unity. It is a matter of

demonstration that when a matrix is non-vacuous (that is, has a finite

content or determinant appertaining to it), an inverse to it fulfilling this

double condition can always be found, and that if the product of mn is unity,

so also must be that of nm.

It is a well-known fact, proved in the ordinary theory of determinants,

that if every element in the first of two matrices is the logarithmic dif

ferential derivative, in respect to its correspondent in the second, of the

content of that second, so conversely, every element of the second is the

logarithmic derivative, in respect to its correspondent in the first, of the

content of the first.

But two such matrices multiplied together in either sense would not give

for their product multinomial unity; to obtain this product either matrix

must be multiplied indifferently into or by the transverse of the other

(meaning by the transverse of a matrix, the new matrix obtained by rotating

the original one through 180 about its principal diagonal). In other words,

if ra be a given matrix and n be obtained from it by substituting for each

element the logarithmic derivatives of its content in respect to its opposite,
CO (0

then mn = T and wra = T, where w means (as will always be the case

throughout these lectures) the order of the matrices concerned. The n

which satisfies these two equations (and it cannot satisfy the one without

satisfying the other) will be called the inverse of ra and be denoted by ra&quot;
1
.

For brevity and suggestiveness it will be advantageous to write in

b)

general 1 for T as we write for Ow ,
so that raw = 1 will imply wra = 1 = mn

and n = ra&quot;
1
.

We may define in general (as in monomial algebra) m~{ to mean the

inverse of ra*, that is, (m*)&quot;

1
. We shall then have

(ra&quot;

1

)*
= m&quot;

1
,
for mn . mn = 1

implies ra . mn . n = mn = 1 or ra2w2 = 1. Hence n2 = ra~2
,
that is, (ra&quot;&quot;

1

)
2 = ra~3

.

Also since m?n* = 1, m?ns = mn = 1 or w3 = ra~3
,
that is, (ra&quot;

1

)
3 = ra~3

, and so in

general for all positive integer values of i, (ra&quot;

1

)
= ra~l

. And, as in monomial

algebra, it may now be proved and taken as proved that, for all real values of

i and j, whether positive or negative, ra . m? = mi+
i, and the same relation

may be assumed to continue when i, j become general quantities. The

elements in the inverse to any matrix ra all involving the reciprocal of the
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determinant to ra, if D be the content of ra we may write ra&quot;
1 =

yr p,,

where fi is a matrix all of whose elements are always finite. Hence we come

to the important conclusion that for vacuous matrices inverses only exist

in idea and are incapable of being realized so as to have an actual existence.

In the sequel it will be shown that the inverse is only a single instance of an

infinite class of matrices which exist ideally as functions of actual matrices,

but are incapable of realization.

Suppose now that M, N are any two matrices such that MN=0 or that

NM=0; multiplying each side of the equation by M~ l if such expression

has an actual existence (that is, if M is non- vacuous), we obtain, from the

known properties of zero, ^=0, but if M is vacuous no such conclusion can

be drawn. So further if ra* = (i being any positive integer), it will be seen

under the third law of motion that m is necessarily vacuous. Hence from

this equation it cannot be inferred that any lower power than the tth of m is

necessarily zero.

On the Latent Roots and Different Degrees of Vacuity of Matrices.

If ra be any matrix, the augmented matrix ra XT or ra X. 1^ or ra X
will be found simply by subtracting X from each element in the principal

diagonal of ra. The content of this matrix or the same multiplied by 1 or

any other constant, I term the latent function to m, which will be an

algebraical function of the degree &&amp;gt; in X (which may be termed the latent

variable or carrier); and the &&amp;gt; roots of this function (that is, the &&amp;gt; values of

the carrier which annihilate the latent function) I call the latent roots of the

unaugmented matrix ra. It is obvious from this definition that if \ be any
latent root of ra, the content of ra Xj will vanish, that is, m \ will be

vacuous, and conversely that it ra Xj is vacuous, Xx must be one of the

latent roots to ra. Thus if ra is vacuous, one of the latent roots must be zero
;

if only one of them is zero I call ra simply vacuous and say that its vacuity
is 1 : thus zero vacuity and simple vacuity mean the same thing as zero

nullity and simple nullity respectively. More generally if any number i,

but not i+1, of the latent roots of m are all of them zero, ra will be

said to have the vacuity i.

By a principal minor determinant to any matrix I mean any minor deter

minant whose matrix is divided by the principal diagonal into two triangles.
It will then easily be seen that if st means in general the sum of the principal
iih minors to ra, and s means the complete determinant, the assertion of ra

having the vacuity i is exactly coextensive with the assertion that

s =0, Sl
= o, s2 = 0, ...*_, = ().

If the nullity of ra is i, every qtti minor of ra is zero when q &amp;lt; i. Hence
the vacuity cannot fall short of the nullity, but the converse is not true.
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A matrix may not have any vacuity up to &&amp;gt; inclusive without the nullity

being greater than 1. It will hereafter be shown, under the 2nd law of

motion, that if \, X 2 ,
... Xu are the w latent roots of m, then

(m - Xj) (in
- X2) . . . (m - Xu)

= or say M = 0.

But it will be interesting even at this early stage to show that a theorem

closely approaching this may be deduced from the distinction drawn between

vacuous and non-vacuous matrices as regards their possession of real inverses.

I propose to prove instantaneously by this means that at all events

MM ~ l = 0. It is obvious from any single instance of multiplication that mn

and nm are not in general coincident. But if n could be expressed as a

linear function of powers of m (including m or l w among such powers), mn

and nm must be coincident. If now we take the &&amp;gt;

2 matrices

1, m, ra2
,

... ra&quot;

2- 1
,

n at first blush one would say ought to be expressible as a linear function

of these &&amp;gt;

2

quantities determinate by means of the solution of &amp;lt;w

2 linear

equations, and can only escape being so expressible in consequence of the

fact that these &&amp;gt;

2

powers of m are linearly related. Hence we must have an

identical equation of the form

Am**- 1 + Em?-* + Cm^~ 3
... + Gm + H=Q or say Fm = 0.

If now Fm were supposed to contain any factor other than

ra Xj, ra Xa, m Xu ,

such factors being non-vacuous may be expelled from Fm] consequently

the equation in question must be of the form

(m - \Y (m - ^r* (m - x
&amp;lt;o)

o&amp;lt; =

and as the coefficients of the equation in m are necessarily rational we

must have at
=

2 ,
. . ., aw = a. Hence wa = a: + a2 + . . . aM &amp;lt; a&amp;gt;

2
,
and conse

quently a &amp;lt; &).

Hence, at all events (since M&quot;-
l -* = Q on multiplication by M6

gives

Jf^O),
{(m

- \0 (m - X2) . . . (m - X,,)}--
1 = If1*- 1 = 0. Q.E.D.

LECTURE II.

On Reduction.

It follows from what has been already shown in Lecture I, when ra is a

matrix of the second order
(a&amp;gt;

1 being here unity) that (m Xj (ra X,,)
= 0.

Understanding by ra the matrix
lj x&amp;gt;

the latent equation to ra is

^2 )
T2 &amp;gt;

&amp;lt;! X, T!
!

_
tz ,

T2 X
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that is, \&quot;
-

(t, + T2) X + (&amp;lt;jT2
-

t,Tj)
= 0,

so that ra2
(^ + r.2) m -f (^T2 ^TJ)

= 0,

or, using the literation applied to the parametric triangle,

m2 -26m + d = 0; (1)

for since the content of a; + ym + zn is supposed to be

#2 + 2bxy + 2cxz + dy
2 + 2eyz +fz

2
,

that of X + m will be found by making 2 = 0, x = \, y = l. The variation

of equation (1) obtained by taking ew for the increment of m (remembering
that the variation of m2

is (m + en) (m + en) m2
,
that is, e (raw + nm)) gives

rise to the identical equation

ran + nm 26n 2cm + 2e = 0, (2)

and the variation of this again gives

n 2 + n2 - 2cw - 2cn + 2/= 0,

or n 2

2cn+/=0, as of course will be obtained immediately from (1) by

substituting n, c, f in place of m, b, d.

The parameters c, f, if n represents
1
are the sum of the principal

(A/t 1/2

diagonal elements and the content of u, just as b, d are such sum and content

in respect to m.

The parameter e (the connective to d and f) or rather its double 2e is

obviously the emanant of d in respect to the operator

WjSt, + W2 S(2
+ ViSr, + V2 8T2 ,

or, if we please, of f in respect to the inverse operator

ti&Ul + tz&Ut + TI&,,, + T2 &U2 ,

that is, ^i/2 + UiT2 2 Ui M2 T!.

With the aid of the catena of equations in m, in m and w, and in n, any
combination of functions of m and n may be reduced to the standard form

Amn + Bm + On + D.

For, in the first place,

(j&amp;gt;m

= P (m
2 2bm + d) + rm + s = rm + s,

and similarly -^rn
= pn + or.

Hence the most general combination referred to is expressible as the product
of alternating linear functions of m and n, and may therefore be reduced to

a sum of terms of which each is a product of alternate powers of m and of n,

each of which powers may again be reduced to the form of linear functions,

and this process admits of being continually repeated.

Suppose then, at any stage of it, that the greatest number of occurrences

of linear functions of m and n in the aggregate of terms is i; then at the
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next stage of the process the new aggregate will consist of monomial multi

pliers of one or more simple successions of m and n, and of terms in which

the number of alternating linear functions never exceeds i 1; hence,

eventually we must arrive at a stage when the aggregate will be reduced

to a sum of monomial multipliers of simple successions of m and n, every
such succession being of the form

(mn)v or mr1

(mn)v or (mn)^n~
l or m~l

(mri)in~^.

But (mn)
2 = m . nm . n = m (mn 2bn 2cm + 2e) n

= - m2n- + 2bmn 2 + 2cm2n - 2emn

= - (2bm - d) (2cn -/) + 2bm (2cn -f) + 2c (2bm -d)n- 2emn

= (2e 46c) mn df.

Hence (mn)
z + 2 (e

-
2bc) mn + df= 0.

Hence (mri)i
= P {(mn)

2 + 2 (e
-

2bc) mn + df }
+ Amn +B = Amn + B,

where A and B are known functions of (e 2bc) and/; and therefore

B 2Bb
m~l (mn)q = An + Bm~l = An --7 m -\

--
= .

d d

r,. M , , B 2Bc
Similarly (wm/^n&quot;

1 = Am
^
n -\ ^- ,

ft
and mr1 mn^n~l = A + B mn-1 = - -mn + A B-j^ .

df V df J

And this being true (mutatis mutandis) for all values q, it follows that the

function expressed by any succession of products of functions of m and n is

reducible to the form of a linear expression in m, n, mn, in which the 4

monomial coefficients are known or determinable functions of the parameters
to the corpus m, n.

The latent function to any such linear expression, say

Amn + Bm + Cn + D,

may be found in the same way as the latent function to mn has been found,

namely, as follows:

(Amn + Bm + Cn + D)
2 = A 2

(mn)
2 + AB (mnm + mmn) + AC (mnn + nmn)

+ 2ADmn + B*m* + BC (mn + nm) + C*n2 + 2BDm + 2CDn + D2

= A 2

(-2e + 46c) mn - A*df+ABm (2bn + 2cm - 2e)

+ AC(2bn + 2cm -2e)n + 2ADmn + E^m1 + BC(2bn + 2cm - 2e) + C

+ 2BDm + 2CDn + D\

Let (Amn + Bm+ Cn + J9)
2 - 2P (A mn + Bm + Cn + D) + Q =

be the identical equation to Amn + Bm + Cn + D.

The coefficient of mn in the development of the first term being
-

2e) A 2 +2bAB + 2cAC + 2AD,
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and m2
, nz

being reducible to linear functions of m, n respectively, it follows that

P = A (2bc -e} + Bb

To find Q it is only needful to fasten the attention upon the constant

terms in the before named development reduced to the standard form.

?hese will be

- A 2

df- ZABcd - ZACbf- B 2d - 2BCe - C 2f+ D 2
, say K,

and the constant part in
&amp;lt;

2P(Amn+Bm+Cn+D) being 2Z)P, it follows that

Q = 2AD(2bc -e) + ZBDb + WDc + D2 - K
= A 2df+ ZABcd + 2ACbf+ 2AD (2bc

-
e)

+ B 2d + 2BCe + C2f+ 2BDb + 2GDc,

ind consequently the latent function A2 2PA + Q, of which the algebraical

roots are the latent roots of Amn + Bm + On + D, is completely determined.

Thus, for example, if the latent function ofm + n is required, making A =D = 0,

B =(7=1, its value will be seen to be A2 - 2 (6 +c) A + d + 2e +f= 0, so

that the roots will be b + c \/{(b + c)
2 -

(d + 2e +/)}.

On Involution.

In general, if m and n be two given binary matrices, and p any third

t.riv. sa.v

ft T T T T
t/i l2 1 2 -* 1 -* 2

matrix, say

&3 ^4 T3 T4 -* 3 -1 4

jt) may be expressed as a linear function of T, m, n, mn or of T, m, n, nm.

For in order that p may be expressible under the form A +Bm + Cn + Dnm,
observing that

_ 1 &quot;4*

and that T = it is only necessary to write

Cr, + D (t,T, + t3

6V2

D + Bt, + Cr. + D ( 2 r3 + 4 r4)
= T4 ,

and then A, B, C, D may be found by the solution of these four linear

equations : and this solution must always be capable of being effected unless

the determinant

T2 ,
fc2 TI -p 4 T2

vanishes.

1,

0,

o,

1,
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When this is the case the matrices m, n, in the order in which they are

written, will be said to be in sinistral involution. In like manner, if 1, n, m,
mn are linearly related, m, n may be said to be in dextral involution. But
it is very easy to see from the identical equation (2) that in this case these

two involutions are really identical, for, since A + Bm + Cn + Dmn = 0, by
subtraction

A + Bm + Cn- Dnm + Wcm + ZDbn - 2De = 0,

that is, (A - 2eD) + (B + 2cJD) m + (C + 2bD) n - Dnm = 0.

The above determinant then will be called the involutant to m, n or n, m,

indifferently, for it will be seen, and indeed may be shown, a priori, that

its value remains absolutely unaltered (not merely to a numerical factor

pres, but in sign and in arithmetical magnitude as well) when the Latin and

Greek letters, or which is the same thing, when the matrices m and n are

interchanged.

On the Linearform or Summatory Representation of Matrices, and

the Multiplication Table to which it gives rise.

This method by which a matrix is robbed as it were of its areal

dimensions and represented as a linear sum, first came under my notice

incidentally in a communication made some time in the course of the last

two years to the Mathematical Society of the Johns Hopkins University, by
Mr C. S. Peirce, who, I presume, had been long familiar with its use. Each

element of a matrix in this method is regarded as composed of an ordinary

quantity and a symbol denoting its place, just as 1883 may be read

!6 + 8h + 8t + 3u,

where 0, h, t, u, mean thousands, hundreds, tens, units, or rather, the places

occupied by thousands, hundreds, tens, units, respectively.

Take as an example matrices of the second order, as

a /3 a b

y 8 c d.

These may be denoted respectively by

ct\ + ftp + yv + STT, a\ + bp + cv + dfr;

their product by

(act. + c/9) X + (ba. + d/3) /A + (07 + cS) v+(by + dS) TT,

which therefore must be capable of being made identical with

ay\v

+ cav\ + cfivfA + cyv
z

-f C&VTT
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when a proper system of relations is established between the quadric com
binations and the simple powers of X.

The arguments of like coefficients in the two sums being equated together,
there result the equations

X2 =
A,, \V = V, /iX

=
[A, fJiV

=
7T,

and again, the arguments to the 8 coefficients in the second sum which are

not included among the coefficients of the first, being equated to zero, there

result the equations

\p=Q, XTT = O, /u
2 =

0, ^TT = 0,

v\ = 0, v2 = 0, vrX = 0, TTV = 0.

These 16 equalities may be brought under a single coup d oeil by the follow

ing multiplication table :

a b c

In like manner it will be found that any matrix of the 3rd order as d e f,

g h k

regarded as a quantity, may be expressed linearformly by the sum

a\ + bp + cv + dTr + ep + f&amp;lt;r
+ gr + hv +

k&amp;lt;J),

where the topical symbols are subject to the multiplication table below
written :

And, in like manner, matrices of any order &&amp;gt; may be expressed linearformly
as the sum of &amp;lt;y

2
terms, each consisting of a monomial multiplier of a topical
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symbol, the entire o&amp;gt;

2

symbols being subject to a multiplication table con

taining &amp;lt;w

4

places, of which &amp;lt;u

3 will be occupied by the &&amp;gt;

2

simple symbols, each

appearing o&amp;gt; times, and the remaining &&amp;gt;

4
to

3

places by the ordinary zero.

This conception applied to quadratic matrices might have served to

establish the connection between them and Hamilton s quaternions, regarded
as homogeneous functions of 1, i, j, k, themselves linear functions of the

topical symbols A,, /j,, v, ir\ but the same result may be arrived at somewhat
more simply by a method given in a subsequent lecture.

On the Corpus formed by two Independent Matrices of the same

order, and the Simple Parameters of such Corpus.

By the latent function of a corpus (m, n) we may understand the content

or any numerical multiplier of the content of (that is, the determinant to)

the matrix x + ym+zn, where x, y, z are monomial carriers. This function

will be a quantic of the order ia in x, y, z, and in the standard form the

coefficient of a? may be supposed to be unity, so that it will contain |(&)
2

+3&&amp;gt;)

coefficients, which may be termed the parameters of the corpus.

To fix the ideas, suppose o&amp;gt;
= 3 and let the latent function to

a b c a /3 7

a b c a! /3 7

a&quot; b&quot;
c&quot;,

a.&quot;
/3&quot; 7&quot;

be called F, where

F = a? + 3ba?y + 3cx2z + 3dxy
z + Qexyz + 3fxz

2 + gy
3 + 3hy

zz + 3kyz* + lz\

Let m become m + en, where e is a monomial infinitesimal. Then the

function to the corpus becomes the content of

x + y(m + en) + zn, that is, x + ym + (z + ey) n,

and consequently the variation of the function to (m, n) is ey8zF. If then

the rate of variation of any of the parameters, when n is the rate of variation

of m, be denoted by prefixing to such parameter the symbol E, we shall find

and similarly, if g, preceding a parameter, be used to indicate its rate of

variation corresponding to n s rate of variation being m, then

3[c
= b

5 3f 20
5 fie = d

; ffl
= 3k

; gk = 2h
; ^h = g ;

and the variations of c, f, I, as regards E, and of b, d, g, as regards g, are of

course zero.
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By forming the triangle of parameters

1

6 c

d ef
g h k I

p q r s t

the law of variations of the parameters of the function to (m, n) (expressed in

the ordinary manner by a ternary quantic affected with the proper numerical

multipliers) becomes evident, whatever may be the order of the corpus (that

is, of the matrices m and n, of which it is constituted): thus, for example,

when a) = 4, in addition to the previous expressions we shall find

Ep=4q, Eq=3r, Er = 2s, Es = t, Et = 0,

# = 4s, 3rs = 3r, gr = 2q, gq=p, tfp = Q.

By means of the above relations, any identical equation, into which enters

one or more matrices, admits of being varied, so as to give rise to an identical

equation connecting one additional number of the same.

Scholium. In what precedes it will have been observed that the matter

under consideration has always regard to matrices, or, as we may say, quantities

of a fixed order co, combined exclusively with one another and with ordinary
monomial quantities. Every such combination forms as it were a clausum or

world of its own, lying completely outside and having no relations with any
other. It is, however, possible, and even probable, that as the theory is

further evolved, this barrier may be found to give way and the worlds of all

the various orders of quantity be brought into relation and intercommunion

with one another.

LECTURE III.

On Quantity of the Second Order.

The theory of matrices of the second order seems to me to deserve a special

preliminary investigation on various grounds. First, as affording a facile and
natural introduction to the general theory (as the study of Conic Sections is

usually made to precede that of universal Geometry); secondly, because it

presents certain very special features distinguishing it from all other kinds of

quantity, such as the coincidence of the two involutants (reminding one of

the single image in the case of ordinary refraction as contrasted with the

double image seen through iceland spar), or, again, the rational relation

between the products of matrices of the second order, in whatever order the

factors are introduced in the performance of the multiplication ;
and thirdly,
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because the theory of this kind of quantity has already been extensively

studied and developed under the name or aspect of Quaternions. Hence it

may not be out of place to make the remark that, as it surely would not be

logical to seek for the origin of the conception included in the symbol V( 1)

in geometrical considerations, however important its application to geometrical

exegesis, so now that an independent algebraical foundation has been dis

covered for the introduction and use of the symbols employed in Hamilton s

theory, it would (it seems to me) be exceedingly illogical and contrary to good
method to build the pure theory of the same upon space conceptions; the

more so, as it will hereafter be shown that quantities of every order admit of

being represented in a mode strictly analogous to that in which quantity of

the second order is represented by quaternions, namely, if the order is
&&amp;gt;, by

o)
2
-ions, or as I shall in future say, by Ions, of which the geometrical interpre

tation, although there is little doubt that it exists, is not yet discovered, and it

must, it is certain, draw upon the resources of inconceivable space before it

can be effected.



32.

ON THE SOLUTION OF A CLASS OF EQUATIONS
IN QUATERNIONS.

[Philosophical Magazine, XVII. (1884), pp. 392 397.]

THE general equation of the degree &&amp;gt; in Quaternions or Binary Matrices

is obviously &&amp;gt;

4
,
but in certain cases some of these roots evaporate and go off

to infinity. The only equation considered by Sir William Hamilton in his

Lectures is the Quadratic Equation of a form which I call unilateral, because

the quaternion coefficients in it are supposed all to lie on the same side of the

unknown quantity. I propose here to show how Hamilton s equation, and

indeed a unilateral one of any order, may be solved by a general algebraical

method and the number of its roots determined.

It will be convenient to begin by setting out certain general equations

relating to any two binary matrices m, n.

Writing the determinant of x + ym + zn under the form

#2 + 2bxy + 2cxz + df + 2eyz +fz*

(b, c, d, e,f, thus constituting what I call the parameters of the corpus m, n),

we have universally

m2 - 26?7i + d = 0, n2 - 2cn +/= 0, d (m~
l

nf - 2e (m- n) +/= 0.

Moreover if m,n receive the scalar increments p,v\d, e,/ become respectively

d 2fjib + fj?, e pc vb + pv, fZvc + v2
.

Let us begin with Hamilton s form, say

a? - 2px + q=Q,
and suppose

a? - 2Bx + D =
0,

where B, D are scalars to be determined.

Let b, c, d, e, /be the five known parameters of the corpus p, q. Then,

since

(p-B)-*(q-D) = 2x,

s. iv. 15
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we shall have [cf. p. 188 above]

4(d- 265 + 2

) a?
- 4 (e

- bD - cB + BD) x -f /- 2cD + D 2 = 0.

Hence, writing B b = u, D c = v,

d-b2 =
a, 6-10 = 13, /-c 2 =

7,

we have u2 + a = \ uv + ft
= 2X (u + b), v* + 7 = 4X(y + c).

From the last two equations, eliminating v, there results

(2Xw
- 2&X - )

2 - 4\ (2Xw - 2&X - /3) w + (7
-

4cX) w
2 = 0.

Hence substituting X a for w2
,

(4X
2 + 4cX - 7) (X

-
a)
-

(26X - /3)
2 = 0.

We have thus six values of u, namely

V(X - a)

(where X has three values), to which correspond six values of v, namely

and, finally, 2# = (p u b)~*(q v + c)

=
{(p

-
b)

2 -
u?}-

l

(p -b + u)(q-c-v),

_

which equation gives six values for x, and shows that ten have evaporated.

It is easy to account cu priori for the solution depending only upon a

cubic in w2
.

For #2

2px + q
= Q is the same as y

z

%yp + q
= 0, where y = x

But obviously, from the nature of the process for determining them, B and C
are independent of the side of the unknown on which the first coefficient lies.

Hence the actual B will be associated with B
,
B being what B becomes

when x becomes x + 2p, which is obviously B + 2b.

Hence with any value of B b, which is u, is associated a corresponding

B b, which is u.

I will now proceed to apply a similar or the same method to the

trinomial cubic equation in quaternions (or binary quantity) xs +px q
= 0,

with a view to ascertain the number of its roots.

Retaining the same notation as before, and still supposing



32] Equations in Quaternions 227

we obtain a?+(D- 4 2
) x + 2BD = 0,

:q + 2BD ,

*-p + *B -D
Hence {(4.B

2 -
)
2 - 26 (45

s - D) + d} a?

- 2 {2 (45&quot; -D)BD-c (4# -D)- 2bBD + e}x

Hence we may write

(45
s - D)

2 - 26 (4
2 - D) + d = X,

-D)BD- cK4B&amp;gt;

- D) - 265D + e =

from which equations 5 and D are to be determined. Eliminating X between

the first and second and between the first and third of these equations, we

obtain two equations, of which the arguments are

D3
; B*D\ D2

; B*D, B*D, BD, D ;
1

for the one,

BD*
;
B3D, BD, D : B\ B3

, &,B\ 1

for the other.

Eliminating D by the Dialytic method between these two equations, we

shall have (using points to signify unexpressed coefficients) the following

three linear equations in D2
, D, 1, namely:

D2 + ( B3 + &c.) D + ( B5 + &c.) = 0,

B3D2 + ( B* + &c.) D + ( B7 + &c.)
=

0,

5Z)2 + ( B7 + &c.) D + ( B9 + &c.)
= 0.

Hence in the final equation B rises to the 15th power; and by com

bining any two of the above equations, D is given linearly in terms of B]

and, finally, x is known from the equation

_ ; (p + D - 4B2 -
26) (q + ZBD)

-(4 JS2

-/))
2 -2(4^2 -

JD) + d
and has 15 values.

A like process may be extended to a unilateral equation (of the Jerrardian

form) of any degree, say af + qx + r = 0.

Introducing the auxiliary equation with scalar coefficients as before, namely

x may be expressed as a function of q, r, B, D; and the term containing the

*
I
use^jr

and to signify H~ 1 L and LM&quot;
1
respectively.

152
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highest power of B in the equation for determining B (of which D is a one-

valued function), when to = 4, will be found to be the determinant

-B -B3
&amp;gt;B

5 -B7

-B3 -B5 -B 7 -B9

-B5 -B7 -B9
&amp;gt;B

U

B7 -B9
&amp;gt;B

U -B 13 *

and a similar determinant will fix the degree of B in the resolving equation

for any value of to. Hence the number of solutions of the unilateral equation

in quaternions of the Jerrardian form of the degree to is to (2co 1) or 2to2
o&amp;gt;,

and the evaporation will accordingly be to
4 2to2 + to, or

/ o \ / 2 I 1 \
( d) ~~ uj t \ (jj ~p u) ~*

J. ).

Moreover the same method with a slight addition will serve to de

termine the roots of the general unilateral equation in quaternions, the

number of which will be a cubic function of
o&amp;gt;,

as I propose to show and to

give its precise value in some future communication, either in this Journal,

or at all events in the memoir on Universal Algebra now in the course

of publication, under the form of lectures, in the American Journal of

Mathematics &quot;^.

I very much question whether the old method of Hamilton, as taught by

its most consummate masters, Tait in this country, or the late Prof. Benjamin

Peirce in America, would be found sufficiently plastic to deal effectually with

an analytical investigation in quaternions of this degree of complexity, so as

to lead to the formula for the number of solutions of the unilateral equation

of the Jerrardian form above given.

I invite my much esteemed and most capable former colleague and former

pupil, Dr Story, of the Johns Hopkins, and Prof. Stringham, of the University

of California, who carry on the traditions of the Harvard School, to put the

power of the old method as compared with the new to this practical test.

Postscript. If a? Spa? + oqac r = 0,

(where p, q, r are perfectly general matrices of the second order which satisfy

the general equations

q
z

2bq + d = 0, qr + rq 2bq 2^q + 2e = 0, r2

2biq + dl
= 0,

pq + qp- 2bp
-

2j3q + 2e = 0, p
2 -

2/3p + B = 0,

pr + rp 2^p 2fir + 2^ = 0),

*
It may readily be seen that the highest term in the equation for finding B is identical with

the resultant of

D4 -24B2D3 + 80.B 4D2 and iBD*-4QB*IP+MBfD-t4Br
,

that is, will be 218 .3.7 . 19.B28
; and that the last term (at all events to the sign pres) will be

6452
,
which is of 4 . 3 + 2 . 2 . 4 (that is of 28) dimensions in x, and is therefore codimensional

(as it ought to be) with J328.

t It is given in the Postscript below.
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and if we write .-e
2 2Bx + D = 0,

: r + Wp - BD
X =

and I find by perfectly easy and straightforward work that B, D may be

determined by means of the following equations:

( R2 _ 7)\2 R2 _ 7)
v -

o

R3 n _ /? 7)2

O

51D2 - 2 (&! + 3/3D) &D + ^ + QDe1 + 9SD2 = D\.

The order (by which I mean the number of solutions of this system of

equations) is readily seen to be the same as that of

D3 + B3D + B*D =

BD* + B*D + -B5 =
;

that is, is the same as the degree in B of B3

(B
5

)
2

. R, where R is the

resultant of

D2 + B3 + - 54 and D2 + B?D + 54
.

Hence* the number of solutions is 3 + 10 + 8, that is, is 21.

Practically, therefore, we have now sufficient data to determine the number
of solutions of a unilateral equation in quaternions of any order to; for it is

morally certain that such number is a rational function of to
;
and as it cannot

but be of a lower order than to
4
,
we have only to determine a cubic function

of to whose values for G&amp;gt;

=
0, 1, 2, 3 are 0, 1, 6, 21, which is easily found to

be to
3

&&amp;gt;

2 + &amp;lt;w

;
so that the evaporation is &&amp;gt;

4
ty

3 + to
2

o, that is

(ft)
2 + 1) (ft)

2 -
w).

Practically also we can solve (subject to hardly needful verification) the

number of roots of a unilateral equation of the special form

of + qex
e + qe-iX

- 1 + ... + gr
= 0.

For when 6 = co, we know the number is o&amp;gt;

2
;
and when =

1, the number is

a)
3 + to

2
&); consequently if the second differences of the function of

(ft), 6)

which expresses the number of roots are constant, the value of this function

when 6 = o&amp;gt; 1 is &amp;lt;o

3
&)

2 +
ft&amp;gt;,

which we have found to be the actual number;
and consequently, if the second differences are not constant, they must be

sometimes positive and sometimes negative, which is in the highest degree

improbable. Hence in all probability it will be found that the required
number of solutions in the form supposed is (1 + 6) &)

2
#&&amp;gt;.

I need hardly add that the nine quantities 26, 2b1} 2/3; 2e, 2e1} 2e; d, B, d^,

which occur in the discussion above given of the general unilateral cubic, or,

say, rather the ten quantities obtained by adding on to these unity, are the

[* See footnote f p. 197 above.]
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ten coefficients of the determinant to the binary matrix (x+py + qz + rt\
which of course there is not the slightest difficulty in expressing in terms of

scalar and vector affections of p, q, r and their combinations, if any one
chooses to regard them as given in quaternion form.

Scholium. In what precedes it is very requisite to notice that only

general cases are considered; and that there are multitudinous others which

escape the direct application of this method, and do not conform to the rule

which assigns the number of solutions. Thus, for example, the equation
a? +px = 0, besides the solutions x 0, x = p, will have two others which will

require the method of the text to be modified in order to determine. Or take

the most elementary case of all, the simple equation^ = q. If p is not vacuous

(that is, if its determinant when regarded as a matrix, or its modulus when

regarded as a quaternion, is finite), there is the one solution x=p~1

q. But
if p is vacuous, then, unless q is also vacuous, the equation is insoluble. If

q = 0, there will be two solutions; one of them #=0,the other x = con

jugate of p in quaternion terminology; or

d: b
,

a: bx=
, when r&amp;gt;

=
,

c; a c; d

in the language of matrices. If, p still remaining vacuous, q is vacuous but

not zero, a further condition must be satisfied, namely, if

aa; b ,

p = , and q =
c; d 7;

the condition is

or if

the condition is

aS + ad by c/3
=

;

a + bi + cj + dk and q = a + fii + &amp;lt;yj
+ 8k,

aa + b/3 + cy + d& 0.

When this condition (besides that of q being vacuous) is satisfied, the equation

px = q is soluble, and p~
l

q becomes finite but indeterminate, containing two

arbitrary constants*.

* So in general if p, q be two simply vacuous matrices of any order, the condition that the

equation px=q may be soluble, or, in other words, that p~
l

q (a combination of an ideal with a

vacuous matrix) may be non-ideal, may be shown to be that the determinant to the matrix

Xp + M2 (where X, p. are scalar quantities) shall vanish identically which (p being supposed

already to be vacuous) involves just as many additional conditions as there are units in the

order of the matrix.



33.

ON HAMILTON S QUADRATIC EQUATION AND THE GENERAL
UNILATERAL EQUATION IN MATRICES.

[Philosophical Magazine, xvm. (1884), pp. 454 458.]

IN the Philosophical Magazine of May last I gave a purely algebraical

method of solving Hamilton s equation in Quaternions, but did not carry out

the calculations to the full extent that I have since found is desirable. The

completed solution presents some such very beautiful features, that I think

no apology will be required for occupying a short space of the Magazine with

a succinct account of it.

Hamilton was led to this equation as a means of calculating a continued

fraction in quaternions, and there is every reason for believing that the

Gaussian theory of Quadratic Forms in the theory of numbers may be

extended to quaternions or binary matrices, in which case the properties of

the equation with which I am about to deal will form an essential part of

such extended theory*. Let us take a form slightly more general than that

before considered, namely, the form

pa? + qx + r = 0,

with the understanding that the determinant of p (if we are dealing with

matrices), or its tensor if with quaternions, differs from zero. Let us

construct the ternary quadratic

aw2 + 2buv + 2cuw + dv2 + 2evw
+fu&amp;gt;-,

denned as the determinant of up + vq + wr, on the one supposition, or by
means of the equations

a = Tp\ d=Tq\ f=Tr\ b = SpSq - SVpVq,
c = SpSr -SVpVr, e = SqSr - SVqVr,

on the other supposition.

*
I have found, and stated, I believe, in the form of a question in the Educational Times

some years ago, that any fraction whose terms are real integer quaternions may be expressed as

a finite continued fraction, the greatest-common-measure process being applicable to its two

terms, provided both their Moduli are not odd multiples of an odd power of 2, which can always
be guarded against by a previous preparation of the fraction.
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On referring to the article of May [p. 226 above], it will be seen that the
solution of the equation may be made to depend on the roots of a cubic

equation in the quantity therein called X. When fully worked out, this

equation will be found to take the remarkable form eAn./=0, where / is the
invariant of the ternary quadratic above written, and D. = 2aSc

- a&d . It

may also be shown that

(p + b-u)(q-c-v)
dj ~~----

2X

where u is a two-valued function of X, and v a linear function of u.

I shall suppose that /, the final term in the equation in X, differs from
zero : the solution of the given equation in x will then be what may be
termed regular, and will consist of three pairs of actual and determinate
roots. When 7 = 0, the solution ceases to be regular; some of the roots may
disappear from the sphere of actuality, or may remain actual but become

indeterminate, or these two states of things may coexist. The first coefficient

of the equation in X is a, the determinant of p (or its squared tensor), which
also must not be zero, as in that case one root at least of X would be infinite.

Let us suppose, then, that neither a nor / vanishes. The very interesting

question presents itself as to what kind of equalities can arise among the

three pairs of roots, and what are the conditions of such arisino-.O

This equation admits of an extremely interesting and succinct answer as

follows: Let m represent
-

;
the equalities between the roots of the

o

given equation in x will be completely governed, and are definable by the

equalities existing between those of the biquadratic binary form

(a,b,m,e,f)(X, F)&amp;lt;*.

If the equation is regarded as one in quaternions, the determining biquadratic is the

modulus of x^ + xp + q; from which it follows immediately that, if p, q are real quaternions, all

the four roots, say o, /3, 7, 5, are imaginary. It may be shown that the roots of Hamilton s

determining cubic are

A *

and these therefore are (as shown also by Hamilton) all of them real. The biquadratic serves to

determine the points in which the variable conic associated to the equation px2 + qx + r (that is,

the determinant to xp + yq+ zr) is intersected by the absolute conic xz - y
2

. Each root of the

given equation corresponds to a side of the complete quadrilateral formed by the four points of

intersection of these two conies ; and thus we see that there are five cases to consider when the

variable conic is a conic proper, according as it intersects or touches the fixed conic (which can

happen in four different ways) ;
and seven other cases where the conic degenerates into two

intersecting or two coincident lines (in which cases the solution becomes irregular); namely, the

intersecting lines may cut or touch in one or two points the fixed one, and may cut or touch the

conic at their point of intersection, which gives five cases ; and the coincident lines may cut or

touch the fixed conic, which gives two more. Hence there are in all twelve principal cases to

consider in Hamilton s form of the Quadratic Equation in Quaternions: or rather thirteen, for

the case of the variable and fixed conies coinciding must not be lost sight of.



33] general Unilateral Equation in Matrices 233

If the biquadratic has two equal roots, the given quadratic will have two

pairs of equal roots.

If the biquadratic has two pairs of equal roots, the given quadratic will

have four equal roots.

If the biquadratic has three equal roots, the quadratic will have three

pairs of equal roots.

If the biquadratic has all its roots equal, the quadratic will have all its

roots equal.

In the first case two of the three pairs of roots of the given quadratic

coincide, or merge into a single pair.

In the second case, not only two pairs merge into one pair, but the two

roots of that pair coincide with one another.

In the third case the three pairs merge into a single pair.

In the fourth case the two members of that single pair coincide with

one another.

So long as the equation in x remains regular, no kind of equalities can

exist between the roots other than those above specified.

For instance, let us consider the possibility of two values of x, and no

more, becoming equal. First, let us inquire what is the condition to be

satisfied in order that the scalar parts of two roots which belong to the same

pair shall become equal. It may be shown that the sufficient and necessary
condition that this may take place is that the irreducible sub-invariant

of degree 3 and weight 6 (that is, the first coefficient of the irreducible skew-

covariant of the associated biquadratic form [a, b, m, e, /]) shall vanish.

If, now, the vectors as well as the scalars of the two roots are to be equal,
it may be shown that the second as well as the first coefficient of the skew-

covariant must vanish. But this cannot happen without the discriminant

vanishing*; for it may easily be seen that the discriminant of a binary

biquadratic with its sign changed is equal to sixteen times the product of

the first and last coefficients, less the product of the second and penultimate
coefficients of its irreducible skevv-covariant. Hence when two roots belong

ing to the same pair of the given quadratic coincide, two values of X, become

equal, and therefore all four roots belonging to two pairs merge into one.

Again, it is not possible for two roots belonging to two pairs correspond

ing to two different values of A, to coincide
;

for in such case the expression

* The first two coefficients of the skew-covariant vanishing implies the existence of two pairs
of equal roots and vice versa. This is on the supposition made that a, the first coefficient of

the given quartic, is not zero.
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given for x shows that pq, p, q, 1 would be connected by a linear equation.

But when this happens (as has been shown by me elsewhere), the invariant

of the associated ternary quartic vanishes and the equation ceases to be

regular. Thus, then, it appears that it is impossible for a single relation of

equality (and no more) to exist between the roots of the given equation

when its form is regular. So, again, it may be shown that it is impossible for

four, and no more, relations of equality to exist between the roots.

It need hardly be added, that the equation px* + qx + r = ceases to be

regular when q or r vanishes.

The reader may satisfy himself as to the truth of what has been alleged

as to the relation of the discriminant of a binary biquadratic to the coefficients

of its skew-covariant by simple verification of the identity

16 (a?d
- 3abc + 26s

) (e
2b - 3edc + 2d3

)

-
(o?e + 2abd - 9c2a + 662

c) (e
2a + 2edb - Sec* + 6d2

c)

= 27 (ace + 2bcd -c3 - bz
e - ad2

)
2 -

(ae
-

4&amp;lt;bd + 3c2
)
3
.

The biquadratic equation in X, Y is what the determinant of \p+pq + vr

becomes when X 2
, XY, Y2 are substituted therein for \, fi, v; so that we

may say that (a, b, m, e,f) (x, I)
4
is the determinant of px* + qx + r, when x is

regarded as an ordinary quantity. Let
&amp;lt;f&amp;gt;x

be any quadratic factor of this

biquadratic function in x : I have found that
&amp;lt;f)X

= will be the identical

equation to one of the roots of the given equation fx = 0, where

fx = px2 + qx + r.

Between the two equations fx = 0,
(f&amp;gt;x

= Q, a? may be eliminated and x

found in terms of known quantities : $x will have six different values, which

will give the six roots of fx = 0. It is far from improbable that a similar

solution applies to a unilateral equation fx = of any degree n in matrices of

any order &&amp;gt;.

Call Fx the determinant offx when x is regarded as an ordinary quantity;

then, if
&amp;lt;JXK

is an algebraical factor of the degree o&amp;gt; in x contained in Fx, it

would seem to be in all probability true that x = is the identical equation
to one of the roots of fx = ; and, vice versa, that the function identically

zero of any such root is a factor of Fx. By combining the equations fx = 0,

&amp;lt;f)x

= 0, all the powers of x except the first may be eliminated, and thus every

root of x determined. The solution of the given equation will depend upon
the solution of an ordinary equation of the degree no), and the number of

roots will be the number of ways of combining not things &&amp;gt; and to together.

Thus, for a cubic equation in quaternions the number of roots would be ^6 . 5,

or 15. In the May number of this Magazine [p. 229 above] it was supposed
to be shown to be 21; but it is quite conceivable that this determination may
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be erroneous, especially as it was deduced from general considerations of the

degrees of a certain system of equations without attention being paid to their

particular form, which might very well be such as to occasion a fall in the

order of the system. I am strongly inclined, with the new light I have

gained on the subject, to believe that such must be the case, and that the

true number of roots for a unilateral equation in quaternions of the degree
n is 2n2

n*; in which case the theorem above stated, and which may be

viewed as a marvellous generalization of the already marvellous Hamilton-

Cayley Theorem of the identical equation, will be undoubtedly true for all

values of n and o&amp;gt;. But I can only assert positively at present that it is true

for the case of n = 1 whatever w may be, and for the case of n = 2, to = 2 -f .

* From the number 21 above referred to, now known to be erroneous, the general value
was inferred to be n3 -n2 + n, whereas it is demonstrably 2n2 -n only for the general unilateral

equation of degree n in quaternions, as I proved it to be for the Jerrardian form of that equation.

t I have since obtained an easy proof of the truth of the conjectural theorem for all values

of n and w, see the Comptes Rendus of the Institute of France for October 20th last [p. 197 above].
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NOTE ON CAPTAIN MAC MAHON S TRANSFORMATION
OF THE THEORY OF INVARIANTS.

[Messenger of Mathematics, xm. (1884), pp. 163 165.]

THE whole question as is well known consists in finding the free forms of

fl^O, where
O = a^a-i + 2a^a2 + . . . + *af_1 8at-;

but, as long ago noticed by me* in the Am. Math. Journal, O^O is only a

deformation of F^O, where

V= ao&Zj ajSaa + ... + tti-iSai,

1~1

being deducible from F-1
by altering the dimensions of the a elements

which it contains in known numerical proportions, so that O^O may be said

to be F-1
subjected to a known strain^.

To fix the ideas let i = 3 and call the a s by the names a, b, c, d or, for

greater simplicity, 1, b, c, d.

Let b = r + s + 1,

c = rs + rt + st,

d = rst.

Then the matrix

D(b,c,d}
1 * l

j^-^ = s + t t + r r + s,D (r, s,t)
st tr rs ,

~& (,2 42
,1 i

/ 6 C
so that

(r-s)(r-t) (s-r)(s-t) (*-r)(*-)
D (r, s, t) _ rst
D (b, c, d)

=
(r-s)(r-t) (s-r)(s-t) (t -r)(t- s)

1 1 1

(r-s)(r-t) (s-r)(s-t) (t-r)(t-s)

[* Vol. in. of this Eeprint, p. 570.]

t In fact the numerical multipliers of the terms in may be taken perfectly arbitrary without

producing any effect upon the form O-1 than what may be represented by a strain.
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Consequently

r2 -
(r + s + t} r + (rs + rt + st) , _ ~ st .

^
(r- S)(r-t)

In like manner in general for 1, an a2 ,
... en we shall find, on writing

di ?&quot;l ?*2 ft
&amp;gt;

2 3

, w ,
-

fo-nXn-**,) (n-n)

Hence F^O = ^fo, s 2 ,
... f),

where, in general, sw = r^ + rz
M

. . . + rf ;

and consequently the theory of invariants, which endoscopically treated in the

ordinary way hinges upon symmetrical functions of the differences of a set of

letters, is made to depend upon functions of the simple sums of powers com

mencing with the second power and ending with a power whose index is the

order of any given finite quantic, but in the case of perpetuants taking in all

the powers except the first.

It goes without saying that the same method applied to the constrained

V will show that it is equal to SSr1} so that V ~l is an arbitrary function of

the differences of the rs corresponding to that hypothesis, as we know ought

to be the case.

What has been established in the foregoing investigation is a principle of

correspondence whose importance as a simplifying agent recalls Ivory s

use of such principle in Attractions, namely, the remarkable algebraical law

that any symmetrical function of the differences of a set of * quantities is

a symmetrical function of the sums of the 2nd, 3rd, ..., ith powers of another

equi-numerous set.

By virtue of this principle the numerical part of the Calculus of Invariants

is capable of being entirely divorced from all question of algebraical content

and a Zahl-Invariant theory comes into being, in its fundamental conception

analogous to the Zahl-Geometrie of Schubert.

Further remarks on this subject will be found in the Comptes Rendus de

VInstitut presumably for March 31 and April 7 of this year [p. 163 above].



35.

ON THE D ALEMBERT-CARNOT GEOMETRICAL PARADOX
AND ITS RESOLUTION.

[Messenger of Mathematics, xiv. (1885), pp. 92 96.]

I WILL presently state the simple geometrical problem which led D Alem-
bert to call into question the validity of the received Cartesian doctrine of

positive and negative geometrical magnitudes, and which, according to Carnot,
furnishes an unanswerable argument against it. See Mouchot, La reforme
Cartesienne, pp. 74, 75.

Against this doctrine, presented in its crude form, the objections of these
illustrious impugners of it are unquestionably well founded and unanswerable;
but the inference to be drawn from this is not that no such or such-like
doctrine reposing on an unassailable logical basis exists or is capable of

being established (woe worth the day! when such a conclusion should be

admitted), but that the doctrine as usually stated is incomplete and requires
a supplement.

This has been anticipatively furnished by me many years ago in this

very Journal, and in conjunction with the substitution of positive and

negative indefinite rotation in lieu of Euclid s positive and limited angular
magnitude, made the basis of a strictly logical deduction (which was before

wanting) of the trigonometrical canon.

It consists in the notion of a line having, so to say, sides (returning upon
itself at its two semi-points at infinity), or to put the matter in a more

practical form, in regarding an Euclidean indefinite straight line as repre

senting two distinct lines locally coincident, but running in contrary directions,
and in referring the algebraical sign of any rectilinear segment to the con
currence or discordance of its flow (which is represented by the order in

which its two extremities are named or written down) with that of the
indefinite line, upon which it is supposed to be carried.



35] On the D Alembert-Carnot Geometrical Paradox, etc. 239

Thus, for example, AB taken on the upper side of a line or line-pair will

be the negative of AB taken on the same side, but the same as BA taken on

the under side.

I will now state the D Alembert-Carnot problem. &quot;Voici&quot; says Carnot,

&quot;un exemple aussi simple que frappant, qui seul suffit pour renverser toute

cette doctrine&quot; of positive and negative magnitudes.

&quot;D un point K, pris hors d un cercle donne, soit propos^ de mener une droite

Kmm , telle que la portion mm , intercepted dans le cercle, soit egale a une

droite donnee.

A

&quot;Du point Kt
et par le centre du cercle menons une droite KAB qui

rencontre la circonference en A et B. Supposons KA =
a, KB =

b, mm =
c,

Km = x. On aura done par les proprietes du cercle

ab = x (c + x) = ex + x*

done a?+ ex ab =

ou x=- \c V(ic
2 + a6).

x a deux valeurs: la premiere, qui est positive, satisfait sans difficult^ a la

question; mais que signifie la seconde, qui est negative? II parait qu elle

ne peut repondre qu au point m, qui est le second de ceux ou Km coupe la

circonference
; et, en effet, si Ton cherche directement Km, en prenant cette

droite pour 1 inconnue x, on aura

x (x c)
= ab

ou # = c\/(ic
2 + a&)

dont la valeur positive est precisement la meme que celle qui s etait presentee

dans le premier pas avec le signe n^gatif. Done, quoique les deux racines de

I equation

soient 1 une positive et 1 autre negative, elles doivent etre prises toutes les

deux dans le meme sens par rapport au point fixe K. Ainsi, la regie qui veut

que ces racines soient prises en sens opposes porte a faux. Si au contraire le

point fixe K e*tait pris sur le diametre meme AB et non sur le prolongement,
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on trouverait pour x deux valeurs positives et cependant elles devraient

etre prises en sens contraires Tune de 1 autre. La regie est done encore fausse

pour ce cas.

&quot;

Si Ton dit que ce n est pas ainsi qu il faut entendre ce principe, que les

racines positives et negatives doivent etre prises en sens opposes, je de-

manderai comment il faut 1 enteudre ? et j en conclurai par la me&quot;me qu il

faut une explication pour empecher qu il ne soit pris dans 1 acceptation la

plus naturelle. II suit que ce principe est obscur et
vague.&quot;

The answer has been already given to the question,
&quot; comment il faut

entendre ce
principe,&quot;

and it will be seen in such a way as to remove all

grounds for the charge of its being any longer &quot;obscur et
vague.&quot;

This is how the problem set out in full ought to be enunciated :

A complete line (that is, a line-pair or two-sided line) drawn from K cuts

the circle in the points m, m \
mm measured on either side of the line (and

of course denoted quantitatively by the number of units of given length
which it contains) is to be equal to c a given positive or negative number.

Required the value of Am.

(1) Suppose K to be exterior to the circle as in the diagram above.

I distinguish the two sides of the complete line, as the under and upper
line, and suppose the flow of the under one to make an acute Euclidean

angle with the flow from K to the centre of the circle. In all cases

Km = Km + mm ,

and consequently the equation for finding x remains always a? + cx = ab, of

which the two roots are \c + \/(ic
2 + ab) and ^c V(ic

2 + ab).

Adhering to the letters of the diagram, if c is positive the two values of x

will correspond to Am on the under line and Am on the upper line of the

line-pair. If, again, c is negative, the two values of x will correspond to Am
on the upper and Am on the under one.

(2) Suppose K to be within the circle.

It will still be true (paying attention to the signs) that Km = Km + mm
(that being a universal identity in algebraical geometry), but the algebraical
values of KA, KB being contrary, we may regard KA as positive and equal
to a, KB as negative and equal to b, and shall have the equation

xz + ex ab,

of which the two roots are

Understand by the two segments Km and Km.
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We may suppose the indefinite line-pair mKm to swing round K, its

under-side in the position of coincidence with the diameter having the same
flow as KA\ then, if c is positive, until the swinging line revolving with the

sun has described a right angle, the first root will be the iw/rd-diametral

segment taken on the lower line (or side), and the second root the supra-
diarnetral segment taken on the upper line (or side) of the line-pair (or

complete line); in the next quadrant of rotation the first root will be the

swjord-diametral segment on the under and the second root the infrd-
diametral segment on the upper side of the complete line. When c is

negative a similar statement may be made if only the words under and upper
are interchanged. In the critical position, when the swinger is at right

angles to the diameter, the two roots become equal and undistinguishable ;

but throughout and subject to no exception, the complex of the two roots

contains the complete solution of the problem, and the complete solution of
the problem necessitates the retention of the complex of the two roots.

Thus, then, as in the preceding case, it has been shown that the Cartesian
view of the equipollence of positive and negative roots (the latter Descartes
influenced by hereditary prepossessions calls radices falsae) is made exact

through the intermediation of the conception of sides to a line. D Alembert
and Carnot are entitled to the gratitude of Geometers and all lovers of truth
for raising objections so perfectly well founded to the then, and even now,
too prevalent interpretation of the meaning of the geometrical positive and
negative, but the difficulty which they so justly appreciated and so clearly-

expressed is overcome and exists no longer.

P.S. I am informed that M. Laguerre has emitted the same view as that
I have set forth relative to the sign to be given to geometrical distances, and
made use of the same conception of the double or complete line-carrier.

My note on the subject appeared before my exodus across the Atlantic,
probably nine or ten years ago. M. Laguerre s publication must have been
many years posterior to this. The references to the reappearance of the
theory on the other side of the Channel, obligingly furnished to me by
M. Mannheim in Paris, have unfortunately got mislaid. I believe the com
munication containing it was made by M. Laguerre within the last three
or four years, but it has already had time to find its way into some of the
most esteemed French text-books. Being not only true but the truth, it
must eventually find universal acceptance. It is not without interest (it seems
to me) that we may regard a double or complete right line as a sort of
embryonic embodiment of the idea of a Riemann Surface.

s iv.
16



36.

SUR UNE NOUVELLE THEORIE DE FORMES ALGEBRIQUES*.

[Comptes Rendus, ci. (1885), pp. 10421046, 11101111, 12251229,

14611464]

Si Ton imagine une fonction de derivees differentielles (toutes d un ordre

superieur a 1 unite) de y par rapport a x, qui, sauf 1 introduction d un facteur

cLij

multiple numerique, d une puissance de ~-
,
ne change pas sa valeur quand

on remplace x par y et y par x, il est evident qu une telle fonction restera

invariable (sauf 1 introduction d une constante comme facteur) quand pour x

et y on substitue des fonctions lineaires quelconques, homogenes ou non

homogenes de y et x. Ainsi une telle fonction couduira immediatement a

la connaissance d un point singulier d une courbe d un degre quelconque. Le

seul exemple d une telle fonction, traite jusqu a ce jour, est la simple fonction

d?y
-r^

2 qui, par cette seule propriete, sans aucune autre consideration, sert a
U-QC

demontrer 1 existence d une propriete protective de courbes dont la condition

d~y
est -j 2̂

= 0. II nous parait done tres utile de chercher un moyen de produire
CL(C

toutes les fonctions de cette espece auxquelles nous donnerons le nom de

reciprocants purs ou simplement reciprocants. On verra qu il existe des

reciprocants mixtes, c est-a-dire contenant des puissances de ~
(
comme la

CiX \

forme bien connue de M. Schwarz, ~ -^r -^ -f? -7*-] qui possedent la meme
dx dx3 2 dx- dx-J

^

faculte d invariance par rapport a 1 echange de y avec x, comme les

reciprocants purs, mais qui evidemment ne peuvent pas indiquer 1 existence

de points singuliers dans les courbes.

Nous ecrirons, au lieu de Sx y, 8x
2

y, 8x
3

y, Sx*y, ..., les lettres t, a, 6, c, ..., et

pour leurs reciproques &y x, 8v
2
x, 8y

3
x, ..., r, a, @, y, On verra facilement

que, pour que F(t, a, b, c, ...) soit un reciprocant pur, F doit etre d un degre

et d un poids constant dans les lettres de chaque terme; de plus (pour un

[* See the lectures, below p. 303.]
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reciprocant ^d une nature quelconque), on aura F(a ...)/F(a. ...)
= (- l)

9
t^, ou

6 sera le plus petit nombre des lettres a, b, c, ... dans un terme quelconque de

F, et X sera la moyenne at ithmetique entre le poids et trois fois le
degre&quot;

de F, en

comptant le poids de t, a,b,c,... comme etant -
1, 0, 1, 2, .... Cela donne

lieu a une remarque importante par rapport aux reciprocals mixtes: pour
qu on puisse additionner deux formes rnixtes afin de former un riouveau

reciprocant, il faut non seulement que le degre et le poids soient les memes

pour tous les deux, mais aussi le caractere qui depend de la valeur de 6 et

que Ton peut qualifier comme caractere pair ou impair selon la parite de 6.

Ainsi, par exemple, 2tb - 3a2 et a2 sont tous deux reciprocants, mais 2tb ne le

sera pas, parce que les caracteres des deux donnees sont contraires. II est

facile de demontrer que, si R est un reciprocant quelconque,

(2tb
- 3a 2

) 8aR + (2fc
-

4a6) BbR + (2td
-

oac) 8CR+ ...

sera aussi un reciprocant de meme caractere que R. Ainsi, en commen9ant
avec le reciprocant a, on peut obtenir une suite infinie de reciprocals
mixtes : ces reciprocants ainsi obtenus ne seront pas en general irreduc-

tibles
; mais, sans les reduire, leur forme fait voir immediatement que tout

reciprocant, qu il soit pur ou mixte, peut etre exprime comme une fonction

rationnelle et aussi (si Ton regarde t comme
unite&quot;) entiere de combinaisons

Ugitimes* de ces quantites.

Pour obtenir tous les reciprocals purs de poids, degre et ordre (c est-a-

dire nombre de lettres) donnes, lineairernent independants les uns des autres,
on peut former une equation partielle differentielle, lineaire, ou R est

la variable ddpendante, et a, b, c, ... les variables
inde&quot;pendantes ;

elle

exprimera la condition necessaire et suffisante pour que R soit un tei

reciprocant et fournira un moyen sur de r^soudre le probleme propose.
Voici la maniere de demontrer ce th^oreme fondamental.

Si, dans 1 equation

F(a, b, c,. ..)
= (- l/^^(a,/9, 7,...),

on donne a y la variation ex, on voit que a, b, c, ..., et consequemment F,
restent invariables. Les variations de a, 0, 7, ... sont faciles a determiner, et
la variation de t est donnee.

Ainsi, apres quelques calculs faciles, en egalant a zero, separement, dans
la variation de t*F(a, /3, ...), les termes qui contiennent t et ceux qui ne le

contiennent pas, on arrive a deux equations dont Tune sera

*
Je nomine Ugitime une combinaison quelconque de reciprocals oil 1 on evite Vadditionner

ceux dont le poids, le degre\ 1 ordre et le caractere ne sont pas les memes pour tous.

162
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qui exprime la valeur numerique de X, comme fonction du poids et du degre
de F; 1 autre equation, en ecrivant

V= 3a2
& + 10ab8c + (15ac + 1062

) Ba

+ (2lad -t- 356c)Se 4- (28ae + 56bd + 35c 2

) &/+ ...,

sera VR = 0.

Pour voir la loi des chiffres arithmetiques dans V, formons les suites des

coefficients de (1 + xj- en comme^ant avec i = 4
; divisons chaque coefficient

central en deux parties egales, et supprimons la derniere moitie des series

numeriques ainsi formees
;
on obtiendra ainsi la Table :

143
1 5 10

1 6 15 10

1 7 21 35

1 8 28 56 35

En negligeant les deux premieres colonnes, on trouve les nombres qui
paraissent dans la formule.

On demontre ainsi que VR = est une condition ndcessaire pour que R
soit un reciprocant. Mais il faut aussi demontrer que cette condition est

suffisante. Soit done D la valeur de ^(a, b, ...) t^F(a, ft, ...), exprimee
comme une fonction de a, b, c, ... seulement. D sera done une fonction de la

meme forme que F (a, b, ...).

On suppose que AZ) =
;

c est-a-dire que la variation de D produite par la substitution de x+ e?/ a x
est egale a zero, en vertu de 1 equation VR = 0.

Donnons a, y une variation arbitraire y + iju; alors, si D devient D
,
la

variation de D sera nulle, quand on substitue, pour x, x + ey + erju, et, con-

sequernment, quand on substitue x + 2y pour x
;
on aura done

et, en prenant la difference des variations de D et D
, on obtient

A (u
- R + u&quot; I- R + u

&quot; ~ R + ...}= 0.
V da do dc J

Done, a cause de la forme arbitraire de u, il faut que

A-^JD-0, A^D=p,da db

et, en raisonnant sur ^- D,
-j-.

D, ... comme on a raisonne sur D, on voit que

le A de chacune des derivees secondes differentielles de D sera zero; en
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poursuivant le meme calcul, on trouve e*videmment que le A d une derivee

de D d un ordre quelconque par rapport a a, b, c, ... sera nul.

Done D est nul
; car, dans le cas contraire, s il contient un terme quel

conque, dont les lettres peuvent etre distinctes ou identiques, en isolant une
seule de ces lettres et prenant la derived de D par rapport a toutes les

autres lettres, on aura le A de la lettre isolee, c est-a-dire de 8x y, 8X
2

y,...,

zero quand on substitue x + ey pour x, ce qui est absurde. Ainsi Ton voit

que, quand AZ&amp;gt; = 0, c est-a-dire quand VR =
0, D = 0, ce qui 6tait a

demontrer.

Soient
&amp;lt;w, i,j le poids, le degre et 1 ordre d un rdciprocant quelconque : de

meme que pour les sous-invariants, le nombre de formes lineairement inde-

pendantes s exprime par(&&amp;gt;; i,j) -(&&amp;gt;-!; i, j), ou, en general, (w; i,j) signifie

le nombre de partitions de to en i parties dont nulle n excede j; ainsi Ton

voit que, en vertu de 1 equation VR = 0, on aura, pour le nombre des

re&quot;ciprocants lindairement independants, la formule

O; M)-(&quot;&amp;gt;- i; i + i,j).

Mou long exil en Amerique expliquera, je 1 espere, comment j ai pu
ignorer I identite des invariants differentiels de M. Halphen avec les formes

que j ai nominees reciprocants purs. Les travaux vraiment remarquables de
M. Halphen n ont pas besoin de mes eloges et auront ete couronnes par
1 admiration de tous les geometres dignes de ce nom.

Je crois cependant qu il y a assez de difference entre le but et la marche
de mes recherches sur ce terrain et ceux de M. Halphen pour justifier 1 in-

sertion dans les Comptes rendus de ma discussion de la theorie regardee
comme une theorie de formes algebriques. Si je ne me trompe pas,
M. Halphen, s il 1 a decouverte, n a fait nul usage de 1 equation partielle
differentielle que j

ai donnee et qui sert a ^tablir le parallelisme mer-
veilleux entre les invariants differentiels et les semi-invariants ordinaires.

De plus, il n a pas eu occasion de faire allusion aux formes que j appelle

reciprocants mixtes orthogonaux, qui ne sont point compris dans la definition

des invariants differentiels, et qui sont essentiels pour expliquer les singu-
larites quasi-metriques des courbes.

Nous rappelons que par le mot reciprocant (sans qualification) il a ^te

convenu de sous-entendre une forme de cette espece qui ne contient pas t

f c est-a-dire
-^-J

et nous avons trouve que le nombre de ces reciprocants

lineairement independants, du degre i, de 1 etendue j (c est-a-dire contenant

j + 1 lettres distinctes) et du poids o&amp;gt;,
s exprime par la formule

O; *,j)-(w- 1; * + !,.; ),

ou en general (1; m, n) signifie le nombre de partitions de I en m ou un plus
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petit nombre que m de parties dont aucune n excede n en grandeur ;
de sorte

que (I; m, n), quand m est plus grand que /, signifie la meme chose que
(1; I, n), car tous les deux sont equivalents a (/; ao , n). Consequemment

; i, j) -(*-i; i + 1, j)
=

(i; i j)
-

(i
- 1

; i, j),

lequel sera toujours positif quand i et j sont tous les deux plus grands que
l unit

; et, puisque a, qui est du degre 1, est un reciprocant, il s ensuit que,

pour un degre quelconque donne, il existe toujours des reciprocants (car on

peut faire &&amp;gt;
=

i), mais en nombre fini, car, en faisant croitre w, (o&amp;gt;

1
;

i+l,oo), au dela d une certaine valeur de
o&amp;gt;,

deviendra ndcessairement

plus grand que (&&amp;gt;; i, oo ). On peut exprimer par (I : m) ce que devient

(1; m, n) quand n = oo
,
et alors

(&&amp;gt;

: i)
-

(
- 1 : i + 1) exprimera le nombre de

reciprocants lineairement independants du poids o&amp;gt; et du degre i sans autre

limitation. Ainsi on trouvera que du degrd 1 il n existe qu un seul recipro
cant du poids 0; pour le degre 2, un seul du poids 2

; pour le degre 3, deux

qui seront respectivement du poids 3 et du poids 4
;

etc.

On trouvera qu etant donne&quot; j il existe toujours, sauf pour le cas ou j = 1,

un reciprocant qui contient toutes les j + 1 lettres et qui de plus contiendra

un terme qui est un produit de la derniere lettre par une puissance de a.

Ces formes, qu on peut nommer les protomorphes, sont les analogues des

formes a, ac b2
,
d2d+ ..., ae + ..., qu on connait dans la theorie des sous-

invariants. Dans le cas des reciprocants, ces protomorphes seront a, ac, ...,

a?d, ..., a?e, ..., o?f, ..., a?g, ..., etc.

Evidemment une fonction rationnelle quelconque des lettres peut, au

moyen de substitutions successives, etre exprimee comme une fonction

rationnelle des protomorphes et de b divisee par une puissance de a. Soit

done R un reciprocant quelconque; on aura

a?R + P+Qb+ .., + Jb^O,
ou P, Q, . . .

,
J sont eux-memes des reciprocants. En operant i fois sur cette

equation avec notre operateur V, on voit qu on obtient aPJ =
;
done J est

nul, et Ton voit ainsi que tous les termes Q, ..., J disparaissent et que R (en

faisant a=l) devient une fonction rationnelle et entiere des protomorphes.
Nous allons appliquer ce principe fondamental, commun aux deux theories

des sous- in variants et des reciprocants, pour obtenir les formes irreductibles

(les Grundformen) des reciprocants pour les ordres 2, 3, 4.

Faisons j = 2, i = 2, w = 2 et supposons que le reciprocant R soit Xac

on obtient

VR = (3a
2S6 + WabSe) R = (Gp+ 10X) a

2 6 = 0.

Done X, : /* :: 3 : 5 et nous obtenons le rdciprocant 3oc 562
*.

*
II est bon de remarquer que 3ac-5b^= 0, c est-a-dire

indique que le point (x, y), quand cette equation est satisfaite par telles coordonne&quot;es d une courbe

quelconque, est un point supra-parabolique, c est-a-dire ou une parabole passe par 5 au lieu de 4

points consecutifs seulement.
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Passons au cas j
= 3, i = 3, &&amp;gt;

= 3, et posons

vb3
.

On aura VR = (3tfSb + WabSe + 15ac + 1062 8d) E
=

(3,* + 15\) a
s
c + (dv + 10/4 + 10X) a

2 62 = 0.

On aura done /A
= 5X, 9i&amp;gt;

= 40X,

de sorte qu on peut ecrire

R = 9d*d - 4&amp;gt;5abc + 4063
.

On reconnaitra immediatement que R = est liquation differentielle donnee

par Monge et retrouvee par M. Halphen a une conique et que

exprime la condition que le point (x, y) d une courbe quelconque sera un

point d inflexion du second ordre, c est-a-dire un point ou une conique passe

par six points conse&quot;cutifs. Le nombre de ces points peut etre trouv6 en

fonction line&quot;aire de n, ordre d une courbe donnee, en opeVant sur cette

equation une transformation analogue a celle au moyen de laquelle on

passe du systeme y = 0,
-yjf

= au systeme Equivalent, mais epure, $ = ;

Passons au cas ou j
= 4, i = 3, &&amp;gt;

= 4, et dcrivons

R = \a2
e + (Jiabd + vac2 + 7rb*c.

On aura
F= 3a2 S6 + 10a6Sc + (15ac + 1 062

) Sd + (2lad + 356c) $e ,

et, en posant RV= 0, on obtient, en egalant separement a zero les coefficients

de o?d, a2
6c, abs

,
les Equations

3/*=0,

* Pour le cas d une cubique, le nombre de ces points d inflexion du second ordre est vingt-sept;

on demontre facilement que ce sont les intersections de la courbe avec son covariant du degre-

ordre 12.9.

On voit immediatement, au moyen de notre theorie connue de rexidus geometriques, que ces

vingt-sept points sont les points de la cubique ou elle est rencontree par les neuf faisceaux des

tangentes qu on peut mener des neuf points d inflexion ordinaire. Car un quelconque de ces

points doit etre tel que sa derivee a 1 indice 5 sera coincidente avec le point lui-meme. On aura

done 1, 1 = 1,5, c est-a-dire 2 = 4, ce qui veut dire que le tangentiel du point est un point

d inflexion
;
ce qui etait a demontrer.

Soit dit, par parenthese, que la meme theorie de residuation enseigne que le point fixe Q, ou

une cubique donnee sera coupee par une autre cubique quelconque qui a en commun avec la

premiere 8 points consecutifs a un point donne P, sera le troisieme tangentiel de P et peut 6tre

nomm6 son satellite ; quand le satellite coincide avec son primaire, en se servant pour le moment

de la forme canonique pour exprimer la cubique donnee, et en nommant x, y, z les coordonnees

du prirnaire, celles du satellite seront (d apres notre theorie exposed dans VAmerican Journal of

Mathematics) x, y, z multiplies respectivement par des fonctions rationnelles de x3
, y

3
, z

3
,
chacune

du degre&quot; 21. [Vol. in. of this Reprint, p. 339.]

C est un fait depuis longtemps connu que les points primaires qui coincident avec leurs

satellites (en ne tenant pas compte des neuf inflexions) sont en nombre 72.
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et ainsi on peut dcrire

R = 5a?e - 35abd + 7ac2 + 3562
c.

Voici done le systeme de protomorphes pour tous les ordres jusqu au

quatrieme inclusivement :

a, (1)

Sac - 562
, (2)

9a2d - 45a6c + 4063
, (3)

5a2
e - 35abd + 7ac2 + 3o62

c. (4)

En combinant le cube du deuxieme avec le carre du troisieme, et en

divisant par a, on obtient la forme (analogue au discriminant) de la cu-

bique, mais d un degre plus eleve ,

405a3d2 -4050a26cd+1728a2 c3

1585a62 c2 + 3600a63 d - 18000&4 c*. j

En combinant le produit de (2) et de (4), lineairement, avec (5), on

obtient

4800a2ce - 8000a62e - 2835a2d2 - 5376ac3
}

(6)- 5250abcd + 308()0b3d + 1130562
c
2
.

Si Ton se borne aux lettres a, b, c, d, les formes (1), (2), (3), (5) formeront

un systeme complet de Grundformen : si on laisse entrer la nouvelle lettre e,

(5) n est plus irreductible, et le systeme complet de Grundformen est con-

stitue par les formes (1), (2), (3), (4), (6).

Tout cela se passe precisement comme avec les sous-invariants avec les

memes lettres : les poids des formes sont les memes pour les deux systemes,
et la seule difference essentielle entre les deux consiste en ce fait, que les trois

dernieres formes subissent chacune une Elevation d une unite de degre en

passant du systeme des sous-invariants a celui des reciprocants.

II est necessaire d ajouter quelques mots sur les reciprocants mixtes, qui

se distinguent en deux especes, homogenes et heterogenes. Comme exemple
des premiers, on a la derivee Schwarzienne 2tb 3a2

, laquelle, egalee a zero,

ne donne aucune espece de singularite, mais signifie seulement qu au point

(x, y) on peut mener une conique qui passera par cinq points consecutifs, en

ayant ses deux asymptotes paralleles aux axes, ou bien la forme tc 5ab.

Comme exemple de 1 autre classe, on a la forme connue (1 + t
2

) b 3to2
,
dont

1 evanouissement (pourvu que x, y soient des coordonnees rectangulaires)

signifie que le point (x, y) est un point de courbure maximum ou

minimum.

*
Cette fonction, egalee a z6ro, exprime que x, y sont les coordonnees d un point par ou Ton

peut faire passer une parabole cubique ayant 5 points consecutifs communs a la courbe dont x, y
sont les coordonnees.
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Nous avons remarque , par parenthese, que 1 equation

(l + 2

)6-3ta
2 =

indique 1 existence d une singularite au point dont les coordonnees sont les

x, y sous-entendus dans t, a, b de I equation.

Mais, pour que cela soit vrai, il faut introduire la restriction que x, y sont

des coordonnees rectangulaires.

On peut donner le nom de reciprocant orthogonal a tout reciprocant mixte

qui jouit de la
proprie&quot;te

de rester invariable (sauf 1 introduction d une puis
sance de 1) quand on opere sur x et y une transformation lineaire ortho-

gonale. Cela etant convenu, on peut demontrer facilernent que le coefficient

differentiel par rapport a t d un reciprocant est lui-rneme un rdciprocant ou

pur ou mixte. La proposition reciproque est aussi vraie, de sorte qu on a le

beau theoreme suivant :

&amp;lt;y 7?

Si R et r- sont tons les deux reciprocants, alors R est un reciprocant ortho-
dt

gonal.

Par exemple, le reciprocant que nous avons cite plus haut a pour co

efficient differentiel par rapport a t la Schwarzienne 2tb 3a2
;
done c est un

reciprocant orthogonal ; et, en effet, il exprime qu au point (x, y}, ou
1 equation 2tb 3a2 = est satisfaite, on peut appliquer un cercle qui aura

un contact du troisieme ordre avec la courbe dont x et y sont les coordonnees;
au contraire, la Schwarzienne elle-meme ne correspond pas a une singularite

quelconque, car sa derivee par rapport a t, c est-a-dire 26, n est pas un

reciprocant.

De meme nous avons trouve qu en integrant le reciprocant 2tc lOab par

rapport a t, eritre les limites t et c loa3
,
la forme resultante

sera un rdciprocant et consequemment un reciprocant orthogonal, de sorte

que 1 equation

sera la condition d une singularite de la courbe f(y, x} =0 qui se rapporte
aux points circulaires a 1 innni*. Peut-etre trouvera-t-on que 1 integrale,

par rapport a t, d un reciprocant mixte quelconque, prise entre des limites

convenables, conduira necessairement a un reciprocant orthogonal. Les

singularites d une courbe peuvent etre partagees en trois classes : celles de
la premiere classe seront project!ves et peuvent etre definies indifferemment
au moyen de covariants de formes ternaires ou par des reciprocants purs ;

M. James Hammond, dont on connait les belles et importautes decouvertes dans la theorie

invariantive des formes binaires, a trouve 1 integrale de cette equation, que nous avons donnee
dans un discours inaugural, prononce devant l Universit6 d Oxford, lequel va Stre publie dans le

journal anglais Nature, [p. 278 below.]
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celles de la deuxieme classe seront non projectives, mais n auront affaire

qu avec la ligne a 1 infini
;

les singularites de cette classe serout exprimables

au moyeu de reciprocants purs, mais non pas au moyen de covariants de

formes ternaires. Restent celles de la troisieme classe qui non seulement ne

sont pas projectives, mais sont quasi metriques en caractere, c est-a-dire ont

des rapports avec les points circulaires a Tinnm
;

les singularites de cette

classe sont signalees par 1 evanouissement de reciprocants orthogonaux. Les

reciprocants mixtes, qui ne sont ni purs ni orthogonaux, comme celui, par

exemple, de M. Schwarz, ne repondront a aucune de ces trois especes de

singularites ; mais, quoique ne servant pas a representer urie propriete

invariable d une courbe, ils serviront souvent, peut-etre toujours, comme

bases des reciprocants orthogonaux, c est-a-dire qu ils seront les coefficients

differentiels par rapport a t de ces derniers.

L echelle des protomorphes, aussi bien dans la theorie des reciprocants

purs que dans celle des sous-invariants, joue un r6le si capital, en ce qui

concerne la determination des formes irreductibles, qu il nous semble in

dispensable de donner une demonstration rigoureuse de son existence dans

Tune et 1 autre theorie.

1 Quant aux sous-invariants, soit j 1 ordre (c est-a-dire j
&amp;gt; + 1 le nombre

des lettres que Ton considere). Si j est pair, on connait les formes inva-

riantives ac + ..., ae+ ..., ag + ..., et Ton pent passer au cas ouj est impair.

Dans ce cas, le nombre de sous-invariants du poids j et du degre 3 sera

O ;3,j)-0 -l;3,j).

Mais il faut demontrer qu il existe une forme de ce type, dans laquelle le

coefficient du produit de a? et de la derniere lettre n est pas nul.

Or je dis que le nombre des formes du type suppose, qui ne contiennent

pas cette lettre, sera

(j;3,j-l)-(j-l;3,jf-l).
Mais (j-t?*j)

l-y-
!

tiX/-l)
et, evidemment, ( j; 3, j)

-
(j; 3, j

-
1)
= 1

;

car les partitions dont le nombre est (j; 3, j) contiendront toutes les partitions

dont le nombre est (j; 3, j 1) et en plus la partition constitute par j com

bine avec des zeros.

Cousequemment il existe un sous-invariant dont un terme sera le produit

de a2

par la derniere des lettres que Ton considere.

2 Quant aux reciprocants purs de 1 ordre j, nous avons deja demontre

qu on pent satisfaire a 1 inegalite

;*,j)-0&quot;-i;*+i,J)&amp;gt;o

en donnant a x une certaine valeur pas plus grande que j 1
; et, pour de-

montrer qu il y aura un reciprocant pur qui contient actuellement un terme
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ax
~l

multiplies par la derniere lettre, on pourrait faire precisement le meme
raisonnement que nous avons fait ci-dessus pour le cas precedent, et, puisque

(j;x&amp;gt;j)-(j- l
,
x + l

&amp;gt;j)

excede de 1 unite la valeur de (j; x, j 1)
-

(j; x + 1, ; 1), on conclura avec

certitude 1 existerice d un protomorphe pour 1 ordre j.

On peut, en general, trouver plusieurs valeurs de x qui rendent

0; x
&amp;gt; j) (j 1

&amp;gt;

x +
1&amp;gt; j) positif; parmi ces valeurs, il est commode

d adopter, comme protomorphe par excellence, une quelconque de celles

pour lesquelles la valeur de x qui satisfait a cette inegalite est un mini

mum. Quand la lettre la plus avancee est infe&quot;rieure a h, il n y en a qu un

seul qui reponde a cette definition. Ainsi, par exemple, si j 5, 1 indgalite

(5 :#)-(4 :a;+ 1) &amp;gt;1

donne pour x la valeur minimum x = 4 et, avec 1 aide de 1 aneantisseur

3aa
6 + 10tt&8c + (15oc + 1062

)
8d + (21ad + 356c) 8e + (28ae + 5Qbd + 35c2

) 8/,

on obtient le protomorphe

45a3/- 420a26e- 4&amp;gt;2a
2cd + U20ab*d- 315a6c2 - 112063

c.

Cela servira pour conduire a la connaissance de tous les reciprocants purs de

1 ordre 5, dont le nombre sera au moins egal a celui des Grundformen du

quantic binaire.

Dans une Communication qui suivra celle-ci, nous nous proposons de

donner la theorie des reciprocants doubles ou multiples dont ceux de 1 espece

pure sont precisement analogues aux invariants ou sous-invariants de systemes
de formes binaires.

La theorie des doubles reciprocants purs comprend necessairement, comme

cas particulier, I etude des formes qui determinent la position des tangentes

communes a deux courbes et les points bitangentiels d une seule.

Dans la remarque que nous avons faite, dans la premiere Note, sur le

meme sujet que la Note actuelle, a propos des reciprocants mixtes de la

forme

[(2$
- 3a2

) 8a + (2tc
-

4&amp;gt;ab)
8b + (2td

-
5ac) Sc + . . .J a,

nous avons affirme que tout reciprocant pur ou mixte peut etre exprimd en

fonction rationnelle et, de plus (quand on fait t e;gal a 1 unite), entiere de re

ciprocants de cette famille
;
nous n avons pas limite, comme nous aurions du

le faire, cette affirmation au cas de reciprocants homogenes : la proposition a

besoin d une certaine modification si on veut la rendre applicable au cas de

reciprocants rion homogenes; mais nous ne croyons pas necessaire d y insister

en ce moment. Seulement, il est bon de remarquer que 1 existence d une

Equation partielle diffe&quot;rentielle lineaire, que nous avons trouvee pour les

rdciprocants purs, suffit a etablir imm^diatement que ces reciprocants seront

necessairement, et sans exception aucune, ou homogenes ou separables en

parties homogenes, dont chacune sera elle-meme un reciprocant.
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NOTE ON SCHWARZIAN DERIVATIVES.

[Messenger of Mathematics, xv. (1886), pp. 74 76.]

READING with great pleasure and profit Mr Forsyth s masterly treatise on

Differential Equations (in my opinion the best written mathematical book

extant in the English language), it occurred to me to find an easy proof of the

fundamental and striking identity concerning Schwarzian derivatives, from

fdz\ z

which all others are immediate consequences, namely (y, x) (z,x) =
(
3~

)
(y&amp;gt;

z\
\(ixj

where one of which is, it may be observed, that (y, x) like
y&quot;

has the property
of remaining a factor of what it becomes when x and y are interchanged ;

a

persistent factor, so to say, of its altered self. I will return to this point subse

quently, my present concern is to give a natural proof of the above striking

identity ;
to do this, it will be sufficient to show that (considering y, z, x, the

two former as fixed, and the last as a variable function of a common variable)

(y, x} (z, x~)-
j

-- does not vary when x becomes x +
e&amp;lt;p (x) where e may be

\dx)

regarded as infinitesimal*. For then this must remain true by successive

accumulation when x becomes any function whatever of itself, and accordingly

making x = z we obtain (y, z} as the value of the invariable quotient as was

to be shown. Calif eS&amp;lt;#= 9, then using dashes to denote differentiation qua
x, and a parenthesis to signify the augmented value of the derivatives, we
obtain

*
It is easy to see a priori that if the theorem is true, it can only he so in virtue of (y, x)

when x receives an infinitesimal, becoming of the form

(l-26)(y, x) + \6&quot;,

as is subsequently shown to be the case in the text.

[f Cf. p. 306 below.]
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Hence (y y &quot;}

= y y
&quot; - Wy y&quot;

- 36 y y&quot;

- & y \

((y, *))
=

(! + 20) {(y, x}
- 40 (y, *)}

-
0&quot;

and ((y, x} - (z, x})
= (l- 26) [(y, x)

-
(z, x}}.

Hence &amp;gt;

-
(X

that is, the right-hand expression does not change, when y, z remaining fixed

forms of function, x passes from one form of function of the independent
variable to another

;
as was to be shown.

From what precedes, it appears that if y, z,x be regarded as functions of t

then {(y, x) (z, x}} (
-y-

)
is a constant function in the sense that it remains

unaltered, whatever function an may be of t, or which is the same thing if y
and z functions of x when expressed as functions of x (any function of x) are

written y ,
z

, then (y, x ) (/, x) is identical with (y, x} (z, x), save as to a

factor which depends only on the form of the substitution of x for x. Hence
to all intents and purposes, any function of the differences of the Schwarzian

derivatives of any system of functions of the same variable, in respect thereto,
is (in a sense comprising, but infinitely transcending the sense in which that

word is used in Algebra) a covariant of the system.

ADDENDUM. Let us for the moment call functions of x, y which either

remain unaltered or only change their sign when x and y are interchanged

self-reciprocating functions.

nif
?/ ?/

///
7/&quot;^

The first case of the kind is
, the next is

*
an(J obviously a

y
* y

1

very general one of this sort will be the function

For greater simplicity, let us call the numerator of any such function

when expanded and brought to the lowest possible common denominator, a

reciprocant, the highest index of differentiation which such reciprocant contains
its order, and the number of factors in each term its degree. Then in any
reciprocant so formed the degree is always just one unit less than the order:

but as a matter of fact the function so obtained is in general not irreducible,
so that its degree may be depressed, and it becomes a question of much
interest to form the scale of degrees of reciprocants of this sort. For the
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orders 2, 3, 4, 5, 6 the degrees in question are respectively 1, 2, 2, 3, 3.

Calling the successive derivatives of y, a, b, c, d, . .., they will be found to be

a,

ad 5bc,

2a-e- loacd - Wad2 + 3562
c,

2a2/- 2labc- Soacd + 60

where each form is obtained by operating upon the preceding one with the

operator a (b$c + cSd + d8e +...) \b (\ meaning half the weight -f the degree

of the operand), combining the result of this operation in each alternate case

with a legitimate combination of those that precede, and in that case dividing

out by a. I have proved that in this way can be obtained an infinite pro

gression of reciprocants, of which the leading terms (substituting numbers for

letters), will be alternately of the forms l\(2i+l) and l\(2i+2). Every
other reciprocant can be formed algebraically from these primordial forms, as

every seminvariant can be obtained from the primordial forms a, ac fe
2

,

a?d 3a6c + 263
,

____ The two theories run in parallel courses, but their

relationship is that which naturalists call homoplazy as distinguished from

homogeny; I propose to give further developments of this new algebraical

theory in a subsequent Note.
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ON RECIPROCANTS.

[Messenger of Mathematics, xv. (1886), pp. 88 92.]

IN a note on Invariant Derivatives in the September number of the

Messenger I have given a definition and examples of reciprocants.

If in any of the forms at the end of the postscript to the note we restore

to a, b, c, ... their values Bx y, 8x
2

y, 8x
3

y, ... any such function divided by a

certain power of 8xy will change its sign, but otherwise remain unaltered

when x and y are interchanged. The index of that power is the degree
added to half the weight and will be called the index of the reciprocant.

Any product of i of such reciprocants will be a reciprocant of the same kind

or contrary kind to those in the table (subsequent to a) according as i is odd

or even. In the latter case the interchange of x and y will leave the function

absolutely unaltered. Reciprocants which cause a change of sign will be said

to be of an odd, those which cause no change of sign of an even character.

Any linear function of reciprocants of the same weight, degree, and character

will be itself a reciprocant of that character, but reciprocants of opposite
characters cannot be combined to form a new reciprocant : those of an odd

character may be regarded as analogous to skew, those of an even character

to non-skew seminvariants
;

the rule against combining forms of opposite
characters becomes superfluous in the case of seminvariants, because those

that offer themselves for combination as having the same weight and degree
must of necessity be of like character. Any reciprocant being given there is

a simple ex post facto rule for assigning its character without any knowledge
of the mode of its genesis, namely its character is odd or even according as the

smallest number of letters other than a in any of its terms is odd or even.

Thus the character of a reciprocant whose leading term is a?e, or ab2
e, or abce

is odd
;

that of one whose leading term is abe or abf is even, as is also that

of the remarkable reciprocant bd 5c2 in which no power of a appears.

A further important distinction between the two theories* is that there

are two linear reciprocants a and b but only one linear seminvariant. As an

illustration of the combinatorial law of like character it will be seen that if

we operate upon 2ac 362 with the operator

That is of reciprocants and invariants.
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we obtain a new reciprocant

of which the character is the same as that of 6s
, namely both are odd; we may

therefore add 963 to the latter expression, and then dividing out by 2a there

results the reciprocant ad 5bc, but we cannot combine 2ac 362 with 62

because these two reciprocants are of opposite characters.

Again, remembering that a is of an even and b of an odd character, the

three reciprocants

-^64
, 5(ac-f&

2

)
2
, 3ab(ad-5bc)

are all of an even order, hence we may add them together and divide the

sum by a2
,
which gives the new reciprocant 3bd 5c2 a form not containing

the first letter a.

No seminvariant exists, nor, except the one just given bd 5c2
,
have I

been able to discover any other reciprocant in which the first letter does not

make its appearance f.

The infinite progression of odd reciprocants with the leading terms

ac, ad, a.a.e, a . a . f, a.a.a. g, a.a.a.h, ...

will easily be seen to exist by virtue of the general theorem that any reci

procant of degree, extent, and weight (say briefly of dew i, j, w) gives birth

to two others of the same character as its own, one of dew i + 1, j + 1, w + 2,

the other of dew i + 1, j + 2, w + 3.

For let |w-t-z = \,

then denoting the operator
bSa + cSb + ... by fi,

and the result of the action of H upon itself (O*)
2
,
which is in fact fl2

-f fi 2

(H 2 meaning cSa + d&j, + ...); (al \b)R will obviously be a reciprocant of

dew i+l,j + l,w + 2, and will give rise to a second reciprocant

{afl
-

(X + f) b] (afl
-

\b) R,

which is a2
(n*)

2 - (2\ + i) abtlR
- XacR + (\

2 + fX) b2

R;

the last term of this being a reciprocant of the same character as the entire

expression may be omitted, and dividing out the residue by a we obtain the

second new reciprocant

{a (H*)
2 -

(2X + ^ b - \c} R,

which will be of dew i + 1, j + 2, w + 3, as was to be shown.

It is easy to see that every reciprocant must be a rational integral

function of the forms above stated commencing with a, b, 2ac 362

(whose

dew s are alternately of the form i, 2i 1, 3i 2
; i, i 2, 3i 1) divided by

some power of a. For if any reciprocant contains only the letters a, b, ...

f Since the above went to press I have made the capital discovery that there are an infinite

number of such reciprocants, and that all those of a given weight, extent and degree may be

obtained by aid of a certain quadratico-linear partial differential equation.
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h, k, I, it may be expressed as a rational integral function of the protomorph

in which I first appears and of the letters a, b, ... k divided by a power of

a, and consequently the reciprocant may be so expressed, and continually

repeating this process of substitution it follows that the reciprocant will be a

rational integer of the protomorphs exclusively divided by a power of a*:

this of course will necessarily be found only to contain combinations of like

character; we already know the converse that the sum of all combinations of

like character of the protomorphs is a reciprocant f. If any homogeneous

reciprocant consists of portions of unlike degree (although of the same index)

it is obvious that each portion must be itself a reciprocant, for if P, P ,
P&quot; ...

be such portions, P + P + P&quot; ... must be identical with II + II 4- II&quot; + ...

when II, IT, II&quot; ... are the same functions of a, ,7 ... (that is, 8y x, Sy*x, By
3x ...)

that P, P ,
P&quot; ... are of a, b, c .... If then we make

we have A + A + A&quot; + ... identically zero.

But P, P ... being of the same index but different degrees must be of

different weights, and consequently A, A ,
... are of different weights. Hence

we must have A = 0, A = 0, &c., as was to be shown.

It follows from this that every reciprocating function whatever may be

obtained by an algebraical combination of the protomorphs, and consequently

by an algebraical combination of the forms

* The proof that every seminvariant is a rational integral function of the protomorphs is

very similar : any proposed seminvariant is by the method employed in the text shown to be at

worst a function of the protomorphs and of b
;
but the terms involving any power of b must

disappear because no identical equation can connect seminvariants with a non-seminvariant 6.

In the text we see in like manner that any given reciprocant may be reduced to the form H + K,

where H and K are protomorphic combinations of opposite character, so that one of them will

disappear.

t Another general mode of generating a class of reciprocants would be to express any function

of a, b, c, ... say tf&amp;gt;(a, b,c, ...) under the form
\f/ (a, j3, 7, ...). The product &amp;lt;f&amp;gt;(a,b,c,...)\[&amp;gt; (a, b,c,...),

or its numerator, will then obviously be a reciprocant. To take a simple example,

-
&amp;gt;dx* /dxy

(dy)

Hence, by the rule laid down, c(oc-36
2
), that is, ac2 -36ac ought to be a reciprocant, which

is right, for it is equal to (2ac
- 3fc2

)

2 - 9M divided by a multiple of a. The law that the factors

of seminvariants must be seminvariants cannot be extended to the theory of reciprocants. In

this case the factors ma.y some or none of them be reciprocants, and the others on reciprocation

exchange forms monocyclically or polycyclically with one another. I add the remark that this is

not true of pure reciprocants, that is, those in which --*- doea not appear. Every factor of a puredx

reciprocant must be itself a reciprocant.

s. iv. 17
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and that we should gain nothing in generality by operating with successive

operators of the form

~aWr), i Sz

y
2 / \y

2

where
&amp;lt;j)

1 ,
&amp;lt; 2 ,

... are arbitrary functions of y +, instead of with the simple

1
,

V

operator . Sx continually repeated.
y

h

The results of using the more general operators would only amount to

algebraical combinations of the results obtained from the simple forms

where i may take all values from zero to infinity*.

As in the case of seminvariants so also reciprocants would in extent

contain only a finite number of ground-forms ;
but furthermore for re

ciprocants limited in degree the number of ground-forms will also be

finite. Whether reciprocants which are irreducible for a given extent ever

cease to be so and become reducible when the order is increased, as is the

case with seminvariants, remains to be seenf.

In order to facilitate the verification of the results obtained and to be

obtained it may be well to express the successive derivatives of x in regard
to y in terms of those of y in regard to x, that is, of a, #,7, ... in terms of

a, b, c, ... as shown in the following short table.

a = a. or,

c = - ay + 3/3
2 a5

,

d=-a2 S + 10^7-1 5/3
3 a7

,

e = - a3
e + 15a2 S + 10a2

7
2 -

105a/3
2

7 + 105/3
4 a9

,

/= _ a*+ 21a3
/3e + 35a3

7S - 210a2
/3

2 S - 280a2
/37

2 + 1260a/3
3

7
- 945/S

5 a11
,

2 - 3780^6 - 1260a3
/37S + 3150a2

/3
3
S) a

6300a2
/3

2

7
2 -

17325a/3
4

7 + 10395 6
j

where a, b, c, d, e,f, ... represent the successive derivatives of y with respect

to x
;
and a, /3, 7, 8, e, , ... of # with respect to y.

In any subsequent paper on reciprocants in this Journal, I shall make the

absolutely necessary transliteration referred to in a preceding footnote, re

placing the present letters a, b, c, d, ... by the letters t, a, b, c, ... or possibly,

for reasons which carry great weight, by the expressions

t, 2a, 2.36, 2.3.4c, ...

* This is not true of homogeneous reciprocants.

t I have since found that this is true for reciprocants, as for seminvariants.



39.

NOTE ON CERTAIN ELEMENTARY GEOMETRICAL NOTIONS
AND DETERMINATIONS.

[Proceedings of the London Mathematical Society, xvi. (1885),

pp. 201215.]

A CURVE, as every one knows, may be regarded as a locus of points or as

an assembly of directions, every point being common to two consecutive

directions of the assembly, and every direction to two consecutive points of

the locus
;
the locus is called the envelop of the assembly (that is part of the

accepted language of geometry), and, conversely, the assembly may be called

the environment of the locus. So we may regard a surface as an assembly of

tangent planes or as a locus of points standing to each other in the relation

of envelop and environment, and extend these definitions to space of any
number of dimensions.

By a plasm, waiting a better word, we may understand a figure analogous
to a point-pair in a line, a triangle in a plane, a pyramid in space, etc.; and
an 7i-gonal plasm or n-gon will signify a plasm having n vertices and n faces

themselves (n l)-gons.

It is easy and desirable to find the general value of the content of a

regular n-gon, say abode, all whose edges we may call unity.

it is easily seen by an elementary process of integration that fi,y, B ... are

the centres of figure to the successive plasms ab, abc, abed, ..., and, making

ba=pi, c/3=p2 , dj=p3 ...,

each term in pl} pzt ps ... will be perpendicular to the one which precedes it,

so that, if Vn is the content of the plasm,

(1, 2,3...n)*Vn =:
plp2 ...pn ,

172
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Moreover, we shall have

of which the general integral is

.

in the present case, since p^ = 1, C= 0, so that

F*=
(1 .2 ... it)P2*

If a, 6, c be the angles of a fixed triangle, and A, B, C are proportional to

the distances of a variable line from a, b, c, respectively, we may denote the

line by A : B : C
;
as regards a variable point, it will presently be seen to be

advantageous to denote its proportional coordinates, not, as is rather more

usually done, by equimultiples of its distances from the three sides, but as

equimultiples of these distances multiplied by the sides of the triangle from

which they are measured*; so that, calling these coordinates a, b, c, the

imagef of the line at infinity becomes a + b + c.

Consider now the universal mixed concomitant (which it will be convenient

to call a mutuant) Aa + Bb + Cc (where a, b, c, A, B, G are used in lieu of the

more usual letters x, y, z, , 77, ); it will readily be seen that, when a, b, c vary,

and A, B, C are fixed, the mutuant images the line A:B:C, and that, when

A, B, C vary and a, b, c are fixed, the mutuant images the radiant point

a : b : c; that is to say, Aa + Bb + Cc = is true for every point in the point-

containing line A : B : C in the one case, and to every line through the radiant

point a : b : c in the other.

Supposing, then, that the two kinds of coordinates are chosen in this

manner, we see (what would not be the case if the simple distances were

taken) that a form F and its
&quot;

polar-reciprocal
&quot;

&amp;lt; image the self-same curve

referred to the self-same fundamental triangle.

These consequences would moreover continue to subsist if, calling the

distances of a line from the vertices P, Q, R, and of a point from the sides

p, q, r, we took AP :MQ: NE, \p :/j.q
: vr for the two sets of coordinates,

provided only that \AF = pM G = vNH; F, G, H being the distances of the

sides from the vertices of the fundamental triangle, in which case the line at

infinity would no longer be imaged by a + b + c. I shall, however, adhere in

what follows to the convention above laid down. 1 need hardly add that in

like manner, in space taking A : B : C : D (the distances of a plane from the

* Or rather divided by the distances of these sides from the opposite angles of the funda

mental triangle, whose coordinates thus become 1, 0, 0, 0, 1, 0, 0, 0, 1.

f If F0 is the equation to any locus or assembly, I call F the image, and such locus or

assembly the object; to a given image responds in general an absolutely definite object, but, when

the object is given, the image is only determined to a constant factor pres.
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vertices of a fundamental pyramid) as the coordinate-representation of such

plane, and a : b : c : d (the contents of the volumes which any variable point
makes with the respective faces) as the coordinate-representation of such

point, the mutuant aA+bB + cC+dD will be the image of the radiant

point a:b:c:d when the capital letters are the variables, and of the plane
A : B :C : D when the small letters are the variables, meaning of course that

Aa + Bb + Cc + Dd = will be true of every point in the plane A : B : G : D
and of every plane through the point a:b:c:d, and, as before, F and ( polar-

reciprocals to each other will image the self-same surface (referred to the

self-same fundamental pyramid) viewed as a locus or envelop on the one

hand, as an assembly or environment on the other.

If a, b, c, d be used to signify the actual as distinguished from the pro

portional coordinates of a point, a linear function of these is constant,

whereas it is a quadratic function of A, B, C, D ..., when used to signify the

actual distances of a variable line, plane, &c., from the vertices of the funda

mental plasm which is constant
;
and it is the principal object of this note to

determine the form of this quadratic function, which, as Prof. Cayley was the

first to show, may be expressed by the determinant to a matrix standing in

close relation to the well-known &quot;invertebrate symmetrical matrix,&quot; the

determinant to which represents a numerical multiple of any plasm in terms

of its edges, as, for example :

ab ac ad 1

ba . be bd 1

ca cb . cd 1

da db dc .1
1111.

where ab, ac, be... are used for brevity to signify the measure of absolute

distance between a, b, a, c, b,c ..., that is, stand for what in ordinary notation

would be denoted by (6)
2
, (ac)

2
, (6c)

2
, .... This may be quoted as the

mutual-distance matrix
;

its determinant, besides representing a numerical

multiplier of the squared content of the pyramid when equated to zero,

expresses the conditions of the four points a, b, c, d lying in a plane, the

former property being a consequence immediately deducible by strict alge
braical reasoning from the latter.

That this determinant does image the condition of the plasm to which
the points a,b,c,d... are the vertices, losing one dimension of space, may be
shown in a somewhat striking manner as follows. If for a moment we use

x
, y, z, the distances of any point in the plane of abc from be, ca, ab as

coordinates, the equation to a circle circumscribed about abc will be of the

form fyz + gzx + hxy. and, calling the sides of the triangle a, b, c respectively,
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ax + by + cz is constant. Hence, substituting for z its value in terms of x

and y, the image of the circle may be put under a form in which fb and ga
will be the coefficients of y* and x2

respectively ; but, since x and y are

proportional to the Cartesian coordinates y and x respectively, the coefficients

of x* and t/
2 must be equal. Hence f:g:h::a:b:c, and if now ax, by, cz,

instead of x, y, z, be used as the coordinates of the variable point, the image

-r- ,
or if we please ^.a^yz, that is,to the circumscribing circle becomes

&quot;Zbcyz,
where be stands as convened for (be)

2
.

Hence, if a, b, c, d be the vertices of a pyramid, ^abyz will be the image

of the circumscribing sphere, for when any coordinate t is made zero the

image becomes that of a circle; and so universally for a plasm of any number

of dimensions.

Consider the case of a circle, and suppose that

ab ac 1

ba be I

ca cb .1
111.,

vanishes
;
this means that the line x + y + z touches the circle

abxy + bcyz + cazx.

But, if x + y + z images the line at infinity, it must cut this (as it cuts any

other circle) in two distinct points, namely, the so-called circular points at

infinity. Hence x + y + z must, when the above determinant vanishes, cease

to be the line at infinity, which can only come to pass by the triangle abc

losing a dimension of space, and a, b, c coming into a straight line, in which

case x + y + z = 0, instead of being true of a particular line, is true of every

point in the plane.

Just in like manner, if

ab ac ad 1

ba . be bd 1

ca cb cd 1

da db dc . 1

1111.
vanishes, unless x + y + z + t ceases to image the plane at infinity, this plane

would touch the sphere Zabxy, that is, would cut it in a pair of straight lines,

whereas it intersects it in a circle. Consequently the plasm abed must, as

before, lose one dimension, and so in general. The content of a plasm

vanishes when the mutual-distance determinant does so, and the latter as
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well as the former may be expressed rationally in terms of ordinary Cartesian

coordinates; but the expression for the content (being linear in each set of

coordinates) is obviously indecomposable, and must therefore be a numerical

multiple of some power of the mutual-distance determinant
;
a comparison of

dimensions shows at once that this power is the square root.

As regards the numerical multiplier, when the plasm has all its edges

equal to unity (say a triangle, for example), the mutual-distance determinant

becomes 0111
1011
1101
1110

which is easily transformable into

0111
1 1

1 1

1001
of which the value is 3

;
and so in general for a regular plasm with (n + 1)

vertices; that is, in space of n dimensions the mutual-distance determinant,

say Dn , becomes ( )
n+1

(n + l), whereas the (volume)
2

, say Vn2
,
has been

n + l
Showntobe

2&quot;(1.2...nr

Hence, universally,

DB = (-)
n+1

2(1.2...w)
a Vn2

.

It may be here noticed that, if p be the perpendicular from any vertex on an

opposite face of the plasm whose content is Vn-i, we shall have

Consequently, Dn-&amp;gt;p*

=
(-)&quot;

2&quot;-
1

[1 . 2 . . . (n
-

I)}
2 F 2

n_i p
2

= (-) 2- 1

(1 . 2 ... nf Vn
* = - %Dn .

I now pass on to the leading motive of this note, namely, the determin

ation of the connection between the coordinates A, B, C ... drawn from

a, b, c

It is clear a priori that the form of the condition will be in all cases that

a homogeneous quadratic function of the distances must be constant. Thus,
for example, when there are four points, if A, B, C be assumed, we may
describe three spheres with these quantities as radii, and the fourth point
will be determined by means of one of the pairs of tangent planes drawn to

them, the particular pair depending on the relative signs attributed to
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A, B, C. Hence, if F(A, B, C, D)= oo be the general equation, each of the

quantities must enter in the second and no higher degree; moreover, since

by transporting the plane from which the distances are measured parallel to

itself, A, B, C, D will be all increased by the same quantity, F must express
a function of their differences, and consequently, since any two distances may
be interchanged, F can contain no terms of the first order in the variables, so

that F=Q must amount to the predication of a homogeneous quadratic
function of the distances being constant.

Thus, for example, in the case of three points, we have the well-known

equation
2 (ab) (A-C)(B-C)= (a&c)

2
.

Suppose now that A, B, C are taken in proportions consistent with

making
2 (a&)

2

(A -C}(B-C} = 0.

Let 2 (a&)
2 (A-C)(B-C) = P.Q, where P, Q are two linear functions of

A, B, C; then P, Q image two radiant points, each of which will have the

property that any of its rays is at an infinite distance from a, b, c, or at all

events, if it should pass through one of them, from the other two, and it is

easy to anticipate that these two points must be the circular points at

infinity. That such is the fact is obvious, because (using Cartesian co

ordinates) the perpendicular distance from any point upon x + ^l.y
contains zero in its denominator; so that the two points of the absolute may
be regarded as the centres of two points of rays, all of them infinitely distant

from the finite region.

But these two points are the intersections of the circumscribing circle

with the line at infinity, and consequently their collective equation will be

found by taking the resultant of
&quot;Sabxy, S#, ZAx, which is well known to be

the determinant of the quadratic function bordered by the coefficients of the

two linear ones. Hence the constant quadratic function in A, B, C, namely,
2a6 (A B) (A -

G), ought to be a numerical multiple of the determinant

as is the case, the value of this determinant being

The same thing may be shown in a more elementary manner as follows-

Combining
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we have acx2 + (be + ca ab) xy + bey
2 = 0,

at each point of the absolute. And, taking x^z^, x2yz zz as the coordinates

at these two points, it follows that

:: be : ca : ab : be ca + ab :
- ca ab + be : ab be + ca.

And, as the two points will be imaged by

respectively, it follows that their collective image will be

2{bcA
2 + (bc-ab-ac)BC},

which is easily seen to be identical with

S6c (A -B}(A- C).

The universal algebraical theorem upon which the first method of proof

depends is the well-known one that, if Q is a quadratic function and

Llt LS, ... Li i linear functions of j variables, and if Q (where j is not less

than i + 1) is what Q becomes when i of its variables are expressed in terms

of the rest, then the necessary and sufficient condition of the discriminant of

every such Q vanishing is that the determinant to Q bordered by the coeffi

cients of the i linear functions shall vanish. When j is equal to i + 1, the

theorem shows that the resultant of the quadratic and its i attendant linear

functions will be the bordered determinant in question. In the above

example we had j
= 3, i = 2.

Let us now proceed to apply a similar principle to the case of four points

a, b, c, d in space.

If we take the case x* + y
2 + z2 + t

2 = 0, any tangent plane to it at x, y ,

z, t will be

x x + y y + z z + ft,

and, as x 2 + y
2 + z 2 + t

2 = 0,

it follows that every tangent plane will be at infinite distance from any

point external to it; and, as this is true wherever the centre of the cone be

placed, and all the cones so obtained have the &quot;circle at infinity&quot;
in common,

it follows that every tangent plane to the circle at infinity is infinitely

distant from any external point in the finite region, the infinitely-infinite

system of planes thus obtained one may regard, if one pleases, as consisting

of sheaves of planes whose axes form the environment to the circle at infinity,

and will be the correlative to the infinitely-infinite system of points in the

plane at infinity, which are infinitely distant from all external planes in the

finite region. We see, then, that the coordinates to each such plane must

satisfy the condition that, on making 2#=0 and 2Ax = 0, and expressing

any two of the variables x, y, z, t in terms of the two others, the discriminan t
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of the form then assumed by ^abxy must vanish, and consequently, as before,

the mutual-distance determinant to the points a, b, c, d, bordered with a row

and column of units and a row and column consisting of the letters A, B, C, D,

will represent to a numerical factor pres the constant quadratic function of

distances, that is, this function will be

and obviously a similar algebraical conclusion will continue to apply, what

ever may be the number of points n in a space of n 1 dimensions.

As regards the value of the constant, in any case, that may be obtained

by taking a face of the plasm as the term (line, plane, etc.) from which the

distances A, B, C ..., are measured; that is, we may make B = 0, (7=0,
D = 0..., provided we make A equal to the perpendicular from a on the

opposite face. The value of the bordered determinant then becomes the

negative of the squared perpendicular from a on bed ... multiplied by the

mutual-distance determinant to bed...; that is, by virtue of what has

previously been shown, will be half of the mutual-distance determinant of

abed

Hence the complete relation between A, B, C, D may be exhibited by

making
= 0,

and similarly for any number of points.

Professor Cayley has obtained the same result by a more direct but not

more instructive process, as follows. Taking, by way of example, three points,

A + k, B+ k, C + k, (where k is infinite,) may be regarded as the distances of

a, b, c from a fourth point at an infinite distance, and accordingly we may
write

ab ac (A+kV 1 = 0.

beba

ca cb (C+kf
(C
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For the gnomon bordering the square formed by th.e small letters and dots,

we may substitute

2kA + A* 2kB + B* 2kC + C* - 2k2

1 1 1 1

without altering the value of the determinant, which therefore, remembering
that k is infinite, is in a ratio of equality to (2k)

2

multiplied into the deter

minant

This last determinant therefore must vanish, agreeing with what has been

shown above by a more purely geometrical method*. I will now proceed to

develop this determinant deprived of its constant term, expressing it as a

function of the differences of the capital letters.

It is obvious that it may be expressed as a sum of terms of which each

variable part will be of one or the other of these three forms

(A-B)2
, (A-B)(A-C), (A-B)(C-D);

and accordingly we may distribute the totality of the terms of the constant

function of difference into three families depending on the form of the

variable argument

In general, if we consider any invertebrate symmetrical determinant

expressed by the umbral notation

aa ab ac ... al

ba bb be ... bl

la Ib Ic ... II

* As a corollary, we may infer, from the vanishing of this determinant, that, using the

notation previously employed,

and consequently that D
rt
= -

(2)
n
(l . 2 ... n)

2 Fn2 ,

and that thus the content of a regular plasm with unit edges and (n + 1) vertices is

i
3 L _5

a (1 7T. :7^
n J)

16 72 9T 2

for triangle, pyramid, plu-pyramid, etc.
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where aa = bb = cc = II . . . = and pq = qp, we have this simple rule of pro

ceeding :

Divide the letters a ... I in every possible manner into cyclical sets, each

set containing at least two letters.

Any cycle a^ ... af is to be interpreted as meaning

&! a2 . a 2 a3 . . . a^a; . ai al ,

which, by virtue of the supposed condition ab = ba, will be the same in

whichever direction the cycle is read, the effect of the inversion of the cycle

being merely to give the same product over again, written under the form

The cycle of two letters al a.2 must be interpreted to mean (a-^a^f. If now
C1C2 ... Gi are cycles of two letters each, and ^%2 %j cycles of three or

more letters, the total value of the determinant will be

^(-)n
+i+J^ Cl C,...CiXlX2 ... Xj .

If, the principal diagonal terms remaining zero, the other terms were

general, then the expression of the value of the determinant, calling the

cycles Cj(72 ... (?, and making no distinction between the case of their being

binary or super-binary, would be 2 ( )
n+v

(7j C2 . . . Gv ; only it would have to

be understood that each cycle of two letters, as (ab), would mean (ab)
2
,
but a

cycle of three or more letters, as (abc), would mean ab . be . ca + ac . cb . ba.

This being premised, it is easy to deduce the following rule for the deter

mination of the three different families of terms belonging to the constant

determinant of distances, which, to avoid prolixity, must be left to the reader

to verify.

FAMILY I. Omitting any two letters, and forming all possible cyclical

products with the remaining (n 2) letters, if C1 C2 ... Cv be any set thereof,

and v the number of them containing more than two letters, the general
term will be 22 (-)+*2

/ Cl . C, ... Gv (A - B}\ a, b being the two letters

which do not occur in the cycles C
1 G2 ...CV .

FAMILY II. Omitting any one letter, and forming with the remaining
n 1 letters, in every possible way, a chain ^ containing two or more letters,

and cycles C\C2 ... Cv , then, supposing the chain to be bed ... kl, and under

standing by (%) the product be .cd ... kl, the general term will be

2% (_ )+, 2 &amp;gt; +i C&...C, (x) (A -B)(A-L),
a being the letter which does not appear in the chain or any of the cycles,

and v meaning as before the number of the cycles which contain at least

three elements.

FAMILY III. Form all the letters in every possible way into two chains

(each containing two or more letters) x&amp;gt; %, and into cycles Clt C2 ,
... Gv ;
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then, supposing the initial and final letters of ^ to be a, h, and of % to be

k, I, the general term of this family will be

22 (-)+* 2* +&amp;gt; W....C, (X) (X ) {(A -K)(H-l) + (A- L) (H - K)}.

I subjoin in the following table the types of the coefficients of the several

families for all the values of n from 2 up to 7
;
the vacant cycle ( ) of course

means unity, and a cycle (ab) means (ab)
2

;
that is, the fourth power of the

length ab.

Every cycle enclosed in a parenthesis of three or more letters, will be

understood to be affected with a coefficient 2, and for greater brevity the

variable part of each term is left to be supplied. A round parenthesis indi

cates a cycle, a square parenthesis a chain.

Number Name
of Types of

Letters Family

2 ( ) 1st

3 (be) 2nd

4 -(cd) 1st

2 [bed] 2nd

2 [ab] . [cd] 3rd

5 (cde) 1st

- 2 [bcde] : 2 (be) [de] 2nd
- 2 [ab] [cde] 3rd

6 -
(cdef) : (cd) (ef) 1st

- 2 (bed) [ef] :
- 2 (be) [def] :

- 2 [bcdef] 2nd
- 2 (ab) [cd] [ef] : [abc] [def] : [ab] [cdef] 3rd

7 (cdefg)-(cd)(efg) 1st

2 (bcde) [fg] : 2 (bed) [efg] :
- 2 (be) (de) [fg] 2 (be) [defg] :

- 2 [bcdefg] 2nd

2 (a&c) [de] [fg] : 2 (a&) [cd] [efg] :
- 2 [abc] [defg] :

- 2 [abcdefg] 3rd

Thus, for example, the constant function of distances for three points in a

plane is 226c (A B) (A C) ;
for four points in space is

-Zed (A -B)2 + 2Zbc.cd(A -B)(A-D)
+ 22a& . cd {(A -C)(B-D) + (A- D) (B - C)} ;

for five points in hyper-space is

22 (cd . de . ec) (A - B)
2 - 22 (be . cd . de) (A -B)(A- E)

+ 2(bc)*(de)(A-D)(B-E)
- 22a6 .cd.de.ec {(A -C)(B-E) + (A- E) (B - C)}.

The part of the constant function of distances for seven points belonging to

the 2nd family of terms will be

426c .cd.de.eb .fg (A -B)(A-E) + 426c . cd . db . ef.fg (A -E)(A- 0)
- 2 (be? (deffg (A-F)(A-G)+2 (be)* (de . ef.fg) (A -D)(A- G)

-2bc.cd.de.ff.fg(A-B)(A-G).
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The number of types in each family for n points is easily expressible by a

generating function.

Obviously in the 1st family this number is the number of ways of

resolving n into parts none less than 2
;
that is, it is the coefficient of xn~2 in

1

1 C
2

. 1 iC
3

. 1 & ...&quot;

In the 2nd family, it is the sum of the number of ways of decomposing
?i 3, n 4, ... into parts none less than 2; that is, it is the coefficient of
/viH 3 i Y\
*JU 111

-^ ,
that is, in -

In the 3rd family, if the number of ways of dividing r into two parts,

neither of them less than 2, is called (r), and of dividing (n r) into any
number of parts, none less than 2, is called [n r], the number of types is

2 (r) [n r] ;
that is, it is the coefficient of xn~* in

-
,
that is, in -

Hence the total number of types in all three families combined will be

the coefficient of xn
~2 in

(1
-

x) (1
-

x&amp;gt;)
+ x (1

-Q + of 1

l-a.l-a-.l-a-...
1S m

l- x .(\- x^. l-a-.l -**...

Consequently, the indefinite partitions of 0, 1, 2, 3, 4, 5, 6, 7, ... being
1, 1, 2, 3, 5, 7, 11, 15, ..., the series for the type-number will be found by
summing all the terms in the odd and even places successively. We thus

obtain the series 1, 1, 3, 4, 8, 11, 39, 26, ... for the number of types in the

constant-distance function for 2, 3, 4, 5, 6, 7, 8, 9, ... points respectively.

It may be worth while to exhibit the rule for the formation of the

constant function of distances under a slightly different aspect.

As before, by the reading of any cycle, understand the product of its

successive duads affected with the multiplier 1 or 2, according as the

number of letters in the cycle is two or more than two.

By a modified reading of a cycle, understand what the reading becomes
on substituting for any two duads pq, rs the product (P - Q)(R- S), as

for instance (A - BQC - D) in lieu of ab . cd, (A - B\B - C) in lieu of

ab . be, and (which can only happen in the case of a cycle of two letters),

(A -B)(B-A\ that is, -(A- B)* in lieu of ab . ba.

Then, to find the constant function of distances to any given set of letters,

we must begin with distributing the letters in every possible way into cycles

containing between them two or more letters. Each such combination of

cycles we may call a distribution.
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In each distribution the cycle is to be taken (each in its turn), and the

sum of its modified readings is to be multiplied by the product of the read

ings of the remaining cycles, if there are any. The sum of these sums (or

the single sum, if there is but one cycle) is the portion of the quadratic
function sought, due to the particular distribution dealt with

;
and the sum

of these double sums, taken for each distribution in succession, is the total

value of the function, and will be equal exactly to its representative deter

minant when the number of letters is odd, and to the same with its sign

changed when that number is even.

As an example for five letters a, b, c, d, e, there will be ten distributions

of the form (ab) (cde), and twelve distributions of the form (abode).

From any one of the first ten distributions, as (ab) (cde), by modifying
first (ab) and then (cde), we obtain

(1) 2(cd.de.ec)(A-B)(B-A),

(2) 2 (a&)
2

{ce (C-D)(D-E) + dc (D -E)(E-C) + ed (E -C)(C- D)}.

And from a distribution of the form (abcde) we obtain, by operating on con

secutive duads,

5 terms of the form 2 {cd . de . ea (A B)(B C)},

and, by operating on non-consecutive duads,

5 terms of the form - 2 [be .de.ea(A- B) (C - D)} *.

The sum of all the sums of terms due to the twenty-two distributions is the

constant function of distances for the five given letters.

In the case of six letters the distributions into cycles will be of four kinds,

corresponding to the partitions 6; 4, 2; 3, 3; 2, 2, 2.

The first kind will contain two types of the 3rd family and one of the 2nd

family ;
the second kind will contain one type of each of the three families,

and the third and fourth kinds single types of the 2nd and 1st families

respectively, thus giving eight distinct types of terms in all, as should be the

case according to the rule.

*
It will be observed that the distribution (acbde) will give a term

-2{c&. de.ea(A-C)(B-D)},
in which the literal part cb.de. ea is equal to the literal part be . de .fa in the term above

expressed. This is how it comes to pass that the terms of the 3rd family may he grouped in

pairs, as stated in the prior mode of arranging the result according to families instead of

according to cycles.



40.

ON THE TRINOMIAL UNILATERAL QUADRATIC EQUATION IN

MATRICES OF THE SECOND ORDER.

[Quarterly Journal of Mathematics, xx. (1885), pp. 305 312.]

IN the May number [p. 225 above] of the present year of the London

and Edinburgh Philosophical Magazine (disfigured by numerous errors or

inaccuracies) I investigated the number of the solutions of an equation in

quaternions or matrices of the second order, belonging to what I term the

unilateral class, meaning one in which the coefficients of any actual power
of the unknown quantity lie on the same side of it

;
this number for the

Jerrardian Trinomial form I proved strictly is 2i2
i (i being the degree

of the equation) and with evidence little short of moral certainty i
3

i
z + i*

in the general case where none of the terms are wantingf.

But it must be well borne in mind that these numbers only apply when
the coefficients are left general, and that for special relations between them
some or all of the roots may become either ideal or indeterminate, or some

the one and some the other. In all cases of equations in matrices one

principal feature of the investigation is, or should be, to determine the

equation of condition between the coefficients, in order that the solution

may lose or retain its normal form
;

if we wish to avoid being compelled
to enter upon a complicated consideration of exceptions piled upon ex

ceptions, it is necessary to presuppose a certain criterion function to be

other than zero
;
otherwise it is like the opening of Pandora s box, letting

loose an almost incalculable train of vexatious inquiries scarcely worth the

trouble they give to answer correctly.

* This article was written and sent to the press many months ago. I have since shown that

the number of roots of a general unilateral equation of degree i in matrices of the order w is the

number of combinations of iu things taken w and w together, and consequently for the case of

quaternions is 2i2 -i for the general and not merely for the Jerrardian form. See [above,

pp. 197, 233. Also] Nature, Nov. 13, 1884.

f I made the assumption that the required number is an analytical function of w.
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Take as an instance the subject of monothetic equations. I have defined

a monothetic equation to be one in which all the coefficients are functions of

a single matrix, which may be called the base. In such an equation of the

degree i and of the order &&amp;gt; in the matrices, we may suppose the unknown

quantity to be a function of the base, and then the general formula for

expressing a function of a matrix as a rational and integral function of the

matrix with the aid of its latent roots, shows that i
w and no more of such

roots exist. But this in no manner precludes the possibility of the existence

of other roots which are not functions of the base. Thus, for example, in the very

simple case of the equation a? + px = 0, where x and p are quaternions or

matrices of the second order, I have shown in the Comptes Rendus [pp, 174,

179 above] that besides the four determinate ones, all of which (0 included)

may be regarded as functions of p, there are two other indeterminate ones,

each one containing an arbitrary constant, and neither of them (to use

quaternion language) coplanar with the base. Here there is a sort of rever

sion to the normal case of 3 pairs of roots to an unilateral quadratic, with

the modification of two of them having become indeterminate. It becomes

then of importance to fix accurately the condition of this normal state of

things ceasing to exist. Being intent on the Denumeration theory of the

roots in the general quadratic, I did not in the paper cited do this explicitly
for the unilateral quadratic, although I gave there my own form of solution.

Moreover, there are other features of much interest belonging to the

question, which, for the same reason, I omitted to notice. These omissions

and shortcomings it is the object of this present article to supply.

Starting with the form x2

2px + q
= 0, and for convenience of com

parison with Hamilton s formulas treating p, q indifferently as matrices or as

quaternions, and forming the equation a? 2Bx + D =
0, where B, D are

scalars to be determined, so that B = Sx and D = Tx\ we shall have

2x = (p-B}-*(q-D).
If now we understand by b, c, d, e,f

Sp, Sq, Tp*, 8(Vp Vq), Tq* respectively,

by means of the general formula

TTr*.(7r-* X y&amp;gt;

[remembering that

* This formula, which I have not met with in Treatises on Quaternions, is a particular case

only of the general Theorem in Matrices, that if

is the determinant to (XL + /*!/), where L and M are two matrices of the order w and X and
two ordinary quantities, then

A (L-iMr - B (L-iMf
- 1

... + (- )&quot;L
= 0.

8. IV. lg
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and S [V(p - B) V(q - D)} = e-bD-cB+BD],
we shall obtain [see p. 188 above]

4 (d
- 2bB + B-) x* -4(e-bD-cB + BD) x + (/ - 2cD + D2

)
= 0.

Hence, writing B b = u, D c = v,

d-b- = x, e bc = /3, fc~ = r

y,

and comparing with each other the two quadratic equations in oc, we may
write

uz + a. = X, uv + /3
= 2X (u + b), v2 + y = 4X (v + c).

Eliminating v from the latter two equations there results

-
(2Xti + 2&X -

/3&amp;gt;
+ 4X (2Xw + 2&X - /3) M

-
(7
- 4cX) u

2 =
0,

and finally writing X a for u2
,
we obtain

(4X
2 + 4cX - 7) (X

-
a)
-

(2feX
-

/3)
2 = 0.

There are thus 3 pairs of roots, for to each of the three values of X corre

spond two values of u, namely

(X
- d + brf,

and to each value of X and u one value of v, namely

26X + be - e

U

We have also x = % {(p b -u}~
l

(q
-

D}},

consequently, since p
2

2bp + d = 0,

_ (p-b+u)(q c-v) _ _ (p-b+u)(q-c-v)
2(&

2-d-w2

)
2X

Thus then we see that a; can only cease to have 6 determinate values

when X = 0, and consequently the Criterion of Normality is the last term in

the equation to X.

This equation, written out at length, is

4X^ + 4 (c
_ &2 _ a ) ^ + (- 4ca + 46/3

-
7) X + ay - /3-

= 0,

that is, 4X3 + 4 (c
-

d) X
2 + (- 4cd + 4fee -/ + c

2

) X + (d - 62

) (/- c
2

)
-

(e
-

be)
2
.

Hence the Criterion in question is (d
- b2

) (f
- c

2

)
-

(e
-

be)
2 or

df-c
2d-bzf-e2 + 2bce, which is the discriminant to the quadratic form

X2 + 26Xi/ + 2c/ii/ + dp
2 + 2epv + fv

2

;

this, as I have elsewhere shown, is the Criterion of the matrices p, q* being in

involution^, that is, of a linear equation existing between the matrices I, p, q,

pq; or ifp, q are regarded as quaternions, it is the condition of the square of

* When p, q are regarded as matrices, then

p*-2bp + d = 0, q
2 -2cq+f=Q, | (pq + qp)

-
bq

-

where X2 + 21&amp;gt;\v + Ic^v + dp? + 2e/j.v +fv
2

is the determinant to

[t Above p. 116.]
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the sine of the angle between the vectors ofp and q vanishing; a condition

which of course does riot imply the coincidence of the vectors unless accom

panied by the futile limitation of such vectors being real.

It admits of easy demonstration by virtue of the foregoing that in the

case of the more general equation

px
1 + qx + r = 0,

the Criterion of Normality will be the discriminant of the ternary quadratic,

which is the determinant of

pu + qv + rw
;

this seems to me a very remarkable and noteworthy theorem. When this

Criterion does not vanish, the quadratic equation above written must have

3 pairs of determinate roots.

Why they go in pairs and can be found by solving only a cubic instead of

a sextic is best seen a priori by reverting to the original form x2

2px + q
= 0.

It follows from the nature of the process for finding B and D that they

will be the same for that equation as for the equation y- 2yp + q = 0.

But on writing x + y = 2p these two equations pass into one another.

Hence each value of B, say j3j, will be associated with another value, say

B
,
where B

l + B = 26*, that is to say, if ul} namely B b is one value of u,

then b B, that is, u
t
will be another value of u, so that the equation in i?

ought to be (as it has been shown to be) a cubic.

It might for a moment be supposed that A, = a = d 62 would lead to a

breach of normality on account of the equation v 2X = -
,
where

tt
a = 0.

This, however, is not the case. For the equation

y2 + j = 4X (V + C)

becomes, when \ = a,

v2 - 4 (d
- b 2

) v + / - c
2 - 4cd + 462

c = 0,

so that v remains finite ; consequently 2b\ + bc e, that is, 2bd 26 :! + be e,

must vanish when X = d b-, and v 2\ assumes the form -
. Obviously then

in this case, to the one value u = will be associated the two values of v, say
vl and v.2 , given by the above quadratic, and to X = a will still correspond two

values of (u, v), namely (0, v^, (0, v2) ; where, ideally speaking, the two zeros

may be regarded as the same infinitesimal affected with opposite signs.

* In quaternion phrase, if x + y = 2p, Sx + Sy = 2Sp.

It should be observed, in order to understand what follows in the text, that b-B
l
=B -b,

and that the values of B must obviously be the same in the equation x- - 2px -\- q as in the

equation x2 - 2xp + q 0.

182
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The equation in \ may be made to undergo a useful linear transformation.

Let \ =
fji + a, so that /x

= u2
.

Then

^&quot;{4^ + (8a + 4c) /* + 4a2 + 4coc 7} (26/u, + 26a /3)
2 =

0,

that is
4/u,

3 + (4 (c + 2d) - 1262

} /z
2 + {(c + 2d)

2 - 8 (c + 2d) 62

+ 126* + 46e - /} fjL

-
{b (c + 2cZ)

- 263 -
e}

2 =
0,

where it is noticeable that the number of parameters is reduced from 5 to 4,

c and d only appearing together in the linear combination c + 2d. This is

tantamount to the form obtained by Hamilton.

Let us make another linear transformation suggested by the preceding
remark. Write c + 2d = g, and

fj,
b 2 = y = \ d, the equation becomes

But obviously, notwithstanding this reduction of the parameters, A, itself

is the most natural quantity to employ as the base of the solution, or, so to

say, as the independent variable, and this admits of being determined by an

equation of extraordinary simplicity.

For, let / be the discriminant of

det. (\ + fjtp + vq)
= I = df + 2bce - c~d - b2f - e2 .

Then it will be seen by actual inspection that the equation found for \
takes the following form

that is

d d

dc d.dj^ 2V &amp;lt;fc d.dj*
r
lT273V dc~d^d

(the terms in the exponential function subsequent to the fourth term adding

nothing to the value of the series).

If in the equation x2

2px + q
=

0, p and q be regarded as quaternions,
then \ = Sa? + Ip

2 -
(Sp)

2
, c = Sq, d = Ip

2
,
and / = (pq

-
qp)

2
,
which is a

scalar quantity, and is to be regarded as an explicit function of Sp, Sq ; Tp
2
,

S(Vp Vq), T(f ;
it is in fact the discriminant of the form

an identity unknown I believe to the geometrical quaternionists.

[As an example of it, let p = i, q =j, then

IP)
2 = 1 = the discriminant of X2 - Y 2 - Z2

.~\

With these definitions e
x

(
25c~ 5

&amp;lt;*) / becomes identically zero.



40] Equation in Matrices of the Second Order 277

The equation x* 2px + g
= having six roots it is natural to inquire as

to the value of their sum. This may be readily found as follows. We have

found

_ (p b + u) (q c v)

2\

Also, if x + x = 2p,

x 2 - 2xp + q
= 0,

and obviously 2# = 2# .

Hence fa- -I (_P^ b + u)(q
- c - v)

_

and

3
Therefore Sa? = 6p 2 5

= 6p
- 37*2

Â,

where the sign of /* must be so taken that it shall be equal to \ (pq

So again 2#2 = 2p^x Qq

Thus the mean value of each root is e in excess, and that of each square

root ep in excess, of what these means would be if p and q were nominal

quantities, e denoting (2SC
- Sd) I^p. Of course ^.x1

may be found by the

formula of derivation

In conclusion it may be observed in regard to the equation x* 2px + q = 0,

(since in writing ac + x1
=

2p, we have x^ 2x
tp + q = 0) it follows that (what

ever be the order of the quantities p and q) the roots of either equation must

be associated in pairs; because, if the identical equation to p is p a)bp
a~1+ ...

and to x is x&quot; coBx&quot;&quot;
1 + ..., the equation for finding B must be of the form

P.S. Since the above was sent to press I have discovered the general

solution of the unilateral equation of any degree in matrices of any order
;

see the Comptes Rendiis of the Institute for Oct. 20, 1884 [pp. 197, 233

above], and Nature for Nov. 13, 1884*.

[* This paper contains the Theorem &quot;

Every latent root of every root of a given unilateral

function in matrices of any order, is an algebraical root of the determinant of that function

taken as if the unknown were an ordinary quantity, and conversely every algebraical root of the

determinant so taken is a latent root of one of the roots of the given function.&quot;]



41.

INAUGURAL LECTURE AT OXFORD

12 December 1885.

ON THE METHOD OF RECIPROCANTS AS CONTAINING AN
EXHAUSTIVE THEORY OF THE SINGULARITIES OF CURVES*.

[Nature, xxxm. (1886), pp. 222231.]

IT is now two years and seven days since a message by the Atlantic cable

containing the single word &quot;

Elected
&quot;

reached me in Baltimore informing me
that I had been appointed Savilian Professor of Geometry in Oxford, so that

for three weeks I was in the unique position of filling the post and drawing
the pay of Professor of Mathematics in each of two Universities : one, the

oldest and most renowned, the other an infant Hercules the most active

and prolific in the world, and which realises what only existed as a dream in

the mind of Bacon the House of Solomon in the New Atlantis.

To Johns Hopkins, who endowed the latter, and in conjunction with it a

great Hospital and Medical School, between which he divided a vast fortune

accumulated during a lifetime of integrity and public usefulness, I might
address the words familiarly applied to one dear to all Wykehamists :

&quot;Qui condis Iseva, condis collegia dextra,

Nemo tuarum unam vicit utraque manii.&quot;

The chair which I have the honour to occupy in this University is made
illustrious by the names and labours of its munificent and enlightened founder,
Sir Henry Saville

;
of Thomas Briggs, the second inventor of logarithms ;

of

Dr Wallis, who. like Leibnitz, drove three abreast to the temple of fame

being eminent as a theologian, and as a philologer, in addition to being illus

trious as the discoverer of the theorem connected with the quadrature of the

circle named after him, with which every schoolboy is supposed to be familiar,

and as the author of the Arithmetics Infinitorum, the precursor of Newton s

Fluocions
;

of Edmund Halley, the trusted friend and counsellor of Newton,
whose work marks an epoch in the history of astronomy, the reviver of the

study of Greek geometry and discoverer of the proper motions of the so-

[* The tables referred to in the text are given pp. 301, 302 below.]
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called fixed stars
;
and by one in later times not unworthy to be mentioned

in connection with these great names, my immediate predecessor, the mere

allusion to whom will, I know, send a sympathetic thrill through the hearts

of all here present, to whom he was no less endeared by his lovable nature

than an object of admiration for his vast and varied intellectual acquirements,

whose untimely removal, at the very moment when his fame was beginning

to culminate, cannot but be regarded as a loss, not only to his friends and to

the University for which he laboured so strenuously, but to science and the

whole world of letters.

As I have mentioned, the first to occupy this chair was that remarkable

man Thomas Briggs, concerning whose relation to the great Napier of

Merchiston, the fertile nursery of heroes of the pen and the sword, an

anecdote, taken from the Life of Lilly, the astrologer, has lately fallen

under my eyes, which, with your permission,.! will venture to repeat:

&quot;

I will acquaint you (says Lilly) with one memorable story related unto

me by John Marr, an excellent mathematician and geometrician, whom I

conceive you remember. He was servant to King James and Charles the

First. At first, when the lord Napier, or Marchiston, made public his

logarithms, Mr Briggs, then reader of the astronomy lectures at Gresham

College, in London, was so surprised with admiration of them, that he could

have no quietness in himself until he had seen that noble person the lord

Marchiston, whose only invention they were : he acquaints John Marr here

with, who went into Scotland before Mr Briggs, purposely to be there when

those two so learned persons should meet. Mr Briggs appoints a certain day
when to meet at Edinburgh; but failing thereof, the lord Napier was doubtful

he would not come. It happened one day as John Marr and the lord Napier
were speaking of Mr Briggs : Ah John (said Marchiston), Mr Briggs will not

now come. At the very moment one knocks at the gate; John Marr hastens

down, and it proved Mr Briggs to his great contentment. He brings

Mr Briggs up into my lord s chamber, where almost one quarter of an hour

was spent, each beholding other almost with admiration before one word was

spoke. At last Mr Briggs began : My lord, I have undertaken this long

journey purposely to see your person, and to know by what engine of

wit or ingenuity you came first to think of this most excellent help unto

astronomy, namely, the logarithms ; but, my lord, being by you found out,

/ wonder nobody else found it out before, when now known it is so easy.

He was nobly entertained by the lord Napier ;
and every summer after

that, during the lord s being alive, this venerable man Mr Briggs went

purposely into Scotland to visit him*.&quot;

* A very similar story is told of the meeting of Leopardi and Niebuhr in Home. What Briggs

said of logarithms may be said almost in the same words of the subject of this lecture: &quot; This

most excellent help to geometry which, being found out, one wonders nobody else found it out
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Some apology may be needed, and many valid reasons might be assigned,
for the departure, in my case, from the usual course, which is that every

professor on his appointment should deliver an inaugural lecture before

commencing his regular work of teaching in the University. I hope that my
remissness, in this respect, may be condoned if it shall eventually be recog
nised that I have waited, before addressing a public audience, until I felt

prompted to do so by the spirit within me craving to find utterance, and by
the consciousness of having something of real and more than ordinary weight
to impart, so that those who are qualified by a moderate amount of mathe
matical culture to comprehend the drift of my discourse, may go away with

the satisfactory feeling that their mental vision has been extended and their

eyes opened, like my own, to the perception of a world of intellectual beauty,
of whose existence they were previously unaware.

This is not the first occasion on which I have appeared before a general
mathematical audience, as the messenger of good tidings, to announce some

important discovery. In the year 1859 I gave a course of seven or eight
lectures at King s College, London, at each of which I was honoured by the

attendance of my lamented predecessor, on the subject of &quot; The Partitions of

Numbers and the Solution of Simultaneous Equations in
Integers,&quot;

in which

it fell to my lot to show how the difficulties might be overcome which had

previously baffled the efforts of mathematicians, and especially of one bearing
no less venerable a name than that of Leonard Euler, and also laid the basis

of a method which has since been carried out to a much greater extent in my
&quot;Constructive Theory of Partitions,&quot; published in the American Journal of

Mathematics, in writing which I received much valuable co-operation and

material contributions from many of my own pupils in the Johns Hopkins

University*. Several years later, in the same place, I delivered a lecture on

the well-known theorem of Newton, which fills a chapter in the Arithmetica

Universalis, where it was stated without proof, and of which many celebrated

mathematicians, including again the- name of Euler, had sought for a proof in

vain. In that lecture I supplied the missing demonstration, and owed my
success, I believe, chiefly to merging the theorem to be proved, in one of

before
; when, now known, it is so easy.&quot;

I quite entered into Briggs s feelings at his interview

with Napier when I recently paid a visit to Poincare in his airy perch in the Eue Gay-Lussac in

Paris (will our grandchildren live to see an Alexander Williamson Street in the north-west

quarter of London, or an Arthur Cayley Court in Lincoln s Inn, where he once abode?). In

the presence of that mighty reservoir of pent-up intellectual force my tongue at first refused its

office, my eyes wandered, and it was not until I had taken some time (it may be two or three

minutes) to peruse and absorb as it were the idea of his external youthful lineaments that I found

myself in a condition to speak.
* In one of those lectures, two hundred copies of the notes for which were printed off and

distributed among my auditors, I founded and developed to a considerable extent the subject

since rediscovered by M. Halphen under the name of the Theory of Aspects.
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greater scope and generality. In mathematical research, reversing the axiom

of Euclid, and converting the proposition of Hesiod, it is a continual matter

of experience, as I have found myself over and over again, that the whole is

less than its part. On a later occasion, taking my stand on the wonderful

discovery of Peaucellier, in which he had realised that exact parallel motion

which James Watt had believed to be impossible, and exhausted himself in

contrivances to find an imperfect substitute for, in the steam-engine, I think

I may venture to say that I brought into being a new branch of mechanico-

geometrical science, which has been, since then, carried to a much higher

point by the brilliant inventions of Messrs Kempe and Hart. I remember

that my late lamented friend, the Lord Almoner s Reader of Arabic in this

University, subsequently editor of the Times, Mr Chenery, who was present
on that occasion in an unofficial capacity, remarked to me after the lecture,

which was delivered before a crowded auditory at the Royal Institution, that

when they saw two suspended opposite Peaucellier cells, coupled toe-and-toe

together, swing into motion, which would have been impossible had not the

two connected moving points each described an accurate straight line,
&quot; the

house rose at
you.&quot; (The lecture merely illustrated experimentally two or

three simple propositions of Euclid, Book III.)

The matter that I have to bring before your notice this afternoon is one

far bigger and greater, and of infinitely more importance to the progress of

mathematical science, than any of those to which I have just referred. No

subject during the last thirty years has more occupied the minds of mathe

maticians, or lent itself to a greater variety of applications, than the great

theory of Invariants. The theory I am about to expound, or whose birth I

am about to announce, stands to this in the relation not of a younger sister,

but of a brother, who, though of later birth, on the principle that the

masculine is more worthy than the feminine, or at all events, according
to the regulations of the Salic law, is entitled to take precedence over his

elder sister, and exercise supreme sway over their united realms. Metaphor

apart, I do not hesitate to say that this theory, minor natu potestate major,

infinitely transcends in the extent of its subject-matter, and in the range of

its applications, the allied theory to which it stands in so close a relation.

The very same letters of the alphabet which may be employed in the two

theories, in the one may be compared to the dried seeds in a botanical

cabinet, in the other to buds on the living branch ready to burst out into

blossom, flower and fruit, and in their turn supply fresh seed for the main

tenance of a continually self-perpetuating cycle of living forms. In order

that I may not be considered to have lost myself in the clouds in making
such a statement, let me so far anticipate what I shall have to say on the

meaning of Reciprocants and their relation to the ordinary Invariantive or

Covariantive forms by taking an instance which happens to be common
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(or at least, by a slight geometrical adjustment, may be made so) to the

two theories. I ask you to compare the form

as it is read in the light of the one and in that of the other. In the one case

the a, b, c, d stand for the coefficients of a so-called Binary Quantic, and its

evanescence serves to express some particular relation between three points

lying in a right line. In the other case the letters are interpreted* to mean
the successive differential derivatives of the 2nd, 3rd, 4th, 5th orders of

one Cartesian co-ordinate of a curve in respect to the other. The equation

expressing this evanescence is capable of being integrated, and this integral
will serve to denote a relation between the two co-ordinates which furnishes

the necessary and sufficient condition in order that the point of the curve of

any or no specified order (for it may be transcendental) to which the co

ordinates may refer, may admit of having, at the point where the condition

is satisfied, a contact with a conic of a higher order than the common. In

the one case the letters employed are dead and inert atoms
;

in the other

they are germs instinct with motion, life, and energy.

A curious history is attached to the form which I have just cited, one of

the simplest in the theory, of which the narrative may not be without interest

to many of my hearers, even to those whose mathematical ambition is limited

to taking a high place in the schools.

At pp. 19 and 20 of Boole s Differential Equations (edition of 1859) the

author cites this form as the left-hand side of an equation which he calls the
&quot;

Differential Equation of lines of the second order,&quot; and attributes it to

Monge, adding the words,
&quot; But here our powers of geometrical interpretation

fail, and results such as this can scarcely be otherwise useful than as a

registry of integrable forms.&quot; In this vaticination, which was quite uncalled

for, the eminent author, now unfortunately deceased, proved himself a false

prophet, for the form referred to is among the first that attracts notice in

crossing the threshold of the subject of Reciprocants, and is but one of a

crowd of similar and much more complicated expressions, no less than it

susceptible of geometrical interpretation and of taking their place on the

register of integrable forms. A friend, with whom I was in communication

on the subject, and whom I see by my side, remarked to me, in reference to

this passage :

&quot;

I cannot help comparing a certain passage in Boole to

Ezekiel s valley of the dry bones : The valley was full of bones, and lo,

they were very dry. The answer to the question, Can these bones live ? is

supplied by the advent of the glorious idea of the Reciprocants ;
and the

grand invocation, Come from the four winds, O breath, and breathe upon
these slain, that they may live, may well be used here. That they will
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live and stand up upon their feet an exceeding great army is what we may

expect to
happen.&quot; This, as you will presently see, is just what actually has

happened.

Not knowing where to look in Monge for the implied reference, I wrote

to an eminent geometer in Paris to give me the desired information
;
he

replied that the thing could not be in Monge, for that M. Halphen, who had

written more than one memoir on the subject of the differential equation of

a conic, had made nowhere any allusion to Monge in connection with the

subject. Hereupon, as I felt sure that a reference contained in repeated
editions of a book in such general use as Boole s Differential Equations was

not likely to be erroneous, I addressed myself to M. Halphen himself, and

received from him a reply, from which I will read an extract :

&quot; En premier lieu, c est une chose nouvelle pour moi que 1 equation
differentielle des coniques se trouve dans Boole, dont je ne connais pas
1 ouvrage. Je vais, bien entendu, le consulter avec curiosite. Ce fait a

echappe a tout le rnonde ici, et Ton a cru generalernent que j avais le

premier donne cette Equation. Nil sub sole novi! II m est naturellement

impossible de vous dire ou la meme equation est enfouie parmi les oeuvres de

Monge. Pour moi, c est dans Le Journal de Math.(187Q), p. 375, que j ai eu,

je crois, la premiere occasion de developper cette Equation sous la forme

meme que vous citez
;
et c est quand je 1 ai employee, I annee suivante, pour

le pi-obleme sur les lois de Kepler (Comptes rendus, 1877, t. LXXXIV. p. 939),

que M. Bertrand Fa remarquee comme neuve. Ce qui vous interesse plus,

c est de connaitre la forme simplifiee sous laquelle j ai donne plus tard cette

equation dans le Bulletin de la Societe Mathematique. C est sous cette

derniere forme que M. Jordan la donne dans son cours de 1 Ecole Poly-

technique (t. I. p. 53).&quot;

All my researches to obtain the passage in Monge referred to by Boole

have been in vain*.

I will now proceed to endeavour to make clear to you what a Reciprocant
means : the above form, which may be called the Mongian, would afford an

example by which to illustrate the term
;
but I think it desirable to begin

with a much easier one. Consider then the simple case of a single term, the

second derivative of one variable, y, in respect to another, x. Every tyro in

algebraical geometry knows that this, or rather the fact of its evanescence,

serves to characterise one or more points in a curve which possess, so to say,

Search has been made in the collected works of Monge and in manuscripts of his own or

Prony in the library of the Institute, but without effect. I have also made application to the

Universal Information Society, who undertake to answer &quot;

every conceivable question,&quot; but

nothing has so far come of it. Perhaps until the citation from Monge is verified it will be safer

in future to refer to the so-called Mongian as the Boole- Mongian. It may be regarded as the

starting-point of the Differential Invariant Theory, as the Schwarzian is of the deeper-lying and
more comprehensive Reciprocant Theory.
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a certain indelible and intrinsic character, or what is technically called a

singularity ;
in this case an inflexion such as exists in a capital letter S, or

Hogarth s line of beauty.

If we invert the two variables, exchanging, that is to say, one with the

other, the fact of this indelibility draws with it the consequence that in

general these two reciprocal functions must vanish together, and as a fact

each is the same as the other multiplied or divided by the third power of the

first derivative of the one variable with respect to the other taken negatively.
In this case we are dealing with a single derivative and its reciprocal. The

question immediately presents itself whether there may not be a combination

of derivatives possessing a similar property. We know that no single derivative

except the second does.

Such a combination actually presents itself in a form which occurs in the

solution of Differential Equations of the second order, the form

dy d*y _ 3 fd*y\
2

dx da?
~

2 U*J
which, after the name of its discoverer, Schwarz, we may agree to call a

Schwarzian (Oayley s
&quot;

Schwarzian Derivative*&quot;). If in this expression the

a; and y be interchanged, its value, barring a factor consisting of a power of

the first derivative, remains unaltered, or, to speak more strictly, merely

undergoes a change of algebraical sign. We may now arrive at the

generalised conception of an algebraical function of the derivatives of one

variable in respect to another, which, if we agree to pay no regard to the

algebraical sign, or to any power of the first derivative that may appear as a

factor, will remain unaltered when the dependent and independent variables

are interchanged one with another; and we may agree to call any such

function a Reciprocant.

But here an important distinction arises there are Reciprocants such as

d li

the one I first mentioned, -7^, or such as the Mongian to which allusion has
\JL3u

* More strictly speaking this is Cayley s Schwarzian derivative cleared of fractions it may
well be called the Schwarzian (see my note on it in the Mathematical Messenger for September or

October past). Prof. Greenhill in regard to the Schwarzian derivative proper writes me as

follows :

&quot;I found the reference in a footnote to p. 74 of Klein s Vorlesungen ilber das Ikosaeder, &c.,

in which Klein thanks Schwarz for sending him the reference to a paper by Lagrange, Sur la

construction des cartes geographiques in the Nouveaux Menwires de VAcademic de Berlin, 1779.

Compare also Schwarz s paper in Bd. 75 of Borchardt a Journal, where further literary notices are

collected together. Klein says further that in the Sachsischen Gesellschaft von Januar 1883,

he has considered the inner meaning (innere Bedeutung) of the differential equation

-|($Y=/&amp;lt;,), where , =?.../
77 r)

dz

There are two papers by Lagrange, one immediately following the other, &quot;Sur la construction

des cartes geographiques,&quot; but I have not been able to discover the Schwarziau derivative in

either of them.
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been made in the letter from M. Halphen, in which the second and higher
differential derivatives alone appear, the first differential derivative not

figuring in the expression. These may be termed Pure Reciprocants.
d?ii

Thus I repeat -r^,
and

fdW d^_ d?y d*y

\daf) do* dx* dx^ d

are pure reciprocants. Those from which the first derivative ~ is not
dx

excluded may be called Mixed Reciprocants. An example of such kind of

Reciprocants is afforded by the Schvvarzian above referred to. This dis

tinction is one of great moment, for a little attention will serve to make it

clear that every pure reciprocarit expressed in terms of x and y marks an
intrinsic feature or singularity in the curve, whatever its nature may be, of

which x and y are the co-ordinates; for if in place of the variables (x, y) any
two linear functions of these variables be substituted, a pure reciprocant, by
virtue of its reciprocantive character, must remain unaltered save as to the

immaterial fact of its acquiring a factor containing merely the constants of

substitution*.

The consequence is that every pure reciprocant corresponds to, and

indicates, some singularity or characteristic feature of a curve, and vice

versa every such singularity of a general nature and of a descriptive

(although not necessarily of a projective) kind, points to a pure reci

procant.

Such is not the case with mixed reciprocants. They will not in general
remain unaltered when linear substitutions are impressed upon the variables.

Is it then necessary, it may be asked, to pay any attention to mixed reci

procants ;
or may they not be formally excluded at the very threshold of the

inquiry ? Were I disposed to put the answer to this question on mere

personal grounds, I feel that I should be guilty of the blackest ingratitude,
that I should be kicking down the ladder by which I have risen to my
present commanding point of view, if I were to turn my back on these

humble mixed reciprocants, to which I have reason to feel so deeply
indebted; for it was the putting together of the two facts of the sub
stantial permanence under linear substitutions impressed upon the variables

of the Schwarzian form and the simpler one which marks the inflexions of a
curve it was, if I may so say, the collision in my mind of these two facts

that kindled the spark and fired the train which set my imagination in a
blaze by the light of which the whole horizon of Reciprocants is now
illumined.

* The form as it stands shows that for y a linear function of x and y may be substituted; and
the form reciprocated (by the interchange of x and y) shows that a similar substitution may be
made for x. Hence arbitrary linear substitutions may be simultaneously impressed on x and y
without inducing any change of form.
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But it is not necessary for me to defend the retention of mixed reciprocants

on any such narrow ground of personal predilection. The whole body of

Reciprocants, pure and mixed, form one complete system, a single garment
without rent or seam, a complex whole in which all the parts are inextricably

interwoven with each other. It is a living organism, the action of no part of

which can be thoroughly understood if dissevered from connection with the

rest.

It was in fact by combining and interweaving mixed reciprocants that I

was led to the discovery of the pure binomial reciprocant, which comes im

mediately after the trivial monomial one, the earliest with which I became

acquainted, and of the existence of compeers to which I was for some time in

doubt, and only became convinced of the fact after the discovery of the

Partial Differential Equation, the master-key to this portion of the subject,

which gives the means of producing them ad libitum and ascertaining all that

exist of any prescribed type. Of this partial differential equation I shall have

occasion hereafter to speak ;
but this is not all, for, as we shall presently see,

mixed reciprocants are well worthy of study on their own account, and lead

to conclusions of the highest moment, whether as regards their applications

to geometry or to the theory of transcendental functions and of ordinary

differential equations.

The singularities of curves, taking the word in its widest acceptation, may
be divided into three classes : those which are independent of homographic
deformation and which remain unaltered in any perspective picture of the

curve ; those which, having an express or tacit reference to the line at

infinity, are not indelible under perspective projection, but using the word

descriptive with some little latitude may, in so far as they only involve a

reference to the line at infinity as a line, be said to be of a purely descriptive

character
; and, lastly, those which are neither protective nor purely

descriptive, having relation to the points termed, in ordinary parlance,

&quot;circular points at
infinity&quot;

for which the proper name is &quot;centres of

infinitely distant pencils of
rays,&quot;

that is, pencils, every ray of which is

infinitely distant from every point external to it. Such, for instance,

would be the character of points of maximum or minimum curvative,

which, as we shall see, indicate, or are indicated by, that particular class

of Mixed to which I give the name of
&quot;

Orthogonal Reciprocants.&quot; All

purely descriptive singularities alike, whether projective or non-projective,

are indicated by pure reciprocants, and are subject to the same Partial

Differential Equation; just as, in the Theory of Binary Quantics, Invariants,

although under one aspect they may be regarded as a self-contained special

class, admit of being and are most advantageously studied in connection with,

and as forming a part of, the whole family of forms commonly known by the

name of &quot;semi-, or subinvariants,&quot; but which I find it conduces to much
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greater clearness of expression and avoidance of ambiguity or periphrasis
to designate as Binariants.

The question may here be asked, How, then, are projective and non-

projective pure reciprocants to be discriminated by their external characters?

I believe that I know the answer to this question, which is, that the

former are subject to satisfy a second partial differential equation of a certain

simple and familiar type, but this is a matter upon which it is not necessary
for me to enter on the present occasion*. It is enough for our present

purpose to remark that every projective pure reciprocant must, so to say, be

in essence a masked ternary covariant. For instance, if we take the simplest

d?y
of all such, namely, a, that is ~

2 ,
we have, if

&amp;lt; (x, y)
= 0,a oo

da? \dy)

dx2

dxdy dx

dxdy dy
z

dy

dtf) d$&amp;gt;

dx dy

which, for facility of reference, let me call M. Obviously we might instead

of a = substitute M = to mark an inflexion, And now if we write 3&amp;gt; as

the completed form of
&amp;lt;,

when made homogeneous by the substitution of z

for unity ;
and if we suppose it to be of n dimensions in x, y, z, and call its

Hessian H, we shall obtain the syzygy

, lv ,

(n-ly-
,

rr
,

-f-\ a + H +
dy)

\
-= .

-- -T-5-
da? dy

2

\dxdy)

Hence the system &amp;lt; =
0, a = 0, will be in effect the same as the system &amp;lt;&

= 0,

H=0, and in this sense a may be said to carry H as it were in its bosom.
And so in general every pure projective reciprocant may, in the language of

insect transformation, be regarded as passing, so to say, first from the grub
to the pupa or chrysalis, and from this again, divested of all superfluous

integuments, to the butterfly or imago state.

Non-projective pure reciprocants undergo only one such change. There
is no possibility of their ever emerging into the imago their development
being finally arrested at the chrysalis stage.

It would, I think, be an interesting and instructive task to obtain the

imago or Hessianised transformation of the Mongian, but I am not aware

* In Paris, from which I correct the proofs, I have succeeded in reducing this conjecture to a

certainty and in establishing the marvellous fact that every Projective Reciprocant, or, which is

the same thing, every Differential Invariant, is, at the same time, an Ordinary Subinvariant.
Thus a differential invariant (or projective reciprocant) may be regarded as a single personality
clothed ivith two distinct natures that of a reciprocant and that of a subinvariant.
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that anyone has yet done, or thought of doing, this*. It seems to me that

by substituting Reciprocals in lieu of Ternary Covariants we are as it were

stealing a dimension from space, inasmuch as Reciprocants, that is, Ternary
Covariants in their undeveloped state, are closely allied to, and march pari

passu with, the familiar forms which appertain to merely binary quantics.

I will now proceed to bring before your notice the general partial

differential equation which supplies the necessary and sufficient condition

to which all pure reciprocants are subject.

It is highly convenient to denote the successive derivatives

d?y ds

y fry

dx2 do? da?
&quot;

by the simple letters a, b, c,

dii
The first derivative ~-

plays so peculiar a part in this theory that it is
CL(Xs

necessary to denote it by a letter standing aloof from the rest, and I call

it t. This last letter, I need not say, does not make its appearance in any

pure reciprocant. This being premised, I invite your attention to the

equation in question, in which you will perceive the symbols of operation
are separated from the object to be operated upon.

Writing V= 3a2Sb + 10a68c + (loac + 1 Ob2
) Bd + and calling any pure

reciprocant R,
VR =

is the equation referred to.

I cannot undertake, within the brief limits of time allotted to this lecture,

to explain how this operation, or, as it may be termed, this annihilator V is

arrived at. The table of binomial coefficients, or rather half series of binomial

coefficients, shown f in Chart 4, will enable you to see what is the law of the

numerical coefficients of its several terms. Let the words weight, degree,

extent (extent, you will remember, means the number of places by which

the most remote letter in the form is separated from the first letter in the

alphabet) of a pure reciprocant signify the same things as they would do if

the letters a, 6, c, ... referred, according to the ordinary notation, to Binariants

instead of to Reciprocants. The number of binariants linearly independent of

each other whose weight, degree and extent or order are w, i,j is given by the

partition formula (w\ i,j) (w ~L; i,j) where in general (w; i,j) means the

number of ways of partitioning w into i or fewer parts none greater than
j.

* M. Halphen informs me that this has been done by Cayley in the Phil. Trans, for 1865, and

subsequently in a somewhat simplified form by Painvin, Contptes Rendus, 1874. But neither of

these authors seems to have had the Boole-Mongian objectively before him, so that a slight

supplemental computation is wanting to establish the equation between it and the function which

either of them finds to vanish at a sextactic point.

[t p. 302 below.]
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It follows immediately from the mere form of V that the corresponding

formula in the case of Reciprocants of a given type w.i.j will be

O; i,j)- (w-l; i + l,j)

the augmentation of i in the second term of the formula being due to

the fact that, whereas in the partial differential equation for Binariants

it is the letters themselves which appear as coefficients, it is quadratic
functions of these in the case of Reciprocants. From the form of V we

may also deduce a rigorous demonstration of the existence of Reciprocants

strictly analogous to those with which you are familiar in the Binariant

Theory, which are pictured in Chart 2, and are now usually designated
as Protomorphs, as being the forms by the interweaving of which with

one another (or rather by a sort of combined process of mixture and

precipitation), all others, even the irreducible ones, are capable of being pro
duced. The corresponding forms for Reciprocants you will see exhibited in

the same table. Each series of Protomorphs may of course be indefinitely

extended as more and more letters are introduced. In the table I have not

thought it necessary to go beyond the letter g. You also know that besides

Protomorphs there are other irreducible forms, the organic radicals, so to say,
into which every compound form may be resolved, always limited in number,
whatever the number of letters or primal elements we may be dealing with.

The same thing happens to Reciprocants as you will notice in the comparative
table in Chart 2. Without going into particulars, I will ask you to take from

me upon faith the assurance that there is no single feature in the old familiar

theory, whether it relates to Protomorphs, to Ground- forms, to Perpetuants,
to Factorial constitution, to Generating Functions, or whatever else sets its

stamp upon the one, which is not counterfeited by and reproduced in the

parallel theory.

So much for time will not admit of more concerning pure reciprocants.

Let me now say a few words en passant on Mixed Reciprocants.

Pure Reciprocants, we have seen, are the analogues of Invariants, or

else of the leading terms, for that is what are Semi- or Subin variants, of

Covariantive expansions; each is subject to its own proper linear partial
differential equation. Mixed Reciprocants are the exact analogues of the

coefficients in such expansions other than those of the leading terms.

Starting from the leading terms as the unit point, the coefficients of rank
a) are subject to a partial differential equation of order to

;
and just so, mixed

reciprocants, if involving t up to the power &&amp;gt;,
are subject to a partial

differential equation of that same order.

I have alluded to a peculiar class of mixed under the name of
&quot;Orthogonal

Reciprocants.&quot; They are distinguished, as I have proved, by the beautiful

property that, if differentiated with respect to t, the result must be itself a

Reciprocant. In Chart 1 you will see this illustrated in the case of a mixed

s. iv. 19
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reciprocant (1 + t~) b 3ta2
,
which serves to indicate the existence of points

of maximum and minimum curvature. Its differential coefficient with respect

to t is the oft-alluded-to Schwarzian, transliterated into the simpler notation.

Proceeding in the inverse order of Integration instead of Differentiation I

call your attention to a mixed reciprocant, of a very simple character, one

which presents itself at the very outset of the theory, namely

tc oab,

which, integrated in respect to t between proper limits, yields the elegant

orthogonal reciprocant

Expressed in the ordinary notation, this, equated to zero, takes the

form

Mr Hammond has integrated this, treated as an ordinary differential

equation, and has obtained the complete primitive expressed through the

medium of two related Hyper-Elliptic Functions connecting the variables x

and y (see* Chart 3). It may possibly turn out to be the case that every

mixed reciprocant is either itself an Orthogonal Reciprocant, or by inte

gration, in respect to t, leads to one.

It will of course be understood that, in interpreting equations obtained by

equating to zero an Orthogonal Reciprocant, the variables must be regarded

as representing not general but rectangular Cartesian co-ordinates.

Here seems to me to be the proper place for pointing out to what extent

I have been anticipated by M. Halphen in the discovery of this new world of

Algebraical Forms. When the subject first dawned upon my mind, about

the end of October or the beginning of November last, I was not aware that

it had been approached on any side by any one before me, and believed that

I was digging into absolutely virgin soil. It was only when I received

M. Halphen s letter, dated November 25, in relation to the Mongian

business already referred to, accompanied by a presentation of his memoirs

on Differential Invariants, that I became aware of there existing any link of

connection between his work and my own. A Differential Invariant, in the

sense in which the term is used by M. Halphen, is not what at first blush I

supposed it to be, and as in my haste to repair what seemed to me an

omission to be without loss of time supplied, I wrote to M. Hermite it

was, in a letter which has been or is about to be inserted in the Comptes

Rendus of the Institute of France
;

it is not, I say, identical with what I have

termed a general pure reciprocant, but only with that peculiar species of

Pure Reciprocants to which I have in a preceding part of this lecture

referred as corresponding and pointing to Project!ve Singularities. In his

[* p. 302 below.]
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splendid labours in this field Halphen has had no occasion to construct or

concern himself with that new universe of forms viewed as a whole, whether
of Pure or Mixed Reciprocants, which it has been the avowed and principal

object of this lecture to bring under your notice.

I anticipate deriving much valuable assistance in the vast explorations

remaining to be made in my own subject from the new and luminous views

of M. Halphen, and possibly he may derive some advantage in his turn

from the larger outlook brought within the field of vision by my allied

investigations.

Let me return for a moment to that simplest class of pure reciprocants
which I have called protomorphs. Each of these will be found (as may be

shown either by a direct process of elimination, or by integrating the equations
obtained by equating them severally to zero, regarded as ordinary differential

equations between x and y) each of these, I say, will be found to represent
some simple kind of singularity at the point (x, y) of the curve to which these

co-ordinates are supposed to refer. Thus, for instance, No. 1 marks a single

point of inflexion
;
No. 2, points of closest contact with a common parabola ;

No. 3, what our Cayley has called sextactic points, referring to a general
conic

;
No. 4, points of closest contact with a common cubical parabola ;

and
so on. The first and third, it will be noticed, represent projective singularities,
and as such, in M. Halphen s language, would take the name of Differential

Invariants. The second and fourth, having reference to the line at infinity
in the plane of the curve, are of a non-projective character, and as such would
not appear in M. Halphen s system of Differential Invariants. It is an

interesting fact that every simple parabola, meaning one whose equationm
can be brought under the form y = xn

, corresponds to a linear function of

a square of the third, and the cube of the second protomorph, and con

sequently will in general be of the sixth degree. In the particular case

of the cubical parabola, the numerical parameter of this equation is such
that the highest powers of b cancel each other so that the form sinks one

degree, and becomes represented by the Quasi-Discriminant, No. 4.

This simple instance will serve to illustrate the intimate connection
which exists between the projective and non-projective reciprocants, and
the advantage, not to say necessity, of regarding them as parts of one

organic whole.

It would take me too far to do more than make the most cursory allusion
to an extension of this theory similar to that which happens when in the

ordinary theory of invariants we pass from the consideration of a single
Quantic to that of two or more. There is no difficulty in finding the

partial differential equation to double reciprocants which, as far as I have

192
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as yet pursued the investigation, appear to be functions of a, b, c, ...
;

a, b
, c, ...; and of (t

- t
).

The theory of double reciprocants will then include as a particular case

the question of determining the singularities of paired points of two curves

at which their tangents are parallel, and consequently the theory of common
tangents to two curves and of bi-tangents to a single one.

I think I may venture to say that a general pure multiple reciprocant
which marks off relative singularities, whether protective or non-projective,
of a group of curves, is a function of the second and higher differential

derivatives appertaining to the several curves of the group, and of the

differences of the first derivatives, whereas in a mixed multiple reciprocant
these last-named differences are replaced by the first derivatives themselves.

As a particular case, when the group dwindles to an individual and there is

only one t, this letter disappears altogether from the form, for there are no
differences of a single quantity.

In the chart (marked No. 2) you will see the table of Protomorphs carried

on as far as the letter g inclusive, and will not fail to notice what may be

termed the higher organisation of Reciprocantive as compared with ordinary
Invariantive Protomorphs; the degrees of the latter oscillate or librate

between the numbers 2 and 3, whereas in the former the degree is

variable according to a certain transcendental law dependent on the

solution of a problem in the Partition of Numbers. Another interesting
difference between general Invariants and general Pure Reciprocants consists

in the fact that, whilst the number of the former ultimately (that is, when
the extent is indefinitely increased) becomes indefinitely great, that of the

latter is determinate for any given degree even for an infinite number of

letters.

In carrying on the table of protomorphs up to the letter h (see Chart 6) a

new phenomenon presents itself, to which, however, there is a perfect parallel
in the allied theory. An arbitrary constant enters into the form, its general
value being a linear function of U and W (for which see Chart 6). But this

is not all. If you examine the terms in both U and W (there are in all

twelve such) you will find that these twelve do not comprise all of the same

type to which they belong. There is a Thirteenth (a banished Judas), equally
a priori entitled to admission to the group, but which does not make its

appearance among them, namely, b*d. I rather believe that a similar

phenomenon of one or more terms, whose presence might be expected, but

which do not appear, presents itself in the allied invariantive theory, but

cannot speak with certainty as to this point, as the circumstance has not

received, and possibly does not merit, any very particular attention.
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Still, in the case before us, this unexpected absence of a member of the

family, whose appearance might have been looked for, made an impression on

my mind, and even went to the extent of acting on my emotions. I began

to think of it as a sort of lost Pleiad in an Algebraical Constellation, and in

the end, brooding over the subject, my feelings found vent, or sought relief,

in a rhymed effusion, a jeu de sottise, which, not without some apprehension

of appearing singular or extravagant, I will venture to rehearse. It will at

least serve as an interlude, and give some relief to the strain upon your
attention before I proceed to make my final remarks on the general theory.

TO A MISSING MEMBER

Of a Family Group of Terms in an Algebraical Formula.

Lone and discarded one ! divorced by fate,

Far from thy wished-for fellows whither art flown ?

Where lingerest thou in thy bereaved estate,

Like some lost star, or buried meteor stone ?

Thou mindst me much of that presumptuous one

Who loth, aught less than greatest, to be great,

From Heaven s immensity fell headlong down

To live forlorn, self-centred, desolate :

Or who, new Heraklid, hard exile bore,

Now buoyed by hope, now stretched on rack of fear,

Till throned Astraea, wafting to his ear

Words of dim portent through the Atlantic roar,

Bade him &quot;the sanctuary of the Muse revere

And strew with flame the dust of Isis shore.&quot;

Having now refreshed ourselves and bathed the tips of our fingers in the

Pierian spring, let us turn back for a few brief moments to a light banquet
of the reason, and entertain ourselves as a sort of after-course with some

general reflections arising naturally out of the previous matter of my
discourse. It seems to me that the discovery of Reciprocants must awaken

a feeling of surprise akin to that which was felt when the galvanic current

astonished the world previously accustomed only to the phenomena of

machine or frictional electricity. The new theory is a ganglionic one : it

stands in immediate and central relation to almost every branch of pure
mathematics to Invariants, to Differential Equations, ordinary and partial,

to Elliptic and Transcendental Functions, to Partitions of Numbers, to the

Calculus of Variations, and above all to Geometry (alike of figures and

of complexes), upon whose inmost recesses it throws a new and wholly

unexpected light. The geometrical singularities which the present portion of

the theory professes to discuss are in fact the distinguishing features of

curves; their technical name, if applied to the human countenance, would

lead us to call a man s eyes, ears, nose, lips, and chin his singularities ;
but
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these singularities make up the character and expression, and serve to

distinguish one individual from another. And so it is with the so-called

singularities of curves.

Comparing the system of ground-forms which it supplies with those of

the allied theory, it seems to me clear that some common method, some yet

undiscovered, deep-lying, Algebraical principle remains to be discovered,
which shall in each case alike serve to demonstrate the finite number of

these forms (these organic radicals) for any specified number of letters.

The road to it, I believe, lies in the Algebraical Deduction of ground-
forms from the Protomorphs*. Gordan s method of demonstration, so

difficult and so complicated, requiring the devotion of a whole University.
semester to master, is inapplicable to reciprocants, which, as far as we can at

present see, do not lend themselves to symbolic treatment.

How greatly must we feel indebted to our Cayley, who while he was, to

say the least, the joint founder of the symbolic method, set the first, and out

of England little if at all followed, example of using as an engine that

mightiest instrument of research ever yet invented by the mind of man
a Partial Differential Equation, to define and generate invariantive forms.

With the growth of our knowledge, and higher views now taken of

invariantive forms, the old nomenclature has not altogether kept pace, and

is in one or two points in need of a reform not difficult to indicate. I think

that we ought to give a general name I propose that of Binariants to

every rational integral form which is nullified by the general operator

where X, /a, v, ... are arbitrary numbers.

This operator, I think, having regard to the way in which its segments
link on to one another, may be called the Vermicular.

Binariants corresponding to unit values of X, p, v, ... may be termed

standard binariants. Those for which these numbers are the terms of the

natural arithmetical series 1, 2, 3, ... Invariantive binariants, which may be

either complete or incomplete invariants
;

these latter are what are usually
termed semi- or sub-invariants. I may presently have to speak of a third

class of binariants for which the arbitrary multipliers are the numbers 3, 8,

15, 24 ... (the squares of the natural numbers each diminished by unity)

which, if the theorem I have in view is supported by the event, will have to

be termed Reciprocantive Binariants. But first let me call attention to what

seems a breach of the asserted parallelism between the Invariantive and the

* See the section on the Algebraical Deduction of the Ground-forms of the Quintic in my
memoir on Subinvariants in the American Journal of Mathematics. [Vol. in. of this Reprint,

p. 580.]
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Reciprocantive theories. In the former we have complete and incomplete

invariants, but we have drawn no such distinction between one set of pure

reciprocants and another. A parallel distinction does however exist.

If we use iv, i, j to signify the weight, degree, and extent of an invariantive

form, w is never less than the half product of ij ;
when equal to it the form

is complete. In the case of reciprocants certain observed facts seem to

indicate that there exists an analogous but less simple inequality. If this

conjecture is verified it is riot merely
-~ w, but ~-

(j 2) w, which

is never negative : and when this is zero, the form may be said to be

complete*. There would then be thus complete forms in each of the two

theories
;

in the earlier one they take a special name : this is the only
difference.

We have spoken of Pure Reciprocants as being either projective or non-

projective, but so far have abstained from particularising the external

characters by which the former may be distinguished from the latter. I

have good reason to suspect that the former are distinguished from the latter

by being Binariants; that, in addition to being subject to annihilation by the

operator V, they are also subject to annihilation by the Vermicular operator
when made special by the use of the numerical multipliers 3, 8, 15 ... above

alluded to, or in other words (as previously mentioned incidentally) are subject
to satisfy two simultaneous partial differential equations instead of only onef.

*
If this should turn out to be true, the &quot;crude generating function&quot; for reciprocants would

be almost identical with that of in- and co-variants of the same extent j. The denominators

would be absolutely identical ; as regards the numerators, while that for invariantive forms is

l-a~ l x~* the numerator for reciprocants would be l~a~zx~%. As I write abroad and from

memory there is just a chance that the index of a here given may be erroneous.

t As already stated in a previous footnote this conjecture is fully confirmed, my own proof

having been corroborated (if it needed corroboration) by another entirely different one invented

by M. Halphen, who fully shares my own astonishment at the fact of there being forms (half-

horse, half-alligator) at once reciprocants and sub-invariants, and as such satisfying two

simultaneous partial differential equations.

If instead of denoting the successive differential derivatives (starting from the second) a, b, c, ...

we call them 1.2. a, 1.2.3.6, 1. 2. 3. 4. c, ... the two Annihilators will be

a5b + 2bdc + 3c5d + 4d5e + ...

a2

and 4 - 56 + 5ab8e + 6 (ac + i62
) 5d + 1 (ad + bc) Se + ...

|

the latter being my new operator, the Reciprocator V, accommodated to the above-stated change
of notation for the successive differential derivatives.

Hardly necessary is it for me to point out in explanation of the semi-sums %b
2

, ... that we

may write the MacMahonised F under the form

4a*5b + 5(ab + ba) 6
c +&(ac + tf + ca) 5d + 7 (ad + bc + cb + da) 8e + ....

It is to be presumed that in addition to mixed reciprocants (the ocean into which flows the sea of

pure reciprocants, as into that again empties itself the river of projective reciprocants) there may
exist a theory of forms in which y as well as -2 will appear, or, so to say, doubly mixed

reciprocants, the most general of all, in which case we must speak of the content of these as the
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Projective Reciprocants we have seen are disguised or masked Ternary
Covariants Covariants in the grub, the first undeveloped state. Now ternary
covariants are capable, it may or may not be generally known, of satisfying 6

reducible to 2 simultaneous Partial Differential Equations, and at first sight
it might be surmised that nothing would be gained by the substitution of

the two new for the two old simultaneous partial differential equations. But
the fact is not so, for the old partial differential equations are perfectly

unmanageable, or at least have never, as far as I know, been handled by
any one, for they have to do with a triangular heap, whereas the new ones
are solely concerned with a linear series of coefficients.

I have alluded to there being a particular form common to the two
theories. In the one theory it is the Mongian alluded to in the

correspondence, which has been read, with M. Halphen. In the other it

is the source of the skew covariant to the cubic. If the latter be subjected
to a sort of MacMahonic numerical adjustment, it becomes absolutely identical

with the former. Let us imagine that before the invention of Reciprocants
an Algebraist happened to have had both forms present to his mind, and had

thought of some contrivance for lowering the coefficients of the Mongian
written out with the larger coefficients, and had thus stumbled upon this

striking fact. It could not have failed to vehemently arouse his curiosity,
and he would have set to work to discover, if possible, the cause of this

coincidence. He would in all probability have addressed himself to the form
which precedes the source alluded to in the natural order of genesis, and have

applied a similar adjustment to the much simpler form, ac 62
: having done

so he would have tried to discover to what singularity it pointed but his

efforts to do so we know must have been fruitless, and he would have felt

disposed to throw down his work in despair, for the intermediate ideas

necessary to make out the parallelism would not have been present to his

mind. So long as we confine ourselves to Differential Invariants, that is, to

projective pure reciprocants, we are like men walking on those elevated

ridges, those more than Alpine summits, such as I am told* exist in

Thibet, where it may be the labour of days for two men who can see and

speak to each other to come together. Reciprocants supply the bridge to

span the yawning ravine and to bring allied forms into direct proximity.

ocean and of the others as sea, river, and brook. Curious is it to reflect that in the theory which
as it exists comprises Invariantives, Reciprocants, and Invariantive Reciprocants or Reciprocant

Invariantives, the order of discovery was (1) Invariantives (Eisenstein, Boole, &c.) ; (2) In

variantive Reciprocants (Monge and Halphen); (3) Reciprocants (Schwarz, the author of this

lecture).
*

I think my informant was my friend Dr Inglis, of the Athenaeum Club, who some time ago
undertook a journey in the Himalayas in the hopes of coming upon the traces of a lost religion

which he thought he had reason to believe existed among mankind in the pre-Glacial period of

the earth s history.
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I have spoken of mixed reciprocaiits as being subject to satisfy not a

linear partial differential equation, but one of a higher order dependent on

the intensity, so to say, of its mixedness the highest power, that is to say, of

the first differential derivative which it contains, and it might therefore be

supposed that these forms are much more difficult to be obtained than pure

reciprocants. But the fact is just the reverse, for as I discovered in the very

infancy of the inquiry, and have put on record in the September or October

number* of the Mathematical Messenger, mixed reciprocants may be evolved

in unlimited profusion by the application of simple and explicit processes of

multiplication and differentiation. From any reciprocant whatever, be it

mixed or pure, new mixed ones may be educed infinitely infinite in number,
inasmuch as at each stage of the process, arbitrary functions of the first

differential derivative may be introduced.

The wonderful fertility of this method of generation excited warm interest

on the part of one of the greatest of living mathematicians, the expression of

which acted as a powerful incentive to me to continue the inquiry. They
may be compared with the shower of December meteors shooting out in all

directions and covering the heavens with their brilliant trains, all diverging
from one or more fixed radiant-points, the radiant-point in the theory before

us being the particular form selected to be operated upon.

The new doctrine which I have endeavoured thus imperfectly to

adumbrate has taken its local rise in this University, where it has already
attracted some votaries to its side, and will, I hope, eventually obtain the

cooperation of many more. I have ventured with this view to announce it

as the subject of a course of lectures during the ensuing term.

When I lately had the pleasure of attending the new Slade Professor s

inaugural discourse, I heard him promise to make his pupils participators in

his work, by painting pictures in the presence of his class. I aspire to do
more than this not only to paint before the members of my class, but to

induce them to take the palette and brush and contribute with their own
hands to the work to be done upon the canvas. Such was the plan I

followed at the Johns Hopkins University, during my connection with

which I may have published scores of Mathematical articles and memoirs
in the journals of America, England, France, and Germany, of which probably
there was scarcely one which did not originate in the business of the class

room
;

in the composition of many or most of them I derived inestimable

advantage from the suggestions or contributions of my auditors. It was

frequently a chase, in which I started the fox, in which we all took a

common interest, and in which it was a matter of eager emulation

between my hearers and myself to try which could be first in at the

death.

[* p. 255 above.]
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During the past period of my professorship here, imperfectly acquainted
with the usages and needs of the University, I do not think that my labours

have been directed so profitably as they might have been either as regards
the prosecution of my own work or the good of my hearers : my attention

has been distracted between theories waiting to be ushered into existence

and providing for the daily bread of class-teaching. I hope that in future I

may be able to bring these two objects into closer harmony and correlation,

and I think I shall best discharge my duty to the University by selecting for

the material of my work in the class-room any subject on which my thoughts

may, for the time being, happen to be concentrated, not too alien to, or remote

from, that which I am appointed to teach; and thus, by example, give lessons

in the difficult art of mathematical thinking and reasoning how to follow

out familiar suggestions of analogy till they broaden and deepen into a

fertilising stream of thought how to discover errors and to repair them,

guided by faith in the existence and unity of that intellectual world

which exists within us, and is at least as real as that with which we are

environed.

The American Mathematical Journal, conducted under the auspices of the

Johns Hopkins University, which has gained and retains a leading position

among the most important of its class, whether measured by the value of its

contents or the estimation in which it is held by the Mathematical world,

bears as its motto

Trpayfi.a.Taiv eXey^os ou
f3\fTrop,eva&amp;gt;v.

I have the pleasure of seeing among my audience this day the most

distinguished geometer of Holland, Prof. Schoute, who has done me the

signal honour of coming over to England to be present at this lecture,

who hospitably entertained me at Groningeii (in a vacation visit which I

recently paid to his country, the classic soil which has given birth to an

Erasmus, a Grotius, a Boerhaave, a Spinoza, a Huyghens, and a Rembrandt),

and who was kind enough, in proposing my health at a party where many of

his colleagues were present, to say that he felt sure
&quot; that I should return to

England cheered and invigorated, and would, ere long, light on some discovery

which would excite the wonder of the Mathematical world.&quot;

I do not venture to affirm, nor to think, that this vaticination has been

fulfilled in the terms in which it was uttered, but can most truly say that the

discovery, which it has been my good fortune to be made the medium of

revealing, has excited my own deepest feelings of ever-increasing wonder

rising almost to awe, such as must have come over the revellers who saw
O

the handwriting start out more and more plainly on the wall, or the scienziati

crowding round the blurred palimpsest as they began to be able to decipher
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characters and piece together the sentences of the long lost and supposed

irrecoverable De Republicd.

When I was at Utrecht, on my way to Groningen, Mr Grinwis, the

Professor of Mathematics at that University, showed me an English book

on &quot;Differential Equations,&quot; which had just appeared, of which he spoke in

high terms of praise, and said it contained over 800 examples. I wrote at

once for the book to England, and on seeing it on my arrival, forgetting that

it had been ordered, mistook it for a present from the author or publisher,

and, what is unusual with me, read regularly into it, until I came to the

section on Hyper-geometrical series, where the Schwarzian Derivative (so

named by Cayley after Prof. Schwarz) is spoken of.

Perhaps I ought to blush to own that it was new to me, and my attention

was riveted by the property it possesses, in common with the more simple

form which points to inflexions on curves, of remaining substantially unaltered,

of persisting as a factor at least of its altered self, when the variables which

enter it are interchanged. Following out this indication, I at once asked

myself the question,
&quot;

ought there not to exist combinations of derivatives of

all orders possessing this property of reciprocation?&quot; That question was soon

answered, and the universe of mixed reciprocants stood revealed before me.

These mixed reciprocants, by simple processes of combination, led me to the

discovery of the first pure reciprocant, 362 5ac : whereupon I again put the

question to myself,
&quot; are there, or are there not, others of this form, and if so,

what are
they?&quot;

In an unexpected manner the question was answered, and my curiosity

gratified to the utmost by the discovery of the partial differential equation
which is the central point of the theory, and at once discloses the parallelism

between it and the familiar doctrine of Invariants. Two principal exponents
of that doctrine, who have infused new blood into it, and given it a fresh point

of departure Capt. MacMahoii and Mr Hammond I have the pleasure of

seeing before me. Mr Kempe, who is also present, has lately entered into

and signally distinguished himself in the same field, availing himself in so

doing of his profound insight into the subject of linkages, his interest in which

I believe I may say received its first impulse from the lecture which he heard

me deliver upon it at the Royal Institution in January 1874, on the very

night when the Prime Minister for the time being sent round letters to his

supporters announcing his intention to dissolve Parliament. Of the two

events I have ever regarded the lecture as by far the more important to the

permanent interests of society. He has lately applied ideas founded upon

linkages to produce a most original and remarkable scheme for explaining
the nature of the whole pure body of Mathematical truth, under whatever

different forms it may be clothed, in a memoir which has been recommended
to be printed in the Transactions of the Royal Society, and which, I think,
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cannot fail when published to excite the deepest interest alike in the

Mathematical and the Philosophical worlds*.

I also feel greatly honoured by the presence of Prof. Greenhill, who will

be known to many in this room from his remarkable contributions to the

theory of Hydrodynamics and Vortex Motion, and who has sufficient candour

and largeness of mind to be able to appreciate researches of a different

character from those in which he has himself gained distinction.

I should not do justice to my feelings if I did not acknowledge my deep

obligations to Mr Hammond for the assistance which he has rendered me,

not only in preparing this lecture which you have listened to with such

exemplary patience, but in developing the theory ;
I am indebted to him

for many valuable suggestions tending to enlarge its bounds, and believe

have been saved, by my conversations with him, from falling into some

serious errors of omission or oversight. Saving only our Cayley (who,

though younger than myself, is my spiritual progenitor who first opened

my eyes and purged them of dross so that they could see and accept the

higher mysteries of our common Mathematical faith), there is no one I can

think of with whom I ever have conversed, from my intercourse with whom
I have derived more benefit. It would be an immense gain to Science, and

to the best interests of the University, if something could be done to bring

such men as Mr Hammond (and, let me add, Mr Buchheim, who ought never

to have been allowed to leave it) to come and live among us. I am sure

that with their endeavours added to my own and those of that most able

body of teachers and researchers with whom I have the good fortune to be

associated my brother Professors and the Tutorial Staff of the University

we could create such a School of Mathematics as might go some way at least

to revive the old scientific renown of Oxford, and to light such a candle in

England as, with God s grace, should never be put outf.

* In his memoir for the Phil. Traits. Mr Kempe contends that any whatever mathematical

proposition or research is capable of being represented by some sort of simple or compound

linkage. One would like to know by what sort of linkage he would represent the substance of the

memoir itself.

t I have purposely confined myself in my lecture to reciprocants, indicative of properties of

plane curves, but had in view to extend the theory to the case of higher dimensions in space

leading to reciprocants involving the differential derivatives of any number of variables ?/, z,

M. Halphen, with whom I have had the great advantage of being in communication during my
stay in Paris, has anticipated me in this part of my plan, and has found that the same method

which I have used to obtain the Annihilator V applied to a system of variables leads to an

Annihilator of a very similar form to F, and at my request will publish his results in a forth

coming number of the Comptes Eendus. Thus the dominion of reciprocants is already extended

over the whole range of forms unlimited in their own number as well as in that of the variables

which they contain.



41] On the Method of Reciprocants 301

TABLES OF SINGULARITIES AND FORMULA REFERRED TO IN THE

PRECEDING LECTURE.

CHART 1.

Inflexion Node

Cusp

Points of maximum and minimum curvature

Bitangent

Binariants.

a

ac b2

CHART 2. PROTOMORPHS.

a

3ac

a2f+ 5abe+ 2

aff-6bf+l5ce-lOd
2

Reciprocants.

5a2e-

-112063c

a?g
-
I2abf- 450ace+ 79262
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No. 1. a

No. 2. 3ac - 562

No. 3. 9a2d- 45a6c + 4063

No. 4.

CHART 3.

+M

&quot;/.

+ (28ae+ 56bd+ 35c2
) S/+ . . .

CHART 4. COEFFICIENTS OF ANNIHILATOR F.

1 4

1 5

1 6

1 7

1 8

1 9

1 10

3

10

15 10

21 35

28 56 35

36 84 126

45 120 210 126

CHART 5. RECIPROCANT TRANSFORMATIONS.
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dx2
dxdy dx

dydxdy dy
2

c&c dy

dy)

dx2
dxdy dxdz

dxdy dy
2

dydz

dxdz dydz dz2

(AT)

j~~. -r^-^j-x2
dy

2
\dxdy

dy rf
3
?/ 3 /d2

y\
2

. t. , 3 2

-=-^, is the bchwarzian, otherwise written to -- .

dx dx3 2 \dx2
/ 2

CHART 6. THE If RECIPROCANTIVE PROTOMORPH.

u

- 975a%
- 990a3

c/

+ 6200a2
Z&amp;gt;

2/
+ 4690a26ce

-1540a63e

- 2730a2fed2

- 24255a6c3

+ 2541063c2

W
120a3

c/
- 200a262/

The Vermicular Operator.

+ 1000a63e
Examples.

c8d+d8e +..

+ 3c8d+ 4d8e

+ 2485a6c3
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H+kU+MW

1^&quot; b*d does not appear in either

U or W.

A and M are arbitrary numbers.
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LECTURES ON THE THEORY OF RECIPROCANTS.

[American Journal of Mathematics, vm. (1886), pp. 196 260; IX. pp. 1 37,

113161, 297352
;
x. pp. 116. Delivered in Oxford, 1886.]

THE lectures here reproduced were delivered, or are still in the course of

delivery, before a class of graduates and scholars in the University of Oxford

during the present year. They are to be regarded as easy lessons in the new

Theory of Reciprocants of which an outline will be found in Nature for

January 7, which contains a report of a Public Lecture on the subject

delivered before the University of Oxford in December of the preceding year.

They are designed as a practical introduction to an enlarged theory
of Algebraical Forms, and as such are not constructed with the rigorous
adhesion to logical order which might be properly expected in a systematic
treatise. The object of the lecturer was to rouse an interest in the subject,

and in pursuit of this end he has not hesitated to state many results, by way
of anticipation, which might, with stricter regard to method, have followed at

a later period in the course.

There will be found also occasional repetitions and intercalations of allied

topics which are to be justified by the same plea, and also by the fact that

the lectures were not composed in their entirety previous to delivery, but

gradually evolved and written between one lecture and another in the way
that seemed most likely to the lecturer to secure the attention of his auditors.

Since the delivery of his public lecture in December last, papers have

been contributed on the subject to the Proceedings of the Mathematical

Society of London by Messrs Hammond, MacMahon, Elliott, Leudesdorf and

Rogers, and one to the Comptes Rendus de I Institut by M. George Perrin.

It may therefore be inferred that the lectures have not altogether failed in

attaining the desired end of drawing attention to a subject which, in the

opinion of the lecturer, constitutes a very considerable extension of the

previous limits of algebraical science.
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LECTURE I.

A new world of Algebraical forms, susceptible of important geometrical

applications, has recently come into existence, of which I gave a general

account in a public lecture at the end of last term. I propose in the follow

ing brief course to go more fully into the subject and lay down the leading

principles of the theory so far as they are at present known to me. The

parallelism between the theory of what may be called pure reciprocants and

that of invariants is so remarkable that it will be frequently expedient to

pass from one theory to the other or to treat the two simultaneously. It

may be as well therefore at once to give notice that the term invariant will

hereafter be applied alike to invariants ordinarily so called and to those more

general algebraical forms which have been termed sources of covariants,

differentials, seminvariants, or subinvariants. A form which is an invariant

in the old sense will be termed, when necessary to specify it, a satisfied

invariant, an expression which the chemico-graphical representation of

invariants or covariants will serve to explain and justify.

In an elucidatory course of lectures such as the present, it will be advis

able to follow a freer order of treatment than would be suitable to the

presentation of it in a systematic memoir. My object is to make the theory

known, to excite curiosity regarding it, and to invite co-operation in the task

of its development.

By way of introduction to the subject, let us begin with an investigation

of the properties of a differential expression involving only the first, second

and third differential coefficients of either of two variables in respect to

the other. For this purpose let us consider not what I have called the

Schwarzian itself, which is an integral rational function of these three

quantities, but the fractional expression

ds

y /a

\AjJu O I Ct iZ

5~2l 7&quot;

dx \dx f

which becomes the Schwarzian when cleared of fractions, and which after

Cayley we may call the Schwarzian Derivative and denote by

(y, ) ;

(x, y) will then of course mean
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It is easy to establish the identical equation

&amp;lt;*&amp;gt;-- (I)W (i)

Using for brevity y , y&quot;, y
&quot;

to denote, as usual,

dy d?y dfy

dx dx* dx3

and x
t ,
x

/t ,
xin

to denote
dx d*x d3x

dy dy*&amp;gt; dp

respectively, the relation to be verified is

Now,

and x = -5- ( x )=-;.-;
&quot;

dy y dx\ y
3
/ y* y

Whence we obtain

/ 2y
&quot;

6y&quot;

2
\

&amp;gt;y

1 7 t/ , //0

and the truth of (1) is manifest.

This may be put under the form

y
3

showing that a certain function of the first, second and third derivatives of

one variable in respect to another remains unaltered, save as to algebraical

sign, when the variables are interchanged. An example^of a similar kind

with which we are all familiar is presented by the well-known function

d2

y fdy\% .... d*x (dx\%
jz * (j I

whlcn 1S equal to - -j- + U- .

dx2 \dxj dy
2

\dy)

We are thus led to inquire whether there may not be an infinite number
of algebraical functions of differential derivatives which possess a similar

property, and by prosecuting this inquiry to lay the foundations of the theory
of Reciprocation or Reciprocants.

Having regard to the fact that the present theory originated in that of

the Schwarzian Derivative, I shall proceed to demonstrate, although this is

s. iv 20
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not strictly necessary for the theory of Reciprocants, the remarkable identity

dz

This identical relation is the fundamental property of Schwarzians, and from

it every other proposition concerning their form is an immediate deduction.

In the following proof*, y and z are regarded as two given functions of

any variable t, and a; as a variable function of the same : so that y and z are

functions of x for any given function that x is of t.

It will be seen that

{(y,x)-(Z,x}}(^\\uz /

remains unaltered by any infinitesimal variation of x, that is, when x

becomes x + e&amp;lt; (x}, e being an infinitesimal constant and
&amp;lt;f&amp;gt; (x) an arbitrary

finite function of x.

For brevity, let accents denote differential derivation in regard to x, and

let any function of x enclosed in a square parenthesis signify the augmented
value of that function when x becomes x + 0. In calculating such augmented
values, since we suppose that =

e&amp;lt;/&amp;gt; (x), it is clear that 0, ,
0&quot; ... are each

of them infinitesimals of the first order, and consequently that all products,

and all powers higher than the first of these quantities, may be neglected.

We have therefore

--
dx+de~ 1+0 1 + 6

-0y
&quot;

&quot;

y
y

&quot;

&amp;lt;*

- 2^ -w
y&quot;

- 6
&quot;

y
dx + de 1 + 1 +

= y &quot;-Wy &quot;-Wy&quot;-e &quot;y.

Hence [y y&quot; }
= y y&quot;

~*W ~ 3W ~
^&quot;Y

2

f[/
/2

] =%
[yj =y *

And since by definition

* As originally given in the Messenger of Mathematics, Vol. xv., this was defaced by so many
errata as to render expedient its reproduction in a corrected form.
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we readily obtain

So also [(*, a?)]
=

(*, as) (1
- 20 )

-
ff&quot; .

Whence by subtraction

[(y, x}
-

(z, x)] =(\- 26 ) {(y, x)
-

(z, x)}.

Dividing the left-hand side of this by [/
2

],
and the right-hand side by

z l
(i _ 20 ) which is the equivalent of [Y

2

],
our final result is

\(y, x)
-

(z, x)~\ _ (y,- x)
-

(z, x)

|_
~^~ J~ z

1*

Thus, then, we have seen that the expression

(y, x)
-

(z, x)

dx

does not vary when x receives an infinitesimal variation
e&amp;lt;/&amp;gt;(#),

from which it

follows, by the general principle of successive continuous accumulation, that

the same will be true when x undergoes any finite arbitrary variation, and

consequently this expression has a value which is independent of the form of

x regarded as a function of t
;

it will, of course, be remembered that y and z

are supposed to be invariable functions of t. Let x become z, then (y, x)

dz
becomes (y, z), while at the same time (z, x) vanishes and -y- becomes unity :

so that we obtain

(y,x)-(z,x) _
(dz\*

{y&amp;gt; &amp;gt;

\dx)

Hence, whatever function x may be of t,

/dr\ 2

(2)

To this fundamental proposition the equation marked (1), itself the import
ant point in regard to the Theory of Reciprocants, is an immediate corollary.

For if in (2) we interchange y and z, it becomes

and now, making x= z, we have

-
(

&amp;lt;j ^

which is the same as (1), except that z occupies the place of x.

202
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But (1) may be obtained more immediately from (2) by substituting in it

x for y and y for z, leaving x unaltered
;
when it becomes

This is equivalent to saying that

2yY
&quot; -

3y&quot;

2 = -
y

6 Vxxtll

-
3*,, ),

a verification of which has been given already.

il ii
&quot;

Sv&quot;
2

fdi/\
2

Observe that **
/2

? or (y, x) contains
f-^J

in its denominator and

(dx\

2 /dy\
2

-r- )
in its denominator, which is the same as l-f-] in the

dyJ \dx)

numerator. Thus it is that the square of - enters three times.

Let me insist for a moment on the import of the fact brought to light

\
/U CC )

_
( Z C)

in the course of this investigation, that , 2
- is invariable when x, y

dx

and z being regarded as functions of t, x alters its form, but y and z retain

fdv\ z idz\ 2

theirs. Of course we might write
( -f- )

in the denominator instead of
(
-T- I

,

\djXj \dxj

and then make the same affirmation as before
;
as will be evident if we only

remember that by hypothesis y and z are both of them constant functions of

fdz\ z

t, and that therefore ( -s- 1 must also be so. This is tantamount to saying
\dy)

that when the same conditions are fulfilled {(y, x) (z, x)} (dx)
2
is invariable,

that is, that when x becomes X in virtue of any substitution (including a

homographic one) impressed upon it,

{(y, x}
-

(z, x}} (dxY m {(y, X) -
(z, X)} (dX?,

and thus we see that when x becomes X,

(y, )
-

(z, )

remains unaltered except that it takes to itself the factor I -7-
]

which depends
\ CLOG /

solely on the particular substitution impressed on x.

If y =f(x), z =
(f) (x), and X = w (x),

our formula becomes

{(/a, x)
- (fa ar)} (dx)*

=
{(f*&amp;gt;^X, X) - (&amp;lt;/&amp;gt;a&amp;gt;-&amp;gt;X, X)} (dX}

z
,

so that, speaking of Quantics and Covariants with respect to a single variable

x, (fx, x)
-

(&amp;lt;f&amp;gt;x,
x) is to all intents and purposes a Covariant to the simul

taneous forms f(x) and
&amp;lt;j&amp;gt;(x),

in a sense comprehending but far transcending

that in which the term is ordinarily employed ;
for it remains a persistent
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factor of its altered self when for x any arbitrary function of x is substituted,

the new factor taken on depending wholly and solely on the particular sub

stitution impressed upon x. In the ordinary theory of invariants, the

substitution impressed is limited to be homographic ;
in this case it is

absolutely general. We might, moreover, add as a corollary that if (y, x),

(z, x\ (u, x) ... are regarded as roots of any Binary Quantic, every invariant

of that Binary Quantic is a covariant in the extended sense in which the

word has just been used, in respect to the system of simultaneous forms

f(x), &amp;lt;j&amp;gt; (x), ty (x) .... For every such invariant will be a function of

(y, x)
-

(z, x\ (y, x)-(u, x\ (z, x)
-

(u, x), ...

and will therefore remain a persistent factor of its altered self, taking on a

power of ^r as its extraneous factor.
dx

Calling (fx, x} the Schwarzian Derivative of f(oe), our theorem maybe
stated in general terms as follows :

All invariants of a Binary Quantic whose roots are the Schwarzian Deri

vatives of a given set of functions of the same variable are Govariants (in an

extended sense) of that set offunctions.

The theory of the Schwarzian derivative originates in that of the linear

differential equation of the second order,

u&quot; + 2Pw + Qu = 0,

which becomes, when we write u = ve~Spdx
,

v&quot; -f Iv = 0,

where I=Q-P2 -P .

Now, suppose that u^ and w2 are any two particular solutions of the first

of these equations, and let z denote their mutual ratio; so that, when vl

and v.2 are the corresponding particular solutions of the second equation, we

readily obtain

j ,, f ,

and therefore, z =

A second differentiation gives

_ flxV Ug

v?

-D 4
V

l&quot;But since

the first term of the expression just found vanishes identically, and we have

2v,V
z =--i

,
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or

Differentiating this again, we find

z
&quot;

Hence _i = 2// 2 z

where the left-hand side of the equation is &quot;the Schwarzian Derivative
&quot;

with
z written in the place of y.

LECTURE II.

The expression %y y
&quot; -

3y&quot;

2
, which we have called the Schwarzian, may

be termed a reciprocant, meaning thereby that on interchanging y, y&quot;, y
&quot;

with x
t , x.,, x//t

its form remains unaltered, save as to the acquisition of what

may be called an extraneous factor, which, in the case before us, is a power of

y (with a multiplier 1). Before we proceed to consider other examples of

reciprocants it will be useful to give formulae by means of which the variables

may be readily interchanged in any differential expression.

We shall write t for y and r for its reciprocal x
t , using the letters a, 6, c,...

to denote the second, third, fourth, etc., differential derivatives of y with

respect to x, and a, /9, 7, ... to denote those of x with respect to y. The

advantage of this notation will be seen in the sequel.

The values of a, /3, 7, ... in terms of t, a, b, c, ... are given by the formulae

a = - a -f- t
3
,

j3 = -bt + 3a*+ t
5
,

ry
= -ct* + lOabt - I5as -=-

V,

S = -dts + (loac + 1062

) t
2 - I05a?bt + 105a4

-^ t
9
,

=-et* + (2lad + 356c) t
3 -

(210a
2
c + 280a62

) t
2 + I260a3bt - 945a6 -=- t

n
,

If, in these equations, we write

a = 1.2.0o, 6=1.2.3.0!, c = 1 . 2 . 3 . 4.a2 ,
...

and a = 1.2.
,

= 1.2. 3. a,, 7 = 1 . 2 . 3 . 4. 2 ,
...
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they become

= -
o -5- i

3
,

2
= a2

2 + 5a al t
- 5a 3

-r-
7
,

a, = - Ojf + (6a a2 + Sa^) i
2 - 21a 2a1 + 14a 4

-^ Z
9

,

4
= - a 4 &amp;lt;* + (7a a3 + 7a,a 2) t

3 -
(28a

2 a2 + 28^ ) t
2 + 84a 3a 1

- 42a 5
4- F,

Any one of the formulae in either set may be deduced from the formula

immediately preceding it by a simple process of differentiation.

-
, d 1 d

Thus, since 0= _^_ , and -
?

. -:,

we have
ay t ax

d

= -
-T- ( I

t dx\ t
5

I

I &amp;gt;l I I ~j F &amp;lt;

i I 1 t
-j

ay ax

^ , . ^ . x /-6* + 3a!

so that

By continually operating with -
(adt + bda + cdb + ...) the table may be

v

extended as far as we please, the expressions on the right-hand side being

the successive values of

found by giving to n the values 0, 1, 2, 3, ....

Precisely similar reasoning shows that, when the modified letters

a
, !, a2 , ... are used,

)on = -(2a 9f + So, 3^ + 4a a9a ,
+ ...) -i,

S.4.5.. .(.. + )

A proof of the formula
_v

obtained by Mr Hammond, in which

7=4 ^9 +5ao,9 +Q(a a+}d +7(aa+aa)9 +
2 x

\ 2 /
3

will be given later on, when we treat of this operator, which, in the theory of

Reciprocants, is the analogue of the operator cw^ + 269C + 3c9d + ..., with

which we are familiarly acquainted in the theory of Invariants.
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Consider the expression
ct 5ab.

If, in
&amp;lt;yr 5a/3, which may be called its transform, we write

1 a _ -bt + 3a? -cP + lQabt- 15a3

this becomes a fraction whose denominator is tf, while its numerator is

- ctf + Wabt - 15a3 + 5a (- bt + 3a2

)
= - ct2 + oabt.

Removing the common factor t from the numerator and denominator of

this fraction, we have
ct Sab

7T-oa/3 =--p
.

Here, then, as in the case of the well-known monomial for which

a = t
3
ct,

and the Schwarzian for which

2bt - 3a2 = - t
6

(2/3r
- 3a2

),

the expression ct oab = t
7

(yr oa/3)

changes its sign on reciprocation.

That reciprocation is not always accompanied with a change of sign will

be clear if we consider the product of any pair of the three expressions given

above. Or we may take, as an example of a reciprocant in which this change
of sign does not occur, the form

3ac 562
.

3a (ct
2 - lOabt + 15a3

) -5(bt- 3a2
)
2

Here 3a7 -o/3
2 = -

In the fraction on the right-band side the only surviving terms of the

numerator are those containing the highest power of t, the rest destroying

one another. Thus

37 -
5/S

2 =
|-(8oc

- 562

).
t

Reciprocants which change their sign when the variables x and y are

interchanged, will be said to be of odd character; those, on the contrary,

which keep their sign unchanged will be said to be of even character. The

distinction is an important one, and will be observed in what follows.

Forms such as the one just considered, where t does not appear in the

form itself, but only in the extraneous factor, will be called Pure Reciprocants,

in order to distinguish them from those forms (of which the Schwarzian

2tb 3a2
is an example) into which t enters, which will be called Mixed

Reciprocants. It will be seen hereafter that Pure Reciprocants are the

analogues of the invariants of Binary Quantics.
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With modified letters (that is, writing a=2a ,b = 6a1 , and c = 24a2)

3ac - 562 becomes 144a a2
- 180aj

2 = 3G (4a a2
-

Sa^).

Operating on this with

we have F(4a a2
- 5aj

2

)
= 0.

We shall prove subsequently that all Pure Reciprocants are, in like

manner, subject to annihilation by the operator V.

Hitherto we have only considered homogeneous forms
;
let us now take as

an example of a non-homogeneous reciprocant the expression

(l+t*)b-3a*t.

Here (1 + T2

)/3
- Sat = fl +^

~ bt + 3a X 3o

- bt + So )
- 3a2

In the numerator of this fraction the terms + 3a2 and - 3a2
cancel, a

factor t divides out, and we have finally

In general, a Reciprocant may be defined to be a function F of such a
kind that F(r, ,&?,...) contains F(t, a, b, c, ...) as a factor. An import
ant special case is that in which the other factor is merely numerical

;
the

function F is then said to be an Absolute Reciprocant.

When we limit ourselves to the case where F is a rational integral func
tion of the letters, it may be proved that

F(t, a, b, c, ...)
= + PF(T, a, 0, 7, ...).

For, in the first place, since any one of the letters o, 0, 7, ... is a rational

function of t, a, b, c, ... and integral with respect to all of them except t,

containing only a power of this letter in the denominator, it is clear that any
rational integral function of T, ,&?,... such as F(r, a, & 7, ...) is supposed
to be, must be a rational integral function of t, a, b, c, ... divided by some
power of t. But since F is a reciprocant, F(T, a, /3, 7, ...) must contain

F(t, a,b,c, ...) as a factor; and if we suppose the other factor to be

&amp;lt;/&amp;gt;(, a, b, c, ...)

&
we must have

where
&amp;lt;f&amp;gt;

is rational and integral with respect to all the letters.
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Moreover, F(t, a, b, c, ...)
=^ T&amp;gt;

&quot;

f
7&amp;gt;

&quot;^(T, a, /3, 7, ...).

Hence we must have identically

&amp;lt;f&amp;gt;(t,
a,b, c, ...)&amp;lt;/&amp;gt;(T, a, , 7, ...)

= 1,

where, on the supposition that the functions
&amp;lt;/&amp;gt;

contain other letters besides t

and T,
&amp;lt;f&amp;gt;

(t, a,b, c, ...) is, and $ (T, a, /3, 7, ...) can be expressed as, a rational

function integral as regards the letters a, b, c, ____ But this supposition is

manifestly inadmissible, for the product of two integral rational functions of

a,b,c,... cannot be identically equal to unity. Hence t is the only letter

that can appear in the extraneous factor and we may write

where ^-(t) is a rational integral function.

The same reasoning as before shows that we must have identically

But this cannot be true if ty (t) has any root different from zero
;
for if

we give t such a value as will make ^r(t) vanish, this value must also make

i/r (r) infinite
;
and since

i/r (T)
= A + BT + Cr2 + ... + Mrm

EG M
-.!+_+_+... + _,

the only value of t for which ^ (T) becomes infinite is a zero value. Hence

fy (t) is of the form Mtm
,
and consequently -^ (T)

= Mr. Thus

and therefore M 2 =l.

We have now proved that if F is a rational integral reciprocant,

F(t,a,b,c, ...)=^(r, a, & 7, ...),

or we may say,
= (-ft? F(T, a, /3, 7, ...),

where K = 1 or according as the reciprocant is of odd or even character.

It obviously follows that the product or quotient of any two rational

integral reciprocants is itself a reciprocant ;
but it must be carefully observed

that this is not true of their sum or difference unless certain conditions are

fulfilled. For if we write

^(*,a, ...)
= (-V ^,(T, ,...)

and F3 (t,a, ...)= (~)
K^F, (T, a, ...),

we see that

pF^t, a, ...) + qF2 (t, a, ...}
= (-y^pFl (r, a, ...) + (-y*p*qF, (r, a, ...),
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and consequently this expression will be a reciprocant if K^ = K2 and fa
=

/u,2 ,

but not otherwise. If we call the index of t in the extraneous factor the

characteristic, what we have proved is that no linear function of two recipro-

cants can be a reciprocant, unless they have the same characteristic and are

of the same character. In dealing with Absolute Reciprocants, since the

characteristic of these is always zero, we need only attend to their character.

I propose for the present to confine myself to homogeneous and isobaric

reciprocants *, that is, to such as are homogeneous and isobaric when the

letters t, a,b,c,... are considered to be each of degree 1, their respective

weights being 1, 0, 1, 2, .... The letter w will be used to denote the

weight of such a reciprocant, i its degree, and j its extent, that is, the weight
of the most advanced letter which it contains.

Let any such reciprocant F(t,a,b,c, ...) contain a term Atal bm c
n

..., then

v + I + m + n + . . . = i,

and v + m + 2n+ ... =w.

The corresponding term in F(r, a, /3, 7, ...) will be ATv
a.

l
ft
m

&amp;lt;y

n
... where

1 a .. b cT=
-t&amp;gt;

=
-?&amp;gt;

P =
-t&amp;gt;

+ -&amp;gt; 7- -+-, etc.

Now, if no term of F contains a smaller number of the letters a, b, c, ...

than are found in the term we are considering, the first terms of /3, 7, etc.,

may be taken instead of these quantities themselves and Arv
a.

l^m &amp;lt;y

n
... may

be replaced by
/ \l+m+n+...

j^j.
v 3l 4m sn ... gl fortiori

_ / \i v^ -^o
si w gl tyn ^n

But since F (t, a, 6, c, . . . )
= (-) PF (T, a, & 7, . . .)

we must have identically

Atvalbmcn ... = ()-*+ At J-+v~si~wal bm c
n

....

Hence the character is even or odd according to the parity of i v (that

is, of the smallest number of letters different from t in any term), and the

characteristic
//,
= 3i + w.

The type of a reciprocant depends on the character, weight, degree and

extent. As the extraneous factor is always of the form ( )&quot;#*,
where tc is 1

or 0, we may define the type of a reciprocant by

l:w:i,j or : w : i, j,

according as its character is odd or even.

For Pure Reciprocants the smallest number of letters different from t in

any term is (since all the letters are different from t) the same as its degree.

Here and elsewhere the word reciproeant is used in the sense of rational integral reciprocant:
this will always be done when there is no danger of confusion arising from it.
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Hence the character of a Pure Reciprocant is odd or even according to the

parity of i, and for this reason the type of a Pure Reciprocant may be

defined by w : i, j.

A linear combination of reciprocants of the same type will be a recipro-

cant, for when the type is known both the character and characteristic are

given.

LECTURE III.

Let F be any function (not necessarily homogeneous or even algebraical)
of the differential derivatives which acquires a numerical multiplier M, but is

otherwise unchanged when the reciprocal substitution of x for y and y for x

is effected. A second reciprocation multiplies the function again by M, and

thus the total effect of both substitutions is to multiply F byM 2
. But since the

second reciprocation reproduces the original function, we must have J/ 2 = 1.

Functions of this kind are therefore unaltered by reciprocation (except it may
be in sign), and for this reason are called Absolute Reciprocants. These, as

we shall presently see, play an important part in the general theory. Like

all other reciprocants, they range naturally in two distinct classes, those of

odd and those of even character.

It is perhaps worthy of notice that the extraneous factor of a general

reciprocant is the exponential of an absolute reciprocant of odd character.

For if

F(t,a,b,c, ...)=&amp;lt;f&amp;gt;(t,a,b,c, ...) F(r, a, /3, 7, ...),

we must still have, as before,

&amp;lt;f&amp;gt;(t,a,b } c,
...)(/&amp;gt; (T, a, /3, 7, . . .)

= 1
;

that is log (f&amp;gt; (t, a, b, c, . . .)
= -

log &amp;lt;j&amp;gt;
(T, a, /3, 7, . . .) ;

or log &amp;lt;

(t, a, b, c, ...) is an absolute reciprocant of odd character.

An absolute reciprocant may be obtained from any pair of rational integral

reciprocants in the same way that an absolute invariant is found from two

ordinary invariants. For let

F,(t, a, b, c, ...)
= (-) &quot;^^I(T &amp;gt;

a, & 7, ...),

and F2 (t,a,b, c, ...)
=

(-)&quot;^2 (T, a, & y, ...),

{F, (t, a, b, c, ...)}^ LP\(T, a, /3, 7, ...))&quot;then - -
&quot; = f^fhiH- Vi i

v ^ L.

{Ft (t,a,b,c, ...)}*
l j

14(T.*A.&amp;gt;*-OK

or we may say that Ff* F^ is an absolute reciprocant of even or odd

character according to the parity of K^
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Thus, for example, from

a = t
3a

and Sac - 562 = t (3a7 - 5/S
2

)

(QdQ 562
)
3

we form ,
an absolute reciprocant of even character.

a8

From a reciprocant F whose characteristic is /z we obtain an absolute
&amp;gt;*

reciprocant of the same character as F by dividing it by t
2

.

For if we only remember that r = -
,
it obviously follows that

I

F(t,a,b,c, ...)=^(T,a,&7, ...)

can be written in the form

F(t,a,b,c, ...)_ J_F(r, a, & 7, ...)

M
2 T2

where the original character of the reciprocant F is preserved.

It may be noticed that a reciprocant of odd character cannot be divided

^

by ^(_ 1)^2 so as t give an absolute reciprocant of even character; for, the

reciprocal of F being t^F ,
that of F+\/( l)t

2 will still be F -\/( l)r
2

.

The character of a reciprocant is thus seen to be one of its indelible

attributes.

As simple examples of absolute reciprocants we may take -
,

t

which becomes on reciprocation 4

-
,
and

,
which reciprocates into

3 . The character of the former is even, that of the latter odd.

Observing that

, 1 d I d
log

= -logr and . T--T-.T-,

,
.

we have -7. . j- log t = -T- . -j- log r.

W&amp;lt;
dx/ WT ay/

From this, in like manner, we obtain

/i dy, /i dv,
T- . -J-] log ^ = -7- . T- log T

;

VV* Z/ WT %/
and so, in general,

/I d\\ (I d\,
-T, . -r) log t = \r . -J-) log T.

V* d/ VT d/
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Hence
\-j

. *-! log t is an absolute reciprocant, and of an odd character,

for all positive integral values of i. We thus obtain a series of fractions with
rational integral homogeneous reciprocants in their numerators and powers
of ft in their denominators. It will be sufficient, before proceeding to the

more general theory of Eduction, as it may be called, to examine, by way of

illustration, the cases in which i = 1, 2 and 3.

Let i = 1
;
then

So that, in the case where i = 2, we have

(1 d\\ fl d\a b 3 a2

/
| lop&quot; f [

_ -

\ A //
&quot;

dv I \ * //
*

rfw j.% /2 9 &quot;

/3\Y v \Jb\Ju/ \^/ l&amp;gt; Cl/iC/ /2 (/ V

2bt - 3ct
2

2t3

The numerator of this fraction is the Schwarzian.

In like manner, when i = 3,

L AVi t = (
^bt~^a2 2ct-4,ab Gabt-9a3 2cF- 10abt+9a3

g

But here a reduction may be effected, for (-. } .as well as -. itself, is anw ^
absolute reciprocant of the same character as the whole of the expression just

O 1

found. Hence we may reject the term
^

. - without thereby affecting the

reciprocantive property of the form, and thus obtain

ct 5ab

an absolute reciprocant of odd character. The corresponding rational integral

reciprocant is

ct Sab.

We have found that - and- are each of them reciprocants.
t* t

2bt
Why, then, by parity of reasoning, is not

,
and therefore b, a reciprocant ?

U

T. -i
a2

,i f a . 2bt 3a2
.

It is because
,
the square of -5 ,

is of even character, while ----- is of

an odd character, so that no linear combination of the two would be

legitimate.
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If we differentiate any absolute reciprocant with respect to as, we shall

obtain another reciprocant of the same character. For let R be any absolute

reciprocant and R its transform, then

R=R;
and since = t -i- may be written in the equivalent but more symmetrical

dx dy
form

1 A-._L A
ijt dx \/T dy

/I d\ /I rf\
wehave *

On one side of this identical equation is a function of the differential

derivatives of y with respect to x
;
on the other, a precisely similar function

of those of x with respect to y. Hence -
.

-p
is an absolute reciprocant,

J D
and therefore -p is a reciprocant, the character of each being the same as

CitJC

that of R.

I will avail myself of the conclusion just obtained, which is the cardinal

property of absolute reciprocants, to give a general method of generating

from any given Rational Integral Reciprocant an infinity of others rational

integral educts of it, we may say. Let F be such a reciprocant, and /j,
its charac

teristic
;
then - is an absolute reciprocant, and consequently -v- / \ is a

*

reciprocant, both of them of the same character as F; that is

t*

or we may say -j

is a reciprocant of the same character as F.

This is even true for non-homogeneous reciprocants, for the only assump
tion made at present as to the nature of F is that it is a rational integral

reciprocant. But if we further assume that it is homogeneous and isobaric*,

we know that

fj,
= Si + w.

Now, Euler s equation gives

Si = 3 (Hdt + ada + bdb + cdc +...),

*
It will subsequently be proved that every rational integral reciprocant which is homo

geneous is also isobaric.
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and from the similar equation for isobaric functions (remembering that the

weights of t, a, b, c, ... are -
1, 0, 1, 2, ...) we obtain

so that
fj,
= Wt + 3o3a + 4bdb + ocdc + ... .

-=-And since -=- =ddt + bda + cdb + ddc + ...,

we may in
(
2t -j ua } F replace 2t -, ua by

V dx J dx J

a (2tdt + 3ada + 4&amp;gt;bdb + ocdc

or by its equivalent

(26*
- 3a2

) da + (2ct
-

4ab) db + (2dt
-

oac) dc + ....

The conclusion arrived at is that when F is a rational integral homo

geneous reciprocant,

\(2U
- 3a2

) da + (2ct
-

4&amp;gt;ab)
db + (Ut - 5ac) dc + ...}F

is another, and that both are of the same character.

It will be convenient to use the letter G to denote the operator just
found and to speak of it as the generator for mixed reciprocants. By
the repeated operation of this generator on a we may obtain the series

Ga, G2
a, G3

a, ..., whose terms will be mixed reciprocants, since each operation
increases the highest power of t by unity. The forms thus obtained will, in

general, not be irreducible. It is, in fact, easy to see that a reduction must

always take place at every second step. Observing that GF only expresses
1 rf /N\

the numerator of the absolute reciprocant . -=-( - \ in a convenient form,
dx\

and that G2F is equivalent to the numerator of ( . ]
- \ we have

,
d dF fi , p + 3 tdF u, ~\

t~r (t-j- -%. aF) -
f

-.a(t-j . aF)dx \ dx 2 / 2 V dx 2 /
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The whole of this fraction is an absolute reciprocant of the same character

as F; so also is

We may therefore reject the term ^ .

remaining fraction

is -- / the product of the even absolute reciprocant bv \
^+3 I t

3 J *
]

* \ *V
. a-F from the numerator, and the

d_(.dF__V&amp;gt;
dec V dx 2

dF

will still be an absolute reciprocant of the same character as F. Its numera
tor, which is one degree lower than G2

F, may be written in the form

t
d

-( i\
dF-^lF

This, it may be noticed, is a reciprocant of the same character as F, even
when F is non-homogeneous.

Starting with a, we have

Ga = 2bt 3a2

(the Schwarzian),

G*a G (2bt 3a2

)
= 6a (2bt 3a2

) + 2t (2ct 4a6) = 4c 2 20abt + 18a3
.

But, for the reason previously given, 18a3

may be removed, so that reject

ing this term and dividing out by 4&amp;lt;t we obtain the form

ct oab,

which may be called the Post-Schwarzian.

The next form is obtained by operating on the Post-Schwarzian with G
;

thus, we have to calculate the value of G (ct 5ab), where

G =
(2bt

-
3a-) da + (2ct 4a6) 96 + (2dt

-
oac) 9C .

The working may be arranged as follows :

dfi act b2t a2b

t (2dt
-
5ac) = 2 - 5 . . from (2cfe

-
5ac) dc

-5a(2ct -4a&)=
- 56 (2bt

- 3a2
)
=

2 -15 -10 35

The result should be read thus :

2dP - loact - lOb-t + 35a2
b.

To obtain the next of this series of reciprocants, we have to operate on
this with G and at the same time to take account of the reduction that has

s. iv.
21
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to be made at each alternate step. The arrangement of the work is similar

to that of the former case.

et3 adf- bet2 a*ct abz
t azb

-I5at(2dt-5ac)=

(35a
2 - 2060 (

2cf - 4a&)
=

(70a6
- 15cO (26*

-
3a?)

=

4 -12

. -30 75

-40 70 80 -140

-30 45 140 -210

from (2e-6a03d

(2dt
- S

(26*
- 3a2

)
8

4 _42 -70 190 220 -350
- 70 + 350

4 _42 -70 120 220

This divides by 2t, giving the reduced value

2et2 - Zladt - 356c + 60a2
c

The next obtained by this process will be seen by the following work

to be

4ft
3 - oGaet* -

fi
3 aet2 bdfi

- 660a3
c - 1210a262

.

a?dt abet b3t d?c a2
fe
2

- 21at (2et- Gad)
=

a2
) (Zdt

-
5ac) =

(
- 35ci!+ 220a6) (2ct

-
4afc)

=

2ldt+ l 20ac+ 1 1062
) (Zbt- 3 2

)
=

4 -14

. -42 . 126 . .

-70 . 120 175 . -300 .

. -70 . 580 . . -880

-42 63 240 220 -360 -330

from (2/i!
-

7ae) 3,

4-56-112-70309 995 220 -660 -1210

This cannot be reduced in the same manner as the preceding form,

but it must not be supposed that the forms thus obtained are in general

irreducible.

Having regard to the circumstance that the forms of the series

a, Ga, G2
a, ...

(1

d \
n

-r.
-j-J

log t, they

may be called the successive educts, and the reduced forms given above may

be called the reduced educts and denoted by E1} E2 ,
E3 .... Thus

E1
= a,

E2
= Zbt - 3a2

,

Es ct 5ab,

E, = 2dt2 - loact - lObH + 35a2
6,

E5
= 2et2 - 2ladt - Sobct + 60a2

c + HOafc2
,

E6
=

4ft
3 - oQaet2 - U2bdt2 - 70cH2 + 309a2d* + QQoabct

- 660a3
c - 1210a262

.
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LECTURE IV.

We have seen that when F is a rational integral homogeneous and
isobaric reciprocant, GF is another of the same character. It will now
appear that the condition of isobarism is implied in that of homogeneity;
for let F be a rational integral homogeneous reciprocant, /* its characteristic
and i its degree in the letters t, a, b, c,..., then, in the identical equation

F(t, a, b,c,...) = tF(r, a, /?, 7, ...)

both members are homogeneous and of the same degree in the letters

t,a,b,c,... ,
that is, if Atkal bm c

n
... be any term of F

(t, a, b, c, ...), its

degree must be the same as that of t^Ark
a.

l

/3
m
y
n

... when r, a, 0, y, ... are

expressed in terms of t, a, b, c, But

_
1 a b c

~t ! ~? P&quot;

j4+ y=-^ + ---,

and so on. The degrees of r, a, /3, 7, ... are therefore - 1,
-

2,
-

3,
-

4, ...

respectively. Hence

k + I + m + n + . . .
= p - k - 21 - 3m - 4m - . . .,

or p=2k + 3l + 4&amp;gt;m + on + ... .

And by hypothesis i = k + I + m + n + . . .,

so that fj.-3i=- k + m+2n+
Neither /* nor i is dependent for its value on the selection of a particular

term of F, for all terms of F(r, a, 0, 7) ...) are multiplied by the same
extraneous factor F, and all terms of F(t,a,b,c, ...) are of the same
degree i. Hence -k + m + 2n + ... must also be the same for each term of

F; or, attributing the weights
-

1, 0, 1, 2, ... to the letters t, a, b, c, ..., the
function F is isobaric.

Next, suppose F to be fractional, and let it be the ratio of the two
rational integral homogeneous reciprocants F, and Fa . The operation of G
on F will, in this case also, generate another reciprocant of the same
character as F. For, since G is linear in the differential operative symbols
3o, 3&, 3C , ...,its operation will be precisely analogous to that of differen

tiation, so that, operating with G on

we have GF =
Ji

*

212
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In order to prove that this is a reciprocant, we have to show that the

character and characteristic are the same for both terms of the numerator.

But GFl is a reciprocant of the same character as Fl} and GF2 is one of the

same character as F2 ;
thus the two terms of the numerator are of the same

character as F^F2 . As regards the characteristic, it should be noticed that

G, that is, the operator (2bt 3a2

)9a + (2c 4afr)9& + ..., increases the

degree by unity, but does not alter the weight, so that it increases the

characteristic of any rational integral homogeneous reciprocant by 3. Thus

the characteristic of each term in the numerator exceeds by 3 that of F
1F2 .

Hence GF is a reciprocant, and, taking account of its denominator as well as

its numerator, we see that the operation of G on a rational homogeneous

reciprocant, whether fractional or integral, produces another in which the

original character is preserved while the characteristic is increased by three

units.

More generally, let F1} F2 ,
Fs ,

... be any rational homogeneous recipro-

cants whose extraneous factors are ( )*
1 #ii

, ( )&quot;*#**, ()K3
1P*, ... respectively;

and suppose &amp;lt;& to consist of a series of terms of the form AF^FfiF^3
...,

such that the extraneous factor for each term is
(-)&quot;#*.

Then &amp;lt;J&amp;gt; is a recipro

cant, but not necessarily a rational one
;
for the indices \l} X2 ,

X3 , ... may be

supposed fractional, provided only that they satisfy the conditions

T^X! + K2\2 + r3X3 + ... K = a positive or negative even integer,

and /^Xi + /i2X2 + /i3X3 + ...
/JL
= 0.

We proceed to show that G3&amp;gt; is also a reciprocant, and that its extraneous

factor is -&quot;#
i+3

. Since

we have to prove not only that each term of this expression is a reciprocant,

but also that all of them have the same extraneous factor
;
otherwise their

sum would not be a reciprocant.

Now, in 3&amp;gt;
= 2AF^F^Ff3

...,

the extraneous factor for each term is by hypothesis ()&quot;#*,
so that the

extraneous factor for each term of

is ( Y~
K
^tIJ- til

,
and therefore

-y^-
is a reciprocant. Also, GFl

is a reciprocant

whose extraneous factor is ( )
K

&amp;gt;^

+ :!

. Hence -jjv.QFi is a reciprocant having
(JLji i

( )
K #x+3 for extraneous factor, and in exactly the same way we see that every

other term of G&amp;lt;& is also a reciprocant with the same extraneous factor.
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Thus G, operating on any homogeneous reciprocant whose extraneous

factor is ( )&quot;#*, generates another whose extraneous factor is ( )
lc
i
*+3

.

If. in the generator for mixed reciprocants,

G = (2bt
- 3a2

) da + (2ct
-

4a6) db + (2dt
- oac) 9C + . . .,

we write a = 1 . 2 . a
,

6 = 1. 2 . 3 . alt c = 1.2.3.4.a2 ...,

(that is, if we use the system of modified letters previously mentioned), its

expression assumes a more elegant form. Substituting for a, b, c, ... their

values in terms of the modified letters, we have

2bt - 3a2 = 2 . 1 . 2 . 3&amp;lt;M
- 3 (1 . 2)

2 2 = 1 . 2 2
. 3 (a,t

- a 2

),

and {) = - ?L

so that (2bt
- 3a2

) 9 = 1 . 2 . 3 (aj - a
fl

2

) 9 -

Again, (2ct
-

4a&) = 1 . 22
. 3 . 4 (a2 t

- a a,)

so that (2c
- 4a6) 86 = 1 . 2 . 4 (oj*

- a.a^ 90l .

Similarly, (2d&amp;lt;

-
oac) 9C

= 1 . 2 . 5 (a3
- a a2) 9^.

Thus the modified generator for mixed reciprocants is

1.2.3 (aj - a 2
)3a + 1 -2.4 (a2 t

- a a^ai + 1.2.5 (a3 t - a a 2)da2 + ...,

in which the general term is

1 . 2 O + 3) (an+l t - a an) 9an .

The factor 1 . 2 may, of course, be rejected, and our modified generator

may be written in the simple form

3 (a^ - a 2

) 9ao + 4 (a^t
- a a,) 9

ai + 5 (as
- a a2) 9a2 + . . . .

Operating with this on the homogeneous reciprocant F(t, a
,
alt az , ...),

the result will be another homogeneous reciprocant of the same character as

F. When we start with a and make the reductions which, as we have seen,

occur at every second step, we find a system of reduced educts corresponding
in every particular with those formerly given, but expressed in terms of the

modified letters a
, a1} a2 ,

... instead of a, b, c, .... These are as follows:

2a.,t

*2a3 t-
- 6a a2

- Saft + 7a X,
2a4t-7a a3 t la^t + 8a 2a2

*14a5 Z
3 - 56a at t-

- oGa^t2 -

+ 33d!
3
1 - 88a 3a2

- 121a 2a 1

2

It will be observed that in the unreduced forms, marked with an asterisk, the sum of the

numerical coefficients is zero. This is a direct consequence, as may be easily seen, of the form
of the modified generator, in which the sum of the numerical coefficients in each term is also zero.
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It will be found on trial that these modified educts are obtained with

greater ease and with less liability to error by a direct application of the

generator

3 (a^t a 2

) 9ao + 4 (az t a a^) 9a ,
+ 5 (a3 t a a2) 9 2 + . . .,

than by making the substitution of 1 . 2 . a
, 1.2.3.^, 1 . 2 . 3 . 4 . a2 ,

. . . for

a, b, c, ... in the system of educts already given. For this reason the working
by the former method is here performed, instead of being merely indicated.

From we obtain immediately

!
t a 2

.

Operating on this with the generator, there results

4tt (az t a^a-i) 6a (aj
2
)
=

4&amp;lt;a2 t
2 10a a^ + 6a 3

.

This, when reduced by removing its last term and dividing the others by
2t, gives

The next form is found from this by a simple operation, without subse

quent reduction, and is therefore

lOt (a3 t
- a a2 ) 20a (a2 t a a,) 15aj (aj a 2

).

Or, collecting the terms and rejecting the numerical factor 5,

2a 3
2 - 6a a2

- 3^ + 7a 2aa .

The operation of the generator on this gives

12 2

(a4 t a a3) 30a t(a3 t a a2) + 4 (7a
2

6a^) (a2 t a i)

The collection of terms and subsequent reduction is shown below :

-14a 2

(2a2i-5a a1)= .

12 -42 -42 48 66

Removing the factor 6t, the reduced form is

2a4 2
2 7a a3 t ^la^a^t + 8a 2

a.2 + lla,,^
2

.

Operating on this with the generator, we have

4 2

(a5 t
- a4)

- 42a e (aj - a a3) + 5 (8a
2 - 7a^) (a3 t

- a a^)

+ 4 (22a a!
- 7a2 i) (az t

- a^ + 3 (lla^ + 16a a2
- 7a 3 t) (

,

3 - 88a 8a2
- 121a 2a1

2
,

which cannot be reduced in the same manner as the preceding form.
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To obtain a generator for passing from pure to pure reciprocals a

process is employed similar to that which gave the generator for mixed

reciprocants which we have just been using. I state the results before giving

the proof, and then proceed to speak of generators in the theory of Invariants.

The generator for pure reciprocants is

(Sac
- 46 2

) db + (Sad
-

56c) dc + (Sae
- Qbd) dd + ...;

or, expressed in terms of the modified letters,

4 (a a.2
-

a?) dai + 5 (a as
-

a,a.2) dat̂ + 6 (aca4
- a^s) 9a3

+

By operating with this on any pure reciprocant R, we generate another

pure reciprocant of opposite character to that of R.

The connection between the two theories of Reciprocants and Invariants

is so close, and these brother-and-sister theories throw so much light upon

each other, that I began to inquire whether, in the latter, there did not exist

a theory of Generators parallel to that of the former.

Fortunately, Mr Hammond was able to recall a correspondence in which

Prof. Cayley had given such a theory, which he regarded, and justly, as an

important invention. Its substance has been subsequently incorporated in

the Quarterly Journal (Vol. xx. p. 212). It offers itself spontaneously in the

Reciprocantive Theory ;
in the Invariantive one it calls for a distinct act of

invention. Prof. Cayley has discovered two generators similar in form with

those for reciprocants, and one of them strikingly so
;
in a letter to me he

calls these P and Q. As given by him,

P = abda + acdb + addc + ... ib,

Q = acdb + 2ad9c + . . . 2w6,

where i is the degree and w the weight, the weights of a, b, c, d, ... being

taken to be 0, 1, 2, 3, ... (I supply the a which Cayley turns into unity.)

As an example he takes the &quot; Invariant
&quot;

d*d Sabc + 263 = /, suppose. We
have then

PI = (abda + acdb + addc + aeda 36) /
= ab (2ad - Sbc) + ac (- 3ac + 662

)
- Sa*bd + a3e - 36 (a*d

- Sabc + 263

)

= o?e - 4a*bd - 3a2
c
2 + 12a62

c - 664

= a2

(ae
- 4bd + 3c2

)
- 6 (ac

- 62

)
2
,

and QI = (acdb + 2addc + Saedd - 66) /

= ac (- Sac + 662
)
- 6a2

6cZ + Sa3 e - 66 (a*d
- 3a6c + 263

)

= Sa*e - 12a*bd - 3a2
c
2 + 24a62

c - 1264

= 3a2

(ae
-

4&amp;lt;bd + 3c2

)
- 12 (ac

- 6 2

)
2
.

P and Q may be transformed by means of Euler s equation and the

similar one for isobaric functions, which enable us to write

i = ada + 636 + c9c + ddd + . . .,

and w = 636 + 2c9c + 3ddd + ...;
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P thus becomes
abda + acdb + addc + aedd + ...

- abba - &db
- bcdc

- bddd - ...

= (ac-fr)db + (ad-bc)dc + (ae- bd)dd + ...,

the same in form as either of our generators, except that the arithmetical
coefficients are all made units

; a, b, c, . . . taking the place of the t, a, b, ...

of the generator for mixed reciprocants.

In like manner, Q becomes

(ac
- 262

) db + 2 (ad - 2bc) dc + 3 (ae
-

2bd) dd + . . .,

where the arithmetical series 1, 2, 3, ... takes the place of 3, 4, 5, ... or of

4, 5, 6, ... in the two Reciprocant Generators.

The effect of P and of Q is obviously to raise the degree and the weight

of the operand / each by one unit. But if we take R = - (2wP -
iQ), the

\]u

terms in Cayley s original formulae containing b cancel, so that 2wP - iQ
divides out by a and the weight is raised one unit without the degree being
affected. This is mentioned in the Quarterly Journal (loc. cit.) ;

but it may
also be remarked that when 7 is a satisfied invariant, it is annihilated by the

operation of R
;
when the invariant is unsatisfied, each of the three operators

P, Q and R increases its extent by an unit, that is, introduces an additional

letter. For let j denote the extent, then, writing a0i ali aS) ...
a,-

for a, b, c, ...,

we have

P = a i9a + aoO^ai + ... + aj+i^aj
~

i&amp;lt;h ,

Q = a a2dai + 2a a3da2
+

whence we find

R = - (2wP - iQ)

-
i) a,d

ai +...+(2w-ij + i) afa.^ + (2w - ij) aj+l daf
But for a satisfied invariant

2w = ij ;

and substituting this value for 2w in the above expression for R, it becomes

* IX^oo + (j
~

1) oAx + . . . +
afiaj^},

which, as is well known, annihilates any satisfied invariant.



42] Lectures on the Theory of Reciprocals .329

LECTURE V.

It will be desirable to fill up some of the previous investigations by

discussing some points in them that have not yet received our consideration.

There may be some to whom it may appear tedious to watch the com

plete exposition of the algebraical part of the Theory, who are impatient

to rush on to its applications. But it is my duty to consider what may be

expected to be most useful to the great majority of the class, and for that

purpose to make the ground sure under our feet as I proceed. To the

greater number it will, I think, be of advantage to have their memories

refreshed on the kindred subject of invariants, and probably made acquainted

with some important points of that theory which are new to them.

I confess that, to myself, the contemplation of this relationship the

spectacle of a new continent rising from the waters, resembling yet different

from the old, familiar one is a principal source of interest arising out of the

new theory. I do not regard Mathematics as a science purely of calculation,

but one of ideas, and as the embodiment of a Philosophy. An eminent

colleague of mine, in a public lecture in this University, magnifying the

importance of classical over mathematical studies, referred to a great mathe

matician as one who might possibly know every foot of distance between the

earth and the moon
;
and when I was a member, at Woolwich, of the

Government Committee of Inventions, one of my colleagues, appealing to me
to answer some question as to the number of cubic inches in a pipe,

expressed his surprise that I was not prepared with an immediate answer,

and said he had supposed that I had all the tables of weights and measures

at my fingers ends.

I hope that in any class which I may have the pleasure of conducting in

this University, other ideas will prevail as to the true scope of mathematical

science as a branch of liberal learning ;
and it will be my endeavour to

regulate the pace in a manner which seems to me most conducive to real

progress in the order of ideas and philosophical contemplation, thus

bringing our noble science into harmony and in a line with the prevailing
tone and studies of this University. Faraday, at the end of his experimental

lectures, was accustomed to say I have myself heard him do so &quot;We will

now leave that to the calculators.&quot; So long as we are content to be regarded
as mere calculators we shall be the Pariahs of the University, living here

on sufferance, instead of being regarded, as is our right and privilege, as the

real leaders and pioneers of thought in it.
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That Cayley s two operators, which have been called P and Q, are in fact

generators, may be proved as follows -f :

Let H = adb + 2bdc + 3c9d + 4dde + . . .
,

and = a(\bda +/j.cdb + vddc + ...)-*&,

where AC, X, /u,, z&amp;gt;,
... are numbers.

When K is the degree of the operand, and \ =
/JL
= V = ... =1, the operator

is identical with P
;
but is identical with Q when K is twice the weight

of the operand and X = 0, /A
=

1, z; = 2, ____

If now we use * to signify the act of pure differential operation, it is

obvious that

=(ft X )+(*!),
so that n@-o = (n*)-(*n).
But since Ha - 0, fib = a, Oc = 26, ...

we have H * = a (Xa9a + 2/i696 + 3i/c3c + ... - AC)

and *ft = a (X&96 + 2/ic3c + 3z/rf3d + ...).

Hence O - H = a [\ada + (2/*
-

X) 696 + (3i/
-

2/x) c3c + ...-};
now if the operand / be any invariant (satisfied or unsatisfied), we have O/=0,
and therefore fl/=0

;
so that we find

ft/ = a {\ada + (fy - X) bdb + (Sv
-

2/i) c3 c + . . .
-

AC}
I.

If in this we write X=a = z/=...=l, and AC = t, where i is the degree of

the operand, becomes P and we have

HP/ = a (ada + bdb + cdc +...- i) I.

But, by Euler s theorem, the right-hand side of this vanishes, and therefore

Similarly, by means of the corresponding theorem for isobaric functions,

we may prove that

For if, in the general formula, we write X = 0, /*
=

!, z/ = 2, ... and K = 2w,
where w is the weight of the operand, we find

flQI = a (2bdb + 4c3c + 6ddd + . . .
-

2iv) I = 0.

Thus, when stands either for P or for Q, it is either an annihilator or a

generator (that is, / is either identically zero or else an invariant). But if

I be the most advanced, or say the radical letter of /, no term of w9z/ can

cancel with any other term of /; and since, for this reason, / cannot

vanish identically, it must be an invariant, and the operators P and Q must
be generators.

t In the Quarterly Journal (Vol. xx. p. 212) Prof. Cayley only considers a special example,
and has not given the proof of the general theorem.
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The generators previously given for reciprocants also possess this property

of introducing a fresh radical letter at each step. The radical letter, on its

first introduction, enters in the first degree only, and in the case of the educts

of log*, whose values have been calculated, its multiplier is seen to be a

power of t. The form of the generator for mixed reciprocants

3 (aj
- 2

) 9a + 4 (a2t
- a i) 9 ffl ,

+ ...+(+ 3) (an+l t - a an) 8
n

shows this, or it may be seen by considering the successive values of

I d

For let
a

?
a* &quot;

denote this expression, and let its radical letter
t*

be an ; then, on differentiating again with respect to so, the new letter intro

duced arises solely from a term in the numerator

filial nn
But aB = 5-2U2.3...w+2; so that -^ = (n + 3) an+1 .

dxn ax

Hence, if when an is the radical letter, it occurs in the first degree only
j

jfi

and multiplied by a power of t, it follows that, since -, will be a power of
CtCtfi

t, the derived expression which contains the radical letter an+1 will contain it

in the first degree only and multiplied by a power of t. And since this is

true for the case i = l, when . -5- log t = -, it is true universally.
Vt dx ft

Observe that for i = 1, 2, 3, ... the radical letter is
, c^, a2 ,

... respec

tively.

It will be remembered that [ -77 . -7- 1 log is an absolute reciprocant. It

\\/t dx)

may be called the iih absolute educt, to distinguish it from the rational

integral educts Elf Ez ,
Es ,

... whose values have already been calculated.

Let jR (t, a , 1; a2 ,
... an) be any homogeneous rational integral recipro

cant, and let the educts be A
,
A lt A 2 ,

... A n ;
then obviously

an may be expressed rationally in terms of An and an-i, an-i, o t,

cti-2) a
o&amp;gt; n

ttj A l} ac and ,

a A and ^,

where observe that the denominators in these expressions are all powers of t.

Hence, by successive substitutions, R (t,
a

,
a 1} ... an) may be expressed
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rationally in terms of A n , ... A lt A ,
and t. Thus any rational integral

homogeneous reciprocant is a rational function of educts, and is of the form
E
--

, where E is a rational integral function of the educts.
6

Does not this prove too much, it may be asked, namely, that any function

F of the letters is a rational function of the educts, which are themselves

reciprocants, and will therefore be a reciprocaot? But this is not so; for

observe that although F will be expressed as a sum of products of educts,

such products will not in general be all of the same character, and their

linear combination will be an illicit one, such as is seen in the illicit com
bination of a 2 with the Schwarzian (aj

2
).

We have seen that by differentiating an absolute reciprocant, or by the

use of a generator, we obtain a fresh reciprocant. But there are other

methods of finding reciprocants ; as, for example, if the transform of

(f&amp;gt; (t, a, b, c, ...)

is ^(T, a, & 7 , ...),

that is, if
&amp;lt;j)(t, a, b, c, ...)

= ^(r, a, /3, 7, ...),

then -^(t, a, b, c, ...)= &amp;lt; (T, a, 0, 7, ...).

Whence, by multiplication,

&amp;lt;f&amp;gt;(t,
a, b, c, ...)^(t, a,b, c, ...)

=
&amp;lt;/&amp;gt;(T,

a, /3, 7, ...)^(T, a, /3, 7, ...).

Thus
&amp;lt;j&amp;gt;

. ty is a reciprocant, and, moreover, an absolute one of even

character, although neither
&amp;lt;,

which is a perfectly arbitrary function, nor
i/r,

its transform, is a reciprocant.

Herein a mixed reciprocant differs from an invariant, which cannot be

resolved into non-invariantive factors. It is worth while to give a proof of

this proposition ;
but first I prove its converse, that if p, q, r, ... are all

invariants, their product must be so too. This is an immediate consequence
of the well-known theorem that

fl/=0
is the necessary and sufficient condition that 7 may be an invariant where,
as usual, 12 is the operator

adb + 2bdc + 3cdd + ...,

and the word invariant has been used in the same extended sense as formerly.

For
\ p q r

But since p, q, r, ... are all invariants, we have

%&amp;gt;

= 0, Q.q
=

0, Hr = 0, .

and therefore fl (pqrs . . .)
= 0.

Next, suppose that I = P1Q 1&amp;gt;

where / is but Ql is not an invariant.



42] Lectures on the Theory of Reciprocants 333

To meet the case in which Pl and Ql are not prime to one another, Q1} if

resolved into its factors, must contain one Q 1 where Q is not an invariant.

Suppose that Pj contains Qi, and let i +j = k
;
then we may write

/-pg*
where P is prime to Q. But since / is an invariant by hypothesis,

ft/=0,

and therefore, QkHP + kPQk~lOQ =
;

--~

Now P is prime to Q, so that the fraction ^ is in its lowest terms; there

fore HQ contains Q ;
but this is impossible, for the weight of HQ is less than

that of Q. Hence / cannot contain any non-invariantive factor Qlt

All this will be equally true for a general function / annihilated by any
operator ft which is linear in the differential operators 9a , db ,

dc ,
... no matter

what its degree in the letters a, b, c, ... themselves
;
that is, we shall still

have

J=PQk

and 9 k3.p ftp

where P and Q are prime to each other, and, as before, ftQ will contain Q as

a factor. But if ft is an operator which diminishes either the degree or the

weight, IQ is either of lower degree or of lower weight than Q, and so

cannot contain it as a factor. Hence J cannot contain a factor Q not subject
to annihilation by ft.

If, however, ft does not diminish either the degree or the weight, it may
be objected that ftQ might conceivably contain the factor Q; and were it so,

there would be nothing to show the impossibility, in this case, of a function

J subject to annihilation by ft containing a factor Q, which is not so. But

quaere : Is it possible, when J is a general homogeneous and isobaric function
of a, b, c, ..., for ftj to contain / and at the same time the quotient to be
other than a number*? Valde dubitor. But I reserve the point. Setting
aside this doubtful case, and considering only such linear partial differential

operators as diminish either the degree or the weight of the operand, we see
that there cannot exist any universal operator of this kind whose effect in

annihilating a form is the necessary and sufficient condition of that form

being a reciprocant. But this does not preclude the possibility of the
existence of such annihilators for special classes of reciprocants, and in fact

*
If Q-pada -i-qbcb+ rcdc +..., where p, q, r, ... are in Arithmetical Progression,

J
is a

number
; but then could not be an annihilator.
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(as we have already stated and shall hereafter prove) Pure Reciprocants are

definable by means of the Partial Differential Annihilator

+ 5a a lda + 6

which is linear in the differential operators, and diminishes the weight.

The generator for mixed reciprocarits, which we have called G, will not

assist us in obtaining pure reciprocants, but generates a mixed reciprocant in

every case, even when the one we start with is pure. Thus, starting with the

pure reciprocant R, our formula

GR =
(3 (a^

- a 2
) 9ao + 4 (a2 t

-
a.a,) 9ai + 5 (a a t

- a a 2) 8
2
+ . .

.}
R

may be written thus

GR = t (3aAo + 4a23ai + 5aA2 + . . .) R
- a (3a 90o + 4aj8rtl

+ oa^ + ...) R.

Here R being pure, that is, a function of a
,
al} a.2 ,

... (without t), we see

that

(3a da + 4^9^ + 5a23a2 + 6a33a3 + . . .) R
= 3 (a 9 + Oi9, + Oada,, + . . .) R
+ (ai9a ,

+ 2a2 8a2 + 3a33a3 + ...) R
= (Si + w) R,

where i is the degree and w the weight of R. Hence

GR = t (30,9^ + 4a2 affll
+ 5a,9as + . . .) R -

(3i + w) a R,

where it should be noticed that a R is of opposite character to R (for a is of

odd character), while GR has been proved to be of the same character as R.

Thus we cannot infer that t (3^9^ + 4a2 9ftl
+ 5a33a2 + ...)R is a reciprocant.

The mixed reciprocant GR cannot therefore be resolved into the sum of two

terms, one of which is a pure reciprocant and the other a pure reciprocant

multiplied by t.

LECTURE VI.

Before proceeding to prove that, as was stated in anticipation in

Lecture IV, the operator

(3ac
- 462

) 96 + (Sad - 5bc) de + (3ae
-

Qbd) 9* + . . .,

or, when the modified letters are used,

4 (a 2
-

af) 9
0l + 5 (a a3

- a^) 9
2
+ 6 (a a4

- a^) 3a, + . . .
,

will serve to generate a pure reciprocant from a pure one, it may be useful

to briefly recapitulate what has been said concerning the character and
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characteristic of reciprocants. It will be remembered that the extraneous

factor of any rational integral reciprocant is of the form ()*#*, that the

character is determined by the parity (oddness or evenness) of K, and that
/JL

is what has been called the characteristic.

For homogeneous reciprocants it has been proved that
/j,
= 3i + w, where

i is the degree of the reciprocant and w its weight, the weights of the letters

t, a,b,c,... being taken to be -
1, 0, 1, 2, ... respectively. The character is

odd or even according as the number of letters other than t in the principal
term or terms is odd or even. By a principal term is to be understood one in

which t is contained the greatest number of times. So that, in other words,
the character is governed by the parity of the smallest number of non-
letters that can be found in any term. For pure reciprocants, there being no
t in any term, the character is determined by the parity of the number of

letters in any one term.

Let R be any pure reciprocant, and suppose its characteristic to be a
T)

then
^

is an absolute reciprocant. If, however, we differentiate this with

t*

respect to x, and thus obtain another reciprocant, the resulting form will not
be pure, for its numerator will be identical with the form obtained by the
direct operation on R of the generator for mixed reciprocants, and its

denominator will be a power of t. But, remembering that ~
,
and therefore

C
& ^

7?

,
is an absolute reciprocant, we see that

, which is the quotient of the

two absolute reciprocants and
,
is so also. Hence 4- / \ is a recioro-

(I T1

\ f^ I

cant, and, since it no longer contains t, a pure one. Now,

dR p /pa . t&amp;gt;R

remains a reciprocant when multiplied by any power of the reciprocant a.

Hence the numerator of this expression, ornumerator of this expression, or

is a reciprocant. The general value of -= has been seen to be
ax

cidt + bda -f cdb + ddc + . . .,

but, since R is supposed to be pure, dtR = 0.
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We may therefore, in 3a -r~ ^b, replace -y- by
doc ctcc

bda + cdb 4- ddc + edd +

Now, remembering that fj,= Si + w, and that by Euler s theorem and the

similar one for isobaric functions

i = ada + bdb + cdc + ddd + ...

and iv = bdb + 2c

we see that p is equivalent to

Sdda + 4636 + 5c8c

Hence, 3a ^
--

/u&
= 3a (bda + cdb + ddc + edd 4- . . . )

- b (3a8a + 4,bdb + 5cdc + 6ddd + ...)

= (Sac
- 462

) a6 + (Sad - obc) dc + (Sae
-
Qbd) dd + ....

Thus, if R be any pure reciprocant,

{(Sac
- 462

) db + (Sad
-

obc) dc + (Sae - 66d) dd + . . .
}
R

is also a pure reciprocant. If the type of R be w
; i, j, that of the form

derived from it will clearly be w + 1
;

i + 1, j+ 1. Its character (which, for

pure reciprocants, depends solely on the degree) will therefore be opposite to

that of R, and its characteristic will be p + 4, that of R being /x.

Beginning with the form Sac 5b2
,
which was given as an example in

Lecture II, a series of pure &quot;educts&quot; may be obtained by the repeated use of

the above generator ;
and it will be noticed that the successive educts thus

formed are alternately of even and odd character, whereas those previously

given, namely, a, 2&- 3a2
..., were all negative. A reduction similar to that

which formerly took place when the generator for mixed reciprocants was

used, may be effected at each second step in the present case. For, since the

characteristic of f 3a -,-- ph \ R is
//, + 4, the next operation will give

Performing the indicated differentiations, this becomes

= 9ft2
a

+ 9ab ~
3/ia6

~

= 9a2 - 3 (2/A + 1)&amp;gt;6

- - SpacR + p (//, + 4) b*
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Adding /a,(/u, + 4) (Sac 5b*)R to 5 times the above expression, we obtain

45a2
-7-- - 15 (2/Lt + 1) ab -7- + 3/x (it

-
1) acR,da? dx

which, when divided by Sa, gives the pure reciprocant

d?R _ dR
iAjJU (jLOu

This form is one degree lower than the second educt from R, the depres
sion of degree being due to the removal of a factor a by division.

When the modified letters a
,
alt a2 , 3 ,

... are used, the generator

(Sac - 462
) db + (Sad - obc) dc + (Sae

-
6bd) 8^ ... (1 )

is easily transformed by writing in it

a = 2a
,

6 = 2.3.0^, c=2.3.4.a2 , rf=2.3.4.5 a3 ...,

and consequently

36 =
273 8c =

273~

2

.4
dd =

2~.s&quot;l.5&quot;&quot;

when it becomes

22 .32 .4 2 2 .32 .4.5

Dividing each term of this by 2 . 3, and writing the numerical coefficients

in their simplest form, we have

4 (o aa
-

aj
2

) dai + 5 (a a3
- a^) 8a2 + 6 (a a4

-
0^3) 9

3
+ . . ., (2)

which is the modified generator previously mentioned.

The generators formerly used in the theory of mixed reciprocants were

(2tb
- Sa2

) da + (2tc
-

4aZ&amp;gt;)
db + (2td

-
oac) dc + . . . (3)

and 3 (to,
- a 2

) dao + 4 (ta,
- a^) d

ai + 5 (ta3
- a a 2) da, + . . .. (4)

The memory will be assisted in retaining these formulae if we observe
that (1) is obtainable from (3), or (2) from (4), by increasing at the same
time each numerical coefficient and the weight of each letter by unity.

It will, I think, be instructive to see how the form Sac - 562 was found

originally by combining mixed reciprocants. The degree alone of a pure
reciprocant suffices, as we have seen, to determine its character

;
but when

we are dealing with mixed reciprocants their character does not depend
either on the degree or the weight, so that we require a notation to discri
minate between forms of the same degree-weight, but of opposite character.
In what follows, (+) placed before any form signifies that it is a reciprocant
of even character, while (-) signifies that its character is odd.

8. IV.
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I have previously given the three odd reciprocants

(-) a, (A)

(-) 2bt - 3a2
, (B)

(-) ct - 5ab. (C)

From these we obtain even reciprocants ;
thus the product of (A) and

(C) is

(+) act - oa?b, (D)

and the square of (B) is

After subtracting the even reciprocant 9a4 from this, we may remove the

factor 4&amp;gt;t from the remainder without thereby affecting its character. These

reductions give
(+) bH - Sa*b,

which may be combined with the even reciprocant (D) in such a manner that

the combination contains a factor t. In fact,

3 (act
- 5a3

6)
- 5 (b

2
t - 3a2

6)
= (Sac

- 562

) t,

so that a legitimate combination of mixed reciprocants can be made to give

the pure one
Sac - bb\

Similarly we might find the known form

9a2d - 45a6c + 4063
,

which equated to zero expresses Sextactic Contact at a point x, y. But it is

more readily obtained by operating with the generator on Sac 562
; thus,

{(3ac
- 462

) db + (Sad
-

56c) dc ] (3ac
- 562

)
= - 106 (Sac

- 4fc
2

) + Sa (Sad
-

56c)

= 9a2d - 45a6c + 4063
.

An orthogonal reciprocant may be defined as a mixed reciprocant whose

form remains invariable (save as to the acquisition of an extraneous factor

when the reciprocant is not absolute) when any orthogonal substitution is

impressed on the variables x and y. Concerning such reciprocants, we have
i

T-&amp;gt;

the very beautiful theorem : IfE and -j- are both of them reciprocants, then
dt

R is an orthogonal reciprocant.

For suppose R to be an absolute reciprocant ;
that is, let

R = qR (q=l\
where R is a function of t, a, b, c, ... and R the same function of T, a, ft, 7, ...;

then, denoting by &R the variation of R due to the variation of y by ex, and

by DR the variation of R due to the variation of x by ey, we have

dRAE = e -TT
at
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For the variation of t is e and the variations of a, b, c, ... vanish. Similarly

DR = -e^.dr
Now, since R = qR\

rl 7?

~,
dr

therefore DR + &R = e (^ -
q } ;

V, at
* dr J

that is, the total variation of R (due to the change of x into x ey and of y
into y + ex) vanishes if

dR = dLR

dt
~ q

~dr~

J ~D

Hence, if R be an absolute orthogonal reciprocaut, -7- is also an absolute
dv

reciprocant (though it is not orthogonal) of the same character as R.

If R be not absolute, suppose its characteristic to be /i ;
then it can be

M-

made absolute by dividing it by a3
. The application of the foregoing

method of variations will now prove that -n/^ is an absolute reciprocant
* I Iw

of the same character as - . But ~
jf!-N

= -1^ . Hence~ is a recipro-

a* \a
3
/ a?

cant whose characteristic is
/*, and character the same as that of R.

The simplest Orthogonal Reciprocant is the form

(l+t
2

)b-3a?t,

which occurs on p. 19 of Boole s Differential Equations. When equated to
zero it is the general differential equation of a circle. It is noticeable that

although Boole obtains this form by equating to zero the differential of the
radius of curvature

(1 + rf

he does not recognise the fact that it vanishes at points of maximum or
minimum curvature of any plane curve, but says that the &quot;geometrical

property which this equation expresses is the invariability of the radius of
curvature.&quot;

Taking this form as an example of our general theorem, let

R =
(1 + r&amp;gt;

b - 3a*t
;

then ^ =
2fo-3a&quot;,dt

222
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which is the familiar Schwarzian. Observe that

(1 + t~) b - ZaH = -t6

{(1 + r2

) j3
-
3aV}

and 2bt - 3a2 = - t
s

(2j3r
- 3a2

),

so that the characteristic and character are the same for both these forms.

The form ct 5ab, which we have called the Post-Schwarzian, when

multiplied by 2 and integrated with respect to t, gives

ct
2 - 10abt +

&amp;lt;j&amp;gt;(a,
b, ...).

In order that this may be a reciprocant, we must have

&amp;lt;j)(a,
b, ...)

= c + 15a3
.

In this way the Orthogonal Reciprocant

(I + t
2

) c - Wabt + I5a3

was obtained originally.

It will be easy to verify that this is a reciprocant by means of the

identical relations

T

- 3a2

We shall find that

(1 + t
2

) c - Wabt + 15a3 = - t
7

{(I + r2

) 7 - IGa/Sr + loa3

},

and comparing this with

ct 5ab = f (yr 5a/8),

it will be noticed that both forms have the same character and the same

characteristic.

The complete primitive of the differential equation

has been found by Mr Hammond and Prof. Greenhill. The solution may be

written in the following forms :

_
r dt

X
~J *J K (l-l5

_
f

] ^/{K(l-

tdt

TT + const.

{B cos 6(0-^4)}

+ const.

Videos 6 (6- A}}
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k Hn* (X, k) = kHri* ( Y, k
),

where &=sinl5, k = sin 75,

and X = Ix -f my + n-^ ,

Y=mx ly + n2 ,

I, m, nlt ??2 being arbitrary constants.

The last two forms of solution are due to Prof. Greenhill.

LECTURE VII.

I have frequently referred to, and occasionally dilated on, the analogy
between pure reciprocants and invariants. A new bond of connection

between the two theories has been established by Capt. MacMahon, which I

will now explain. Let me, by way of preface, so far anticipate what I shall

have to say on the Theorem of Aggregation in Invariants (that is, the

theorem concerning the number of linearly independent invariants of a given

type) as to remark that the proof of this theorem, first given by me in Crelles

Journal and subsequently in the Phil. Mag. for March, 1878, depends on the

fact that if we take two operators, namely, the Annihilator, say

and its opposite, say

= a
j9a ._

i
+ 2a

3
_18

aj
_2
+ 3aj,2d

aj
_3
+ ... +ja1dao ,

then (liO
- OH) / is a multiple of /.

Thus, if / stands for any invariant (that is, if 117 = 0), it follows imme

diately that OOJ is a multiple of /, and consequently lm ml is also a

multiple of /. We may call fl and 0, which are exact opposites to each

other, reversing operators.

Now, MacMahon has found out the reversor to F, the Annihilator of

pure reciprocants. His reversing operator is no longer of a similar, though

opposite, form to V, as is to 1, but is simply -p ;
nor is the effect of

(JjOC

operating with V -y- on any pure reciprocant R equivalent to multiplicationdoc

by a merely numerical factor, as was the case with HO/, but [ V \ M is a
\ dxj

(d
rn

\Vm^ i R is a
dxmj

numerical multiple of amR. Thus the parallelism is like that between the

two sexes, the same with a difference, as is usually the case in comparing the

two theories.
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This remarkable relation between the operators F and -7- may be seen
CLOG

a priori if we assume that (as we shall hereafter prove) to each pure recipro
cant R there is an annihilator F of the form

not containing da and linear in the remaining differential operators db ,
de &amp;gt; da,

For if we call the characteristic
//,, by differentiating the absolute pure reci

procant with respect to x we obtain, as was shown in the last lecture, the

pure reciprocant
dR
dx

Since this is annihilated by F, we have

But, since R is a pure reciprocant, VR = Q: and from the assumed form

of V it follows that

Hence &,. ,

V dx

or (v-
\ a

Thus the operation of F -7- is equivalent to multiplication by pa, so that
ax

J~D

(barring the introduction of a) F restores to -7- the form it had antecedent

to the operation of -7- ,
and may be called a qualified reversor to -7- .

\AjX CLSC

For example, suppose that

Since we are using natural letters for the derivatives of y with respect to

x, we have

j-
= bda + cdb + ddc + . . .

,

and, as we shall presently see,

F = 3a2db + 10abd e + (loac + 10Z&amp;gt;

2

) dd + ... .

/&quot;/ 7? y
~

Now, -- =
(bda + cdb + ddc) (Sac

- 562

)
= Sbc - lObc + Sad = Sad - 7bc.

Operating on this with F, we find

frdR
I/ ^-^- I/ I -i/7/V .. I tic* \ 91 rt*2-f* / C\rtr$&amp;gt; I Q/- /T Z\ns\ i

7 \*J\AI\AJ I C/O / ~~*
. If/ C/

&quot;~

I \J\JL\J ~\ OCc \ -LvLt C* |~ .

(Z^7

that is F
-j- (Sac

- 562

)
- 8a (Sac

- 562

).
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Let us now inquire whether it is possible so to determine an operator F
that the relation

may be satisfied identically when F is any homogeneous isobaric function of

the letters a, b, c, ... of degree i and weight w. If so, we must be able to

satisfy each of the equations

_jL_^-dx dx

v~-~
dx dx

d d( T, d d
T7
A

V-i
---

r- Y\ c = oac,
V ax ax J

d _ d

ax ax

which are found by writing a, b, c, d, ... successively in the place of F.

Now ~ =
b, -r = c, -f-

= d, .so that the above equations may be
ax ax ax

written

Vd = 5ac + -i~( Fc),
dx

These equations are sufficient to completely determine V on the supposi

tion previously made that it is linear in the differential operators and does

not contain 3a ; for, since V is linear, it must be of the form

and, since it does not contain da ,
we must have Va = 0, and therefore

Vb = 3a2
,

Vc = 4ab +
-j--

(3a
2

)
= 4a6 + 6a6 = 10a&,

Vd = 5ac + -T-, (10a6)
= 5ac + 1062 + lOac = loac + 1062

,

doc

Ve = Qad +
-p(15ac

+ 1062

)
= Qad + lobe + 206c + I5ad = 2lad + 356c,

Hence V = 3a2
36 + 10a63 c + (15ac + 10Z&amp;gt;

2

) dd + (21ad + 356c) 8e + . . ..
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When the modified letters a
,
au a2 , ... are used, we shall have, in con

sequence of the change of notation,
(
F-,

)
R =

2/j,a R (instead of paR). If,
\ CLOCI

as before, we seek to satisfy the equation

we shall find, on writing an in the place of F,

d d

This condition will be sufficient, as well as necessary, for the satisfaction

of (1) when Fis linear; for then

F - A v
dx dx

will also be linear, its general term being

dx

which is equal to 2 (3 + n) a andan by equation (2). Hence

\dx
~

c&e /
^T= a Sum of terms

that is, equation (1) is satisfied whenever (2) is. Writing in (2)

dan = (n + 3)an+l ,

we obtain (n + 3) Van+1 = 2(n + 3) a an + ~ ( Van), (3)

from which the values of Van may be successively determined.

When Va = 0, the value of Van ,
which satisfies (3), is

IT n + 3
/

n = ~2~ (a aw-i + aia&quot;-2 + + On-sOi + an-io) J

4
thus Fax

= -
. a 2

,
Fa2

= oooOj , Fa3
= 6a a2

and the value of V is therefore

1

2
ao

23ai + 5a ai3a2 + 6 &amp;lt;2 s

Now that we are on the subject of parallelism between the old and new
worlds of Algebraical Form, I feel tempted to point out yet another very

interesting bond of connection between them. There is a theorem concerning
Invariants which I am not aware that any one but myself has noticed, or at
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all events I do not remember ever seeing it in print*, which is this: If we
take any

&quot;

invariant
&quot;

and regard its most advanced letter as a variable, or

say rather as the ratio of two variables u : v, by multiplying by a proper

power of v we obtain a new Quantic in u, v
; or, if we take any number of

such invariants with the same most advanced letter (or, as we may call it in

a double sense, the same radical letter) in common, we shall have a system
of binary Quantics in u, v. My theorem is, or was, that an Invariant of any
one or more of such Quantics is an Invariant of the original Quantic. I

recently found a similar proposition to be true for Reciprocants, namely,

forming as before a system of pure Reciprocants into Quantics in u, v, any
&quot;

Invariant
&quot;

of such system is itself a Reciprocant.

The two theorems may be stated symbolically thus :

// =
/&quot;)

IR = R
\

On mentioning this to Mr L. J. Rogers, he sent me next day a proof

which, although only stated as applicable to Reciprocants, is equally so,

mutatis mutandis, to Invariants. Although given for a single invariant, it

applies equally to a system.

I give Mr Rogers proof that any invariant of a pure reciprocant (the

proof will not hold for impure ones) is a pure reciprocant; or rather I use his

method to prove the analogous theorem that any invariant of an invariant is

itself an invariant. It will be seen hereafter that this same proof applies to

pure reciprocants with only trifling changes ;
but the proof as given by

Mr Rogers requires some further considerations to be gone into for which we
are not yet ripe.

Consider, for the sake of simplicity, the binary Quintic

(a, b, c, d, e, /$#, y)
5
,

and let / be any invariant of it (satisfied or unsatisfied) ;
then

/ = a / + a,f^ + a2fn~* + ...+an ,

where a
, a1; az ,

... an do not contain/, but are functions of a, b, c, d, e alone.

Let the Protomorphs for our Quintic be denoted by A, B, C, D, E, F;
then

F=a*f- 5abe -f 2acd + 8b&quot;d + Qbc-.

Eliminating/from / by means of this equation, we have

/a2 1 = A,Fn + A,Fn~l + A 2Fn~* + . . . + A
n&amp;gt;

where A
,
A 1} A.2 ,

... A n are all of them invariants (not necessarily integral

* The theorem is, however, given in Vol. xi. p. 98 of the Bulletin de la Societe Mathematique
de France, in a paper by M. Perrin, which has only recently come under the lecturer s notice.
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forms, but this is immaterial to the proof, for ft annihilates fractional and

integral invariants alike). For

H (/a
2 1

)
= O (A Fn + A,F^ + ... + A n\

and, in consequence of /a271 and F being invariants, so that, as regards O,
F may be treated as if it were a constant, this becomes

= FnflA + Fn~l

CIA, + Fn~*QA 2 + ... + lA nt

in which the coefficients of the several powers of F must be separately

equated to zero. In other words, A 0) A l} A 2 ,
... A n are all of them invariants.

Now, any invariant of

A Fn + A.F?-1 + A 2Fn~2 + ... + A n

is a function of A
,
A 1} A 2 ,

... A n ,
and therefore an invariant.

(N.B. We cannot assume that any function of general reciprocants is

itself a reciprocant.)

Again, since A Fn + ... +A n ,
and a, fn + ... + an

are connected by the substitution

F= a2/ oabe + . . .
,

which is linear in respect to the letters F and/, any invariant of

A Fn + ... + A n

is (to a factor pres, that factor being a power of a which is itself an invariant)

equal to the corresponding invariant of

a fn +...+an .

But every invariant of the former has been shown to be an invariant of

the original quantic, and therefore every invariant of the latter is so also.

I add some examples in illustration of this theorem :

Ex. 1. Take the invariant of the Quintic

a2/2 -
lOabef + 4&amp;gt;acdf+ IGfrdf- 126c2/+ IQace2 + 962

e
2 - 12ad*e - 7tibcde

+ 4&amp;lt;8c

s
e + 486d3 - 3 2c-d-.

The discriminant of this, considered as a quadratic in/, is

a2
(16ace

2 + 9&V- - 12ad2
e - 76bcde + 4&amp;gt;8c

se + 4,8bd3 - 32c2 d2

)

-
(oabe

- 2acd - 8b*d + 66c 2

)
2

= 16a3 ce2 - 16a2 62
e
2 - I2a3de - 56a2 bcde + 4&amp;gt;8a

2
c
3
e + 80ab3 de - 6Qab 2

c
2
e

+ 8a2 bd3 - 36a2 c 2
c?

2 - 32a62 cd2 - 6464d2 + 2abcsd -f 9663
c
2d - 3662

c
4

.

It will be found on trial that this is divisible by the invariant

4 (ae
- 46d + 3c2

),

the quotient being

4a2
ce - 4a63

e - 3a2d2 + Zabcd + 4;b
3d - 362

c
2

= 3a (ace fre ad- + 2bcd c
3

) + (ac 62

) (ae 4&amp;lt;bd + 3c2

).
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Thus the discriminant of the quadratic in f, that is, of the invariant

a2/2 -
2f(oabe

- 2acd + 8b*d - 66c2

) + . . .,

is shown to be an invariant. It will further illustrate the proof of the

theorem if we remark that precisely the same invariant is obtained by

eliminatingf between the above form and the protomorph

a?f- 5abe + 2acd + 8frd - 66c2
.

Ex. 2. If we take the pure reciprocant

45a3d2 - 450a2
6ccZ + 400a63d + 192a2

c
3 + 165a6s

c
3 - 40064

c,

which, from its similarity to the Discriminant of the Cubic, I have called the

Quasi-Discriminant, and form its discriminant, when regarded as a quadratic
in d, we find

45tt3

(192a
2
c
3 + 165a62

c
2 - 4006V) - (225a

26c - 200a&3

)
2
.

If, in this expression, we write P = Sac 562
,
so that 3ac = P + 562

,
it

becomes

5 . 64a2
(P + 5Z&amp;gt;

2

)
3 + 5 . 165a262

(P + 562

)
2 - 15 . 400a264

(P + 562
)

-625a262 (3P+762
)
2
.

On performing the calculation it will be found that all the terms involv

ing b will disappear from this result, and there will remain the single term

320a2P3
,
that is, 320a2

(Sac
- 562

)
3
,
which is a reciprocant.

LECTURE VIII.

In my last lecture the complete expression, both in terms of the modified

and unmodified letters, was obtained for F, the annihilator for pure recipro-
cants assuming its existence and its form. These assumptions I shall now
make good by proving, from first principles, the fundamental theorem that

the satisfaction of the equation

is a necessary and sufficient condition in order that R may be a pure

reciprocant.

It will be advantageous to use the modified system of letters, in which

, f dy 1 d*y 1 d3
y 1 d*y

t, a ,
al} a,2 ,

... stand for ~
,

-
^ . -^ , ^

-
. -^- ,

.
^

f ...

, f 1 d2x 1 dzx 1 d*xand or
,
alj ct2 , ... tor - -

.
-^ , .

, ;
.

} ...

respectively. Let the variation due to the change of as into x + ey, where e



348 Lectures on the Theory of Reciprocals [42

is an infinitesimal number, be denoted by A. Obviously this change leaves
the value of each of the quantities ,

a1( a2 ,
... unaltered, and therefore

,a l&amp;gt; a,, ...)
=

0,

whatever the nature of R may be. But when R is a pure reciprocant,

R(a ,
alt Oa, ...)=^(a ,

olf a,, ...),

whence it immediately follows that

&t-&quot;R(a ,
alt a,, ...)

= 0*.

Before proceeding to determine the values of

Atf, Aa
, Acti, Aa2 , ...

it will be useful to remark that since

dy_ d?y_ d*y
dx-* a?&quot;

1 1** ^ =1 - 2 - 3 - ai &quot;&quot;&amp;gt;

i dt ^ da
we have

ffi
_ 2., ^ = 80,, ....

and generally -=- = (n + 3) an+l .

Now let [t] denote the augmented value of t, and in general let [ ] be
used to signify that the augmented value of the quantity enclosed in it is to

be taken. Then

d[x} d(x + ey)
1

so also 2a = 2a
da;

=
(1
-
e) (*

- e^
2
)
-

(1
-

rf) (2a
-

= 2a 6eta
;

.
tf .

that is [a c]
= a - 3eto .

Reasoning precisely similar to that which gave

2[ae]=(l-e0^m,
leads to the formula

*
It has been&quot;suggested by Mr J. Chevallier that the proof might be simplified by considering

_M
the variation Aa 3 R (a , alt a.,, ...) instead of At

11 R (a ,
alt a.2) ...).
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from which the augmented values of a1( a2 ,
a3 , ... may be found by giving to

n the values 0, 1, 2, ... in succession. Thus, writing n = 0, we have

3 [a,]
=

(1
- eO [a ]

=
(1
-

=
(1

- e) (3aj
-

96*0,
- 6ea 2

)
= 3ax

-

or [aj = ax e (4*0! + 2a 2

).

Similarly, when n = 1,

4 [oj = (1
-

rf)^ [oj = (1
-

rf)
A

(aj
_

4etoi
_

2e&amp;lt;)

=
(1
-

ef) (4a2
-

IGeta,
- ^

and = a2
- e

Again, 5 [ 3]
= (!-)^ [a,]

=
(1
-

rf)^ (a2
-

=
(1
-

et) (5as
- 25etas

- 30ea a2
-

\oeaf}
= 5a3

- 3Qetas
- 30ea a2

- 1 5eaj
2

,

so that [a s]
= a 3

- e (6to3 + 6a a2 + Sa^).

In like manner we shall find

[ 4]
= a 4 7e (to4 + a a3 + a^a).

These results may be written in a more symmetrical form
;
thus :

2[&amp;lt;]
=2t-2 t

2
,

2 [oo]
= 2a - 3e (to + OQ*),

2 [a,]
= 20i - 4e (to t + a 2 + ^

&amp;lt;),

2 [a2]
= 2a2 5e (to2 + a i + aio + a2 t),

2 [a,]
= 2a3

- 6e (ta3 + a a 2 + a^ + a2 a + a3 t),

2 [a4]
= 2a4

- 7e (to4 + a a3 + a1 az + a2 aa + a3a + at t).

The general law

2 [an]
= 2an - (n + 3) e (to,, + a an_x + . . . + a^-jtto + an t\

or, as it may also be written,

admits of an easy inductive proof.

g the truth of the th

,

n = tan + a^a,^ + 0^0,^ + ... + a,^^ + an_ja + an t,

Assuming the truth of the theorem for
[&amp;gt;], .and writing for brevity in

what follows,
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Now, -y- = (n + 3) tan+l + 2a au

+ (n + 2) acan + ^a^n^

+ (?i + 1) a^n-! 4- 4a2 an_2

+ 4an_2 a.2 + (n + 1) an-ii

+ 3an_iaj + (ft + 2) ana

+ 2ana + (w + 3) an+1

= (n + 4) (ton+i + a an + a, an_j + . . .

+ (in-id! + ana + an+1 t) 2t

= (n + 4) Sn+i
- %tan+l .

Hence -j- [an} (n + 3) an+l -~ e {(n +

But, as we have already seen,

O + 3)[an+1] = (l-eO^|
consequently,

~ 2teB+1}.

that is, the theorem holds for [an+1] when it holds for [an].
But we know

that it is true for the cases n=0, 1, 2, 3, 4, and therefore it is true universally.

Resuming the proof of the main theorem, it has been shown that

Ai~ x

J?(a ,
al} a2 , ...) =0;

that is -
fjLtr^t + R^&R = 0,

or
dR . dR . dR .

uRt~l&t + -j Aa 4- -j Aa,j + -
7

Aa.2 + . . .
= 0.

da aOx

-
7aa2

But A^ =-etz
,

Aa =

Aax
= - e

Att2
= e

Aa3
= e

Aa4
= e

toj + 2a a

),

6a a2

and consequently

3 9ao

} 4-
&quot;

( \?l -4- K I (7/7-4- I &quot;)

= 0.
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This is equivalent to the two conditions

(3a 9ao + 4a1 dai + oaA., + ) R = pR
and VR =

0,

where

For greater simplicity I confine what I have to say to the only essential

case, to which every other may be reduced, of a homogeneous pure reciprocant.
The equation

(3a 3a + 4^8^ + 5a29a2 + . . .) R = pR
shows that for every term w + 3i is constant

;
that is, w is constant and

therefore the function R is isobaric. This is also immediately deducible from
the form of the relations between a

,
aa , a,, ...; ,

alt 2 , , and, what is

important to notice, for future purposes,

F(a ,
a1; Og, ...)-#-F(a0) a,, 2 , ...),

when F is a homogeneous isobaric function, and p = w + 3i is itself a homo
geneous function of (a ,

a1} a2 , ...), whose degree is the same as that of F.

The only condition affecting R, a function of a
,
a1; a2 , ..., supposed

homogeneous and isobaric, is

VR=0.
I shall now prove the converse, that i(R = F(a , a,, a.2 , ...) (being homo

geneous and isobaric) has V for its annihilator, then .ft is a pure reciprocant.
Let D be the value of F(a0i a,, a2 , ...)-trF(&amp;lt;* , 2 , ...) expressed as a
function of a

, a,, a,, ... alone. Then D will be a function of the same type
as F(a ,

alt a2 , ...).

Suppose that AZ&amp;gt; =
;

that is, that the variation of D due to the change of x into x + ey vanishes in
virtue of the equation F^ = 0.

Let D become D when y receives an arbitrary variation y + rju, where 77

is an infinitesimal constant and u an arbitrary function of x
;
then the varia

tion of D will vanish when x is changed into x + ey + enu, and consequently
when x is changed into x + ey the variation of D will also vanish. Hence

and if we take the difference of the variations of D and D
, we shall find

Now, the arbitrary nature of the function u shows that we must have
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and if we reason on -= D, -y D, ... in the same way as we have on D, we
da da^

see that the variation A of each of the second differential derivatives of D
will also vanish

; and, pursuing the same argument further, it will be evident

that the A of any derivative of D, of any order whatever, with respect to

a
, ai, 2 , ... will vanish. Hence

Z&amp;gt;
= 0;

for if this is not so we may, supposing D to be a function of degree i in the

letters a , a1} a?, ..., take the A of each of the differential derivatives of D
of the order i, 1

;
each of these variations would vanish by what precedes ;

that is, the variation due to the change of x into x + ey of each of the letters

a
,
alf as ,

... contained in D would be identically zero, which is absurd. We
see, therefore, that when AZ) = (that is, when R is annihilated by V),

D = Q, or

F(an ,
aly oa, ...)

= tF(a ,
alt o^, ...),

which proves the converse proposition.

It will not fail to be noticed how much language, and as a consequence

algebraical thought (for words are the tools of thought), is facilitated by the

use of the concept of annihilation in lieu of that of equality as expressed by
a partial differential equation.

It is somewhat to the point that in the recent two grand determinations

of the order of precedence among the so-called fixed stars relative to our

planet, as approximately represented by the intensities of the light from

them which reaches the eye, the one is directed by the principle of annihila

tion, the other by that of equality. Prof. Pritchard s method essentially

consists in determining what relative thicknesses of an interposed glass

screen, effected by means of a sliding wedge of glass, will serve to extinguish
the light of a star; that employed by Prof. Pickering depends on finding

what degree of rotation of an interposed prism of Iceland spar (a Nicol Prism)
will serve to bring to an equality the ordinary image of one star with the

extraordinary one of another. As these intensities depend on the squared
sines and cosines of this angle of rotation measured from the position of

non-visibility of one of them, it follows that the tangent squared of the twist

measures the relative intensities by this method.

Hereafter it will be shown that ifF is a homogeneous isobaric function of

y&amp;gt; y&amp;gt; y&quot;&amp;gt; y&quot;

f

* &amp;gt;

whose weights are reckoned as

-2, -1, 0, 1,...

then, when x becomes # + hy, where h is any constant quantity, F becomes

where t y , Fi = t*dt + V, and
/u,
= 3i + w,

i being the degree and w the weight of F.
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From this, by an obvious course of reasoning, could be deduced as a

particular case the condition of F(a ,
a lt a,, ...) remaining a factor of its

altered self when any linear substitutions are impressed on -x and y ; namely,
the necessary and sufficient condition is that F has V for its annihilator.

LECTURE IX.

The prerogative of a Pure Reciprocant is that it continues a factor of its

altered self when the variables x and y are subjected to any linear substitu
tion. Its form, like that of any other reciprocant, is of course persistent
when the variables are interchanged ;

that is, when in the general substitution,
in which y is changed into

and x into f y + g x + h
,

we give the particular values h = 0, h =
0, /= 0, g = O,/ =

1, g = 1, to the
constants. Stated geometrically, the theorem is that the evanescence of any
pure reciprocant R indicates a property independent of transformation of
axes in a plane. We suppose R to be homogeneous and isobaric in a,b,c,....

(If it were not, the theorem could not hold, for either the change of y into icy
or that of x into \x would destroy the form.)

The persistence, under any linear substitution, of the form of pure recipro-
cants may be easily established as follows :

By a semi-substitution understand one where one of the variables remains
unaltered. There are two such semi-substitutions, namely, where x remains
unaltered, and where y does.

(1) Let x remain unaltered and y become fy +gx + h
;
then a, b, c, ...

become fa, fb,fc, ... respectively; and therefore

R (a, 6, c, ...) becomes f*R (a, b, c, ...),

where i is the degree of R.

(2) Let y remain unchanged and x becomef y + g x + h . Then, instead
of R, I look to its equal

qPR(,/3,y, ...)(q
=

1);
that is, to qr-^R (a, fry, . .

.),

which becomes q (/ + g r^g^R (a, & 7, . .

.).

Since R is a reciprocant, this is equal to

or, replaciug T by its equivalent
-

,

C

s. iv.
23
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Thus we see that the proposition is true for a semi-substitution of either

kind. Consider now the complete substitution made by changing y into

fy + gx + h

and x into Fy + Gx + H.

-rf / ^ j n ^ i
^2

V ds
y , q d?x q dsx

If /=0 and = 0, then 5^, -^ , ... become -^ . j-,, &. . -,--, ...; so
cfo

2 dx3 F* dy* F3

dy
s

rf
that R(a,b,c, ...) becomes +M)

. R (a, /3, y, ...) ,
and since this is equal to

the proposition is true.

But if either of the two letters /, G (say/) is not zero, we may combine

two semi-substitutions so as to obtain the complete substitution, in which y

changes into

fy+gx + h,

and x changes into Fy + Gx + H.

(1) Substitute y\(=fy+gx + h) for y, and x
1 (=x) for x.

(2) Then substitute y2 (=yi) for ylt and X2 (=f y1 +g x1 + h ) for x.

By the first of these semi-substitutions

R(a, b, c, ...)

takes up an extraneous factor/
1
. By the second it acquires the factor

f&amp;gt;

1 + ,
where =/ + g=ft + g.

\^ dfi(*J dXi
J dx

Hence we see that the extraneous factor is a negative power of a linear

function of t, which we shall presently particularize, though it is not essential

to the present demonstration to do so.

It only remains to show how the combination of these two semi-substi

tutions can be made to give the complete one in question. We have

y*=yi=fy+gx + h

and x.2 =f
/

yl + g x1 + h =f (fy + gx + h) + g x + h

In order that this may be equal to Fy + Gx + H, we must be able to

satisfy the equations

f- F Q -G- gF h -H-^J &amp;gt; 9 ~

~~f
&amp;gt;

a n
f

&amp;gt;

which is always possible, since by hypothesis / is not zero. Similarly it may
be shown that when/ vanishes, but G does not, by substituting

(1) x
l (=Fy+Gx + H} for x, and yl (= y) for y,

(2) x2 (= a^) for xly and y2 (=/&quot;#i + 9&quot;
xi + h

&quot;)

for
3fr

we may so determine/&quot;, g&quot;,
h&quot; as to get the complete substitution as before.
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In every case, therefore, any linear substitution impressed upon the

variables x and y will leave R (a, b, c, ...) unaltered, barring the acquisition
of an extraneous factor which is a negative power of a linear function of t.

Now, the first semi-substitution introduces, as we have seen, the constant
factor

the second introduces the factor

(f -r + g }

*

g \
\ (tXi j

du,
where ^

The complete extraneous factor is the product of these two, and is

therefore

To express / and g in terms of the constants of the complete substitu
tion we have

Writing these values for/ and g in the expression just found, we obtain

which is the extraneous factor acquired by R when the complete substitution
is made. For example, if x becomes

Fy+Gx+H,
and y becomes fy + gx + h,

the altered value of a
(
that is, of ~^\ is

Corresponding to the simple interchange of the variables, we have

^=1, =
0, #=0;/=0, g=l, h = 0,

so that fG-gF=-l,

and the altered value of a is ~ or

a

which is right. In this case the general value of the acquired extraneous
factor

(fG -gF)
i

(Ft + )-M becomes (-)
l - t

,

thus showing, what we have already proved from other considerations, that
the character of a pure reciprocant is odd or even according as its degree is
odd or even.

232
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We saw in the last lecture that every pure reciprocant necessarily satisfied

the two conditions

(3ao aao + 4^9^ + Sa^da, + . ..) R = ^R
(where p.

is the characteristic), and

We also saw that VR = was a sufficient as well as necessary condition

that any homogeneous function R of a , a^, a2 ,
... should be a pure reciprocant.

It will now be shown that every pure reciprocant is either homogeneous and

isobaric, or else resoluble into a sum of homogeneous and isobaric recipro-
cants. Non-homogeneous mixed ones, it may be observed, are not so

resoluble, so that the theorem only holds for pure reciprocants.

(1) Let us suppose that R (a pure reciprocant) is homogeneous in

a
, aa ,

a2 ...; then it must be isobaric also. For, if i is the degree of R,
Euler s theorem shows that

and since R is a pure reciprocant, the condition

(Sa^ac + 4a,dai + 5a,aa2 + 6a33a3 + . . .) R = pR
is necessarily satisfied. Hence

(ai^ + 2a23a2 + 3a38as + . . .) R =O -
3i) R = a constant multiple of R,

which is the distinctive property of isobaric functions.

And, vice versa, if R is homogeneous and isobaric of weight w and degree
i, then

(3a 3o + 4
i9ai + oo^o,, + ..) R=(w + 3i)R = pR.

Thus homogeneous pure reciprocants are also isobaric and their character

istic is 3i + w. (This property is also true for mixed reciprocants, as we have

previously shown.)

(2) Suppose that R is not homogeneous, but made up of the homo

geneous parts

R,. R,&amp;gt; JU-i
Then, since V (R t

+ R
tl
+ R

tii
+ ...)

=

is satisfied identically, it is obvious that

must also be satisfied identically.

But since all the terms are of different degrees, the only way in which
this can happen is by making VR

t , VRtlt
VRM ,

... separately vanish. Now,
R,, R/t ,

R
it/ ,

... are by hypothesis homogeneous functions of a
,
a x , a 2 , ..., and

it has just been shown that each of them is annihilated by V, which has

been shown to be a sufficient condition that any homogeneous function of

, Oj, o-j, ... may be a pure reciprocant. Thus each part R/}
R

tl ,
R

///t
... of

R is a pure reciprocaut.
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Also, the condition

(3a 9a + 4aAi + 5a2do2 + . . .) R =
fj,R

shows that if ili w^ i.2 ,
w2 ;

i3 ,
w3 ;

... are the deg. weights of R,, Rt/ ,
R

tt/ , ...,

we must have

Thus non-homogeneous pure reciprocants are severable into parts each of

which is a homogeneous and isobaric pure reciprocant, the characteristic of

each part being equal to the same quantity /u,,
which is the characteristic of

the whole.

I will now explain what information concerning the number of pure

reciprocants of a given type is afforded by the equation VR = 0. Let

be a term of a homogeneous isobaric function (with its full number of terms)
of a

, !, a2 ,
... dj, whose degree is i, extent

j, and weight w, and which we
will call R.

Then in the entire function there are as many terms as there are solutions

in integers of the equations

Xj + 2\2 + 3\3 + . . . +j\j = W.

In other words, the number of terms in R is equal to the number of ways
in which w can be made up of i or fewer parts, none greater than j. This
number will be denoted by

(w; i,j).

Since the function R is the sum of every possible term of the form

Aa
^&amp;lt;&amp;gt;a^

1 ...
aft,

each multiplied by an arbitrary constant, the number of these arbitrary
constants is also

O; i,j\

Now, suppose R to be a reciprocant ;
this imposes the condition

Consider the effect produced by the operation of any term of

( o&amp;lt;

2
\

say \a
a2 +

~-J
d
as (rejecting the numerical coefficient 6).

Operating on R with 303 decreases its weight by 3 and its degree by 1

unit. The subsequent multiplication by a a2 + ^-,on the other hand, in-
z

creases the weight by 2 and the degree by 2 units. Hence the total effect
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(ft
2 \

ao2 + -^ }
9a3

is to increase the degree by 1 and to diminish the weight
^ /

by 1 unit. The same is evidently true for any other term of V. Thus the

total effect of V operating on the general homogeneous isobaric function R
of weight w, degree i, extent j, is to change it into another homogeneous
isobaric function whose weight, degree and extent are respectively w\,
i + I,j. Observe that the extent is not altered by the operation of V.

It is easily seen that the coefficients of VR are linear functions of the

coefficients of R
;
for example, if

R =Aa 2a3 + Ba a1a2 + Oaf,

VR = a sa2 (6A + 25) + ajaf (3A + 5B + QC).

Hence the condition VR=0 gives us (w 1; i+I,j) linear equations

between the (w\ i,j) coefficients of R
;
so that, assuming that these equations

of condition are all independent, after they have been satisfied the number
of arbitrary constants remaining in R (that is, the number of linearly inde

pendent reciprocants of the type w ; i, j) is equal to

(w; i,j)-(w-l] i + l,j),

when this difference is positive ;
but when it is zero or negative there are no

reciprocants of the given type.

If, however, any r of the (w 1
;

i + l,j) equations of condition should

not be independent of the rest, these equations would be equivalent to

(w 1; i + I,j) r independent conditions, and therefore the number of

linearly independent reciprocants of the type w ; i, j would be

(w; i, j)
- O - 1

; i+l,j) + r.

It is therefore certain that this number cannot be less than

O; i,j)-(w- 1; i+l,j).

We shall assume provisionally that r = 0, or in other words that the

above partition formula is exact, instead of merely giving an inferior limit.

Though it would be unsafe to rely on its accuracy, no positive grounds for

doubting its exactitude have been revealed by calculation.

Such attempts as I have hitherto made to demonstrate the theorem have

proved infructuous, but it must be remembered that more than a quarter of a

century elapsed between the promulgation of Cayley s analogous theorem

and its final establishment by myself on a secure basis of demonstration.
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LECTURE X.

I will commence this lecture with a proof of Capt. MacMahon s theorem

that if R is any pure reciprocant and // its characteristic (that is, its weight
added to three times its degree),

where
y&quot; may be replaced by either 2a or a, according as the modified or

unmodified system of letters is employed.

Instead of a pure reciprocant, let us consider any homogeneous isobaric

function F of degree i and weight w; and
[for

the sake of simplicity writing

dx for
-y-J

instead of the operator Vmdx
m let us consider Vm dx

n dx
n Vm.

We have identically

*
( Vdx

- dx F)

+ dx ( Vmdx
n~l - dx

11
-

1 Vm) F.

Now, the operation of (Vdx dx V) on any homogeneous isobaric function

whose characteristic is ^ is equivalent, as we have seen in Lecture VII,
to multiplication by fry&quot;;

so that if the characteristics of

are

it follows that

+ dx (Vmdxn
~l - dx

n~lVm) F.
Observe that

where the transposition of the
y&quot;

is permissible because Fdoes not act on it
;

but if
y&quot;

were preceded by dx it could not be similarly transposed.

The numbers
//,1} ^, /z3 , ... form an arithmetical progression, for each

operation of F increases the degree by unity and diminishes the weight
by unity, so that

fr = Szj + i0! becomes /z 2
= 3 (^ + 1) + (w,

-
1) = ^ + 2.

Similarly ^ = ^ + 4, ^ =
/*i + 6, . . . ^m = fr + 2m - 2.
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The characteristic of F being

/u,
= Si + w, that of dx

n~ 1F is ^ = p + n 1
;

for each operation of dx leaves the degree unaltered, but adds an unit to the

weight; hence

p\ + /*2 + Hz + + fim = ^O + m + n 2) ;

so that

(Vmdxn- dx
nVm)F= m(fi+m+n- 2)y&quot;F-^ 1-1^ 9 a.( F&quot;^&quot;-

1- dx
n~lVm)F. ( 1 )

When F=R, a pure reciprocant, so that VR 0, our formula becomes

Vmtix
nR =

m(fjt + m + n- 2) y&quot;
Vm~^x^R + 8^ Vmdxn

~lR. (2)

Suppose that in (2) m &amp;gt; n, then VmdxnR = 0. This is obviously true when
n = 0, and when n = l. When n = 2 we find

F^IR =m (,u + m) y&quot;F-^^ + 9,,F^
= if w &amp;gt; 2.

Similarly the case n = 3, m &amp;gt; 3 can be made to depend on n = 2, m &amp;gt; 2, and
in general each case depends on the one immediately preceding it. Next let

n = m in (2) ; then, remembering that Vmdxm~lR =
0, we have

VmdxmR =
m(fjt + 2m -

2) y&quot;V

m~ ldx
m- l

R,

from which MacMahon s theorem that

VmdxmR = 1 . 2 . 3 ... m [p. O + 2)O + 4) ... (p + 2m - 2)} (f)R
is an immediate consequence.

Another special case of Formula (1) is worthy of notice, namely, that in

which we take n = l, when we obtain the simple formula

(Vmdx - dxVm) F = m(fj, + m-l) y&quot;
Vm~ lF. (3)

If in this we write an in the place of F, and (the modified system of letters

being used) 2a for
y&quot;, jj,

becomes 3 + n, and we have

( Vmdx - dxVm) an = 2m (m + n + 2) a,V
m-lan ,

or, as it may also be written,

0n_

.2.3...m 1.2.3...m 1. 2 . 3 ... (m - 1)

Mr Hammond remarks that this last formula may be used to prove the

theorem _Y
n _ fn3 fa t\ nn \V ) Un ,

which was given without proof in Lecture II. Assuming that

F2a= - t^an + r&quot;-
4 Fan

- t~n
~5 - + . . .

,
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we have to prove that the theorem is also true when n is increased by unity.

Differentiating both sides of the assumed identity with respect to x, we find

an + r- 1-
{dx Van + 2 (n + 3) a. an }

the general term being

(
_)m+ irn-m-3

f

dxVman
(1.2.3...i

which, by means of (4), reduces to

_
1.2.3...

Hence dxan = - t~n
-3dx an + t~n^Vdx an - t~n-^^+...,& Z

or, more concisely,

But aa.on = (n + 3) an+1 , and 3zaB = ^a7l
=

(71 + 3) tan+l ,

and therefore

_F
(w+ 3) tan+l = -(n + 3) r?l

~3

(e~ *) an+1 ,

_r
Or _ fn\( t\ nan+i \e ) Un+i
The theorem is easily seen to be true, for n = 0, 1, 2, and is thus proved to

be true
universally.

I will now return to the point at which I left off in my previous lecture.

We saw that the exactitude of the formula

(w;i,j)-(iu-l;i + l,j)

for the number of pure reciprocants of the type w ; i,j could not be inferred
with certainty unless we were able to prove that the (w-1; i + l,j) linear

equations between the coefficients of R, found by equating VR to zero, were
all of them independent. A similar difficulty presents itself in the proof of
the corresponding formula (w; i,j) -(w -l; i, j) in the invariantive theory;
but in that case I succeeded in making out a proof of the independence of

the equations of condition founded on the fact that lm ml is a numerical

multiple of /, where / is any invariant, and H, are the well-known

operators
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I have since discovered a second proof of the theorem for invariants which,

though very interesting, is less simple than my first
;
but neither of these

methods can be extended to the case of reciprocants.

It was suggested by Capt. MacMahon that the fact that Vmdx
mJR is a

numerical multiple of amR ought to lead to a proof of the theorem for

reciprocants similar to that obtained for invariants by my first method,
alluded to above, but this I find is not the case; and indeed it is capable of

being shown a priori that it cannot lead to a proof. One great distinction

between the two theories, which is fatal to the success of the proposed
method, is well worthy of notice.

(I shall sometimes call this positive), then

for all values of w less than w; the condition that this difference, say

&(w ,i&amp;gt;j)
snaH be positive being simply that ij 2w is positive (that is,

ij 2w=&amp;gt; 0). This is not the case with the difference

say E(w; i,j); it by no means follows that if this is positive for a given
value of w

(i, j being kept constant), it will be so for any inferior value of w.

We may illustrate geometrically the condition
ij 2w = &amp;gt; 0, which holds

when A (w ; i, j) is non-negative.

Let (i, j) be co-ordinates of a point in a plane and draw the positive
branch of the rectangular hyperbola

ij-2w = 0.

Then, ij 2w &amp;lt; for all points in the area

YOXBA between the curve and its asymptotes ;

but for points on the curve AB,

ij -2w = Q,

and for all points of the infinite area on the side

of AB remote from the origin,

ij Zw &amp;gt; 0.

Thus, for all points which lie either on or beyond
the curve AB, A (w ; i, j) is non-negative, and for all points between the

curve and the asymptotes A (w ; i, j) is non-positive.

We have here considered w as constant and i, j as variable, but in the

case where all three are variable we should have to consider the hyperbolic

paraboloid

ij 2w = 0,

of which the curve AB is a section, by the plane w= const.; and the condition
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of A (w ; i, j) being non-negative or non-positive depends on the variable

point (i, j, w) lying in the one case on or beyond the surface, and in the

other between the surface and the planes of reference.

The function of i, j, w, whose positive or negative sign determines in like

manner that of E (w ; i, j), cannot be linear in w. What its form is, or

whether it is an Algebraical or Transcendental function, no one at present

can say. Indeed, except for the light shed on the subject by the Algebraical

Theory of Invariants, it would have been exceedingly difficult (as I know

from vain efforts made by myself and others in Baltimore) to prove the

much simpler theorem that A (w ; i, j) is positive (that is, non-negative)

when ij 2w is so. It amounts to the assertion that the coefficient of

a{xw in the expansion of

1 x

(1
_ a ) (1

_
ax) (1

- ax2

) ... (1
-

ax&amp;gt;)

is always non-negative, provided that ij
2w is non-negative.

This is a theorem of great importance in the ordinary Theory of

Invariants, and may be seen to be a consequence of the fact, which I have

proved, that (using [w ; i, j] to denote a function of the type w ; i, j having

its full number of arbitrary coefficients) there are no linear connections

between the coefficients of fi [w ; i, j] when ij 2w =
&amp;gt;

;
but no one, as far

as I know, has ever found a direct proof of it.

Viewing the connection between the two theories of Invariants and

Reciprocants, I think it desirable to recapitulate with some improvements
the proof, given in the Phil. Mag. for March, 1878, of the theorem that the

number of linearly independent invariants of the type w
; i, j is exactly

A (w ; i, j) when this quantity is positive, and exactly zero when it is

or negative.

As regards reciprocants, at present we can only say that the number ot

linearly independent ones of the type w, i, j is never less than E{w\ i,j),

leaving to some gifted member of the class to prove or disprove that the

first is always exactly equal to the second. The exact theorem to be proved

in the theory of invariants is as follows :

If ij
2w = &amp;gt; 0, the number of linearly independent invariants of the

type w, i,j is A(w;z,j).

If
ij

Zw &amp;lt; 0, the number of such invariants is zero
;
that is, there are

none. The proof is made to depend on the properties of

and of =
afia ._^

+ 2a
j
_1 3a ._2

+ 3aj_2d
aj
_s
+ ... + ja1 dao .

If U be any homogeneous isobaric function of degree i and weight w
in the letters a

, i, a2 ,
... a/, it is easy to prove that

(no - on) u= (ij
- 2w) u,
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and consequently, if U is an invariant /, so that O/ = 0,

no/-
&amp;lt;*f -)/.

I call
ij Zw the excess and denote it by rj, and shall first show that if

&amp;gt;/

is negative / = 0; that is, there exists no invariant with a negative excess.

This will prove that when A(w ; i,j) is negative, that is, when

(w-l;i,j)&amp;gt;(w;i,j),

the number of independent functions of the coefficients of \w ; i, j] which

appear in fi [w ; i,j] is exactly equal to (w ; i, j), which is the number of the

coefficients themselves. Clearly it cannot be greater; for, no matter what

the number of linear functions of n quantities may be, only n at the utmost

can be independent ;
there might be fewer, there cannot possibly be more.

The complete theorem is that the number of independent coefficients in

II [w ; i, j] is the subdominant of two numbers : one the number of terms

of the type w
; i, j, the other the number of terms of the type w 1

; i, j.

N.B. That one of two numbers which is not greater than the other is

called the subdominant.

LECTURE XI.

We may write for the Annihilator of an Invariant

and for its opposite

= jal d + (j
-

1) o-jd! + (j
-

2) a3d2 + . . . + ctjdj^,

where the pointed letters d
,
alt az , ... dj stand for the partial differential

operators

Suppose fl and to operate on any function
/&quot;(,

alt a2 ,
... a,) ;

then

no u= (a. o + n*0)Z7
and OnZ7=(0.n+0*n)J7,
where the full stop between and H signifies multiplication, and the

asterisk operation on the unpointed letters only. Thus,

n.o-o.n,
and, consequently, (HO - OH) U = (H * - * fl) U.

Now,

U * U= {1 .ja d + 2 (j 1) ajdj + 3 (y 2) a2 O2 + . . . + j . Icij^dj^} U,

and

* H U = {I . ja 1 d l + 2 (j
-

1) a 2 ff. 2 + . . . + ( j
-

1) 2oM aM + ;
. la^a,-} 7,
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whence we readily obtain

(HO On) U = j (a d + ajdj + a2d2 + . . . + cijdj)
U

- 2 (a^ + 2 2 d2 + 3a3d3 + . . . + jdjdj) U.

Introducing the conditions of homogeneity and isobarism, namely,

(a d + atdi + a2 d 2 + ... + ajdj) U= iU

and (ajdj 4- 2tt2d2 + 3a3d3 + . . . +jajdj) U=wU,
where i and w denote the degree and weight of U, supposed now to be a

rational integral homogeneous and isobaric function (or, to avoid a tedious

periphrasis, say a gradient), we see that if the complete type of the gradient
U is w

; i, j,

(no - on) u= (ij -2w)U=r)U,
where 77 is the excess.

Since the operation of increases the weight of the operand by unity,

but does not alter either its degree or its extent, it is clear that the type of

OeU is w + 6
; i, j.

The excess of OdU is therefore

ij -2(w + 0) = &amp;lt;rj- 26,

and the theorem just proved shows that

(no - on) oeu = (^
-

20) o
6 u.

From this we pass on to prove that nO 3 0*0, acting on any gradient
as its objective, is equivalent to

q(&amp;lt;rj q + 1)
-1

;
that is, when q is any

positive integer, we shall show that

The subsequent consideration of a special case of this formula, in which

U is replaced by any invariant /, will enable us to prove that there can be

no invariants for which the excess ij 2w is negative. Let

then 09-*-*flOe
+&amp;gt;U= P6+1 U,

and therefore (Pm-Pe)U= O^6 1

(D.
- On) O9 U.

Substituting in this for

(il0-0n)0e
tf its value (fj-2e)O e

U,

we have (Pe+1 -Pe)U=(rj- 26) O?- 1 U.

Hence

(Pq
-

PC) U= {(P,
-

P.) + (P,
- PO + (P,

- P2) + . . . + (P9
- P^)} U

=
{rj + (T;

-
2) + (T;

-
4) + ... + (77

-
2q + 2)} O^U

But since P
q
= nO9 and P = O^n, this result may be written

- o?n) u= q (77
-

q + 1) o?-&amp;gt; u.
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If now U I, an invariant, we have IU= 0, and our formula becomes

Writing in succession q = ra, m 1, ... 1, we obtain

m(ti-m+l) Om~ll = n0ml

(m - 1) (77
- m + 2) O

m~2 = n0m~ll

(m - 2) (77
- m + 3) O

m~sl =

By assigning to m a sufficiently large value we are able to make Oml

vanish as well as HI; for, the type of / being w; i, j, that of Oml is

w + m;i,j. But it is evident that no gradient can have a greater weight

than
ij,

the product of its degree and extent, for each term is a product of

i letters none of them having a weight greater than
j. If, then, we suppose

that m =
ij w + 1, the weight of Oml is

w -f m =
ij + 1.

Therefore OmI=Q.

Again, 77 m + 1 = ij 2w (ij w + 1) + 1 = w.

If, then, 77 is negative, every term in the series

ra(i7-m + l), (ra-l)(77-m + 2), ... 2(77-1), 1 . 77

is negative arid can never vanish. Hence we have successively

Qm-if = Q
t
om-*I=0, ... 1=0;

that is, when ij
2w &amp;lt; no invariant of the type w ; i, j exists.

Observe that the elenchus of the demonstration consists in the fact that

the successive numerical factors 77 TO + 1, 77 m + 2, 17
m + 3, . . . 77

are all

non-zero on account of 77 being negative ;
but if 77 were positive we should

eventually come to a factor 77 yu,
which would be zero, and we could not

conclude from
(/-t + 1) (77 /u,)O7 being zero that 0*1= 0. Since 77 (m 1)

passes from 77 (ij w) to 77, that is, from w to 77, it passes through zero

when 77
is positive.

The second part of Cayley s completed theorem remains to be proved,

namely, that when ij Zw = &amp;gt; 0, the number of linearly independent in

variants of the type w; i,j is precisely equal to A (w; i,j) ,
that is, to

(w\i,j)-(w-l;i, j).

I show this by proving that if D(w; i, j) is the number in question, keeping

11

i Siudj constant and taking w &amp;lt;
=
^,

cannot be greater than

A (w ; i, j) + A (w
- 1

; i, j) + A (w - 2
; i, j} + . . . + A (0 ; i, j),
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and consequently, since we know that no single D(iv;i,j) can possibly be

less than the corresponding A(w; i, j), it follows that

= A(w; i, j) + A (w - 1; i, j) + A (w - 2; i, j) + ... + A (0; i, j);

and, furthermore, that each

D(w,i,j) = &(w;i,j).

For if any D were greater than its corresponding A, some other D would

have to be less, which is impossible.

This principle of reasoning may be illustrated by imagining a row of

ballot-boxes and supposing it to be ascertained that no single box contains

fewer white balls than black ones. If, then, there are not more white than

black balls altogether, the total number of whites must be the same as that

of the blacks. And since there are just as many whites as blacks distributed

among the ballot-boxes, the number of white and black balls must be the

same in each box
;
for otherwise some box must contain fewer whites than

blacks, which is contrary to the hypothesis.

Observe that the sum of these A s is (w;i, j); for

(w ; i, j)
-
(w - 1

; i, j) + (w-l; i, j)
- (w - 2

; i, j) + . . . + (0 ; i, j)
-
(- 1

; i, j)

= (w;i,j)-(-l;i,j)

and (- 1
; i, j)

= 0,

since there is no way of composing 1 with parts 0, 1, 2, ...J. Hence what

I have to show is that

I want preliminarily to express H^O/ as a multiple of /*.

This can be done by a formula previously demonstrated, namely,

which gives

n 20?/ = q(r)-q + l) HO?-
1/ = q (rj

-
q + l)(q- 1) (rj

- q+

similarly

WOI=q(rj-q + I)(q-l)(r) -q+ 2) (2
-

2) (17
-

3 + 3) 0^1;
and finally, changing the order of the numerical factors,

H&amp;lt;W= 1 . 2 . 3 ... q {rj (77
-

l)(r)
-

2) ... (77
-

q + I)} I.

This shows that IKO9/ and a fortiori 0^1 can never vanish unless 77 q + 1

becomes negative.

* The result of operating on I with O and 12 each q times, the two operations following each
other according to any law of distribution whatever, will always be a numerical multiple of I

;

but the value of this multiple will differ for different laws of distribution.
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Suppose now that Iq means an invariant of the type w -
q; i,j; its excess

is
ij 2(w q), and consequently Oql

q
cannot vanish unless

ij 2 (w q) q + 1

becomes negative, which is impossible. For

ij 2 (w q) q + 1 =
ij 2w + q + 1,

and
ij 2w = &amp;gt; by hypothesis.

By taking Oql
q
as an image, so to say, of I

q
we shall be able to obtain a

limit to the number of J
g
s by obtaining a limit to the number of their

images. In fact, taking the image Oql
q
of each of the D(w q; i,j) linearly

independent invariants of the type w q , i,j (this is what is meant by the

/q s) and giving q all possible values from to w inclusive, the total number
of these images is obviously

Each of them will be a gradient of the weight iv q + q (that is, of

weight w), and will consist of terms of weight w, degree i, and extent
j.

The

total number of such terms will be the number of ways of making up w
with i of the numbers 0, 1, 2, 3, ... ; ,

or with the usual notation (w\ i, j). If,

then, it can be shown that none of these forms are linearly connected, then,

inasmuch as they are all functions of the same (w;i,j) arguments, it will

follow that their total number cannot exceed (w ; i, j).
That is, we shall

have shown that

cannot exceed

A (w ; i, j) + A (w - 1
; i, j) + A (w

- 2
; i, j) + . . . + A (0 ; i, j),

and by the ballot-box principle, as already stated (inasmuch as no D is less

than its corresponding A), it will follow that each D is the same as the

corresponding A, and the theorem to be proved is established.

The proof of this independence is easy. For (1) suppose that there is any
linear relation between the forms

C)iT OiT OiT &quot;

(-/ -L
q&amp;gt; &quot;^-i

^ -i q i &amp;gt;

for each of which the value of q is the same. Denoting these forms by

P P P &quot;

*
&amp;lt;?&amp;gt;

-1-
q )

-1
q &amp;gt;

let the relation in question be

Then \MP
q + \ MP

q + \&quot;QflPJ + . . .
= 0.

But each argument lqP
q

is of the form D,q ql
q ,
and since this is equal
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to Iq multiplied by a number which does not vanish*, we have a linear

relation between I
q , Iq, Iq&quot;, ..., namely

that is, the I
q
s would not be linearly independent, contrary to hypothesis.

Thus the images (Oql
q , Oql

q , Oql
q ...) belonging to invariants of the same

type w q ; i, j cannot be linearly connected.

(2) I say that the images of invariants of different types cannot be

linearly connected. For let q, q, q&quot;,
... arranged in descending order of

magnitude, be the different values of q in the images supposed to be linearly

related. The result of operating with fl? on any image of the form Oq I
q

&amp;gt; is

to bring it to the form Qfl-t QPOflj, which is a multiple of QWIq-, and

therefore vanishes. But fl?, acting on any of the images Oql
q , O ql

q ,
...

,

will, as we have seen, bring back the multiple of I
q \

thus the operation of H?
on the supposed relation will give a linear equation connecting I

q ,
I
q ,
I
q &quot;,

and for the same reason as before this is impossible. Hence there can be no
linear relation whatever between the images of the invariants whose types
extend from w, i, j to 0; i, j,

and the number of these images will accordingly
be not greater than (w; i,j), as was to be proved.

It is well worthy of notice that D (w ; i, j) may be zero, but obviously
cannot be negative, as it denotes a number of things which may have any
value from zero upwards. Hence follows a remarkable theorem in the pure

theory of partitions which it would be extremely difficult to prove from first

principles, namely, that the difference between the two partition numbers

(w;i,j)-(w-l; i,j)

can never be negative when ij -2w=&amp;gt; 0. It may be zero, but cannot be
less than zero. This explains what I said about the hyperbolic paraboloid

ij 2w = 0, where i, j,
w are treated as co-ordinates of a point in space. We

might call the value of (w ; i, j)-(w-l; i,j) the density of any point i,j, w,
and the theorem may then be expressed by saying that at points within or

upon the hyperbolic paraboloid the density can never be negative ;
for points

outside this surface it can never be positive.

As regards the analogous formula in the Theory of Reciprocants

(w;i,j)-(w-l; i + l,j),

we do not know that any algebraical surface can be constructed which will

enable us to discriminate between the cases in which this difference, say
E(w\ i, j), is positive or negative. Should such a surface exist, its equation
must contain w in a higher degree than the first. Supposing that the above

* In fact, remembering that the excess of the type w -
q ; i, j is ij

- 2 (w - q)=rj + 2q, we find

MO*Iq =1.2.3...q{(r, + 2q)(r, + 2q-l)...(r, + q + l)}Iq ,

in which both
77 and q are positive integers.

s iv. 24
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formula represents the actual number of reciprocants, it will follow (and this

is confirmed by experience) that there can be no reciprocants to a type of

negative excess. For

O; i, j)-(w-l; i + 1, j)

= (w; i,j)-(w-l;i,j)-[(w-I; i + 1, ; )
-
(w - 1; i, j)]

= (w ; i, j)-(w-l; i, j)-(w-i-2;i + 1, j
-

1).

But if ij 2w is negative, (w ; i, j) (w I
; i, j} is zero or negative.

Hence (w ; i, j} (w 1
;
i + l,j) is non-positive.

For satisfied invariants (those ordinarily so called) w = ^ ,
and the

z

(11

\ 1%^ \

-^ ; i, j } I

-^
1

; i, j
1 .

As these form a well-defined class apart, it would have seemed very

natural to begin with them in endeavouring to establish the theorem,

reserving the theory of unsatisfied invariants (sources of covariants) for

future consideration. But to all appearance it would have been very

difficult, if not impossible, to have succeeded in dealing with them alone.

This is another example of the law in Heuristic that the whole is easier

of deglutition than its part.

LECTURE XII.

Before proceeding further with the development of the pure analytical

theory of reciprocants, it may be useful to point out some instances of its

relations and applications to geometrical questions.

Using 2/j, 2/2 , 7/3, ... yn to denote the successive derivatives of y with

respect to x*, let the complete primitive of the differential equation

F(x,y,yi,yi, ... 2/n)
=

be
&amp;lt;/&amp;gt;(#, y, X, p, v, ...)

= 0.

We can in general so determine the n constants X, p, v, ... that the

curve
&amp;lt;j&amp;gt; may pass through n given points, and if we take these to be

consecutive points on the curve

&amp;lt;I&amp;gt; (x, y)
= 0,

&amp;lt;j)

and &amp;lt;& will have a contact of the (n
-

l)th order at a given point of &amp;lt;.

In order that the curves may have a contact of the nth order at a point

* In future 3/1,3/212/3, l/n wi^ always have this meaning, the derivatives of x with respect

to y will be denoted by xi, xz ,
x

3&amp;gt; ..., and whenever the letters t, a, b, c, ... are used they will

stand for ylt ^L, ^-^ ,

^ ^ 4&amp;gt;

... respectively.
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whose abscissa is x, the ordinates of 3&amp;gt; and
&amp;lt;/&amp;gt;

at that point and their

1st, 2nd, ... nth derivatives with respect to x must be the same for both
curves. But at every point of

&amp;lt;j&amp;gt;

its differential equation

F(x,y,yl ,y2 , yn) = o

has to be satisfied, and therefore the as, y, ylt y2 ,
... yn of any point on

3&amp;gt;,
at

which contact of the nth order with
&amp;lt;f&amp;gt;

is possible, must also satisfy the same
equation.

Now, suppose that for x and y we substitute given functions of them,X and F; the curves
(f&amp;gt;

and &amp;lt;l&amp;gt; become

&amp;lt;/&amp;gt; (X, Y, X, p, v , ...)
= and &amp;lt;J&amp;gt; (X, Y) = 0.

Contact of the nth order with the transformed
&amp;lt;j&amp;gt;

will therefore be possible at

any point of the transformed &amp;lt;& for which

F(X, 7, Ylt Fff ... FB)
= 0,

where Flf F2 ,
F8 , ... Yn are the derivatives of F with respect to X.

But, unless the function F and the substitutions X =fl (x, y), F=/a (a?, y)
are so related that the transformed differential equation

F(X, Y, Flf F2 , ...F) =
is identical with the untransformed one, the property marked by the contact
of the transformed curves will not be identical with that marked by the
contact of the untransformed ones.

For example, let F=y,; then the relation between
&amp;lt;f&amp;gt;

=
y + \a; + fi

=
(the complete primitive of ya

=
0) and an arbitrary curve 3&amp;gt; is that the

constants \ and fi may be so chosen that the line y + \x + p = may have a
contact of the second order at any point of 3&amp;gt; for which y2

=
; and the

property marked is an inflexion on &amp;lt;&. But if we make the substitutionX = x2
, Y=y\ so that the differential equation y2

= is transformed into
d Y
t&) 2/2

= and its comPlete primitive into f + \x? + fj,
=

0, it will still be

possible so to choose X and p, that f +W + p = may have a contact of the

second order at any point of an arbitrary curve for which (~\ f =
0, but

the property marked, instead of being an inflexion, will be a contact of the
second order with a conic having a pair of conjugate diameters coincident with
the co-ordinate axes.

The property remains unaltered when the co-ordinate axes are inter

changed, and therefore the differential equation f^-Y^
= will be identical

:^
V

-^j
x- 0, in which the variables x and y have changed places. The

24 2
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identity of the two differential equations is easily verified, for

\da?)
y 2x dx\x dx) 2x (x da? x \dx)

~
x* dx)

/ *-

so that the differential equation may be written

xyyz + xy^ yyl
= 0.

Interchanging x and y in this, we have

r v ,. ., dx 1 , d2x
y&amp;lt;,

.

in which, it we write x1
= -r =

, and #2
= = - ^ it follows immediately

ay 2/1 dy* y^
J

that

and the identity in question is established.

Such a form as the above, which merely acquires an extraneous factor

when the variables are interchanged, might be called a reciprocant, if it were
not convenient to restrict the use of the word to forms in which the variables

x and y do not appear explicitly. With this limitation, the geometrical

property indicated by the evanescence of a reciprocant will be independent
of the position of the origin, but not in general independent of the directions

of the co-ordinate axes. Thus, we may prove that the equation

2^2/3-3^ =

indicates the possibility of 4-point contact with a hyperbola whose asymptotes
are parallel to the co-ordinate axes. To do this it is sufficient to show that

its complete primitive is the equation to such a hyperbola.

Writing the equation in the form

2/3 = 3 y2

2/2
2

2/i

we see that its first integral is

.3

or, when prepared for a second integration,

1 _a

~~
- = \x +

and finally we obtain the complete primitive

* (v
~

2/)
= (^ +

which proves the proposition.
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With the notation previously explained, in which yl
=

t, y2
= 2a, y3

= 66,

the differential equation is bt a? = 0. We have therefore proved that at all

points of a general curve for which the Schwarzian (hi a?) vanishes, 4-point

contact with a hyperbola whose asymptotes are parallel to the co-ordinate

axes is possible.

We now consider the important case in which the conditioning differential

equation remains unchanged when the axes are orthogonally transformed,

and is therefore found by equating to zero an orthogonal reciprocant. The

simplest example of this class of equations is that which marks the points of

maximum or minimum curvature on a curve. Since these points are points
of 4-point contact with a circle, the conditioning differential equation will be

that of the circle

(x + X)
a + (y + fju)- + v = 0.

Differentiating this three times in succession, we have

x + A + (y + p) t = 0,

1 + t
2 + 2a (y + p) = 0,

at + b (y + yu)
= 0.

Eliminating //,
from the last two of these equations, y will disappear at

the same time, and the condition for points of maximum or minimum
curvature is found to be

2aH -b(l + t*)
= 0.

In Salmon s Higher Plane Curves (2nd edition, p. 357) the
&quot;aberrancy

of curvature
&quot;

is given by the formula

The above differential equation is therefore equivalent to 8 = 0.

If we differentiate the radius of curvature p = ^ ^ = +t
we

_ P) qna ,a
f

,
,

, da

dx~ ~^T =3(l+^tanS = 3tanS.

Hence it follows that

^
I dptan B = ^ . -/- .

3 ds

The conditioning equation for points at which ~ or tan 8 is a maximum

or minimum is =
;
or the same condition may be expressed by

d tan 8

dx dx

= 0.

d
( 6(1-M

2

)] 2c(l-M
2

)~ ~

dx
Now
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is an orthogonal reciprocant, for it can be expressed in terms of legitimate
combinations of 1 + P, which is an orthogonal reciprocant of even character,
with the three orthogonal reciprocants of odd character,

a, b (1 + t
2

)
- 2a2

t, c(l + t
2
)
- 5abt + 5a3

.

7 .
^v

In fact, the above expression for
-^ , when multiplied by a3 to clear of
doc

fractions, becomes

2a4 2a2
bt + 3b2

(1 -f t
2
} 2ac (I + &}

where the right-hand side is a linear function of orthogonal reciprocants of

the same (even) character, so that the combination is legitimate.

r\ J.-4-- i, dp d?p dp d?p
Quantities such as p,

-gP
,

-=
,

. . .
,
or p, -^ , d^2 , , where

d&amp;lt;j&amp;gt;

is the

angle subtended by the arc ds at the centre of curvature, have values

independent of the particular position of the co-ordinate axes (supposed

rectangular), and consequently these values, expressed in terms of t, a,b,c,...
will be absolute orthogonal reciprocants. A differential equation expressing
the condition that any one of these quantities vanishes, or that any one of

them has a maximum or minimum value, will also be independent of the

position of the rectangular axes, and must therefore be expressible in the

form of an orthogonal reciprocant equated to zero.

Mr Hammond remarks that, since the radii of curvature at corresponding

points of a curve and its evolute are p and ~
,
the radius of curvature of its

&amp;lt;X0

dnp
nth evolute is -,-- . The radius of curvature of the nth evolute of any nth

d&amp;lt;f)

n

involute of a circle is constant, and, consequently, the differential equation of

an nth involute to a circle is

Writing this in the form

/1-M2

_d\
w+1

(1 + trf = Q
V a dx) a

to which it is easily reduced, since

d_ _ d_ = p d_ _ (1 + t
z

) d_

d&amp;lt;f&amp;gt;

ds (1 + trf dx 2a dx

we see by what precedes that the left-hand member of the differential

equation is an orthogonal reciprocant.

As an example of the class of singularities which next presents itself for

consideration, let us find the differential condition which holds at points of
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contact of the fourth order with a common parabola. This condition is

expressible by the differential equation whose complete primitive is

(y + KxJ
2 + 2\x + 2fiy + v = 0.

Differentiating three times in succession, we obtain

(y + KX) (t + K) + \ + fjLt
= 0,

2a (y + KSC + /*) + (t + )
2 = 0,

b (y + KX + /A) + a (t + K )
= 0.

The arbitrary constants v and X do not appear in the last two of these

equations, from which, if we eliminate
yu-,

the variables x and y disappear at

the same time, and we find

2a2 - b (t + K) = 0.

A final differentiation and elimination give

Points of 5-point contact with a parabola are therefore indicated by the

evanescence of the pure reciprocant 4ac ob2
. And in general the differential

equation R =
0, where R is any pure reciprocant, indicates a property of a

curve which may be called a descriptive singularity, since it is totally

unaffected by the arbitrary choice of any two lines on the plane for the

axes of co-ordinates. For it was proved in Lecture IX of the present course

that if i be the degree and /* the characteristic of R, the substitution of

ly + mx + n for ac and I y 4- m x + ri for y changes R into (I m lm )
l
(lt + m)~*R,

so that the differential equation R = and the geometrical property corre

sponding to it are left unchanged by the substitution.

Six-point contact with a cubical parabola is another example of a descrip

tive singularity. Its defining differential equation may be written in any of

the following forms :

256a2
c
3 + 500a63

cZ + 165a62c2 - 30064
c = 0,

125 (a?d
- 3a6c + 263

)
2 + 4 (4ac

- 562

)
3 =

;

5
or, if we make a?d Sabc + 263 = A and ac j 62 =M

,
the equation may be

4

put in the form
N3

=o.

In the theory of Binary Forms, when the numerical parameter K in

263
)
2 + K (ac

-
b-)

3
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is so chosen that the highest powers of 6 cancel each other, the form divides

by a2 and gives the Discriminant of the Cubic

a?3? - Qabcd + 4bsd + 4ac3

In the parallel theory of Reciprocants the form

is divisible by a (instead of by a2

), giving

125asd2 - 750a + 500ab3d + 256a2
c3 + 165a62

c
2 - 30064

c,

which may be called the Quasi-Discriminant.

A complete discussion of the differential equation

A 2 + KM3 =

is reserved for the next ensuing lecture, in the course of which it will appear
that the Quasi-Discriminant equated to zero is the differential equation of

the cubical parabola.

LECTURE XIII.

We may integrate the general homogeneous equation in reciprocants

extending to d, inclusive, as follows:

Calling ac-^b* =M and a?d - 3abc + 2b3 = A,
T

the equation in question will be of the form

A* + rcM3 = 0.

But if we write ft
= Aax

,

where ft, a are general linear functions of the co-ordinates, say

y + mx + n, y + m x + n
,

we may eliminate the five constants m, n, m, n
, A, and the result will

evidently be a pure reciprocant extending to d, inclusive, and, being homo

geneous and isobaric, can only be of the form

A 2 + KM3 = 0,

so that it remains only to determine K in terms of X, or, which is the same

thing, X in terms of K.

_I I

The solution ft
= Act* implies a = A A

/S\ Hence the equation between

M and A must be of the form

6 {(X + p) (p\ + 1)YM + {(X + q) (q\ + I)}JA*
- 0,

where 9 is a constant, for otherwise there would be more than one general

solution to it. It only remains then to determine the values of p, q, 9, i, j,

which may be affected by considering the particular solution y = #\
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When X = 2, M and A both vanish, and if X = 2 + e, where e is an infini

tesimal, M and A will each be of the same order as e (that the first power of

e does not vanish in M or A may be easily verified). Hence 2 + q + e is of

the order e, and therefore q = 2 and
;
= 1.

When X = 1 + e, Jf remains finite and A is of the order e. Hence

p = 1 and { = 1. Thus, the equation is

To find 0, let X = 3 and y = ar
3

;
then

a = 3a?, 6 = 1, c = 0, d = 0, Jf=-j, 4 = 2,
T?

53 IQ
so that -#.-.+5.4 = 0,

= ^ ,

4 25

and finally 16 (X + I)
2M3 + 25 (2X

2 - 5X + 2) 4 2 =

has for its integral (3
= Aax

.

If X = oc
,
we may make

and, consequently, ft
= e

Za
,
which contains five independent arbitrary constants,

will be the general integral.

For a parallel method of deducing the Integral of 4 8 + A3 = 0, where A

(our future AC B2

) is the projective reciprocant whose letters go up to/, see

Halphen s These sur les Invariants Differentiels, Paris, 1878.

Mr Hammond has succeeded in deducing the equation between A and M
from the primitive ft

= Aax
by direct elimination, as shown in what follows.

Possibly he, or some other algebraist, may eventually succeed in the more

difficult task of obtaining the Differential Equation to 7 = /8
Aa1 ~x

(that is, the

linear relation between A 8 and A3

) by some similar direct process.

Differentiating the equation /3a~
A = A three times in succession, and

observing that, since a = y + mx + n and ft
= y + m x + n,

we have a/3 Xa /3
= 0,

From the last two of these three equations we obtain, by eliminating

(
-

X/3),

or, writing

y2
= 2a, 2/3

= 66, 2 - X = 3?
2

,
1 - 2X = - 3r2

,
1 - X = q

2 - r\
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and dividing by # ,
the equation assumes the form

b n2 r2_ Co2 - r2
} = 2- - -

2a w rj ,
a/

.

Differentiating again, remembering that

/ r\n f i aa .-, at)
a = p = 2a, and -y-

= 36, -y = 4c,a# a#

c j 4ac - 662
. o2 r2

we find --__ (02 _ ^\ _ _ J/_ + l_
4a4 w

/3
2 a 2

*

The elimination of /3 between this and the equation immediately pre

ceding it gives

4ac- 662 (6 . r2
}

2 o2r2

^^(?!
- r

.

!)2!+ |_ (9
- r.

) + aj
_1_ =

.

Writing in this 4ac - 562 = 4eM, we obtain by an easy reduction

4q-Ma
2 = r2

(2a
2 - 6a

}

2
,

and, taking the square root of each side,

a (2q JM+ rb)
- 2a?r = 0.

A final differentiation gives

4&amp;gt;cr + 2a 2 *M- 5br = 0.

\Y Jf

Finally, eliminating of, we obtain

(2q JM + rb) C2q JM- 5rb) + ar Ucr + $=*}
= 0.

V iy JxL /

Hence
4&amp;gt;Mq

2 + qr(^ - 86JM\ + r2
(4ac

- 562
)
=

;

\Y Jyi ]

or, 4
(&amp;lt;f

+ r2

) M% + qr (aM - SbM) = 0.

XT &amp;gt;

dM d ( 562
\Now M = -^- = -=- ac - -;- )
= 5ad - 76c,a a# \ 4 /

and, consequently,

aM - 8bM = a (oad - 76c)
- 6 (8ac

- 1062

)
= 5 (a?d

- 3a6c + 263

)
= 5A

;

so that we may write

4 (q
2 + r2

) M% = -
qr (aM - 8bM) = - 5qrA ;

or, 16 (q
2 + rz

)
zM3 -

25q*r
2A 2 =

0,

where 3g
2 = 2 - \ and - 3r2 = 1 - 2\.

Replacing q
2 and r2

by their expressions in terms of X, the differential

equation becomes

16 (X + l)
2^3 + 25 (2X

2 - 5X + 2)A 2 = 0.

Some special cases may be noticed.
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When X = 2 or ^ ,
the equation reduces to M= 0, which is the differential

Z

equation of the common parabola previously obtained.

When X = 3 or -
,
we obtain 256M3 + 125A* = for the equation of the

cubical parabola, where the expression on the left-hand side is the Quasi-

Discriminant.

When X = 1, we find A = for the differential equation of the general

conic.

When X is an imaginary cube root of negative unity, so that X2 X + 1 = 0,

we have

(X + I)
2 + (2X

2 - 5X + 2)
= 0,

and the differential equation becomes

We shall subsequently avail ourselves of this result in finding the

complete primitive of the Halphenian A.

In the case where X is infinite, from the complete primitive /3
= ela we

first eliminate the exponential function and afterwards the arbitrary

constant I.

Thus we find =
la?/3 and = ^ + ;

p a p
or, ys /3 (

-
/3 )

- a /3
2 = 0.

Hence ys /3 (a
-

)
-
ya (a + 2/3 )

= 0.

The elimination of /3 gives

y3a
/

/3
/

-y2
2

(a +2/3
/

)
= 0;

36 _ 1 2

&&quot;jPT-i?:

Comparing this with the equation previously obtained,

A (O i _ r*\ = i! _ Tl
2aaW IB a&quot;

we see that q
2 = 1 and r2 = 2. Substituting these values in the differential

equation
16 (f + r2

)
2M3 -

25q
2r2A 2 =

0,

it becomes 8MS + 25A 2 = 0,

which is the differential equation corresponding to the complete primitive

(3
= el

*.

We shall hereafter consider in detail the theory of that special class of

pure reciprocants (M. Halphen s Differential Invariants) which retain their

form when any homographic substitution is impressed on the variables
;
that

is, when, instead of x and y, we write

Ix + my + n~ , I x + rti y + n

l&quot;x +
m&quot;y + n&quot; I&quot;as + m&quot;y + n&quot;
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Since perspective projection is the geometrical equivalent of homographic
substitution, it follows from the definition of Differential Invariants that

they are connected with the properties and relations of curves which remain

unaffected by perspective projection. For this reason Differential Invariants

are sometimes called Projective Reciprocants. Two reciprocants with which

we are familiar belong to this important class. One of them, y2 or a,

vanishes at points of inflexion on the curve y =/ (x) ;
the other,

92/2
S

2/5
-
45y2 2/32/4 + 4(ty3

3
,
or a?d - Sabc + 263

,

which, for reasons given below, we shall call the Mongian, vanishes at

sextactic points ;
that is, at points where a conic can be drawn having

6-point contact with the given curve.

To illustrate the distinction between a projective and a merely descrip
tive singularity, consider for an instant the pure reciprocant 4ac 562

, which,

as we have seen, vanishes at all points of a general curve where 5-point
contact with a parabola is possible. Now, 5-point contact with a parabola is

a descriptive but not a projective singularity; after projection the parabola
becomes a general conic, and 5-point contact with it becomes 5-point contact

with a general conic, which is not a singularity at all. But inflexions and

sextactic points are indelible by projection, and thus belong to the class of

projective singularities.

The differential equation to a conic was originally obtained by Monge in

the form

9i/2
2

y6
-
45yay,y4 + 40?/3

3 =

(see Monge,
&quot; Sur les Equations diffeVentielles des Courbes du Second Degre,&quot;

Corresp. sur I Ecole Polytech., Paris, II. 1809-13, pp. 51-54, and Bulletin de

la Soc. Philom., Paris, 1810, pp. 87, 88). At the end of the first chapter
of his Differential Equations, Boole mentions this form of equation as due

to Monge, but without any reference, and adds the remark :

&quot; But here our

powers of geometrical interpretation fail, and results such as this can

scarcely be otherwise useful than as a registry of integrable forms.&quot; The

theory of Reciprocants, however, furnishes both a simple interpretation of

the Mongian equation and an obvious method of integrating it.

To see that the differential equation of a conic is satisfied at the

sextactic points of a given curve, we have only to remember that at such

points the derivatives of y with respect to x, up to the fifth order, inclusive,

are the same for the given curve as for a conic.

We proceed to show how the Mongian may be integrated. Writing in

the above equation

ya
= 2a, 7/3

= 2 . 36, y.
= 2 . 3 . 4c, y,

= 2 . 3 . 4 . 5d,

it becomes a*d - 3a6c + 26s = 0,
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where it can hardly fail to be noticed that the left-hand member of the

equation is an ordinary Invariant as well as a Reciprocant. It will be

proved hereafter that all Differential Invariants possess this double nature.

Now, if
jj,
= Si + w, where i is the degree and w the weight of any pure

reciprocant R, the ordinary theory of eduction shows that

dR
j / n\ a ~ja /R\ dx

a3

is another pure reciprocant.

When we consider the letters a, b, c, ... in any invariant / to mean

2 23 2 3~4
&quot; the Paralle ^ tneory of generation for Invariants gives

the corresponding theorem that if v = 3i + 2w, where i is the degree and w
the weight of 7,

dx

dl IT
j x 7-\ a j v l
d /I\ dx

is also an invariant.

A strict proof of this theorem will subsequently be given. For present

purposes it is sufficient to notice the easily verified special cases of the two
theorems

d_
/4ac - 562

\ _ 20 (a*d
- 3a6c + 263

)

, d^fac- 62
\ _ 5 (a?d

-
- =

It follows as an immediate consequence that the equation

a2d - Sabc + 263 =

admits of the two first integrals

a
~

(4ac 562

)
= const.

and a
&quot; ^a

(ac
- 62

)
= const.

Now, a -S (4ac-56=) = ^(a-i6)
= -^(a-S);

so that the Mongian equation is equivalent to

j?(^-o.rto&amp;lt;^-*:
We thus obtain an integral of the form



382 Lectures on the Theory of Reciprocants [42

from which the complete primitive may be found by two easy integrations.

Thus,
f dx m + nx

y-i + p = ,

(I + 2mx + nx*)* (In
- m2

) (I + 2ra# + no?)*

gives y + px + q = .
--

(I + 2moc + no?)* ,

In m?^

which is the equation of a general conic.

By first interchanging the variables #, y in the Mongian equation (whose

form remains unaltered by this interchange, since a*d Sabc + 2&3
is a

reciprocant) and then integrating three times with respect to x, we should

find another integral of the form

#2

~
3 = I + 2m y + n f,

The solution may be completed by two integrations, as in the former

method.

2 (QC _ 62
) d2

a
Mr Hammond remarks that -

J-Q
=

-j- (a*), where t y^. For, since

a 3 M
d _dx d

__
\ d

dt dt dx 2a dx

we have ^ =L \
a~* 36 =

^ .

;

and, consequently,

d? , %, 1 d , _ 4 , N .. _ j^) . 7 .

dt^Tadx^ 36
&amp;gt;

= 2a M c - 6! )-

Hence the integral a~ 3
~(ac 62

)
= const, previously obtained for the

d2 2 d2 ^

Mongian is equivalent to -^- (a
3
) = constant

;
that is, to -r-2 (y&amp;lt;?)

= const.
cat ^y\

Thus we have another integral of the form

y =

from which it is also easy to pass to the complete primitive.

I add a few general remarks relating to the subject-matter of this and

the preceding lecture. Instead of the cumbrous terms Projective Recipro
cants or Differential Invariants, it may be better to use the single word

Principiants to denominate that crowning class or order of Reciprocants
which remain, to a factor pres, unaltered for any homographic substitutions

impressed on the variables. This is the species princeps. If we go back to

the species infima, we see the beginning of life in the subject. In general

Reciprocants, all that is affirmed is that there exist forms-functions of the

derivatives of y in regard to x which (to a factor pres) remain unaltered

when the variables x and y are interchanged, so that /(ylt yz , y3&amp;gt; ...) becomes
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(/&amp;gt;(#!,
#2 , cc3 , ...). The function &amp;lt; only differs from / by the acquisition of an

extraneous factor ( Yyf, that is,

, 2/2, 2/3, ...- (-/Oi, a?
a&amp;gt;

a?a , ...).

A particular species of these general (mixed) reciprocants arises when
i 2/2, ys , ), differentiated in regard to ylt gives a reciprocant. These are

Orthogonal Reciprocants, and in them we see the first dawn of free con

tinuous motion as distinguished from mere displacement (or mere interchange
of axes). Orthogonal Reciprocants, when x, y are rectangular co-ordinates,
remain unaltered (save as to a factor) when the orthogonal axes are moved

continuously. A quarter of a revolution of course will reverse their original

positions, so that we see the condition of mutual displacement is fulfilled.

Thirdly, Reciprocals into whose form the first derivative yl does not enter

are called Pure. Their form is invariable when the axes (now taken

generally) undergo separate displacement (instead of turning round together)
in a plane. Here there is a further development, so to say, of life in the

subject.

Finally, in Principiants, a particular species of Pure Reciprocants, the
invariance remains good, not merely for any position of the axes of reference,
but for any homographic deformation of the plane in which they lie, so that
the evanescence of a Principiant corresponds to some property of a curve
not only intrinsic but indelible by projection, as, for example, an inflexion,
or a double point, or a sextactic point, and so on.

It is clear from this review that the Theory as we have given it goes to

the root of the subject, and that the word Reciprocant is rightly chosen as

conveying the notion of a property which is common to the entire continuous
series of forms bearing that name. All the links of this connected chain are
thus comprehended under the general name of Reciprocants.

LECTURE XIV.

The remaining lectures of the course will be devoted to the theory of
Pure and Projective Reciprocants. I shall first treat of the existence and
properties of the Protomorphs of Invariants and Reciprocants, using the
latter system of protomorphs to obtain all the fundamental forms of

Reciprocants in the letters a, b, c, d, e. I shall then pass on to the theory
of Projective Reciprocants, or Principiants, with its applications contained
in M. Halphen s These pour obtenir le grade de docteur es sciences (Paris,
Gauthier-Villars, 1878). It will be seen that M. Halphen s very ingenious
methods become greatly simplified when his results are read by the light of
an important discovery in the theory of Principiants recently made by
myself and Mr Hammond working conjointly, arising out of a theorem put
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forward by one of my hearers. This theorem, on examination, we found was

necessarily erroneous and would fail at the very first step of its application.

But although the proposition stated was wrong, it contained an Idea which

survives and may be incorporated in a valid and extremely important

theorem, which I will endeavour to explain.

A Principiant, besides being an Invariant in the original letters

a, b, c, d, ... is also an Invariant in the letters a, A, B, G, D, ... where each

capital letter is itself a Reciprocant ; and, conversely, every invariant in the

capital letters A, B, C, D, ... is a Principiaut. The invariants in the capital

letters form a system of protomorphs for Principiants, so that every Prin

cipiant is either some such invariant simply, or a rational integral function

of such invariants provided by some power of a. Thus, for example, it will

be proved that the Cubic Criterium (that is, the Principiant which gives,

when equated to zero, the differential equation of a cubic curve) may be

expressed as the quotient of

- A 5 + A (A
ZD - 3ABC+ 2B 3

) -(ACE- AD 2 - B*E + 2BCD - C3
)

64 4

by the fifth power of a.

The proof of this theorem is based upon the fact that we can form a

series of terms beginning with the Mongian (namely, a?d 3a6c + 263

), say

A, B, C, D, ... such that

,

2*

0(7 = 2B x

where O = ddb + 2bdc + 3cdd + . . . ,

coupled with the fact that every Principiant must be a function of the

letters in such series and the small a.

Each consequent of the series A, B, C, D, ... is, so to say, an Invariant

relative to its antecedent
;

it becomes an actual Invariant when its ante

cedent vanishes.

In the theorem as originally proposed, each letter of the series was

derived by the operation of an eductive generator upon the one which

precedes. In the true theorem the scale of relation is between three and

not two consecutive terms. Calling the letters u
,
uly u2 ,

... U{, we have

(i + 7) Ui+2
- Gui+1 + (i + 1) Mui = 0,
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where is the ordinary eductive generator,

4 (ac
-

b*)db + 5 (ad - bc)dc + 6 (ae
-

bd) dd + ...,

M is the first pure reciprocant after the monomial a, namely, M ac 7 b2
,

TT

u = A = a?d - 3a6c + 263
,
and 6w, = GA.

But although, as I have said, the theorem in the form proposed was

absolutely erroneous, its proposer has rendered an invaluable service to the

theory by the mere suggestion of what turns out to be true, namely, that

every Principiant is an Invariant in regard to a known series of Reciprocants
considered as simple elements.

To this theorem there is a correlative one, for it will be shown that there

exists a series of invariants A
,
A l} A 2 , ..., the first term of which, A ,

is

the same as the Mongian A, each of the other terms of the series being a

Reciprocant relative to the one that precedes it. In fact, we have

where F= 4 86 + oabdc + 6 ac + dd + . . .
,

and, as a consequence, every Principiant will be an Invariant in respect to

these Invariants and the first small letter a.

Thus, speaking symbolically, we have not only

P = R + I

(a logical equation meaning that P has the same qualities as both R and /,

or that a Principiant is both a Reciprocant and an Invariant), but also

P = IR and P = //,

meaning that a Principiant is an Invariant of Reciprocantive elements, and
an Invariant whose elements are themselves Invariants.

I may add that the invariantive elements A
0&amp;gt;

A 1} A, A 3 ,
... are defined

by the equations
A = A,

25
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so that any invariant in the reciprocantive elements A, B, C, D, ... is equal

to the corresponding invariant in A ,
A lt A 2 ,

A 3 , .... Thus,

A=A
,

A 2 n Q A Kf^ &amp;lt; 9 Rs A 2 A Q/l /j J _i_ O &amp;gt;4 3
JA. JJ O-il-DU ~j- &quot;-O xl o **J O.iL(AljJuLj T ^.ili ,

^^ - 4BD + 3C2 = A A 4
- 4.^^ 3 + 3^ 2

2
,

M. Halphen appears not to have noticed the Principiant AE 4&amp;gt;BD + 3C 2
,

which presents itself naturally when the theory is viewed from our present

ground of vantage, but A, AC - B2 and A 2D - 3ABC +W3 occur in his These

in connection with the curve

in which a, /3, 7 are any linear functions of x, y, 1.

When \= \ the differential equation of this curve (the conic a/3 = 7
2
)

is A = 0, but it is

when X is a cube root of negative unity, and

A 2D - 3ABC +2B3 =

when X has an arbitrary value.

Before making out an exhaustive table of all the irreducible forms of

pure reciprocants in the letters a, b, c, d, e similar to, but not identical with,

the corresponding table for invariants, it seems to me desirable to say

something of Protomorphs in general ;
and this will be better understood if

we devote a short space to the protomorphs of Invariants. The simplest

forms of these are the following well-known ones of alternately the second

and third degrees:

P2
= ac - ,

P3
= a-d - 3abc + 2bs

,

Pt =ae-4!bd + 3c2
,

P5
= a-f- 5abe + 2acd + 8tfd - Gbc\

P6
= ag- Qbf+ loce - Wd2

,

P7
= a2h - 7abg + Qacf- 5ade + 1262/-

The quadratic Protomorphs P2 Pt, ^Pe. &amp;gt;

are absolutely unique, for the

number of invariants of the type j ; 2, j is (j ; 2, j) (j 1; 2, ; )
= 1 if j is

even, and = ifj is odd. Their form is so well known that there is no need

to dilate upon it here.
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The cubic ones P3 , P6) P7 , ..., may be derived from the quadratic ones

by means of Cayley s generators, given early in the course, namely,

P = (ac
- 62

)96 + (ad - bc)dc + (ae
- bd)dd + ...,

Let us first use the P generator

P (ac
- 62

)
= a(ad- be)

- 26 (ac
- 62

)
= a*d - Babe + 263

,

P (ae
- 4bd + 3c2

)
= a (af- be)

- 46 (ae
-

bd) + 6c (ad
-

be)
-U (ac

- 62

)

= a2/- 5abe + 2acd + 8bzd - 66c2
.

Similarly, we find

P (ag
- 66/+ I5ce - 1(M2

) = o?h - labg + 9acf- bade + 1262/- SObce + 206d2
,

and so on.

Let / be any invariant whatever of the type w; i, j (satisfied or un

satisfied) ;
then using the original forms of the generators P and Q as given

by Cayley (see Lecture IV), we have

PI=a(bda + cdb + ddc + ...) I- ibl,

QI=a (cdb + 2ddc + 3edd + ...)/- 2w67,

and, consequently,

(JP-Q)I= a [jbda + (j
-

1) cdb + (j-2)ddc + ...}I-(ij- 2w)bl.

If in this formula we write

=jbda + (j-l)cdb + (j-2)ddc + ...,

it becomes (JP -Q)I= aOI - (ij
- 2w) bl,

which, when / is a satisfied invariant, so that
ij 2w = Q and 01 = 0, reduces

to

(jP-Q)i=o,

showing that the forms obtained by operating with either P or Q on any
satisfied invariant are the same to a numerical factor pres.

Now, each quadratic protomorph is a satisfied invariant (for when w =
;

and i = 2, ij
- 2w = 0), and therefore the cubic protomorphs found by

operating on the quadratic ones with Q will only differ by a numerical
factor from those already obtained by the operation of P. But we must
not conclude from this that the cubic protomorphs are unique. Their
number is in fact given by the formula

; 3, /) -0-1; S,j),

where it is obvious that

0-1; 3, j)
= (j-l; 3, y-l);

so that the above formula may be written

0; 3, j)-0-l; 3, /-I), or say A(j; 3, ;).

252
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Now, there is a simple rule for rinding (j; 3, j); it is the nearest integer

to
-L

From the following table, obtained by the use of this rule,

J=
10

it may be seen that for any odd number j
=

&amp;gt; 9 there are two or more forms

of extent j equally entitled to rank as protomorphs. If I be the last letter

which occurs in one of these forms, its first term will of course be o?l
;
the

difference between any two such forms will not involve the letter I, and will

only extend to k, but will still be of the same (potential) extent as /.

The property of the protomorphs a, P2 ,
P3 ,

P4 ,
... is that every invariant

is a rational integral function of them divided by some power of a, as appears

from the fact that Q, any given rational integral function whatever of the

letters a, b, c, d, e, ..., may obviously be expressed as a rational integral

function of a, b, P2 ,
P3 ,

P4 ,
... divided by some power of a. Thus,

Suppose Q to be an invariant /; then

and, consequently,

&quot;fa

&quot;

db ^dP,

where O is the annihilator for invariants
;
so that

H (Ja
m

)
= 0, Ha = 0, HP2

= 0,

We have therefore

~db
a
~db~

Hence
&amp;lt;f&amp;gt;

does not contain b, but is a rational integral function of the

protomorphs alone, and

I shall show how to obtain a similar scale of forms possessing like

properties for pure reciprocants.

LECTURE XV.

A Protomorph may be defined as a form whose weight is equal to its

actual extent, so that its type is j ; i, j.
The first protomorph is a, which

corresponds to j
= 0. For higher values of j it follows immediately from the

definition that every protomorph will contain a term a{~ l

l, in which the

letter of highest extent appears only in the first degree multiplied by a
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power of the first letter. The existence of this term enables us to instantly

recognize a protomorph. As in the case of invariants, it will be shown that

every pure reciprocant is either a rational integral function of protomorphs
or else such a function divided by some power of a. But first it will be
better to prove d priori their existence and exhibit examples of them for the
earlier values of j.

It was proved, in Lecture IX, that the number of pure reciprocants of the

type w ; i, j is at least equal to

(w;i,j)-(w-l-i + l,j).

Now, obviously, the number of partitions of w into i parts not exceeding
w + e is the same as the number of partitions of w into i parts not exceeding
w, so that

(w ; i, iv + e)
= (w; i, w) ;

and since, by a well-known theorem, (w; i, j)
=

(w;j, i), we see that

(w w + e,j)
= (w) j,w + e)

= (w; j, w) = (w; w, j),

a result which follows more immediately from the consideration that the

partitions of w
;
w + e, j differ only from those of w; w, j by e columns of

zeros, as we see in the annexed example :

3
; 5, 3

30000

21000

11100

3; 3, 3

300

210

111

Hence, if w =j, and i =
&amp;gt;j,

we have

(w; i, j)
=

(j; j, j)

and
(W -

1; i + 1, j)
=

(j
-

1; j
-

1, j
_

i).

Thus, the number of pure reciprocants of the type j; j, j is

;.?&amp;gt; j)-0 -i; j-i, j-i),
in other words, the difference between the indefinite partitions of j and those
of j

- 1. Expressed by means of generating functions, this difference is the
coefficient of & in

l-x
(1
-

x) (1
-

x*) (1
-

a?)...(I-oci)
= coefficient of aci in the expansion of

1

f \ /

This coefficient is a positive integer for all values of j (except j = l, when
it is zero), which proves the existence of reciprocants of the type j; j, j whenj
has any value except unity.

But we wish to prove the existence of one or more reciprocants of the
tyPe j , j,j which actually contain a term of the form a&amp;gt;~

l

l, where the letter I
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is of extent j.
The number of such forms is the difference between the

number of pure reciprocants of the types j ,j,j &ndj;j,j 1.

Now, the number of linearly independent pure reciprocants of the type

j,j,j has just been shown to be

(j; i, j)-0 -i; /-!&amp;gt;./- 1)-

And, in like manner, that of the linearly independent reciprocants of the

j~ l is

;
j&amp;gt; j-i)-0 -i; j + i, j-i)

=
; j. j-i)-(j-i; j- 1

. J- 1
)-

The difference between these two numbers is therefore

For the only partition not common to the two types is j . (P&quot;
1

,
made up

of one j and j 1 zeros, which belongs to the first type, but not to the

second. Hence reciprocants of the type ; ; j, j contain one term which those

of the type j ; j, j
1 do not, and which can only be aJ~l

l. This proves the

existence of protomorphs.

In the latter part of the above proof we have assumed the truth of the

theorem, which, however probable, is not demonstrated, that the number of

reciprocants of the type w; i, j is (w ; i, j) (w 1; i + 1, j) and no more

[that concerns the subtrahend, namely, ( j; j, j 1) (j 1
; j 1, j !)]

We shall, however, have an independent method of arriving at Proto

morphs by direct generation, just as we saw that all the cubic protomorphs

to invariants were derivable by direct operation of generators from the

quadratic ones.

The difference between the two cases is that the lowest degree of

Invariantive Protomorphs fluctuates alternately between 2 and 3. For

Reciprocantive Protomorphs the lowest degree corresponding to a given

extent fluctuates, but has a tendency to rise, and goes on progressing until

it exceeds any assignable number.

It is interesting to find what the degrees are for successive values of
j.

The calculations required are greatly facilitated by an extensive table of

partitions given by Euler in 1750, and partly reproduced by Cayley in the

American Journal of Mathematics, Vol. iv., Part in. In the table as

presented by Cayley, the number in column j and line i means the number

of ways of partitioning j into exactly i parts (zeros excluded). Hence, to

find the number of ways of partitioning j into i parts or fewer, that is, to find

(j; i, oo ) or its equivalent (; ; i, j), we must add up the numbers in the

1st, 2nd, 3rd, ... tth lines of column j.
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When these summations are made we obtain the subjoined table :

EXTENT j =

7 8 9 10 11 12 13 14 15 16 17 18

The number of pure reciprocants of the type^ ; i,j is

; *&amp;gt; j) -(j-i;i + i, j)
=

(j; i, j) -(j-i;i + i,j- 1).

To find the minimum degree for protomorphs of extent j we have there

fore only to see for what value of i any figure in the j column first becomes

greater than the figure in the column to the left one place lower down. The
fluctuations of the minimum degree are indicated by the dark irregularly

waving line which runs through the table.

Accordingly, we find that the types of the protomorphs, omitting w,
which is always equal to j, are as follows :

(2, 2), (3, 3), (3, 4), (4, 5), (3, 6), (4, 7), (4, 8), (5, 9), (5, 10), (5, 11), (5, 12), ...,

whereas for invariants they are

(2, 2), (3, 3), (2, 4), (3, 5), (2, 6), (3,7), (2, 8), (3, 9), (2, 10), (3, 11), (2, 12), ....

Corresponding to the extents

2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, ...,

the lowest degrees of the Reciprocantive Protomorphs are

2, 3, 3, 4, 3, 4, 4, 5, 5, 5, 5, ....

Contrast this with the regularly fluctuating series

2, 3, 2, 3, 2, 3, 2, 3,2,3, 2, 3, ...,

which shows the minimum degrees of invariantive protomorphs for successive

extents.

It may be proved, from known formulae in the theory of partitions, that

as the extent increases the minimum degree of reciprocantive protomorphs
increases (on the whole) and ultimately becomes infinite when the extent

is so.
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The apparent number of protomorphs to the several types is

(2, 2), (3, 3), (3, 4), (4, 5), (3, 6), (4,7), (4, 8), (5, 9), (5, 10), (5, 11), (5, 12), ....111111234 2 3

The explanation of this multiplicity is the same as that previously given
for the case of invariants : the difference between any two protomorphs of a

given type j ; i, j will be a reciprocant (no longer a protomorph) of the type

J;M-I-
For the only term containing the letter I (of extent j) will disappear

from the result of subtraction; and, accordingly, the above numbers, each

diminished by unity, will give the numbers of a set of reciprocants of the

same degree-weight as the protomorphs, but of a smaller (actual) extent.

Assuming that the number of pure reciprocants of the type w; i, j is

correctly given by the formula

(w i, j)-(w-l; i + I, j),

Euler s great table of partitions, already referred to, enables us to carry on

the determination of the minimum degree and multiplicity of protomorphs
for all extents as far as 59.

If in is the multiplicity corresponding to the minimum degree i of a

reciprocantive protomorph whose extent is j,
we form without difficulty,

using only the principles explained above, the following table :

Notice the repetitions of i indicated by the series

I 1
, O

1

,
2 1

,
32

,
4 1

,
31

,
42

,
54

,.

64
,
7 5

,
85

,
94

,
10 6

,
II 6

,
125

,
137

,
145+?.
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It will be observed that there is a general tendency of the number of

equal values of i to increase, but that this is subject to occasional fluctua

tions. When j = 5, i = 4; but when j = 6, i = 3, so that the minimum value

of i recedes. After this point is reached, i either advances or remains

stationary, but never recedes.

In order actually to find the protomorphs, we may use the annihilator V.

This was my original method of obtaining them
;
a shorter way, analogous to

that used by Halphen for differential invariants (principiants), has been

previously mentioned, but it will be instructive to begin with the method

of indeterminate coefficients. In the first place we have the form a of

weight 0, which is annihilated by

F = 2a2 36 + 5abdc + (Qac + 362

) dd + (7ad + 7bc) de + . . . .

For weight 1 there is no pure reciprocant. We could not make R = \ai~1

b,

for then VR = 2Xai+1
,
which cannot vanish unless X = and consequently

JB-0,

To find the Protomorph of extent 2, assume R = Xac + fib
2

;
then

VR =
4/ia

26 + 5\a?b = (4/x + 5X) a2
b.

Hence X and [A are proportional to 4 and 5, and we may write

For extent 3, assuming R X.a
2d + pake + vb3

,
we have

VR = 2fta
3
c + 6va*b* + 5/*a

2b2 + 6Xa3
c + 3Xa262

,

which vanishes when

2/i, + 6X = 0, Qv + op + 3A, = 0.

We may therefore write X = 1, ^ = 3, v = 2, and thus obtain

R = a?d- 3abc + 263
.

For extent 4 the table of minimum degrees indicates the existence of a

protomorph of degree 3. To find its value we assume

R = Kd-e -i \abd + /mac
2 + vtfc.

Operating with V, we find

a3d a2bc ab3

VR = 2X 4^

6X 3X

IK 7K

In order that VR may vanish, we must have

2\ + 7 =
0, 4i/ + 10/x + 6X + 7* = 0, and 5v + 3X = 0.

To avoid fractions, let K = 50
;
then X = 175, v = 105, and p = 28

; thus,

R = 50a2
e - I75abd + 28ac2 + 10562

c
;

whereas, the protomorph of extent 4 for Invariants is ae 4sbd + 3c2
. There

is no reciprocant of degree 2 weight 4 to correspond to this.
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LECTURE XVI.

By using the generator for pure reciprocants instead of the annihilator

F, we readily obtain the protomorph of extent 5 and of the fourth degree
whose existence is indicated in the previously given table of minimum

degrees. We have only to operate on the protomorph of degree 3 and
extent 4 with

G =
4&amp;gt;(ac

- b2

)db + o(ad- bc)dc + 6 (ae
-
bd)dd + 7(af- be)de + ...

Thus, G (50a
2
e - I7oabd + 28ac2 + 10562

c)

= 4 (ac - b2

) (- 17bad + 2106c)

+ 5 (ad
-

be) (56ac + 105&2

)

+ Q(ae-bd)(-175ab)

+ 7(af-be)(oOa
2
).

Rejecting the numerical factor 35, which is common to all the terms in

the result, and at the same time writing the terms themselves in reverse

order, we have

10a2

(af- be)
- SQab (ae

-
bd) + (ad

-
be) (Sac + 1 5V) + 4 (ac

- b2

) (- 5ad + 66c)

= 10a3

/ - 40a26e - I2a2cd + Goab2d + IQabc2 - 39&3
c,

which is the protomorph in question.

The form just found is irreducible, as indeed it ought to be, since the

minimum degree for extent 5 is greater than that for extent 4 by unity,
which exactly corresponds with the unit increase of degree due to the

operation of G. But if we use G to generate a protomorph of extent 4

from that of extent 3, the resulting form will be reducible. In fact

G (a
2d - Sabc + 26s

)

= 4 (ac
- b2

) (- Sac + Gb2

) + 5 (ad- be) (- Sab) + 6 (ae
-

bd) a
2

= 3 (2a
3e - 7a2bd - 4a2

c
2 + 17ab2

c - 864
).

If now we write

ac - j 62 - M,
4

7 17
a*e - a2bd - 2a2

c
2 + -5-

ab2
c - 464 = B,

L 2i

we have shown that GA = 6B.

But

505 + 128M 2 - 25 (2a
3e - 7a2bd - 4a2

c
2 + I7ab2

c - 864
) + 8 (4ac

- 562
)
2

= a (50a
2e - I7oabd + 28ac2 + 10562

c) ;

so that B is reducible, being expressible as a rational integral function of

a, M, and the previously obtained protomorph of degree 3 and extent 4.
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The general theory of the generator G is contained in that of the

differentiation of absolute reciprocants, in which, if /A
= 3i + w, where w is

the weight and i the degree of any pure reciprocant R, we have

and, consequently,

dx

where RI and cij are what R and a become when x and y are interchanged.

Hence
dR u da

a TT o ^ T~
ete 3 dx_^^_ ^^ ^^ i

&amp;gt;

a3

and therefore also the numerator of this fraction is a reciprocant.

Remembering that

da .,, db dc _ ,
- = 3&, T- = 4c, -, = 5, . . .

,

(Z^C Cti2/ GytZ/

the numerator may be written

The ordinary expression for G is found by writing

a -i fjib
= a (363a + 4c96 + oddc + - )

CM?

- 6 (3a3a + 46dfc + 5c9c + ...)

If the actual extent of R is j,
that of GR is j + 1

;
for the operation of G

introduces an additional letter. Both the weight and degree are also

increased by unity. Thus, the type of R being w
; i, j, that of GR is

w + 1; i + 1, j + 1.

Suppose the weight of R to be equal to its actual extent; then R is a

protomorph of the type j ; i, j,
and GR, whose type is j + 1

;
i 4- 1, j + 1, is

also a protomorph. This proves the existence of protomorphs for every

possible extent. Starting with the form 4ac - 56* we obtain, by successive

eduction, a series of protomorphs of the type j ; j, j for which the general

expression is

j-2
(4ac

_
552),

where j has any of the values 2, 3, 4,

If R is a protomorph of minimum degree, GR (if irreducible) will also

be a protomorph of minimum degree. Hence the minimum degree can

never increase by more than one unit when the extent is increased by unity.
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The second educt G 2R is always reducible
;
for

T- - Vc + /* O + 4) 62 R.
ax

Combining this with M= ac - 7 62
, we have

4

4) Jtf = a J5a
-* 5

^
dx&quot;

where the right-hand side is divisible by a, showing that the degree of G*R
is always depressible by unity. R being a protomorph of degree i and

extent j,

is one of degree i + 1 and extent j + 2. Hence we may conclude that an
increase in the minimum degree for protomorphs cannot be immediately
followed by another increase

; for, if this were possible, the minimum degree
for extentj+ 2 would be i+2, instead of being * + 1 at most.

This conclusion is in accordance with the sequence of the values of i in

the table of minimum degrees, and as far as it goes confirms the exactitude

of the formula (w ; i, j) (w l;i + 1, j) for the number of pure reciprocants
which was assumed in calculating the table.

The method previously employed to prove that every invariant is a

rational integral function of protomorphs, or such function divided by a

power of a, may be very easily extended to the case of reciprocants.

In the first place, it is obvious that every rational integral function of the

letters a, b, c, d, ... is by successive substitutions reducible to the form

a-*(a, 6,P2,P3,P4 , ...P}),

where Pj means the protomorph of extent j.

Let any reciprocant R be put under this form
;
then

and, consequently,

Now, V annihilates R, a, P2 ,
P3 ,

... P
jt

since these are all pure recipro

cants. Hence the above identity reduces to -=-Vb = 0, from which (since
Col/

Vb does not vanish) we conclude that &amp;lt;E&amp;gt; does not contain b explicitly. Thus,

a?R =
3&amp;gt;(a,

Pa ,
P3 ,

P4| ... Pj),

and the theorem is established for reciprocants.
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The Protomorphs for Reciprocants as far as extent 8 are as follows :

P2
= 4ac - 562

,

P3
= a2d - 3a6c + 263

,

P4
= 50a2e - 175a6d + 28ac2 + 10562

c,

P5
= 10a3/- 40a26e - 12a2cd + 65a62d + 16a6c2 - 3963

c,

P6
= 14aty

- 63a6/- 1350ace + 1782&2e + 1470ad2 - 41o86cd + 2310c3
,

P7
= 7a3A - 35c% - 539a2

c/+ 735a6a/+ 605a2de + 306a6ce - 14856e

- 2135a6d2
H- 1001ac2d + 34656W - 19256c 8

,

P8
= 420a3

z - 2310a26A - 25648a2

c# + 9240a2

d/ + 21780a2e
2

+ 85386a6c/- 191730a6rfe - 59220ac2e

- 12694563/+ 25212662ce + 16926062^2

+ 129360c4
.

The work necessary for obtaining the first four of these, P2 ,
P8 ,

P4 ,
P5)

has been fully set out. Since P4 is of degree 3, its second educt, 6r
2P4 ,

is of

degree 5 and its reduced second educt of degree 4. A linear combination of

this with a form whose leading term is o?ce becomes divisible by a and gives
P6 ;

but as this requires the preliminary calculation of the form (a?ce), it is

simpler to find P6 directly by the method of indeterminate coefficients, and
thence by eduction to get P7 and P8 . Thus (to a numerical factor pres) P7

is the educt and P8 the reduced second educt of P6 . Beyond this point the

calculation of protomorphs has not at present been carried.

Referring to the table which gives the minimum degree and multiplicity
for a Protomorph of any extent, we see that the multiplicity exceeds unity
when the extent^ = &amp;gt; 8, and is exactly equal to 2 when j = 8, 11, or 21.

Hence the protomorphs as far as P7 inclusive are unique ;
but there are

two forms of extent 8 and degree 4, any linear combination of which

(provided it contains the term as

i) may be regarded as a protomorph. One
of these forms is P8 ,

whose value is given above
;
the other is a linear

combination of P8 with a form, whose leading term is a?cg, hereafter to be

set forth.

The irreducible forms for extent 2 are a and P2 ; every other form must
be simply a power of P2 multiplied by a power of a. We proceed to the

calculation of all the Irreducible Forms for the extents 3 and 4 respectively.
When j = 3, we may combine the protomorphs

4ac 5b-

and tfd - Sabc + 263

with one another.

Adding 125 times the square of the latter to 4 times the cube of the

former and dividing by a, there results the form

+ 256a2
c
3 + 165a&V- - 30064

c.



398 Lectures on the Theory of Reciprocants [42

This form is analogous to the discriminant of the cubic, but is of a higher

degree by one unit. Its type is 6
; 5, 3, whereas that of the discriminant is

6
; 4, 3.

In the case of invariants, we have to combine ac 62 with a?d 3a6c + 26s
.

The square of the second, added to 4 times the cube of the first, gives

a d2 - 6a?bcd + 4a2b3d + 9a262
c
2 - 12a64

c + 466 + 4a3
c
3 - 12aW + 12a64

c - 466
.

Here the term 12a64
c is nullified by 12a64

c, so that the result contains

a2
, the other factor being the discriminant

a2d2 - Qabcd + 4&3d + 4ac3 - 362
c
2
,

which is of the type 6
; 4, 3.

We may show a priori, assuming the problematical but highly probable

formula (w ; i, j) (w 1
;
i + 1, j), that the type 6

; 4, 3 does not belong to

any reciprocant.

For, as seen in the partitionments set out below,

(6 ; 4, 3)
-

(5 ; 5, 3)
= 5 - 5 =

3.3 3.2

3.2.1 3.1.1

3.1.1.1 2.2.1

2.2.2 2.1.1.1

2.2.1.1 1.1.1.1.1

We can by no other means combine the protomorphs with one another

or with the Quasi-Discriminant (125a
sd2

...) so as to obtain additional

fundamental forms. Every Rational Integral Pure Reciprocant of extent 3

is therefore necessarily a rational integral function of the four forms

deg. wt.

1.0 a,

2.2 4J/ = 4ac - 562
,

3.3 A = a?d- Babe + 263
,

5 . 6 (a
3d2

)
= 125a3d2 - 750a + oOOfrtf + 256a2

c8 + 165a62
c
2 - 30064

c.

These are connected by a syzygy of degree-weight 6 . 6, namely

1254 2 + 256JP = a (u
3d2

),

analogous to the syzygy of the same degree-weight, in the Theory of the

Binary Cubic, which connects the Discriminant with a and the Protomorphs
of extent 2 and 3.

It will be clearly seen from an inspection of the fundamental forms that

there is no law for the coefficients of Reciprocants akin to that of their

algebraical sum being zero in Invariants.
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LECTURE XVII.

The fundamental reciprocals for extent 3, given in the last lecture,

agree with the irreducible invariants of a binary cubic both in number and

type, with the single exception that the degree of the cubic discriminant is

lower by unity than that of the reciprocant corresponding to it. When the
extent is raised to 4, both the discriminant and its analogue cease to rank

among the irreducible forms, the former being expressible as a rational

integral function of invariants of lower degree, and the latter as a similar

function of reciprocants. But the increase of extent introduces three addi
tional reciprocants whose leading terms are a2

e, a*ce and a?e\ whereas the
additional invariants are only two in number and begin with ae and ace

respectively.

The irreducible reciprocants of extent 4 are as follows :

deg. wt.

a,

4if = 4ac - 562
,

A = a*d- 3abc + 263
,

10562P4
= 50a2

e - I75abd + 28ac2

(a?ce) = 800a2ce - 1000a62
e -

(a
3
e2)

= 625a3e2 - 4375a2
6cfe - 49700a2

c
2e

+ 55125a2cd2 - 61250a

+ 84868ac4 - 10216562
c3.

The similar list of invariants for the quartic is

deg. wt.

1

2

3

2

- 1344ac3 - 3562
c
2

,

128625a62ce - 787506%

3.6

a,

ac - 62
,

tfd - Sabc + 26 3
,

ae - 4bd + 3c2
,

ace - b*e - ad2 + 2bcd - c3.

To obtain the fundamental forms of extent 4 we have to combine M, A
and the Quasi-Discriminant

(a
sd2

)
= 125a3d2 - 750a2bcd + 5QQab3d + 256a2

c
3 + 165a62c2 - 30064

c

with the additional Protomorph

P4
= 50a2e - I75abd + 28ac2 + 10562c

* P4 is the protomorph of minimum degree ;
the other protomorph, B, which will be used

when we treat of Principiants, is, when expressed in terms of the irreducible forms,
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in such a manner that the combination contains a factor a. The removal of

this factor gives rise to a form of lower degree, and the process is repeated
as often as possible.

Calling that portion of any form which does not contain a its residue, the

residue of 4if is - 562
,
that of (a

s
d*) being

- 30064
c, and that of P4 being

10562
c. Thus

contains the factor a, and leads to (a?ce) of the type 6
; 4, 4, which is the

analogue to the Catalecticant

a b c

bed
c d e

The form (a
3

c^) now ceases to be a groundform (= irreducible form) and

is replaced by the Quasi-Catalecticant (a
z

ce), for

Similarly, the Cubic Discriminant, a groundform qua the letters a, 6, c, d,

becomes reducible when a new letter, e, is introduced, and is then replaced

by the Catalecticant.

We now come to an extra form which has no analogue in invariants. The
residue of the Quasi-Catalecticant (a

2

ce) is 3562
c
2
,
and consequently

P4
2 -252M(a2

ce)

divides by a numerical multiple of a (as it happens by 4a) and yields the

form (a
3
e2), whose type is 8

; 5, 4.

Here the deduction of new fundamental forms comes to an end on account

of the appearance of e in the residue of (a
3e

2

).
It would have ended sooner

but for the apparently accidental non-appearance of the term b3d (of the same

type 6
; 4, 4 as 62

c
2

) in the residue of (a?ce). Had this term appeared, no

combination could have been made leading to a new groundform after (a
2

ce).

We are able to show from d priori considerations that it cannot exist.

For the arguments in the annihilator V, up to de inclusive, are

a236 , abdc ,
c9d) 62

3d, adde ,
and bcde .

If, now, the term /j,b
3d were to form part of a Pure Reciprocant, 62

9^

operating upon it would give /j,b
5

;
but every other portion of the operator

would necessarily give terms containing one or other of the letters a, c.

Since such terms cannot destroy yu,6
5
,
we must have /j.b

5 = 0. Hence the term

in question is necessarily non-existent.
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The method of combining the protomorphs which we have followed shows

that the fundamental reciprocants of extent 4 are connected inter se by the

two relations or syzygies

7 (256M3 + 1 25^1 2

)
- IQaMP, + a? (a?ce} = 0,

P4
2 - 2527I/ (

2
ce)

- 4a (a
3e2)

= 0.

The invariants of the binary quartic are connected by only one syzygy,
similar to the first of these

;
the second has no analogue in the theory of

Invariants. It has been shown that the irreducible reciprocants of extent 3

are connected by the syzygy

256M3 + 125A 2 - a (a*d
2

)
= 0.

Substituting in this for the Quasi-Discriminant (a?d?) its value expressed in

terms of the fundamental forms of extent 4, by means of the equation

16^P4
- 7 (

3d2

)
= a (a

2

ce),

we obtain the first of the above syzygies. By a precisely similar substitution,

the syzygy connecting the invariants of the quartic is derived from the one

which connects the invariants of the cubic.

Every reciprocant of extent 4 is a rational integral function of the six

fundamental forms given in the table
; and, by means of the syzygies, powers,

but not products, of A and P4 can be removed from this function. For the

first syzygy gives A 2 and the second gives P4
2 as a rational integral function

of the four remaining forms a, M, (a
2

ce), and (a
3e2

). Hence every reciprocant
of extent 4 is of one or other of the forms

0&amp;gt;, A, P4 &amp;lt;I&amp;gt;, AP&,
where &amp;lt;I&amp;gt; does not contain either A or P4 , but is a rational integral function

of the other four fundamental forms.

Let the four forms which appear in &amp;lt;l&amp;gt; occur raised to the powers K, X, //,, v,

respectively, in one of its terms. Since the degree-weights of these four

forms are

1.0, 2.2, 4.6 and 5.8,

any such term may be represented by

a&quot; (aV)x(aWy(a
5^8

) .

Thus the totality of the terms in 4&amp;gt; will be represented by

2 a*(a*a?WaWY(a
a

apy = .- -,
(1
-

a)(l
-

a*a?)(l
- aV)(l - aV)

Now, A, P4 and APt have the degree-weights

3.3, 3.4 and (5.7,

and consequently the totality of terms in

3&amp;gt;, A, P4
&amp;lt; and ^1P4 &amp;lt;I&amp;gt;

s. iv. 26
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(that is, the totality of the pure reciprocants of extent 4) will be repre

sented by

(1 + a?a? + a?tf + a6x7
) 2 a&quot;(aV)

x
(a

4
^&amp;gt;

i

(aV)
&amp;gt;

__1 + aV + aV + aV_=
(1
-

a) (1
- a2^2

) (1
- a a?) (1

- a6*8
)

Hence the number of Pure Reciprocants of the type w\ i, 4 is the

coefficient of aixw in the expansion of a fraction whose numerator is

with the denominator

(1
-

a) (1
- a2^2

) (1
- aV) (1

- ofof).

This fraction is called the Representative Form of the Generating Function,

in contradistinction to the Crude Form, which is a fraction with the numerator

1 a~l
x,

having for its denominator

(1
-

a) (1
-

ax) (1
-

ax*} (1
-

oaf) (1
- cwr

1

).

The crude form expresses the fact that the number of pure reciprocants of

the type
w;i,j

is (w ; i, j)-(w-I;i + 1, j).

Its numerator is 1 - cr1
*: for all extents ;

for the general case in which the

extent is j,
its denominator consists of the j + l factors

(1
-

a) (1
-

ox) (1
- ox2

) . . . (1
-

oxJ).

The removal of the negative terms [corresponding to cases in which

(w ; i, j) &amp;lt; (w
- 1

;
i + 1, j)] from the crude form would give either the repre

sentative form or one equivalent to it, according as the representative form is

or is not in its lowest terms. In the parallel theory of Invariants the terms

to be rejected are those for which ij-2w&amp;lt;0;
but we do not at present

know of any similar criterion for reciprocants, and are thus unable to pass

directly from the crude to the representative form of their generating

function.

Knowing both the crude and the representative form for reciprocants of

extent 4, we may verify that the difference between these two forms of the

generating function is omninegative. It will be found that

1 o~lx

^a) (1
- ox) (1

- 2
) (1

a6x7

(1
-

a) (1
- a2#2

) (1
- aV5

) (1
- a5

a?)

x*

(1
-

act?} (1
-

aa?} (1
-

art} \l - a4 1 -

1 i

(1
-

ax*) (1
- a4#6

) (1
- aV) \l- ax* I - ax3
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Thus the crude form is seen to consist of an omnipositive part, equal to

the representative form, and an omninegative part.

3There is no difficulty in obtaining the representative form of the generating
function for pure reciprocants of extents 2 and 3. In the one case every

reciprocant is a rational integral function of two forms of degree-weight, 1 .

and 2 . 2 respectively. The generating function is therefore

1

(l-a)(l-u2O*
In the other case (that is, for extent 3) every pure reciprocant can be expressed
as a rational integral function of four forms, of which the degree-weights are

1.0, 2.2, 3.3 and 5 . 6, no higher power than the first of the form 3 . 3

occurring in the function. Thus the representative form is_
( 1
-

a) (1
- aW) (I

-

LECTURE XVIII.

The number of Pure Reciprocants of a given degree is finite
;
the number

of Invariants of the same degree is infinite. Thus, for example, we have the
well-known series of invariants

ac-62
, ae-4&amp;gt;bd + 3c2

, ...,

all of degree 2, but of weights and extents proceeding to infinity. This may
be proved from the theory]of partitions (see American Journal of Mathematics,
Vol. v., No. 1, &quot;On Subin variants,&quot; Excursus on Rational Fractions and Parti

tions). It will be seen in that article that if N (w : i) is the number of ways
in which w can be divided into i parts, and if P is the least common multiple
of 2, 3, 4, ..., i, then N(w:i) can be expressed under the form

F(w, i) + F (w, i, p),

where p is the residue of w in respect of P.

Writing
4

F(w, i) is of the form

i/&quot;
1

all the succeeding indices of the powers of v in F(w, i) decreasing by 2, and
their coefficients being transcendental functions of i which involve Bernoulli s

Numbers.

In F (w, i, p) the highest index of v is one unit less than the number of

times that i is divisible by 2, that is, is
1~~ or ^ , according as i is even
2 2

or odd.

262
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Thus, for the partitions of w into 3 parts, we have the formula

,..-,..
JV( : 3) = g-I} + ii(-l)- +

^(Pl + P

where v = w-\---
^

~ ~ w + %

And, for the partitions of w into 4 parts,

1+2+3+4
where v = w + -

^
= w + 5,

and pi , p2 are the roots of p
2 + p + 1 = 0,

*i, *2 *
2 + 1 = 0;

in other words, P! and p2 are primitive cube roots, and i1} iz primitive fourth

roots of unity.

The principal term of N(w : 3), regarded as a function of w, is

nip- /up lif&quot; W3

f N(W : 4) bel
12 FT3 144

And in general the principal term of N(w:i) is_
2 a .3a .4a

... (i-l)
2 .r

Hence it follows, from a general algebraical principle, that for all values

of w above a certain limit, which depends on the value of i and may be

determined by the aid of partition tables, (w ; i, oo ) (w 1
;
i + 1, 20 ) must

become negative.

Ultimately,
(w ~ &amp;gt;

\
+ _ w

which must eventually be greater
(w; i, oo ) *(*+!)

than unity. This shows that beyond a certain value of w there can be no

pure reciprocant, and consequently that the number of pure reciprocants of a

given degree i is finite.

Mr Hammond remarks that the formulae for N(w : 3) and N (w : 4) may,

by the substitution of trigonometrical expressions for the roots of unity,

accompanied by some easy reductions, be transformed into

,T , ox V2 1 . I/7T 4 . V7T

^( :3) = I2
+
i
sm - - - Bm T ,

Vs V V VTT \ . VTT 2 . V7T

and N--

where, in the first formula, v = w + 3, and in the second v = w+5. He also

obtains the principal term ofN(w:i) from first principles as follows :
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The partitions of w into i parts may be separated into two sets, the first

containing at least one zero part in each of its partitions, the second consist

ing of partitions in which no zero part occurs.

Suppressing one zero part in each partition of the first set, we see that

the number of partitions in which occurs is N(w:i 1). Diminishing
each part by unity in those partitions which contain no zeros, their number
is seen to be N(w i : i). The sum of these two numbers is N(w : i), which
is the total number of partitions, and consequently

N(w:i) =N (w :i-l} + N(w-i: i).

Let the principal term of N (w :i-l) be aw*--, where a is independent
of w, and write

w = ix, N (w : i)
= ux , N(w-i: i)

= ux_^

Then ux - u^ = aw*-* + ... = aft--a?-- + ....

Hence, by a simple summation, we find

-2

{^&quot;-

2 + (x
-

I)*-
2 +(x- 2)

1-2 + ... + ....

But, since only the principal term of ux is required, this summation may
be replaced by an integration. Thus the principal term of ux is

i 1

Restoring w = ix and N (w : i)
= ux ,

awiiwe see that the principal term of N(w:i) is -
.. Thus the principal

term ofN (w : i) is found from that of N (w :i-l) by multiplying it by

w

(i-l)i

When i = 3, the principal term is -^-^ ;
it is therefore ^~ when2.o 2 2

. 3- . 4

i = 4
; and for the sreneral case it is

2

The value of N(w:i) is given in line i and column w of the following
table :

9 10 11 12 13 14
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From an inspection of the tabulated values of N (w : i) we see that

N (w. 2) N (w 1 : 3) is negative or zero when w &amp;gt; 2,

N(w:S)-N(w-l-A) w&amp;gt;6,

N(w:4,)-N(w-l:5) w&amp;gt;8,

N(w:5)-N(w-l:6) w &amp;gt; 12.

Hence for pure reciprocants of indefinite extent, whose degrees are

2, 3, 4, 5,

the highest possible weights are 2, 6, 8 and 12, respectively.

In like manner, from Euler s table, in his memoir &quot;De Partitione Numero-

rum &quot;

(published in 1750), it will be found that

for degrees
the highest weights are 6 12

6

16 21 26 30

10

36

11

42

12

49

13

55

Further than this the table, which goes up to w = 59, will not enable us

to proceed.

The actual number of pure reciprocants of degree i
y weight w, and of

indefinite extent, is seen in the following table, which gives the value of

N (w:i) N(w ~L : i + 1) when positive, blank spaces being left in the table

when this difference is zero or negative.

WEIGHT w

2 3 4 5 6 7 8 9 10 11 12 13 14

Thus, for degree 2, there is only one pure reciprocant, namely

(ac)
= 4ac 562

.

For degree 3 the table shows that, in addition to the compound form

a (ac) = a
(4&amp;gt;ac

562

),

there are three others whose weights are 3, 4 and 6 respectively.

These are the three protomorphs,

(a?d) = a?d - Sabc + 26s
,

(a?e)
= 50a2e - Il5abd+ 28ac2 + 10562

c,

(a?g)= 14a2

#-63a&/- 1350ace + l78262e + 1470ad2 -
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With the above forms and a we are able to form the following compounds
of degree 4 :

a2
(oc), a(tfd), (ac)

2
, a(a

2

e), a(a
2

g),

whose weights are 2, 3, 4, 4, 6.

The forms of degree 4 and weights 5, 7, 8, and one of the forms of weight

6, cannot be similarly made up of forms of inferior degree, and are therefore

groundforms. Three of them are the protomorphs (a
3

/), (o?h) and (a?i) of

weights 5, 7 and 8, whose values were given in Lecture XVI. The ground-
form of weight 6 is the Quasi-Catalecticant given in the last lecture. All the

forms of degree 4 have thus been accounted for except one of the two forms

of weight 8, which will be seen to be of extent 6, and to have a?cg for its

leading term.

We know from Euler s table that N(8 : 4)
- N(7 : 5)

= 2
;
that is,

(8; 4, 8)-(7;5, 8)
= 2.

Now, (8 ; 4, 7) = N(8 : 4)
-

1, the omitted partition being 8.0.0.0,

(8 ; 4, 6)
= N(S : 4)

-
2, the partition 7.1.0.0 being also left out,

%\ A7YK A\ 4 J^
or 6 2 . and 6 . ] . 1 . are excluded from

(

|(8 ; 4, 5), but make their appearance in (8 ; 4, 6).

Similarly, (7 ; 5, 7)
= JV(7 : 5),

(7;5,6) = ^(7:5)-l,

(7; 5, 5) = JV(7:5)-2.

We have, therefore, (8 ; 4, 8)
-

(7 ; 5, 8) = 2,

(8;4,7)-(7;5,7) = l,

(8;4,6)-(7;5,6) = l,

(8;4,5)-(7;5, 5) = 0.

Hence we may draw the following inferences :

(1) No pure reciprocant exists whose type is 8
; 4, 5.

(2) The one whose type is 8
; 4, 6 must contain the letter g.

(3) No fresh form is found by making the extent 7 instead of 6, so that

there is no pure reciprocant of weight 8 and degree 4 whose actual extent is 7.

(4) There is a pure reciprocant (the Protomorph whose leading term is

a3

i) whose actual extent is 8.

(5) This, with the one whose actual extent is 6, makes up the two given

by (8; 4, 8) -(7 ; 5, 8)= 2.
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LECTURE XIX.

The following is a complete list of the irreducible reciprocals of indefinite

extent for the degrees 2, 3 and 4 :

Deg. wt.

2.2 (oc),

3.3 (a
2

d),

3.4 (aV),

3.6
(&amp;lt;ty),

4.5 (a
3

/),

4 . 6 (a
2

ce),

4 . 7 (a*h),

4 . 8 (a
3

0, (tfcg}.

The values of all of them except (a?cg) have been given in previous lectures,

and the method of obtaining them sufficiently indicated. Thus (ac), (a
2
d),

(a
2

e), (a
3

/), (a
z

g), (a?h) and (a?i) are the Protomorphs of minimum degree
-Pa, PS, P*, P5 ,

P6 ,
P7 and Ps , respectively; and (a

2
ce) is the Quasi-Cata-

lecticant whose value has been set forth in the table of irreducible forms of

extent 4. It will be remembered that (a?ce) was found by combining the

Quasi-Discriminant (a
3d2

) with P2P4 linearly in such a manner that the

combination, which is of the 5th degree, divides by a and gives (a?ce) of

the 4th degree. If we try to find (a?cg) by a similar process, it will be

necessary to rise as high as the 7th degree, and then to drop down by
successive divisions by a to the fourth.

In fact, since to a numerical factor pres the residues of

A, P3 ,
P4 ,

P5

are b2
, b3

,
b2

c, b3
c,

that of P3P5 wiH be bc,

and that of P22p4 wiH be b6
c.

Thus a linear combination of P3PB and P2
2P4 will be divisible by a, and, taking

account of the numerical coefficients, we shall find

26P2
2P4 + 875P3P6

=
(mod. a).

As a result of calculation, it will be seen that the above combination of

the protomorphs divided by a,

has (to a numerical factor pres} the same residue as P4
2

.
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Making a second combination and division by a, we find

7
** _ 25P4

2 =
(mod. a) = aS, suppose.

\ a ,

Then, by actual calculation, the residue of S is found to be

- 26250064e + 612500&3
ccZ - 33908062

c3.

Two reductions have already been made in obtaining this form S of the 5th

degree. A final combination of S with P2P6 and the form (a
3e2 ), whose value

was given in a former lecture, enables us to divide out once more by a and

thus get the form (a
z

cg) of the 4th degree.

It is the fact that P2P6 and (a?e
z
) have residues which are not the same to

a numerical factor pres which necessitates the long calculation above described.

No linear combination of P2P and (a
3e2

) with one another is divisible by a,

and it is necessary to find a third form S a linear combination of which with

both P2P6 and (a
s

e?) will divide by a.

There is, however, another way of arriving at the form (a?cg) by using the

eductive generator

G = 4 (ac
- 62

) db + 5 (ad - be) dc + 6 (ae
-

bd) 3d + . . ..

Starting with the Quasi-Catalecticant

(a*ce)
= 800a-ce - 100Qab 2

e - 875a2d2 + 24,50abcd - 1344ac3 - 3562c2
,

and operating on it with G, we have

G (a
2

ce)
= 4 (ac

- 62

) (- 2000a6e + 2450acd - 706c2
)

+ 5 (ad- be) (800a
2
e + 2450a6d - 4032ac2 - 706V)

+ 6 (ae
-

bd) (- 1750a2d + 2450a6c)

+ 7 (a/- be) (800a
2c - lOOOafc2

).

The terms of this expression contain the common numerical factor 10, which

may be rejected ;
thus we have

G (a?ce)
= 10 (a

3

cf),

where (a?cf)
= oQOa cf- 700a262/- Q5Qa3de - 290a26ce + 1500a63

e

1988a6c8 + 6363c2.

This form (a?cf) is the first educt of (a
z
ce), and is irreducible (but, being of

the fifth degree, does not appear in our list, which contains no forms of higher

degree than the fourth). Operating on it with G, we obtain the educt of

(a
3

cf), which is the second educt of (a?ce). This second educt will be of the

6th degree (its leading term will be a*cg), but is reducible to the 5th when
combined with

(4ac
- 562

) (a
2
ce),

as we know from the general theorem concerning the reduction of second

educts. We shall thus obtain a form (a
s

cg), the reduced second educt of

(a
2

ce), of the 5th degree, and a final combination of (a
3

cg) with one or both of
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the forms P2P6 and (a?e
2

) will enable us to divide once more by a and thus

arrive at (a
z

cg) of the 4th degree.

By either of these methods we obtain

(a*cg)
= I176a2

cg
-
8085a?df+ 7040a2e2 - 1470a&2

# + 18963a6c/
-

H)94&amp;gt;0abde - 27160ac2e + 26460acd2 - 95556s/
-f 2809862ce + 1274062d2 - 528226c2d + 21560c4

;

but the second way, besides being more direct, gives us at the same time the

value of the irreducible form
(

3

c/).

Every Pure Reciprocant is an Invariant of a Binary Quantic whose

coefficients A, B, 0, D, ... are functions of the original elements a, b, c, d, ...

such that

VC = 2B,

VD =
3(7,

and conversely, every Invariant of this Binary Quantic, or of a system of

such Binary Qualities, is a Pure Reciprocant.

This is a particular case of the more general theorem, due to Mr Ham
mond, that if @ is the operator,

0i (a) 9& + 02 (a, b) dc +
(j&amp;gt;

3 (a, b, c) dd + . . .,

where
&amp;lt;f&amp;gt;

1} 2 , 0s, are arbitrary rational integral functions, and if

A, B, C, D, ..., A ,
B

,
C

,
D

, ..., A&quot;, B&quot;, C&quot;,
...

be any rational integral functions of the original letters a, b, c, ... which

satisfy the conditions

A=Q, A = Q,

C = 2B, @C&quot; = 2B
,

C&quot; =

then every invariant in respect to the elements

A, B, G, D, ..., A ,
B

,
C

,
D

, .... A&quot;, B&quot;, C&quot;, D&quot;, ...

is a rational integral solution of the equation

@ = 0.

Obviously, every rational integral solution of = is an invariant in the

above elements, so that the converse of the proposition is true. For the only
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conditions imposed upon A, A , A&quot;,
... are that they shall be rational integral

functions of a, b, c, d, ... annihilated by . Let

3&amp;gt;(A, B, C, D, ..., A ,
B

,
C

,
D

, .... A&quot;, B&quot;, C&quot;, D&quot;, ...)

be any invariant in the large letters. We have to show that

Now,

Hence, writing for A, .B, 6(7, ..., their values given above, we have

= (since &amp;lt;I&amp;gt; is an invariant) ;

which proves the proposition.

Confining our attention to a single set of letters, the Binary Quantic

(A,B,C,...J,K,L^x, yy,

whose coefficients are formed from one another by the successive operation of

as above, may be called a Quasi-Covariant ;
and it will follow immediately

from the Theory of Binary Forms that every Covariant of a Quasi-Covariant

is itself a Quasi-Covariant, and that every Invariant of any Quasi-Covariant

(or system of Quasi-Covariants) is an Invariant in respect to the letters

A, B, C, ..., and therefore, by what precedes, a rational integral solution of

= 0.

Writing the terms of

(A,B,C,...J,K,L%x,y)

in reverse order, we have

n (n 1&quot;

Ly
n + nKxy

n~l + \ o Jxy
n~2 + - + Ax^

A Z

where L = nK, K = (n
-

1) /, ... A = 0.

Thus the Quasi-Covariant may be written

2Z %nL I \ ,

Ly
n + Lxy

n-* + T -
f) x&amp;gt;y

n-* +...+ r-s-s-
-^ = V

n y L
&amp;gt;

1 . Z X Z v 1

where

This is the general symbolic expression for a Quasi-Covariant. An example

of a Quasi-Covariant has already been given in Lecture II. [p. 310, above],
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where it was stated, and afterwards proved [p. 360], that the reciprocal of
the nth modified derivative could be put under the form

-t-n~3 (e~J) an.

The numerator of this reciprocal expression, which may be called the

reciprocal function, is

t
n (e~J)an ,

which is identical with the general expression

/ -\
y
n (e y ) L,

if a?= - 1, y = t, L = an and = F.

Hence every Invariant of the reciprocal function is a Pure Reciprocant.

This property of the reciprocal function was discovered independently by
Mr C. Leudesdorf, who published his results in the Proceedings of the London
Mathematical Society (Vol. xvn. p. 208). Mr Hammond s results were given
in two letters to me dated January 15th and January 20th, 1886, and were

briefly alluded to by him at a meeting of the London Mathematical Society.
They are here published for the first time.

Recalling the form of the operator

=
0! (a) db + 2 (a, b) dc + &amp;lt; 3 (a, b, c)dd + ...,

where 1; 2 ,
&amp;lt;/&amp;gt;

3 ,
... are rational integral functions, we can form a Quasi-

Covariant of extent j by a finite number of successive operations on a single
letter of that extent.

To fix the ideas, take the letter d of extent 3, and operate on it with @;
then

d = 03 (a, b, c).

Since
&amp;lt;f&amp;gt;

1 ,
&amp;lt; 2 , 3 , ... are by definition rational integral functions, we can, by

operating a finite number of times with
, remove first c and then b from

03 (a, b, c), and thus obtain
nd = funct. a,

where n denotes a finite number of operations. Since a = 0, we have

In this manner we form the Quasi-Covariant of the nth order

/ \

y
n
\e y ) d.

If 02, 03, 04, do not contain higher powers than the first of the last

letter in each, the order of the above Quasi-Covariant will be the same as its

extent. This is the case with the reciprocal function, which is a co-recipro-
cant (that is, a Quasi-Covariant relative to F).
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Ex. y
2 \e v ) c = cy

2 + Vcxy -\-
-

^
x2 = cy

2 + oabxy + 5a3x2
.

The discriminant of this is the pure reciprocant

2oa? [ac r- 1 .

V 4 /

As an additional example, consider the pair of linear co-reciprocants

4a (4ac 562
) a? + (5ad 76c) ^/,

50a (a
2d - 3a6c + 263

) a? + (25a6d - 32ac2 + 562

c) y.

The resultant of this pair is

2a (125a
3d2 - ToQtfbcd + 500a&8d + 256a2

c
3 + 165a62

c
2 - 30064

c),

that is, is the Quasi-Discriminant multiplied by 2a.

LECTURE XX

&quot;

Quintessenced into a finer substance.&quot; Drummond of Hawthornden.

Before proceeding with the proper subject of this day s lecture, I should

like to mention a geometrical theorem which has fallen in my way, and

which, inter alia, gives an immediate proof of the existence of 2.7 straight
lines on a general cubic surface. It is proved by means of a Lemma (itself

of quasi-geometrical origin) which finds its principal application in an ex

tension of firing s or Tschirnhausen s method, and shows how any number of

specified terms, reckoning from either end, can be taken away from any

equation of a sufficiently high degree *.

Subjectively speaking, I was led to the Lemma by considering the

question, closely connected with Differential Invariants, of the method of

depriving a linear differential equation of several terms.

Let
&amp;lt;j&amp;gt;

be a cubic and u a linear function in #, y, z, t, say

u = lx + my + nz-\- pt.

Then, if
-fy

is a scroll which contains all the straight lines on
&amp;lt;f&amp;gt;

+ \u3
,

when the parameter X has any arbitrary numerical value from +00 to oo
,

I prove that

i/r
=

&amp;lt;pA
+

&amp;lt;j&amp;gt;u

B + u C,

*
I recover all Hamilton s results contained in his Report to the British Association, 1836,

&quot; On Jerrard s Method,&quot; in a much more clear and concise manner, and make important additions
to his theory.
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where
-fy

is of the degree 1 5 in the variables x, y, z, t,

........................ 6 in the coefficients (I, m, n, p) of u,

........................ 11 ....................... (a, ......... )of
&amp;lt;/&amp;gt;.

Or, more briefly, in x I a

fy is of degree 15 6 11, and consequently

G ................ 9 11.

The intersections of &amp;lt; with ty are its intersections with u6 and with (7, of

which the intersections with the arbitrary plane u 6 are clearly foreign to the

question, but the cubic &amp;lt; and the 9CC intersect in 27 straight lines, which

are the 27 ridges on
&amp;lt;/&amp;gt;.

C is identical with the covariant found by Clebsch and given in Salmon s

Geometry of Three Dimensions at the end of the chapter on Cubic Surfaces.

It may with propriety be called the Clebschian.

By giving the parameter X (which occurs in
&amp;lt;p

+ \u3
) an infinitesimal

variation, it is easily proved that

where E is the operator l
sda + ... + 3 2

m9/+ ..., which may be simply and

completely denned by its property of changing the general cubic into

(Ix + my + nz + pt)
s
.

The equation E3C0 expresses a new property of the Clebschian: it

shows that if a,f are the coefficients of ^and any other term in
(/&amp;gt; containing

x2
,
neither a3 nor a2

/&quot;
can occur in any one of the terms of C. Defining a

principal term in
&amp;lt;/&amp;gt;

as one which contains the cube of one of the variables,

and a term adjacent to it as one which contains the square of the same

variable, this is equivalent to saying that neither the cube of the coefficient

of a principal term nor its square multiplied by the coefficient of any adjacent

term can appear in any of the terms of 0.

An interesting special case of the general theorem is when the arbitrary

plane u is taken to be one of the planes of reference, say u = x. Then

=1, m = Q, n = 0, &amp;gt;

=
0,

and the operator E becomes simply -=- . Thus we learn that

.,#0 ,dC
&amp;lt;b

2
-s-r

-
2^rf&amp;gt; -=-r da2 T da

is a Scroll of the fifteenth order which contains all the Ridges on

&amp;lt;f&amp;gt;

+ ?uri

for any arbitrary value of the parameter X.

It also contains 6 times over the curve of intersection of &amp;lt;

= with x = 0.
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I now propose to give the substance, with a brief commentary, of some

very interesting letters I have recently received from Capt. MacMahon.
I abstain from giving a proof of his results, as I am informed that he intends

to do this himself at an early meeting of the London Mathematical Society.

Using V to signify the Reciprocaut Annihilator and H the Annihilator of

Invariants, we have studied the properties of

V- V
dx dx

and those of O -

&amp;lt;j

These may be written in the form

dx

dx

-
x dx

n
dx

_d_

dx

and may be called alternants to F, -=- and to fi, -y- respectively.
CLOG CLOG

It has been shown in Lecture VII. [p. 341, above] that

The corresponding formula is

dx dx

as may be seen by writing = 0, X = 3, /A =4, v = 5, ... in a more general
formula given in Lecture V. [p. 329, above].

Observe that operating with the alternant to fl, -y- is equivalent to

multiplication by a number, and that operating with the alternant to F, -y-

merely introduces a numerical multiple of a as a factor. No such property
exists for the Alternant

but one much more extraordinary.

MacMahon has found that this alternant, which he calls J, is a generator
to a Reciprocant and a generator to an Invariant

;
that is, it converts a

Reciprocant into another Reciprocant, and an Invariant into another Invariant.

As regards a Differential Invariant, which is at once an Invariant and a

Reciprocant, it is an Annihilator. He shows, in fact, that

and VJ-JV=0.
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If, then, IR = 0, it follows immediately that O (JR) = ;
that is, if R is

an invariant, JR is so too. And in like manner, if

VR = 0, V(JR) = 0,

that is, if R is a reciprocant, so is JR.

Of course, if M is a Differential Invariant,

JM= V(flM) - H ( VM) = 0.

Let me here give a caution which may be necessary : The fact that a form

is annihilated by J is not sufficient to show that it is a Differential Invariant,

though all Differential Invariants are necessarily annihilated by J. Forms

exist which are subject to annihilation by

J=a?dc +3abdd + ...,

but are, notwithstanding, neither invariants nor reciprocants.

Such a form is the monomial b, which is obviously annihilated by J.

Another is ad 36c. For, since

a2d - 3abc + 263

is a Differential Invariant, we have

But J63 = and Ja =
;

therefore, also, aJ (ad
-

36c) = 0.

The general theorem is as follows, and is a most remarkable one : If we

write

mP (m, ^ v, n)
=

/*a
m 9

flf(
+ (ji + v) ma- 1^^
+ (p + 2t&amp;gt;)

+ 3v) \ma
m~ld + ra (ra

-
1) a

m~*bc

where the coefficients of the terms inside the brackets are the same as those

of the corresponding terms in the expansion of (a + b + c + . . .)
m

,
and where an

stands for the nth letter of the series a, b, c, d, ..., then Capt. MacMahon

establishes that the alternant of any two P s is another P.

A question here suggests itself naturally : What would be the alternant

of three or more P s ? For instance, would the alternant

P&amp;gt;
P2 PS

I

P, P2 P3
\

= P^Pa -
P&amp;gt;P3P2 + P*P&amp;gt;Pi

~ P2PiPs + P*P*P* ~ P*P*Pi
p p p !

*! -^2 J 3 I

be another P ?
*

* In my Multiple Algebra investigations, which I hope some day to resume, I have made

important use of similar Alternants, which, it may be noticed, do not vanish when their elements
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Moreover, he obtains expressions for the parameters m, p,, v, n of the

resulting P in terms of the parameters of its two components. He proves
that if P!, P2 are the two components whose alternant is P, supposing

^11 /^u v
i&amp;gt;

ni to be the parameters of P],

m2 , /z2 ,
vt ,

n2 ........................ : ..... P2 ,

then the parameters m, /z, v, n of their resultant P are given by the equations

m = m1 + m2 1,

/A
= (m, + m2

-
1) ^ (ft + jijw,)

-
-^ (^2 + ,,)( ,

(//to TO] ;

-

t

7^ = 7*! + ri 2 .

It will be seen that II and V are special forms of P. Thus,

H = P(1, 1, 1, 1),

F=P(2, 4, 1, 1).

Now, if the second and third parameters are zero, every term of P vanishes,

and MacMahon finds that in the following two cases the second and third

parameters of the resultant above given vanish.

(1) Supposing
- - to be an integer, this takes place when the two

component systems of parameters are

(2) When they are

mi, fr, Vi, n1}

m, njriz, Wi 1,
-^ (m2 1).V

NOW,

P(2, 4, 1, 1)=F,
and by the law of composition

j=nv- ra = p(2, 2, i, 2).

Also 2 2 1 21

[will
be found to come under the first case

;

*i *i i *J

and 2, 2, 1, 2)

2 4 i |
r .................................... the second.

are non-commutative. In this connection it is well worthy of observation that the P s (as
indeed would be true of any operators linear in the differential inverses) obey the associative law.

It would be interesting to ascertain under what arithmetical conditions, if any, other than
MacMahon s, any two linear operators of the same general form as his P s become commutative.

Perhaps it would also be worthy of inquiry whether the P theory might not admit of extension
in some form to operators non-linear in the differential inverses, and whether to every such
operator of degrees i and j in the letters and their differential inverses there is not correlated
another in which t and j are interchanged.

S IV. 27
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Hence, W-Jl = and VJ-JV=Q.
The above theorem is one of extraordinary beauty, and must play an important

part in the future of Algebra.

In another letter Capt. MacMahon calls my attention to the fact that the

operator called by me Cayley s generator P, in Lecture IV. of this course

[p. 323, above], is a particular case of one of a much more general character

given by him in the Quarterly Mathematical Journal (Vol. xx., p. 362).

He also states that every pure reciprocant, when multiplied by the needful

power of a, is an invariant of the binary quantic

{2 . (2n + 1) !}
an+l - n {1 ! (2n + 1)!} an

~l bt

which I have written in the non-homogeneous form.

But this expression is (to a numerical factor pres) identical with the

^n+2,p
numerator of -, T-O when t, a, b, ... are taken to be the modified differential

dyn+i

derivatives -~
,

-= -=-^, == -r^, .... See my note on Burman s law for the
dx 2 da? 2. 3 da?

Inversion of the Independent Variable [Vol. II. of this Reprint, p. 44].

The property that its invariants are pure reciprocants has already been

proved in the lectures [above, p. 412].

LECTURE XXI.

I take blame to myself for not earlier communicating to the class the

substance of a note of Mr Hammond s under date of January 20th, 1886, in

which he makes an interesting application of the theorem that any invariant

of the form

y
n
(e*

V
)F(a,b,c, ...),

in which the function F is subject to the condition

Vn+1F=0,
or of any combination of such forms, is a pure reciprocant.
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Forms such as the above, whose invariants are pure reciprocants, he calls

co-reciprocants. It follows that any covariant of one or more co-reciprocants
is itself a co-reciprocant, for any invariant of a covariant is an invariant.

Taking F to be a single letter b, c, d, he forms the functions

by + 2a2
z, (1)

cy
2 + 5abxy + 5a3

a?, (2)

dy
3 + 3 (2ac + 62

) xy* + 2Ia*ba?y + 14a4
^, (3)

in which 2a2 = Vb,

F2c
5a6 = Fc, 5as = -

,

.

I . 2 . o

On writing y = ,# = 1, it will be observed that these three forms are

the numerators of

_1
d?x 1 d x 1 d5x

Sidy
3

4^1 dy* 51 df
The Jacobian of (1) and (2) is

(4ac 5b2

) ay ;

the coefficient of ay is the familiar pure reciprocant 4ac 562
.

The Jacobian of (1) and (3) is the determinant

b 2a2

df + (4ac - 562

) xy (2ac

which is divisible by y, giving the quotient

(2a
2d - 2a6c - b3

) y + 2a2

(4ac - 562

) a;. (4)

-v
This is y (e

v
) (2a

2
c^
- 2a6c - b3

),

y? a?
the terms involving

-
,

-
,

. . . vanishing identically.

Looking at 2a*d-2abc-b3 as the anti-source to a Co-reciprocant*, we
might at first sight expect that it would give rise to a co-reciprocant of the
third order in x, y, whereas we see it is the anti-source of a linear co-

reciprocant.

* What differentiates Keciprocants from Invariants is that we have no reverser to V as is
to in the theory of Invariants, that is, no reverser which does not introduce an additional
letter.

The coefficients of a covariant are obtained either from the source by continually operatingwith 0, or from the anti-source by continually operating with O. But in the case of a co-reciprocant we are only able to proceed in one direction (namely from the anti-source, or coefficient of
highest power of y, to the source), as we have only one operator, V, at our disposal.

272
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We have F(2a
2d - 2a6c - 63

)
= 2a2

(4ac
- 562

).

Combining this with

V(a
2d - 3a6c + 263

)
= (the well-known Mongian),

and dividing by a, he obtains

V(oad - 76c) = 4a (4ac
- 5&2

).

Hence (oarf 76c) ?/ + 4a (4ac 5&2

) # (5)

is a co-reciprocant. It is in fact (4) reduced in degree.

The Jacobian of (5) and of cy
2 + babxy + 5aV, that is,

oad-Tbc 4a(4ac-56
2
)

2cy + 5abx iyaby + 10a3#

will divide by a, and gives the new linear co-reciprocant

- 32ac2 + 562
c) y + 50a (a

2d - 3a6c + 263

) a;. (6)

The coefficient of y is of weight 4, but instead of giving rise to a co-

reciprocant of the 4th order, we see that this again is the anti-source of

a linear co-reciprocant.

The resultant of the two linear co-reciprocants (4) and (6) divided by a

numerical multiple of a gives the well-known Quasi-Discriminant 125a3d2 + . . .,

as was stated at the end of Lecture XIX [above, p. 413].

The noticeable fact is that (including by + 2a2

#) there exist 3 linear

independent co-reciprocants of extent 3. Probably there are no more, but

this requires proof.

The promised land of Differential Invariants or Projective Eeciprocants is

now in sight, and the remainder of the course will be devoted to its elucida

tion. Twenty lectures have been given on the underlying matter, and

probably ten more, at least, will have to be expended on this higher portion

of the theory.

One is surprised to reflect on the change which has come over the face of

Algebra in the last quarter of a century. It is now possible to enlarge to an

almost unlimited extent on any branch of it. These thirty lectures, embracing

only a fragment of the theory of reciprocants, might be compared to an

unfinished epic in thirty cantos. Does it not seem as if Algebra had attained

to the character of a fine art, in which the workman has a free hand to

develop his conceptions as in a musical theme or a subject for painting?

Formerly it consisted almost exclusively of detached theorems, but now-a-

days it has reached a point in which every properly developed algebraical

composition, like a skilful landscape, is expected to suggest the notion of an

infinite distance lying beyond the limits of the canvas.

It is quite conceivable that the results we have been investigating may
be descended upon from a higher and more general point of view. Many
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circumstances point to such a consummation being probable. But man must

creep before he can walk or run, and a house cannot be built downwards
from the roof. I think the mere fact that our work enables us to simplify
and extend the results obtained by so splendid a genius as M. Halphen, is

sufficient to convey to us the assurance that we have not been beating the

wind or chasing a phantom, but doing solid work. Let me instance one

single point : M. Halphen has succeeded, by a prodigious effort of ingenuity,
in obtaining the differential equation to a cubic curve with a given absolute

invariant. His method involves the integration of a complicated differential

equation. In the method which I employ the same result is obtained by a

simple act of substitution in an exceedingly simple special form of Aronhold s

S and T, capable of being executed in the course of a few minutes on
half a sheet of paper, without performing any integration whatever. This
will be seen to be a simple inference from the theorem invoked under three

names, to which allusion has been made in a preceding lecture and the

demonstration of which will shortly occupy our attention.

Before entering upon the theory of Differential Invariants, I think it

desirable to bring forward the exceedingly valuable and interesting com
munication with which I have been favoured by M. Halphen establishing
a priori the existence of invariants in general.

SUE L EXISTENCE DES INVARIANTS.

(Extracted from a Letter of M. Halphen to Professor Sylvester.)

Dans des theories diverses on a rencontre des Invariants sans qu on ait

penetre la cause geneVale de leur existence. C est cette lacune qu il s agit ici

de faire disparaitre.

1. Soient A, B, ..., L des quantites auxquelles on puisse attribuer des
valeurs ad libitum.

Une substitution consiste a remplacer ces quantites (A, B, ...,L) par
d autres (a, b, ..., I).

Les substitutions, que Ton doit considerer ici, sont ddfinies par des rela

tions alg^briques, de forme supposee donnee, mais contenant des parametres
arbitraires p, q, ....

(1)

Soit maintenant une seconde substitution, de meme espece, mais avec d autres

parametres TT, %, ..., et donnant lieu a (a, , ..., X), en sorte qu on ait

*=f(A,B, ...,L; 7r, % ,

...)|



422 Lectures on the Theory of Reciprocants [42

2. DEFINITION. Les substitutions dont il s agit forment un GROUPE, si,

quels que soient les parametres p, q, ..., TT, %, ..., ainsi que A, B, ..., L, il

existe des quantites P, Q, ... verifiant les egalites semblables

=/(, b,.. .,1- P,Q,...}}
=/,(a, &,...,*; P, Q, ...)&amp;gt;. (1 ter)

Les invariants sont I apanage exclusif des substitutions formant groupe.

On va le montrer. Mais auparavant, pour eviter toute confusion, on doit faire

une remarque sur la definition.

3. Dans les diverses theories ou Ton a rencontre des Invariants, les sub

stitutions forment groupe, en effet, suivant cette definition
;

raais il s y

rencontre encore une circonstance particu Here de plus, c est que les parametres

P, Q, ... de la substitution composee (1 ter) dependent uniquement des

parametres p, q, ..., TT, %, ... des substitutions composantes (1) et (1 bis).

Cette propriety nest pas necessaire a 1 existence des Invariants, et nous ne la

supposerons pas ici. II sera done entendu que P, Q, ... peuvent dependre,
non seulement

de^&amp;gt;, q, ..., TT, %, ..., mais aussi de A, B, ..., L.

EXEMPLES :

I. a = Ap2
,

b = Apq+Bp, c = Aq2 + 2Bq + C;

7 = A^+ 25% + C;

c;

, .

P P

P et Q ne dependent pas de A, B, C.

II. a = A 3

p
2
,

b = A 2

pq +ABp, c = Aq2

a = A 3
7r

2
, /3 = A-7rx+ AB-rr, 7 = AX&amp;gt;

a = a3P2
, j3

= a?PQ + abP, 7 = aQ2 + 2bQ + c
;

P= Q = X--^
AY AP

P et Q dependent de A.

B*-AC
Dans ces deux exemples, il y a un invariant absolu,

--
-.
-

.

A.

4. Dans la substitution (1) nous supposerons que le nombre des para
metres soit inferieur au nombre des quantites A, B, ..., L.

Soient ainsi m le nombre des parametres p, q, ...,

n le nombre des quantites A, B, ...,L,

on suppose m &amp;lt; n.
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Cela etant, on peut eliminer les parametres entre les equations (1), et il reste

(n m) Equations

F(a,b, ..., 1
1 A,B, ..., Z) = 0]

F^b, ..., 1; A,B,...,l) = 0\. (2)

THEOREME : Si les substitutions considerees forment GROUPE, les (n m)

equations (2) peuvent etre mises sous la forme

3&amp;gt;(a,&, ...,
= *

(A,B,...,L)}
^(a,b, ...,1)

=
3&amp;gt;1 (A,B,...,L)\, (3)

en d autres termes, il y a (n m) invariants absolus.

Reciproquement, s il y a (n m) invariants absolus (distincts), les substitu

tions forment groupe.

5. DEMONSTRATION. Prouvons d abord la seconde partie, ou reciproque.
Voici 1 hypothese : des Equations (1), par Elimination de p, q, ... resultent les

equations (3).

Par consequent, A, B, ..., L et a, b, ..., I etant quelconques, mais

satisfaisant aux equations (3), on peut determiner p, q, au moyen des

Equations (1).

Soient A, B, ..., L, p, q, ..., TT, % ... pris arbitrairement, et a,b,...,l,

a, fi, ..., X determines par (1) et (1 bis). Suivant 1 hypothese, on a

4&amp;gt;(a, 6, ..., 1)
= (A,B, ...,Z) et

4&amp;gt;(a, 13, .... \)= (A, B, .... Z);

done 0&amp;gt; (a, 6, . . ., Z)
=

3&amp;gt; (a, yS, . . ., X), etc.

Done on peut determiner P, Q, ... par les Equations (1 ter), ce qu il fallait

demontrer.

Demontrons maintenant la premiere partie, ou theoreme direct. Par

hypothese, A, B, ..., L, p, q, ..., TT, ^, ... Etant pris a volontE et a, b, ..., I,

a, ft, ..., \ determines au moyen de (1) et (1 bis), il en requite les relations

(1 ter).

Des equations (1) rEsulte le systeme (2) ;
de meme, de (1 bis) et de (1 ter)

resultent

-F(a,&...,X; A,B,...,L)
^(a,/3, ...,\; A,B, ..., L) = 0\, (2 bis)

F (a, /3, ..., X; a, b, ..., I) =0]
#(*,& .... X; a, b, ..., =0&amp;gt;. (2 ter)

Je dis que le systeme (2 ter) re&quot;sulte de (2) et de (2 bis).
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En effet, a,b,...,l et a, /3, ..., X n dtant definis que par (1) et (1 bis),

le systeme (2 ter) resulte de (1) et de (1 bis) par Mimination de p, q, ...,

TT, %, ... et A, B, ..., L. Mais 1 elimination de p, q, ... remplace le systeme

(1) par le systeme (2), celle de TT, %, ... remplace le systeme (1 bis) par (2 bis);

done (2 ter) resulte de 1 elimination de A, B, ..., L entre (2) et (2 bis).

Le systeme (2), (2 bis) est forme par 2 (n
- m) equations, et cependant

I elimination de n lettres A, B, ..., L, au lieu de donner (n- 2m) equations,
en donne (n m), les equations (2 ter). Si done on elimine seulement (n m)
lettres A, B, ..., G, les mautres H, ..., L disparaitront d elles-memes. Tirons

A, B, ..., G des equations (2), et nous aurons

A=V (a,b, ..., I; H, ...,),

5 =^ (a, b, ..., 1; H, .... L),

Tirons de meme A, B, ..., G des equations (2 bis), et nous aurons

A=V(a,/3, ...,X; H,... t L\
= ^(a, /3, ..., X; H,...,L) t

Le resultat de Termination est done represente par (n m) equations telles

que

(a,6, ..., Z; ff, ...,L) = V (a, A ...,\; ^.....Z)]
^,(0,6, ...,; ^, ..., L) = ^(o, /3,...,X; H,...,L)\, (4)

et Ton sait que ^T, . .., L disparaissent, d eux-mmes, de ces equations.

En assignant done a H, ..., L des valeurs numeriques a volonte, on voit

done bien que les equations resultantes, equivalentes a (2 ter), ont la forme

(a,b, ...,0 = (o,/3, ..., X),

^(a, b,..., = *i(, A...,X),

C est ce qu il fallait d^montrer.

6. REMARQUES. Si les equations (4) sont rationnelles, la disparition de

H, ..., L exige que M* ait la forme suivante

et de meme pour ^lt etc. Sous cette forme, on voit que et 6 disparaissent

dans les Equations (4), et 1 invariant resultant est &amp;lt;l&amp;gt;.

Mais, si les equations (4) sont irrationnelles, la disparition de H, ..., L

peut n etre pas immediate. En assignant a H, ..., L des valeurs numeriques
a volontd, comme on 1 a dit dans la demonstration, c est-a-dire en considerant

H, ..., L comme des constantes arbitraires, on voit les invariants se presenter
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avec des constantes arbitraires. Ceci ne doit pas etonner, puisqu il s agit ici

d invariants absolus, que Ton peut effectivement modifier eri leur ajoutant
des constantes arbitraires ou en les multipliant par des constantes arbitraires,

sans troubler la propriete d invariance.

L analyse employee dans la demonstration fournit un moyen regulier de

former les invariants
;
ce moyen consiste a eliminer les parametres dans les

equations (1), puis a resoudre par rapport a (n m) quantites A, B, ..., G.

Mais, les substitutions fbrmant groupe, on peut aussi resoudre par rapport
a a, b, ...,g, en eliminant les parametres.

EXEMPLE: a = Ap\ b = Apq + Bp, c = Aq* + Wq+C.
En resolvant par rapport a c, c est-a-dire en tirant p, q des deux premieres,
on obtient __.

Ap Ap2 A a A
IP

Voici 1 invariant C 7- .A

En resolvant par rapport a b, on trouve b = \/A /(
-

-) +c, ce qui

, &-ACdonne 1 invariant ---h c, ou c est une constante arbitraire.
./I

LECTURE XXII.

E pur si muove.

The theory still moves on. We have now emerged from the narrows and
are entering on the mid-ocean of Differential Invariants, or of Principiants,
as I have called them. These, it will now be seen, are perfectly defined by
their property of being at one and the same time invariants and pure

reciprocants. In other words, if P be a Principiant, it has both H and V for

its annihilators. Thus, for example, the Mongian

A = a2d - 3abc + 2b3

is necessarily a Principiant. For

CIA = (adb + 2bdc + 3c9d ) (a
2d - 3a6c + 26s

)
= 0,

and at the same time

VA = {2a
2
36 + 5abde + (Qac + 362

) dd } (a?d
- 3a6c + 2bs

)
= 0.

Among Pure Reciprocants, those only are entitled to rank as Principiants
whose form is persistent (merely taking up an extraneous factor, but other

wise unchanged) under the most general homographic substitution (see
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Lecture XIII. [pp. 379, 382 above]. We have therefore to show that such

reciprocants and no others are subject to annihilation by n.

With this end in view, let us consider the effect of substituting ^ j-
for

y
X ant^

l + h
* r ^ *n any rati nal integral function of y and its derivatives

with respect to x. Suppose that, in consequence of this substitution, the

function

becomes changed into

F^(x,y, yl} 7/2) y3 ,
... yn);

then the transformed function will be

F(Y, F,, F2 , F,, ... Yn\

IT I/

where gim^-, F^^-Jr-,
and Ylf F2 ,

F3 ,
... Yn are the successive

derivatives of Y with respect to X.

If, for the moment, we agree to consider h as an infinitesimal (we shall

afterwards give it a finite value), neglecting squares and higher powers of h,

we may write

X = x hxz
,

Y=y hxy.

Hence, by n successive differentiations of F with respect to X
, neglecting

squares of h whenever they occur, we deduce

-
hy,

F =
5
=

2/5

FM_! = yn_! + (2n 3) Ayn_i -f (n 1) (n 3) hyn_2 ,

Yn = yn + (2w 1) Ayw + n (n 2)%n_!.

The last of these, for instance, is obtained as follows :

JI1T

We have Yn = dX

But -dv = ^-

~r =
dx {yn~l + (2w - 3) haW-i + (n

- 1 ) (n
-

3)

n -f n (n
-

2) At/n-j.
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dY _
Consequently, Yn (1 + %hx)

--

n + (2w
-

3) fcryn + n(n- 2) %n_i}

= yn + (2w
-

1) fccyn + TO (w
-

2)%B-i-

On substituting the above values of F, F1( F 2 ,
... Fn in the transformed

function, we find immediately

F(Y, F,, F,,... FB)
= (l + to + Ae)J*(y, yi ,yf,...y),

where v and are the partial differential operators

-
2) t/n-i3,/n .

Changing to our usual notation, we write

y1
=

t, y.
= 2a, 2/3

= 2.36, y,= 2. 3 Ac, ...,

and then if ^ is what J^(a rational integral function of a,b, c, ...) becomes

when we substitute -j- , , , for x, y (regarding A as infinitesimal), we
l+hx l+hx

have

where v = ydy + fdt + 3ada + 5bdb + 7c9c +

and = -
ydt + adb + 2bdc + 3c8d + 4dde + ....

In general v is merely the partial differential operator written above
;
but

when its subject, F, is homogeneous, of degree i, and isobaric, of weight w, in

the letters y, t, a, b, c, d, ... supposed to be

of degrees 1, 1, 1, 1, 1, 1, ...

and of weights -2, -1, 0, 1, 2, 3, ...,

its operation is equivalent to multiplication by the number 3i + 2w. For in

this case we have

y3y + tdt + ada + bdb + cdc

and -
2y9j,

- & t + bdb + 2cdc + 3ddd + . . .
= w;

so that we may regard v as a number, simply writing

v = Si + 2w
when we have occasion to do so.

We are now able to show that if F is a persistent form, we must neces

sarily have



428 Lectures on the Theory of Re^rocants [42

and consequently, if F^ is divisible by F (this is what is meant by saying
F

that F is a persistent form), unless F vanishes, -=- must be a rational

integral function of y, t, a, b, c, .... But since the operation of diminishes

SF
the weight by unity without altering the degree, -^-

must be of degree

and weight 1. The impossibility of the existence of such a function leads

to the necessary conclusion that

Let us apply this result to the case of a pure reciprocant. We have

. . .
=

ydt + H.

Thus when F is a pure reciprocant, or indeed any function in which t does not

appear, ydtF = and reduces to fl. We have therefore shown, in what

precedes, that the condition

is necessary to ensure the persistence of the form of F under a particular

homographic substitution
;
a fortiori, this condition is also necessarily satisfied

when the form of F is persistent under the most general homographic sub-

,.,,. /. , . , , , . l

stitution in which x, y are changed into 777&quot;

The satisfaction of IF = is of itself inadequate to ensure persistence

under the general homographic substitution
;

the necessary and sufficient

condition of pure reciprocants

must also be satisfied. This follows from the fact that the general linear

substitution, for which all pure reciprocants are persistent, is merely a

particular case of the most general homographic substitution.

It only remains to be proved that the two conditions VF=0, IF = Q,

taken conjointly, are sufficient as well as necessary.

In what follows I use a method which may be termed that of composition

of variations. Its nature and value will be better understood if I first apply

it to the rigorous demonstration of the theorem that the substitution of

OK + hy for x in the Quantic

(a, b,c, ...$, yf

changes any function whatever of its coefficients, say

^(a, b, c, ...), into ehn F(a, b, c, ...).
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This is not proved, but only verified up to terms of the second order of

differentiation, in Salmon s Modern Higher Algebra (3rd ed. 1876, p. 59).

Remembering that, whatever the order n of the Quantic may be, the changed
values of the coefficients a, b, c, d, ... are

a = a,

b = b + ah,

c = c + *2bh + ah2
,

what we have to prove is that, for all values of h,

F(af, b
,
c

,
d

, ...)
= eF(a, b, c, d, ...).

In other words, if for brevity we write

F(a, b, c, ...)
= F,

and F(a, b
,
c

, ...)
= F1 ,

it is required to show that

where O = adb + 2bde + 3c8d + . . . .

When h is infinitesimal, it is obvious that

Hence, when h has a general value, we may assume

Let h be increased by the infinitesimal quantity e
; then, considering this

increase as resulting from a second substitution similar to the first, we see

that F1 becomes

F! +
But it also becomes

Equating this to j^ + efi^, we obtain

A2
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The comparison of these two expressions gives

P = WF,

Substituting these values in the assumed expansion for F1} there results

which is the expanded form of

F
1
= ehflF.

A similar method of procedure will enable us to establish the corresponding

but more elaborate formula

in which F is any homogeneous and isobaric function* of degree i and weight

w in y and its modified derivatives
(t, a, b, c, ...) with respect to x; the

operator @ = ydt + adb + 269C + 3c9d + . . .
;
the function F

1
is what F becomes

IT 7/

in consequence of the substitution of r
,

- ^ for x, y ;
h is any finite

1 + hx I +hx
quantity, and v = 3i 4- 2w.

Before giving the proof of this theorem, I will show that, upon the

assumption of its truth, two inverse finite substitutions will, as they ought,

nullify each other, leaving the function operated upon unaltered in form.

/Y* ni

To avoid needless periphrasis, we call the substitution of = r- , -.. ,

1 + hx 1 + hx

for x, y the substitution h.

Either of the two substitutions, h, h, reverses the effect of the other
;

for the substitution h turns

x . A x hx
into

\+hx \hx I hx

y .
, y hx

The two substitutions h, h, performed successively on F, ought there

fore to leave its value unaltered. But by hypothesis the substitution h

converts F into F^ consequently the substitution h performed on F^ ought
to change it back again into F.

* F need not be integral or even rational ; whenever it is homogeneous or isobaric, v will be

a number.
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It must be carefully observed that (since the operation of (*) decreases the

weight by unity, leaving the degree unchanged) the weight of KF is K units

lower than that of F, whilst the degree is the same for both.

Thus for F we have 3* + 2w = v,

and for
KF 3i + 2(w- K)

= v- 2/c.

Hence the substitution A, which changes
h

F into (1 -hx)
v
e

l ~ hx
F,

fee

also changes F (1
-

hx}
v-ze~ l ~ hx @F,

fee

__*_
and in general &quot;F into (1 hx)

v~^e l ~ hx KF.

Fl&amp;gt;3C

Moreover, 1 + hx becomes 1 + j- (1 hx)~
l

,
so that

J- fix

(1 + hx)
v - K KF becomes (1

-
fo)-&amp;lt;&quot;-*&amp;gt; (1

-
hx}

v~**e l hx

fee

= e
l ~ hx (l- hx)-&quot;

KF (since does not act on x).

Consequently, (l+hx)
vF becomes e l ~ hx

F,

fee

(1 + hx)
v-2 *F e l - hx

(l-hx)~
2 2

F,

And since, by the formula to be verified,

_
becomes e i-**h + ^ (i

_ ^.)-i@ + ^!_ (i
_ hx)-** + .. . F

* *

fee
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LECTURE XXIII.

We now proceed to show how the composition of variations can be made

to furnish a strict proof of the formula

which was set forth in the preceding lecture.

/V fll

As before, calling the change of x, y into - y- , ,
the substitution

h, it is easy to see that the product of two substitutions, h, e, is the substitution

h + e. For

x x~ 1 + e
l+has l + ha 1+ (A + e) a?

y . i , _? _ y
1 -f e

l+hx I+hx l+(h + e)x

This shows that if

FI is what F becomes on making the substitution /t,

and F2 FI e,

then Ft F h + e.

Thus we can find two expressions for F, the comparison of which will enable

us to assign the coefficients of all the powers of h in the expanded values

of F,.

The first two terms of this expansion were obtained, in the preceding

lecture, by treating h as an infinitesimal. We may therefore write

Changing h into h + e, we deduce

For greater simplicity, let e be an infinitesimal, and write

Then

Now look at each term in the expansion of Fl
and find its increment (that

is, its A) when x, y undergo the substitution e. We thus obtain
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Comparing these two values of A^, we find

and generally Nr
=

These equations are sufficient to determine all the coefficients of F
l ;

it

only remains to show how the operations A may be performed.

We have in fact

1 . Z JL Z* O

where AF =
(vx + &amp;lt;H))

F.

But we must not from this rashly infer that

&nF = (vx + )
nF.

To do so would be tantamount to regarding v as a constant number, whereas

its value depends on the degree and weight of the subject of operation.

This will be clearly seen in the calculation which follows*. We first

generalize the formula

by making &quot;F the operand instead of F.

Then, since i is the degree and w K the weight of K
F, instead of

3i + 2w = i/,

we have 3i + 2 (w K) = v 2/c.

Thus, & KF= {(v -%K)X + 0} *F.

x
Again, since A# =

(

- - x
)

-4- e = x2
,

\1 + X J

we find

Aa^0^ = X A-1 KF . kx + x^ KF= - X^A+1 0&quot;^ + a* {(v
-

2/e) x

Hence we obtain the general formula

*
If our sole object were to show that QF=Q is a sufficient as well as necessary condition of

the persistence of F, we might dispense with all further calculation. Thus it is obvious that,

since AF= (vx + 0) F, A&quot;.F must be of the form (x, Q)
n F for the dependence of v on the degree-

weight of the operand will not affect the form of
A&quot;,

but only its numerical coefficients. Hence

we conclude that F
1
is of the form

&amp;lt;j&amp;gt; (x, 9) F ;
and remembering that G2.F=0, 63.F= 0, ... when

ever QF= 0, it is at once seen that not only (as was shown in the last lecture) must QF vanish

when F is persistent under the substitution h, but, conversely, that when QF=0, the altered

value of F contains the original value as a factor (the other factor being in this case a function

of x only) ; that is, F is persistent.

s iv. 28
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by means of which we calculate in succession the values of &?F, A3
-F,

Thus,

Hence

&F = v (v-l) &a?F+ 2
(i;
-

= v (v
-

1) a? {(v
-

2) x + }
F+ 2 (v

-
1) x {(v

-
3) x + }

F
+ {(v-4)x + }*F

=
{i; (i;

-
1) (v

-
2) a? + 3 -

1) (v
-

2) a
2 + 3

(i/
-

2) a?* -j-
3

|
JF.

If [v]
n

is used to denote v (v 1) (v 2) . . . to w factors ([i/]
1 will of course

mean v}, we have shown that

&F = ([v]
1 x + ) F,

&F =
([*/|

2 xz + 2 [v
-

I]
1 a-0 + @2

) F,

&F =
([i/]

3 #3 + 3
[i/
-

I]
2 a? + 3 [v

-
I]

1

and by induction it may be proved that in general

AnF= \[v]
n xn + n[v-I]n-1xn

- 1 + \
7
[i/-

{
* ^

)

That the last term of this expression is
nF is sufficiently obvious

;
what we

wish to prove is that, when m is any positive integer less than n, the term in

AnF which involves m will be

1.2.3...m

To find the term involving
m in An+l

F, we need only consider the operation

of A on two consecutive terms of An
F; none of the remaining terms will

affect the result. Suppose, then, that

AnF= ... + px
n~m

&amp;lt;

Operating with A, we find

= . . . + px
n~m

{(y n m) x

= ... + [p(v-n-m)+q}xn+1-in mF + ....

Now, assuming the general term of A71F to be as written above, we have

p = -

[y m]
nm

,

q
= &quot;

[v m + l]
w-m+1

;

,, (m(v-m+I)\
.so that Q=P\ J

( nm+L
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Thus the general term of An+1F has for its numerical coefficient

fra (v
- m + 1 ) + (v

- n - m) (n
- m + I)}-- - ^-i-i-

n - m + 1

+ l)(v -n)} (n + l)n...Q-m+2)
f ==--&quot;-- I ii vnn-m+1 J 1.2.3...W

which shows that the numerical coefficients in An+1^ obey the same law as

those in &1F ; and as this law is true for n = 1, 2, 3, it is also true universally.

We have thus shown that the general term in AnF is

n(n 1) ... (n m+ 1) ,

, ^
- f

[v
- m]

n-mxn-m m
F,

and, consequently, the corresponding general term in

1.2. 3. ..

Now, as we have already seen,

is * -

which, by merely expressing the symbolic factor as a series of powers of 0,
may be transformed into

where, remembering that
[i/] stands for /(i;

-
1) (

-
2) ... to n factors, it is

7 g

evident that the functions of x which multiply F, hF, *F, ... are all
1 . 12

of them binomial expansions. Hence we immediately obtain

F, = (l+ hx)&quot;F + (1+ Atf)&quot;

JL .

and
finally, F, = (1 + hx}

v
el+h*F.

Mr Hammond has remarked that, with a slight modification, the foregoing
demonstration will serve to establish the analogous theorem, that

282
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where, as before, F means any homogeneous and isobaric function of degree i

and weight w in the letters y, t, a, b, c, ...
;
and F1 is what F becomes when,

leaving y unaltered, we change x into x + hy, where h is any finite quantity.

Instead of the operator

@ = -
yd t + ddb + 268C + 3c9d + ... = - yd t + n

we have - Vl
=

yfdy + ffl t
- 2a236

- 5abdc
-

. . . = ytty + &dt
- F*

;

and instead of v = 3t + 2w, a different number, p = 3i + w (which I have

called the characteristic), taken negatively.

If we suppose that

F! is what F becomes on changing x into x + hy,

and Ft F x x + ey,

then F2 F oc x
t+(h + e}y.

Hence, if F, = F+hP + ~Q + R+ ...,

we must have F2
=F+ (h+ e)P +^^ Q + f-y-

Thus, if e be regarded as infinitesimal, and we write

it follows that A^ = P + hQ + %
R +

But, by the direct operation of A, we find

A^ = AF -f AAP +^ AQ + . . .
,

i . /

and, comparing these two values of

Q = AP =

E = AQ -

Hence it follows that

* This theorem was stated without proof in Lecture VIII, where, through inadvertence, the

term ytdy in the expression for Fj was omitted [p. 352, above].
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It remains to find the] value of knF. This can be effected by means of

formulae given in Lecture VIII. [p. 350, above], where it is shown that

Aa = Sat,

A6 = -
4&amp;gt;bt

- 2a2
,

Ac = 5ct 5ab,

Ad = - Qdt - 6ac - 362
,

Ae = - let - lad - 76c,

We now show that

where V1 =V- t*d t
-

ytdy ,

just as in the cognatejtheorem we had

Since F is a function of y, t, a, b, c, ... without x, it is evident that

.
at

= - 1 (tdt + 3ada + 4&amp;gt;bdb + 5cdc +...)F
-

{2a
236 + 5abdc + (Qac + 362

) dd + ...}F,

where the part of &F which is independent of t is VF.

Now, ydy + tdt + ada +bdb +cdc +...=i

and -2ydy tdt + &96 +2c9c + ... =w;
so that tdt + 3a3a + 4696 + 5c3c + . . . = 3i + w -

yby
- tdt .

Hence, writing 3i + w = p,

= -t(fj,-ydy
- tdt)F- VF

where 7a
= F- 23t

- y9y .

Observing that VfF is of degree i + K and weight w K
;
since

3 (i + ) + (w - K)
=

fj, + 2/e,

we see that AF1 jP= - {(/A + 2) + Fj} F^^.

Again , A** FJ
K^= X^-1

FJ
K^ . A + AA FT

KF
- -X^F^ -&amp;lt;*{(/*

+ 2) + F,} F/.f
7
.

We thus obtain the formula

WV1*F=-t*{(n + \ + 2,c)t+V1}Vl &amp;lt;F, (1)

analogous to the one previously employed,

a*{(v-2K-\)x + }

KF. (2)
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The remainder of the work will be step for step the same for this as for

the previous theorem. In fact, by using (1) just as we used (2), we shall

deduce

just as we deduced the analogous formula
h

F
}
=

(1 + hx}&quot;
el+h* F. (4)

The reason of this is obvious : by interchanging x and t, /* and v, and
-

Fj, we interchange the formulae (1) and (2), (3) and (4).

It may be well to observe that if we use 8h to denote a substitution of

such a nature that

and if (regarding e as an infinitesimal) we write

then in general S^F = ehkF.

The proof of this proposition is virtually contained in what precedes.

LECTURE XXIV.

Whenever a rational integral function of x, y, t, a, b, c, ... is persistent
in form under the general linear substitution, it cannot contain explicitly
either x, y or t, but must be a function of the remaining letters a, b, c, ...

(the successive modified derivatives, beginning with the second, of y with

respect to x) alone.

For if, keeping y unaltered, we change x into x + a, where a is any arbi

trary constant which may be regarded as an infinitesimal, the derivatives

t, a,b,c,... are not affected by this change, and consequently the function

J
Tjl

F= F(x, y, t, a, b, c, ...) becomes F +a-j- ,

ax

df1

which cannot be divisible by F unless -^- = 0.
dx

7 rr

(The alternative hypothesis of
-^- being divisible by F is inadmissible,
CLOO

because F is a rational integral function.)

Hence F cannot contain x explicitly; and if we write y + /3 for y, keeping
x unchanged, we see, in like manner, that F cannot contain y explicitly.
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Again, if in the function

F = F(t,a, b, c, ...)

we change x, y into x + a, y + ftp + ft, the effect of this substitution will be

to increase t by the arbitrary constant /3/( without altering any of the remain

ing derivatives a, b, c, ....

Hence, in order that the form of F may still be persistent, we must have

77 =0; the reasoning being just the same as that by which -j- was seen to

vanish. Thus, F does not contain t explicitly. Moreover, the function

F=F(a,b,c, ...)

must be both homogeneous and isobaric.

For the substitution of a
t
x + a, ftity + ftp + ft for x, y, respectively, will

multiply the letters

a
,

b
,

c
,

d ,
...

by &,,-, for*. A/v4
. ft/r&quot;,

Each term of F will therefore be multiplied by a positive power of ft/t
and a

negative power of a
;

.

Let one of the terms of F be ax 6A &amp;gt;c

x rf^ .... It will be multiplied by

O A +A,+ A,+A,+ ... -(2A + 3A, + 4A2+5A3+...)
f*lt &quot;/

In order that F may retain its form, this multiplier must be the same for

every term of F, no matter what arbitrary values are assigned to
7
and fttl

.

This can only happen when, for all terms of the function F, we have

A.O + A.I + A-2 + X3 + . . . = const.

and \! + 2X2 + 3X3 + ...= const.,

that is, when F is homogeneous and isobaric.

We have thus proved that among all the rational integral functions of

x, y, t, a, b, c, ... the only ones persistent under the substitution of a + a,#,

ft + ft,x + ftity for x, y, respectively, are such as simultaneously satisfy the

conditions of not explicitly containing x, y or t, and of being homogeneous
and isobaric in the remaining letters a, b, c, ....

If F, any function satisfying these conditions, merely acquires an extra

neous factor when, leaving y unaltered, we change x into x + hy, the form of

F will be persistent under the general linear substitution. For both

a + a^x + hy) and ft + ft^x + hy^ + ft^y are general linear functions of

x, y, 1.

Now, the change of x into x+hy converts (as was shown in the preceding

lecture) F into
hV,

^ =
(1 + ^)-^ i+ht

where Vj = V t-d t ydy -
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But, since neither y nor t occurs in F, we must have

dyF=Q and dtF=0.

Consequently, V^= VF, V1
2F= V2F

and so on. Hence
hV

ht)--* F-....
x 2

Unless FF, FlF, F3
^, ... all of them vanish, ^ cannot contain F as a

factor. If it could, VF, V-F, ... would all have to be divisible by F. But
this is impossible; for VF, a rational integral function of a, b, c, ... whose
weight is w-I, cannot be divisible by F, a rational integral function of

weight w.

We must therefore have

FF=0
(which implies V*F= 0, etc.) as the necessary and sufficient condition of the

persistence of the form of F under the general linear substitution. In other

words, F must be a pure reciprocant.

In order that F may also be persistent in form under the general homo-
graphic substitution, it must (besides being a pure reciprocant) be subject to

annihilation by the operator

For it was seen, in the preceding lecture, that the special homographic

substitution in which j-,, are written instead of x, y, respectively,

has the effect of changing any homogeneous and isobaric function F into Flt

where

When the letter t does not occur in F, we may write dtF=0, so that
becomes simply H, and the above formula becomes

ha

Hence it follows immediately that, when F is a rational integral function
of the letters a, b, c, ..., the condition flF=0 is sufficient as well as necessary
to ensure the persistence of the form of F under the special homographic
substitution we have employed.

But when J^is a pure reciprocant it also satisfies the condition VF= 0,
and it is the simultaneous satisfaction of IF = Q and VF=0 that ensures
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the persistence of the form of F under the most general homographic substi-

fTp
ftl

tution. This may be shown by combining the substitution -
. =-7- (for

I + hx 1 + hx^
which F is persistent when, and only when, QF=0) with the general linear

substitution (for which VF=0 is the necessary and sufficient condition of

the persistence of the form of F), so as to obtain the most general homo-

graphic substitution. Thus the linear substitution

x = lx
t
+ my i

+ n 1

y = l x
t
+ m y/

+ n
)

when combined with

&quot;

gives the substitution

in which both the numerators are general linear functions.

By combining the substitution just obtained with the linear substitution

x
t,
= Xx

,,,
+ /*y/// + &quot;&amp;gt; ytl

=
y,,,,

the denominator of each fraction is changed into a general linear function,

and thus, by combining the special homographic substitution - r-
l+hx

with two linear substitutions, we arrive at the most general homographic
substitution.

This proves that the necessary and sufficient condition of F being a

homographically persistent form is the coexistence of the two conditions

VF=Q, OF=0.
Thus a Projective Reciprocant, or Principiant, or Differential Invariant,

combines the natures of a Pure Reciprocant and Invariant in respect of the

elements.

Notice that every Pure Reciprocant is an Invariant of the Reciprocal

Function (that is, the numerator of the expression for ~ in terms of -^
dy

n dx
d?y

^, ..., or what is the same in terms of the modified derivatives t, a, b, ...),

but the elements of such invariants are not the original simple elements, but
more or less complicated functions of them.

What has just been stated is obvious from the fact that all invariants of
the &quot;

reciprocal function
&quot;

have been shown to be pure reciprocals (vide*
Lecture XIX.). The ordinary protomorph invariants of this function will

[* above, p. 412.]
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have for their leading term a power of a multiplied by a single letter. Con

sequently, by reasoning previously employed in these lectures, every pure

reciprocant will be a rational function of invariants of the Reciprocal Func

tion divided by some power of a. Thus, for example, the Reciprocal Function

14a4 - 2Ia?bt + 3 (2ac + 62

) ? - dts =
(a, 0, 7, 8$1,

-
1)

3

if a = 14a4
, /3

= 7a2
6, 7 =2ac + &2

,
S = d.

The two protomorph invariants of this reciprocal function are

ay
-

/3
2 = 7tt

4
(4(ic

- 562
)

and a2S - 3/37 + 2yS
3 = 196a6

(a*d
- 3a6c + 263

).

All other pure reciprocants of extent 3 may be rationally expressed in

terms of a and the two protomorphs 4ac 562
,
a?d 36c + 26s

;
that is, all

pure reciprocants of extent 3 are invariants of the reciprocal function of

extent 3.

The reasoning employed can be applied with equal facility to the general

case of extent n.

Instead of r r- , *-r- let us consider the special homographic sub-
l + ka 1 + hoc

1 v
stitution -

,

-
employed by M. Halphen.

cc oc

Writing X = - and F=|,

let Yl} F2 ,
Y8 ,

... denote the successive derivatives of F with respect to X,

and
2/1} y2 , yz ,

... those of y with respect to x. Then

F= ar1
,

F2
=

15 60 60

Hence, if a, 6, c, d, ... are the successive modified derivatives (beginning

with the second) of y with respect to x, and a
,
b , c

,
d ,

... the corresponding
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modified derivatives of Y with respect to X, it follows immediately that

a = a?a

c = x7

(c + - b + -a],
\ a; a? J

2x a;
2

Attributing the weights 0, 1, 2, 3, ... to the letters a, b, c, d, ..., it is very
easily seen that if F is any homogeneous and isobaric function of degree i

and weight w,

\ Ju Ou ff/ J

But we proved (in Lecture XXII.) [above, p. 429] that for all values of h

F(a, b + ah, c + 2bh + ah2
,

. . .)
= e^^F (a, b, c, . . .).

Hence, making h = -
, we obtain

(C

o

^(a ,
b

, c
,
d

, ...)
= (-)

wx3i+ex
F(a, b, c, ...),

which proves that the satisfaction of

Q,F(a, b,c, ...)
=

is the necessary and sufficient condition for the persistence of the form of F
under the Halpheniau substitution -, -.

x x

Similarly we might prove that F(y, t, a, b, c, ...), which contains y and t,

but not x, is changed by the substitution -
,
- into

x x

e

(-)&quot;&amp;gt;x&quot;e*F(y,t, a, b, c, ...),

where @ = -
yft t + adb + 268C + ... = H -

ydt ;

or we may deduce this result from the formula, demonstrated in the preced

ing lecture of this course,

in which F
l is what F becomes in consequence of the substitution

X

J. ~p iiCC-

y
;-f-r impressed on the variables.
1 + hx
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Let i be the degree and &&amp;gt; the weight measured by the sum of the orders

of differentiation in each term of

F(y, t, a,b,c, ...)

If we measure the weight by the sum of the orders of differentiation of

every term of F diminished by 2 units for each letter in the term, then

w = co *2i and 2&&amp;gt; i = 3i + 2w = v.

Let F(y, t, a, b, c, ...) become F (y, t, a, b, c, ...),

when we change
x into qx +p and y into ry ;

then F (y, t, a, b, c, . . .)
= ri

q~
&amp;lt;a

F(y, t, a, b,c,.. .).

00 7/

A further substitution n r-
&amp;gt; -, , , impressed on the variables in F ,l+hx 1 + hoc

will convert the original variables into

qx , ry
.

*
, +p and *

.

1 + /w? 1 + /wr

p (1 + /w) + qx , ry
that is, into Z.-r and .

,
,

.

1 -t- hx 1 + fix

The function F is at the same time changed into

riq- (i + hx)&quot;e

l+hx
F(y, t, a, b, c, ...).

If now, in the above, we write p = h, q
= h2

,
r = h, we shall have changed

the original variables x, y into , , j^Ti
and tne original fuuction F

into

Let h become infinite; then -p, = and (l+/iirl+^ \ h, J

become -, - and (-)
w xv e

x
F, showing that the substitution-, ^

changes FXX XX
&

into (-)
w xv ex F.
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LECTURE XXV.

In a letter to me dated June 14th, 1886, M. Halphen calls forms which
1 y

are persistent under the substitution -, -, Invariants d homologie. He uses
00 00

the letters

ft
, a/i, ct2 ,

d3 ,
... an ,

to denote y and its successive modified derivatives with respect to #; and,

supposing them to become

A
, AI, AS, A 3 ,

... A n ,

1 v
in consequence of the substitution -

,

-
, gives, in the briefest possible man-

00 CO

ner, two very ingenious proofs of the formula

/ \n i

-
(n - 2) (n - 3)A n = (-)- - - an_^ -

from which he deduces the theorem that the substitution in question
changes any homogeneous and isobaric function/, of degree i and weight w in

a
, al} a2 ,

as , ... an ,

e

into F= (-) ^ 2&amp;lt;

-1 & fy

where @ is the partial differential operator
- a 9ai + a2 aas + 2a3 8a4 + ... + (n

-
2) an^dan .

I give the two proofs mentioned above in M. Halphen s own words,

adding occasional footnotes, and making slight changes in the literation of
his formulae when it seems desirable to do so.

Soient X = ~, y = y-
x x

Par une formule connue (Schlomilch, Compendium II.)

dny dn
. = ( 1 V1 vn+ l ( tfn 1

n n{

* An easy inductive proof of this may be obtained as follows :

Since ^= .* *
we have^= -*(*dx dx dX +1 dx\dX

Hence, assuming the truth of the formula when H=K we find

Thus, if the formula is true for n = K, it will be equally so when n= K + 1. But it is obviously
true when n = l

(when
it becomes

||= -*2

^|) , and therefore holds universally.
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et puisque Y = Xy,

il en resulte

d&quot;Y _ dy d- y _ , iy
f d^_ , . _ ^1 J~ z +ll

&quot;-

&quot;

( y)

-^ ^1
&quot;

1.2. a

d*F
Si Ton pose -r^,

= n I A n , yn = nlan ,

il vient

f
n-2 (n-2)O-3)A n = (- l)^

2*-1

la. + T
~
x n-! + V

-J72:^~
df .

e/-= s (
-

2) _!^ t

on aura aw = (?i 2) aw_! ,

1v ^ Wfl I - ^ O t1

.x i . 2.x-

Par consequent, pour une fonction contenant a
,
a1; a2) ..., de degre i et

de poids to, a chaque terme, on aura

C.Q.F.D.

*
For, expanding by Leibnitz s Theorem,

~(xn-ly)-n*
n

~\ (x
n

-&quot;~y)
= xn-iyn + n (n- 1) x-2

z/n_1 + &quot;-^^

)

(n- 1) (n- 2) x- 3
2/n_2 + ...

do;*1 ax&quot; -1

- n {x^y^ + (n
-

1) (n
-

2) **-*
2/n_2+ . . . }

f The summation extending to all positive integral values of n, from 1 to oo
,
so that

6= -a 9
ai
+ a2 aa3

+ 2a3a
aji
+ 3a48aj

+....

Bemembering that Halphen s aot ai, az ,
a3 , ... have the same meaning as our y, t, a, b, ...,

this operator is - yd t + adb + 2bdc + 3cdd + ... identical with the used in previous lectures.

J We may show without much difficulty that, when Oj, 2 ,
63 , ... are each of them equivalent

to 9, but 9a
acts on u only, 6 2 on v, 6

;i
011 w, and so on, Qiww ... = (Q1 + 62 + 63+ ...)uvw ....

From this it can be deduced that Q*uvw ... = (Ql + 92 + 63 + ...)&quot;
uvw ..., when K is any positive

integer. Now let the number of the functions u, v, w, ... be i, and suppose that

u= an ,
v = ap ,

w = aq , ...
;

suppose, also, that the weight n +p + q + . . .
= w. Then

AnAj&amp;gt;

A q ... = (-)
&amp;lt;ax*-i\exaJ \e* Op) \ex aj ... =

(
-

)
x2 &quot; * ex

(&i+ &quot; f 3+ -

&

(for by what precedes e1 + e2 + 63 + ... may be replaced by 6). Taking an opaa ... and A n Ap A q ...

to be corresponding terms of/ and F, we see at once that
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A utre Demonstration de la Formule (I)*.

Si Ton change X et x en X +H et x + h, on a

h=
H

Maintenant la formule

ecrite symboliquement^
1

X(X=

D ailleurs Y = (X+H)y;
done symboliquement

X(X + Hf
*

Si Ton deVeloppe le second membre (II) suivant les puissances ascendants

de H, le coefficient de Hn est A n . Or ce developpement est

Y--

*
If x becomes x + h in consequence of the augmentation of X by an arbitrary quantity H,

the increment of x will not be a constant, but will depend on X as well as on H. The

value of h may be found at once by eliminating x between X=- and X+H= , , when we
x x + h

obtain X +H= - -
, and consequently h= -^r^ rr

I + nJi A (A + H.)

This increase of X also changes y and Y (functions of x and X, whose original values were
and /1 before the augmentation of X took place) into

y = a + /laj + h-a 2 + ... + hna

These altered values of y and Y are the ones used in this second proof ; the other letters retain

their original signification.

t The word symboliquement indicates, whenever it is used, that powers of a are to be replaced
by suffixes of corresponding value. For example, in the final result

is to be replaced by An=(-)nx2n~1 an +?-an_1 +... .

\ x J

In our notation the final result is A n+2 =(-)nx2n+3 (a, b, c, d, ... tt
,
1 ).
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done symboliquement

cH
\

ce qni est justement la formule (I).

We may regard the coefficients a, b, c, ... of the ordinary binary Quantic
in u, v,

(a, b, c, ...$u, v)
n

,

as the successive modified derivatives, beginning with the second, of a new
variable y with respect to another new variable x.

Any invariant / of this Quantic will then retain its form unaltered, or at

most merely acquire an extraneous factor, if

(1) leaving x, y, v unaltered we change u into u + \v,

x y
&amp;gt; y

i + fix i + hx

(3) u, v x, y -
,

y-
,

00 OC

where X and h are arbitrary constants.

For we have seen that these three substitutions will severally convert

any homogeneous and isobaric function F, of degree i and weight w in the

letters a, b, c, ..., into

1 + hx)
v el+hx F, and (-)

w xveK F,

where, in each case, U = adb + 2bdc + 3cdd + ..., and v = 3i + 2w. From our

point of view an invariant is defined as a homogeneous and isobaric solution

of the equation
O/ = 0.

Hence the above substitutions convert the invariant / into

/, (I + has)&quot; I, arid (-)
w

x&quot;I, respectively.

An absolute invariant with respect to any substitution is one which, dis

regarding its sign, remains unchanged in absolute value b} that substitution.

Thus, any invariant for which

v = 3i + 2w =

is an absolute invariant with respect to each of the three substitutions here

considered.

An invariant is of odd or even character with respect to any substitution

according as its sign is or is not changed by that substitution. Thus,
1 y

invariants are of odd or even character with respect to the substitution -
,

-
x x

according as their weights are odd or even.
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This corresponds to the theorem that the character (with respect to the

interchange of x and y) of a pure reciprocant is odd or even according as its

degree is odd or even [p. 316, above].

From any two invariants for which v has the same value we can form an

absolute invariant (that is, one for which i/=0) by taking their ratio, and

then by differentiating the absolute invariant thus formed obtain another

invariant.

Suppose /! to be an invariant of degree i\ and weight wlt

M 1% 1V%,

and let 3it + 2^ = v1 ,
3z2 + 2w2

= v2 ;

then the v for I-f* is the same as that for 7/1
,
and consequently I-?*!^ is an

absolute invariant.

We proceed to show that -,-(1^1^^) is an invariant, though not an

absolute one.

Using accents to denote differential derivation with respect to #, we have

(1 V*T ~ vi\ T V -1T -&quot;1-1 (-,, T T ,i T T \

XJV
1 * -*J )~ -*! * \V^ 1 * 2

~ VV- 1* 2 )

If, then, we can prove that vj-^l^ ^i/i/2 is an invariant, it will follow

that -T-(/1
V2/a

~
&amp;gt;

&amp;gt;)

will be one also, and the proposition will be established.

It may be very easily shown that this is the case by using Cayley s generators
P and Q. For [p. 327, above], / being any invariant of degree i and weight

w, PI and QI are also invariants where

P = a (bda + cdb + ddc + edd + ) ib,

and Q = a (cdb + 2ddc + 3edd + ...)- 2wb.

Hence (3P + Q) I is an invariant.

Now, since 369a + 4c36 + oddc + . . . = -j- ,

ax

and

(3P + Q)I = a (3bda + 4cdb + 5ddc +...)/- (3z + 2w) bl = al - vbl.

Consequently a// v^bl^ and a/2 v2bI2

are both of them invariants. Hence the combination

vJ2 (ali
-

vfili)
- vj^ (aJ2

-
i/2fe/2)

= a (vj-^l^
- vJJJ}

is also an invariant; that is

I/2///2
- Vjjz

is one
;
which is the theorem to be demonstrated.

s. iv. 29
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The invariant a/ vbl, which we generated from /, is of degree i + 1

and weight w + 1
;

its v is therefore the original v increased by 5 units, three

for the unit increase in the degree and two for the unit increase in the

weight. Hence, on repeating the process of generation, we obtain the

invariant

L d -
(v + 5) bl (al

- vbl} = a2
/&quot;
- 2 (v + 1) obi

- bvacl + v (v + 5) 62
/.

(
ace

j

By adding on the invariant v (v + 5) (ac 62

) / and dividing the sum by

a, the above invariant is reduced to

which is an invariant of lower degree by umty than the unreduced form.

The results obtained above may be compared with the corresponding ones

in the theory of reciprocants.

Thus to the invariants

/ (deg. i, wt. w},

al -vbl,

correspond the reciprocants

R (deg. i, wt. w},

aR -
fibR,

&amp;gt; E&amp;gt; 7?
Gj /t2 ytij/ljj

5aJT - 5 (2/A + 1) 6JB +V (A*
-

1) c.R,

where v = 8i + 2w, \

where /x
= 3t + w.

Denning a plenarily absolute form to be one whose degree and weight are

both zero (i
= 0, w =

0), the theorem I shall now prove may be stated as

follows :

By differentiating a plenarily absolute principiant we obtain another

principiant.

Let P be any principiant of degree i and weight w. Then, by what pre

cedes, since P is both an invariant and a reciprocant,

a -; vbP is an invariant,
ax

and a , ubP is a reciprocant.ax

Hence, when v = (that is, when 3t + 2w = 0),

dP .

-7 is an invariant,
ax

and when p = (that is, when 3i + w = 0),

dP .

T- is a reciprocant.
cte

When both /A
= and v = (which happens when i = 0, w =

0),

rfP
-y- is both a reciprocant and an invariant ;

dP .

that is, -J- is a principiant.
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LECTURE XXVI.

In the theory of Invariants the annihilator O has two independent
reversors any linear combination of which will also be a reversor. To each of

these reversors there corresponds a generator for invariants. Thus Cayley s

two enerators

a (cdb + 2ddc + 3edd +...)- 2wb,

correspond to the two reversors

The only linear combination of these which does not increase the extent

j as well as the weight of the operand is

It is convenient to take this for one of our reversors, and for the other

jx
= 3bda + 4!cdb + oddc +...,

which is a reversor to V, the annihilator for reciprocals, as well as to O, the
annihilator for invariants.

We saw in Lecture XI. [p. 3b4, above] that when F is any homogeneous
and isobaric function of degree i and weight w in the j + 1 letters a, b, c, ...

(HO - Oil) F= (ij
-
2w) F.

The method employed in proving this can also be applied to show that

where v = 3i + 2w.

Corresponding to the reversors and
^-

we have the two generators

for invariants

a
d
-- v^ an(* a^ ~

(tf
~ ^w^ b&amp;gt;

which are linear combinations of Cayley s generators.

Thus, if / be any invariant,

(
a
Tx

~ vb
]
T and

{
a ~

(V
~ 2w) 6 )

7

are also invariants.

292
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The operator -=- has, but has not, analogous properties in the theory of
doc

Reciprocants ; namely, -y- is a reversor to V and a -=-
//,&

is a generator for

reciprocants. Thus, we have shown in previous lectures that

d d

where F is any homogeneous and isobaric function, and fi
= 3i + w, and that

d \
if R is any pure reciprocant fa

-j pb\ R is one also.
\ \AJVU /

Now, Mr Hammond has found that if

b _ 2ac? - 62 3a2d - 3a6c + 63

W=
a
da +

a*
db+ ~

~aT
~ a + -

W is a reversor to V, and a2 TF i6 is a generator for pure reciprocants. In

fact we have

vw- wv=v(-
\o/

2ac

- 3a6c 3
\ ,

(
,.-

)-W(oab) \d/ ;

But, since

F(*)
= So,W
= 106 - 46 = 66,

,
a

and

_ 62

e /2ac - 62

TT(oa6)=o-+5 - - = 10c,
a \ a

it follows that

FTf - WV= 2ada

Thus Tf is a reversor to V. Moreover, a*W-ib acting on any pure

reciprocant generates another.

Let R be a pure reciprocant of degree i
; then, by what precedes,

(VW-
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But, since R is a pure reciprocant, VR = 0, and consequently VWR = ZiR.

Now, V (a
2W -

ib) R = a?VWR- iR Vb = a2
. 2iR - iR . 2a2 = 0.

Hence (a*W-ib)R
is a pure reciprocant ;

that is a?W ib

is a generator for pure reciprocants.

Mr Hammond shows that W is a reversor to V in the following manner :

Let u=a +al e
e + a.2 e*

9 + as e
39

+...,

^ (u)
= A + A. e

9 + A z e&quot;

e + A 3 e
39
+...,

and consider the operators

P=\A d
ttn +(\ + p)A l dan+i +(\ + 2/A) A

an+t +...,

Q = *A d
an , + (\

f + //) A^an ,+l + (X + 2/) A 2 d
an&amp;gt;+s

+ ....

Regarding e
9 as an operative symbol denned by the equation

we may write

P = {\A ene + (\ + ft) A^n+v 9 + (X

Similarly,

Now, PQ-QP= Pe- 9 \ +t* ir (u)
-

Qe-
9 \ + ft

~
&amp;lt;^ (M ) [8ao]

For
Q&amp;lt;t&amp;gt; (

U)
= QA + e9QA l + e*QA 2 + ...

;

so that ene -^ Q&amp;lt;j&amp;gt;
(u) = en9 (eQA l + 2e2e

Q.A 2 + . . .)do

and ene^ &amp;lt;f&amp;gt; (u)
= e

n9 (eA l + 2e&quot;-

9A 2 + ...);

so that Qe
ne

-^&amp;lt;j)(u)

= e
n9

(e
9QA 1 + 2e 29QA 2 + . . . )

. d

Similarly, r&&amp;gt;
v

-^ y&amp;gt; (u)
= e

1

-j-
Ciu Ciu
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Moreover,

(u) = ty
1

(u) Pu = y (u) P(a + a,e
e + a^Q + . . . )

=
A// (u) {e

nd\A + e&amp;lt;

n+1 e (\+p)A 1 + e (n+2)0
(X + 2/t) A* + . ,

.}

Similarly, Q&amp;lt;/&amp;gt;
(it)

= e
1 * f (u) (V + /

Hence

PQ-QP = e e V + / ~

\ + ^ ^ f (U) V +

If in this we write

d&amp;gt;--* I

*2 J

we have

Now, 2w [9J = 2 (o + al

= 2 (a 8
ao +

Also P

where (a + aae
e + a2e-

e + ...)
2 = A + A^6 + A 2e-

e +

and log (OB + ie
e + a,2e

29
+...) = log OB + ^/

Equating coefficients, we have

. _ 1
2

. A
&quot;o o ao

&amp;gt; &quot;! ttoUii -A-2 tlo^a +
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It is easily seen by expanding the logarithm that the general value ofA n

8
is (_y+i_

w
where Sn denotes the sum of the nth powers of the roots of

n

a xn -f a^- 1 + a2x
n~2 + ... +an .

Thus we have shown that if

P = 2a 280l + 5a aiaa2 + (6a a2 + 3a,
a
) das

aj 2a a2
-

i

2

and Q = - 3 + 77^-tt 1*0 &quot;

then PQ-QP = 2 (a ao + a,dai + a^ + ...)=2i.

The general formula obtained for PQ QP is an extension of a result of

Capt. MacMahon s, who considers the case in which

jji Mm
d&amp;gt;(u)= , \lr (u)

=
, .m m

When
(f&amp;gt;(u)

and
i/r (u) have these values, the general formula becomes

f/(V
+ , n + ,i

But

- -
m m + m 1

Consequently

PQ-QP = ^ --
dO) \m m + m - I

In Capt. MacMahon s notation

P = (m, X, fi, n), Q = (m, V, /, n ) ;

in our notation

If now we write

which is equivalent to

PQ - QP = (m + m -
1, Xj, /&!, n + n

),
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we have v + y!n + / (m + m -
1) + /,

Hence we obtain

X, = (m +m -
1) (V + /n) - (X + ^n ) ,

This agrees with Capt. MacMahon s result, a statement of which was

given in Lecture XX. [above, p. 417].

Let Q be a reversor to the operator P= \amdb + (...) dc + (...)dd + ,
and

suppose that

where F is any homogeneous and isobaric function and K some number

depending on its degree and weight. Then \aQ icb will be the generator

corresponding to Q. In other words, we have to prove that

P(\aQ-xb)F=0 whenever PF=Q.

Now, by hypothesis, Pa = 0, Pb = \am
,
and when PF = 0,

Thus, P (\aQ - Kb)F= \aPQF - KF.Pb

As an example, consider the case of the reversor -y- in the theory of
CLX

reciprocants. Here
P = V, \ = 2, m = 2

;

and since (V~ - -- F\F= 2paF,
\ dx dx )

we have K = 2/A. Hence the corresponding generator is 2 (
a-j
--

fib); or, dis

regarding the numerical factor 2, we may take a -,
-- pb for the generator in

question, which is usually denoted by the letter G.

We may also write G in the equivalent form

G =
4&amp;gt;(ac- b

2

) db + o (ad
-

be) de + 6 (ae -bd)dd + ...,

which it is sometimes more convenient to use.

I shall now show that

n# - on = aw - &n,

where w is the weight of the operand.
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It is very easily seen that

fl(ac-6
2
) =0,

fl (ad
-

be)
= 2 (ac

- 62
),

fl (ae
-

6d) = 3 (aa
7 -

be).

H (a/- 6e) = 4 (ae
-

bd),

Hence it follows, by a direct and very simple calculation, that

H - ft = 2 (ac
- b2

) 9C + % (ad
-

be) dd + 4 (ae
- bd) de + . . . .

But, since bdb + 2c9c + 3ddd + 4&amp;lt;ede + . . . = w,

and a96 + 2bdc + 3cdd + 4&amp;gt;dde + ...=!,

aw - 6fl = 2 (ac
- 62

) 9C + 3 (ac?
-

be) dd + 4 (ae
-

bd) de + . . .

Consequently IG 6rft = aw 611.

The use of this formula will be seen in a subsequent lecture.

We may also prove an analogous theorem relating to the invariant

generator a-j
--

vb, which we shall call G .

doc

Let the operand be F, a homogeneous and isobaric function of degree i

and weight w. Then VF is of degree i + 1 and weight w 1
;

its v is

therefore

3(i + l) + 2(w-l) = ^+l.

Thus, ( VG - G V) F = {
V (

a %-
-

vb]
-

(a
~ - vb - b] V \

F
{ \ dx J \ dx J }

= a I V~ - ~
Y] F- v (Vb-bV)F + bVF.

\ dec ctcc /

But (
V ^-~T- V] F=2fMF=2 (Si + w)aF,

\ CLOG CLCO /

and VbF=bVF+2a*F.

Consequently VG -G V=1 (3i + w) a*F - 2va*F+ bVF

= - 2wa2F+ bVF.

It is perhaps worthy of notice that if I is an invariant of weight w and

a pure reciprocant, also of weight w, then

nGI = awl and VG R = - 2

whereas flG / = and VGR = Q.
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LECTURE XXVII.

I should like to make a momentary pause in the development of the

theory which now engages our attention and to revert to the proof of Cayley s

theorem for the enumeration of linearly independent invariants contained in

Lecture XI. and expressed by the formula (w; i, j) (w 1
; i, j).

Since that proof was written out I have endeavoured to obtain one that

might be capable of being extended to the supposed analogous theorem,

regarding pure reciprocals, expressed by the formula (w; i,j)-(w-l;i+ l,j),
but all my efforts and those of another and most skilful algebraist in this

direction have hitherto proved ineffectual.

In aiming at this object, however, I obtained a second proof of Cayley s

theorem, less compendious than the previous one, and subject to the drawback
that it assumes the law of Reciprocity, but which possesses the advantage
over it of being more direct and of looking the question, so to say, more squarely
in the face. The forms of thought employed in it seem to me too peculiar
and precious to be consigned to oblivion. I am not one of those who look

upon Analysis as only valuable for the positive results to which it leads, and
who regard proofs as almost a superfluity, thinking it sufficient that mathe
matical formulae should be obtained, no matter how, and duly entered on a

register.

I look upon Mathematics not merely as a language, an art, and a science,
but also as a branch of Philosophy, and regard the forms of reasoning which
it embodies and enshrines as among the most valuable possessions of the

human mind. Add to this that it is scarcely possible that a well-reasoned

mathematical proof shall not contain within itself subordinate theorems

germs of thought of intrinsic value and capable of extended application.

That such was the opinion of our High Pontiff is shown by the publica
tion of his seven proofs of the Theorem of Reciprocity, a number to which

subsequent researches have made almost annual additions (like so many
continually augmenting asteroids in the Arithmetical Firmament) to such
an extent that it would seem to be an interesting task for some one to

undertake to form a corolla of these various proofs and to construct a reasoned

bibliography, a catalogue raisonnee, of this one single theorem. For these

reasons, I shall venture to put on record (valeat quantum) the following
Second Proof of Cayley s Theorem.

The notation which I proceed to explain will be found very convenient.

A rational integral homogeneous isobaric function will be called a gradient;
its weight, degree, extent (extent meaning the number of letters after the

first) will be denoted by w; i, j and spoken of as the type of the gradient.
Either a single letter, such as

&amp;lt;,
will be employed to denote a gradient, or
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else its type enclosed in a parenthesis thus [w;i,j]. The abbreviation
T&amp;lt;f&amp;gt;

signifies the type of
&amp;lt;f&amp;gt;;

thus, T&amp;lt;j&amp;gt;

= w\ i, j.

The number of terms in the most general gradient whose type is the

same as that of
&amp;lt;f&amp;gt;

will be spoken of as the denumerant of 0. The letter N
will be used to denote such a denumerant; thus,

N&amp;lt;f&amp;gt; signifies the denumerant
of

&amp;lt;f&amp;gt;.

In like manner, the letter A will be used to denote the number of linear

relations between the coefficients of any gradient, whenever such relations

exist. Hence
N(j&amp;gt; A&amp;lt;/&amp;gt; expresses the number of terms in $ whose coefficients

are left arbitrary. Obviously, when
&amp;lt;/&amp;gt;

is the most general gradient of its

type, we have

A&amp;lt;
= 0.

We also use E to denote the ij
- 2w, which may be called the excess, of

the gradient of type w; i, j. Thus, if
T&amp;lt;j)

= w; i, j, we write
E&amp;lt;f&amp;gt;

=
ij 2w.

The operators which we shall employ, namely, H and H
,
are defined by

the equations

The first of these is of course an equivalent, but for present purposes
more convenient, form of adb + 2bdc + 3cdd + ..., the ordinary invariant

annihilator O f as will be evident on writing a = a, a^ = -, 2
= ~

, ...);
J- J- . /

the second of them, fl
,
is merely fl deprived of its first term.

We may now give the following enunciation of the theorem to be proved:

If &amp;lt; is the most general gradient of its type, fl&amp;lt; is also the most general
gradient of its type whenever

E(f&amp;gt;

is not negative. In other words, we shall prove
that, subject to the condition stated above,

AH&amp;lt;/&amp;gt;

= whenever A&amp;lt;
= 0. This

is equivalent to Cayley s Theorem on the number of linearly independent
invariants. For the number of forms of the same type as

&amp;lt;,
and subject to

annihilation by fl, is

N&amp;lt;f&amp;gt;

-
Nl&amp;lt;$&amp;gt;

+ Afty ;

and Cayley s Theorem states that the number of such forms is
N&amp;lt;f&amp;gt;-N{l&amp;lt;f&amp;gt;,

which will be the case when
Afl&amp;lt; = 0.

The theorem of Reciprocity enables us to dispense with the discussion of

those cases in which the extent j is greater than the degree i. For since

[Vol. in. of this Reprint, p. 151] the number of linearly independent
invariants for the type w;j, Us the same as for the type w; i, j, we can
substitute the first of these types for the second, using -/r,

whose type is

w;j, i, instead of
(/&amp;gt;,

whose type is w; i, j. Thus we have
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But by Ferrers proof of Euler s Theorem (vide &quot;A Constructive Theory of

Partitions&quot; [p. 1, above]),

N^ =
N(f&amp;gt;

and Nfty = Nfl&amp;lt;f&amp;gt;.

It obviously follows that

AOi/r = An&amp;lt;/&amp;gt;.

Cases for which the extent is greater than the degree may therefore be

made to depend on those for which the degree is greater than the extent.

Hence Cayley s Theorem depends on the proof that AH&amp;lt; = when* = &amp;gt;

&amp;lt;
;

and ij &amp;gt; 2w.

In the course of the demonstration, the following Lemma will be used :

If
T&amp;lt;f)

= w;i, j and T-fr
=

ij w; i, j, then
N&amp;lt;f&amp;gt;

= Nty.

The types of the two gradients we are now considering may be said to be

complementary, and then the Lemma may be enunciated in words as follows :

The denumerants of two gradients are equal when the types of the gradients

are complementary.

The proof consists in showing that to each term of the type w; i, j there

corresponds a term of the type ij w; i, j. Let afoa^af* . . .

a/&amp;gt;

be any term

of the type w; i, j; then

w = Xx + 2X2 + 3X3 + . . . +j\j

and z = X + Xj + X., + \s + ... +\j.

Writing the suffixes of the letters a , alt a.2 , ...
j
in reverse order, every

thing else being kept unchanged, we obtain the term Cty*ap_]*iag-i
xi... o^r,

whose weight we will call w . Then

w =jX + (j
- l)Xi + (j

-
2) X2 + ... +Xj

_1

= j (X -t- \! + \s + ... + \j)
-

(\! + 2X2 + 3X3 + ... + j\j)

=
ij w.

The degree of the transformed term is still i, and its extent is still j,
while

its weight has become ijw; its type is therefore complementary to that of

the original term. Hence to each term of any given type there corresponds

a term of the complementary type, and consequently the total number of

possible terms (that is, the Denumerant) for each type is the same.

By means of this Lemma it can be shown that AH&amp;lt; = when
E(f&amp;gt;

= 1.

Let

T&amp;lt;f)

= w; i, j where ij 2w = 1
;

then, since
Tl&amp;lt;j&amp;gt;=w=I; i, j, the types T(f&amp;gt;

and Tl$ are complementary (the

sum of the weights being w + w 1 =
ij).

It follows from the Lemma that the Denumerants of &amp;lt; and H&amp;lt; are equal.

Hence
= 0.
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For if not, the number of independent terms in
H^&amp;gt; being less than the

denumerant of fl&amp;lt;,
will also be less than its equal, the denumerant of

&amp;lt;/&amp;gt;,

and

therefore there will be one or more invariants of the type w; i,j for which

the excess is negative. Since this is known to be impossible, we must have

AH&amp;lt; = 0.

We next prove that, in all cases for which i=&amp;gt;w, the number of linearly

independent invariants of the type w; i, j is correctly given by the formula

(w; i,j)-(w-l; i, j),

which is equivalent (as we showed at the beginning of Lecture XV.) to

(w;w,j)-(w- 1; w, j),

or, what is the same thing, to the coefficient of awxw in the expansion of

l-x~
(1
-

a) (1
-
ax) (1

- ax2

) (I
- ax3

) ... (1
-

axi)

Let the expansion of

rt
1 X~

(1
- ax) (1

- ax2

) (I -ax3
). ..(I- axi)

be 1 + (a I)x + A 2x
2 + ... +Awx

w + ....

The expansion of F is obtained by multiplying that of G by the infinite

geometrical series

But we only require the coefficient of awxw in the expansion of F, so that

we need only retain the portion

of the above product instead of its complete expression.

It is of importance to notice here that Aw ,
which is independent of x,

cannot contain any higher power of a than aw. (That this is so will be

evident from the constitution of the fraction G, for clearly no power of a in

the expansion of G can be associated with a lower power of x.} Thus we see

that

Aw = aaw + (3a
w~ l + 7a

w~2 + . . . + ica + \,

and consequently

Awx
w
(1 + a + a2

-f . . . + aw)
= ... + awxw (a+/3 + y + ... + rc + \)+

Hence the coefficient of awxw in the expansion of F is

which is the value assumed by Aw when in it we write a= 1. Call this value

Aw ,
and let the value of G when a = 1 be denoted by G . Then Aw is the

coefficient of xw in

1
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Hence we see that, when i =
&amp;gt;w, the value of (w ; i, j) (w-l; i, j) is the

total number of ways in which w can be made up of the parts 2,3, ... j.

We have yet to show that this number is the same as that of the linearly

independent invariants of the type w; i, j when i=&amp;gt;w.

This follows from the known theorem that every invariant is either a

rational integral function of the Protomorphs a, P2 ,
P3 , ... P

j (meaning the

invariant a and those of the second and third degrees alternately whose first

terms are ac, a?d, ae, a?f, ...), or can be made so by multiplying it by a suit

able power of a. Thus, if / be any invariant of degree i and weight w,

la&quot;-* = (a, Pa ,
P3 ,

... Pj\

where
&amp;lt;,

which is of degree-weight w.w when expressed in terms of a, b, c, ...,

is rational and integral as regards the protomorphs.

When i=
&amp;gt;w, writing

I-a*-*&amp;lt;&(aP ,P$ , ...P,),

&amp;lt;I&amp;gt; consists of a series of terms of the form AaPPfPf ... Pf, each with an

arbitrary coefficient, where, since

2X + 3yL6 + 4i&amp;gt; + . . . + jp = w,

the number of arbitrary constants in &amp;lt; is the total number of partitions of w
into parts 2, 3, ... j. Hence the number of linearly independent invariants

of the type w; i,j is also this number of partitions, that is, by what precedes
is (w; i, j) (w 1; i, j). This proves Cayley s theorem for cases in which

i = &amp;gt; w.

But when i &amp;lt; w, the equation

/a
=&amp;lt;&(a,

P2 ,
P3 ,

... Pj)

shows that the coefficients of &amp;lt; are not all arbitrary, but must be so chosen

that &amp;lt;& may be divisible by aw
~i

,
and the reasoning employed in the case of

i = &amp;gt; w no longer holds.

It will be convenient at this point of the investigation to review the

results we have hitherto obtained and to see what remains to be proved.

Cayley s Theorem has been demonstrated for cases in which the degree is

not less than the weight. This will be expressed by saying that

All [w ; i, J]
= when i = &amp;gt; w.

We have also proved that

All [w; i, j]
= when ij 2w = l.

The law of reciprocity has been expressed in the form

Aft[&amp;gt;;ij]
=

An|&amp;gt;;j, i],

where [w; i, j] denotes the most general gradient of the type w, i,j.
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The theorem to be proved is that

Aft [w ; i, j]
= when ij 2w = &amp;gt;

;

but we may at once dismiss those cases in which i = &amp;gt; w, and (assuming the

theorem to have been proved for Quantics of order inferior to j) those in

which
i&amp;lt;j,

for these depend on the truth of the theorem for a Quantic of

order i.

It remains, then, to prove that, when
ij 2w = &amp;gt; 0, Aft \w\ i, j]

= for

values of i inferior to w, but not inferior to
j.

This may be effected as

follows :

Let &amp;lt; be the most general gradient of the type w, i + I, j, and suppose

$ = P + Qa + Ra? + So?,

where P, Q and R do not contain the letter a, though S may do so. Then,

writing

&amp;lt;/&amp;gt;!

= Q + Ra + So?,

0! is the most general gradient of the type w, i,j.

Now, if ft = adb + bde + cdd + . . ., and ft = bdc + cdd + ..., we have

and ft^ = ft Q + (fl
R +

)
a +

(ftS
+

Confining our attention for the present to
ft&amp;lt;i,

it is clear that if no linear

relations exist among the coefficients of l R (that is, if Aft J? = 0) the coeffi

cients of ft O are not connected with those of Q R -f -rf by any linear relation.
db

For the coefficient of each term of ft jR + -y= is the sum of a single coefficient
db

of Q and an independent linear function of the coefficients of R. Moreover,
rJ 7?

obviously the coefficients of ft Q are unconnected with those of ft$ + rr- .

db

If, then, the coefficients of ft Q are not related inter se (that is, if

Aft Q = 0), we have

Looking now to the expression (1) for
ft&amp;lt;,

we see immediately from (2)
that any linear relation subsisting between the coefficients of ft^ will also

subsist between those of
ft&amp;lt;/&amp;gt;,

and therefore that Aft^ is not greater than

If, then,
Aft&amp;lt;/&amp;gt;

=
0, it follows that Aft^ = 0, provided that both the

supplementary conditions Aft Q = and Aft ^ = are also satisfied.
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Now, since
&amp;lt;/&amp;gt;j

= Q + Ra + So? is the most general gradient of the type

w,i,j,

Q will be the most general gradient of the type w i\i,j\,
and R w i+l;i l,j l,

when in Q and R we change b, c, d, ... into a, b, c, This change converts

L = bdc + cdd + ... into ft = a96 + bdc + .... Hence the conditions AH Q =
and Afl 7i! = are respectively equivalent to

AH[w-i; i, j- 1]
= and AH [w-i+I , i-I,j-l]=0.

Supposing these supplementary conditions to be satisfied, what we have

proved is that when

AH [w; i + 1, j]
= (that is, AHc =

0),

then also Aft [w, i,j]
= (that is, AH^ =

0).

Now,

T$ = w; i + I, j, so that
E&amp;lt;$&amp;gt;

=
(i + 1) j

- 2w = (ij
- 2w) +j,

TQ = w -
i; i, j

-
1, so that EQ = i (j -l)-2(w-i) = (ij

- 2w) + i,

TR = w-i + l; i-l,j- 1, so that

Thus, when ij 2w = &amp;gt; and i = &amp;gt;

j,

E(f&amp;gt;
and EQ are both positive.

ER is in general = &amp;gt; 0, but in the special case where ij2w = and i =j,
we have ER = 1. Except in this case (which gives us no trouble, since we
have seen that AH.Z2 = in consequence of ER =

1), we have never to deal

with a type of which the excess is negative.

Hence, if we assume Cayley s Theorem to have been proved for all

extents up to j 1 inclusive, we have

Aft [w-i;i,j- 1]=0,

and AQ [w
- i + 1

;
i - 1, j

-
1]
=

0,

(that is, the two supplementary conditions are satisfied).

We wish to extend the theorem to the extent
j.

Subject to the conditions i=
&amp;gt;^

.and ij
2w= &amp;gt; 0, we have

Aft [w; i, j]
= if All [w; i + 1, j]

= 0.

But we need consider no value of i greater than w, as we have proved
that

AH [w; w, j]
= = AH \W\W-\-K, j] ;

therefore Aft [w, w 1, j]
= 0,

=0.
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As previously shown, the theorem is true for all values of i inferior to j if

it is true for all Quantics of inferior order. Thus the theorem is true for a

Quantic of order j and for every value of i if it is true for all Quantics of
order inferior to j. But it is true for the Quadric (where j = 2)*; therefore
also for the Cubic (j

= 3); therefore also for the Quartic (/= 4), and
so universally. Hence the theorem to be proved is demonstrated.

LECTURE XXVIII.

We now resume the theory of Principiants and proceed to prove the

important theorem that every Principiant is either simply an invariant in

respect to a known series of pure reciprocants, which we call A, B, G, D, .

or else becomes such an invariant when multiplied by aw~\ where w is the

weight and i the degree of the Principiant in question. Using the letter M to

denote the pure reciprocant ac -
1

62
, and G the ordinary eductive generator,

4 (ac
- 62

) db + 5 (ad - be) dc + 6 (ae- bd)dd + 7 (af- be)de + ...

(which, it will be remembered, is only another form of a 4- - b with the
dx

advantage of the /* being suppressed, that is, only implicitly contained), we
obtain in succession the values of A, B,C,D,... from the following equations:

5A = GM,

VB-GA,

1C=GB-MA,
8D = GC-2MB,

On performing the calculations indicated by these equations we shall find

A = a?d - 3a6c + 26s
,

B = a3e- 2a2
c
2 - a

13a2
6c2 + aW - ab*c + -442

25D =
a*g

- - a 4d2 - 6a4ce + 7a3
c3 + terms involving b,

15B-afa- a6de - 7a5

c/+ 29a4c2
rf + terms involving b.

* When j= 2 the condition ij=&amp;gt;2w becomes identical with i=&amp;gt;; but we have alreadyseen that the theorem is true whenever i= &amp;gt;w.

s. iv.
3Q
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The fact that D is a pure reciprocant enables us to calculate the terms in

E which are independent of b without a previous knowledge of the values of

those terms in D which involve b. For, since

=4(ac-62

)86 + ... and V=2a-db + ...,

a?G 2 (ac b2

) V does not contain 3&.

Hence the operation of a?G 2(ac b2

) V on terms involving 6 cannot

give rise to terms independent of b. But,

D being a pure reciprocant, VD =
;

so that {a*G
- 2 (ac

- 62

) V] D = a?GD,

and the terms of a?GD which do not involve b are found by operating with

[a*G
- 2 (ac

-
Z&amp;gt;

2

) F] 6=0

on the terms of D which do not involve b.

If, now, we use M
,
A

,
B

,
C

,
... to denote those portions of M, A, B, C, ...

which are independent of 6, and write

[a*G
- 2 (ac

- 62
) F]6=0

= a*G ,

-we shall still have 9E = G D - 3M C
;

and in general the law of successive derivation for A
,
B

,
C

,
D

, ... is the

same as that for A, B, C, D, ... except that G takes the^lace of G.

We have

a?GQ
= [a?G-2(ac-&} F]6=0

= a2

(5addc + Qaedd + 7afde + 8agdf + Qakdg + . . .)

- 2ac {6acdd + ladde + (8ae + 4c2

) df + (9af+

so that

G = oaddc + 6 (ae
- 2c2

) dd + 7 (a/
-

8 9
+ -

(tfg
- 2ace - c3) df +- (a?h

- 2acf- 2c2

a a

and consequently (since M =
ac),

oA = G M gives A = a?d,

6B = G A B = o?e - 2a2
c
2

,

7C = G B -M A C = a*f-5a*cd,

8D = G C - 2M B D, = a5

g
-^ a4^2 - 6a4ce + Ta c

8
,

o

9^o = G D - 3M C E = ah-~ a*de - 7a5

c/+2
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Thus, for example,

8Z&amp;gt;
= G (a

4/- oa cd)
- 2ac (a

3e - 2a2
c )

= - 25a4d2 - 30a3
c (ae

- 2c2

) + 8a3
(a?g

- 2ace - c3)
- 2ac (a

3
e - 2a2

c2

) ;

25
whence Dn

=
aty

- a4d2 - 6a4
ce + 7a3

c3
.

o

/ 25 \

Again, 9E = G laty
-~ a*d2 - 6a*ce + 7a3

c
3

)

- Sac (a
4/- 5as

cd)

= oad (- 6a4
e + 21a3

c2) -~(ae- 2c2

) a
4d - 42 (a/- 2cd) a4c

+ 9 (o?h
-
2ac/- 2c2

d) a4 - Sac (a
4/- oa cd),

gives # = a&quot;A
- a5de - 7a5

c/+ 29a4
c
2d

Similarly, from the known values of D and E we may deduce that of the
next letter, F , and so on to any extent.

It may be noticed that each of the pure reciprocants A, B, C, D, ... can
be determined without ambiguity, by means of the annihilator F, when the

portions of them, A 0t B ,
C

,
D

, ... independent of b are known.

For suppose R and R to be two reciprocants, of weight w, for each of
which the terms independent of 6 are the same. Then their difference is

divisible by 6. Let

R-R =
b&amp;lt;j&amp;gt;;

then F(60) = ;
that is, 2a2

&amp;lt; + 6 V$ = 0.

Hence
&amp;lt;/&amp;gt;

is divisible by b, and R -R is divisible by 62
; say R-R =

Then

=
0,

showing that ty is divisible by b, and R - R by b3
.

By continually reasoning in this manner, we prove that R - R must be
divisible by bw

;
and then the remaining factor (being of weight 0) is neces

sarily of the form \ae
, where \ and 6 are numerical constants. Thus

R - R = \aebw
, and consequently V (\a?b

w
)
= 0.

This is impossible unless \ = 0, when the two reciprocants R, R become
equal, showing that there cannot be two different reciprocants for which the
terms independent of b are the same. When, therefore, the terms which do
not involve 6 of any pure reciprocant are known, the complete expression of
that reciprocant can be determined without ambiguity.

Each reciprocant of the series A, B,C,D,... possesses the property of
&amp;gt;emg,

so to say, an Invariant relative to the one which precedes it meaningthat the operation of fl = adb + 2bdc + 3cdd + ... on any letter gives (to a

302
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factor prbs) the one immediately preceding it. The first letter, A, is an

Invariant in the ordinary sense. We can in fact show that

The proof depends on a formula established in Lecture XXVI. of this

course [p. 457, above], namely
(IG - GO. = wa - 6O,

where G is the generator 4(ac - 62

)d&+ 5 (ad- bc)dc + ..., and w is the

weight of the operand.

Thus, observing that the weights of A, B, C, D, ... are 3, 4, 5, 6, ...

respectively, we have

(O -
Gfi)A = (3a

- Wl) A,

(flG - GO,) B = (4a
- 6H) B,

Now, since A is the well-known invariant a2d 3abc + 2b?, we may write

= in the first of these equations, which then reduces to

VGA = SaA.

But, since QB = GA,

we have GOB = CIGA = SaA.

Thus nB = A x % .

1U

Again, substituting for QB in the formula

(flG - Gfl) B = (4a- 6H) B,

we find flGB - G = 4aB - A,

where, since G (which is linear in 9& ,
9C , ... and does not contain da ) does not

operate on a,

aA\ a .

and consequently O.GB + -=- A = 7aB.
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Now, 1C=GB-MA;
so that 7H(7 = CIGB - ACIM - MttA.

n . r / 562
\ ab , .

But, since flM Iliac rl~ -5 an(J ** = 0,
V 4 / 2

Thus
JL

We may, in exactly the same way, prove that

and so on to any extent.

In the following inductive proof it will be convenient to denote the

letters

A, B, C, D, E, ...

by M
,
MI} M

8&amp;gt; its, M
4&amp;gt; ...,

and then the theorem to be proved is that

When this notation is used, the law of successive derivation which defines

the capital letters is expressed by the equation

(TO + 7) un+2 - Gun+l + (n + l) Mun = 0, (1)

where G is the generator

4,(ac-b*)db +5(ad-bc)dc + ..., and M = ac-~.
TT

Operating with O on the above equation, we obtain

(TO + 7) flttn+2
- QGun+1 + (TO + 1) (Mlun + unflM) = 0. (2)

Now, the weights of u ,uly u2 , ... are 3, 4, 5, ... respectively, and conse

quently the operation of

IG - GO. = wa-bV&amp;gt;

on un+1 (whose weight is n + 4) gives

un+1 = (TO + 4) aun+1 -

Or, assuming that nuK
= KUK^ x - for all values of K as far as n + 1 inclu

sive (it has previously been shown that IB = A x -= and IC=2B x^, so
Z Zi

that the theorem is true for K. = 1 and K = 2),

] + (n + 4) au,l+1

= (n + 1) (
WJ + (n + 4) a n+1

-
(n + 1) ^ M.
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But (remembering that does not operate on a, so that G . un = ^Gun)

we have, in virtue of equation (1),

G 1
1O =

I {(n + 6) un+i + nMun-i}.

Hence it follows that

QGun+1
= n

- a {(n + 6) un+l + nMun^} + (n + 4) aun+i
-

(n + 1) un

On substituting this in (2) we obtain

(n + 7) ]ftwn+2
- (*+ 2)5 wn+1 [

I
z

J

M flun n-=

This reduces to &un+2 = (n + 2)
- un+l .

For, according to the assumption previously made in the course of the

demonstration,

o a
uun =

g
Mn-i ;

so that the second term vanishes
;
and the third term vanishes because

OJf-G (_*) !*.
.

We have therefore proved that if the theorem is true for luK ,
when K has

any value up to n + 1 inclusive, it is also true for Hwn+2 . But the theorem

holds for K = 1, and for K = 2. It therefore holds universally for any positive

integer value of K.

Recalling the known values of the reciprocants M, A, B, C, D, ... we

observe that their principal terms are ac, a?d, as
e, a

4/ a5

g, ..., where it is to

be noticed that the most advanced of the small letters in the expression for

any capital letter occurs only in the first degree multiplied by a power of

a. In other words, M,A,B,C,D, ... form a series of Protomorphs, and

consequently every Pure Eeciprocant can, as we have already seen (vide

[p. 384, above]), be expressed as a function of a, M, A, B, C, D, ... rational

in all of them and integral in all except a.
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But it is further to be noticed that whereas

a is of degree 1 and weight 0,

M 2 2,

A 3 3,

B 4 4,

and in fact that every capital letter is of equal weight and degree.

From this it will follow that every Pure Reciprocant will be the product
of a power of a into a function of the capital letters alone.

For let i be the degree and w the weight of any pure reciprocant ex

pressed in terms of a, M, A, B, C, ..., and suppose one of its terms to be

then
77 + 26 + 3/c + 4A, + 0/4 + . . .

=
i,

and 20 + 3/c + 4X + 5^ + ... =w.

Hence
77
= i w,

which is the same for every term of the pure reciprocant in question. Thus
each term contains ai~w as a factor, and the reciprocant is of the form

a(M, A,B,C, D, ...).

Let us now consider any Principiant P; since P is a pure reciprocant, we
must have

P = a*-4&amp;gt; (M, A, B, C, D, ...).

But Principiants are subject to annihilation by H, and consequently
OP = 0, which gives

aA
On writing for IM, IA, ILB, CIC, ...

their values - b x -
, 0, A x -

,
2B x -

,
...

^ 22
we obtain

| (- bdM + AdB + 2Bd c + 3CdD + . . . )
&amp;lt; = 0.

From this it would follow that 4&amp;gt; is an invariant in the two sets of letters

-6, MandA, B, C, D, ...;

but it is easy to see that it is an invariant in the latter set exclusively. For
M and A, B, C, D, ... being all of them pure reciprocants,

&amp;lt; and V&, 8B 4&amp;gt;,
dc &amp;lt;l&amp;gt;, 8^, ...,

which are functions of M, A, B, C, ... exclusively, must also be pure

reciprocants.
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If, then, we operate with F on

...) 3&amp;gt;
=

0,

we shall find
F(-68^)3&amp;gt;

=
(every other term being annihilated by

Thus

V(bdM) 3&amp;gt;
=

(dM3&amp;gt;)
Vb = 2a*dM3&amp;gt;

= 0,

and consequently dM &amp;lt;&
= 0. Hence

(AdB + 2Bdc + 3CdD + ...) 3&amp;gt;
= 0.

The equation dM &amp;lt;& = shows that M does not appear in the expression for

any principiant in terms of the capital letters, while

+ . . .) &amp;lt;l&amp;gt;

=

shows that 4&amp;gt; is an invariant in A, B, C, D, ....

We have thus shown that every invariant of

(A,B,C,...)(x, y)i

is a principiant, and conversely that every principiant is an invariant of

(4, B, (?,...)(*, yX,

or such an invariant multiplied by a power of a.

LECTURE XXIX.

From the theorem that every Principiant is (to a power of a pres) an
Invariant in the reciprocantive elements A, B, G, ... we readily deduce its

correlative in which, everything else remaining unchanged, the reciprocantive
elements A, B, C, ... are replaced by a set of invariantive elements which we
call A

,
A ly A 2 ,

.... The equations connecting the new elements with the
old ones are as follows :
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We have, in the first place, to prove that A
,
A lt A 2 ,

... are all of them

invariants in the small letters a, b, c, .... This is an immediate consequence
of the identities

-,

established in the preceding Lecture, coupled with the fact that H6 = a.

Thus

2

and in general, writing the equation which gives A n in the form

, r

T70--~
and operating on it with O, we find

1.2.3

= (each term vanishing separately).

We next observe that

(A 0) A lt A 2 , ...)(ar, ?/y, being equal to (^4, B, C, ...)( ^y, y] ,

V ^ /

is a linear transformation of (A, B, C, ...)(#, 2/V,

and that the determinant of the transformation

1

is equal to unity.

Hence every invariant in A
,
A lt A 2 ,

... is equal to the corresponding
invariant in A, B, C, ..., which proves the theorem in question.
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Each of the invariantive elements A
,
A l} A^, ... is, so to say, a recipro-

cant relative to the one which immediately precedes it, just as in the cognate

theorem each of the capital letters A, B, C, ... was an invariant relative to

its antecedent. It is in fact easily seen that

and in general VAn = nAn^

Thus, for example, if we operate with V on

2,

remembering that A, B, C, D are pure reciprocants, we shall find

But C-2)B+ A--=A 2 and
\ZJ \Z/

so that VA 3
= -3Aia2

.

In like manner, operating with V on

we obtain VAn = - ^ (A, B, C, . . .) (- ,
1^ F6

&quot; \ *&quot;&quot;/

This property enables us to give a proof (exactly similar to the proof of

the cognate theorem in the preceding Lecture) of the theorem that every

principiant is expressible as the product of an invariant in A
,
A l} A, ... by

a suitable power of a. We first observe that, using N to denote ac 62
,

l -&quot;-ll ^-2&amp;gt;

form a series of invariantive protomorphs of equal degree and weight.

Hence it follows that any invariant of degree i and weight w can be

expressed in the form

ai-^&amp;gt;^(N,A Q,A 1&amp;gt;

A 2 , ...),

and consequently that every Principiant can be expressed in this form, pro

vided only that
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Substituting for VA
,
VA ly VA 2 , ... their values given above, and at the

same time observing that

VN = V (ac
- 62

)
= 5a2b - 4a26 = a2

b,

we find V&amp;lt;$&amp;gt;
= a? (bdN - A dAl

- ZAJ^ - 3A 2dAa
-

. . .) &amp;lt;I&amp;gt;

= 0.

Finally, we prove that &amp;lt;l&amp;gt; does not contain N, but is an invariant in

A
,
A l} A 2 ,

... alone, by operating with fl on

when it is easily seen that every term vanishes except the first, which gives

H (bdN &amp;lt;&)

= nbx dN 3&amp;gt;
=

0,

where, nb = a being different from zero, we must have dN &amp;lt;&
= 0.

The invariants N, A
,
A lt J. 2 ,

... obey a law of successive derivation

similar to that which holds for the reciprocants M, A, B, C, ....

Starting with Nac b&quot;

2 and operating continually with

= (4ac
- 562

) db + (oad
-

we shall find G N= 5A
,

G A 3
= 9A. -

and generally G A n = (n + 6) A n+l nNA n-i-

These equations are exactly analogous to

GM=5A,
GA = 65,

GC=8D+2MB,

in which M=ac--rb2
,
and GM, GA, GB, ... are the educts of M, A, B, ...

4
obtained by operating with

G = a
-JT

-
(3i + w) b = 4 (ac

- 62
) db + 5 (ad -bc)dc +.. ..

It should be noticed that the two generators G and G are connected by
the relation

G = G-wb,
where w is the weight of the operand.
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Also, that

Gb = 4&amp;gt;(ac-b
2
)
=

4&amp;gt;N,
and G b = 4ac - 562 =

4&amp;lt;M.

We may easily verify that

G N = 5A = 5 (a
zd - Sabc + 2bs

)

by operating with G =
(4&amp;gt;ac

- 562

) 96 + (5ad
-

7bc) 9C on N = ac - 6*.

To prove that G A = 6^,
we operate on ^. = J.,

for which the weight is 3, with

G =G-3b.

Thus G A = (G-3b) A = 6B -3bA = 6A 1 .

For by definition A l
= 5 - A .

\2/

In general, to find ^ ^Tt, we have by definition

and, since the weight of An is n + 3,

6^ = 6

Now

= G(A,B, C,...)-,

-(4,5, G, ...)-,

Substituting for (r-4, 6r-B, 0(7, ... their known values, and remembering

that Gb = 4N and that (A, B, C, ...) (-| , l^-ja-ti we have

=
(&B, 76

, 8A ...)(- 1,
V ^ /

,^1,25,3(7, ...)f-|.
\ *

= 6(B, C, D, ...)-,
y .

+ Jf (0, 4, 25, 3(7, ...)
-

,

But (0, (7, 2D, 3E, .) (- 1, l)&quot;
V &quot; /
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and similarly

Hence

GA n =Q(B, C, D, ...) (-|, l}\ n(C, D, E, ...) (

*
1

\ ^ / V z

Now let [7 = (4, B, C, . . .) (M , w) ;

then
(

^=n(A &amp;gt; B,C, ...)(u,v}-\

and
d

^=n(B,C,D,...)(u,vr-&amp;gt;;

whence it follows that

IT= (4, 5, 0, ...)(* w) = u(4, 5, C, ...)(&quot;, ^^
+ v(B,C,D, ...)(u,v)

n-\ (1)

Similarly, we see that

(5, (7, D, ...) (w, V)= ^(5, (7, D, ...) (X v)
71-1

+ v(C,D, E, ...)(u, v)
n~\ (2)

Writing u = - and v= I in the above equations, and remembering that

(A,B,C,. ..)(--,

we obtain immediately from (1)

(B,C,D,...)(-
b

\ *

and then (2) gives

/ /) \n i /

(0,D,E,...)(-^ i)
= A n

V * / \

^= -^*-
?z-{-

But it has been shown that

Hence, by substitution,

= 6
(^

n+1 + -

A^ +n(A n+l +bA n + ^A^} +n(M-2N) An_,

= (n + 6) A n+l + (n + 3) k4 n + w
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Now, G A n = GA n -(n

62 5 fe
2

where M + T = ac- T 62 + -=- = ac bz = N.
4 44

Thus G A n = (n + 6) A n+1
- nNAn_l}

which proves the law of successive derivation for the invariantive elements

AQ, A-L, A 2 , ... .

We now proceed to explain the method of transforming a Principiant,

given in terms of the small letters a, b, c, ..., into one expressed in terms of

a,A,B,C,....

Remembering that the expressions for

A,B, G,D,E, ...

have for their most advanced small letters

d, e,f, g, h, ...,

and that, in each capital letter, the most advanced letter occurs only in the

first degree, multiplied by a power of a, it follows, as an immediate conse

quence, that we may, by continually substituting for the most advanced

letter, eliminate d, e,f, g, h, ... from any rational integral function

&amp;lt;f&amp;gt;(a,
b, c, d, e,f,g, h, ...)

and thus transform it into another function whose arguments are

a, b, c, A,B, C, D,E, ...

and which is rational in all its arguments, and integral in all of them, with

the possible exception of the first argument, a.

But (see Lecture XXVIII.) [above, p. 471] the result of this elimination

is known to be

, C,D,E, ...)

in the case where
&amp;lt;/&amp;gt;

is a Principiant of known degree i and weight w. Hence
b and c must disappear spontaneously during the process of elimination.

This being so, we can give b and c any arbitrary values, without thereby

affecting the result, and it will greatly simplify the work to take 6 = and

c=0.

It is also permissible to take a = 1
; for, although the factor ai~w

is

thereby lost, it can always be restored in the final result because both i and

* The establishment of the scale of relation between the terms of the A
Q , A\, A z , ... series,

and the above proof of it, is due exclusively to Mr Hammond.
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w are known numbers. Now, if we write a = 1, 6 = 0, c = in the known

expressions for A, B, C, D, ..., we shall find

A=d,
B =

e,

C-f,

and

Hence we have to eliminate d, e,f, g, h, ... between the above equations

where P stands for the given Principiant. In other words, we have to

substitute for

b
&amp;gt; c, d, e, f, g, h,

25 i

a, e,

B

c,

1, 0, 0, A, B, (7,
O 2

in
P=&amp;lt;f&amp;gt; (a, b, c, d, e,f, g,h, ..

.).

The result of this substitution will be

P =
&amp;lt;&(A, B, G, D, E, ...),

where, to compensate for the factor lost by taking a = I, we must multiply &amp;lt;&amp;gt;

by al~w
. As an easy example, consider the Principiant which Halphen calls

A, and for which he obtains the expression

Here the degree i = S and the weight w=S; so that i-w = Q, and no
factor has to be restored. On making the substitutions spoken of, the
determinant becomes

which immediately reduces to AC-B* by striking out the first three columns
and the last three rows.

Of this Principiant we shall have more to say hereafter.
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LECTURE XXX.

The method of substituting large letters for small ones will be better

understood if we employ it to obtain an expression of the form

ai-q&amp;gt;(M, A,B, C, D,E, ...)

for any pure reciprocant

(j&amp;gt;(a, b, c, d, e,f, g, h, ...)

of known degree i and weight w in the small letters.

The transformation is effected by substituting in
&amp;lt;/&amp;gt;

for c, d, e,f,g, h, ...

their values (which are perfectly definite) in terms of a, b,M,A, B, C,D, E, ...

But since b does not appear in the final result, we are at liberty to give it

any arbitrary value, and it will be convenient to take 6 = 0, for then (see

Lecture XXVIII.) [above, p. 465] we have

M = ac,

A = a2
d,

C = a4/ 5a3
cd,

25

8

E = a6
A, -

-j-
a 5de - 7a5

c/+ 29a4
c
2
d,

There is an additional advantage in taking 6 = 0, namely, that then the

values of the invariants N, A , A-^, A z ,
... (see their definition at the begin

ning of* Lecture XXIX.) exactly coincide with those of the reciprocals

M, A, B, C, ... set forth above. Hence, merely interchanging the capital

letters, the same substitutions enable us to express any invariant in terms of

a, N, A ,
A 1} ..., as well as any reciprocant in terms of a, M, A, B, ....

c d e
The solution of the above equations will give -, -,-,... in terms of

a a a

-
, , , ...; but we can, without loss of generality, put a = l, when we

Gi QJ CL

shall find a I,

6 = 0,

c = M,

e = B+ 2M*,

f=C+5MA,

g = D +
2

^A* + QMB + 5M*,

2

[* p. 472, above.]
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The substitution of these values in the pure reciprocant

&amp;lt;f&amp;gt;(a,
b, c, d, e,f,g, h, ...)

will convert it into

(M, A, B, C, D,E, ...)

We have written a = 1 for the sake of simplicity ;
but without doing this

we have, since
&amp;lt;f&amp;gt;

is homogeneous of degree i,

, 0, -.-.-.a a a

TT U S4. 4.- e C ^ 6 fM A B
Hence, substituting for -,-.-,... in terms of

3a a a a a

A / f\ 7 ,-^ (M A B
9 (a, 0, c, a, e, . . .)

= a l&amp;lt;P ,, ,...
\a a3 a4

or, since Jf, .4, 5, ... are of weights 2, 3, 4, ... and 3&amp;gt; is of weight w,

9 (a, 0, c, d, e, ...) =ai~w^ (M, A, B, ...).

Thus, in consequence of writing a= 1, the factor ai~w has been lost
;
but

this factor can always be restored, both i and w being known numbers.

When &amp;lt; is a Principiant, M will not appear in the final result, which will

be identical with that obtained by the simpler substitutions of the preceding
Lecture. If, for example, we substitute for

a, b, c, d, e, /,

1, 0, M, A, B + 2M*, C + 5MA,
instead of 1, 0, 0, A, B, C,

in the determinant expression for Halphen s A, previously given, it becomes

M A B + 2M* C + 5MA
1 M A B + 2M*

-100 Jf2

010 2M 2A
001 3if

Subtracting the 4th row multiplied by M from the first, the determinant
reduces to

A B C+3MA
1 M A B + 2M2

-100 M*

010 3M

Again, subtracting the 2nd column multiplied by 3M from the last, and

reducing, the determinant becomes

0, B, C

1, A, B-M* =AC-&,
-

1, 0, M*

where M disappears, as it ought to do, because A is a Principiant.

s iv 31
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In what follows we shall have frequent occasion to make use of the fact

that if Ra is an absolute pure reciprocant, ,

a
,
which we know is a pure

a? doc

reciprocant, is also an absolute one.

This is very easily proved. For let R be any pure reciprocant, of degree
i and weight w, which becomes Ra when made absolute by division by a

power of a, then
R

la
=

,
where /A

= 3i + w,

j3a

and, using G as usual to denote the generator for pure reciprocants,

dRa = OR
dx

=:

r

Hence

a

a

which is an absolute pure reciprocant because GR, which is of degree i + 1

jx+4

and weight w+l, must be divided by a 3 in order to make it absolute.

Thus, if Ma ,
A a ,

Ba ,
Ca ,

... are what M, A, B, C, ... become when each of

them is made absolute by division by a power of a, we have

We shall use these results in deducing the complete primitive of the

differential equation
AC-&-Q

from that of the equation in pure reciprocants,

25A 2 -I6M S = 0.

This equation may be written in the form

25A a
*

whence, by differentiation, we obtain

which gives 50A a . 6Ba
= 4&amp;gt;8Ma

2
. 5A a ;

that is, 5Ba = 4&amp;lt;Ma-.
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Differentiating this result, we find

which gives Ca = MaA a ,

We now restore the non-absolute reciprocants M, A, B, C; that is, we
write

5 = 4J/ 2 and C = MA.

Hence 25 (AC- &) = M(2bA-- 16M S

)
= (because 25A*=1GM3

).

Now, the equation AC j?2 =0 remains unaltered by any homographic
substitution, so that it will be satisfied not only by any solution of the

equation in pure reciprocants 25A 2 16M 3 = 0, but also by any homographic
transformation of such solution. But it has been shown (in Lecture XIII.,

[p. 379, above]) that the complete primitive of 25A 2 IQMS = is a linear

transformation of y = &A
, where X2 X + 1 = (that is, where X is a cube root

of negative unity).

Consequently any homographic transformation of y = &* is a solution of

Moreover, this is its complete primitive; for the highest letter,/, which
occurs in AC B2

, corresponds to the seventh order of differentiation, and if

we write

F _X
y ~Z ~Z

where X, F, Z are general linear functions of x, y, 1 (that is, if we make the
most general homographic substitution), y =& becomes F = X*Zl

~*, which
will be found to contain exactly 7 independent arbitrary constants. Thus
the complete primitive of AC-B- = is Y=X*Z l

~\ where X, F, Z are

general linear functions of x, y, 1, and X is a cube root of negative unity.

Observe that although any solution of M = also makes A, B, G, ... all

vanish, and so satisfies AC - B2 =
0, we cannot from this infer that a homo-

graphic transformation of the parabola y = x&amp;gt; will be the complete primitive
ofAC-& = 0. For, though YZ= X2

is a solution of AC-& = 0, it only
contains 5 independent arbitrary constants, and therefore cannot be its

complete primitive. Neither can YZ=X 2 be obtained from the complete
primitive by giving special values to the arbitrary constants. Hence YZ=X 2

is a singular solution of AC -B2 = 0.

We may also deduce the differential equation of the curve F = X^Zl
~^,

where X has a general value, from the corresponding equation in pure
reciprocants,

which has (see [p. 377, above]) for its complete primitive any linear trans

formation of the general parabola y ar\

312
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Writing for shortness

2X2 - 5X 4- 2 =p and (X + I)
2 =

q,

and at the same time making both A and M absolute, the above equation

becomes

Hence, by differentiation, we obtain

50pA a . GBa + 483ifa
2

. oA a = 0,

which gives 5pBa + 4qMa
2 = 0.

After a second differentiation we find

5p (7C + MaA a) + WqMvAa = ;

that is, *IpCa + (p + $q) MaA a = 0.

We now replace the absolute reciprocants Ma ,
A a ,

Ba ,
Ca by M, A, B, C,

and thus write the original equation and its two differentials in the form

5pB = -

Hence we find

52
. 7 . p

2 (AC- &) = - 25p (p + 8q) MA* - 16 . 7^W4

= 16? (p + q) M\

5.T*.p
6 (AC- B-)

3 = 16Y (p + q)
sM,

58p4^8
_ 10Y^ 12

,

and, eliminating M from the two last equations,

24
. 7 3

. p-q (AC-
2
)

:! = o 2

(p + q)
B A*.

Now restoring p = 2X2 - 5X + 2 = (X
-

2) (2\ - 1)

and q = (\ + l)*,

we have p+ q
= 3 (X

2 - X + 1) ;

so that the final equation becomes

2 4
. 73 (X+ 1)

2 (X- 2)
2
(2X

-
I)

2 (AC- B*)
s = 33

. o 2

(X
2 -X + l)

3A s
.

The same reasoning as before will show that, for a general value of X, the

complete primitive of this equation is the general homographic transforma

tion F= XKZ^~K of the curve y = x\

There is, however, a special exceptional case in which the differential

equation becomes

the corresponding value of the parameter X being either 0, 1 or oo
,
as may

be seen by solving the equation

(X + I)
2

(X
-

2)
2

(2X
-

I)
2 = 4 (X

2 - X + I)
3

.
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In the case where X = or oo we can, in the same manner as before,

show that the complete primitive is a homographic transformation of the

curve y=e* by deducing the differential equation from the corresponding

equation in pure reciprocants,

254 2 + 8M* = 0,

whose complete primitive is (see Lecture XIII.) [p. 379 above] a linear

transformation of y = ex.

When \ = 1 the corresponding equation in pure reciprocants is

25A 2 - 64^ = 0,

whose complete primitive may be shown to be a linear transformation of

y=x \ogx. The reason why these two distinct equations in pure recipro

cants lead to the same equation in principiants is that the two curves

y = e? and y = x\ogx are homographically equivalent but not linearly trans

formable into one another. For we may write the equation y = x log x in the

y.

form x = e*, which is a homographic transformation of y = e*.

Besides the special case just considered, in which the complete primitive

Y -
of the equation in Principiants is -~ = ez , we may notice that in which the

parameter X is either 1, 2, or =
,
the differential equation reducing to

z

A =
simply, and its complete primitive Y X^Z l

~K
being the equation to

a conic, as it should be. The case where X2 X + 1 = and the differential

equation reduces to ACIP=0 has been considered already. There remains

the case in which X. = 3, when the complete primitive becomes YZ* = X 3

(the equation of the general cuspidal cubic) and the differential equation
assumes the simple form

A

which is therefore the differential equation of cuspidal cubics.

We shall hereafter show that in this case the Principiant

which is apparently of the 24th degree, loses a factor a4 and so sinks to the

20th degree. It is, however, generally difficult to determine the power of a

contained as a factor in a Principiant given in terms of the large letters.

The results obtained in the present Lecture agree with those of

M. Halphen contained in his These sur les Invariants difffrentiels (Paris,

Gauthier-Villars, 1878), which contains a complete investigation of the

properties of the Principiant AC - B2
, which he calls A. But our point of
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view is different from his. He obtains A in the form of a determinant

from geometrical considerations. With him A= is the differential equation
which expresses the condition that, at a point x, y on any curve, a nodal

cubic shall exist, having its node at x, y, and such that one of its branches

shall have 8-point contact with the curve at that point. With us AG B*

is the simplest example, after the Mongian A, of an invariant in the capital

letters A, B, C, ....

LECTURE XXXI.

We may include X among the arbitrary constants in the primitive

equation Y=X*Zl

~*, which can also be written in the form

X log X -
log Y+ (1

-
X) log Z = 0,

or (X, Y, Z being general linear functions of x, y, 1) in the equivalent form

X log (y + ax + j3)
-

log (y + a a; + /3 ) + ( 1 - X) log (y + a&quot;x + /3&quot;)
= const.,

which evidently contains 8 independent arbitrary constants.

One of these will be made to disappear by differentiation, and thus we

shall obtain a differential equation of the first order, containing 7 arbitrary

constants, identical (when the constants are rearranged) with

(y
-

xt) (Ix + my) + t (I x + my + n ) + l&quot;x +
m&quot;y

+ n&quot; = 0,

which is known as Jacobi s Equation.

For, by differentiating the primitive equation, we obtain

X (t + a) (y + ax + /3)-
1 -

(t + a) (y + OL X + p)~
l

+ (1
-

\) (t + a&quot;) (y + a&quot;x + /3&quot;)-

1 = 0,

which, when cleared of negative indices by multiplication, becomes

X (y + a!x + ) {(y + a! x +
/3&quot;) (t -f a)

-
(y + ax + /3) (t + a&quot;)}

+ (y + OUK + /3) {(y + OL X + {3 ) (t + a&quot;)

-
(y + a&quot;x +

/3&quot;) (t + a
)}
= 0.

Writing this equation in the equivalent form

X (y + a x + ff) {(a
-

a&quot;) (y
-

xt) + (&quot; -&)t + (a/3&quot;

-
a&quot;/3)}

+ (y + ax + /3) {(&quot;

- a ) (y
-

xt) + (
-

ft&quot;)
t +

(a&quot;/3

- a
0&quot;)}

= 0,

it is easily seen to be identical with Jacobi s equation given above.

The seven arbitrary constants which occur in Jacobi s equation are the

mutual ratios of the eight coefficients I, m, I
, m, n

, I&quot;, m&quot;, n&quot;, any one of

which may have an arbitrarily chosen value assigned to it.

Taking m =
1, the equation may be written in the form

Pt + Ixy -y* + l&quot;x + m&quot;y
+ n&quot;

= 0,

where P = I x + my + n lxz + xy.



42] Lectures on the Theory of Reciprocants 487

In order to eliminate n&quot; and
I&quot;,

we differentiate the above equation twice.

The first differentiation gives

2aP + 1 (P
f + Ix - 2y + m&quot;) + ly + I&quot;

= 0,

where P =
-j-

= V + m t - 2lx + y + xt, and the second differentiation gives
CLOG

6bP + 2a (2P + las-2y+ m&quot;) + t
(P&quot;

+ 21- 2t)
= 0.

dP
Now, P&quot; =

-j
= 2a (m + x) + 2 (t I) ;

so that, on substituting this
CLCC

value, the above equation becomes

&amp;gt;, (1)

where Q = 2P + lx2y + m&quot; + m t + xt

= 21 + 3ra - Six + 3xt + m&quot;.

Differentiating (1) we have

12cP + 36P + 36Q + aQ = 0,

where Q = 3 (t I) + Qa (x + m }
= 3-R + 6aS, suppose.

Thus we have 4cP + bP + bQ + aR + 2a*S = 0. (2)

Differentiating this 4 times in succession, and at each step substituting

for

P&quot;, Q ,
R

,
S

,

their values 2R + 2aS, 3R + 6aS, 2a, 1,

we obtain 4 more equations, from which, combined with the 2 previously

obtained, we can eliminate

P, P , Q, R, S.

Thus, differentiating (2), we find

20dP + 8cP + 6 (2R + 2aS) + 4&amp;gt;cQ+b (3R + 6aS)

+ 3bR + 2a? + \2abS + 2a2 =
;

that is, 5dP + 2cP + cQ + 2bR + oabS + a? = 0, (3)

and continuing the same process,

6eP + 3dP + dQ + 3cR + (6ac + 362

) S + 3a6 = 0, (4)

7/P + 4&amp;gt;eP + eQ + UR + (lad + Uc) S + (4ac + 262

)
= 0, (5)

8gP + 5/P +fQ + oeR + (8ae + 8bd + 4c2
) S + (5ad + 5bc) = 0. (6)

The result of elimination is

a2

3a6

c
2 5ad + 5bc

where the determinant equated to zero is a Principiant.

= 0,
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In his These sur les Invariants differentiels, p. 42, M. Halphen states that

this equation can be found by eliminating the constants from Jacobi s equa
tion, but he does not set out the work. When in the above determinant
twice the 3rd column is added to the second, it becomes exactly identical

with the one given by Halphen, which he calls T.

We proceed to express the above result in terms of the capital letters,

using the method explained in Lecture XXIX., and observing that the deter

minant is of degree 8 and of weight 12; so that in this case i w=8-l2= 4,

showing that the final result has to be multiplied by a~4
.

Substituting in the determinant for

a b c d e f g

1 4 5 (7 D +
25

it becomes

Subtracting the last column multiplied by 54 from the first, and the 4th

column multiplied by 2 from the 5th, and then striking out rows and columns,
we obtain

= 24(4 2D-345&amp;lt;7+25
3

).
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If, using Halphen s notation, we call the principiant now under considera

tion T, what we have proved is that

T = 24a~4
(A*D -3ABC + 2B3

),

and consequently that A*D - 3ABC + 2BS
is divisible by a4

.

The differential equation T= corresponds, as we have seen, to the com

plete primitive F = X*Zl

~*, in which \ is counted as one of the arbitrary
constants.

This result may be otherwise obtained. For we have shown in the pre

ceding Lecture that the differential equation of the seventh order, from which
all the arbitrary constants except \ have disappeared, has the form

where K depends solely on A,.

Writing this equation in the form

(A C -&)A-$ = const.,

and differentiating with respect to x, we remove the remaining arbitrary con

stant, and thus obtain the differential equation of the 8th order free from all

arbitrary constants, a result which, to a factor pres, must coincide with

T=0.

We proceed to show how this differentiation may be performed without

introducing any of the small letters. In the first place, it is clear that since

G = 4 (ac
- 6 2

) db + 5 (ad
-

be) dc +6 (ae -bd)dd + ...

does not contain 9a and is linear in the other differential reciprocals db , d
c&amp;gt; ...,

Ga?&amp;lt;b(A t B,C, ...)
= ae

G3&amp;gt;(A,B, C, ...)

And since we have

GA = 6B,

it follows immediately that

Ga6
3&amp;gt;(A, B, C, ...)= a6

+ aM(AdB +
This is true for any function of the capital letters, whatever its nature

may be
;
but when 3&amp;gt; is a principiant, it is also an invariant in the large

letters
;
so that in this case we have

(AdB + 2Bdc + 3CdD +...)&amp;lt;
=

= a6
(6BdA + 7CdB + 8Ddc +...)&amp;lt;&.
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Now, the operation of G on a function of degree i and weight w is equi

valent to that of a -,
--

(3i + w) b, or to that of a j- ,
when both i = and

. doc dec

w= Q (which happens in the case of a plenarily absolute form). Hence, if

we suppose 3&amp;gt; to be a plenarily absolute principiant, G&amp;lt;& is also a principiant,

though not a plenarily absolute one.

d3&amp;gt; . d$&amp;gt;

For a is a principiant, and j- is a principiant ;
therefore a

-j
or G3&amp;gt; is

d(K dOC

one also*. Thus

acting on any plenarily absolute principiant, generates another principiant,

but not a plenarily absolute one.

We now resume the consideration of the equation

(A -B*) A~* = const.

Differentiating and multiplying by a, we have

Hence, by what precedes,

(6BdA + 7Cd

or, using to denote the operator,

or, observing that A = QB,

This gives A (6BC- 14BC + SAD)- I6B (AC-&) = 0;

or finally A 2D - 5ABC + 2B3 = 0.

We may find a generator for principiants expressed in terms of the large

letters similar to the expression for the reciprocant generator G in terms of

See the concluding paragraph of Lecture XXV. [p. 450 above], where it was shown that P,

dP
dxbeing a principiant (of degree i and weight w), a-= (3i + w)bP is a reciprocant, and

a -3 (3i + 2w)bP an invariant. This proves, what we omitted to mention there, that P

being a zero-weight principiant,

GP=( a - Sib ) P is a principiant.
V dx J

It may here be remarked that a principiant of degree i and of zero weiyht is equal to the

corresponding plenarily absolute principiant (which is a function of the large letters only)

multiplied by the factor a\ on which the operator G does not act.
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the small letters. For let P be any principiant, of weight w, which, when
- _??

reduced to zero weight by division by A 3
, becomes PA 3

;
then

is a principiant. But
w

_!?_i

(A-2wB)P,

where, remembering that A 3
is a principiant, (4 - 2wB) P is one also.

Now, the weights of A,B,C,D,...

bein
3, 4, 5, 6, ...,

we may write lu = 3AdA + 4&amp;lt;BdB + 5C3C + QDdD + ...,

and consequently

A- 2wB = A (6BdA + 7CdB + 8Ddc + 9EdD + ...)

-2B(3AdA + 4&amp;gt;BdB
-

which is the generator in question.

As an easy example of its use, suppose it to operate on AC-B*; then

{(7AC- 8B 2

) dB + (8AJ) - lOBG)dc] (AC - B 2

)

The generator just obtained,

is a linear combination of Cayley s two generators (given in Lecture IV.,

[p. 327, above]), which, when we write A, B, C, ... instead of the correspond
ing small letters, become

and (AC- 2 2

) dB + (2AD - 45(7) dc + (3AE- 6BD) 3D + . . . .

Thus we shall obtain the principiant generator by adding the second of

Cayley s generators to six times the first. Either of Cayley s generators

acting on a principiant would of course give an invariant in the large letters

(that is, a principiant), but the combination we have used has special relation

to the theory of the generation of principiants by differentiation.
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LECTURE XXXII.

I will now pass on to the consideration of the Principiant which, when

equated to zero, gives the Differential Equation to the most general Algebraic
Curve of any order.

The Differential Equation to a Conic (see the reference given [p. 380,

above]) was obtained by Monge in the first decade of this century. This

was followed by the determination, in 1868, by Mr Samuel Roberts, of

the Differential Equation to the general Cubic (see Vol. x. p. 47 of

Mathematical Questions and Solutions from the Educational Times). I do

not consider that any substantial advance was made upon this by Mr Muir,
in the Philosophical Magazine for February, 1886, except that he sets out

explicitly the quantities to be eliminated in obtaining the final result. These

may, of course, be collected from the processes indicated by Mr Roberts, but

are not set forth by him. In speaking of the history of this part of the

subject, I pass over M. Halphen s process for obtaining the Differential

Equation to a Conic. It is very ingenious, like everything that proceeds from

his pen, but, being founded on the solution of a quadratic equation, does not

admit of being extended to forms of a higher degree, and consequently,
viewed in the light of subsequent experience, must be regarded as faulty in

point of method.

Let the Differential Equation to a curve of any order, when written in its

simplest form, containing no extraneous factor, be % = 0. It is convenient to

give % a single name ;
I call it the Criterion. The integral of the Criterion

to a curve of order n must contain as many arbitrary constants as there are

ratios between the coefficients of a curve of the nth order. The number of

these ratios being
- - --

1, the order of the Criterion ought to be

It must be independent of Perspective Projection, because projection does

not affect the order of a curve. Hence it is a Principiant, and as such ought
not (when y is regarded as the dependent and x as the independent variable)

to contain either x, y or -~-
(see Lecture XXIV. [p. 438, above]).

Let U = be an algebraical equation of the nth order between x, y. I

write symbolically

U=(p + qa; + y)
n = un

,

where the different powers and products of p, q, 1 which occur in the expan-
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sion of un are considered as representing the different coefficients in Z7; so

that, for example, if n = 3 the coefficients of

are represented by

!&amp;gt; q, p&amp;gt; q
2
, pq, p\ q

3
, pq

2
, p*q, p

3
.

The number of terms in If is

The number of these containing ?/ is

To obtain the Differential Equation we equate to zero the Differential

Derivatives of U of all orders from n + 1 to (n
2+ 3w) inclusive, and from the

(n
2 + n) equations thus formed eliminate the (n

2 + n) coefficients of the

terms in U containing y.

All the coefficients of pure powers of x will obviously disappear under

differentiation; for no power of x higher than xn occurs in U, and no
differential derivative of U of lower order than n + 1 is taken.

We thus find a differential equation of the order (n? + 3w), free from all

the (n
2+ 3n4-2) coefficients of U. This equation might conceivably contain

x, y and all the successive differential derivatives of y with respect to x.

But we know a priori that it ought not to contain either x, y or - and in
ax

fact we shall be able so to conduct the elimination that x, y and -^
appeal-

only in the quantities to be eliminated and not in the final result.

Treating u =p + qx + y as an ordinary algebraical quantity, we have, by
Taylor s theorem,

1 d u&quot; ( h? h*

where Uj, tig, us ,
... are the successive differential derivatives of u with respect

to x. And this result will remain true when for un we write U, meaning

thereby that
1 g

. -^ will be the quantitative interpretation of the

function of w, w1} w2 ,
... which multiplies hr in the expansion of

/ ^2 \n
h* + iA + w,

1
+

...J
,

subject to the condition that this function shall be linear in the coefficients
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of U. This condition can be fulfilled in only one way, so that there is no

ambiguity in such interpretation. Hence the equations obtained by equating
to zero the successive differential derivatives of U of all orders from n + 1 to

(n
2 + 3w) inclusive may be written under the form

co.. hr in (u + uji + uz
-~ + u3

1

*
. + .. .V =

0,

where r = n + I, n + 2, n + 3, ... \ (n* + 3w).

Now, using 2/j, 2/2, 2/3,
... to denote the successive differential derivatives of

y with respect to x, we have

Ui = q + yi, uz
= y2 , 8

= y8 , ...,

and, in general, M; = yt when i is any positive integer greater than 1. Thus

h3
\
n

-^-^
+

...j

= 0;

or, employing the usual modified derivatives a, b, c, . . .
,

co. hr in (u + u^h + ah* + bh3 + ch* + . . .)
n = 0.

Writing now Q = ah2 + bh3 + ch4 + ...
,

and expanding (u + uji + Q}
n in ascending powers of Q, we have

co. hr in
j(n

+ u.hy + n (u + Ul h)
n~* Q +

n fo-l)
(M + Mi^n-2 Q

where, remembering that r &amp;gt; n, the value of co. hr in (u + u^hy is zero; so

that, omitting this term, we may write

co. hr in n (u + u,hy~ l Q +
n( ~ l )

(u + Ultyn-
2

Q^ + f ^ + Qn =

The quantities to be eliminated will now be combinations of the various

powers of u, u and 1. Their number will be the same as that of the terms
in (u, ,, I)&quot;-

1
,
which is \ (n

2 + n), the same number as that of the equations
between which the elimination is to be performed.

We now use (m .yu) to denote the coefficient of hm in Q (which, since

Q = ah 2 + bh 3 + cfr + . . .
,

will be independent of the combinations of u and w x to be eliminated), and in

writing out the %(n
2 + n) equations which result from making the coefficients

of hn+\hn+2,
... h 2 in

n (U + ttlA)- Q +
M(~ 1 )

(U + Wi/i)n-
2 Q 2 + f m g + Qn
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vanish, we arrange their terms according to ascending values of ra and

Thus, making the coefficient of hn+1 vanish, we find

n(n-l) u^u (3.1) + (3 . 2) + . . . + (w + 1 . w) = 0,

and similarly, making the coefficient of hn+2 vanish,

nui-l

(3 . 1) + n(n - 1) u^u (4.1) +
_ 1 \

-/
ttl -t(4 . 2) + ... + (w + 2 . w) = 0.

So in general the equation obtained by making the coefficient of hn+K vanish

consists of a series of numerical multiples (which are independent of the

value of K) of u1

n~eue~ r

(d + K, 77) where rj has all values from 1 to 6 inclusive,

and d all values from 1 to n inclusive. Hence, by elimination, we find

(2.1) (3.1)

(3.1) (4.1)

(4.1) (5.1)

(5.1) (6.1)

(6.1) (7.1)

(7.1) (8.1)

(8.1) (9.1)

(9.1) (10.1)

(10.1) (11.1)

(11.1) (12.1)

(4.1)

(5.1)

(6.1)

(3.2)

(4.2)

(5.2)

(6.2) (7.1)

(7.2) (8.1)

(8.2) (9.1)

(9. 2) (10.1)

(10. 2) (11.1)

(11. 2) (12.1)
12. 2) (13.1)

(4.2)

(5.2)

(6.2)

(7.2)

(8.2)

(9.2)

10.2) (10

(11. 2) (11

(12. 2) (12

13. 2) (13

(4.

(5.

(6.

(7-

(8.

(9.

3)

3)

3)

3)

3)

(5.

(6.

(7.

(8

(9.

1)

1)

1)

1)

1)

(5.

(6

(7.

(8

(9,

2)

2)

2)

2)

2)

(5-

(6,

(7-

(8

(9.

3)

3)

.3) (10,

.3) (11.

.3) (12

.3) (13,

.3) (14.

2) (10

.2) (11

2) (12

2) (13

2) (14

3) (5.4)

3) (6.4)

3) (7.4)

(8.4)

(9.4)

3) (10. 4)

3) (11. 4)

3) (12. 4)

3) (13 . 4)

3) (14 . 4)

= 0,

where the determinant on the left-hand side, consisting of ^(n
2 + n) rows and

columns, is the Criterion of the curve of the nth order.

Thus in the case of the Cubic Criterion, which we shall specially consider,

we have ft = 3, and the elimination of 3V, Qii^u, 3^, 3w2
,
3w and 1 between

the six equations

6^(3

3V (5.1)

l) + 5

!) +
l) + 3 Ml (5

l) + 3^(6
l) + 3^(7

^ (3.2) + 3wa
(4 . 1) + 3u (4 . 2) + (4 . 3) = 0,

, (4 . 2) + 3w2

(5 . 1) + 3u (5 . 2) + (5 . 3)
=

0,

,2) + 3w2

(6.1) + 3w(6

2) + 3w2

(7.1) + 3w(7

2) + 3w2

(8 . 1) + 3w (8

2) + (6.3) = 0,

2) + (7.3) = 0,

2) + (8 . 3) = 0,

!*! u (8 . 1 ) + 3w, (8 . 2) + 3u2

(9 . 1) + 3u (9 . 2) + (9 . 3) = 0,

gives the Cubic Criterion in the form of the determinant
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Remembering that

(m . fi)
= co. hm in (aA

2 + 6A:i + cA4 + . .
.)**,

it is easy to express the Criterion explicitly in terms of a, b, c,

Thus, since

(aA
2 + bh3 + ch 1 + ...)

2 = a2A4 + 2abh5 + (2ac + b2

) A
6 + (2ad + 2bc) h

7

+ (2ae + 2bd + c
2

) A
8 + (2a/+ 2be + 2cd) A

9 + . . .

and

(aA
2 + bh3 + cA4 + . . .)

3 = a3A6 + 3aW + (3a
2
c + 3a62

) A
8

+ (3a
2d + 6abc + b3

) A
9 + . . .

,

the Cubic Criterion may be written in the form

a b c a2

b c a2 d 2ab

c d 2ab e 2ac + b2 a3

d e 2ac +b2 f 2ad + 2bc 3a26

e f 2ad + 2bc g 2ae + 2bd + c2 3a2
c

f g 2ae + 2bd + c
2 h 2af+ 2be + 2cd Sa2d + 6abc + b3

in which it was originally obtained by Mr Roberts.

M. Halphen has remarked that the minor of A in the Cubic Criterion is

the Principiant which he calls A (our AC B 2
) multiplied by a (see p. 50 of

his These}.

We proceed to determine the degree and weight of the Criterion of the

curve of the nth order. These are the same as the degree and weight of its

diagonal

which consists of \ (n
2 + n) factors, separable into n groups,

(2.1), (4.1) (5. 2), (7.1)(8.2)(9.3), (11 . 1)(12 . 2) (13. 3) (14. 4), ...

containing 1, 2, 3, 4, ... n factors respectively. Now,

(m . n) = co. Am in (aA
2 + bh3 + cA4 + . . . y-

= co. A 71
-2*1 in (a + bh + ch2 + . .

.)**,

and consequently (m .
JJL)

is of degree p and weight m 2/i. Hence the

degree of the Criterion (found by adding together the second numbers of the

duads which occur in the diagonal) is

1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + . . . + (1 + 2 + 3 + . . . + n)
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To find the weight of the Criterion, we begin by arranging the factors of

its diagonal according to their weight. This is done by writing each group
of factors in reverse order, so that the diagonal is written thus :

The weights of the factors are now seen to be 0, 1, 2, 3, ...

^
there being %(ri&amp;gt;+n) factors in the diagonal, one of them of zero weight. Hence
the weight of the Criterion is

(ri* + n
1 + 2 + 3 + .. . + -1

n - 1
2~ _ (n-l) n (n + 1 ) ( n + 2)

2 8

If, in the above formulae, we make n = 2, we shall find that the degree
is 4 and the weight 3, whereas the Mongian cC

2d - Sabc + 263
(which is the

Criterion of the second order) is of degree 3 and weight 3.

To account for this discrepancy, observe that in this case

(2.1) (3.1) (3.2) i
i a b

(3.1) (4.1) (4.2) I = b

(4.1) (5.1) (5.2) c

which is divisible by a, the other factor being the Mongian, as may easily be
verified. This is the only case in which the determinant expression for the
Criterion contains an irrelevant factor.

To express the Cubic Criterion in terms of a, A, B, C, D, E, we first

remark that its degree is
3
^|- -

5 = 10, and its weight
2 3

;
4 - D = 15. Thus

a?

2ab

the Cubic Criterion is expressible as the product of CT*(l8
- 15 = -

5) into a
function of the capital letters, which we determine by the usual method of

substituting for

a, b, c, d, e, f, g , h

I, 0, 0, A, B, C, D + ~A&amp;gt;,
o

When these substitutions are made, the Cubic Criterion becomes

S. IV.
32
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Subtracting the first column of this determinant from the fifth and reducing,
we obtain

Again, subtracting the second column multiplied by A from the third and

reducing, there results

which, after subtracting the first row multiplied by 3J. from the last and

reducing, becomes

B C A

C B

C

= (ACE - B*E - AD* + 2BCD -C 3)-A (A*D - 3ABC + 2B S

)
- A*.

This expression, which is of degree-weight 15 . 15, instead of 10 . 15, must be

divided by a5 to give the correct value of the Cubic Criterion.
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LECTURE XXXIII.

In this Lecture it is proposed to investigate the differential equation of

S3

a cubic curve having a given absolute invariant ~^ .

S 3

Since the value of ^ is the same for any homographic transformation

of the cubic as for the original curve, the differential equation in question
must be of the form

S3

Plenarily absolute principiant = ^
.

This equation is (as we see at once by differentiating it) the integral of

another of the form

Principiant = 0,

which is satisfied, independently of the value of the absolute invariant, at all

points on a perfectly general cubic.

Now, the differential equation of the general cubic is of the 9th order,
and when expressed in terms of A, B, C, ... contains no letter beyond E.
Hence the integral of this equation, which we are in search of, will be of the
8th order and will contain no capital letter beyond D.

When no letters beyond D are involved, all plenarily absolute principiants
are functions of the two fundamental, or protomorphic, ones,

AC-B* A*D-3ABC+2B 3

Thus the differential equation of a cubic with a given absolute invariant is

of the form

F fAC-B
2 A2D-3ABC+2B 3

\ S 3

M. Halphen actually integrates the differential equation of the general
cubic, which he shows (on p. 52 of his These sur les Invariants Differentiels}
may be put under the form

where, in our notation.

- 3ABC + 2BS
) 288 (AC -

A* Z- A 9

322
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The integral of this equation, which M. Halphen obtains partly from geo-
S 3

metrical considerations, involves an arbitrary parameter depending on
^.

His result is as follows :

R* = hQ\
where

2R = 29^ + 2 6
. 3 [(

- 3 2

)
2 + 24

. 34

]
2 + 23

. 3 (f + S-
5

)
3
(
- 32

. 5) f + (f + 33

)
6
,

26Q = 26 2 + 24

( + 3) (|
- 32

. 5) + (f + 33
)
4
,

and T2 - 64,hS 3 = 0.

(Two misprints, which are here corrected, occur in the expression for R as

given on p. 54 of the Th&se.)

In this result the invariant 8 differs in sign from the invariant usually

denoted by that letter. Thus the discriminant is T2 64$ 3 instead of

When h = 1 the discriminant vanishes and the differential equation

becomes
2 -Q 3 = 0.

This is divisible by a numerical multiple of 3
;
in fact,

JS 2 = Q 3 + 23 .35
^

3
P,

where 2 6P =
(2

8 + a - 2 . 33 - 3 8

)
3 + 26

. 3p =

is the differential equation of a nodal cubic, previously obtained by Halphen.

It is from a knowledge of the fact that P = and another algebraic

relation between and
,
which he finds by trial to be Q = 0, constitute two

particular integrals of the differential equation to the general cubic, that he

arrives, not by any regular method but by repeated strokes of penetrative

genius, at the general integral

R* = hQ 3
.

In establishing the relation T 2
64&amp;lt;hS

3 = he supposes that, by means of

the equation to the cubic and its differentials as tar as the 8th order inclusive,

the coefficients of the cubic have been expressed in terms of the variables x, y

and the derivatives of y with respect to x up to the 8th order, and that the

values thus obtained for the coefficients have been substituted in Aronhold s

8 and T.

The abbreviations introduced by the use of our notation enable us to

actually perform this calculation, which would otherwise be impracticable in

consequence of the enormous amount of labour required ;
and we shall use

this method to obtain the plenarily absolute principiant which, equated
03

to
jf^, gives the differential equation to a cubic with a known absolute

invariant.
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Using the symbolic notation explained in Lecture XXXII. [above, p. 492],

the equation of the cubic and its first eight differentials are

o f\u2
Ui = 0,

2wV + w2w2
= 0,

2V + Quu^uz + u2u3
= 0,

3V (2.1) + Qu,u (3.1) + Su, (3 . 2) + 3w2
(4.1) + 3u (4 . 2) + (4 . 3) = 0,

3V (3 . 1) + 6w, u (4 . 1) + Sw, (4.2) + 3w2

(5.1) + 3w (5 . 2) + (5 . 3) = 0,

3V (4 . 1) + 6ulU (5.1) + 3tt, (5 . 2) + 3w2

(6 . 1) + 3w (6 . 2) + (6 . 3) = 0,

3V(5 . 1) + 6w 1M(6 . 1) + 3Wl (6.2) + 3w2
(7 . 1) + 3w(7 . 2) + (7 . 3) = 0,

3V (6 . 1) + 6ulU (7.1) + Sw, (7.2) + 3w* (8.1) + 3w (8 . 2) + (8 . 3) = 0,

where u = p + g# + y, Ul = q + t, w2
= 2a, u3

= 66
;

i aij i. a i/ -, L a t/
as usual, t = -=

,
a = . -r^ 6 = . . . .

aa? 2 rfic
2 6 aic

3

(m.yu,) denotes the coefficient of h in (aA,
2 + 6A3 + ch* + ...)

i

;
and if, as in

Salmon s Higher Plane Curves (2nd edit., p. 187), the equation of the cubic

is taken to be

r + 3a x + 6a^y + 36 a;
2 + 66!^ + 3o,y

2 + c a? + Sc^y + 3c2xy
2 + c3y

3 = 0,

then, in the above equations, the symbols

pS. pzg^ p2^ pg2^ pq^ p ^ ^ gz^ q ^
j

stand for r, a , a1} b
,

blt 62 , c
fl ,

c1; c2 , C3 .

These nine equations are sufficient to determine the values of the

S3

coefficients of the cubic which have to be substituted in ^ in order to

obtain our differential equation, which will be, as we have seen, of the form

A*D-3ABC+2B 3
\ S3v-

A* A&amp;lt; I T*

Since this equation contains nothing which involves x, y, or t, these letters

must have disappeared spontaneously in the process of forming it, and con

sequently we may, at any stage of the work, give a, y, and t any arbitrary
values without thereby affecting the result Let, then,

x = 0, y = 0, t = 0, so that u = p, u^ = q, u2
= 2a, us

= 66,

and the first four equations become

u3 = p3 = r =
0,

= bQ + a1 a = 0,

(2V + Quu^ + w2 w3)
=

q
3 + 6pqa + 3p

2 6 = c + 6M + 3a,6 = 0.
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Writing in the last five equations

7/2 ffl ru
i

&amp;lt; GI,

u
1u=pq = blt

Ui = q = C2 ,

u2 = p* = als

u=p = 62 ,

1 =cs ,

we have

3c
1 (2.1) + 6&1 (3.1) + 3c2 (3.2) + 3a1 (4.1) + 362 (4.2) + c3 (4.3) = )

3d (3.1) + 66: (4.1) + 3c2 (4.2) + 3^ (5.1) + 362 (5.2) + c3 (5 . 3)
= 0,

3c1 (4.1) + 661 (5.1) + 3c2 (5.2) + 3a1 (6.1) + 362 (6.2) + c3 (6.3) = 0,

3d (5 . 1) + 66
t (6.1) + 3c2 (6.2) + 3a, (7.1) + 362 (7.2) + c3 (7.3) = 0,

3cx (6 . 1) + 66X (7 . 1) + 3c2 (7 . 2) + 3a&amp;gt; (8.1) + 362 (8. 2) + c3 (8 . 3) = 0*.

S3

Substituting in ^ for r, a
fl ,

6
, c their values given by the equations

r = 0, = 0, 6 + c^a = 0, c + 66ja + 3^6 = 0,

and for the mutual ratios of alf b1} 62 , d&amp;gt;
c2 ,

c3 their values found by solving
the last five equations, we obtain the differential equation required.

Referring to Salmon s Higher Plane Curves, p. 188, we see that, when
r-0,

S = (c
2a2

) + (c6
2

a)
-

(6
2
)
2
,

T = 4 (c
3a3

)
- 3 (c

262a2

)
- 12 (6

2

) (c6
2
a) + 8 (6

2
)
3

,

where (c
2a 2

), (c6
2

a), ... are functions of a
fl ,

alt 6 , 61} 62 ,
c , c1} c2 ,

cs , which,
when a = 0, become

(c6
2
a) = (6

2
c3
- 3606^2 + 6 62d + 261

2
c1
-

6:6,00) Oi,

(6
2

)
= 6 62 -6:2

,

(c
sa3

)
=

(c
2
c3
- 3c C:C2 + 2c:

3

) of,

(c
2 62a2

)
=

(c
262

2 - kc^bA - 2c c2 6 62
- Ic^A2 + ^cM,

+ 8c1

2 61

2 + 4Cl
26 62

- 12c1c86 61
- 8Cl c3 6

2 + 9c2
2 6 2

) af.

We have now reached a point at which the work will be greatly facilitated

by the introduction of the capital letters A, B, C, D. This is usually done by
writing for

a, b, c, d, e, f, g,

1, 0, 0, A, B, C, D + ~A\
o

* These equations are only set out for the sake of distinctness
; when our abbreviations are

introduced, only two terms survive in the first three, and only three terms in the last two of
these five equations.
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But in the present instance we may make a further simplification by writing

A = l, 5 = 0, C=Clt D = Dlt

for the only effect of this will be to make the final result take the form

A*D-3ABC+2B 3
\ S 3

instead of

The form of the function will not be affected by writing in it A = 1, B = 0,

and the letters A, B can be restored at pleasure by making

AC-B 2

n A 2D- 3ABC + 2 3

l/i&quot;&quot; -5 &amp;gt;
M -

J.* ^l 4

Hence we may write for

a, 6, c, c, e, /, g,

25
i, o, o, i, o, clf A +

-g-.

Instead of the coefficient of

hm in (aA
2 + 6A3

H- ch* + . . .)
M

,

(w . /i) will now signify

Thus we have

(i.l)-l

(3.1) = (3.2) =

(4 . 1)
= (4 . 2) = 1 (4.3) = 0,

(5.1)=1 (5.2) = (5.3) = 0,

(6.1) = (6.2) = (6.3) = 1,

(7. !)
=

(?! (7.2)=2 (7.3) = 0,
OK

(8.1) = A + -~
(8.2) = (8.3) = 0.

Hence the equations which give Oj, 615 b2 , c1} c2 , c3 become

d + &2
= 0,

c2 + i
=

0,

66, + c3 = 0,

Cj + aj^ + 262=0,

From the first four of these, coupled with the equations

6 + a, = 0, c + 6&! = 0,
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obtained by making a = 1 and b = in the original equations which give b , c ,

we find

c = c3 = 661(

r h (1*
l^i

-
i/2

&quot;^ ^1

c2 = 6 = &i = Ci&amp;gt;

by assuming a1
= C1 (which we are at liberty to do since any one of the

coefficients may be chosen arbitrarily).

The last equation then gives

A 9
6l ~T +

16

Substituting these values in the previously given expressions for (c
2a2

),

(c6
2

a), ... we have

(c a*)
= -(6b1 + C1 )C1*,

(cb*a)
= - (46X

2 -
9&!

-
(V) C*,

(?)-(V-fe
(c

3a3
)
= (216&!

3 + IS&jCV + 2CV
5

) Cft

(c
2 62a2

)
= (3126^ + 2061

2
(71

3 - 2461 C1
8 + 9CV + 4Ca

6
) C?.

Hence *S = (c
2a2

) + (c6
2

a)
-

(6
2
)
2

= -
a,

6 + 36,d8 - 261

a
(71

8 -
6/,

and T = 4 (c
3a3

)
- 3 (c

2 62a2

)
- 1 2 (6

2
) (c6

2

a) + 8 (6
2

)
3

= - SCf - 3 (Sbf
- 126t + 9) Cf - 126,

3

(26X
-

3) C^ - 86^

To express ^ and T in terms of .4, -B, C, D, we write

JB 2 A 9 _ ^ 2D

or, if we use Halphen s notation in which

288 (^O-^ 2

)
3 24 (A*D - 3ABC + 2B S

)

A A*

we have 2 5
. 3 s

Oj
3 = f,

24
. 36x = + 3s

,

and consequently,

25
. 3 2 (8V - 12^ + 9) = (2

4
. 36X

- 2 2
. 3 2

)
a + 24

. 34 = (f
- 32

)
2 + 24

. 34
.

Hence

- 2 16
. 34^ = 2 16

. 34
CV + 2 16

. 34
6j (26X

-
3) Of + 2 16

. 34
&!

4

= 26 2 + 24
(^ + 3s

) (f
- 3 2

. 5) r + (| + 33

)
4

,

- 221
. 36T = 2M . S6^9 + 221

. 37
(86,

2 - 126, + 9) C,
6

+ 2 23
. 37

6!
3
(26 X

-
3) Of + 224

. S8^6

= 2f + 2 6
. 3 [(I

- 32

)
2 + 24

. 34

] ?
2

+ 23
. 3 (f + 33

)
3

(|
- 32

. 5) r + ( + 33

)
6
,
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where the expressions on the right-hand side are 26Q and 2 9R in Halphen s

notation. Thus

- _ i _so that
-^ g^j -g 12

^T-J ^72

This result agrees exactly with Halphen s, if we remember that his 8 is

taken with a different sign from ours.

A 9 _ A*D-3ABC + 2B 3 &
ftl

~~2~
+ l6~ 2A*

+
2*

we may write

3&amp;gt;
= 2M 4

&! = 23
(A*D - 3ABC + 2B 3

) + 32^ 4
,

and in like manner

Now 28A S

(b? + CV) = 4&amp;gt;

2 + 2 8^,

which is divisible by .4 2
. Hence if

$&amp;gt;* +W = A 2
,

we have @ = 2 sA 6

(b^ + C,
3
)

= 2 6

(J.
2D 2 - QABCD + 4&amp;gt;AC

3 + 45 3D - S.B 2^ 2
)

+ 24
. 32^ 2(AW - 3ABC + 25 3

) + 34^L 6
.

The equations which give S and T in terms of 6j and (7a may be written

-T=23 (V + CV
3

)
3 - 22

. 32

(6:

2 + Oj
3
) b, C* + 33

(71
6

,

and consequently,

- 2M 12 = 2 - 2 12
. 3$^,

- 2- lA lsT = 3 - 2 11
. 32

@^&amp;gt;^ + 221
. S3^ 2^ 2

,

where
, ^&amp;gt;,

&quot;^ are the rational integral principiants

O = 26

(4
2D 2 - QABCD + 4,AC 3 + 4B 3D - 35 2

(7
2

)

+ 2 4
. 3U 2

(A&quot;-D
- 3ABC + 2B 3

)

3&amp;gt;
= 23

(A
2D - 3ABC + 2B 3

} + &A\

which, as we have seen, are connected by the relation

4&amp;gt;2 + 28 = ^l 2
.

The differential equation of cubics with a given absolute invariant is

@ 2 - 2 12
. 3

or, as it may also be written,

(
2 - 212

.
3^&amp;gt;^)

;i T- + 26S 3 3 - 2 11
. 32

@^&amp;gt;^ + 2 21
. S3^ 2^22 = 0.
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For a nodal cubic, the discriminant T72 + 2 6$3 vanishes. Hence the differential

equation of a nodal cubic is

(s _ 2&quot; . 32&amp;lt;S)&amp;lt;|&amp;gt;\1/ + 2 21
. S3^ 2^ 2

)
2 -

(
2 - 212

.
3&amp;lt;&V)

S = 0.

When expanded, and divided by 222
. S3^ 2

,
this reduces to

42s _ @ 2&amp;lt;j)2 _ gn . &A 2
3&amp;gt;V + 214

&amp;lt;J&amp;gt;

3^ + 2 20
. 33A*W 2 = 0,

which (since A 2 -
&amp;lt;E&amp;gt;

2 = 28X
P) divides out by 2 8 ^, giving

2 - 23
. &A 2

$&amp;gt; + 26
&amp;lt;I&amp;gt;

3 + 2 12
. 33^1 4^ = 0,

or, what is the same thing,

@2 - 23
. 3U 2

3&amp;gt; + 26
&amp;lt;I&amp;gt;

3 + 24
. 3SA 4

(A
2 -

3&amp;gt;

2

)
= 0.

This may also be written in the form

(
- 2 2

. 3U 2
3&amp;gt; + 23

. 33^ 6
)
2 + 26

(3&amp;gt;

- 32^1 4

)
3 = 0,

or, replacing @ and &amp;lt;I&amp;gt; by their values in terms of A, B, G, D,

|2 (^1
2D 2 - QABCD + 4,AC 3 + 4&amp;gt;B

3D + 35 2
(7

2

)

- 24
. 32^ 2

(A
2D - 3ABC + 2 3

)
- 33^1 6

}

2 + 2 15

(A 2D - 3ABC + 25 3
)
3 = 0.

For a cubic whose invariant S vanishes, the differential equation is

2 - 2 12
. 33&amp;gt;^ = 0,

and for a cubic whose invariant T vanishes,

@s _ 211 32@&amp;lt;|)^r + 221 . 3342x1/9 _ o.

For the cuspidal cubic, both S and T vanish, so that the algebraic equation
of the cuspidal cubic is a particular solution of each of these equations. We
can, however, replace the system

@2 - 2 12
. 3&amp;lt;E&amp;gt;

= 0, (1)

@3 _ 2n 32$^ + 221 33^2x^2 = o, (2)

by another pair of equations, for one of which the cuspidal cubic is a particular

solution, and for the other the complete primitive.

Multiplying the first equation by and subtracting the second from it,

we have, after dividing by 2 11
. 3&quot;^,

@4&amp;gt;- 2 10 .3 24 2^ = 0. (3)

From (1) and (3) we obtain

(H)
2

&amp;lt;E&amp;gt;

2 = 2 12
. 3&amp;lt;J?

3
&quot;

VP = 220
. SM. 4^ 2

.

Hence O3 =28 .33^l 4 ^. (4)

But 4 2@ = &amp;lt;I&amp;gt;

2 +28^,

so that A*3&amp;gt; = &amp;lt;fc

3 + 2 8
&amp;lt;I&amp;gt;^.

Substituting in this the values of @&amp;lt;f&amp;gt; and &amp;lt;1&amp;gt;

3 found from (3) and (4) and

dividing by M/, we have

2 io 3244 =28. 33^4 +28
^),

which gives &amp;lt;E&amp;gt;

= 32
J.

4
. (5)
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Substituting this value of &amp;lt;I&amp;gt; in (4) and rejecting the factor 33J. 4
,
we obtain

33^8=28-^;

(A\* fAC-B*\*that IB

(j)
=

( 3 J
1

In the course of the work we have only rejected powers of ^ (that is of

AC B 2

) and of .A, of which neither corresponds to the cuspidal cubic.

Since 0&amp;gt;= 32^1 4
,
it follows that AW - 3ABC + 2B 3 = 0. The equation to

the cuspidal cubic above obtained is a particular solution of this, its complete

primitive being (see Lecture XXXI. [above, p. 486]), Y= XKZl

~*, where X
is an arbitrary constant.

LECTURE XXXIV.

The preceding 33 lectures contain the substance of the lectures on Reciprocants

actually delivered, entire or in abstract, in the course of three terms, to a class at the

University of Oxford.

A good deal of material remains over which the lecturer has lacked leisure or energy
to throw into form, which he hopes to be able to recover and annex to what has gone
before as supplemental matter in the convenient form of lectures numbered on from those

which have already appeared.
The one that follows is entirely due to Mr Hammond, who has rendered invaluable aid

in compiling, and in many cases bettering, the lectures previously published.
It constitutes probably the most difficult problem in elimination which has been

effected up to the present time. J. J. S.

The problem in question is to obtain the differential equation correspond

ing to the complete primitive

(Vx + m y + ri)
=

(lac + my + n)
K

(l&quot;x
+

m&quot;y + n&quot;)

1-*-

(say F = X^Zl~ &amp;gt;

&quot;) by the process of eliminating all the arbitrary constants

except X.

The eliminations to be performed become greatly simplified by aid of the

following Lemma. If X be any linear function of x and y, and Ma the

absolute pure reciprocant corresponding to M
;
then

X3
- ^MaX, = 0,

where -j- = a^Xl} -=-* eAZ,. ^
!

2

dx dx dx

For if we suppose X = Ix + my + n,

two successive differentiations give

aFX! = I + mt

and a$X2 + a
~
$bXl

= 2ma.



508 Lectures on the Theory of Redprocants [42

Writing the second of these equations in the form

a~*X2 + a-%bX1
= 2m,

and differentiating again, we find

X3 a
~
%bX2 + a~ %bX2 + (4ac

- 5&2

) a
~
iX^ = 0,

or, since 4Ma = (4ac 562

) a
-
l

?

N.B. Throughout the following work all letters with numerical suffixes

are to be considered as derived from the corresponding unsuffixed letters in

the same way as, in what precedes, X1} X2 ,
and X 3 are derived from X

;

namely by successive differentiations, each of which is accompanied by a

division by a.

Writing the equation
r-;JPsf*-*

(in which X, Y, Z denote any three linear functions of x, y) in the form

log F= X log X + (1
-

V) log,

we obtain by differentiation and division by a^,

^ = X + (1-X). (1)

Let now X l
= uX,

Y^vY,

Zi = wZ,
so that (1) takes the form

v = \u +(l\)w,
and consequently v1

= \Wj + (1 X) wlt

v2
= \u2 + (1 X) wz .

By means of the Lemma it can be shown that

us + Smii + u2 + 4&amp;gt;Mau = 0, (2)

v* + Bvvl +v2 + 4&amp;gt;Mav = 0, (3)

w3 + Swwj. +wz + 4iMaw = 0. (4)

For, since Xl
= Xu,

we have X2
= X^u + Xu^ = X (u

2 + u^

and -Xs = X2u + ZX^ + Xu2
= X(us

Substituting these values for Xl and X3 in

we obtain u3 + 3w*i + w2 + ^Mau = 0,



42] Lectures on the Theory of Reciprocants 509

which proves equation (2). The equations (3) and (4) connecting v, vlt i 2 and

w, wlt w2 are similarly established. We now write

u+ v + w =
3a&amp;gt;|

u w = Sz }

These, combined with v = \u + (1 X) w,

give u = o) (X 2) z \

V =
a&amp;gt;-(l -2\)zl ,

which, when operated on by a~^ -^- twice in succession, yield

= o)1 -(\-2)z1 u2
= o)2 -(\-2)z

v
-2

=
a&amp;gt;2

~~
(1
~
2X)

ur,~*-(X+ l)^
When expressed in terms of ca, atl ,

&&amp;gt;2 and z, zl} z.2 , equations (2), (3), and (4)
become transformed into

P -
(1
-

2X) Q + (1
-

2X)
2 R -

(1
-

2X)
3 2* = 0, (6)

P-(X+1)Q +(X+1)2 ,R _(x + 1)3^3 =0j (7)

where, for the sake of brevity, we write

h 6&amp;gt;2 + 4&amp;lt;Ma O) = P,

In order to simplify (5), (6), and (7), we multiply the first of them by X,

the second by 1, and the third by 1 X, and take their sum, which is

obviously independent of P, and from which it is easily seen that the terms

containing Q and z3 will also disappear. For

X (X
-

2)
-

(1
-

2X) + (1
-

X) (X + 1)
= 0,

and X(X-2)3 -(l-2X)3 +(l-X)(X + l)
3 =0.

We are thus left with

which, on restoring the value of R and reducing, becomes

X(X- l)z(o)Z + z1 )
= 0.

X Y ZNow the values of u, v, w, which are equal to -~
&amp;gt; ^ &amp;gt; ~& respectively, being

distinct from each other, z cannot vanish
;
for z = would imply u = v = w.

Hence, considering X to have any finite numerical value except 1 or 0, we

may write

o)Z + z-i
=
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in equations (5), (6), (7), which will then become

P-(\-2) (%^z+z, + Maz)-(\-2}*z* =0, (8)

P -
(1
-

2X) (3&&amp;gt;^ + z,+ 4,Ma z) - (1
-

2X)
3

z&amp;gt;
= 0, (9)

P-(X + 1) (3a&amp;gt;l
z + z2 +4!Maz)-(\ + I)

3 z3 =0. (10)

Adding these together, we find

3P = {(X
-

2)
3 + (1

-
2A,)

3 + (\ + I)
3

}
z3

Restoring the value of P, and writing for shortness

there results o&amp;gt;

8 + Scowj + &amp;lt;w2 + 4sMa a&amp;gt; + pz
3 = 0.

From any pair of the equations (8), (9), (10) we obtain by subtraction

Sa)^ + z2 + 4,Maz + 3 (X
2 - X + 1) zs = 0.

Thus, for example, subtracting (10) from (8), we have

3
(3o&amp;gt;^

+ z2 + 4&amp;gt;Maz)
=

{(\
-

2)
3 -

(X + I)
3

}
# = - 9 (A,

2 - X + 1) z3
.

Collecting our results, we see that equations (5), (6), (7) may be

replaced by
ft)

3 + 3&)ft) 1 + &amp;lt;u2 + 4^fa ft) +pz3 = 0, (11)

3&)^ + z2 + 4Maz + 3qz
s = 0, (12)

a&amp;gt;z + zl
=

0, (13)

where ^ = (X-2)(\+l)(2\- 1),

and q = \*-\+l.

Differentiating (13), we obtain

a)
l
z + wZi + z2

= 0.

Subtracting this from (12) and adding (13) multiplied by &&amp;gt;,
the result

divides by z, and we find

to
2 + 2^ + 4Ma + 3qz- = 0, (14)

which, when multiplied by w and subtracted from (11), reduces it to

&)o&amp;gt;! + 6&amp;gt;2 +pz
3

3qz
2
oi = 0. (15)

Now it has been shown in Lecture XXX. [above, p. 482] that

whence it follows that (14) gives on differentiation

l a + Sqzz!
= 0.
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Combining this with (15) we have

10-4a = pz
3

Sqz (wz + Zi),

or, finally, since a&amp;gt;z + zt
= 0,

Differentiating this, we have

that is 2Ba + A a a&amp;gt;
= 0, (16)

whence, by differentiation,

14&amp;lt;7a + 2MaA a + 6Ba a&amp;gt; + A a^ = 0.

Subtracting (14) multiplied by A a from the double of this, we have

28(7a - Aa a? + 12Ba a&amp;gt;

-
3qz*A a = 0.

25
Substituting in this for a&amp;gt; its value --:

, found from (16), there results

But it has been shown that

lQA a =pzs
.

Hence the elimination of z gives

28y (AaCa - Ba*)
3 = ^q3p^Aa

6 = 102

Or restoring for p and q their values in terms of X, and replacing the

absolute reciprocants A a ,
Ba ,

Ca by the non-absolute ones A, B, C (which is

effected by merely multiplying throughout by a power of a), we have

24
. 7 3

(X - 2)
a

(A. + I)
2

(2X.
-

I)
2 (AC - B 2

)
3 = 33

. 52
(X

2 - X + I)
3 A 8

. (17)

For other methods of obtaining this differential equation see Halphen s

These sur les Invariants Differentiels, p. 30, and Lecture XXX. of the present

course. It corresponds in general (that is unless X = 0, 1, oo ) to the complete

primitive
Y=XW~\

When X = 0, 1, oo
,
the differential equation (17) becomes

283 (AC- BJ = 3s
. &A S

, (18)

which corresponds to the complete primitive

Y=Xe*. (19)

This case has been discussed in the These and in Lecture XXX. [above,

p. 480].

We may obtain (18) from (19) by a method of elimination similar to that

employed in deducing (17) from its complete primitive. Thus the first

differential of (19) may be written

JL i JL i ^i X. ^-A. i

7 = X H Z2

which becomes v = u + 3z

when we assume J\ = Xu, Y = Yv, Z = Zu + %Xz.
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By means of the Lemma we obtain

u3 + ZuUi + HZ + 4&amp;gt;Mau = 0, (20)

v3 + 3tWj + v2 + 4&amp;gt;Mav = 0, (21)

3u2z + 3u^ + Suz-i + z2 + 4&amp;lt;Maz = 0. (22)

The first two of these are identical with (2) and (3) previously given ;
the

third is found as follows. Since

Zl
= Zu + 3Xz,

= Z (it
2 + u,) + 3X (2uz + z,).

Hence

Z3
= Z, (u

2 + MJ) + Z (2MM! + u2) + 3Zj (2uz + z^ + 3Z (2^ + Zwgj. + z2 )

Thus we have

Z3 + 4ifa^ = Z(u
3 + 3wM! + u2 + ^Mau) + 3X(3u?z + Su^z + %uz^ + z2 + 4&amp;gt;Maz).

But Z3 + 4iMaZ1
= 0, and u3 + Su^ + u2 + 4&amp;gt;Mau = 0, which shows that

3u2z + 3^!^ + ^uzl + z2 + 4&amp;lt;Ma z = 0.

Equations (20), (21), and (22), of which we have just proved the last, are

merely convenient expressions of the fact that X, Y, Z are linear functions

of a, y. We combine them with the first, second, and third differentials of the

primitive equation (19) by writing

v = u + 3z
&quot;

When this is done (21) becomes

+ 27z (uz + z2 + zj = 0,

which, in consequence of the identities (20) and (22), reduces bo

(u + z) z + zl
= 0.

Let now u = &amp;lt;o z (so that wz + z1
=

0). Substituting in (20) and (22) we

find

3 + Soxoj + eo2 + 4&amp;gt;Maca -3(a&amp;gt;-z) (wz + ^)
- z3 -Sw^z - z2

-
4&amp;gt;Maz = 0,

and (3&)
-

6z) (wz + zj + 3z3 + S(a
1
z + z2 + 4&amp;gt;Maz =

respectively. Adding both equations together, and remembering that

wz + Zi
= 0,

we obtain w3 + Scofth + &)2 + 4,Mao) + Zz3 = 0, (23)

Scoj z + z., + 4Ma z + 3z3 = 0, (24)

which, combined with wz + z1
= 0, (25)

replace the system (20), (21), (22).
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Comparing these equations with (11), (12), (13), we see that the two sets

are identical if we make A, = 0, when p becomes 2 and q = l. Hence, by

performing exactly the same work as in the previous case, we shall find

oA a = 2s

(instead of 10A a = pz
s

)

and 28 (A aCa - Ba*)
= 3z*A a

*

(instead of 3gsl4 a
2

).

And, finally, eliminating z between this pair of equations, at the same

time replacing the absolute reciprocants A a ,
Ba ,

Ca by the corresponding
non-absolute ones A, B, C, we have

which is what (17) becomes when \ has any of the values 0, 1, or oo .

s. iv. 33



43.

SUR LES RECIPROCANTS PURS IRR^DUCTIBLES DU
QUATRIl^ME ORDRE.

[Comptes Rendus, on. (1886), pp. 152, 153.]

DANS une Note precedents*, nous avons voulu donner le systeme de

reciprocants irreductibles par rapport aux lettres a, b, c, d, e.

Malheureusement une erreur de calcul s est
glisse&quot;e

dans la determination

de la forme numerotee (5) [p. 248, above], et consequemment la forme (6) qui,

d apres notre methode de calcul, depend en partie de la forme (5) est aussi

erronee. L erreur est grave, car, en consequence, un terme contenant b3d se

trouve dans cette derniere forme qui ne doit pas y paraitre ;
cela empecherait

une combinaison ulterieure lineaire de cette forme avec le carr6 de la

forme (4), qui donne naissance a une nouvelle forme irreductible.

Dans la forme (5) dounee, au lieu de 1585a62
c
2 on doit lire 1485a62c

2
, et,

au lieu de 1800064
c, on doit lire 360064

c. Ainsi corrigee, la forme, en

divisant par 9, devient

45a3
&amp;lt;2

2 - 450a26cd + 192a2
c
3 + 16oa62

c
2 + 4&amp;lt;QOab

3d - 40064
c,

et, en combinant celle-ci lineairement avec le produit de (2) et (4), on obtient,

en divisant par a, pour la forme (6),

240a2
ce - 400a&2

&amp;lt;?

- 315a2d2 + ItfQabcd - 1008ac3 - 3562
c
2
.

Sans aucun calcul arithmetique, on aurait du prevoir que 1 argument b*d

ne doit pas paraitre la-dedans
;

car le terme qui contient 62
S^ dans V,

opdrant sur b*d, donne b5
,
et evidemment aucune autre partie de V, operant

sur un terme quelconque de la forme commen9ant par o?ce, ne peut donner ce

merne argument.

En combinant lineairement le produit de cette forme par la forme ac 62

avec le carre de (4) [p. 248, above], on obtient, en divisant par a, une nouvelle

forme irreductible (7). C est M. Hammond qui m a averti de nion erreur de

calcul et qui a calcule lui-meme cette nouvelle forme dont il a verifie 1 exacti-

tude par le moyen de 1 equation differentielle partielle. On peut done

accepter avec pleine confiance pour (7) la forme

25a3e2 - 350a26de - 4970a2
c2e + 17150a62ce + 6615a2cd2

- 9800a62d2 - 31360a6c2^ + 212l7ac4 - 1400064e

+ 49000&3c^ - 3405562
c
3
.

Avec ces conventions le systeme complet de Grundformen, pour le

systeme de lettres a, b, c, d, e, sera constitu^ par les formes (1), (2), (3), (4),

(6), (7).

[* Above, p. 242.]



44.

SUR UNE EXTENSION DU THEOREMS RELATIF AU NOMBRE
D INVARIANTS ASYZYGETIQUES D UN TYPE DONNE 1
UNE CLASSE DE FORMES ANALOGUES.

[Comptes Rendus, en. (1886), pp. 14301435.]

[Cf. p. 459, above.]

Nous ernployons toujours aujourd hui le mot invariant pour designer les

sous-invariants et les invariants (ainsi ordinairement nommes) sans dis

tinction.

Le type d un invariant est 1 ensemble de trois elements, le poids, le degrd
et 1 etendue, que nous designerons ordinairement par les lettres w,i,j, et nous

nous servons de cet ensemble entre parentheses (w : i, j) pour signifier le

nombre de manieres de composer w avec i des chiffres 0, 1, 2, ...
, j ou bien,

ce qui revient au meme, avecj des chiffres 0, 1, 2, ..., i.

II est quelquefois utile d ajouter a ces trois elements un autre dont il est

fonction, a savoir Yexces qu on prend egal a
ij *2w.

Quand on considere un invariant comme source d un covariant, 1 exces

coincide avec 1 ordre dans les variables de ce dernier.

Le theoreme connu, dont nous parlons dans le titre de cette Note, se

divise en deux parties :

(1) II n existe aucun invariant dont 1 exces du type soit negatif ;

(2) Quand 1 exces est positif, le nombre des invariants asyzygetiques du

type w : i, j est (w : i, j) (w 1 : i, j) qu on pent reprdsenter par A (w : i, ; ).

Evidemment, ces r^sultats peuvent etre etendus au cas des formes ration-

nelles et entieres qui sont aneanties par 1 operateur

pourvu qu aucun des X ne soit nul
;
car alors, en rempla9ant les a par des

multiples numeriques convenables, 1 aneantisseur peut etre change dans la

forme 0,8. +20^+ ... +jaj
_1 8

aj
.

Quand tous les X dans 1 operateur sont pris egaux a Funite, on peut
donner aux formes qu il aneantit le nom de binariants.

332
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De meme, on peut considerer un aneantisseur

et donner aux formes qu il aneantit le nom de binariants de raison k*
;
en

particulier, quand k = 2, on peut les nommer transbinariants. C est sur les

transbinariants pour lesquels 1 etendue j est un nombre PAIR que nous allons

demontrer un theoreme analogue a celui que nous avons enonce sur les

binariants ordinaires.

Si nous considerons les binariants de raison k, voici comment on pourrait

proceder pour trouver toutes les formes du type (w:i,j):

On prendra la forme la plus generale de ce type qui contiendra (w:i,j)
constantes disponibles. On operera sur elle avec I aneantisseur a B

ak + ...
,
ce

qui doiinera une forme du type (w k : i,j) dont les (w k : i,j) coefficients

seront des fonctions lineaires de ceux de la forme primitive, et Ton egalera a
ze&amp;gt;o tous ces coefficients. Ainsi Ton pourrait etre porte a croire que, pourvu

que le nombre des coefficients de la forme primitive excede le nombre de

coefficients de la derivee, la difference de ces deux nombres doit etre le

nombre de binariants de raison k asyzygetiques. Mais tout ce qu on peut

legitimement conclure dans ce cas, c est que ce dernier nombre ne peut pas
e&quot;tre moindre que cette difference

;
car les equations dont on a parle ne sont

pas necessairement independantes. Cette precaution n est nullement sure-

rogatoire ;
un seul exemple suffira a le demontrer. Prenons k = 2 et

cherchons le nombre des transbinariants du type (6 : 2, 5).

On a

(6 : 2, 5)
= 3, car 6 peut etre compose avec 5 + 1, 4+2, 3+3,

(4:2, 5)
= 3, car 4 4+0, 3+1, 2 + 2.

Done (6 : 2, 5)
-

(4 : 2, 5) = 0.

Cependant le nombre des transbinariants du type donne n est pas zero,

mais 1
; car, eVidemment, 2bf d? est aneanti par Poperateur

aSc + bSd + cSe + dSf .

On voit done que c est un theoreme bien reel et nullement nugatoire, qui
Enonce que, pour le cas ou^ est un nombre pair, le nombre des transbinariants

du type (w:i,j) est egal exactement a (w :i,j) (w 2:i,j) quand cette

difference n est pas negative. On peut ajouter que cette difference est

negative seulement dans le cas ou Vexces du type est negatif et qu alors

(comme on va le demontrer) il n y a pas de binariants de ce type.

Si 1 on a = a 8^ + a1 Sas +...+ a
2l)
_2 S% ,

on peut ecrire (B) = 1 + 2&amp;gt;

* Le thorme de Brioschi montre qu un binariant de raison k est une fonction de

*1.
2&amp;gt;

S
Jfe-l

sfc+l *j&amp;gt; *0

etant la somme des puissances
l6mes des racines de 1 equation a x + a\ x &amp;gt;

-1 + ... +a^-=0.
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en posant 6Y
= a S

#2 = a1 8as + a3 8a& + ......... + a^^&a^^.
En faisant t = t1 + t2 ,

avec ^ = I . r)a2 8ao + 2 (ij
-

1) a4 8a2 + 3 (77
-

2) a6 8a4 + . .. + 17 . 1 .

t,= l(Tj- 1) a,8ai + 2 (77
-

2) aA3 ++(*?- 1) 1 a^-A
on trouvera

0i*i
-

1 0i = foAo + (*?
~ 2 ) a^oa + ... - (77

-
2) fl^-A^

2 2
-

fc,02
=

(77
-

1) aA, + (77
-

3) a3 8tt3
+ . . .

-
(77
-

1) G^-

Done, si / est une fonctiori homogene et isobarique dans les lettres a du

type w ; i, j, on aura

car on remarquera que ni Tun ni 1 autre 6 n agit sur 1 un ou 1 autre t, et que ni

1 un ni 1 autre t n agit sur 1 un ou 1 autre 0.

Le coefficient de /, on le remarquera, est la moitie de Vexces au type
w : i, 2v).

II est bon d observer qu il n est pas possible d obtenir un rdsultat

semblable dans le cas ou j est impair, c est-a-dire qu on rie peut pas trouver,

dans ce cas, une forme T telle que le resultat de 1 operation (T T) sur

une forme homogene et isobarique soit equivalent au produit de cette forme

par une fonction quelconque de w
; i, j.

Avec 1 aide de la formule ci-dessus, suivant la meme marche que nous

avons prise pour les invariants dans le Philosophical Magazine* (mars 1878),
on parvient a des resultats tout a fait semblables.

En appelant e la moitie de 1 exces et en supposant que / est un trans-

binariant, on trouve

et, plus ge&quot;neralement,

ou fi
= q(e-q + l).

Or il est Evident que, puisque 1 effet de T est d augmenter (par deux unites)
le poids de la forme sur laquelle il agit sans en changer le degre ni 1 etendue,
et que le poids d une forme homogene et isobarique ne peut pas exceder le

produit du degre par 1 etendue, en prenant q suffisamment grand, on aura

TI = 0,

et, a plus forte raison, TI = 0.

On trouvera done successivement T^~1I = Q, T^~nl=0..... TI=0,7 = 0,

pourvu que le
jj,

ne devienne pas mil dans le cours de cette deduction : ceci

[* Vol. HI. of this Reprint, p. 117.]
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ne peut pas arriver quand e est negatif, car on trouvera que les valeurs de
/*,

dans ce cas, resteront toujours negatives.

Cela ddmontre qu un transbinariant, dont le type a un exces negatif, ne

peut pas etre autre que zero, c est-a-dire n a pas d existence actuelle quand
1 exces est non negatif; en designant par E (w : i, j) le nombre

(w:i,j)-(w-2:i,j),
et par D (w : i, j) le nombre de transbinariants du type (w : i, j), on prouve que
D (w : i, j)

= E (w : i, j) de la maniere suivante.

En remarquant que, pour w negatif, E(w:i,j) = 0, on trouve imme -

diatement

(7
=

S E(w 2q: i, j)
= (w : i, j),

3= 00

et, puisque chaque D est au moins egal an E correspondant, on a

=o

2 D(w 2q: i, j) ^ (w : i, j).
&amp;lt;jr=o&amp;gt;

Or on peut demontrer facilement que, si
ij 2w est non negatif, en

appelant Iw: ij un transbinariant du type (w : i,j), s^V/^^.^-sera e&quot;gal
a un

multiple numerique de Iw-2q:ij different de zero pour toutes les valeurs de

q qu on a besoin de considdrer.

Or, dans 1 ensemble des transbinariants asyzygetiques, dont le type est

w -
%&amp;lt;l -i&amp;gt;j&amp;gt;

on peut substituer a chacun, pour ainsi dire, son image
Le nombre de ces images sera

De plus, chaque image sera du meme type (w : i, j).

On demontre facilement qu il ne peut pas exister entre ces images une
relation lineaire

; car, dans le cas contraire, en operant sur 1 equation qui les

lie ensemble avec une puissance convenable de
, on tomberait sur une

equation lineaire entre les transbinariants asyzygdtiques eux-memes. Done,

eVidemment, le nombre des images ne peut pas exceder la valeur de (w:i,j).
Done

q=
n est ni plus grand ni plus petit que 2 E(w -

2q;i, j); il lui est done egal,
q = ao

et consequemment, puisque aucun D ne peut etre moins que le E qui lui

correspond pour chaque valeur de q,

D(w- 2q-i,j) = E(w- 2q;i,j) ;

car si un D quelconque etait plus grand que le E qui lui correspond, un autre

D serait necessairement plus petit, ce qui est inadmissible.
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On aura done D (w : i, j)
= E (w : i, j),

pourvu que ij 2w ne soit pas ndgatif. C.Q.F.D.

On demontre facilement les memes thdoremes pour des formes aneantiss-

ables par une somme d opeVateurs

o^o 4- ... + a-*0

En supposant que chaque j soit pair et en regardant w : i, j : i
, j , . . . comme leur

type, on parvient a cette conclusion qu aucun transbinariant d un tel type
n existe dans le cas ou

ij + ij + ... 2w est ngatif et que, quand cette

quantit^ n est pas negative, le nombre des transbinariants asyzygetiques est

egal a (w : i, j : i
, /:...)- (w - 2 : i, j : i

, j ;...), ou (w : i, j : i
, f : . . .) designe

le nombre de manieres de composer w avec i des chiffres 0, 1, 2, ..., combines

avec i des chiffres 0, 1, 2, ...,/, etc.

II est utile de remarquer que les formes et les syzygies fondamentales des

integrates de 1 equation

(OoSa, + aA, + . . . + a,,_2 S
fl2rj

)7=0

sont des memes types que les invariants et les syzygies fondamentales d un

systeme forme avec deux qualities d ordres 77 et
77

1 respectivement ;
ce qui

donne un moyen facile de verifier la formule que nous avons demontree pour
le nombre de transbinariants asyzygetiques d un type donne. II va sans dire

que nous n avons pas neglige de nous servir de cette methode pour verifier la

justesse de nos conclusions.



45.

NOTE SUR LES INVARIANTS DIFFERENTIELS.

[Comptes Rendus, en. (1886), pp. 31 34.]

EN affirmant, dans notre Lettre a M. Hermite (dont un Extrait a paru dans

les Comptes rendus), que les invariants differentiels de M. Halphen sont

identiques avec nos reciprocants purs, nous sommes alle trop loin
;

nous

aurions du dire qu ils sont identiques avec la classe speciale de ces derniers

que nous avons nommes reciprocants projectifs ;
en effet, en prenant pour

elements

_
T^da? 17273 eP 1.2.3.4

&quot;

regardes comme quantites algdbriques, lesquelles on peut nommer (selon

1 usage quand on parle de formes binaires) a, b, c, d, ..., un invariant dif

ferential possede la propriete vraiment etonnante d etre en meme temps un

reciprocant et un sous-invariant ordinaire.

En accommodant la valeur de V a cette notation nouvelle, il devient

4&amp;lt;aa8b + 5 (ab + ba) 8C + 6 (ac + bb + ca) 8d ,
. . .

;

et, en posant a&b + 2bSc + 3cS&amp;lt;i + . . . = H,

un invariant differentiel / satisfait en meme temps aux deux equations

partielles differentielles

F./=O, n./ = o.

Voici comment on peut etablir le fait que H . / = 0.

En cornmen^ant avec les trois premiers invariants differentiels, c est-a-dire

a, a?d 3a6c + 26s
,
et le A de M. Halphen (dans sa these immortelle), on sait

que les deux premiers, et Ton verifie sans trop de peine que le troisieme sont

tous les trois des sous-invariants.
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De plus, on sait que, en commengant avec ces trois invariants que nous

nommerons /
,
I1} 72 ,

on peut former une suite indefinie de formes proto-

morphiques
*J *I -*2&amp;gt; -*3&amp;gt; &amp;gt; -*&amp;gt;) &amp;gt;

dont tous les autres seront des fonctions rationnelles.

Pour obtenir cette suite, on n a qu a former une fonction J de J
, Ilt ...,

Ip , ..., dont le degre et le poids soient tous deux zero
;
en operant alors sur J

(considere comme fonction des derivees de y par rapport a x) avec Sx ,
on

obtient lp+1 .

Si done on peut ddmontrer que 18XJ = 8X M, il s ensuivra que Ip+1 sera

un sous-invariant, pourvu que Ip en soit un, et le theoreme en question sera

ddmontre.

Or remarquons en premier lieu que, a cause de la valeur zero du degre et

du poids de J, la quantite

vc8c +.../

sera nulle si \, JJL, v, ... forment une progression arithmetique quelconque ; et,

en second lieu, que (par rapport a une fonction de derivees de J par rapport
a x), 8X = 3bSa + 4&amp;lt;cSb + 5dSc + ... identiquement.

Consequemment

Sc + ...)/= 0,

ce qu il fallait demontrer.

M. Halphen, a qui j avais communique ce resultat, en a trouv^ une tout

autre demonstration qu il m autorise a communiquer a I Academie. Elle

possede sur la mienne 1 avantage d aller plus au fond de la question, en faisant

voir que 1 equation 1.1=0 equivaut a dire que, en se servant de x, y, z au
lieu de x, y, 1, un invariant differentiel peut subir le changement entre eux de
# et z. Or, puisque F./=0 signifie qu on peut imposer des substitutions

lindaires quelconques sur x et y, il s ensuit, en combinant les deux equations,

que la meme chose aura lieu quand x, y, z subissent tous les trois des

substitutions lineaires quelconques. Voici la demonstration tres elegante de

M. Halphen :

&quot;

Si Ton fait le changement de variables

et qu on ecrive
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on a F =

dY_
dX~

d3Y
dX3

15
1

60 , 60
,

-s) _i_

Posant

on a 4n = (- I)&quot;*

8&quot;-1

[a* + (w
-

2) ean_x + a

&quot;

Soit une fonction/(J. , ^Ij, ...
,
A n ) dont tous les termes soient de poids

et de degre constants p, 8
;
en supposant e infiniment petit, on aura

f(A , A,, ..., A n)
= (- l)P^-/(a ,

alt ..., an)

&quot;

Done, pour que y soit invariant pour la substitution consid^ree, il faut

qu on ait

-...- n_10 .

a5 oan 9^
&quot; En particulier, si / ne contient pas alt ce qui est le cas des reciprocants

purs, on aura

a2
- + 2aM+ ... + (n

-
2) an^^- = 0. C.Q.F.D.&quot;

3a3 9a4 9an

Ainsi, Ton voit qu un invariant ditferentiel est en meme temps reciprocant
et sous-invariant

;
ce n est nullement un melange ou une combinaison de deux

choses differentes, mais plutot, pour ainsi dire, une personnalite seule et

indivisible douee de deux natures tout a fait distinctes.

Afin de computer la theorie, il faut demontrer la reciproque, c est-a-dire

que toute forme douee de ces deux natures est un reciprocant projectif.

M. Halphen effectue cela en trouvant le developpement complet de sa serie et

en faisant voir que, quand le coefficient de la premiere puissance de e disparait,
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la meme chose aura lieu pour tous les coefficients suivants. Voici notre

methode, a nous de 1 effectuer.

Soit H une forme rationnelle et entiere dont le terme principal (c est-a-

dire celui qui contient la plus haute puissance du terme le plus avance) est

Gh\ On suppose que le theoreme a demontrer est vrai jusqu a la lettre g
incluse, et que VA = 0, D,H= sans que H soit projectif.

Alors eVidemment F6r = 0, flG = Q et G, par hypothese, sera projectif.
Soit H une puissance d un protomorphe pour laquelle le terme principal est

G h\ alors, si H^ = GH - GH
, G, G ,

H sont projectifs, mais H non projectif;

done, Hl (qui, comme H, est aneanti par V et par H) sera non projectif : de

plus, dans H^ le degr6 du terme principal en h est abaisse. De la meme
maniere on peut construire Hz ,

H3 ,
... jusqu a ce qu on parvienne a une

forme* qui ne contient pas h, laquelle possedera les memes caracteres que H,
ce qui est impossible par hypothese. Done, si le1 thdoreme a demontrer est

vrai pour un nombre quelconque donnd de lettres, il sera vrai universelle-

ment : mais il est evidemment vrai pour la fonction a qui est le seul recipro-
cant a une lettre. Done, si VI = et RI = 0, 1 est un reciprocant projectif,
c est-a-dire un invariant differentiel. Ce qui e&quot;tait a demontrer.

*
Cette forme sera, en effet, le resultant de H et de la premiere puissance du protomorphe.

Nous avons jug6 inutile de dire dans le texte que G , comme G, sera aneanti par V et par et

consequemment, par hypothese, sera lui aussi projectif.



46.

SUR L EQTJATION DIFFERENTIELLE D UNE COURBE
D ORDRE QUELCONQUE.

[Comptes Rendus, cm. (1886), pp. 408 411.]

[Also, above, p. 492.]

ON peut obtenir une solution directe et universelle de ce probleme :

Trouver I equation diffdrentielle d une courbe de I ordre n, en representant la

fonction de I equation (avec 1 unite pour terme constant), soit U ou (#, y, l)
n

,

/ d \n
sous la forme symbolique un

,
ou u =*a + bx + y. Alors, en mettant I -=- 1 yyr ,

du di+lu
on aura

Egalons a zero les derivees de un des degrds n + I, n + 2, . . .
,

-
;

2
^j,2

I m
il en rdsultera -

Equations entre lesquelles on peut eliminer le meme
z

nombre de coefficients, c est-a-dire tous les coefficients en U, sauf ceux qui ne

contiennent nulle puissance de y, lesquels ne paraitraient pas dans les

equations dont nous parlons.

Pour obtenir le determinant qui correspond a ce systeme d equations,

remarquons que le theoreme de Taylor donne immediatement
}*

~W = cor (u
+ u h + u&quot;

-k~ + u &quot;^~s
+

...)&quot;

= cor f(tt
+ u h)

n + n.(u + u h)
n-1 V + n.^- (u + u h)

n~z V2

\ *

ou Ton peut prendre

,, h* h* *

ce qui suffit a r^soudre le probleme.

* On remarquera qu avec cette notation toute fonction entiSre de u et dxu representera sans

ambiguite une quantit^ algebrique ordinaire, pourvu que Ton sache a priori qu elle doit etre

lin^aire dans les coefficients de un . C est pourquoi dans le texte on est libre d exprimer toute

derivee dififerentielle de U comme fonction de u et u .

t Par cor on sous-entend les mots &quot;le coefficient de hr dans.&quot;
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Pour cela, on considere toutes les derivees de U corame fonctions lineaires

des termes qui paraissent dans le developpement de (u, u, I)
71&quot;1

*.

Alors, en representant par m . p le coefficient de hm dans

....

on trouvera, sans calcul algebrique aucun, que la ^
i6me

ligne du determinant

cherche peut etre prise sous la forme

(2+9).2 (3+ 9).l (3+g).2 (3 + g).3 ...

... (n+q).n.

Par exemple, prenons le cas de n = 4
;

le determinant

sera le premier membre de 1 equation differentielle (disons le criterium

differentiel) d une courbe du quatrieme degre.

Si Ton se borne aux termes contenus dans les six premieres lignes et

colonnes, on aura le criterium pour la cubique, et, en se bornant aux termes
contenus dans les trois premieres lignes et colonnes, celui pour la conique, ou

plutdt ce criterium
multiplis&quot; par 2. 1, ce qui constitue un cas exceptionnel.

3 2v
2 . 1 lui-meme, c est-a-dire -~-

, est naturellement le criterium pour la ligne

droite. On remarquera que 3 . 2, 4 . 3, 5 . 3, 5 . 4, 6 . 4, 7 . 4 sont des com-
binaisons pour ainsi dire fictives, qui ont pour valeur zerof. De meme, en

general, il y aura toujours des termes nuls dans les (n 1) premieres lignes
du criterium de la courbe de degre n; au-dessous de la (n l)^me ligne,
toutes les places seront remplies par des combinaisons qui correspondent
a des non-zeros.

Quand n = 3, en substituant pour
Â .

~o ,
- % . , ... les lettres

. o 1 . Z .O.4
a, b, c, ...

,
on retombe sur la formule trouvee pour la cubique par M. Samuel

* Ou plutot les termes avec leurs coefficients numeriques de (u, u
, 1)&quot;,

en omettant les (n + 1)
termes du degre n.

t Evidemment m . /t est z6ro quand m &amp;lt; 2/u.
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Roberts (voir Mathematical Questions from the Educational Times, t. x. p. 47)*,
c est-a-dire la meme matrice que celle donne&quot;e par M. Roberts, mais avec ses

colonnes autrement presentees.

On voit immediatement que le degre du criterium pour une courbe du
n (n + 1) (n + 2)nita or(}re sera _ _ZA. /

etj par un caicu i facii6) que son

) n(n + l)(n + 2)^ .

o T ^e dernier nombre suppose que

le poids de djy est compte comme i. Dans le calcul des reciprocals, on le

compte toujours comme etant i 2 et, en faisant cette reduction, le poids
, ! . (n-I)n(n + l)(n + 2)devient tout simplement .

8

M. Halphen nous a appris que les formules qu il a donndes dans son

Memoire intitule : Recherches des points d une courle algebrique plane, etc.

(Journal de Mathematiques, 3e
serie, t. n. pp. 373, 374 et 400

; 1876) four-

nissent un moyen pour calculer le degr6 et le poids du crit^rium wieme et

conduisent aux memes rdsultats que ceux donnes ci-dessus. Dans le cas de la

conique, le determinant, comme nous 1 avons dit, se divise par y&quot;,
de sorte que

son poids-degre&quot;
s abaisse et, au lieu d etre 3 . 4, devient 3.3; en effet, c est

la forme bien connue a?d 3abc + 2b3
, trouvee par Monge.

* Ce travail a &amp;lt;H cite et reproduit dans le Philosophical Magazine de fe&quot;vrier 1886, par M. Muir,

qui y construit pour ainsi dire le tableau du calcul dont M. Eoberts avait deja fait le proces-
verbal.

t Car le
degre&quot;

sera la somme de n termes de la se&quot;rie 1 +3 + 6 + ..., c est-a-dire
n

\n+ &amp;gt;(
n+

&amp;gt;

6

et le poids, moins deux fois le degre\ la somme de n termes de la serie

+ (2 + 1) + (5 + 4 + 3) + (9 + 8 + 7 + 6) + ...

ou bien de-5
- termes de la progression naturelle 1 + 2 + 3 + 4 + 5 + ..., c est-a-dire



47.

SUR UNE EXTENSfON D UN THEOREMS DE CLEBSCH

RELATIF AUX COURBES DU QUATRIEME DEGRE.

[Gomptes Rendus, en. (1886), pp. 15321534.]

EN appliquant un terrne quelconque du developpement de

au quantic (x, y, z, ...)^, on obtient autant de fonctioris de
degre&quot; 17 qu il y a

de termes dans chaque fonction. L ensemble de leurs coefficients peut done

etre regarde comme la matrice d un determinant auquel nous donnerons le

meme nom de catalecticant, dont on fait usage dans le cas des formes binaires.

On voit tres aisement que la matrice catalectique, pour une puissance

d une fonction lineaire de variables, possede cette propriete que chaque
determinant mineur du second ordre qu elle contient s evanouit. Conse-

quemment, deux colonnes quelconques d une telle matrice, associees a d autres

colonnes arbitraires, en nombre suffisant pour former une matrice carree

nouvelle, feront s evanouir le determinant de cette derniere.

Or la matrice catalectique d une somme de puissances de fonctions

lineaires des memes variables est la somme des matrices qui appartiennent a

chacune prise separdment ; done, comme consequence immediate de cette

propriete dont nous avons parle, si le nombre de ces matrices est moindre que
I ordre de chacune, le determinant de leur somme s 6vanouira, car il pourra
etre r^solu dans une somme de determinants dont chacun aura la valeur

z^ro *.

* S il y a n matrices, chacune de I ordre N (de sorte que N est le nombre des colonnes dans

chaque matrice), on associera a volonte la premiere colonne d une quelconque des n matrices avec

la seconde, avec la troisieme, etc. colonne, prises ou dans la meme ou dans aucune autre matrice,
en sorte que le nombre des nouvelles matrices partielles sera nN. II est evident que, N e&quot;tant par

hypothese plus grand que n, deux colonnes au mains de chaque matrice ainsi formed appartien-
dront a une mSme matrice fondamentale, c est-a-dire a la matrice catalectique d une puissance
d une fonction lineaire des variables. Voila la raison pour laquelle chacun des nN determinants

partiels est ( gal a zero.
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(1) Prenons deux variables. Le catalecticant sera de 1 ordre 17 + 1
;
on

retrouve ainsi cette regie bien connue, et qui ne contient rien d exceptionnel

ni de paradoxal : pour qu une forme binaire d ordre 2r) soit equivalente a la

somme de T] puissances de fonctions lineaires, il faut que le catalecticant de

la forme soit nul.

(2) Prenons trois variables et faisons tj
= 2 : 1 ordre du determinant

catalectique de (ax + by + cz)
4 etant 6, le catalecticant de

0=1

2 (aex + bey + cgz)
4 = 0.

= 5

Cela donne le theoreme de Clebsch, a savofr que le premier membre de

1 equation d une courbe du quatrieme degre n est pas, en general, exprimable

en une somme de cinq puissances de fonctions lineaires des variables.

(3) Prenons cinq variables, en faisant encore 77
= 2. L ordre du deter

minant catalectique (ax + by + cz + dt + eu)
4 etant 15, le catalecticant de

0=1

2 (aex + bey + cg z + de t + eeu)
4

0=14

s evanouit.
pr /^

hr o

Or 5 x 14 = 70, ce qui est justement le nombre des coefficients

de (x, y, z, t, u)
4

.

On arrive ainsi a cette conclusion nouvelle, et un peu paradoxale, que

1 equation d une hypersurface du quatrieme degrd, bien que contenant le meme
nombre de constantes que la somme de 14 puissances biquadratiques de

fonctions lineaires des variables, ne peut pas en general etre exprimee

comme une telle somme
; car, pour que cela fut possible, il faudrait que le

catalecticant de 1 hypersurface s evanouit.

(4) Prenons encore 17
= 2, et considerons la somme de 9 puissances

quatriemes de fonctions lineaires de x, y, z, t. Le catalecticant de cette

somme sera de I ordre 10 et, consequent ment, zero.

Done le premier membre de liquation d une surface du quatrieme degre

qui ne contient que 35 constantes ne peut pas en general etre mis sous la

forme d une somme de 9 puissances de fonctions lineaires des variables,

quoique cette somme contienne 36 constantes disponibles.

Ce rdsultat pour les surfaces est, on le voit, un peu plus paradoxal, en

apparence, que le theoreme de Clebsch, sur les courbes du quatrieme degre,

quoiqu en effet il n y ait aucun paradoxe, ni dans 1 un ni dans 1 autre de ces

theoremes, pour ceux qui sont convaincus qu on ne doit jamais se fier, sans

controle, aux conclusions apparentes, fournies par la comparaisou numerique
de constantes.



48.

ON THE DIFFERENTIAL EQUATION TO A CURVE OF
ANY ORDER.

[Nature, xxxiv. (1886), pp. 365, 366.]

To Mr Samuel Roberts (see Reprint of Educational Times, x. p. 47) is due
the credit of having been the first to show that a direct method of elimination

properly conducted leads to the differential equation for a cubic curve
;
but

he has not attempted to obtain the general formula for a curve of any order.

By aid of a very simple idea explained in a paper intended to appear in the

Comptes Rendus of the Institute, I find * without calculation the general form
of this equation. The left-hand member of it may be conveniently termed
the differential criterion to the curve. One single matrix will then serve to

express the criteria for all curves whose order does not exceed any prescribed
number. For instance, suppose we wish to have the criteria for the orders

1, 2, 3, 4 :

Let m
fj,
be used in general to denote the coefficient of hm in

Write down the matrix

t* Cf. pp. 492, 524 above.]

s. iv. 34
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The determinant of the entire matrix, which is of the tenth order, is the

criterion for a quartic curve. The determinant of the minor of the sixth

order, comprised within the first six lines and columns, is the criterion

for a cubic. The determinant of the third order, comprised within the first

three lines and columns (subject to a remark about to be made) will furnish

the criterion for a conic, and the apex of the matrix is the criterion for the

straight line. By adding on five more lines and columns, according to an

obvious law, the matrix may be extended so as to give the criterion for a

quintic ;
then six more lines and columns a sextic, and so on as far as may be

required.

The remark to be made concerning the determinant of the third order

qj

referred to is that it contains the irrelevant factor 2 1, that is, ^ ,
so that the

criterion for a conic (Monge s) is this determinant divested of such factor. It

is certain that the next determinant is indecomposable, and is therefore the

criterion for a cubic. There is no reason that I know of to suppose that any
other determinant except that one which corresponds to the conic, is decom

posable into factors. If this is made out, then, observing that the single

term which is the criterion for the right line is indecomposable, we have

another example of what may be called, in Babbage s words, a miraculous

exception to a general law.

A well-known similar case of such miraculous exception I had occasion

many years ago to notice in connection with the criteria for determining the

number of real and imaginary roots in an algebraical equation. Such criteria

may, with one single exception, be expressed by means of invariants. The

case of exception is the biquadratic equation, for which it is impossible to

assign an invariantive criterion that shall serve to distinguish between the

cases of all the roots being real and all imaginary.

It is proper to notice that it follows, from the definition of the symbol
m

fji,
that its value is zero whenever ra is less than 2/i. Thus, in the matrix

written out above, the symbols 3*2, 4 3, 5 3, 5 4, 6 4, 7 4 may be replaced by
zeros.

The above general result for a curve of any order is actually obtained by
a far less expenditure of thought and labour than was employed by Monge,

Halphen, and others to obtain it for the trifling case of a conic. I touch a

secret spring, and the doors of the cabinet Hy wide open*.

*
Adopting the convention for degree and weight of a differential coefficient usual in the

theory of reciprocants the deg : weight of the differential criterion of the nth order will be easily

found to be

. ra+ 1 . n + 2 n-l.n.n + l.

6 ~~8~

except that for n 2 it is 3 : 3 instead of 4 : 3.



49.

ON THE SO-CALLED TSCHIRNHAUSEN TRANSFORMATION.

[Crelle s Journal, c. (1887), pp. 465486.]

EXACTLY one hundred years ago, E. S. Bring (Dissertation, University of

Lund, 1786. Meletemata quaedam mathematica circa transformationem

aequationum algebraicarum) gave the method to which the name of Tschirn
hausen by a common consent in error is now usually attached*. Sometimes
but more rarely the method is attributed to Jerrard who came much later

into the field. This is especially the case in England ;
Hamilton for instance

in his
&quot;

Report on Jerrard s method
&quot;

published exactly 50 years ago in the

* The expression P,
- Ln_, Qn_,_e +MnRn_2_e

where L, M are given entire functions in x of degrees n-l,n,
P,Q,R disposable ,,

&amp;gt;f B, n-1-0, n-2- 6,

may be made identically zero by solving 2n - 1 - e homogeneous linear equations between the
2n - B disposable constants contained collectively in P, Q, R, and when this is done we have

Q^
=Ln-i [mod. Mn].

Hence it follows that the Tschirnhausen substitution has a one-to-one correspondence with any
fractional substitution containing the requisite number of disposable constants : so for instance
in the case of a quintic the Bring substitution

lx* + ma;3 + nx2 +px + q

is only another name for the general quadratic substitution
ax +bx + c

.

aa;2 + ex +f
This change of form in the substitution, supposed to be generalised, is interesting for the

reason that it completes the analogy between the Tschirnhausen method of simplifying an
algebraical equation and Combescure s method of simplifying a linear differential equation.
Sir James Cockle appears to have arrived at the same result as M. Combescure in a paper on
Linear Differential Equations. (Quarterly Journal of Mathematics, Aug. 1864.)

This method involves two quadratures, the integration of a differential equation of the second
order, and substitutions impressed simultaneously upon the two variables.

The quadratures and solution of an equation of the second order are, of course, analogous to
the solution of two simple and one quadratic algebraical equation ;

the substitutions impressed
on the two variables run parallel to the two integral substitutions to be performed upon the two
variables of the algebraical equation put under the form of a quantic which are equivalent to a
fractional substitution performed upon the single variable of a non-homogeneous form.

342
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Reports of the British Association makes hardly any mention of any other

author but Jerrard in connexion with the subject.

In the following memoir I propose to present Hamilton s process under

what appears to me to be a clearer and more easily intelligible form, to extend

his numerical results and to establish the principles of a more general method

than that to which he has confined himself.

But previously to entering upon this part of my work I think it may be

well to call attention to a circumstance connected with the so-called Tschirn

hausen transformation, as bearing upon the character of the transformed

equation to which it leads, which hitherto appears to have escaped observation,

and which is of particular interest as regards the application of the method

to the equation of the 5th degree when it is reduced to the form

for I shall be able to show in that case that in general the coefficients which

remain (notwithstanding the large element of indeterminateness of which the

method admits) cannot be made real when more than one of the roots of the

original equation is real
;
this remark will be found to apply whether the

method be used under its original form or under the modified form employed

so advantageously by Hermite.

In order to make out this proposition it will be useful to give a somewhat

more extended statement of the Law of Inertia (Tragheitsgesetz) for quadratic

forms than that originally presented by me in the memoir :

&quot; On a theory of

the syzygetic relations of two rational integral functions comprising an

application to the theory of Sturm s functions and that of the greatest

algebraical common measure
&quot;

(Phil. Trans, for 1853)*.

Let us suppose a quadratic function of ra + n letters, either independent

or connected by linear relations which in the latter case reduce the number

of independent quantities to
/j, + v.

Let the function be supposed to be expressed

(1) by the sum of m positive and n negative squares,

(2) by the sum of ^ positive and v negative squares

of real linear functions of the variables.

Then I affirm the impossibility of either of the two inequalities

H &amp;gt; m
;

v &amp;gt; n.

(1) I say that the conjunction of the inequalities m&amp;gt;/i,
v&amp;gt;n is

impossible.

For suppose the two expressions of the same quadratic function to be

a? + a2
2 + ... + am2 -

6,
2 - 62

2 - ... - 6n
2

and a
1

2 +a2
2 +...+V-/31

2
-/32

2
-...-/3,,

2
.

[* Vol. i. of this Reprint, p. 511.]
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Then a* + a* + ... + am2 + fr* +&2 + . . . + yS,
2

By hypothesis /n + n&amp;lt; /j,+ v,

p + n&amp;lt;m + v.

By virtue of the first inequality it must be possible to establish p + n

relations between the /i + v independent variables.

Consequently we may equate each square on the right-hand side of the

equation to some distinct square on the other side, and then by virtue of the

second inequality some squares will remain over on the left-hand side of

the equation whose sum will be identically zero. Which is impossible. Hence

the inequalities m &amp;gt;

/j,,
v &amp;gt;n cannot exist simultaneously. In like manner it

follows that n &amp;gt; v, p &amp;gt; m cannot exist simultaneously.

Now the only suppositions of combined relations of greater and less that

can connect m, n
; /*, v are the following :

m&amp;lt;
fj,,

n
&amp;lt;v\ m&amp;lt; fi,

n = v; m &amp;lt; p, n&amp;gt; v\

m =
fj,,

n &amp;lt;v
\
m =

fj,,
n = v

]
m =

JJL,
n&amp;gt; v

;

m &amp;gt;

fji, n&amp;lt; v
;
m &amp;gt; p, n = v

;
m &amp;gt;

//,,
n &amp;gt; v.

Of these 9 suppositions the 1st, 2nd, and 4th are excluded by the condition

m + n = or &amp;gt; /z + v, and the 3rd and 7th by virtue of what has just been

proved. Hence the only hypotheses admissible are the four contained in the

negative statements :

jj,
not &amp;gt;m and v not &amp;gt;n. Q.E. D

Although the only application which I shall have to make of this Lemma
is to the case where m+n = p + v + 1, I have thought that it is of sufficient

interest in itself and collaterally in the logical process of its proof to deserve

setting out in full.

Suppose now that we have the equation f(x) = (x, l)
n = where all the

coefficients in/ are supposed to be real, and that we write in conformity with

the ordinary so-called Tschirnhausen process :

y = u^x + u.2x2 + ...+ un^xn~l -
S,

where nS = u, 2# + w 22#2 + . . . + Un^ ^xn~l

so that the transformed equation will be of the form :

where Bi is a quantic of degree i in the letters u^, u2 ,
... Mn_i- Let us

consider the projective character of the quadratic function B2 . This character

is determined by the nature of the succession of algebraical signs in the sum
of positive and negative squares to which B2 regarded as a function of the

n - 1 letters u may be reduced by real linear transformations.
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Since y1 +y^+ ... +yn = 0,

-2J3, = -223^ =
23&quot;,

so that it is the character of 2;y
2 which determines the protective character

of B2 . The number of real values of y is the same as of x. Hence if / has i

pairs of imaginary roots, S?/
2 will be the sum of n i positive and i negative

squares of real linear functions of ulf u2 , ... un^.

Consequently, by virtue of the lemma above proved, there is only one

element of uncertainty as to the character of S^/
2

,
that is, it must we know

d priori, when reduced to a sum of n - 1 positive and negative squares of

linear functions of u^, u, ... un-i, contain either i or i 1 negative squares.

This uncertainty may be removed by means of a second lemma, namely, that

the discriminant of R2 is a numerical multiplier of the discriminant of/.

When two of the roots of/are equal, two of the values of y become equal

so that 2?/
2 becomes reducible to a sum of n 2 instead of a sum of n 1

squares.

Hence the former contains the latter as a factor : moreover it is obvious

from the form of each value of y that its discriminant regarded as a function

of the n roots of / will be of the degree 2 {1 + 2 + ... + (n
-

1)}, that is,

n(n 1) which is the same as that of the squared product of the differences

of the roots of/. Hence B2 is a numerical multiplier of such squared product.

To find the value of the multiplier, I observe that in general it follows from

known algebraical principles that if F is a sum of the squares of n linear

functions of n 1 variables the discriminant of F may be found as follows.

Form an oblong matrix with the coefficients of the several linear functions.

The determinant represented by what Cauchy would have called the square

of this matrix, but which is more correctly to be called the product of this

matrix by its transverse, will be the discriminant in question, or which is the

same thing this discriminant is the sum of the squares of all the complete

minors that are contained in the oblong matrix.

In the case before us if we make f=xn l* it will easily be seen that

* When f=xn -l the value of S (the mean of the values of y) is obviously zero. Suppose

now by way of illustration that n= 5, then calling the imaginary 5th roots of unity p\, pz, pa&amp;gt; Pv
one of the complete minors referred to in the text will be the determinant of the matrix

Pi P2 Ps Pi

ft
2

P2
2

P3
2 P?

Pi
3

P2
3

PS
3

Pi
S

Pi
4

P2
4

/&amp;gt;3

4
P4

4
&amp;gt;

and when the columns of this matrix are divided respectively by pf, p-2
e

, p3
s

, fc , [6 = 1, 2, 3, 4],

which will leave the value of the determinant unaltered, the determinant of the matrix so

modified will represent in succession each of the other 4 minors.

The value of the one above written, paying no attention to the algebraical sign, is by a well

known theorem the product of the differences of PI, pz, Pa, Pi, that is, inasmuch as

(1-ftMl-ft,) (l-p3)(l-/&amp;gt;4)
= 5
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the n minors in question, paying no regard to algebraical sign, become all

equal, and each will be the product of the differences of the roots of xn 1

when the root 1 is excluded, or which is the same thing will be the product
of the differences of all the roots (not excluding 1) divided by n,

Hence the sum of the n squared minors will be the nth part of the square
of the products of the differences of the roots of xn 1. Consequently in

general the discriminant of
2;z/

2
is the nth part of the product of the squares

of the differences of the roots of the function /, and therefore by the process

of reduction of S^/
2 to a sum of n 1 squares it is the positive sign always

which will undergo the diminution of a unit, the number of negative signs

remaining unaltered.

Hence when there are no imaginary roots in/, Bz will have all its signs

positive ;
but when there are i pairs of imaginary roots in f, i of the signs in

Bz will be negative, and thus the character of _B2 ,
or of the quadratic

contour (that is, curve, surface, hypersurface, etc.) represented by 52
= is

completely determined when the number of real and imaginary roots in / is

given.

If we suppose n = 5 we see that according as the number of real roots in

f is 5, 3, or 1, the signs of .B2 regarded as a sum of positive and negative

squares of real linear functions of 4 letters will be :

In the first case the contour B2 is completely imaginary, and it is not only
not possible to apply the Bring-Tschirnhausen method so as to make

simultaneously B2
= 0, B3

= by real quantities u, u
2&amp;gt;

u3 ,
ui} but it is also the

case that such values of u1} u2 ,
u3 , u4 do not exist. This indeed is evident

a priori, from the fact that the equation

must have at least two imaginary roots and therefore the equation in x

would have at least two imaginary roots if the quantities u^, u2 ,
u3 ,

ut were

all real and unequal ;
whereas all the roots of that equation are supposed to

be real.

In the second case the intersection of the contours B.2} B3 may be real or

imaginary : but even if it be real the method will not serve to determine any

it is the oth part of the product of the differences of 1,
/&amp;gt;
lf p2 , p3 , p4 , and consequently the sum of

the squares of the 5 minors is 5 times the 25th part of the squared product of the differences of

the 5 roots. Here represents the general numerical multiplier -^ , that is,
-

.
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single point in such section, because no real right line can be drawn to B2 at

any point which shall lie on the surface.

In the 3rd case at each point of B2 two real right lines can be drawn each

of which will intersect B3 in one real point at least, and accordingly there will

be a duplex-infinity of systems of real values of the u s which will make
B2

=
0, B3 =0 capable of being found by solving only a quadratic and a cubic

equation in succession, and any one of such systems will lead to an equation
of the form

where B, B5 (which it is hardly necessary to notice become respectively i

will each be real.

The By found by Hermite s method may be obtained from the B2 above

given by a real linear substitution impressed on the letters ul} uz ,
u3 , u^ and

consequently the same conclusions continue to apply, that is, the coefficient of

y and the constant will not in general be real unless four of the roots of the

equation in x are imaginary*.

I will now proceed to the principal object of this paper, namely, the

elucidation and extension of the method, contained in Hamilton s report, for

determining the least number of letters which must be contained in one or

more equations in order that they may admit of being solved by means of

equations whose degrees are subject to satisfy certain prescribed conditions.

Before proceeding to the Lemma upon which all that follows is based, it

will be useful to give one or two definitions.

1. Let S be a system of homogeneous equations in an indefinite number
of variables x, y, ..., and let x = a, y = b, ... satisfy all the equations. I call

a, b, ... a solution of S.

2. If a, b, ... is a given solution of S, I call the equation obtained by

operating upon any of those in S with (adx + bdy + . ..)? where q has any

integer value whatever not excluding zero, an emanant of such equation in

respect to the solution a, b, ..., and the new system $j which contains all the

emanants of all the equations in 8 an emanant to S in respect to the given
solution.

* Hamilton remarks (Report of British Association, 1836, p. 307) that &quot; the coefficients of the

new or transformed equation will often be imaginary even when the coefficients of the original

equation are real.&quot; Apparently he was not aware that the criterion for determining when this is

so, depends solely on the intrinsic character of the equation to be transformed.

It should have been noticed before that when two of the roots in the given quintic are equal

the quadratic surface represented by the coefficient of y
3 in the transformed equation becomes a

cone and the reasoning employed in the text falls to the ground. But inasmuch as in this case

two of the values of y become equal, we know a priori that the equation in y must be reducible to

a form with real coefficients, namely,
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3. Let a, b, ..., Oi, 6U ..., be any two solutions of a system of equations.
I call

an alliance of the two solutions.

We may now state the following Sub-lemma. The alliance of any
solution of a system $ with a solution of Slt its emanant in respect to the

first named solution, is a solution of S^

For let a, b, ... be the solution of S which gives rise to S^ Then, calling

the general form of the equations in Sl is E^(x, y, ...), and, supposing &amp;lt;3&amp;gt; to

be of n dimensions,

Hence the effect of substituting x + \a, y + \b, ... for x, y, ... in Sl is merely
to effect upon it a linear transformation, and consequently the alliance of the

solution a, b, c, ... with any solution of $ will be a solution of that system.
If now we find a solution a2 ,

62 ,
... of Sj, and form an emanant & of it in

respect to that solution, it will follow from the sub-lemma that an alliance of

the solutions a, b, ...
; a,, blt ...

;
with any solution a2 , &, ... of S2 ,

that is,

the solution a + Xax + p.a2 , b + \b,+ pbtt ... will be a solution of S2 ,
and so in

general. This I call the Lemma.

An ordinary solution of a system of equations may be called a point
solution, an alliance in which 1, 2, 3, ... parameters enter a line, a plane, a

hyperplane, ... solution.

It will of course be observed that any solution of an emanant to a system
is a fortiori a solution of the primitive which as observed forms a portion
of its emanant.

If 8 be a system of qit ^_x ,
... ql equations of degrees i, iI, ... I

respectively in the variables, it is obvious the 1st emanant will consist of

qi, q* + qi-i, qt + q^ + #_2 ,
... q { + q^ + ... + q,

equations of the degrees i, i-l,i-2, ... 1 respectively, and more generally
in the ?-th emanant the number of equations of the degree

i will be

where in general [0] { is used to denote -

~
&quot; (

~ % + ])
1 . 2 ... i
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The question now arises as to what must be the number of variables in a

system S in order that its rth emanant Sr may admit of a general solution.

If the total number of equations in Sr be called N, it might at first sight be

supposed that the number of variables, or letters as I prefer to call them, in S
must have N + 1 as an inferior limit : but the case is not so the least

number of variables required will be r greater than this, that is, N + r+ 1.

Thus, for example, suppose we consider a first emanant Sl ;
then if alt blt

c1} ... is a solution we know that al + \a, bi + \b, Cj-f Xc, ... is also a solution

whatever X may be. Hence making X = and remembering that the equa-a
tions are homogeneous we see that zero associated with any system of

independent minors of the matrix

a b c ...,

a, b, d ...

will constitute a solution, as for instance
;
a&x ba^ ; ac^ cax ;

... *. Hence
the number of independent quantities in Sl will be 1 less than the number of

letters in S.

* As an illustration suppose $ is a quantic of degree n in (n + 2) letters representing what may
be termed a contour, the analogue in general space of a curve in 2-dimensional or a surface in

3-dimensional space. If we take all the successive emanants of 3&amp;gt; in respect to a point upon it

a, b, c, ... the n resulting functions
[4&amp;gt; included] being functions of the n + 1 minors to the matrix

[(n + 2) places in length]
a b c ...

x y z ...

the contours which they represent will intersect in a faisceau of right lines showing that on a

contour of the nth degree in (n + l)-dimensional space 1 . 2 . 3 ... n right lines lying in the contour

will pass through every point thereof, a fact we are familiar with in the case of a quadric surface

where n=2. We might with equal propriety and more convenience say that Hn straight lines

may be drawn upon and at every point of an n-fold contour of the nih order.

As I have already referred in this footnote to right lines drawn on contours I venture upon a

slight digression connected with this conception. If we have a cubic twofold contour (an

ordinary cubic surface) expressed as a quantic in x, y, z, t, we see that on writing x, y as linear

functions of z, t and substituting their values in $ in order to make the result, a cubic function

of z, t vanish, we have to satisfy 4 equations between the 4 coefficients of substitution, which at

once shows that a finite number of right lines may be drawn upon such contour of which the

number we see at once cannot exceed 34 and which we know aliunde is 33.

It would seem then that for a contour in n letters of the degree 2n - 5 (unless there is some

lurking fallacy in the counting of the constants) we ought in like manner to be able, by expressing

n - 2 of the letters as linear functions of the two remaining ones, to make the result vanish by

solving 2n - 4 non-homogeneous equations of the degree 2n - 5 between the like number of co

efficients of substitution, and as if upon such a contour we must be able to draw a definite number

of straight lines of which the number, supposing that there is no latent fallacy of constant-

counting, would be not greater and in all probability less than (2n 5)
2m~4

,
in fact (2n 5)

2n~6
.

Also it may be shown that, as by Bedetti s theorem we know that every twofold contour (an

ordinary surface) is cut by its linear polar (its tangent plane) in respect to a point upon it, in a

curve having a double point thereat, so a contour of the 3rd order will be cut by its linear and

quadratic polars in respect to any point upon it in a curve having a sextuple point thereat, and

so in general an n-fold contour will be cut by n - 1 consecutive polars (starting from the tangential
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Similarly for the system Sr ;
r zeros associated with any independent

system of complete minors of the matrix

a b c ...

ar br cr

may be taken as the variables, and consequently it is N r 1 and not N 1

which has for its inferior limit the number of equations in 8r . We may
restore to the variables their independence by associating with the equations
in Sr r additional perfectly arbitrary linear functions and there is sometimes

a convenience in substituting in place of the rth emanant as it stands such

emanant augmented by r arbitrary linear functions, which may be called the

completed emanant.

For the purpose of greater clearness of exposition there will be an

advantage in ignoring in the first instance all considerations based upon any
other alliance except of the 1st order, that is, involving only one arbitrary

parameter.

Suppose a system of equations Si consisting of a system S and one

equation more Q. If we are in possession of a linear solution of 8, that is, a

solution

X = ax + \a, y = b1 + \b, ...

by substituting these values in Q, A, may be found by solving an equation
whose degree is that of Q, and thus a point (or ordinary) solution of Si will

have been found.

Let us now consider the question of a linear solution of S containing

q{ , &amp;lt;?;_!,
... ql equations of degree i, i 1, ... 1 respectively. This we shall

call of the type [q{ , qi_l} ... ^]. Let

a, b, ... be any point solution of 8,

and a 1; 6j, ... any point solution of ES,

homaloid as the first of them) in respect to any point upon it in a curve having thereat a point of

multiplicity 1 . 2 . 3 ... n.

It may be well here to notice that a uni-parametrical solution of &amp;lt;t&amp;gt;

= corresponds to drawing
a straight line upon the contour represented by 4&amp;gt;,

and in like manner a bi-parametric solution

corresponds to drawing a plane upon the contour, a tri-parametric solution to drawing a hyper-
plane upon the contour, and so in general. This is why I call such solutions linear, planar,

hyperplanar, etc.

So again in this connexion it may be remarked that upon a quadratic contour in trans-hyper-

space 6 planes lying on the contour pass through every point and in like manner upon a quadratic
contour in 2n letters, 1.2.3...n re-fold homaloids may be drawn upon the contour through
every point thereon.
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the completed emanant of S in regard to a, b, ____ This will be of the type

qc, qi + qi-! ,
...

; qt + gl-_1 + ... + ?2 , qi + q^+ ... + ql + 1.

The alliance of these two point solutions will be a linear solution of S.

Again, the number of variables required for the point solution of ES need not

exceed the number required for the linear solution of the system to which S
is reduced by the abstraction of one equation of the degree i. Hence if we
use [p, q, r, ... rj, 6} to denote the number of variables sufficient for the

solution of a system ofp equations of degree i, q of degree i I, etc. (i being
the number of indices p, q, . . . 6) we obtain the formula of reduction

[p, q, r, ... 0]
= [p-l,p + q,p + q + r, ... p + q +r + ... + 6] + 1*.

Continuing this process of reduction until the first index is reduced to

zero a very easy calculation leads to the formula of obliteration

[p, q, r,s, ... 0]=
where

I)
,+ q,

...j-
ff

+ .2.3...(t-l)
q 4

In applying the process of reduction in the way indicated, the system S will

have been replaced by two systems which we may call a diminished S and a

diminished emanant of 8, that is, S and ES each deprived of an equation (not

necessarily the same in both) of degree i.

In like manner each of these will give rise to two systems, namely, a

diminished self-system and a diminished emanant-system ;
but as the object

is to obtain a formula of reduction for the number of letters required to

obtain a linear solution of 8, and as this number is greater for an emanant of

any system than for the system itself, it was sufficient to follow the main

stream of deduction, in which the first alone is taken account of, in order to

arrive at the required formula. In doing so, 2-? independent equations of the

degree i will have been set apart each of which will have to be solved in its

proper turn.

In the formula of obliteration the index in the first place has disappeared.

Repeating the process we shall come to

P + qi+ [ra , *a, - #2]
* In this and all subsequent formulae of reduction or obliteration the sign

&quot; = &quot;

is to be

understood to mean &quot; not greater than.&quot;

+ Compare Hamilton, Report of British Association, 1836, p. 335, formula 244, and p. 345,

formula 320.



49] On the so-called Tschirnhausen Transformation 541

where r2 ,
s2 ,

... 2 are derived from qlf rlt slt ... 0* in the same way as q^, rlt

slt ... 6l
from p, q, r, s, ... 6 except that i will be replaced by i 1

;
and thus

pursuing the same process we shall arrive at

[p + qi + rz + . . . + ifr_, + J

or say [&amp;lt;r].

The number of variables required for a solution involving one

arbitrary parameter of a homogeneous linear equations being &amp;lt;r + 2, this latter

will be the number sufficient for S to admit of a linear solution without

giving occasion to solve any equation of a degree exceeding i, and also with

out having occasion to solve any simultaneous system of equations other than

linear ones.

Suppose a system of equations of the respective degrees 1, 2, 3, ... i and

a single equation of the degree i+ 1.

The type of the former will be 1, 1, 1, ... 1 to i places,

and of the latter 1, 0, 0, 0, ... i+ 1 .

By the rule which has been established the number of letters required for

the linear solution of the latter will be one more than for the former.

Hence the determination of the Tschirnhausen question of finding what

the degree of an equation must be in order that i consecutive terms following

immediately after the first term in the transformed equation, conjoined with

any more advanced term, may admit of a solution of minimum weight,

contains a determination of the number of variables required to ensure the

possibility of obtaining a linear solution by a system of equations of minimum

weight of a single equation of degree i+ 1
;
for the latter number will be the

former increased by a unit*. The first form of the question is the more

simple in itself; but as the other is more immediately connected with the

object in which the theory originated, I prefer to put it in the latter form.

We may apply the obliteration formula to the indefinite type and obtain

the annexed Table.

Triangle of Obliteration.11111 1 12345 6 7

6 15 29 49 76

36 210 804 2449
876 24570 401134

408696 246382080
83762796636

* For example, to take away the 2nd, 3rd, and another term the degree required is 5 : and to

obtain a linear solution of a cubic the number of variables required is 6.

To take away the 2nd, 3rd, 4th, and another term, employing a solution of the lowest weight,

11 variables are required; in order to obtain a solution, of lowest weight, of a single function of

the fourth degree, 12 variables are required, and so on.
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The degree of the equation sufficient to allow

2, 3, 4, 5, 6, 7, ...

consecutive terms following the first to be removed by a solution of minimum

weight of the auxiliary equations, will be the continued sum of

1, 2, 6, 36, 876, 408696, 83762796636, ...

each increased by 2, that is,

3, 5,11, 47, 923, 409619, 83763206255, ...

These numbers up to 923 agree with those found by Hamilton (Report,

p. 346), the two last have been calculated here probably for the first time.

It would be too arduous a task to seek to give a much further extension

to the table inasmuch as each successive term in the series 1, 2, 6, 36, ... is a

fraction converging to of the square of the preceding term. This becomes

obvious from inspection of the series formed by dividing each number in the

above series by the square of the one before it
;
we thus obtain the fractions :

4636 876 408696 83762796636

1 4 36 1296 767376 167032420416

which are continually diminishing.

But if we call two successive and infinitely distant rows of the Triangle

of Obliteration

a b ...

B ...,

E b
Hence _ converges to +

2
which is always greater than \ . Moreover

calculated for the successive values as far as the table extends, will be
a2

seen to be a continually decreasing fraction and assuming (what awaits exact
D

proof) that it eventually vanishes, must converge to .

The successive values of for the different rows are
Cv

3 15 210 24570 246382080

4 36 1296 767376 167032420416

Inverting these fractions the values, to the nearest integer, become 1, 2, 6,

31, 678, so that there can be no doubt of the truth of the law that the

asymptotic value of the square of each term divided by the square of its

antecedent is \.
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Moreover the numbers last found themselves obviously obey a parallel

law to that of the original series which raises a presumption that it may be

possible to obtain an exact expression for the general term in the original

series or even in the Obliteration Table in its entirety. But be that as it

may, as evidently the asymptotic law is equally true for the sums of the

terms in the first diagonal as for the terms themselves, we arrive at the

interesting fact that if
3&amp;gt;(t)

is the minimum degree of an equation from

which i consecutive terms immediately following the first can be removed,

2&amp;lt;(i + l) converges to a ratio of equality with
&amp;lt;&(if

when i increases

indefinitely.

The minimum number of letters thus found is we see a minimum, at all

events in this sense that the method employed to obtain a solution is in

applicable if that number of letters be reduced. In the words of Jerrard as

quoted by Hamilton (Report, pp. 326, 327)
&quot;

to discover m 1 ratios of m
disposable quantities,

ttj ,
Ct2 &amp;gt;

Q&quot;m

which shall satisfy a given system of Ax rational and integral and homogeneous

equations of the first degree

h2 such equations of the second degree

B = 0, B&quot; = 0, ...

h 3 of the third degree

C = 0, C&quot; = 0, ...

and so on, as far as h
t equations of the t th degree

without being obliged, in any part of the process, to introduce any elevation of

degree by elimination&quot;

But this definition may be superseded by another in which only tjie

intrinsic character of the result arrived at is in question, and not the particular

method pursued to reach it.

Let us agree to consider all equations of the same degree to have the

same weight and that this weight is infinitely greater than that of an equation
of any lower degree. The weight of a system of equations to be regarded as

the sum of the weights of the equations which it contains.

We may, extending but not altering the meaning previously attached to

the word &quot;

solution,&quot; call the ensemble of the equations to be solved in order

to obtain any solution of the given system a solution thereof. If now a

system of equations is given in number and in the degree of each, and each

equation is supposed to be the most general of its kind, but the number of

variables in the system is left disposable, it is easy to see that the above
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process, when it is practicable, leads to a solution of the lowest weight, so

that no increase in the number of letters will have any effect in diminishing

the weight of the solution, whatever may be the process employed to obtain

it. Thus the numbers given by the linear method are minima in regard to

solutions of the lowest weight.

We may however suppose another and more natural condition attached to

the solution to be obtained
;
let n be the highest degree of any equation in a

given general system proposed for solution
;
we know that it is impossible to

avoid the solution of one or more equations of the nth degree. We may
therefore propose to ourselves the problem of determining what is the least

number of letters necessary in order that no equation in the solution shall be

of a degree exceeding n. The minimum thus obtained will in general be

inferior to the minimum required for obtaining a solution of the lowest

weight, and to arrive at it in any particular case it becomes necessary to

make use of the Lemma in its general form which introduces the notion of

alliances above the first order. Hamilton has not touched upon this part of

the subject except in a single case which it was impossible to overlook :

namely, where he considers the problem of taking away four consecutive

terms from the general equation of the tenth or any higher degree.

The process we have seen leads to the conclusion that as many letters are

required as are needed for the solution of two quadratics and seven linear

equations. The solution of one biquadratic equation in the application of

the process being indispensable, he felt the absurdity (if I may use the word)

of stickling at the introduction of one biquadratic more, the use of which has

the effect of lowering the minimum from 11 to 10. See Report of British

Association, 1836, p. 326.

The linear method however or theory of solutions of lowest weight enjoys

this prerogative that the reduction formulae are of a purely algebraical kind,

whereas when the other condition above referred to is introduced, questions

of numerical equality and inequality have to be considered and the theory

ceases to be strictly algebraical. In what follows therefore I shall confine

myself to the only case of any particular interest, namely, that which arises

from the original problem of removing any given number of consecutive

terms (immediately following the first) from an algebraical equation.

We may accept as the general condition to be observed that the degree of

no equation appearing in the solution of a system of equations shall exceed

the highest degree which must perforce figure in such solution, that is, the

highest degree in the system of equations to be solved. In the case then of

n equations of the successive degrees 1, 2, 3, ... i the condition will be that

no equation in the solution shall be of a higher degree than i.
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Thus, for example, if we look back to the easy case of a quaternary

succession of such terms to be removed, we find that the problem reduces

itself to finding the number of letters required to obtain a line-solution of the

system whose type is 1, 1, 1, and that again to finding the number of letters

required to obtain a line-solution to its augmented emanant 2, 4, that is, a

system of 2 quadratic and 4 linear solutions, that is, a point solution of the

completed emanant to this system which will be of the type 2, 7. The

condition imposed here is that no equation shall appear of a higher degree
than a biquadratic. Consequently subject to this condition the number of

letters required to solve a system of one linear, one quadratic, and one cubic

equation, is that sufficient for the plane-solution of a system of 7 linear

equations, that is, 10, which is less by 1 than the number required in order to

obtain a solution of the same system which shall be of the lowest weight.

It might at first sight be supposed that in general the introduction of

solutions involving 2 or more parameters would lead to a very considerable

reduction of the numbers found in the obliteration table
;
this however is not

the case, the reduction in the values obtained by this extended method bears

in general a very small ratio to the number reduced. This is a consequence of

the following rule :

In passing from the point solution of a system to a solution of any kind

with a reduced type, the reduction is effected by segregating a certain number
i of the given equations and obtaining a solution of the remainder which shall

contain i arbitrary parameters.

Now it will be found that the literant (by which I mean the number of

letters sufficient for the solution) will never be diminished by any other kind

of segregation than what may be termed an external segregation*.

*
Imagine the type of a set of equations to be represented by a broad ribbon, in which each

group of equations of the same degree is represented by a band of a distinct colour occupying as

many units of space as there are units in the group. The legitimate process of segregation will

then consist in dividing the band into two, obeying the same conditions as the original one, and

the rule of &quot; external segregation
&quot; amounts to saying that this separation must be effected by a

single straight cut so that no middle portion is to be cut out.

According to this (which is a perfectly natural) representation the rule of external segregation

may in the language of logic be described as the rule of the excluded middle. Thus, for example,

suppose we wish to find the smallest number of variables required for the solution of a system of

equations of which the type is 1, 1, 1, without solving an equation beyond the 8th degree. The
number required may be made equal to (cf. p. 547)

. [1, 1, 0] or to :[1, 0, 0].

But .[1, 1, 0] = [1, 2, 3]=:[3],

and :[1, 0, 0] = [1, 2, 5]=:[5].

Thus the simultaneous segregation of the equations of the 4th and 2nd degrees contrary to the

rule not only raises the weight of the solution but also increases the number of variables required
in the given system in order that the solution may be possible.

As a consequence of this rule it may easily be seen (in the problem of determining the

s. iv. 35
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Let f, g, ... k,l be the type of the system of equations segregated, this

will have no effect in diminishing the literant unless /, g, ... k are the initial

numbers of the type of the given system, in such case I call the segregation

external.

Thus in starting with a system of the type 1, 1, ... 1, 1 the first act of

segregation must consist in setting apart the equation of the highest degree

and finding a line-solution of the system thus reduced. Suppose, to fix the

ideas, that the highest degree is 6 and that we have arrived in the course of

the deduction at a system of linear, quadratic, and cubic equations denoted by

the type m, n, p.

So far as regards observance of the limit 6 for the highest degree in any

substituted system, it would be permissible to segregate one cubic and one

quadratic, but according to the rule of external segregation this will not be

profitable (it will in general be quite the reverse unless m=l) and so in

general.

Let us now proceed to obtain the literant required for the point-solution

of a sequence of i equations of all degrees from 1 to i subject to the condition

that no auxiliary system shall contain an equation of degree higher than i

for the values i = 5, 6, 7, 8 which is as far as the table of obliteration extends.

The rule teaches that this is the same as the literant of a line-solution of a

system of i 1 equations whose degrees extend from 1 to i 1.

It will be useful in what follows to obtain a general formula for the plane-

literant of a system of i quadratics denoted by the type i, 0.

Let us signify by a symbol consisting of a type preceded by q points the

literant to the form of solution containing q parameters of the system to

which the type refers.

Then calling the plane-literant for [i, 0] v{ ,
we have by virtue of the

Lemma
v . =

: [it 0]
=

[i
-

2, 2i + 2]
= ^-_2 + 2i + 2,

t^:[l,0] = .[l,2]
= .[4]=6,

V8 = :[2,0]=:.[2,3]
= .[l,6] = [8]

= 9.

Hence by integrating t&amp;gt;&amp;lt;

-
i&amp;gt;;_2

= 2t + 2 we shall easily obtain :

v,q =2g2 +4? + 3,

0*9-1
- 2g

2 + Zq + 2.

In treating of the literant to[l, 1, 1, 1, 1, 1, 1, l]it will be convenient to find

minimum degree of the equation required for taking away i consecutive terms without any

equation in the solution exceeding the tth degree) that the occasion can never arise in the act of

segregation to take account of any other numerical equalities and inequalities than one or the

other of the two following
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the value of
\ [i, 0, 0] the general expression of which rid of exponentials will

give rise to 3 cases.

Not being desirous of encumbering this memoir with formulae, and as

we shall only have occasion to consider a single case of these formulae, I

adjourn the calculation until we know what the form is of i in regard to 3 in

the case to be calculated, and shall obtain the value of
\ [i, 0, 0] for that case

alone.

I will now consider in succession the literants denoted by

.[1,1,1,1] .[1,1,1,1,1] .[1,1,1,1,1,1] .[1,1,1,1,1,1,1]
subject to the conditions of the solution containing no equation of a degree
higher than the 5th, 6th, 7th, 8th respectively

. [1, 1, 1, 1]
=

. [2, 3, 5]
=

. [1, 5, 11] = . [6, 18]

=
:[4, 25] = 25 + 2. 2 2 + 4. 2 + 3 = 44.

This is the literant for the solution of minimum highest degree and is 3 units
less than 47, the literant for the solution of lowest weightO

It will be observed that . [6, 18] has been expressed in the course of the
deduction by : [4, 25] instead of . [5, 25]. In fact . [6, 18] = [6, 25] and this

latter according as we segregate 1 or 2 of the quadratics is expressible by
. [5, 25] or by : [4, 25].

The expression . [6, 18] might have been obtained immediately from the

triangle of obliteration

111 1 ...

234 ...

6 15 ...

by simply substituting 1 + 2 + 15 for 18. (It is worth noticing that in the
table of obliteration after the 2nd line every initial number in any line ends
with 6 and after the 3rd line every second number in each line ends with 0.)

So in like manner observing that 1 + 2 + 6 + 210 = 219, we have

.[1,1,1, 1,1] =.[36, 219]

which must have been led up to from

[1, 36, 219].

Hence .[1,1, 1, 1,1] = . [1, 35, 182] = [1, 36, 219] = : [35, 219]
= 219 + 2.182 + 2.18+2=905

which is 18 units less than the corresponding literant of lowest weight 923.

Similarly observing that

1 + 2 + 6 + 36 + 24 570 = 24 615,

.[1,1, 1, 1, 1,1] = : [875, 24 615] = 24 615 + 2 (438)
2 + 2 (438) + 2 = 409 181

352
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which is 438 less than the corresponding literant of lowest weight 409 619.

In like manner calling

246 382 080 4- 876 + 36 + 6 + 2 + 1 = 246 383 175 = s,

. [1, 1, 1, 1, 1, 1, 1]
= s + : [408 695, 0]

= [408 695, 0] + t =
| [408 692, 0] + t

where t = s + 2 x 408 695 + 2 = 247 200 567.

Here 408 695 = 2 [mod. 3].

But in general ; [3q + 2, 0]
=

\ [3q
-

1, 0] + 9g + 9

=
:[2, 0] + 9{(g + l) + 2 + (?-l)+ ...+2}

T9 m i=
: LA u

,

Therefore . [1, 1, 1, 1, 1, 1, 1]
= t + 5 + (204 346) (408 697)

= 247 200 572 + 83 515 597 162

= 83762797734.

This number is the minimum degree of equation which admits of 8 of its

terms being removed without solving any equation above the 8th degree in

the same sense as 5 is the minimum degree of equation from which 3 terms

can be removed without solving an equation above the 3rd degree.

The Hamiltonian numbers corresponding to the solutions of lowest

weight, have been found to be

3, 5, 11, 47, 923, 409619, 83763206255

the reduced numbers due to the introduction of planar and hyperplanar

solutions

3, 5, 10, 44, 905, 409181, 83762797734,

the differences are 1, 3, 18, 438, 408521.

The ratio of these last numbers to the numbers above them constituting a

rapidly decreasing series, it is obvious that the &quot;

asymptotic law will remain

good for the second as well as for the first line of numbers : so that if
&amp;lt;j) (i)

expresses the minimum degree of an equation from which i terms can be

2rf(i + l) .,,

abstracted without solving an equation above the itb degree, . ..
a

will

&amp;lt;p \t)

continually decrease towards and finally (when i is infinite) coincide with

unity.

I have already defined the weight of a solution. According to analogy

(as, for example, in the case of a given symmetric function 2aa
. . & . . .) the

degree of the equation of highest degree in a solution may be termed its

order.

* For |[2, 0]= [2, 9]=:[9]= 12.
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Thus then the two first series of numbers which have been given express

the first of them the literant of the solution of lowest weight, the second the

literant of the solution of lowest order. The numbers in the first series up to

923 and in the second series up to 10 appear in Hamilton s Report, all the

others are here presented (it is believed) for the first time.

A solution is of course to be understood to mean a non-simultaneous but

not independent system of equations from which a solution of a given system
of equations may be derived. The equations in the solution-system form an

arborescence or a ramification of consecutive systems, meaning thereby that

the solution of any one of them depends upon a successive process of

substitution of values of variables deduced from equations which precede it in

such ramification. Some of the simpler of these arborescences I propose to

delineate graphically in a subsequent communication.

Invited to participate in the centenary number of the
&quot;leading

Mathe
matical Journal in the world, it occurred to me that compatibly with my
feeble means no more suitable contribution could be made than one which at

the same time celebrates the centenary of the discovery due to the long and

persistently ignored author of the method which it is the object of this

memoir to elucidate and extend. I offer it (an aloe-flower of 100 years

growth) as a tardy Bessarabian &quot;satisfaction to the Manes of&quot; Bring.



50.

SUR UNE DECOUVERTE DE M. JAMES HAMMOND RELATIVE
i UNE CERTAINE S^RIE DE NOMBRES QUI FIGURENT
DANS LA THEORIE DE LA TRANSFORMATION TSCHIRN-

HAUSEN.

[Comptes Rendus, civ. (1887), pp. 12281231.]

ON peut se proposer le probleme suivant :

fitant donne un quantic, le faire disparaitre en exprimant chaque variable

comme une fonction lineaire et homogene de deux variables.

Si le nombre des variables dans le quantic est suffisamment grand, quel

que soit son degre n, ce probleme peut s effectuer au moyen d un systeme
auxiliaire d equations, tel que pour r^soudre le systeme on n aura jamais
occasion de resoudre une equation d un degre superieur a n.

En nommant N le nombre minimum des variables necessaire pour que
cela soit possible, cette question se presente : trouver la valeur de N pour une

valeur donnee de n.

Par exemple, pour n = 2, on voit bien que N est 4.

Pour n = 3, on peut demontrer que N est 6
; pour n = 4, N= 11, etc.

Mais on peut imposer une condition plus rigoureuse sur le caractere du

systeme auxiliaire d equations qui aura 1 effet d augmenter la valeur minimum
N. On peut exiger que le type du systeme auxiliaire d equations sera le plus

simple possible ou, comme je prefere le dire, sera d un poids minimum. Le

poids d une equation depend seulement de son degre i et peut etre pris dgal

a
p*,

ou p est une constante indefmiment grande. De plus, le poids d un

systeme d dquations peut etre defini comme e*tant la somme des poids des

equations individuelles qu il contient.

On a ainsi un criterium exact pour determiner lequel des deux systemes a

son poids inferieur a celui d un autre
;

le terme poids minimum devient

exempt de toute ambiguiite, et Ton comprend ce que veut dire le systeme
d equations le plus simple d un nombre quelconque de tels systemes.
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Avec la premiere definition de N, ses valeurs successives seront

3, 4, 6, 11, 45, 906, 409182, 83762797735, ....

En imposant la condition la plus rigoureuse, on obtient la serie moins

transcendante

3, 4, 6, 12, 48, 924, 409620, 83763206256, ...

que je nommerai E
,
Elt E2 ,

E
3&amp;gt;

....

En diminuant ces derniers chiffres de 1 unite, on trouve la serie de

nombres

2, 3, 5, 11, 47, 923, 409619, 83763206255, ...,

dont les six premiers ont ete calculus par Hamilton (voir Report of 6th

Meeting of British Association, pp. 3467, 1837).

Hamilton a, en effet, montre que le degre d une equation algebrique,
etant pris successivement egal a 2, 3, 5, 11, 47, ..., on pent, par la methode

dite de Tschirnhausen, la transformer dans une autre ou 1, 2, 3, 4, 5, ... termes

consecutifs, apres le premier, manquent, sans avoir occasion de resoudre

aucune Equation au-dessus des degres 1, 2, 3, 4, 5, ... respectivement.

J ajoute que le systeme d equations auxiliaires, auquel on parvient par la

methode qu il emploie, sera du type le plus simple possible. Si, pour 6ter

i termes consecutifs, on voulait se borner a la seule condition de n avoir pas
a resoudre une equation au-dessus du degre i, alors, au lieu des nombres 2, 3,

5, 11, 47, ..., on aurait les nombres plus transcendants 2, 3, 5, 10, 44,

C est la s^rie 2, 3, 5, 11, 47, ... que je nomme les nombres de Hamilton, et

que je designe par H ,
Hl , H2 ,

H3 ,
Hiy .... Pour les obtenir (ou plutot

leurs differences) par la methode de Hamilton, on a besoin de construire un

triangle de chiffres (voir mon Memoire dans le Journal de Kronecker, t. c.

p. 477 [above, p. 541]).

Mon collaborateur, M. James Hammond, a trouvd un tres beau theoreme

pour d^duire les N immediatement et successivement les uns des autres, sans

introduire de nombres etrangers.

En se servant de /3r (q) pour representer
?^ ~ ^ &quot;

-^
,
il a trouve

la formule vraiment remarquable

Hi = 2 + & (#&amp;lt;_,)
-^ (J7,_2) + & (#&amp;lt;_)

- ....

A ce theoreme. j ajoute comme corollaire une formule qui se rapporte a la

seYie de nombres E (qui ne sont autre chose que les nombres H, augmentes
chacun de I unite

), qui est bonne pour toutes les valeurs de r superieures a

A (Er)
-A (Er_J + ^2 (Er^) -...+ (-y/3r (EQ)

= 0,

c est-a-dire Er^ = 1 + & (Er_2)
- & (Er_3) +...+ (-}*& (E ).
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4 3.2
Far exemple, 1 ^ + ^

=
0,

IM. 2 1.2.3

12 6.5 4.3.2
1 M.2 1.2.3&quot;

48 12.11 6.5.4 4.3.2.1

~T~ 1.2 T72~.~3
+

1. 2.3.4

_ 924 48.47 _ 12.11.10 6.5.4.3 _
&quot;T~ T72~ 1.2.3

f
1 . 2 . 3 . 4

C est par la methode de fonctions generatrices que M. Hammond a reussi

a etablir cette echelle de relation entre les nombres de Hamilton, lequel

evidemment n avait pas le moindre soupcon de 1 existence d une dchelle

pareille.

Si Ton prend les differences des nombres de Hamilton, on obtient la serie

1, 2, 6, 36, 876, ..., qu on peut nommer h 1} h 2 ,
hs ,

h4 ,
h5 ,

On savait deja

par demonstration que hi+1 ~- hf est plus grand que ^ pour toute valeur finie

de i et avec certitude morale que ce rapport devient ^ quand i est infini.

Avec la formule de M. Hammond, on peut donner une demonstration rigour-

euse de ce dernier fait et en meme temps etablir ce nouveau theoreme :

Hi+l -f- Hi 2
est plus petit que % pour toute valeur de i finie et plus grande que

V unite, et egal a quand i est infini.
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ON HAMILTON S NUMBERS.

BY J. J. SYLVESTER AND JAMES HAMMOND.

[Philosophical Transactions of the Royal Society of London, CLXXVIII. (1887),

pp. 285312; CLXXIX. (1888), pp. 6571.]

INTRODUCTION.

IN the year 1786 Erland Samuel Bring, Professor at the University of

Lund in Sweden, showed how by an extension of the method of Tschirn-
hausen it was possible to deprive the general algebraical equation of the 5th

degree of three of its terms without solving an equation higher than the 3rd

degree. By a well-understood, however singular, academical fiction, this

discovery was ascribed by him to one of his own pupils, a certain Sven
Gustaf Sommelius, and embodied in a thesis humbly submitted to himself
for approval by that pupil, as a preliminary to his obtaining his degree of

Doctor of Philosophy in the University*. The process for effecting this

reduction seems to have been overlooked or forgotten, and was subsequently
rediscovered many years later by Mr Jerrard. In a memoir contained in

the Report of the British Association, for 1836, Sir William Hamilton
showed that Mr Jerrard was mistaken in supposing that the method was

adequate to taking away more than three terms of the equation of the 5th

degree, but supplemented this somewhat unnecessary refutation of a result

known a priori to be impossible, by an extremely valuable discussion of a

question raised by Mr Jerrard as to the number of variables required in

order that any system of equations of given degrees in those variables shall

*
Bring s &quot;Reduction of the Quintic Equation

&quot; was republished by the Rev. Robert Harley,
F.R.S., in the Quarterly Journal of Pure and Applied Mathematics, vol. vi. 1864, p. 45. The full

title of the Lund Thesis, as given by Mr Harley (see Quart. Journ. of Math., pp. 44, 45) is as

follows : &quot;B. cum D. Meletemata quaedam mathematica circa transformationem aequationum
algebraicarum, quae consent. Ampliss. Facult. Philos. in Regia Academia Carolina Praeside
D. Erland Sam. Bring, Hist. Profess. Reg. & Ord. publico Eruditorum Examiui modeste

subjicit Sven Gustaf Sommelius, Stipendiarius Regius & Palmcrentzianus Lundensis. Die xiv

Decemb., MDCCLXXXVI, L.H.Q.S. Lundae, typis Berlingianis.&quot;
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admit of being satisfied without solving any equation of a degree higher
than the highest of the given degrees.

In the year 1886 the senior author of this memoir showed in a paper* in

Kronecker s (better known as Crelle s) Journal that the trinomial equation
of the oth degree, upon which by Bring s method the general equation of that

degree can be made to depend, has necessarily imaginary coefficients except
in the case where four of the roots of the original equation are imaginary,
and also pointed out a method of obtaining the absolute minimum degree M
of an equation from which any given number of specified terms can be taken

away subject to the condition of not having to solve any equation of a degree

higher than Mf. The numbers furnished by Hamilton s method, it is to be

observed, are not minima unless a more stringent condition than this is

substituted, namely, that the system of equations which have to be resolved

in order to take away the proposed terms shall be the simplest possible, that

is, of the lowest possible weight and not merely of the lowest order
;
in the

memoir in Crelle, above referred to, the author has explained in what sense

the words weight and order are here employed. He has given the name of

Hamilton s Numbers to these relative minima (minima, that is, in regard to

weight) for the case where the terms to be taken away from the equation

occupy consecutive places in it, beginning with the second.

Mr James Hammond has quite recently discovered by the method of

generating functions a very simple formula of reduction, or scale of relation,

whereby any one of these numbers may be expressed in terms of those

that precede it : his investigation will be found in the second section

of this paper, and constitutes its most valuable portion. The principal

results obtained by its senior author, consequential in great measure to

Mr Hammond s remarkable and unexpected discovery, refer to the proof of

a theorem left undemonstrated in the memoir in Crelle above referred to,

and the establishment of certain other asymptotic laws to which Hamilton s

Numbers and their differences are subject, by a mixed kind of reasoning, in

the main apodictic, but in part also founded on observation
|.

It thus

[* Above, p. 531.]

t For instance, an equation of not lower than the 905th degree may be transformed into

another of that degree, in which the 2nd, 3rd, 4th, 5th, 6th, 7th, terms are all wanting, by means
of the successive solution of a ramificatory system of equations, of no one of which the degree

exceeds 6, whereas by the Jerrard-Hamiltonian method this transformation could not be

effected for the general equation of degree lower than the 6th Hamiltonian Number, namely,
923. So for the analogous removal of 5 consecutive terms the inferior limit of degree of the

equation to be transformed would be 47 by the one method, but 44 (the lowest possible) by
the other. In the case of 4 consecutive terms Hamilton could not avoid being aware that 11, the

4th number which I have named after him, might be replaced by 10, as the lowest possible

inferior limit of the equation to be transformed.

{ In the 3rd section, communicated to the Society after the 1st and 2nd had gone to press,

the empirical element is entirely eliminated, and the results reduced to apodictic certainty.
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became necessary to calculate out the 10th Hamiltonian Number, which

contains 43 places of figures. The highest number calculated by Hamilton

(the 6th) was the number 923, which comes third in order after 5 (the

Bring Number), 11 and 47 being the two intervening numbers. It is to be

hoped that some one will be found willing to undertake the labour (consider

able, but not overwhelming) of calculating some further numbers in the

scale.

The theory has been &quot; a plant of slow
growth.&quot; The Lund Thesis, of

December 1786 (a matter of a couple of pages), Hamilton s Report of 1836,

with the tract of Mr Jerrard therein referred to, and the memoir in Crelle,

of December 1886, constitute, as far as we are aware, the complete biblio

graphy of the subject up to the present date.

1. On the Asymptotic Laws of the Numbers of Hamilton and

their Differences.

Consider the following Table :

83762796636

Any line of figures, say p, q, r,s,t,... 6, in the Table being given, to form
the subsequent line

q-^,
rlf sl ,tl , ... lf we write

_
Ol

_

1.2.3

1.2.3.4

1.2.3.4.5
, p(p

1.2.3 1.2

.
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If we call the nth term of the mth line [m, ri], the general law of deduc
tion may be expressed by the formula

[m + 1, n] = - Bn+1 ([m, 1]
-

1) +T[m, w + 1 - i] ; [m, 1],

where .#;& means the coefficient of zi in (1 z}~
k

.

The negative term Bn+1 ([m, 1] 1), it may be noticed, arises from

decomposing the first term of [m + 1, n], as given by the original formulas,
into two parts, of which it is one. Thus, for example,

1.2.3.4.5
is changed into

1.2.3.4.5 1.2.3.4 P

The numbers in the hypothenuse of this infinite triangle, namely,

1, 1, 2, 6, 36, 876, 408696, 83762796636, 3508125906207095591916,

6153473687096578758445014683368786661634996, ..................... ,

are what I call the Hamiltonian Differences, or Hypothenusal Numbers*;
and their continued sums augmented by unity, namely,

2, 3, 5, 11, 47, 923, 409619, 83763206255, 3508125906290858798171,

6153473687096578758448522809275077520433167, ........................ ,

are what I call the Hamiltonian Numbers. The two latter of these have

been calculated by means of Mr Hammond s formula, presently to be

mentioned, and the corresponding Hypothenusal Numbers deduced from

them by simple subtraction. Their connection with the theory of the

Tschirnhausen Transformation will be found fully explained in my memoir

on the subject in Vol. c. of Crelle. My present object is to speak of the

numbers as they stand, without reference to their origin or application f.

* The other numbers of the &quot;triangle,&quot; whose properties it may be some day desirable to

investigate, may be termed co-hypothenusal numbers of order measured by their horizontal

distance from the hypothenuse their vertical distance below the top line denoting their rank.

In the sequel the development is given of the half of a hypothenusal number (of the first order)
in a descending series of powers (with fractional indices) of the half of its antecedent, the coeffi

cients in the principal part of such series being (not, as might have been the case, functions of

the rank, but) absolute constants. These may be termed the hypothenusal constants. The
values of the first four of them are shown to be 1, |, ^, ^.

t The reader will be disappointed who seeks in Hamilton s Report any systematic deduction

of the numbers which I have called after his name. He treats therein the more general question
of finding the number of letters sufficient for satisfying any system of equations of given degrees

by means of a certain prescribed uniform process whereby the necessity is obviated of solving

any equation of a higher degree than the highest one of the given equations, and among, and

mixed up with, other examples considers systems of equations of degrees 1, 2, 3; 1, 2, 3, 4;
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The question arises as to whether it is possible to deduce the Hamiltonian

Differences, or to deduce the Hamiltonian Numbers, directly in a continued

chain from one another without the use of any intermediate numbers.

Mr James Hammond has shown that it is possible, and has made the

remarkable discovery that it is the Numbers of Hamilton, and not the

Hypothenusal Numbers, which are subject to a very simple scale of relation.

These being found, of course the Differences become known. This is

contrary to what one would have expected. A priori, one would have

anticipated that the determination of the Hypothenusal Numbers would
have preceded that of their sums.

I leave Mr Hammond to give his own account of his mode of obtaining
the wonderful formula of reduction, which, by a slight modification, I find,

may be expressed as follows: Using E{ to denote the (i + l)th Hamiltonian
Number augmented by unity, so that E =3, E1

=
4&amp;lt;,
E2=6, E3

= I2, E4 =4&amp;gt;8,...;

1, 2, 3, 4, 5; 1, 2, 3, 4, 5, 6; for which the minimum numbers of letters required to make such

process possible (when the equations are homogeneous) are 5, 11, 47, 923, respectively. Accord

ingly he has no occasion to employ the infinitely developable Triangle which gives unity and
cohesion to the problem which deals with an indefinite number of equations of all consecutive

degrees from 1 upwards. This triangle, which plays an important part in the systematic treat

ment of the problem, first appears in my memoir on the subject in the 100th volume of Crelle.

It is proper also again to notice that what I call the Numbers of Hamilton (at all events those

subsequent to the number 5) are not the smallest numbers requisite for fulfilling the condition
above specified. Smaller numbers will serve to satisfy that condition taken alone ; but when
such smaller numbers are substituted for Hamilton s the resolving equations will be less simple,
inasmuch as they will contain a greater number of equations of the higher degrees than when
the larger Hamiltonian numbers are employed. This distinction will be found fully explained
in the memoir cited, and the smallest numbers substitutable for Hamilton s are there actually
determined for r equations of degrees extending from 1 to r for all values of r up to 8 inclusive.

I have added nothing (for there is nothing to be added) to the fundamental formula of

Hamilton expressed by the equation

[X, /*, v, ... 7r]
= l + [X-l, X + /i, X + /JL + V, ..., \ + n + t&amp;gt;+. ..+*],

where, supposing the letters X, /*&amp;gt;&quot;,- T, to be i in number, [X, /j., v, ... TT] means the number of
letters required in order that it may be possible to satisfy, according to the process employed by
Hamilton (in conformity with a certain stipulation of Jerrard), a system of X equations of degree i,

H equations of degree i-1, v equations of degree i-2, ..., ir equations of the degree 1, without

solving any single equation of a degree higher than i. This formula, applied X times successively,
will have the effect of abolishing X and causing [X, /*, v, ... TT] to depend on [/* ,

v
, ... * ], where

M ,
v

, ... IT are connected with X, n, v, ... w by means of the formula given at the commence
ment of the present paper, but where instead of the letters X, p., v, ... I have used the letters

p, q, r, ....

It is presumable that the reduced Hamiltonian numbers would be found much less amenable
to algebraical treatment than the Hamiltonian numbers proper ; for numerical equalities and
inequalities have to be taken account of, in determining them, which have no place in the deter
mination of the latter numbers. Hamilton, as already stated, expressly alludes to the reduction
of 11 to 10, but with that exception has avoided the general question of finding the absolutely
lowest number of letters required in order that a system of equations (expressed in terms of
those letters) of given degrees may admit of being satisfied without the necessity arising to solve

any equation of a higher degree than the highest of the given ones.
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and /3iTO to signify the coefficient of V in (1 + t)
m

; then, for any value of i

greater than unity,

ft Ei - &#&amp;lt;_! + ft2Ei_,
-

ft3 Ei_3 + ... + (-)* &# = 0.

Or in other words, writing ft(l
Ei=l, ft1Ei^ 1

=Ei-l ,
and replacing i 1 by t,

J 4
= 1 + &#*_! -ftsEi_,+ ... + (-)*i&+ l

#
for all values oft greater than zero.

This is eminently a practical formula, as all the numerical calculations

made use of to obtain any E are available for finding the E which follows.

Dispensing with the symbol ft, we may deduce all the values of E succes

sively from those that go before by means of the equivalence

S = (l- t}
E + t (I -t)

E
&amp;gt; + ?(l -

t)
E* + ... = 1 - 2t,

which, by equating the powers of t on the two sides of the equivalence, gives

4.33.2.1

6\5 _ 4.3.2 3.2.1.0 =
s
~ f r72~l72T3

+
1.2.3.4~

and so on.

I use the term equivalence and its symbol in order to convey the neces

sary caution that the relation indicated is not one of quantitative equality ;

for, although the series on the left-hand side of the symbol converges for all

positive values of t less than 2, it is never equal to the expression on the

right-hand side except when t = 0. Thus, for example, when t is unity the

two terms of the equivalence are and 1, and when t = % they are

2-^o 4. 2- -Ei- 1
4- 2--E- 2

-(- ... and 0, respectively ;

and for all values of t within the limits of convergence the value of the left-

hand side is in excess of the value of the right-hand side of the equivalence

by a finite quantity which decreases continuously as t decreases from 2 to 0,

and which vanishes when t = 0*.

In a word, the generating equation is not an equation in the usual sense of

the term. Conceiving each term of the series S to be expanded in ascending

powers of t, and like powers of t to be placed in columns under and above

* Of the truth of the statement that the excess never changes sign, and continually decreases,

I have scarcely a doubt, but it requires proof. Mr Hammond remarks that

where Fn (t)
is positive for all positive values of t. Probably a proof of the point in question

might be deduced from this expression, but I have not thought it necessary to investigate the

matter.
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each other, the double sum may be taken as a vertical sum of line-sums or as

a horizontal sum of column-sums, and, although for licit values of t each sum
has a finite value, the two finite values are not identical, just as a double

definite integral may undergo a change of value when the order of its inte

grations is reversed *.

I have noticed [see above, p. 542] that the value of any Hamiltonian

Difference divided by the square of the preceding one was always greater
than

,
and stated as morally certain, but &quot;

awaiting exact
proof,&quot;

that

this ratio ultimately becomes . By aid of Mr Hammond s formula for

the numbers, I shall now be able to supply this proof, and at the same
time to show that the ratio of a Hamiltonian Number to the square of its

antecedent (which, of course, converges to the same asymptotic value |) is

always less than that limit f.

We must in the first place prove that in the series

&#&amp;lt;_,
-

(33 Ei_2 + &Ei_3
-

/35 Ei_&amp;lt; + . . .

the absolute value of each term is greater than that of the one which
follows it.

In proving this, I shall avail myself of the property of the Hypothenusal
Numbers disclosed in the process of forming the triangle given, at the outset

of the memoir, namely, that Et E^ is greater than (E^ Ei_2)
2

/2.

Let us suppose that the law to be established holds good for a certain

value of i. For the sake of brevity, I denote Eiy E^, E^, E{_3 , ... by
N.P.Q, R,....

We have then

p 1 = Q(Q-1) R(R-l)(R-2)
2.3 2.3.4

,

2.3 2.3.4

(-l)6Sf-2)(-3)(-4)
2.3.4.5

*
Professor Cayley has brought under my notice a not altogether dissimilar, but perhaps less

striking, phenomenon, pointed out by Cauchy, that, although the series

- L JL_ _L
x/2

+
V3 x/4

+ -
is convergent, its square

thatis

is divergent.

t The fortunate circumstance of the two ratios in question being always respectively less and
greater than the common asymptotic value of each of them enables us to find the value of the
constant in the expression c2*, which is asymptotically equivalent to the half of the xth Hamil
tonian or Hypothenusal Number by a method exactly analogous to that of exhaustions for find

ing the Archimedian constant correct to any required number of decimal places. See end of this
section [p. 506, below].
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If, then, the law to be proved is true for all the consecutive terms of the

upper series it will obviously be true for the second series, abstraction being

made of its first term, provided that no antecedent is less than its consequent

in the series

Q-2 .R-3 -4

.;* ,.:/ , ;f|4
[.

5
&quot;

which is true a fortiori if

Q R S
3 4 5

&quot;

continually decrease, as is obviously the case, inasmuch as

Q, R, S,...

form a descending series.

In order, then, to establish the necessary chain of induction, it only

remains to show that

3P(P-l)-Q(Q-l)(Q-2)
is positive.

Now (P - Q)
- (^^

2

,
and d fortiori P -

(i^*? ,

is positive for a reason previously given.

And, if in the series 3, 4, 6, 12, 48, 924, ... we make exclusion of the first

three terms, we have always

R= or
&amp;lt;|,

902

and consequently P &amp;gt;

-^
*.

And, since under the same condition (P - 1)/(Q
-

1) &amp;gt; 4,

3P(P -I)- Q2 (Q-l),wdd fortiori 3P(P-l)-Q(Q-I)(Q-2},

is positive if 12P - Qz
is positive, which is the case, since P &amp;gt; 9^/32.

Hence, since the theorem to be proved is true for the several series

3.2.1

TT2
* The proof that the ratio of each term of the series 4, 6, 12, 48, 924, ... to its antecedent

continually increases is too easy and too tedious to be worth setting forth in the text.
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it will be true universally ;
for in all the succeeding series the term we have

called R will be higher than the term 6 in the scale 3, 4, 6, 12, 48, ____

Hence P - 1 = or &amp;lt; ^(Q
2 -

Q).

For the initial values of Q, P, (namely, 3, 4)

(When P represents any term beyond the first it is very easy to prove,
but too tedious to set out the proof, that the sum of all the terms after the

first in the series equated to P 1 will be less than 2
;
so that, except in

the case stated, P &amp;lt; | (Q
2 -

Q).)

For the series 12, 48, 924, ... we have seen that P &amp;gt; 9Q2

/32.

Hence, for the series 48, 924, ...,

But

CP-Q R*~ &quot;&quot;

- x/, -
Hence P &amp;gt;

^-^ - -

^- Q*, and P &amp;lt;

5L*
.

Hence, when P, Q, are at an infinite distance from the origin,

P Q P
Hence, also, ____

ultimately =^ =
|,

which proves the theorem left over for &quot;exact
proof&quot;

in the memoir
referred to.

It is convenient to deal with the halves of the sharpened* Numbers of

Hamilton, which may be called the reduced Harniltonian Numbers, and
denoted by h with a subscript, or, when required, by p, q, r, ... (the halves

of P, Q, R, ... respectively).

We have then

q
Of /^ -&amp;lt; ^v2

2

Numbers increased by unity may conveniently be denominated sharpened numbers, and
numbers diminished by unity flattened numbers.

s iv. 36
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We may find a closer superior limit to p in terms of q as follows

_l- 26 24

in which inequality it may be shown by inspection up to a certain point, and
after that by demonstration, the tedium of writing out or reading which
I spare my readers and myself, that P may be substituted for its flattened

value P 1.

Wo have then P &amp;lt;

=- =** + *.

Let us suppose that S, R, are not lower in the scale of the E s than

12, 48, respectively; so that P is not lower than E6 ,
which is 409620.

Then, as we have previously shown,

Moreover, we have

P &amp;lt; i (Q
2 - Q\ whence it follows that Q2

&amp;gt; 2P + Q,

and, a fortiori, Q-&amp;gt;2P.

Similarly R* &amp;gt; 2Q,

and S* &amp;gt; 2R.

XT
2 * Z

N W

that is, P &amp;lt; J. Q&quot;

- Ql +J^ Q.

This result, expressed in terms of the reduced numbers p, q, takes the

form

and we have previously shown that

at all events when P is not lower in the scale than E6 .

The fraction J^ arises from our having substituted for R3 the inferior

value (^ Q)^ ; but, the higher we advance P in the scale, the nearer R?

approaches to 2Q, and is ultimately in a ratio of equality with it. But, if we

had written (2Q)* for R3
, the coefficient, which now stands at ffi, would
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have been f . In like manner, as P and Q are travelled on in the scale,

R2 and 8* become indefinitely near to 2Q and (2jR)
2
,
that is, 8Q, so that the

coefficient of Q in the superior limit approximates indefinitely near to

+!+, that is, f ,

and the two limits of p which have been obtained become

2
2 -fgf +( + *)?,

-
($ + 17) *-*?,

where ultimately e and 77 are infinitesimals*.

Hence it follows that the ultimate value of

. _ .

that is,
*

3
-1 = - Vf when i = oo .

Let X, //,, v, ... represent the halves of the Hypothenusal Numbers in the

triangle given at the commencement of the paper, that is, the differences of

the numbers which we have called p, q, r, ____

Since P = f i^ and q
= r- fr*,

p q = &amp;lt;f f^ q, and ^ r = r2

fr* r.

Obviously, therefore, as a first approximation when X, /*, are very ad

vanced terms in the hypotheuuse,
X = /*

2
.

Let us write X, = p? + K^
for a second approximation.

Then q
2 -

f^ -
q = (r

2 -
f r*

-
r)

2 + K (r
2 -

f r$
-

r)
a

,

or, neglecting terms of lower dimensions than r8
,

Therefore ^r
3 = Zr3 + tcr

2a
.

Consequently a = f and * =
f.

Thus, then, for the consecutive Hypothenusal Numbers X, /j,,

X = ^ +^ + ....

Let x = /4 + ^i + ^ )

or saJ *?*+1
=^2 + |^f + pxyxt

where T/^ is the a;th term in the series
, 1, 3, 18, ....

* As a matter of fact, it will be found that, as soon as q and p attain the values 6, 24,
9
2 -

|jl may be taken as a superior limit. It may be noticed also, to prevent a wrong inference
being drawn from the above expressions, that, as will hereafter appear, 17 is an infinitesimal of
the order 1/gi, when q is infinite.

362
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The successive values of px and their differences are given in the annexed

Table.

The decimal figures following those given in p8 , required for ulterior

purposes, being 5795.

An examination of the column of differences for x= 5, 6, 7, 8, shows that

the ratios of each to the rest go on decreasing somewhat faster than their

squares: this makes it almost certain that ps p9 will be between the 400th

and 500th part of 000280, and that accordingly the value of pg will be

6111111, &c. I believe it is beyond all moral doubt that the ultimate

value of p is exactly |; and, indeed, it was the conviction I entertained of

this being its true value, when I had calculated p7 ,
that led me to undertake

the very considerable labour of ascertaining the 10th Hamiltonian Number

in order to deduce from it the value of ps . This being taken for granted*,

we may proceed to ascertain a further term in the asymptotic value of

expressed as a function of rjx .

For, calling px
-
{^ = Bx and ^x = qx ,

we have 86
= -00658611,

87
= -00028132,

Be
= -0000006047,

96=21,
I

q7
= 452, &amp;gt; neglecting decimals.

q8
= 204649,1

Thus (Sg)6
= 1383,

= 12375.

The value of (Sq\
-

(Bq)7 being 0111,

and of (8(7)7
-
(Bq\ 0035,

*
It is reduced to certainty in the supplemental 3rd section.



51] On Hamilton s Numbers 565

we may feel tolerably certain, from the Law of Squares, that (Bq)s (8q}9

will be somewhere in the neighbourhood of the tenth part of 0035, and

accordingly that (8q\ is about 1234, so that the probable value of (^q)^ is

1234 ....

Thus \ve have found

the only moral doubt being as to the degree of closeness of propinquity of

the coefficient of 17,* to the decimal 1234 ...*.

For the benefit of those who may wish to carry on the work, I give the

following numerical results which have been employed in the preceding
arithmetical determinations :

E**~ r
&amp;gt; = 6153473687194529702895764001115884685871706

1 . Z . o

--3) = 1173024302352295838445
1.2.3.4

1.2.3.4.5

1.2.3.4.5.6

-.---6)
y

1.2.3.4.5.6.7

17, -=-174 =24-33333333 ...

776
-r 775

= 466-54794520 ...

77^776 = 204951-34925714 ...

773-777 = 41881671184-54776412 ...

779
-

773
= 1754062953159389842293-346657805 . . .

V74 = 4-24264068 ...

V i?5
= 20-92844819 ...

V*76
= 452-04866994 ...

V*77
= 204649-45227877 ...

V778
= 41881534751-051659567667 ...

Finally, it is interesting to find the asymptotic values of hx and 77,5 (the

halves of the sharpened Hamiltonian and of the Hypothenusal Numbers),
which are ultimately in a ratio of equality to each other, in terms of x.

* The exact value of the coefficient of 7?2f ,
left blank in the text, is proved in section 3 to be |f ,

that is, the recurring decimal -123456796.
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Obviously each of these is ultimately in a ratio of equality with M**, where

M is a constant to be determined.

Let M= 102 &quot;

and ux =

Then, for finite values of x, remembering that (in the preceding notation)

p &amp;lt; q
2 and A, &amp;gt; p?,

ux must be intermediate between the corresponding terms of the two series

17
=

, 1, 3, 18, 438, 204348, 41881398318, ...,

h = 2, 3, 6, 24, 462, 204810, 41881603128, ....

By means of this formula, writing for ux corresponding values of
rj and h,

and retaining so much of the two corresponding determinations of a. as is

common to both, we can find a precisely to any desired number of places of

decimals, as shown in the following Table, in which 18 and 24 are taken as

the terms of place zero in the respective series :

ux = 18, 438, 204348, 41881398318,

a = -32, -401, -4088, 4089863...

uz = 24, 463, 204810, 41881603128,

a =-46, -413, -4090, &quot;4089866....

Hence, if we now change the origin, taking and 2 as the zero terms, we
have approximately

and Slog Jlf=2-408986
,

which gives M- 1 4654433 ...*.

As a verification, since 23 = 8, (1 46544)
8 should lie between 18 and 24;

and, as a matter of fact, a rough calculation gives

(l-46544)
2 = 2-1473 ...,

(2-1473)
2 = 4-608 ...,

(4-608)
2 = 21-234 ...,

which is about midway between the two limits. J. J. S.

2. Proof of the Formula for the Successive Determination of each in

turn of Hamilton s Numbers from its Antecedents.

Let 1 + x + #2 + a? + a?+ of + oc
6 + . . .

= FQ (as),

36^ + 210^ + 804 5 + 2449#6 +...=FS

* See Note 1, p. 578 [below].
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where the coefficients of the various powers of x are the numbers set out in

the triangular Table at the commencement of this paper.

If, in general, we write

Fn (as)
= anxn + bnxn+l + cnx

n^ + dnxn+3 + . . .,

the coefficients of Fn+1 (as), expressed in terms of those of Fn (x), are as

follows :

h / i st J\ i
fi \ n

rt~f*i
~~~

^Ti ~&amp;gt; ^ti^ tL i~
~

= dn + an cn 4

1 . Zi , o

, OnK* D (o + 2) (3an + 1)--
, n n
J- . -^ 1. 2 . o. 4

Now l- =

when multiplied by

^n (as)
= anxn + bnxn+l + cnxn+2 + dnxn+* + . . .,

gives (1
-

#)- Fn () = anxn + 6n
w+1 + cw^+2 + dnxn+* + ...

-^n y^n-r -^/yu,n -r^
1.2.3

Comparing this with

Mn + l) ,

xn+*+a c T^TO *^ ^71 ^71 *^ 1^ ^71 ^71^

/l._ ^

+

..^-..^j) (qM + 2) (3an + 1)

1.2.3.4
* + &quot;

we see that the difference of the two expressions is

1.2.3

+
1.2.3.4

which is equal to xn~ l

(1 #)-*n-D ^-i n _ x\
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Thus Fn+l 0) = (1
-

a)&quot;
&quot; Fn (*)

~^-1
(1
~

)~
a

&quot;

+1 + a 1 &quot;1 (!-)*

Multiplying this equation by (1 ar)
8
+i, where

sw+1
= a + i + 2 + + a_i + a,

we obtain

(1
-

x)
sn+i Fn+l (as)

= (1
-

tf)*n ,FB (#) + ar&quot;-
1

(1
-

x)
g
n+i

+l - xn
~l

(1
-

x)
8n+l

,

which gives, when we write successively nI,n2,n3, ... in the place

of n,

(1
-

X)
s
n Fn (X) = (1

-
X)

s
n-l Fn-, (x) + Xn~* (1

-
x)*n+*

- Xn
~2

(1
-

x)
gn-l+1

J

*

(1
-

X)
s
n-l Fn_, (x) = (1

-
X^fn-2 Fn_a (x) + Xn

~S

(1
-

x)
Sn-l+l - Xn

~3

(1
-

x)
8n-2+1

]

(1
-

x)*i F,(x) = (l- x)* F (x) + x~l

(1
-

#)
s

&amp;gt;

+1 - x~l

(1
-

aO&quot;&amp;gt;

+1
.

Hence, by addition of these n equations, we find

(1
-

X)
s
n Fn (X)

=
(1
-

X)*0 F (X) + Xn~* (1
-

tf)*
+1 - X~l

(1
-

tf)*0
+1

+ Xn
~3

(1
-

X)n-l+* + Xn~* (1
-

x)
Sn-2+2 + . . . + X~l

(1
-

x)
Sl+2

,

where it has been assumed that it is possible to assign to s (previously un

defined) such a value as will make the last of the above n equations, namely,

(1
-

&amp;lt;e)i
F1 (x) = (1 -x)

s F (x) + x~* (1
-

x)
s

&amp;gt;+* - x~l

(1
-

x)
g
+\

identically true. That this can be done is obvious ; for, if in that equation

we write for F-^ (x), F (x), and Sj their values, namely,

Ft(x)
=

(1
-
x)~

2 -
1, J^ (x)

=
(1
-

a;)&quot;

1
,
and i

=
o
= 1,

then, on making s = 0, the equation becomes

(1
_

#)-!
_

(i
_

.)
= (1

_
a-)-i + ari (l-x)(I-x- 1).

Thus the general value of Fn (x) is given by the equation

(1
-

X)*n Fn (X) = (1
-
X)~

l + Xn
~2

(1
-

x)
Sn+l - X 1

(1
-

x)

+ Xn~S
(1
-

xYn-l+&amp;gt;- + Xn~* (1
- ^)

S -2+2 + . . . + X~l

(1
-

x)
S
l
+
\

which is equivalent to

(1
-

X)
s
nFn (x)-(l- X)~

l + X~1 (1-X)- Xn
~l

(1
-

#)
S +1

= xn~z

(1
-

#)
s +2 + xn~* (1

-
x)

sn-i+z + xn~* (1
-

aO*-2+
2 + . . . + x~l

(1
-

x)
8
i
+
\

where, a
,
a1; a2 , as ,

... being the Hypothenusal Numbers 1, 2, 6, 36, ... we

have

Sj
= a = 1,

s^= a + al
= 3,

= 9,

that is, the successive values of sn + 2 are the Hamiltonian Numbers

3,5, 11,47 ....

* See Note 2, p. 578 [below].
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Now Fn (x) = anx
n + . . ., so that the coefficient of xn in (1 x}

sn Fn (x) is

the same as the coefficient of xn in Fn (x), namely, an . Consequently, equat

ing coefficients of xn on each side of the equation just obtained, we find

an - 1.2.3

4. f y^fri + 2) (*i + l)...(i + 2 -n)
1.2. 3. ..( + !)

Remembering that ara + sn = sn+1 ,

if we call the Hamiltonian Number sn + 2, #re ,
the above relation may

written thus :

9 _Hn (Hn -l) ffn_t (#_!-!)(#_! -2)
~T72~~ 1.2.3&quot;

be

i.2.3.4

( Vl+1
^ 1V^! ^/y^i- 2) ... (Hi - n)

V / 1 O O

To obtain Professor Sylvester s modification of this formula given in the

preceding portion of this memoir, we multiply the equation from which it

was obtained by 1 x before proceeding to equate coefficients. Thus we
have to equate coefficients of xn on both sides of

(1
-

a;)+i Fn (x}
- 1 + x~l

(1
-

a:?
- xn~* (1

-
x)

gn+2

= Xn~2

(1
- #)+ + Xn~3

(1
-

X)
8n-l+3 + Xn~* (1

-
#)

8n-2
+3 + . . . + X~l

(1
-

x)
8
l
+S

.

Or, writing sn + 3 = En ,

we equate coefficients on both sides of

(1
-

x)
En-* Fn (X)

- 1 + X~l

(1
- Xf - Xn~ l

(1
-

x)
E
n
~l

= Xn~* (l-x)
E
n + Xn~3

(1
-

X)
En-l + tf-4

(1
-

x)
En-Z + . . . + X~l

(1
-

x)
E

l .

This equation is easily transformed into

(1 -X)
E

4- X (1
-

X)
E

1 + X2

(1
-

X)
E

2 + ... + Xn (I
-

x)
En

= 1 - 2% + X2

(1
-

x)
E
n
~* Fn (X)

- Xn+l (1
-

X)
E
rT\

from which, as Professor Sylvester has pointed out in this memoir, by

equating coefficients of all powers of x from to n, we can obtain the succes

sive values of En .

The general formula

ffn_2 CEU-l) Nrt
ff (ff -l)...(ff -n-H)

~T72~~ 1.2...n

arises from equating the coefficients of xn. J. H.*

* See Note 3, p. 578 [below].
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3. Sequel to the Asymptotic Theory contained in 1.

The relation p = q
2

f g*, etc.

previously obtained supplies only the two first terms of the remarkable

asymptotic development

where i is any assigned integer and H is of a lower order of magnitude than

the lowest power of q in the series which precedes it. This may be easily

established as follows :

By the scale of relation proved in the preceding section we have

q* f?&quot;

8 + terms whose maximum order is that of r2
.

Let, now, p = q
2 -

fq%
-
%hq

a -
%kq&amp;lt;*

-
%lqy ...

;

therefore q = r2

f r* fhr* $kr? f lr? . . .

and = 2 -r3 l - r
~
^ - hra~2 - kr?-* - lrv~2 ...+ ...

= 2 - r3 + r* + hra+1

Therefore h = 1, k=l, 1 = 1, m=I, ...

2a=f, 2/3 = l+a, 2y=I+/3, 2S=l+ 7 ,
...

that is, a = f, /3
= I y = \l S = ff, ...

and thus p = q*
-
1 g (q^ + q^ + q* + q + . . . + q^

1

) + q,

as was to be shown*.

* This theorem may be rigorously demonstrated, and reduced to a more precise analytical

form, as follows :

For the sake of brevity, we may call -pjq + q the relative deficiency of p, and denote it by A.

First it may be noticed that, if in the equation

we write log q=k,

W
which is always convergent.

Moreover, the value of F (q) may be calculated for any given value of q within close limits.

For, if we call U the right-hand branch of the series in q, beginning with z - z~l
, the terms of U

will easily be seen to lie between those of two geometrical series of which z -z~l is the first term,

and of one of which J, and of the other (z% + z
~

%&quot;

1
&amp;gt;

is the common ratio.

Hence C7is intermediate between 2 (z
2
-l)jz and (z

2
-l) (z + l)jz(z-z^ + l).
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It is interesting to notice that the formula apparently remains arith

metically true for finite values of p and q, provided that q is not less than

The difference between these limits, it may be parenthetically observed, is

*-&quot;*)

which, when z is nearly unity (the limit to which
q\z&amp;gt; converges), is nearly equal to -

TV (z
- z~1

)

3
;

that is, if 2 = 1 + T, the difference between the limits (for T small) is very near to T3/2.

Now on p. 575 (post) it is shown that Jq -r + s -%Jr=e, and that, when the rank of q is

taken indefinitely great, e converges to \. Hence e always lies between finite limits.

For, in general, x being any one of a series of increasing numbers, and ^ (x) a function of x

which is always finite for finite values of x, but ultimately converges to e, by taking for x a value

of L sufficiently great, we make the series of terras for x &amp;gt; L intermediate between c + S and c - 3,

where 5 is any assigned positive quantity ; and consequently, if /t, v, are the greatest and least

values of
\f/ (x) when x does not exceed L, the greater of the two values, c + 6, /JL,

and the lesser

of the two, c - S, v, will be superior and inferior limits to the value of ^ (x) for all values of x.

Hence, writing &amp;gt;J(p)

-
q + r-

we obtain, by summation,

and, consequently, &amp;gt;J(p)-q + % {\/(2) + v/(r ) + v/
(
s

) + + V(6)} =/xc

where p is always a finite quantity lying between determinable limits. But again (p. 573)

where 6 (whose ultimate value is
)
is always a proper fraction. Hence

Hence, from what has been shown above,

In this equation we may write

*/()=* +
*[. (*

_ 8 equations),

where k lt k2 ,
k3 , ... are all of them finite (and, as a matter of fact, of no consequence for our

immediate object, positive proper fractions). For, ultimately,

ki=J(r)-q =^-l =-^-=1s6l
= l (see p. 574),

7-2 + g? rv + q*
and consequently the finiteness of each A; is a direct inference from the general principle

previously applied in the case of the e s.

Applying this result to the equation previously given, it follows that

q* + q^ + ...+q(b)
x 2=|A-ux (where v is finite)

where z lies between 1 and 2.iiere z lies ueiweeu i anu 6.

The series of negative powers of q is obviously less than x, and the z-series, which follows it,

less than the finite quantity 2(z-l/z), that is, &amp;lt;2(2-). Hence f&=F(q) + Qx, where is
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24, when we replace each term in the formula by its integer portion, and in

the series on the right stop at the term immediately preceding the first

term for which

Thus, when p = 462 and q = 24,

24

and E (f (Eq* + Eqty = E {f (4 + 2)}
= 4.

So also, when p = 41881603128, q = 204810,

and # {f (Eq* + Eq + Eq* + Eq*)} = E {f (452 + 21 + 4 + 2)}
= E (*$&)

= 319.

But, if we had included the term Eq^ ,
the result would have been

E (| (452 + 21 + 4 + 2 + 1)}
= 320.

a number lying between fixed limits, and x, the rank of q, is of the same order of magnitude as

log logg. This equation contains as a consequence the asymptotic theorem to be proved; for,

using i to denote any positive integer,

s=i+2

Hence, remembering that x is of the same order of magnitude as log log q, and that

which is of a lower order of magnitude than *
,

it follows that fA- ZjffW for all values of

i is ultimately in a ratio of equality with q\%i ,
which is the theorem to be proved.

We have thought it desirable to obtain the formula $A = Fq + Qx for its own sake, but, so far

as regards the proof in question, that might be obtained more expeditiously from the expression

given for 3A/2 vx without introducing the series Fq.
It is easy to ascertain the ultimate value to which 9 converges. In the first place, the series

of fractions l/g* + l/g? + l/gr+ ... to x - 2 terms (where x is the rank of q) may be shown to be

always finite, and consequently, when divided by x, converges to zero.

For we know that (p
-
q) &amp;gt; (q

-
r)

2
&amp;gt; (r

-
s)

4
... &amp;gt; (6

-
a)

2
*&quot;2

. Hence the last term of the series

q3, q*, q^ ... (namely, q^i )&amp;gt;3.
Hence the finite series l/q^ + l/q^ + l/q^ + ... for a double

a fortiori reason is less than the infinite geometrical series + + fa + . . . &amp;lt; .

In fact, from 1 (p. 566) it may easily be shown that the last term of the series

4*. gi, g*...&amp;gt;M*&amp;gt;(l-465)
4

&amp;gt; 4-608,

so that the sum is really less than 5-^3 .

d bUo

Hence, retracing the steps by which 9 has been obtained, and observing that
/&amp;gt;

differs from

p by a finite multiple of I/a;, we have ultimately 9 = v = k - 3p = k - 3p= k - 3e = |
- -

f= -
rV If,

then (using ux to denote the half of the sharpened xth Hamiltonian number), we write

ux - l/ux=vx ,
and understand by G

(t
-

1/t) the infinite series

(t*
- r*) + (t

i - r i) + (t - r *) + . . . ,

it is easily seen that the principal part of sj(vx+i), regarded as a function of vx and x, is
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Again, when

p = 3076736843548289379224261404637538760216584.,

q = 1754062953145429399086,

^P\ =; 27921159919,
q J

and E
{ (Eq* + Eq + Eq* + Eq + Eq& + Eq& )}

= E{% (41881534751 + 204649 + 452 + 21 + 4 + 2)}
= 27921159919*.

We will now proceed to consider afresh the asymptotic development of

any Hypothenusal Number p q in terms of its antecedent q r, and to

reduce to apodictic certainty results which in the first section were partly

obtained by observation. It has already been shown in that section that

when p is not lower than 204810 in the scale 2, 3, 6, 24, 462, 204810, ...,

that is, when q is not less than 462.

Hence p &amp;gt; q*- 2q* + q +(^ -
f?),

or, since ff^ fq is a positive quantity,

at all events when q= or &amp;gt; 462.

It will be found also on trial that this formula remains true for all the

values of q inferior to 462.

Thus 462&amp;gt;(24- V24)
2
,

24 &amp;gt; (6
- V6)

2
,

6 &amp;gt; (3
- V3)

2
,

3 &amp;gt; (2
- V2)

2
.

Heace, universally, p &amp;gt; (q \A?)
2~K

But we know that p &amp;lt; q
2
.

We may therefore write p (q 6

where is some quantity between and 1.

Similarly, q = (r
-

0, J

where Olt 2 &amp;gt;

are also positive fractions.

* The authors must be understood merely to affirm the possibility of the theorem being true,

and to offer no opinion on the strength of the presumption raised that it is so.

t Had this inequality been true only for values of q sufficiently great, it would have been

enough for the purposes of the text.
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When p and g become infinite,

Hence the ultimate value of is . Similarly, 1} 2 ,
... all of them

converge to the value ^.

This agrees with the result previously demonstrated (p. 563), and is the

starting point of all that follows.

We know that letters p, q, r, s, ..., being used to denote the halves of

the augmented Hamiltonian Numbers, they are connected by the scale of

relation

;^i+*-
where ^-

2.3.4

and T stands for the remaining terms, involving

t, u, v, ....

Considering q, r, s, t, ...

to be of the order 1, , J, i, ...,

we may reject the term
,
which is of zero order, and write

Hence, rejecting terms of order less than f (which have, however, to be

retained in obtaining the subsequent approximations),

(P-?)1_ f-^r3
; -iq + ft-t + s-T

that is, (p-q)-(q-r} =^
when g is infinite.

Again, writing for S its expanded value, namely,

- - S3
i 1 1 ,2 _ .

3 4
we have

lr
3-^ Order f;

rejecting the terms q ^r3
, q~?r*, ... in the expansion of (q

-
r}% because the

order of none of them is superior to zero.
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We now write q = (r l \/^)
2
,

so that

2qr
-

f r&amp;gt;

-
$q$ = (2r&amp;gt;

-
40, r* + 201

2
?-
2
)
-

fr
3 -

(fr
3 - 40

x
r* + 46&amp;gt;1

2 r2 - f^ r*)

= - 201

2r2 + f0/rl

Hence

-f2 +^ Order 1;

Since q = r2 = s4 (ultimately),

the terms of Order 1 (which are the only ones with which we have to do at

present) are ultimately equal to

or, giving 6l its ultimate value
, to tyq, or to the same order of approxima

tion to i^(q-r).

Hence, ultimately,

(p-q) = (q -r)*+4(q-rf+^(q -r)*.
We use this result to obtain a closer approximation to Jq than r- O

and to find the relation between the general values of X and 2 .

Thus, assuming *J(q-r) = r-s + $ V(r -s) + k,

we have, ultimately,

q
- r = (r -s)

2 + 1 (r
- s^ + (| + 2A;)(r- s)

Consequently, as r becomes indefinitely great,, k converges to the value

Now
&amp;lt;J(q

-
r) = *J(q)

-
. . . = J(q\ - 1

ultimately ;

V
&amp;lt;?

and similarly J(r -s) = V(r)
-

ultimately.

Hence, ultimately,

We may therefore write

V(?) = r - 5 + f V(0 + e (where ultimately e = J).

But
V(?) = r-0l vV,

and therefore
&amp;lt;9

t ^/(r)
= s - | ^/(r)

_ e-

* As previously obtained by observation in 1 (p. 563). It will, of course, be understood
that in the above and similar passages the sign = is to be interpreted to mean &quot;is in a ratio of
equality with.&quot;



576 On Hamilton s Numbers [51

Moreover V(7 )
= s 2 \/s,

whence it follows that

0i V(f) = fa + f#2 \/(s) e (where e = J ultimately).

Resuming the development of (p q) in terms of (q r), we have

s4

(p-q)

(q
-

r)
2

o
o

Order 1,

The terms of order inferior to f are of no value for present purposes, and

are only retained for the benefit of those who may wish to carry on the work.

To reduce the terms of Order 1, we write, in succession,

r = s -

Thus |

4

-20 1

2r2 + 2^r
o

4

2r2 - Jr2

4^2
2

s)
-

f 6&amp;gt;2
2s (s

2 +

f e02 r V() - 2e2r -

Order f,

+ f &amp;lt;92
35^ + f e02r V() - 6&amp;gt;2

4
s
2 - 2e2 r - ^ ^2 r &amp;lt; f .

Hence

Order
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Here the terms of Order are ultimately equal to

which, when 6l and e receive their ultimate values, ^ and \, becomes

From this it follows immediately that (rejecting terms of an order of

magnitude inferior to that of (q r}%)

The law of the indices in the complete development is easily deduced
from the relation

1 ) r(2r-l)(2r-2) ,

s (2s- 1) (2s
- 2)(2g-3)

2 2.3 2.3.4

The terms carrying the arguments

,q\ q, r3
,
r2

, r, s
4
,
s3

,
s2

, s, t\ ...

furnish the indices 2, 1, f, 1, , 1, f,
1

J, g, ...,

which, arranged in order of magnitude, become

Thus, calling p q and qry and # respectively, the expansion for y in

terms of # will be of the form

y-S4 a *

,

where n has all values from to oo
,
and 2m + 1 does not exceed n + 2, that

is, m has all positive values from to n/2 or %(n+ 1), according as w is even
or odd.

But, besides this expressed portion of the development of a Hypothenusal
Number, say tj x+1&amp;gt;

as a function of its antecedent, vjx , there will be another

portion, consisting of terms with zero and negative indices of
ifx having

functions of x for their coefficients, which observation is incompetent to

reveal, and with the nature of which we are at present unacquainted. The
study of Hamilton s Numbers, far from being exhausted, has, in leaving our

hands, little more than reached its first stage, and it is believed will furnish
a plentiful aftermath to those who may feel hereafter inclined to pursue to
the end the thorny path we have here contented ourselves with indicating,
which lies so remote from the beaten track of research, and offers an example
and suggestion of infinite series (as far as we are aware) wholly unlike any
which have previously engaged the attention of mathematicians.

J. J. S. and J. H.
*
Agreeing closely with what had been previously found by observation in 1 (p. 563).

s. iv. 37
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NOTE 1, p. 566.

It is easy to see that, if 8M and Sa are corresponding errors in the values

of M and a respectively,

8M= (M loge M\oge 2) Sa = (-38822 ...) 8a

(since M= 1*46544 ..., \ogeM= 38220 ..., and Ioge 2 = 69314 ...).

Hence, So. being intermediate between 0000003 and 0000006,

BM lies between 000000116 and 000000233.

The value of M (the base of the Hamiltonian Numbers) is thus found to

be 1*465443 ..., correct to the last figure inclusive. J. J. S.

NOTE 2, p. 568.

This equation may be obtained more simply from the fundamental
formula of Hamilton (middle of above note). It follows from the law of

derivation there given that, if we write 1Fn = (1 &)&quot;

1 Fn xn
, and, in

general,
j+lFn = (1

-
a)-

1 JFn - xn
,
then Fn+1

= a Fn ; and, consequently,

Fn+l
-

(1
- as)-Fn = - xn (1 + (1

-
x}-

1 + (1
-

tf)-
2 + . . . + (1

-
tf)~

an+1
}

= xn~l

{(I -as) -(I- a;)-&quot;--

1
- 1

}.
J. J. S.

NOTE 3, p. 569.

It is curious to notice the sort of affinity which exists between a form of

writing the scale of relation for Bernoulli s Numbers and that given at

p. 569 for Hamilton s.

If we write

then, using f$K in the same sense as at p. 558, we shall find the scale of

relation between the B s (Bernoulli s Numbers) is given by the equation
K = i

S ( )* /3K i . Gi-K
=

0, provided i is odd.
K = Q

On striking out the i which intervenes between /3K and Gi- K ,
so as to

make the former operate on the latter, the equation becomes that given
at p. 569 for the E s, the sharpened numbers of Hamilton. J. J. S.
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4. Continuation, to an infinite number of terms, of the Asymptotic

Development for Hypothenusal Numbers.

&quot; This was sometime a paradox, but now the time gives it
proof.&quot;

Hamlet, Act in., Scene 1.

In the third section of this paper [above, p. 575] it was stated, on what

is now seen to be insufficient evidence, that the asymptotic development
of p q, the half of any Hypothenusal Number, could be expressed as a

series of powers of q r, the half of its antecedent, in which the indices

followed the sequence

2, f, 1, f, f, i ...

It was there shown that, when quantities of an order of magnitude
inferior to that of (q r)% are neglected,

but, on attempting to carry this development further, it was found that,

though the next term came out yff- (q r)^, there was an infinite series of

terms interposed between this one and (q r)\ namely, as proved in the

present section, between (q r)% and (q
-

r)^ there lies an infinite series of

terms whose indices are

5 9 1733 65
~5* TB&quot; 3~2&amp;gt; &amp;lt;T4&amp;gt; 1^8 &quot;

and whose coefficients form a geometrical series of which the first term is

yff^ and the common ratio f.

We shall assume the law of the indices (which, it may be remarked, is

identical with that given in the introduction to this paper as originally

printed in the Proceedings*, but subsequently altered in the Transactions)
and write

r)* + &c., ad inf.

+ t- (1)

The law of the coefficients will then be established by proving that

A=B=C = D=E=... = ii.

If there were any terms, of an order superior to that of (q
-

r)^, whose
indices did not obey the assumed law, any such term would make its presence
felt in the course of the work; for, in the process we shall employ, the
coefficient of each term has to be determined before that of any subsequent

[* See footnote, p. 584, below.]

+ In the text above 9 represents some unknown function, the asymptotic value of whose
ratio to (q -rp is not infinite.

372



580 On Hamilton s Numbers [51

term can be found. Ib was in this way that the existence of terms between

(q r)% and (q rfi was made manifest in the unsuccessful attempt to

calculate the coefficient of (q r)*. It thus appears that the assumed law of

the indices is the true one.

It will be remembered that p, q, r, ..., are the halves of the sharpened
Hamiltonian Numbers En+1 ,

En ,
En-i, ..., and that consequently the relation

n .

En (En -l) #_,(#_!-!) (#_,- 2)
,^+i- -j-g- 1.2.3

may be written in the form

g(2g-l) _ r(2r-l)(2r-2) s (2s
-

1) (2*
-

2) (2s- 3)
9 2 2.3 2.3.4

t (2t
-

1)(2&amp;lt;

-
2)(2&amp;lt;

-
3)(2&amp;lt;

-
4) M (2u

- 1
)(2t&amp;lt;

-
2)(2M-3)(2tt

-
4) (2u-

2.3.4.5 2.3.4.5.6

(2)

The comparison of this value of p with that given by (1) furnishes an

equation which, after several reductions have been made, in which special

attention must be paid to the order of the quantities under consideration,

ultimately leads to the determination of the values A, B, C, ..., in succession.

Taking unity to represent the order of q, the orders of

p, q, r, s, t, u, v, w, ...

wil1 be 2, 1, , J, , ^ ^ &, ...

Hence, after expanding each of the binomials on the right-hand side of

(1) and arranging the terms in descending order, retaining only terms for

which the order is superior to ^, we shall find

Order 2 p = q
2

I -2gT + fgr*

1 + r2 -
20*r + ff ?

- ^ +$Eq*t&amp;lt;+.... (3)

Again, retaining only those terms of (2) whose order is superior to |, we

have

p = q*; -fr3
; -$q + r* + %s* ;

-ss
; -^ 6

(4)

Order 2; f ;
1

; f ; | .
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From (3) and (4) we obtain by subtraction

Order f 0=|rs

-2gr + f 9*

1 _a*

f

9*

.... (5)

Changing p, q, r, ... into q,r,s, ... respectively, equation (4) becomes

q = r2 -
f s3 - 1 r + s2 + ^

* - t
3 -^ u5

,

so that, if we assume q = r2

(1 a), the order of a will be the same as that of

r~2 s3
, namely, | + f = .

Hence, if we substitute r8
(1 a) for

5-
in (5), neglecting in the result

quantities of the order
,
we shall find

while at the same time, since the order of r%a does not exceed
,
we have

jf_rl(l_ a)*.,4
and in like manner

5-^
=

7-^, gT\ =rl &amp;gt;

an(j so on&amp;gt;

Thus equation (5) becomes

Order 1 =
1 1*0? - $ s4 + r2

f + IVr
3a3 - J^r! a + s3 + uM

where a =
fr-&quot;

2
ss

;

order -i ;

Let

= s~ r - s- - %

where terms as far as, but not beyond,
-
-& (which is the order of s~3w5

) have
been retained.
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Now p consists of terms whose orders are 2, f, 1, f, f, ^-,
...

q i, f, i f, A, fc ...

,, -i-i-i-ii&amp;gt; -f. ...

Thus the order of a! is |, and in the above expression all terms of a!

superior to \ have been retained, and consequently (rejecting the square of

of whose order is |) in the first line of (6) we may write

i + 1 S3 _ 2 r-l s
5 _ 2 r-l S34 + 2 p-l^S + 4_ T-I^U9

.

In the second line of (6) we may reject the whole of a
,
since its order is

, and write

After substituting their values for the terms in (6) which contain a, and

at the same time dividing throughout by |, we shall obtain

Order 1 = 1 r^s6 -
| s4 + r2

| + r~3 9 - r-1 *
5 - r- 1

s
3
J
4 + f s3 + ^V ^

If

... (7)

We now write

r = s2

(l-/3) and =
| s~2

&amp;lt;

3
(1 + /3 )

where, observing that the values of yS and /3 can be immediately deduced

from those of a and of by changing r, s, t, ... into s,t,u,..., it is evident

that /3 and /3 are both of the order
;

for a and a
7

are both of the order

^. Thus (neglecting quantities whose order is equal to, or less than, |) we

have

i
r&quot;

1 s6 -
1 s4 + I r2

2/3 ) + ^-s

s - V -

Order f ;
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r~3 s9 - r- 1
s* - r-1 ss

t
4 + s

3 + fr r*

= -. _
((?

Order
; f

and so on.

Hence (7) becomes

Order f = 1 1
6 -

$ st&amp;lt; + $ s3

Dividing this throughout by 5, and then writing

=
&amp;lt;(! -7) and 7 = f r^t

3

(l + 7 ),

we obtain in exactly the same manner as before, merely altering the letters

in the previous work,

Order f ;

where quantities of the order
,
or less, are now neglected.

Similarly -fa s~
s
t
9 - ^ s

1
1
5 -^ s~l

t
3 u* + %t

3 - s~2
1
7 +

Order f

s- 1

& s-1
1
3 v5 + fs Cs* = ^ tv

5 + -!

^
3 u3 + 1 w5 + t Bs = tu3 + u*

and so on.

Thus (8) becomes

Order f = fu- $tu*+ (fj.

17
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Now the terms of the highest order in this equation must vanish when

we write t = u2
,
and therefore + f A y|^ = 0, which gives A = ^.

Substituting this value for A, we find

Order = w6-^4 + 3

which is a mere repetition of equation (8), with all the letters moved forward

one place. Hence it is evident that, if we treat this equation as we treated

(8), we shall find B = ^, arriving, at the same time, at another equation

which will be merely a repetition of (8), with all its letters moved forward

two places ;
and this process can be continued as long as we please.

Thus we arrive at the result

A=B=C=D = E=...=ft,
and the asymptotic development for Hypothenusal Numbers

P ~ ? = (&amp;lt;?

-
r)

2 +| (q -r)f

is established.

Comparing this with the corresponding formula for Hamiltonian Numbers,

P = ?
2

-f 2(2* + ?* + g* + q** + + 2
(i)

*) + Bg,

given at the beginning of the third section [p. 570], it will be noticed that

each of the two developments begins with an irregular portion consisting

respectively of four and one terms, followed by a regular series. In the one

case the regular portion is ^ (q r)^, multiplied by a series whose general
term is Ji(jf *)/; in the other it consists of a series of terms of the form

q(k)

n

multiplied by |^.

[To p. 579, footnote *. The reference is to Proceedings of the Royal Society, Vol. 42 (1887),

pp. 470, 471, where is printed an Abstract identical with the Introduction to this paper (pp. 553-

555 above) save for the insertion after the word &quot;scale&quot; (p. 555 above) of the words &quot;in order to

establish or disprove conclusively the presumptive law of the asymptotic branch of the series

connecting any two consecutive semi-differences i)x , rjx+1 of the Hamiltonian Numbers, viz. :

V*fi-%s =
i7** S Wi)r

-&quot;

r=0

There is also a paper, Proceedings of the Royal Society, Vol. 44 (1888), pp. 99 101, containing
what is here given on p. 579 and the first half of p. 580.]
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SUR LES NOMBRES BITS DE HAMILTON.

[Compte Rendu de I Assoc. Frangaise (Toulouse), 1887, pp. 164 168.]

CONSID^RONS ce tableau forme* en has par un precede qui a peu pres
s explique de soi-merne :1000000

36 210 804

Ce tableau peut etre etendu indefiniment.

On voit qu il se divise en Stages et que les nombres initiaux des premieres

lignes de ces etages sont :

1, 1, 2, 6, 36.

En les additionnant et en ajoutant 1 unite aux sommes, on obtient les

nombres 2, 3, 5, 11, 47 ....

Ces nombres sont ce que j appelle les nombres de Hamilton qui a trouve

les nombres 11, 47, et encore le nombre qui vient apres 47, c est-a-dire 923,
dans un rapport qu il a public dans les Reports of the British Association

1836, sur la methode de Jerrard pour reduire les Equations du cinquieme
degre, methode qui remonte, en effet, a Bring, professeur a Lund, qui 1 a

public dans un opuscule en 1786 qui restait inconnu ou oublie. De meme
qu on peut oter 3 termes d une equation dont le

degre&quot;
est au moins 5 sans

resoudre aucune Equation d un degre superieur a 3, de meme aussi on peut
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6ter 4 termes d une equation dont le degre est au moins 11 sans re&quot;soudre des

equations d un degre superieur a 4
;
5 terrnes d une Equation dont le degre

est au moins 47 sans resoudre des Equations d un degr6 superieur a 5 et ainsi

de suite.

Mais il est ndcessaire d avertir ici que la meme chose aura lieu pour des

Equations de degres moindres, en general, que ceux fournis par les nombres

de Hamilton. En effet, au lieu de 11, 47, 923 ... on peut substituer 10, 44,

905 ...: mais le systeme donations resolvantes deviendra plus complique

quand on fait cette diminution du degre minimum. Ainsi, par exemple, il

est bien vrai que pour oter 4 termes a une equation du
degre&quot; 10, le systeme

d equations a resoudre ne contiendra nulle equation d un degre superieur a 4 :

mais il y aura 3 equations de ce degre a resoudre tandis que quand 1 equation
donnde est du degre 11 ou plus haut que 11, on n aura a rdsoudre (en

combinaison bien entendu avec des equations cubiques quadratiques et

lineaires) qu une seule equation biquadratique au lieu de trois : et ainsi

en general.

Pour trouver les nombres de Hamilton, mon coadjuteur, M. Hammond
a trouve une echelle de relation d une simplicity merveilleuse.

On peut former avec les lignes successives du tableau les forictions

1 + Ox + Ox2 + Ox3 + 0^ ... disons F (qui en effet est 1 unite).

x+ tf + a? + a?... F!

3F3

*F,
5F3

et ainsi de suite.

Donnons a 1, 1, 2, 6, 36 ... les noms a
,
alt a2 ,

a3 ,
a4 ... alors il est facile a

voir qu en general
nFn = Fn+1 ;

mais aussi on voit que

Done

= Xn~l

{(I
-

X)
-

(1
-

X)~
a
^}.

Faisons a + a^-\- a2 + ... + an = Sn+i alors en multipliant 1 equation par

(1 x)
Sn

+i, on obtient :

.Fn+l -(l-x)s .Fn = xn (1
-

a;)**+i
+1 - xn (1

- xf**.
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Cette Equation qui existe pour toutes les valeurs Sn jusqu a SI exclusif

reste vraie comme iclentite^ meme pour S si on met $ = 0. Alors en donnant

a n toutes les valeurs depuis n 1 jusqu a inclusivement et en faisant la

sommation des Equations ainsi formees, on obtient facilement :

(1
- xf* Fn -l + a;-1 (!-#)- xn~l

(1
-

x)
8^ 1

= xn~2

(1
- #)S+

2 + xn~3
(1
-

#)
s -i+2 + xn~n (1

-
#)Sn-n+2 + . . . .

Si dans cette equation on compare les coefficients de xn en se rappelant

que le coefficient de xn en Fn est a
n&amp;gt;

c est-a-dire Sn+l Sn ,
et que 8n + 1 est

le nombre nme de M. Hamilton, de sorte que Sn + 2 que je nommerai En est

ce nombre augment^ de 1 unite, on trouve :

i 2)

formule de relation entre les nombres de Hamilton qu on peut ecrire sous la

forme symetrique
1 - (En\ + (En_,).2 - (En_,\ . . .

= 0.

En augrnentant les nombres de Hamilton de I unite ,
on obtient pour E

les valeurs successives

3, 4, 6, 12, 48, 924

qu on trouve tres facilement par la formule de la relation donnee.

Ainsi par exemple :

3.2
4 - 1 = 3

6-1= 5

12-1= 11

48 - 1 = 47

924 - 1 = 923

2.3 1.2.3.4 L2.3.4.5&quot;
409620 - 1 &quot; 409619

Les nombres de Hamilton ainsi calcules sont :

2, 3, 5, 11, 47, 923, 409619, 83763206255 ...

ou comme premiere approximation asymptotique on peut remarquer que si

ux est le nombre de rang #, u2+l
-=- u2

~ devient de plus en plus pres de & mais

toujours moindre que 1 unite* quand x croit ind^finiment.

Telle est la formule bien remarquable trouvee par M. Hammond, dont j ai

un peu simplifie et abrdge la demonstration.

Un travail sur les nombres de Hamilton, fait par M. Hammond et moi-meme
va prochainement paraitre dans les Philosophical Transactions [above, p. 553].
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NOTE ON A PROPOSED ADDITION TO THE VOCABULARY
OF ORDINARY ARITHMETIC*.

[Nature, xxxvu. (1888), pp. 152, 153.]

THE total number of distinct primes which divide a given number I call

its Manifoldness or Multiplicity.

A number whose Manifoldness is n I call an n-fold number. It may also

be called an n-ary number, and for n= 1, 2, 3, 4, ... a unitary (or primary),

a binary, a ternary, a quaternary,... number. Its prime divisors I call the

elements of a number; the highest powers of these elements which divide

a number its components ;
the degrees of these powers its indices

;
so that

the indices of a number are the totality of the indices of its several

components. Thus, we may say, a prime is a one-fold number whose index

is unity.

So, too, we may say that all the components but one of an odd perfect

number must have even indices, and that the excepted one must have its

base and index each of them congruous to 1 to modulus 4.

Again, a remarkable theorem of Euler, contained in a memoir relating to

the Divisors of Numbers (Opuscula Minora, II. p. 514), may be expressed

by saying that every even perfect number is a two-fold number, one of whose

components is a prime, and such that when augmented by unity it becomes

a power of 2, and double the other component^.

*
Perhaps I may without immodesty lay claim to the appellation of the Mathematical Adam,

as I believe that I have given more names (passed into general circulation) to the creatures of the

mathematical reason than all the other mathematicians of the age combined.

t It may be well to recall that a perfect number is one which is the half of the sum of

its divisors. The converse of the theorem in the text, namely that 2n (2
n+1 -

1), when 2n+1 - 1

is a prime, is a perfect number, is enunciated and proved by Euclid in the 36th (the last)

proposition of the 9th Book of the &quot;Elements,&quot; the second factor being expressed by him as the

sum of a geometric series whose first term is unity and the common ratio 2. In Isaac Barrow s

English translation, published in 1660, the enunciation is as follows : &quot;If from a unite be taken

how many numbers soever 1, A, B, C, D, in double proportion continually, until the whole
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Euler s function
&amp;lt;f&amp;gt;(n),

which means the number of numbers not exceeding
n and prime to it, I call the totient of n

;
and in the new nomenclature we

may enunciate that the totient of a number is equal to the product of that

number multiplied by the several excesses of unity above the reciprocals of its

elements. The numbers prime to a number and less than it, I call its

totitives.

Thus we may express Wilson s generalized theorem by saying that any
number is contained as a factor in the product of its totitives increased by

unity if it is the number 4, or a prime, or the double of a prime, and

diminished by unity in every other case.

I am in the habit of representing the totient of n by the symbol rn, r

(taken from the initial of the word it denotes) being a less hackneyed letter

than Euler s
&amp;lt;f&amp;gt;,

which has no claim to preference over any other letter of the

Greek alphabet, but rather the reverse.

It is easy to prove that the half of any perfect number must exceed in

magnitude its totient.

Hence, since f .
-|

is less than 2, it follows that no odd two-fold perfect
number exists.

added together E be a prime number; and if this whole E multiplying the last produce
a number F, that which is produced F shall be a perfect number.&quot;

The direct theorem that every even perfect number is of the above form could probably

only have been proved with extreme difficulty, if at all, by the resources of Greek Arithmetic.

Euler s proof is not very easy to follow in his own words, but is substantially as follows :

Suppose P (an even perfect number
)
= 2nA. Then, using in general JX to denote the sum of

the divisors of X,

JP_j2.pi_2&quot;+
I -l [A~ ~ ~

Hence A = /j.Q, and $A = l + fj. + Q + /ji.Q+ ... (if /j. be supposed &amp;gt;1).
Hence unless ^t

= l and at

the same time Q is a prime

J^&amp;gt;M(Q + i),

that is L- is greater than itself.
A.

Hence an even number P cannot be a perfect number if it is not of the form 2&quot; (2
n+1 -

1) ,

where 2n+1 - 1 is a prime, which of course implies that n + 1 must itself be a prime.
It is remarkable that Euler makes no reference to Euclid in proving his own theorem.

It must always stand to the credit of the Greek geometers that they succeeded in discovering
a class of perfect numbers which in all probability are the only numbers which are perfect.
Reference is made to so-called perfect numbers in Plato s

&quot;Republic,&quot; H, 546 B, and also by
Aristotle, Probl. I E 3 and

&quot;Metaph.&quot; A 5. Mr Margoliouth has pointed out to me that
Muhamad Al-Sharastani, in his Book of Religious and Philosophical Sects, Careton, 1856,

p. 267 of the Arabic text, assigns reasons for regarding all the numbers up to 10 inclusive
as perfect numbers, which he attributes to Pythagoras, but which are purely fanciful and entitled

to no more serious consideration than the late Dr Cummings s ingenious speculations on the
number of the Beast. My particular attention was called to perfect numbers by a letter from
Mr Christie, dated from &quot;

Carlton, Selby,&quot; containing some inquiries relative to the subject.
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Similarly, the fact of f . . | being less than 2 is sufficient to show that

3, 5 must be the two least elements of any three-fold perfect number
;

furthermore, \ .
-|

.
i being less than 2, shows that 11 or 13 must be the

third element of any such number if it exists* each of which hypotheses
admits of an easy disproof. But to disprove the existence of a four-fold

perfect number by my actual method makes a somewhat long and intricate,

but still highly interesting, investigation of a multitude of special cases.

I hope, numine favente, sooner or later to discover a general principle which

may serve as a key to a universal proof of the non-existence of any other

than the Euclidean perfect numbers, for a prolonged meditation on the

subject has satisfied me that the existence of any one such its escape, so to

say, from the complex web of conditions which hern it in on all sides would

be little short of a miracle. Thus then there seems every reason to

believe that Euclid s perfect numbers are the only perfect numbers which

exist !

In the higher theory of congruences (see Serret s Cours d Algebre

Superieure) there is frequent occasion to speak of &quot; a number n which does

not contain any prime factor other than those which are contained in another

number M.&quot;

In the new nomenclature n would be defined as a number whose elements

are all of them elements of M.

As rN is used to denote the totient of N, so we may use fjuN to denote

its multiplicity, and then a well-known theorem in congruences may be

expressed as follows.

The number of solutions of the congruence

a? - I = (mod P)

is 2^p if P is odd,

2^-P-i if p is the double of an odd number,

2*p if P is the quadruple of an odd number,

and 2^p+1 in every other case.

In the memoir above referred to, Euler says that no one has demon

strated whether or not any odd perfect numbers exist. I have found

a method for determining what (if any) odd perfect numbers exist of any

specified order of manifoldness. Thus, for example, I have proved that there

exist no perfect odd numbers of the 1st, 2nd, 3rd, or 4th orders of manifold-

*
3, 5, 7 can never co-exist as elements in any perfect number as shown by the fact that

^ . = . 77; , that is r?(l + ~ + -77^],is greater than 2. Thus we see that no perfect
9 5 49 15 \ 7 49/

number can be a multiple of 105. So again the fact that f . H if H T i8 m than 2

is sufficient to prove that any odd perfect number of multiplicity less than 7 must be

divisible by 3.



53] Vocabulary of Ordinary Arithmetic 591

ness, or in other words, no odd primary, binary, ternary, or quaternary number
can be a perfect number. Had any such existed, my method must infallibly
have dragged each of them to light*.

In connection with the theory of perfect numbers I have found it useful

to denote p
l 1 when p and i are left general as the Fermatian function, and

when p and i have specific values as the iih Fermatian of p. In such case p
may be called the base, and i the index of the Fermatian.

Then we may express Fermat s theorem by saying [cf. p. 625 below]
that either the Fermatian itself whose index is one unit below a given prime
or else its base must be divisible by that prime-f.

It is also convenient to speak of a Fermatian divided by the excess of its

base above unity as a Reduced Fermatian and of that excess itself as the

Reducing Factor.

The spirit of my actual method of disproving the existence of odd perfect
numbers consists in showing that an n-fold perfect number must have more
than n elements, which is absurd. The chief instruments of the investigation
are the two inequalities to which the elements of any perfect number must
be subject and the properties of the prime divisors of a Reduced Fermatian
with an odd prime index.

*
I have, since the above was in print, extended the proof to quinary numbers, and

anticipate no difficulty in doing so for numbers of higher degrees of multiplicity, so that it

is to be hoped that the way is now paved towards obtaining a general proof of this palmary
theorem.

+ So too we may state the important theorem that if an element of a Fermatian is its index
the component which has that index for its base must be its square.
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ON CERTAIN INEQUALITIES RELATING TO
PRIME NUMBERS.

[Nature, XXXVIIL (1888), pp. 259262.]

I SHALL begin with a method of proving that the number of prime
numbers is infinite, which is not new, but which it is worth while to recall

as an introduction to a similar method, by series, which will subsequently be

employed in order to prove that the number of primes of the form 4% + 3, as

also of the form Qn + 5, is infinite.

It is obvious that the reciprocal of the product

PN.P&amp;lt;

(where p^ means the iih in the natural succession of primes, and p$. p means

the highest prime number not exceeding N)* will be equal to

111111 1
7&amp;gt;

T
+

2
+

3
+
4
+

5
+ 6+- +

,Y
+ ^

and therefore greater than log N (R consisting exclusively of positive terms).

Hence fl + -}(l + ~] ... (l + } &amp;gt; M log N,
\ pJ \ pJ \ PN.P!

where M = (l - ^ fl - -1 ... fl
-

2
and is therefore greater than -

.

7T

Hence the number of terms in the product must increase indefinitely

with N.

By taking the logarithms of both sides we obtain the inequality

&quot;1 2^2
T 0^3 7^4 T

* N .p itself of course denotes in the above notation the number of primes (p) not exceeding N.
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where in general Si means the sum of inverse tth powers of all the primes

not exceeding N ;
and accordingly is finite, except when i= 1, for any value

of N. We have therefore

Sl &amp;gt; log log N + Const.

The actual value of Sj, is observed to differ only by a limited quantity from

the second logarithm of N, but I am not aware whether this has ever been

strictly proved.

Legendre has found that for large values of N

8/Y 5J &quot;\ pN . PJ~ \ogN-

Consequently

1

Pi/ \ fV V Pir.pt

This would show that the value of our R bears a finite ratio to log N ;

calling it 6 log N we obtain, according to Legendre s formula,

2j
= 552, which gives = 811,

so that the nebulous matter, so to say, in the expansion of the reciprocal of

the product of the differences between unity and the reciprocals of all the

primes not exceeding a given number, stands in the relation of about

4 to 5 to the condensed portion consisting of the reciprocals of the natural

numbers.

I will now proceed to establish similar inequalities relating to prime
numbers of the respective forms 4w + 3 and Qn + 5.

Beginning with the case 4/i + 3, I shall use qj to signify the jth in

the natural succession of primes of the form 4m + 3, and qN . q
to signify

the highest q not exceeding N, N.q itself signifying the number of q a not

exceeding N.

Let us first, without any reference to convergence, consider the product
obtained by the usual mode of multiplication of the infinite series

9 i
1 x 1 l

j_
l

&quot;3

+ 5~7 +9~-^^
by the product

_1 7i 2.
2 ?3 , - ,

l-i l- 1
!--

1 !-!
9i fc (Js

It is clear that the effect of the multiplication of S by the numerator of
the above product will be to deprive the series S of all its negative terms.
Then the effect of dividing by the denominator of the product, with the

s. iv. 38
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exception of the factor 1
,
will be to restore all the obliterated terms,

but with the sign + instead of . Lastly, the effect of multiplying by the

reciprocal of (1 ^) will be to supply the even numbers that were wanting
in the denominators of the terms of S, and we shall thus get the indefinite

series

1
7

. ,

+ &quot;-ad inf.

Call now

&amp;lt;lN.q

QN ,
which is finite when .ZV is finite, may be expanded into an infinite

aggregate of positive terms, found by multiplying together the series

H i +
l l248

1^11

1+- -+-, + -
3
+

$N. q IN. q &amp;lt;lN. q11111
then from what has been said it is obvious that we may write

QNSN = ! +
2
+

3
+

4
+ - + jj+V-R,

where F and R may be constructed according to the following rule : Let the

denominator of any term in the aggregate QN be called t, and let 6 be the

smallest odd number which, multiplied by t, makes td greater than N
;
then

if 6 is of the form 4w + 1 it will contribute to F a portion represented by the

product of the term by some portion of the series SN of the form111
6 6+2 0+4

and if 6 is of the form 4w + 3 it will contribute to R a portion equal to the

term multiplied by a series of the form

1 1 1
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Hence R is made up of the sum of products of portions of the aggregate
Qff multiplied respectively by the series

3~5 + 7~9 +
iT~13 + &amp;lt; &quot;

1 _ 1
_!_

1

7 9
+

ll 13
+ &quot;

_!_ J^
IT~13

+ &quot;-

of which the greatest is obviously the first, whose value is l-SN .

Consequently R must be less than the total aggregate QN multiplied
by 1 - SN .

Therefore

234 N ^ A

that is. QN &amp;gt; log N,

from which it follows that when N increases indefinitely the number of

factors in Qy also increases
indefinitely, and there must therefore be an

infinite number of primes of the form 4/i + 3.

Denoting by MN the quantity

l

~J
we obtain the inequality

and taking the logarithms of both sides

2l ~
2
^2 +

3
2a ~ &amp;gt;

2 log log N +
2 log My ~

\
l S 2

&amp;gt;

where in general 2&amp;lt;
denotes the sum of the ith powers of the reciprocals of

all prime numbers of the form 4w + 3 not surpassing N.

Hence it follows that 2 X
&amp;gt;

^ log log J^.
21

If we could determine the ultimate ratio of the sum of those terms of QN
whose denominators are greater than N to the total aggregate, and should
find that

/*, the limiting value of this ratio, is not unity, then the method
employed to find an inferior limit would enable us also to find a superior
limit to QN : for we should have V &amp;lt; p.QN added to the sum of portions

382
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of what remains of the aggregate when pQN is taken from it multiplied

respectively by the several series

1111 1 1

1111
9-n + T3-T5 + - ac^

11
,7 /

13-15 + - adM*

the total value of the sum of which products would evidently be less than

Hence the total value of V would be less than

2
that is, less than QNS ~ (1 //,) QN)o

and consequently we should have

3
that is QN &amp;lt; _ log N.

From which we may draw the important conclusion that if
/*.

is less than 1,

that is, if when N is infinite the portion of the aggregate SNQN comprising
the terms whose denominators exceed N does not become infinitely greater

than the remaining portion, the sum of the reciprocals of all the prime
numbers of the form 4n + 3 not exceeding N would differ by a limitedo /

quantity from half the second logarithm of N.

A precisely similar treatment may be applied to prime numbers of the

form 6n + 5. We begin with making
1 1_J^ ^ J^ JL_

We write

i + I i + A i + -L

- _ _ _ _
2 3 n r2 rN .

We make QNSN = 1 + 1 + 1 + 1 + ... +
-^
+ V - R.

We prove as before that R &amp;lt; (1 S) Q^,

and thus obtain Q^ &amp;gt; log N,
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and then putting MN = (l
-
-) (l --)... (l

- ~
)

,

\ i / \ 2 / \ IN. r J

and finally noticing that = -r .
--- = 3,

*&quot;&quot; 1 ~~

we
/ 1\2 / 1 \2 / 1 \ 2

1

obtain (1+ (1 + -
...

[ I + I &amp;gt;^^log^.
V rv V ty v r^. r/ 3

Taking the logarithms of both sides of the equation, we find

where (D; means the sum of ith powers of the reciprocals of all the prime

numbers, not exceeding N, of the form 6n + 5.

Either from this equation or from the one from which it is derived it at

once follows that the number of primes of the form 6n + 5 is greater than any

assignable limit.

Parallel to what has been shown in the preceding case, if it could be

ascertained that the sum of the terms of the aggregate QN whose denomina
tors do not exceed N bears a ratio which becomes indefinitely small to the

total aggregate, it would follow by strict demonstration that the sum of

the reciprocals of the primes of the form Qn + 5 inferior to N would always
differ by a limited quantity from the half of the second logarithm of N.

It is perhaps worthy of remark that the infinitude of primes of the

forms 4n + 3 and Qn + 5 may be regarded as a simple rider to Euclid s

proof (Book IX., Prop. 20) of the infinitude of the number of primes in

general.

The point of this is somewhat blunted in the way in which it is presented
in our ordinary text-books on arithmetic and algebra.

What Euclid gives is something more than this *
: his statement is,

&quot;There are more prime numbers than any proposed multitude
(7r\rjdo&amp;lt;f)

of prime numbers
&quot;

;
which he establishes by giving a formula for finding at

least one more than any proposed number. He does not say, as our text

book writers do, &quot;if possible let A, B, ... C be all the prime numbers,&quot; &c.,

but simply that if A, B, ... C are any proposed prime numbers, one or more
additional ones may be found by adding unity to their product which will

either itself be a prime number, or contain at least one additional prime ;

which is all that can correctly be said, inasmuch as the augmented product

may be the power of a prime.

* Whereas the English elementary book writers content themselves with showing that to

suppose the number of primes finite involves an absurdity, Euclid shows how from any given
prime or primes to generate an infinite succession of primes.
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Thus from one prime number arbitrarily chosen, a progression may be

instituted in which one new prime number at least is gained at each step,

and so an indefinite number may be found by Euclid s formula : for

example, 17 gives birth to 2 and 3; 2, 3, 17 to 103; 2, 3, 17, 103 to 7, 19, 79;

and so on.

We may vary Euclid s mode of generation and avoid the transcendental

process of decomposing a number into its prime factors by using the more

general formula, a, b, ... c + 1, where a, b, ... c, are any numbers relatively

prime to each other
;
for this formula will obviously be a prime number or

contain one or more distinct factors relatively prime to a, b, ... c.

The effect of this process will be to generate a continued series of

numbers all of which remain prime to each other : if we form the progression

a, a + 1, a2 + a + l, a(a + 1) (a
2 + a + 1) + 1, ...

and call these successive numbers

U
l&amp;gt;

U
1&amp;gt;

U
3&amp;gt;

U
4&amp;gt;

we shall obviously have ux+1 = ux2 ux + 1.

It follows at once from Euclid s point of view that no primes contained

in any term up to ux can appear in ux+ .l} so that all the terms must be

relatively prime to each other. The same consequence follows a posteriori

from the scale of relation above given ; for, as I had occasion to observe

in the Comptes Rendus for April 1888 [see p. 620, below], if dealing only

with rational integer polynomials,

then, whatever value, c, we give to x, no two forms $* (c), $ (c) can have any
common measure not contained in a : in this case

&amp;lt;f&amp;gt;(x)

= (x 1)# + 1
;
so

that
&amp;lt;/&amp;gt;

l

(c) and
&amp;lt;f&amp;gt;i (c) must be relative primes for all values of i and j*.

It is worthy of remark that all the primes, other than 3, implicitly

obtained by this process will be of the form 6i + l.

Euclid s own process, or the modified and less transcendental one, may be

applied in like manner to obtain a continual succession of primes of the form

4n + 3 and Qn + 5.

As regards the former, we may use the formula

2 . a. b ... c + 1

(where a, b, ... c are any &quot;proposed&quot; primes of the form 4/z + 3), which will

necessarily be of the form 4&amp;gt;n + 3, and must therefore contain one factor

at least of that form.

* Another theorem of a similar kind is that, whatever integer polynomial (x) may be, if i, j

have for their greatest common measure k, then
&amp;lt;*[0(0)]

will be the greatest common measure of

*&amp;lt; [0(0)1, ^[0(0)].
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As regards the latter, we may employ the formula

3. a. b ... c + 2

(where a, b, ... c are each of the form 6n + 5), which will necessarily itself be,

and therefore contain one factor at least, of that form.

The scale of relation in the first of these cases will be, as before,

ux+l = u ux + 1
;

so that each term in the progression, abstracting 3, will be of the form
4i + 3 and 6; + ! conjointly, and consequently of the form 12/1 + 7; as

for example,
3, 7, 43, 1807,....

In the latter case the scale of relation is

which is of the form (ux
-

2) ux + 2. It is obvious that in each progression
at each step one new prime will be generated, and thus the number of

ascertained primes of the given form go on indefinitely increasing, as also

might be deduced a posteriori by aid of the general formula above referred

to from the scale of relation applicable to each. Each term in the second
case (the term 3, if it appears, excepted) will be simultaneously of the form
6^ 1 and 4/ + 1, and consequently of the form l2n + 5, as in the example
5, 17, 257, 65537,....

The same simple considerations cease to apply to the genesis of primes of

the forms 4w + 1, 6n + 1. We may indeed apply to them the formulae

(2. a. 6 ...c)
2 +l and 3 (a. b ... c)

2 + 1

respectively, but then we have to draw upon the theory of quadratic forms
in order to learn that their divisors are of the form 4w + 1 and 6w + 1

respectively.

Of course the difference in their favour is that in their case all the
divisors locked up in the successive terms of the two progressions respectively
are of the prescribed form

; whereas in the other two progressions, whose

theory admits of so much simpler treatment, we can only be assured of the

presence of one such factor in each of the several terms.

Euler has given the values of two infinite products, without any evidence
of their truth except such as according to the lax method of dealing with
series without regard to the laws of convergence prevalent in his day, and
still held in honour in Cambridge down to the times of Peacock, De Morgan,
and Herschel inclusive (and this long after Abel had justly denounced the
use of divergent series as a crime against reason), was erroneously supposed
to amount to a proof, from which the same consequeuces may be derived
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as shown in the foregoing pages, and something more besides*. These two

theorems are

_3__5__7_ 11 13 = TT

3TT 5-r7 + rn + ri3-i ~4

(where, corresponding to the primes 3, 7, 11, ... of the form 4?? + 3, the

factors of the product on the left are

3 7 11

3~+T 7TT 11 + 1
&quot;

all of them with the sign + in the denominator; while the fractions

corresponding to primes of the form 4n + 1 have the sign in their

denominators).

__ __ ^ __ _ _
5 + 1 7 - 1 11 + 1 M3 - 1 17 + 1 2

where, as in the previous product, the sign in the denominator of each

fraction depends on the form of the prime to which it corresponds (being

+ for primes of the form Qn l, and for primes of the form 6?? + 1).

Dr J. P. Gram (Memoires de VAcadtmie Royale de Copenhague, 6me sdrie,

Vol. n. p. 191) refers to a paper by Mertens (&quot;Bin Beitrag zur analytischen

Zahlentheorie,&quot; Borchardt s Journal, Bd 78), as one in which the truth of the

first of the two theorems is demonstrated &quot;

fuldstoendigt Bevis af Mertens
&quot;

are Gram s words f.

*
It follows from the first of these theorems that with the understanding that no denominator

is to exceed n (an indefinitely great number),

bears a finite ratio to (l + -)|l + - ](! +
V 5J \ 13 / V

so that as their product is known to be infinite, each of these two partial products must be

separately infinite
;

in like manner from Euler s second theorem a similar conclusion may
be inferred in regard to each of the two products

t It always seems to me absurd to speak of a complete proof, or of a theorem being

rigorously demonstrated. An incomplete proof is no proof, and a mathematical truth not

rigorously demonstrated is not demonstrated at all. I do not mean to deny that there are

mathematical truths, morally certain, which defy and will probably to the end of time continue

to defy proof, as, for example, that every indecomposable integer polynomial function must

represent an infinitude of primes. I have sometimes thought that the profound mystery which

envelops our conceptions relative to prime numbers depends upon the limitation of our faculties

in regard to time, which like space may be in its essence poly-dimensional, and that this

and such sort of truths would become self-evident to a being whose mode of perception

is according to superficially as distinguished from our own limitation to linearly extended

time.
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Assuming this to be the case, we shall easily find when N is indefinitely
7T

great, so that SN becomes -7 ,

which, according to Legendre s empirical law (Legendre, TMorie des Nombres,

3rd edition, Vol. n. p. 67, Art. 397), is equal to ^ ,
where K = M04

;

and as we have written QNSN -

log N -f ( V R), we may deduce, upon
the above assumptions,

V ~ R=

R, we know, is demonstrably less than f 1
-r-j log N, consequently V

must be less than (O812 + O215) log N, that is, less than T027 log N, and
a fortiori the portion of the omnipositive aggregate QN ,

which consists of

terms whose denominators exceed N, when N is indefinitely great, cannot be
4 / TT\

less than -
f
1 - -

] log N, that is, 273 log N.
TT\ 4/

Before concluding, let me add a word on Legendre s empirical formula for

the value of

referred to in the early part of this article.

If N is any odd number, the condition of its being a prime number
is that when divided by any odd prime less than its own square root, it shall

not leave a remainder zero. Now if N (an unknown odd number) is divided

by p, its remainder is equally likely to be 0, 1, 2, 3, ... or (p- 1). Hence the

chance that it is not divisible by p is (l -- j , and, if we were at liberty to
V pi

regard the like thing happening or not for any two values of p within the

stated limit as independent events, the expectation of N being a prime
number would be represented by

which, according to the formula referred to, for infinitely large values of

AT 1&amp;gt;104 T1\ is equal to - . It is rather more convenient to regard N as entirely

unknown instead of being given as odd, on which supposition the chance of

its being a prime would be-
,
or

2 log N* log N
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Hence for very large values of N the sum of the logarithms of all the

primes inferior to N might be expected to be something like (1104) .Z\T.

This does not contravene TchebychefF s formula (Serret, Cours d Algebre

Superieure, 4me ed., Vol. II. p. 233), which gives for the limits of this sum
a A

AN and BN, where A = 921292, and B = = 110555
;
but does contra-

5

vene the narrower limits given by my advance upon TchebychefF s method

[see Vol. ill. of this Reprint, p. 530], according to which for A, B, we may
write A 1} B1} where

A, = 0-921423, 1
= T076577*.

That the method of probabilities may sometimes be successfully applied

to questions concerning prime numbers I have shown reason for believing in

the two tables published by me [above, p. 101] in the Philosophical Magazine

for 1883 f.

51072 59595
*
Namely A

l
=~

i
- A, and Bl= ^^^, the values of which are incorrectly stated in the

memoir. Strange to say, Dr Gram, in his prize essay, previously quoted, on the number of

prime numbers under a given limit, has omitted all reference to this paper in his bibliographical

summary of the subject, which is only to be accounted for by its having escaped his notice ;

a narrowing of the asymptotic limits assigned to the sum of the logarithms of the prime numbers

series being the most notable fact in the history of the subject since the publication of

Tchebycheff s memoir. Subjectively, this paper has a peculiar claim upon the regard of its

author, for it was his meditation upon the two simultaneous difference-equations which occur in

it that formed the starting-point, or incunabulum, of that new and boundless world of thought

to which he has given the name of Universal Algebra. But, apart from this, that the superior

limit given by Tchebycheff as 1-1055 should be brought down by a more stringent solution of his

own inequalities to only 1-076577 in other words, that the excess above the probable mean

value (unity) should be reduced to little more than |rds of its original amount is in itself

a surprising fact. Perhaps the numerous (or innumerable) misprints and arithmetical mis

calculations which disfigure the paper may help to account for the singular neglect which it has

experienced. It will be noticed that the mean of the limits of Tchebycheff is 1-01342, the mean

of the new limits being 0-99900. The excess in the one case above and the defect in the other

below the probable true mean are respectively 0-01342 and -00100.

t A principle precisely similar to that employed above if applied to determining the number

of reduced proper fractions whose denominators do not exceed a given number n, leads to

a correct result. The expectation of two numbers being prime to each other will be the product

of the expectations of their not being each divisible by any the same prime number. But the

probability of one of them being divisible by i is -
,
and therefore of two of them being not each

divisible by i is
-^

. Hence the probability of their having no common factor is

1 \ fi

my &quot; ad in̂ that is is ^
If, then, we take two sets of numbers, each limited to n, the probable number of relatively prime

combinations of each of one set with each of the other should be ^ ,
and the number of reduced

3n2

proper fractions whose denominators do not exceed n should be the half of this or ^ . I believe

M. Cesaro has claimed the prior publication of this mode of reasoning, to which he is heartily

welcome. The number of these fractions is the same thing as the sum of the totients of all
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numbers not exceeding n. In the Philosophical Magazine for 1883 (Vol. xv. p. 251), a table

of these sums of totients has been published by me for all values of n not exceeding 500, and

[above, p. 101] in the same year (Vol. xvi. p. 231) the table was extended to values of n not

exceeding 1000. In every case without any exception the estimated value of this totient sum
is found to be intermediate between

3 &quot;

2

and
3

(&quot;
+ 1

)
2

.1 aim o

Calling the totient sum to n, T(n), I stated the exact equation

vV 2

from which it is capable of proof, without making any assumption as to the form of Tn, that its

asymptotic value is ^ The functional equation itself is merely an integration (so to say) of

the well-known theorem that any number is equal to the sum of the totients of its several

divisors. The introduction to these tables will be found very suggestive, and besides contains an

interesting bibliography of the subject of Farey series (suites de Farey), comprising, among other

writers upon it, the names of Cauchy, Glaisher, and Sir G. Airy, the last-named as author
of a paper on toothed wheels, published, I believe, in the &quot;Selected Papers&quot; of the Institute

of Mechanical Engineers. The last word on the subject, as far as I am aware, forms one of the

interludes, or rather the postscript, to my &quot;Constructive Theory of Partitions,&quot; published in the

American Journal of Mathematics [above, p. 55].
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SUR LES NOMBRES PARFAITS.

[Comptes Rendus, cvi. (1888), pp. 403405.]*

ExiSTE-T-lL des nombres parfaits impairs ? C est une question qui reste

indecise.

Dans un article interessant de M. Servais, paru dans le journal Mathesis

en octobre 1887, on trouve cette proposition (\\iun nombre parfait (s il y en a)

qui ne contient que trois facteurs premiers distincts est necessairement divisible

par 3 et 5. Je vais demoritrer ici qu un tel nombre n existe pas, au moyen
d un genre de raisounement qui m a fourni aussi une demonstration de ce

theoreme qu z7 n existe pas de nombre parfait qui contienne moins de six

facteurs premiers distincts.

On voit facilement que la somme de la serie geometrique

1 + c + c
2 + . . . + c\

ou c est impair, sera elle-meme paire quand i est impair; de plus, quand i est

pair, cette somme sera toujours paire, mais impairement paire seulement dans

le cas ou c = i = 1 (mod 4).

Done, si un nombre parfait impair est de la forme p
i

q^r
k

...
, (p, q, r, ...

etant des nombres premiers distincts), tous les indices i, j, k, ... doivent etre

pairs a 1 exception d un seul, soit i, lequel, de meme que sa base p, sera

congru a 1 par rapport au module 4
;

car on doit avoir

fp* $q
j
Irk - -

=
ZP* q

j rk ...,

gA+l 1

/af representant 1 + x + ...+ xi
,
c est-a-dire r- .

CC &quot;*~ X

Ainsi, on voit qu un nombre parfait impair (si un tel nombre existe)

sera de la forme

M (*q + ijr^,

etant un nombre premier qui ne divise pas M.

[* See also below, p. 615.]
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Comme corollaire, on peut deduire qu aucun nombre parfait impair ne

peut etre divisible par 105; en effet, soit un tel nombre

on aura

, , x ,. 2.13.19 , x ,. 494
cest-a-dire 5 . .Q- , cest-a-dire

TJ^; qui est plus grand que 2.

Remarquons qu en general, si p
i

qir
t ...est un nombre parfait, il fait

Pi+l Qj+1 par
qU6 i?(?=lh%- IK&quot;

CeSt -a-dlre
^l^Ir-^T- Soit Plus Srand

que 2.

Ainsi, a moins que le plus petit des elements p, q, r, ... ne soit plus
grand que 3, on doit avoir

5 7 11 1317 19

46 1012 16 18
~ &amp;gt;2

&amp;gt;

mais en ne depassant pas 19, ce produit est moindre que 1,94963. Conse -

quemment le nombre des elements, dans ce cas, doit etre 7, au moins.

Puisque 1,95 X fl +
J

&amp;lt; 2, on voit immediatement que, si un nombre

parfait a 7 elements parmi lesquels 3 ne figurent pas existe, le septieme
element ne pourrait pas depasser 37.

Passons au cas de 3 elements 3, q, r d un nombre parfait impair.
3711 231

Puisque
- - =^ &amp;lt; 2, on voit que S^ll*. et a plus forte raison 8*^5*,

ou p, q sont des nombres quelconques autres que 3 ou 5, ne peut etre un
nombre parfait.

Supposons done que 3, 5, q sont les e lements d un nombre parfait-
3 5 17 255 n

puisque ^ ^ j~e

=
128

&amp;lt;
2&amp;gt;

on V0lt (
l
ue ? De Peu * etre ni 17, ni un nombre

quelconque plus grand que 17. Done 5 = 11 ou q = 13
;

car nous avons
vu que 3, 5, 7 ne peuvent jamais se trouver reunis comrne elements d un
nombre parfait quelconque.

(1) Soient 3, 5, 13 les elements. L indice de 13 ne peut pas etre

r i s 2i+2
i

impair, car alors le nombre 132i+1 = --- contiendrait le facteur 7 et 7
J lo i

devrait etre un des elements. II s ensuit que (S^
+1 -

1) (1&J+* - 1) devrait
contenir 5; mais, par rapport au module 5, une puissance impaire quel
conque de 3 ou 13 est congrue a 3 ou a 2. Done la combinaison 3, 5. 13 est
inadmissible.
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(2) Solent 3, 5, 11 les elements.

L indice de 5 doit etre de la forme
4tj + 1

; mais, si j &amp;gt; 0,

54J+2 _ 1

5-1

contiendra les trois nombres impairs premiers entre eux*

- 1 5^+1 + 1 5 + 1

5-1 5+1 2

Consequemment, il y aura au moins trois autres elements en plus de 5, ce qui

est inadmissible : done le nombre sera de la forme 3^5 II 2
*.

Done (1 + 5) (II
2** 1

1) doit contenir 9, ce qui est impossible; car

H 2*+ 1 = 2(mod3).

Ainsi, on voit qu un nombre impair avec 3 elements seulement ne peut
exister.

Quant aux nombres parfaits pairs, Euclide a demontre que 2n /2
W

,

c est-a-dire 2n (2
n+1

1), est un nombre parfait pourvu que 2n+1 1 soit un

nombre premier. Mais on doit a Euler la seule preuve que je connaisse de

la proposition reciproque qu il nexiste pas de nombres pairs parfaits autres

que ceux d Euclide.

[* See below, p. 615.]
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SUR UNE CLASSE SPECIALS DES DIVISEURS DE LA
SOMME D UNE SERIE GEOMETRIQUE.

[Comptes Rendus, cvi. (1888), pp. 446450.]

EN 1 honneur du grand et surprenant Fermat, dotit j ai vu avec une

emotion indicible graves sur le buste au musee de Toulouse les mots qui lui

etaient adresses par Blaise Pascal: &quot;Au plus grand homme de
PEurope,&quot; je

tne propose de nommer la fonction fondamentale de la haute ArithmetiqueM
1 le fermatien a la base et a Yindice M.

M
1

De plus, je nommerai la fonction
-^-

-

, qui n est autre chose que la

somme d une serie geometrique dont la raison est un entier, le fermatien
reduit. M (bien entendu) est uu entier positif quelconque, mais @ un entier

positif ou negatif.

Les nombres premiers qui divisent un nombre quelconque, je les nomine
ses elements.

On sait, d apres Euler, que tout diviseur d un fermatien sera de la

forme X/JL+!, ou p est M ou bien un diviseur quelconque de M. Parmi
ces diviseurs, il y a une classe toute speciale qui correspond aux cas de

jj.
= 1 et de /x

= 1. Le caractere special de ces diviseurs du fermatien,
c est qu ils doivent necessairement etre (comme on verra immediatement)
en meme temps diviseurs de son indice. Je remarque prealablement que,

P* - 1 (ou p est un nombre premier) etant, par rapport au module p,

congru a -
1, afm que ce fermatien contienne p, il faut que &amp;lt;R)

- 1 le

contienne.

(1) Soit M=p un nombre premier impair: je dis que le fermatien
(S)P _ 1

reduit _ contiendra p, mais non pas p*. Car, en mettant = kp + 1, on

(S)P _ 1
voit que le fermatien reduit

, envisage&quot; comme la somme d une serie

geometrique, sera congru par rapport au module p
2 a p + k P ~^

p, c est-

a-dire a p.
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(2) Soit M la puissance d un nombre premier impair p&quot;.
En supposant

toujours que 1 contient p,
* 1 le contiendra.

Consequemment, puisque ~ =- ..
,

il suit0-1 p&quot;-

1

.! @p
a~2 _ i 0-1

_
comme consequence de ce qui precede que ^

- sera divisible par p
a

,
mais

non pas parp
a+1

.

(3) Soit M = Npa
,
ou N est premier a p ;

on a

le premier facteur peut etre envisage comme fonction de 0^ et par le cas

precedent sera divisible par p
a

,
mais non pas par pa+l

. Le second facteur,

envisage comme la somme d une serie geometrique, sera congru a N par

rapport a p (quel que soit JV^pair ou impair) et consequemment ne contiendra

pas p. Done ^ sera divisible par p
a

,
mais non par p

a+l
.

\y 1

Ainsi, si p est un Element quelconque impair de 1 et p
a la plus haute

puissance de p contenu dans M, le fermatien re&quot;duit
-^

r- contiendra p
a

,

mais ne contiendra pas pa+1
et, comme consequence particuliere, ne contiendra

mil element de 1 qui n est pas un diviseur de M.

On peut aussi supposer que 1 contient chaque element de M, et Ton

obtient le theoreme suivant :

Un fermatien reduit a indice impair, dont le denominateur est divisible par

chaque element de son indice, sera lui-meme divisible par cet indice, et de plus
le quotient qui resuite de la division de I une de ces quantites par I autre sera

premier relatif a Vindice.

C est dans les recherches sur la possibilite de 1 existence de nombres

parfaits autres que ceux d Euclide que se rencontre cette theorie des

fermatiens rdduits qui y joue un role indispensable. Comme exemple de

son utilite, je vais faire voir qu un nombre de la forme 3^V + 1 a 7 elements

ne peut pas etre un nombre parfait.

Remarquons que, si g est un des nombres gaussiens 3, 5, 17, 257,...,

c est-a-dire un nombre premier de la forme 2n + 1, g ne peut pas diviser

un fermatien reduit a indice impair s il ne divise pas le ddnominateur
; car,

afin que cela eut lieu, g 1 par le theoreme deja cite d Euler devrait contenir

un facteur impair.

(qx + \Y9 1
Done un tel fermatien reduit sera de la forme .

-
.
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Or nous avons vu, dans ]a Note precedents [p. 604, above], qu un nombre

oN 1 a 6 elements ne peut pas etre un nombre parfait, et que, si un tel

uombre a 7 Elements est un nombre parfait, le plus grand d entre eux ne

peut pas exceder 37.

II est facile de voir que ce nombre doit contenir 5, parce que

7111317192329
6 10 12 16 18 22 28 &amp;lt;;

en effet, ce produit est moindre que 1,69.

Soit done, s il est possible, 3^ + 1 un nombre parfait a 7 elements.

Les nombres premiers de la forme 4# + 1 pas plus grands que 37 sont

13, 17, 29, 37. Mais 17 ne peut pas etre Moment exceptionnel de 3^ + 1

parce que la somme des diviseurs du component* qui repond a 17 sera la

somme d un nombre pair de termes de la serie 1 + 17 + 17 2 + 17 3 + ...
, laquelle

necessairement contient 3. La meme chose est evidemment vraie pour un

nombre quelconque, comme 2q, qui est de la forme 12# + 5.

Done le component exceptionnel aura pour element ou 13 ou 37
;
mais ni

13 2 1 ni 37 2 1 ne contient 5. II faut done que la somme des diviseurs du

component ou a I elernent 11 ou sinon a 1 element 31 soit respectivement
ll 5

*&quot; 1 31 5 &quot; 1
de la forme

--.-y ^ ou
-^ _ ,

car 11 et 31 sont les seuls nombres pas plus

grands que 37 de la forme 5x + 1. Consequemment tous les diviseurs d une
11 B 1 31 5 1

au moins des deux quantites ou - seront compris parmi les
-L-L J_ ol 1

elements de 3^ 1.

Selon notre theoreme, les diviseurs ni de Tun ni de 1 autre de ces deux
fonctions ne peuvent contenir 5 et consequemment par le thdoreme d Euler

seront de la forme 10# + 1.

Or, puisque 11 n est pas un r^sidu quadratique de 31, 11 s 1 ne peut
II 5 1

pas contenir 31
;

done les diviseurs de sont compris parmi les

nombres 41, 61, 71, 101, ....

31 5 1
, _ ^

contiendra 11, mais ne peut pas etre une puissance de 11, car

au module II 2

45

(31
5 -

1)
= 3 5 - 45 = 1 - 43 = - 1023,

c est-a-dire 11 . 93,

de sorte que 31 5 1 n est pas divisible meme par II 2
.

31* 1
Done les diviseurs de -

_ sont aussi compris parmi les nombres

41, 61, 71, 101,....

* La plus haute puissance d un 614ment d un nombre qu il contient se nomme un component
de ce nombre.

s. iv. 39
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Consequemment il y aura au moins un element du nombre parfait
3JV 1 qui n est pas moindre que 41

;
cette conclusion est contradictoire

a 1 existence de la limite sup^rieure 37 a la grandeur des Elements. Done
on peut affirmer en toute surete qu un nombre non divisible par 3 qui
contient moins que 8 facteurs premiers distincts ne peut pas etre un

nombre parfait.

II y a une rnethode un peu plus expeditive pour parvenir au resultat

dernierement acquis; mais, tout de meme, supprimer la premiere methode

serait un precede mal avise, puisque son principe est applicable a d autres

cas ou celui dont je vais faire usage se trouverait en defaut
; par exemple

en combinant les deux methodes, c est-a-dire en tenant compte en meme

temps des consequences de la presence de 17 quand il figure comroe

element, et de la presence de 1 element 5 dans le cas ou 17 manque, je

crois avoir demontre&quot; qu un entier 3^ + 1 a 8 elements ne peut pas etre

un nombre parfait.

Remarquons que, puisque le produit suivant, a 7 termes, ou 17 manque
5 7 11 13 19 23 29 . ,

dans le numerateur, ^ *
-(7\

TO TO oo oo &amp;gt;

est moindre que 1,988, un nombre

parfait a 7 elements non divisible par 3 ne peut pas exister sans 1 element

17. Supposons qu un tel nombre existe. Soit 77 un de ses elements

(autre que 17). La somme des diviseurs du component qui y correspond
,,2t+2 _ I

sera de la forme-; si m est un element ordinaire, et de la forme
77-1

/
??
2\2;+l _ I

-
(77 + 1) si V) est 1 element exceptionnel.

rj
2 - 1

Dans 1 un et dans 1 autre cas, cette somme ne peut contenir 17 que sous

la condition que if 1 soit divisible par 17.

Done, puisque le produit des sommes des diviseurs des components
d un nombre parfait doit contenir tous ses elements, il existe au moins

un element 77 tel que if 1 contient 17, c est-a-dire il y a un element qui

est un uombre premier compris dans 1 une ou 1 autre des formules 17#+1,
17x 1

;
mais le plus petit nombre premier contenu dans ces formules

est 67*. Ainsi, puisque

5 7 11 1317 1967 ,,

1 existence d un nombre parfait oN 1 a 7 elements est impossible.

* On pourrait facilement prouver (s il 6tait necessaire pour les besoins de la demonstration

du the^oreme) que 77
doit etre un nombre premier de la forme I7x + l ou un nombre premier en

meme temps de la forme \lx- 1 et 12?/ + 1, c est-a-dire de la forme 204r + 169, et ainsi il y aurait

au moins un element plus grand que 103.
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SUR L IMPOSSIBILITE DE L EXISTENCE D UN NOMBRE PAR-

FAIT IMPAIR QUI NE CONTIENT PAS AU MOINS 5

DIVISEURS PREMIERS DISTINCTS.

[Comptes Rendus, cvi. (1888), pp. 522526.]

Nous avons vu, dans une Note precedente, qu un nombre parfait impair

avec moins de 7 facteurs doit etre divisible par 3, et aussi que nul nombre

parfait ne peut etre divisible par 105. Ajoutons que, puisque

et que, en changeant 11, 13, 17 pour d autres elements, on ne peut diminuer

ce produit qu en empietant sur les chiffres 5 ou 7, il s ensuit que I element

3 doit etre associe ou avec 7 ou avec 5 dans un nombre parfait a quatre

elements, s il y en a.

Supposons done qu un tel nombre N existe.

(1) Soient 3 et 7 deux de ses elements. Le troisieme element en ordre

de grandeur ne peut pas exceder 13
;
car

3 7 17 19 119 / 1\ 126

2* 6* 16 18 64 V 18/ 64

(a) Soit 11 le troisieme element; puisque

3 7 11 29 = 77/ l\
2 6 10 28 40 \ 28y

on voit que le quatrieme Element ne peut etre qu un des nombres 13, 17,

19, 23.

Mais, parmi les elements, un au moins doit etre de la forme 4&amp;gt;x + 1.

De plus, nous avons vu dans une Note precedente que nul nombre parfait
ne peut contenir 1 ^lement 17 sans contenir en meme temps un element pas

plus petit que 67. Done les quatre Elements seront 3, 7, 11, 13.

392
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Le diviseur-somme* a 7 ne peut pas contenir le facteur algebrique 7 9
1,

1 7 3 1 1 7 9 1
car alors ~ .

-
,

-
.

f

- seront diviseurs de cette somme premiers entre
o 7 1 o 7 1

eux, a 3 et a 7, et en plus ne contenant pas 13 parce que 13 n est ni une

fonction unilineaire
f-
de q ni diviseur de 7 3

1. Ainsi sur cette supposition
il y aurait au moins cinq elements distincts. Done le diviseur-somme a 7 ne

peut pas contenir 9, mais le component a 3 contient necessairement 32
;

consequemment, puisque le diviseur-somme a 11 (Element ordinaire et non

pas de la forme 3# + 1) ne peut pas contenir 3, le diviseur-somme a 13
133 1

contieudra un facteur algebrique de la forme =-= -
quiestegal a 169 + 13+ 1.

J_O J-

Done 61 sera un element en plus de 3, 7, 11, 13 qui est contraire a 1 hypothese.

1. (/3) Soit 13 le troisieme element.

p 3 7 13 23 91f-l\ 9 .

ruisque 5 5.. ys 55 T 1 1 + SH I
&amp;lt; 2, ie quatneme element sera neces-

O I L TI \ 2.]

sairement moins que 23, et le systeme des elements sera 3, 7, 13, 19, car 17

est exclus.

Les diviseurs-sommes, ni a 13 ni a 19, ne peuvent pas contenir 3
; parce

133 1 19s 1
qu ils contiendraient necessairement les facteurs - et ^Q i &amp;gt;

et ainsi

1 + 13 + 132
,

1 + 19 + 19 2

5 ,
cest-a-dire ol, et - -

, cest-a-dire 127.
o o

Done le diviseur-somme a 7 doit contenir algebriquement les facteurs

1 7 9 1 1 7 s 1
K .

=5
-

,
~ . = ;

ce dernier est egal a 19
;

le premier sera necessairement

premier a 3, 7, 19 et, pour la raison deja dormde, a 13.

II est done demontre que 7 ne peut pas e~tre un element de N.

(2) Supposons que 3 et 5 sont deux de ses elements.

2. A. Soit 5 1 element exceptionnel.

2. A (a). Si 1 indice a Tenement 3 est 2, alors, puisque 1 + 3 + 32 = 13,

on aura les Elements 3, 5, 13; done le diviseur-somme a 13 doit contenir 3,

132 + 13 + 1

et, consequemment, contiendra algebriquement le facteur -
^ ,

c est-

a-dire 61.

Ainsi on aura les elements 3, 5, 13, 61.

1 + 3 + 32 1 + 5 13 61 . . . , . ., ,

Mais ^ . . =-^ 77x &amp;lt; 2, ce qui est inadmissible.
Q x 12 i)0

*
Si p est un element et pi un component d un nombre N, on nornme^* le component a, p, et

le diviseur-somme a p.
p-1

t II est tres commode, dans ce genre de recherches, de se servir de la phrase
&quot; fonction uni-

Iin6aire de x &quot;

pour signifier kx + 1.



57] dun nombre parfait 613

2. A(/9). On peut done supposer 1 indice du component a 3 au moins 4.

Soient 3, 5, p les trois elements
;

1 indice du diviseur-somme k p ne peut

pas etre 9, car alors on aurait en plus de 3, 5, p deux autres elements au

moins premiers eutre eux et & 3, 5, p.

Soit q le quatrieme element
;

la meme chose sera vraie du diviseur-

somme a q.

Done le produit des diviseurs-sommes a 3, 5, p, q ne peut pas contenir uue

plus haute puissance de 3 que 33
;
mais elle doit contenir au moins 34

.

Ainsi 1 hypothese que 5 est 1 element exceptionnel est inadmissible.

2. B. Passons a 1 hypothese que 5 est un element ordinaire.

3 5 31 37
Kemarquons que

-
.
-

. ^- . &amp;lt; 1,992 &amp;lt; 2.
. 4 oU oO

Consequemment, il y aura au moins un element, disons p, qui n excede

pas 29 : je dis que p ne peut pas etre contenu dans le diviseur-somme de 5
;

car, si cela avait lieu, 1 indice de cette somme serait necessairement un

diviseur impair de 1 exces au-dessus de 1 unite de quelque nombre premier
inferieur a 31, c est-a-dire 3, 5, 7, 9 ou 11, dont les quatre derniers correspon

dent respectivement aux nombres premiers 11, 29, 19 et 23.

5 3 1 55 1
II ne peut pas etre 3, car -= - = 31

;
ni 5, car -=

- = 11.71 (et Ton
O J. O L

aurait une combinaison d elements 3, 5, 11, 71
; laquelle est inadmissible,

parce que 5 est, par hypothese, non exceptionnel, et les autres elements sont

de la forme 4# + 3).

II ne peut pas etre 7, car on trouve facilement que 5 7 1 ne contient pas
29 ni 9; car, quoiqu il soit vrai que (5 etant residu quadratique de 19) 5 9 1

contient 19, il contient en meme temps 5 3
1, et 1 on aurait la combinaison

3, 5, 19, 31, qui est defendue par la meme raison que 1 est 3, 5, 11, 71.

Reste seulement 11, mais 5n -l ne peut pas contenir 23, parce que 5 n est

pas residu quadratique de 23.

Ainsi 1 element 5 ne peut pas engendrer (au moyeh du diviseur-somme

qui lui repond) un element qui n est pas en dehors de la limite 29.

Le diviseur-somme 4 un tel element (s il est 11 et seulement dans ce

cas-la) peut contenir 5, mais non pas 52
; car, s il contenait 5 2

,
on aurait au

moins deux diviseurs de cette somme premiers entre eux et a 3, 5, 11.

Remarquons que le component a I element exceptionnel ne peut pas tre

une puissance (a exponent 4&amp;gt;j
+ 1) d un nombre

; car, si j &amp;gt; 0, q
4̂ 2 1 con-

tiendrait necessairement deux facteurs premiers distincts en addition a 3, 5

et p; doncj=0; ainsi Ton voit que (7+1 doit contenir au moins les puissances
de 3 et 5 contenues en 32 .5 2

, qui ne sont pas contenues dans le diviseur-

somme de 1 autre element indetermine
, lequel on montre facilement ne
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pouvoir contenir que 3 ou 5 et non pas 32
,
3 . 5, ou 5 2

; car, sur la premiere

ou la derniere de ces trois hypotheses, le nombre des elements serait plus

grand que 4, et sur 1 hypothese qui reste plus grand meme que 5. Done

Tenement exceptionnel augmente par 1 unite sera de la forme ou 2A; . 32
. 5 1

ou 2k . 3 . 5 2 1 : consequemment sa valeur doit exceder 89
;
cela prouve

que le p dont nous avons parle n est pas 1 element exceptionnel.

Soit q cet element, on aura

Or le diviseur-somme a 5 ne contient ni 3 ni p.

On aura done forcement

c est-a-dire 5* - 120X + 3 = 0,

ce qui est impossible.

Cela demontre que 1 hypothese 2. B est inadmissible, et finalement le

resultat est acquis qu il n existe pas de nombres parfaits impairs qui soient

divisibles par moins de 5 facteurs premiers ;
car ce theoreme, pour les cas

d une multiplicite 3, 2, 1, a deja ete demontre.

Ajoutons quelques mots sur les nombres parfaits a cinq elements.

Ici, puisque
3 11 13 17 23

2-10-12-16 22
&amp;lt;

3 11 13 17 19 onA .

2-T&amp;lt;rl2-T6-l8
&amp;gt;2 004 -

On voit qu un nombre parfait a cinq Elements, ou 5 et 7 manquent, ne peut

avoir pour ces elements que les chiffres 3, 11, 13, 17, 19.

Mais 17 (un nombre cyclotomique de Gauss) ne peut pas exister sans un

element satellite de la forme 17 A; + 1. Done un nombre parfait a cinq

elements, s il existe, aura necessairement ou les elements 3, 5 ou les elements

3,7.

J ai reussi a ddmontrer 1 impossibilitd de 1 une et de 1 autre de ces

hypotheses; mais la preuve est trop longue pour etre inseree ici.
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SUR LES NOMBRES PARFATTS.

[Gomptes Eendus, cvi. (1888), pp. 641, 642; Mathesis, vin. (1888),

pp. 5761.]

DANS la demonstration de I impossibilit6 qu un nombre a 3 elements soit

un nombre parfait, qui a paru dans les Gomptes rendus du 6 fevrier dernier,

il y a une petite omission que M. Mansion a eu la bonte de me signaler. II

527+3 _ i 52.7+1 + 1 5 + 1
est dit [p. 606, above], que les nombres

,

- -
,

- sont
o ~~ L u -{- -l

~

premiers entre eux.

Cela n est pas vrai si, 2j + I contient 3, mais, dans ce cas-la, 5 2
-?+1 + 1 con-

tiendra 5 3 + 1 qui contient 7 : consequemment, on aura les quatre elements

3, 5, 7, 11. Done la demonstration reste bonne.

M. Sylvester vient de publier [p. 604, above], dans les Gomptes Rendus de

I Academie des Sciences de Paris (seance du 6 fevrier 1888, t. cvi. pp. 403

405), une importante contribution a 1 etude des nombres parfaits, a 1 occasion

de remarques de notre collaborates M. Servais (Mathesis, t. vn. pp. 228 230).

Nous sommes heureux de reproduire ici les considerations developpees par
1 illustre geometre anglais, comme complement des articles publics a ce sujet
dans Mathesis (t. vi. pp. 100101, 145148, 178, 248250, et t. vn.

pp. 228230, 245246).

La notation c = i=l (mod 4) est equivalente a la notation plus explicite:

et se prononce : c est congru a i et d 1, suivant le module 4.

Nous ajoutons quelques notes a 1 article un peu bref de M. Sylvester pour
en faciliter 1 intelligence*. P. MANSION.

Existe-t-il des nombres parfaits impairs? C est une question qui reste

indecise.

* Dans les nos. des C. E. du 13 et du 20 fevrier, M. Sylvester a publie de nouvelles recherches
sur les nombres parfaits dont nous ne pouvons, faute d espace, que signaler plus has, les conclusions
en note. II s est aussi occupe des nombres parfaits dans les nos. de Nature, du 15 et du 22
de&quot;cembre 1887, et dans VEducational Times du l cr mars 1888.
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Dans un article inteVessant de M. Servais, paru dans le journal Mathesis,

en octobre 1887, on trouve cette proposition qu wn nombre parfait impair

(s il y en a) qui ne contient que trois facteurs premiers distincts est necessaire-

ment divisible par 3 et 5. Je vais ddmontrer ici qu un tel nombre n existe

pas, au moyen d un genre de raisonnement qui m a fourni aussi une demon
stration de ce theoreme qu i7 n existe pas de nombre parfait impair qui
contienne moins de six facteurs premiers distincts.

On voit facilement que la somme de la serie geometrique

1 + c + c2 + . . . + c*

ou c est impair, sera elle-merne paire quand i est impair; de plus, quand i est

pair, cette somme sera toujours impaire, mais impairernent paire seulement

dans le cas ou c = i = 1 (mod 4).

Done, si un nombre parfait impair est de la forme p
i

q^r
k
... (p,q,r, ... etant

des nombres premiers distincts), tous les indices i,j, k, ... doivent etre pairs a

1 exception d un seul, soit i, lequel, de meme que sa base p, sera congru a 1

par rapport au module 4
;
car on doit avoir

fptfaifr* . . .
=

/#* representant 1 + x + ... + x\ c est-a-dire .

x L

Ainsi, on voit qu un nombre parfait impair (si un tel nombre existe) sera

de la forme M2
(4&amp;gt;q

+ I)
4*&quot;1

&quot;1

, 4g + 1 etant un nombre premier qui ne divise

pas M*.

Comme corollaire, on peut deduire qu aucun nombre parfait impair ne peut
etre divisible par 105. En effet, soit un tel nombre 32*5 2

- 7 1

*...; on aura

tt -
r,,,u.

7
T

7

,
. , ,. 2.13.19

, ,. 494
c est-a-dire ^ -

;
c est-a-dire ^-r= , qui est plus grand que 2.

-O .

Remarquons qu en general, si ptqir*
1

... est un nombre parfait, il faut que

c est-a-dire, ^r^ ~, ^^ ... \j cou-ci-&amp;gt;aij. c = ^r _ . .

p
l

(p-l)q)(q-l} p-lq-lr-l
soit plus grand que 2-f-.

* Th^or^me d^montre aussi, en 1886, par M. Stern, dans Mathesis, t. vi. pp. 248250,
mais que Ton trouve egalement au no. 109, du chapitre III, de 1 opuscule d Euler: Tractatus

de numerorum doctrina, publi6 dans les Commentationes arithmeticae collectae (voir t. n.

pp. 514515).
II en r^sulte que, si 3, 7, ou 11, etc. entrent comme facteur dans un nombre parfait impair,

Us y entrent avec un exposant pair, car ils sont de la forme (4p + 3).

t Voir, par exemple, 1 article de M. Servais, p. 230. D apres la definition des nombres

parfaits, on a
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Ainsi, a moins que le plus petit des elements p, q, r ... ne soit pas plus

grand que 3, on doit avoir

5711131719
4610121618

&quot;

mais en ne d^passant pas 19, ce produit est moindre que 1,94963. Con-

sequemment le nombre des elements, dans ce cas, doit etre 7 au moins.

Puisque

l,9ox(l
+

;
I)&amp;lt;2,

on voit immediatement que, si un nombre parfait a 7 elements parmi
lesquels 3 ne figure pas, existe, le septieme element ne pourrait pas

depasser 37*.

Passons au cas de 3 elements 3, q, r d un nombre parfait impair.

Puisque

3711^231
2 6 10

~
120

on voit que 3l
. 7-? . 11*, et a plus forte raison 3^ &amp;lt;?*, ou^, q sont des nombres

quelconques autres que 3 ou 5, ne peut etre un nombre parfait.

Supposons done que 3, 5, q sont les elements d un nombre parfait;

puisque
3 5 17 _ 255

2 i 16
~

128
&amp;lt;

on voit que q ne peut etre ni 17, ni un nombre quelconque plus grand que
17. Done q = 11 ou q = 13

;
car nous avons vu que 3, 5, 7 ne peuvent jamais

se trouver reunis comme elements d un nombre parfait quelconque.

(1) Soient 3, 5, 13 les elements. L indice de 13 ne peut pas etre impair,
car alors le nombre

- 1
&amp;lt;/&amp;gt;

+1 - 1 7*+! - 1
i. __o

On dMuit aise&quot;ment de 14 (1) que (qi+
l -

1) (T*
+I -

1) doit etre divisible par p. (2) En supprimant
(
-

1) dans les numerateurs,

P g r
&amp;gt;2

p-1 g-i r-l
Dans les C. R. du 13 fevrier, M. Sylvester a prouve qu il ne peut y avoir de nombre parfait

premier avec 3, ayant mSme 7 ou 8 elements. II se sert pour arriver a ce re&quot;sultat de proprietes

(deduites du the&quot;oreme de Fermat) des expressions 8n -l, [(O
n -

1) : (0
-

1)] ; il nomme ces

expressions fermatien de base et d indice n, etfermatien reduit en 1 honneur du grand g^ometre
de Toulouse. II rappelle, a ce propos, les mots adresses a celui-ce par Pascal :

&quot; Au plus grand
homme de 1 Europe,&quot; mots graves sur le buste de Fermat au muse&quot;e de Toulouse. La citation
exacte de Pascal est : &quot;Quoique vous soyez celui de toute 1 Europe que je tiens pour le plus grand
geometre, etc.&quot; (Lettre du 10 aout 1660).
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contiendrait le facteur 7, et 7 devrait etre un des Elements*. II s ensuit que

(3
2i+1

1)(13
2
-J
+1

1) devrait contenir 5
; mais, par rapport au module 5, une

puissance impaire quelconque de 3 ou 13 est congrue a 3 ou a 2. Done la

combinaison 3, 5, 13 est inadmissible.

(2) Soient 3, 5, !!} les elements. L indice de 5 doit etre de la forme

4-j + 1
; mais, si j &amp;gt; 0,

547+2 i

contiendra les trois nombres impairs premiers entre euxj

5 2
-?+1 - 1 5^+1 + 1 5 + 1

5-1 5+1 2

[pourvu que 2j + 1 ne soit pas divisible par 3
;
dans ce cas, 5 2

-?+1 + 1 contien-

drait 5 3 + 1 = 18 . 7, de sorte que 7 serait un element].

Consequemment, il y aura au moins trois autres elements en plus de 5, ce

qui est inadmissible
;
done le nombre sera de la forme S2*

. 5 . II 2
*.

Done (1 + 5)(11
2A;+1 -

1) doit coutenir 9, ce qui est impossible; car

11 2*+1 = 2 (mod 3).

Ainsi, on voit qu un nombre parfait impair avec 3 elements seulement ne

peut exister.

Quant aux nombres parfaits pairs, Euclide a demontre que 2n /2
n

,
c est-a-

dire 2n (2
n+1

1) est un nombre parfait pourvu que 2n+1 1 soit un nombre

premier. Mais on doit a Euler la seule preuve|| que je connaisse de la pro

position reciproque C[u il nexiste pas de nombres pairs parfaits autres que

ceux d Euclide.
2 27+1 j

NOTE. On peut encore etablir le (2) comme il suit. Le nombre
o J.

introduit dans le premier membre de I dgalite hypothetique

Q21+1 _ 1 ^4J+2 1 11 2&+1 _ 1~ * *
__ o S2* 547+ 1 II 2*

3-1 5-1 11-1
* 132 +2 - 1 est divisible par 132 - 1= 168= 7 x 24.

t 3 et 11 ont des exposants pairs (voir la premiere note, p. [616]).

J Les nombres 5%+1 -l, 52
&amp;gt;

+1 + l n ont d autre diviseur commun que leur difference 2;

ensuite on a

5 + 1 5^+1 + 1
done 5^+1 - 1 et i (5

2
&amp;gt;

+1 -
1) ne sont pas divisibles par -= = 3. Mais = ^- n est pas toujours

Li O ~T~ -i

premier avec 3 ;
en effet, 5^+1 + 1 est un multiple de 9 plus 6, ou 3 suivant que 2j + 1 est de la

forme 3p + 1, 3p, ou 3p + 2. Les lignes entre crochets manquent dans les C. R.
;

elles nous ont

ete obligeamment communiquees par Pauteur, pour computer la demonstration, dans le cas oil

52J+1 est divisible par 9. (Voir aussi la note a la suite de 1 article.)

Dans les C. R. du 20 fevrier, M. Sylvester demontre qu il n y a pas nombre parfait impair

avec quatre elements et annonoe qu il a prouve qu il n en existe pas meme avec cinq elements.

||
Commentationes arithm. coll., p. 514, no. 107 (cite par M. Sylvester, Nature, 15 dec. 1887,

p. 152). Voir une autre demonstration due a M. Lucas, dans Mathesis, t. vi. pp. 146 147.
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au moins un facteur different de 3, 5, 11. En effet, ce nombre ^~- s il

o 1

n est pas divisible par 11, introduit uri autre facteur que 3, 5, 11, puisqu il est

premier avec 3, 5, 11. D autre part, s il est divisible par 11, il est aussi

divisible par 71
;

car on a

5 -1 =
4,

5 5 - 1 = 4. 11. 71,

55(2p+)-H!_ ]_
_ /

P. MANSION.
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PREUVE EL^MENTAIRE DU THEOREME DE DIRICHLET SUR
LES PROGRESSIONS ARITHM^TIQUES DANS LES CAS Oil

LA RAISON EST 8 OU 12.

[Comptes Rendus, cvi. (1888), pp. 12781281, 13851386.]

LE principe (ou pour ainsi dire le moment intellectuel) dont nous nous

servons est le suivant :

Pour demontrer que le nombre de nombres premiers d une forme donnee est

infini, cherchons a construire une progression infinie d entiers relativement

premiers entre eux, et dont chacun contiendra un nombre premier (au moins)

de la forme donnee.

Dans ce qui suit,/ signifie une forme fonctionnelle rationnelle entiere et

ne contenant que des coefficients rationnels.

LEMME I. Si ux+1 =fux et si ffQ =/0, alors, r et s etant deux entiers

quelconques, le plus grand diviseur commun ct, ur et us sera un diviseur defO.

Car evidemment ur+e =ff . . ./O (c est-a-dire /
e

O) [mod ur].
Mais/ 0, par

hypothese, =/0.

Consequemment, tout diviseur de ur et u8 sera un diviseur de
t/&quot;0.

LEMME II. Si ux+l =fux et si, de plus, u-^ =fO, le plus grand diviseur

commun de ur et us sera ut ,
ou t est le plus grand diviseur commun de r et s.

(1) On aura Evidemment

Mg+e
= we (mod Ug).

Consequemment ut sera un diviseur de u.2t ,
u3t , ..., umt quel que soit m.

(2) Ecrivons un schema pareil a celui qui s applique a la recherche du

plus grand diviseur de r et s, c est-a-dire

i hs = v, skv=w, ..., zly =
t, y mt = Q;

alors, en vertu de ce qui precede, ut sera un diviseur de ur et us ,
et tout

diviseur de ur et de us sera un diviseur de ut .

Done, si t est le plus grand diviseur commun a r et s, ut sera le plus grand
diviseur commun a ur et us ,

ce qui etait a demontrer. II s ensuit que, si r

est premier relativement a s, ur et us auront ux pour leur plus grand diviseur

commun.
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Je vais faire 1 application de ce principe : (A) aux progressions arithme -

tiques a la raison 8, (B) a la raison 12.

A. 1. Gas de 8x + 3. Ecrivons

Wi=l, 1*2
= 2^+1 = 3, u3

= 2u2
2 + 1 = 19, ....

On demontre facilement que tout u est de la forme 8m + 3, et Ton salt que
les facteurs premiers de tout u sont de la forme 8n + 1 ou 8n + 3.

Consequemment, tout u contiendra au moins un facteur de la forme 8m+3,
et tout terme de la progression infinie

U3 ,
MB , Uj, ttu , Un, ...

contiendra un facteur premier de la forme voulue.

De plus, en vertu du second lemme, tons ces facteurs seront distincts 1 uu

de 1 autre; car sinon ur et us ,
ou r est premier a s, auraient un facteur commun

autre que wa .

On pourrait prendre une serie plus generale en ecrivant wx egal a un

produit d un nombre quelconque de nombres premiers dont aucun n est de la

forme 8m + 3, tellement combines que t^
= 1 [mod 8] ;

le rdsultat restera

acquis que chaque terme de la progression des u contiendra un facteur premier
de la forme 8x + 3, et que tons ces facteurs seront distincts entre eux.

A. 2. Cos de 8x+ 7. Ecrivons

Tout u = 7 [mod 8] : chaque diviseur premier de tout u sera de la forme

8m + 1 ou 8m + 7. Done il entrera dans chaque terme de la progression

%2 ,
U 3 ,

U5 , My,

un facteur de la forme 8x + 7, et de plus, en vertu du second lemme (puisque

/O = 1), tous ces facteurs seront distincts.

A. 3. Gas de 8x + 1. Ecrivons

M!=I, M2
= M1

4 +1 =
2, U3

= U^+ 1 = 17, ....

Tous les facteurs de chaque u, a 1 exception de 2, seront de la forme

8x + 1, et, en vertu du second lemme u3 ,
u5t u7l u^, u13y u17 ,

seront premiers
entre eux.

A. 4. Gas de 8x + 5. Ecrivons

Mi = l, w2
= Wj

2 + 1 = 2, u3
= Ur?+l = 5,

M4 = M 3
2 + i = 26, 5

= M4
2 + 1 = 677, ....

Chaque u^+1 sera de la forme 8m -f 5, et chaque diviseur premier sera ou

de la forme 8n + 1 ou 8n + 5, de sorte qu il s en trouvera un au moins de la

forme 8x + 5. Done par le second lemme la progression

U3 ,
W5 , My, Wu, 1ii3 ,

...

contiendra un nombre infini de nombres premiers distincts de cette forme.
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B. 1. Gas de 12#+5. On ddmontre facilement par induction que chaque

terme de rang pair de la progression precedente au dela du second sera de la

forme 2 (24n + 13), et chaque terme de rang impair au dela du premier de la

forme 24w + 5.

Les diviseurs premiers de chaque u seront de 1 une ou 1 autre des six

formes 24 + 1, 5, 19, 17, 13, 21.

Supposons qu il n existe aucun facteur premier de la forme 24# + 17 ni de

la forme 24^+5. Alors les residus des facteurs (par rapport a 12) appartien-

dront au groupe 1, 9, 13, 21. Mais on voit facilement que ce groupe est un

groupe ferme : car toutes ces cornbinaisons binaires ne font que reproduire

ces memes nombves.

Consequemment, tout terme de rang impair contiendra necessairement

un facteur ou de la forme 24a; + 5 ou de la forme 24# + 17, et ainsi, en vertu

du second lemme, on voit que la progression deja ecrite contiendra un nombre

infini de nombres premiers de la forme 12w + 5.

B. 2. Gas de I2x + 7. Ecrivons

M1
= 7, u2

=
ui&amp;gt;- Mx + 1 =43, w3 =M2

2 -w 2 + 1 = 1807, ....

Les diviseurs premiers de chaque u seront de la forme I2n + 1 ou 12n+ 7

et u lui-meme de la forme 12ra+ 7. Done, en vertu du premier lemme, la

suite u1} u2 ,
u3 , itt, ... contiendra un nombre infini de nombres premiers de la

forme 12x + 7*.

B. 3. Gas de I2x + 11. Ecrivons

Ul = -l, it,
= 3^ -1 = 2, us

= 3%2
2 - 1 = 11,

4
= 3w3

2 - 1 = 362, ....

Tous les u de rang impair seront de la forme 12ra + 11, de sorte que leurs

diviseurs premiers dtant, ou de la forme I2x + I ou I2x + 11, il y aura un

nombre infini de nombres premiers distincts contenus dans les termes de la

progression
U3 ,

U5 , Ity ,
Un ,

....

B. 4. Gas deI2x + 1. Ecrivons

MI = 04 _ #2 + i U2
- uf _ u* + i

t U3 = u* - ui +1, ....

Chaque u, selon la loi cyclotomique, ne contiendra que des facteurs de la

forme 12# + 1 et, en vertu du premier lemme, ult uz ,
u3 ,

w4 ,
us ,

... seront tous

* Par un precede analogue a celui que nous avons appliqu^ a la progression dont nous nous

sommes servis dans les cas A. 4 et B. 1
;
on peut d^montrer avec 1 aide de la progression 7, 43,

1807,..., donnee plus haut, que le nombre de nombres premiers dans la double progression

arithmetique a raison 30,

7, 13, 37, 43, 67, 73, ...,

contient un nombre infini de nombres premiers : a plus forte raison cette conclusion s applique a

la double progression a raison 5

2, 3, 7, 8, 12, 13, ....
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premiers entre eux : done cette progression contiendra un nombre infini de

facteurs de la forme 12# + 1.

L application du principe general enoncd au commencement n est nulle-

ment astreinte aux progressions de la forme
&amp;lt;f&amp;gt;0, &amp;lt;$&amp;gt;&amp;lt;$&amp;gt;d, (fx}&amp;gt;(f&amp;gt;0,

.... C est ce

que j ai montre au Congres scientifique d Oran.

Au Congres scientifique d Oran nous avons indique :

(1) Une demonstration instantanee du theoreme de Dirichlet pour le cas

, quel que soit A, en nous servant des fonctions cyclotomiques de

1 espece ordinaire en u, en prenant pour les indices successifs A, 2A, 3A, ...

et en donnant a u une valeur quelconque. Ces fonctions cyclotomiques sont

les facteurs irreductibles des ferrnatiens. Par exemple, en prenant 3 pour la

base des fonctions cyclotomiques, et en otant de chaque cyclotome dont

1 indice est une puissance de 2 lefacteur singulier 2, on obtient la progression

2, 2, 13, 5, 121, 7, 1093, ..., dont tous les termes, en omettant le second, sont

premiers entre eux, et ou le terme a 1 indice i (le second excepte) ne contient

d autres facteurs premiers que ceux de la forme ix + 1. Consequemment, en

se bornant aux i6me
, (2i)

6me
, (3i)

6me
, (4t)

6me
,

... termes, et en decomposant
chacun de ces termes dans un produit de facteurs premiers distincts, la

totalite de ces facteurs fournira un nombre infini de nombres premiers de la

forme ix + 1
;

(2) Une demonstration beaucoup plus cachee pour le cas Ax 1, quand
A est une puissance d un nombre premier, au moyen des fonctions cyclo

tomiques qui se deduisent des fonctions dont nous avons parle en les divisant

par une puissance convenable de u, en exprimant le quotient comme fonctiori

de u + -
,
disons v, et en attribuant a v une valeur constante dont la forme par

rapport au module A ou bien a un multiple de A (capable de grandir inde-

finiment) depend de la forme du nombre premier dont A est une puissance,

par rapport au module 8.

Plus recemment, nous avons etendu la meme demonstration aux cas ou A
est une combinaison de puissances de 2, 3, 5, 7, de sorte qu il nous parait pen
douteux que les proprietes cyclotomiques donnent le moyen de prouver le

theoreme de Dirichlet aussi bien pour le cas de Ax 1, comme pour le cas de

Ax+l, quelle que soit la forme de A. II nous semble done qu il y a quelque
lieu d esperer que le principe general (qu on pent nommer constructif ou

cosmothetique) peut servir a dormer une demonstration pour le cas le plus

general du theoreme de Dirichlet. En addition a la methode ici donnee et

celle fournie par la theorie cyclotomique pour obtenir des progressions infinies

de nombres relativement premiers entre eux, on peut se servir comme troisieme

methode des cumulants (les numerateurs et denominateurs de fractions
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continues) et sans doute d une infinite d autres especes de fonctions. Toute

la difficulte cunsiste a trouver la forme de progression convenable a chaque

cas donne.

En ce qui regarde la theorie gdnerale des diviseurs des fonctions cyclo-

tomiques de toute espece, nous renvoyons a notre article, intitule : Excursus

A : On the divisors of cyclotomic functions [Vol. in. of this Reprint, p. 317] ;

et en ce qui regarde la
propriete&quot;

des nombres cyclotomiques de la premiere et

seconde espece, prives de leur facteur singulier, d etre relativement premiers

entre eux, a un article paru dans le journal Nature [see pp. 591, 625 of this

Volume] du mois de mars de cette annee*.

* Le cas de 12x + 5 (page [622] de la Note pre&quot;cedente) est mal explique. Afin de demontrer le

theoreme de Dirichlet pour ce cas il suffit de remarquer quo chaque terme de rang impair (apres

le premier) dans la progression 1, 2, 5, 26, 677, ... est de la forme 12m + 5, et chacun de ses

facteurs premiers de la forme 4# + l, c est-a-dire de la forme 12x + l ou 12& + 5 ; consequemment

il contiendra au moins un facteur premier de la forme 12x + 5.



60.

ON THE DIVISORS OF THE SUM OF A GEOMETRICAL SERIES

WHOSE FIRST TERM IS UNITY AND COMMON RATIO ANY
POSITIVE OR NEGATIVE INTEGER.

[Nature, xxxvn. (1888), pp. 417, 418.]

&quot; Nein ! Wir sind Dichter*.&quot;

Kronecker in Berlin.

rp 1A REDUCED Fermatianf, ,
is obviously only another name for the

sum of a geometrical series whose first term is unity and common ratio an

integer, r.

If p is a prime number, it is easily seen that the above reduced Fermatian

will not be divisible by p, unless r 1 is so, in which case (unless p is 2) it

will be divisible by p, but not by j9
2
.

This is the theorem which I meant to express [p. 591, above] in the

footnote to the second column of this journal for December 15, 1887, p. 153,

but by an oversight, committed in the act of committing the idea to paper,
the expression there given to it is erroneous.

Following up this simple and almost self-evident theorem, I have been led

to a theory of the divisors of a reduced Fermatian, and consequently of

the Fermatian itself, which very far transcends in completeness the condition

* Such were the pregnant words recently uttered by the youngest of the splendid triumvirate

of Berlin, when challenged to declare if he still held the opinion advanced in his early inaugural
thesis (to the effect that mathematics consists exclusively in the setting out of self-evident truths,

in fact, amounts to no more than showing that two and two make four), and maintained

unflinchingly by him in the face of the elegant raillery of the late M. Duhamel at a dinner in

Paris, where his interrogator the writer of these lines was present. This doctoral thesis ought
to be capable of being found in the archives of the University (I believe) of Breslau.

t The word Fermatian, formed in analogy with the words Hessian, Jacobian, Pfaffian,

Bezoutiant, Cayleyan, is derived from the name of Fermat, to whom it owes its existence among
recognized algebraical forms.

s. iv. 40
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in which the subject was left by Euler (see Legendre s Theory of

Numbers, 3rd edition, vol. i. chap. 2, 5, pp. 223 27, of Maser s literal

translation, Leipzig, 1886)*, and must, I think, in many particulars be

here stated for the first time. This theory was called for to overcome

certain difficulties which beset my phantom-chase in the chimerical region
haunted by those doubtful or supposititious entities called odd perfect

numbers. Whoever shall succeed in demonstrating their absolute non-

existence will have solved a problem of the ages comparable in difficulty to

that which previously to the labours of Hermite and Lindemann (whom I am
wont to call the Vanquisher of PI, a prouder title in my eyes than if he had

been the conqueror at Solferino or Sadowa) environed the subject of the

quadrature of the circle. Lambert had proved that the Ludolphianf number

could not be a fraction nor the square root of a fraction. Lindemann within

the last few years, standing on the shoulders of Hermite, has succeeded in

showing that it cannot be the root of any algebraical equation with rational

coefficients (see Weierstrass abridgment of Lindemann s method, Sitzungs-

berichte der A. D. W. Berlin, Dec. 3, 1885).

It had already been shown by M. Servais (Mathesis, Liege, October 1887),

that no one-fold integer or two-fold odd integer could be a perfect number,

of which the proof is extremely simple. The proof for three-fold and four

fold numbers will be seen in articles of mine in the course of publication in

the Comptes Rendus [above, pp. 604 619], and I have been able also to

extend the proof to five-fold numbers. I have also proved that no odd number

not divisible by 3 containing less than eight elements can be a perfect number,
and see my way to extending the proof to the case of nine elements.

How little had previously been done in this direction is obvious from the

fact that, in the paper by M. Servais referred to, the non-existence of three

fold perfect numbers is still considered as problematical; for it contains a
&quot; Theorem &quot;

that if such form of perfect number exists it must be divisible by

fifteen : the ascertained fact, as we must know, being that this hypothetical

*
I find, not without surprise, that some of the theorems here produced, including the one

contained in the corrected footnote, have been previously stated by myself in a portion of a paper

&quot;On certain Ternary Cubic Form Equations,&quot; entitled &quot;Excursus A On the divisors of

Cyclotomic Functions
&quot;

[Vol. m. of this Reprint, p. 317] the contents and almost the existence

of which I had forgotten : but the mode of presentation of the theory is different, and I think

clearer and more compact here than in the preceding paper ; the concluding theorem (which is

the important one for the theory of perfect numbers) and the propositions immediately leading

up to it in this, are undoubtedly not contained in the previous paper.

I need hardly add that the term cyclotomic function is employed to designate the core or

primitive factor of a Fermatian, because the resolution into factors of such function, whose index

is a given number, is virtually the same problem as to divide a circle into that number of equal

parts.

t So the Germans wisely name TT, after Ludolph van Ceulen, best known to us by his second

name, as the calculator of ir up to thirty-six places of decimals.
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theorem is the first step in the reductio ad absurdum proof of the non-

existence of perfect numbers of this sort (see Nature, December 15, 1887,

p. 153, written before I knew of M. Servais paper, and recent numbers of the

Comptes Rendus).

But after this digression it is time to return to the subject of the numerical

divisors of a reduced Fermatian.

We know that it can be separated algebraically into as many irreducible

functions as there are divisors in the index (unity not counting as a divisor,

but a number being counted as a divisor of itself), so that if the components
of the index be aa

, W, c^, ... the number of such functions augmented by

unity is

All but one of these algebraical divisors, with the exception of a single

one, will also be a divisor of some other reduced Fermatian with a lower

index : that one, the core so to say (or, as it is more commonly called, the

irreducible primitive factor), I call a cyclotomic function of the base, or,

taken absolutely, a cyclotome whose index is the index of the Fermatian in

which it is contained.

It is obvious that the whole infinite number of such cyclotomes form a

single infinite complex. Now it is of high importance in the inquiry into

the existability of perfect numbers to ascertain under what circumstances the

divisors of the same reduced Fermatian, that is, cyclotomes of different indices

to the same base, can have any, and what, numerical factor in common. For

this purpose I distinguish such divisors into superior or external and inferior

or internal divisors, the former being greater, and the latter less, than the

index.

As regards the superior divisors, the rule is that any one such cannot be

other than a unilinear function of the index (I call kx + 1 a unilinear function

of ac, and k the unilinear coefficient) and that a prime number which is a uni

linear function of the index will be a divisor of the cyclotome when the base

in regard to the index as modulus is congruous to a power of an integer
whose exponent is equal to the unilinear coefficient.

As regards the inferior divisors, the case stands thus. If the index is a

prime, or the power of a prime, such index will be itself a divisor. If the

index is not a prime, or power of a prime, then the only possible internal

divisor is the largest element contained in the index, and such element will

not be a divisor unless it is a unilinear function of the product of the highest

powers of all the other elements contained in the index.

It must be understood that such internal divisor in either case only

appears in the first power ;
its square cannot be a divisor of the cyclotome.

402
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It is easy to prove the important theorem that no two cyclotomes to the

same base can have any the same external divisor*.

We thus arrive at a result of great importance for the investigation into

the existence or otherwise of perfect odd numbers, which (it being borne in

mind that in this theorem the divisors of a number include the number itself,

but not unity) may be expressed as follows:

The sum of a geometrical series whose first term is unity and common ratio

any positive or negative integer other than +1 or 1 must contain at least as

many distinct prime divisors as the number of its terms contains divisors of all

kinds ; except when the common ratio is 2 or 2, and the number of terms is

* The proof of this valuable theorem is extremely simple. It rests on the following

principles :

(1) That any number which is a common measure to two cyclotomes to the same base must

divide the Fermatian to that base whose index is their greatest common measure. This theorem

needs only to be stated for the proof to become apparent.

(2) That any cyclotome is contained in the quotient of a Fermatian of the same index by

another Fermatian whose index is an aliquot part of the former one. The truth of this will

become apparent on considering the form of the linear factors of a cyclotome.

Suppose now that any prime number, k, is a common measure to two cyclotomes whose

indices are PQ, PR respectively, where Q is prime to R, and whose common base is 9. Then k

QPQ 1
must measure 9P - 1 and also 5 ;

it will therefore measure Q, and similarly it will measure91
QPQ -I

R ; therefore k= l [unless Q = l or R= l ; for suppose Q = l, then - - - is unity, and no longer

contains the core of QPQ -
1]. Hence k being contained in R can only be an internal factor to one

of the cyclotomes (namely, the one whose index is the greater of the two). (See footnote at end.)

The other theorem preceding this one in the text, and already given in the &quot;

Excursus,&quot; may
be proved as follows :

Let k, any non-unilinear function of P, the index of a cyclotome x&amp;gt;

be a divisor thereto.

p

Then, by Euler s law, there exists some number, /x, such that k divides x^ -
1, but the cyclotome

xp 1
is contained algebraically in -^ ;

hence k must be contained in /x, and therefore in P. Also,

P P i -

k will be a divisor of of- 1 and of
X
p

~
,
which contain x^ - 1 and x respectively ; consequently,

xp 1
if k is odd, /c

2 will not be a divisor of -j ,
and a fortiori not of x- (

A Proof may easily be

afi-1

given applicable to the case of k 2.)

Again, let P=Qk*, where Q does not contain k. Then, by Fermat s theorem, xkl= x [mod. k]

and therefore k divides x- 1
;
but it is prime to Q. Hence, by what has been shown, k must be

an external divisor of this function, and consequently a unilinear function of Q. Thus, it is seen

that a cyclotome can have only one internal divisor, for this divisor, as has been shown, must be

an element of the index, and a unilinear function of the product of the highest powers of all the

other elements which are contained in the index.

For an extension of this law to &quot;cyclotomes of the second order and conjugate species,&quot; see

the &quot;Excursus,&quot; where I find the words extrinsic and intrinsic are used instead of external and

internal.
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even in the first case, and 6 or a multiple of 6 in the other, in which cases the

number ofprime divisors may be one less than in the general case*.

In the theory of odd perfect numbers, the fact that, in every geometrical
series which has to be considered, the common ratio (which is an element of

the supposed perfect number) is necessarily odd prevents the exceptional

case from ever arising.

The establishment of these laws concerning the divisors and mutual

relations of cyclotomes, so far as they are new, has taken its origin in the felt

necessity of proving a purely negative and seemingly barren theorem, namely
the non-existence of certain classes of those probably altogether imaginary
entities called odd perfect numbers : the moral is obvious, that every genuine
effort to arrive at a secure basis even of a negative proposition, whether the

object of the pursuit is attained or not, and however unimportant such truth,

if it were established, may appear in itself, is not to be regarded as a mere

gymnastic effort of the intellect, but is almost certain to bring about the

discovery of solid and positive knowledge that might otherwise have remained

hidden f.

* A reduced Fermatian obviously may be resolved into as many cyclotomes, less one, as its

index contains divisors (unity and the number itself as usual counting among the divisors).

But, barring the internal divisors, all these cyclotomes to a given base have been proved to be

prime to one another, and, consequently, there must be at least as many distinct prime divisors

as there are cyclotomes, except in the very special case where the base and index are such that

one at least of the cyclotomes becomes equal to its internal divisor or to unity. It may easily be

shown that this case only happens when the base is - 2 and the index any even number, or when
the base is + 2 and the index divisible by 6

;
and that in either of these cases there is only a

single unit lost in the inferior limit to the number of the elements in the reduced Fermatian.

t Since receiving the revise, I have noticed that it is easy to prove that the algebraical

resultant of two cyclotomes to the same base is unity, except when their indices are respectively

of the forms Q (kQ + l)
h and Q(kQ + l)

i
, where (kQ + l) is a primeinumber, and Q any number

(unity not excluded), in which case the resultant is kQ + l. This theorem supplies the raison

raisonnee of the proposition proved otherwise in the first part of the long footnote.
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NOTE ON CERTAIN DIFFERENCE EQUATIONS WHICH
POSSESS AN UNIQUE INTEGRAL.

[Messenger of Mathematics, xvm. (1888-9), pp. 113 122.]

FOR greater simplicity suppose in what follows that a difference equation
is expressed in terms of the arguments

MXI u
x+i&amp;gt; MX+I.

I shall call ux+ i the highest and ux the lowest argument respectively, or

collectively the extreme or principal arguments, and the degrees in which

they enter into the equation the upper and lower or extreme or principal

degrees. It is these partial degrees rather than the total degree of the

entire equation which determine the essential character of the solution.

If m is the upper degree and u
,
uly ... w;^ be given it is obvious that

for any value of x higher than (i 1), ux will have m*&quot;^
1

values, and conse

quently in general there will be an infinite number of integrals whether

complete or of a given order of deficiency (the deficiency being estimated by
the number of relations connecting the initial values u

,
ult ... Wi_i); but it

may be, and is in some cases, possible to assign an integral which shall have

rnx-i+i values, and in such case there can exist no other
;
such an integral

may be called an unique or exhaustive one, and the equations which possess

such integrals may be termed uni-solutional.

As the simplest example of such, suppose

/7/wt n, n f)
x+i MX Vj

where m and n are integers.

(-Y
If we write ux = a\m

we have ux+1
r\r i/W* ?/ ^
\Ji IA,

jjj-j-i w//g

(-Y
Here ux = a\m^ is the one and sole complete integral of the equation;

for it possesses mx values so that there can be no other integrals whatever.
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Let us now seek to form difference uni-solutional equations of the 2nd

order.

To this end let ux = C (of
-

&**), where a/3= 1.

Then calling a2
* = P and ^ = Q, PQ =

I,

ux =C(P-Q),

Hence ^ = P + Q,
^H = P*+ Q*= (P + Q)*_ 2,

WE ^z+i

and

Hence the equation

ux2ux+2 u3

x+l + 2u,y?ux

has for its complete integral ux = G (a?
x

a&quot;

2

*), and there can be no other

because when UQ , u^ are given ux is absolutely determined.

But furthermore we may invert the above equation by interchanging ux

and u
x+2&amp;gt;

which gives the equation

(ux + 2ux+l) u\+z - u3

x+1
= 0,

of which the solution will obviously be ux = G f P p j
,
where P = a (^

.

Suppose w
, M! to be given; then

and calling -=2r, a^ + ^ = 2r, ^-4= 2 \/0*
2 -

1),
Wj a4 a4

Mn

Hence

has exactly 2X
~1

values, for the change of V(^
2

1) into \/(r
z

1) changes

simultaneously the signs of the numerator and denominator of this fraction.

But by the general principle ux ought to have 2x
~l values in terms of UQ) wx .

Hence the above integral is exhaustive.

Suppose now we were to write

with a/3=l;
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for brevity sake call ux =/ ux+^
=

g, ux+2 = h, then

Q)=/

Hence

g
2 =

g-h g-h
or /y - 2f

2

gh +f*h
2 =

2/&amp;lt;

- 3/y + r
4

or /% -
(5,3 +y^) A _ ^4 + 4/25,

2 _
2/4

=
0&amp;gt;

or
**&quot;*+

-
( M3*+i + ux2ux+1 ) ux+2

- u*x+l + 4-ux
2u\+l

- 2ux* = 0,

of which the correlative equation is

- 2^+2 + (4&amp;gt;u

2

x+1
- ux+1 ux + ux

2

) u*x+2
- u3

x+1 ux - wVi = 0.

A complete solution of the former of these will therefore be

ux =C(^ + ^),
and of the latter ux = C (a

(

*

+ /3
(i)

*),

but neither of these will be an exhaustive solution, for in the one the most

general value of ux ought to be a 2a!~1-valued function and in the latter a

4a;~1-valued function, whereas the actual value is only one-valued in the one

case and 2X
~1 -valued in the other.

Suppose again we write

ux (7 (a
3
*

fi**), where a/3 = 1, as before,

say ux = C(P- Q), where PQ = 1.

Then with the same notation as before

C(P-Q)=f,

7

j-
l

-\r*j ~~v
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Whence it follows that the integrals of

ux+1 - 3ux ux3

and of M^_3s+a --M
am=0&amp;gt;

are respectively ux = C (a
3*

or**),

and ux =C(a*-a-*),
with the understanding that a~ 4

. o^ = 1.

These integrals are evidently exhaustive.

By writing V( 1), \/( l)^&quot;

1 for a, or 1

respectively,/, g, h become
increased in the ratio of V(- 1),

-
\/(- 1), V(- 1), respectively.

Hence the equations

ux+l + 3ux ux
3

ti
*

i
*

i __ i \

O/3 ^1/ I ni
x-f-1 &quot;a;+i T &quot;-a;

have for their solutions

ux =C (a
3
*
+ a-3

*) and ux = C (a.^* + a~ (i)z
).

Hitherto we have been dealing with homogeneous uni-solutional equations.
It is easy, however, to form non-homogeneous ones by an obvious process.

For, if we write

ux = a^
x
+ a2

mX + . . . + cii
mX

(TO being an integer),

by eliminating between

we shall obtain a relation between the/ s of the first degree in/* and of the

degree TO* in/ , corresponding to which there will be a difference equation of

the ith order in which the upper extreme degree is unity and the lower one

m\ of which the integral will be the value of ux above written, and by inter

changing ux , ux+1 ,
. . . ux+i respectively with ux+i ,

ux+i^, ...ux , another in which
the lower degree is unity and the upper one m*,of which the integral will be

/ 1 \x /i\x /i\x
\~ / \~ i \~ )ux = a^m/ + a2

Vm/ + . . . + a
t

Aw/
,

each of which equations will evidently be uni-solutional.

Or, again, if instead of the as being independent we make their product

equal to unity we shall obtain uni-solutional equations of the (i l)th

instead of the ith order.

Thus, for example, let

ux = a** + b** + c
2* with the condition abc = 1.
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Then writing ux =/, ux+l = g, ux+2 = h,

f=A+B + C, g =

2 2 - A = 4

Hence we obtain the uni-solutional equations

2ux+2 - u2
x+1

- 2ux+lux
2 + ux

* - 8ux = 0,

U x+z LUx+^1t, a;_|_2 o^x+2 W x+i ~^~ ^Ux = 0,

of which the integrals are known and are exhaustive.

We may in a similar manner obtain uni-solutional simultaneous difference

equations.

Thus let ux =C (a
3
* -

&quot;*),
vx = G (a?

x
+ &*\

and call ux ,
ux+1 ,

ux+2 as before f, g, h,

and vx ,
vx+1 ,

vx+2 I, m, n.

Then Z^

- =
9

h n , tq m
Hence --- = 12 -

g m 4
\/ t

- + - = 2(P6 +m

= 2 (P
2 + Q2

) {(P
2 + Q2

)
2 - 3P2Q2

}

Obviously, when MO , WiJ v
,
vi are giyen eacn ^ and ^ deduced from the

above system of equations has only one value, so that their exhaustive

integrals will be

ux = C (a
3

&quot; -
/3

3

*), vx = C (a
3

&quot;

+
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The related system found by interchanging/with li and I with n will be

m g ra2

*

&amp;gt;

When /, ^ ; , m are given the system
j-

,

- may be found by solving an

equation of the 9th degree. Hence, when u
, u^ v

,
vl are given, u2 ,

y2 will

have 9; u3 ,
v3 , 81, and in general ux ,

vx will have S2(x
~

1} values which will

correspond to the 3*- 1
. 3x

~ l values of ux ,
vx .

The apparent number of values of each of these is (S*)
2
, which, however,

must be reducible to 3*-1
. %*- 1 when expressed in terms of the two initial

values of u and of v, similarly to what was noticed at the outset on the

reduction of the apparent multiplicity 2* to a multiplicity 2*- 1
.

In fact, we write
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and thus for the final values of ux and vx ,
we find

each of which is unaffected by a change in the signs of the square roots, so

that ux and vx are seen to be S^^-valued functions, and (ux ,
vx) a 9*&quot;*-vahied

system, as should be the case for an exhaustive solution of the last written

difference equations.

Let us tentatively go a step further in the same direction and suppose

that we are given

and use/, g, h; I, m, n in the same way as before, and furthermore, write

rn\ T . fh n\ , T

-s+-r}
= L

&amp;gt; H- + -
}
=N

&amp;gt;

f I ) \g m)

we shall find

L =

(where A = a*
x
and B = /B

5
*).

Let A&quot; + B2 = \,

Then L = \2

-/j?, M= \p,

and it will be seen that

N= (\
5 -

5V&amp;gt;

2 + 5V4
)
2 -

fj,

10
,

P =
X&amp;gt;

5 - 5V7 O2 -
y^

2

)-

For A 6 + Bs = X3 - 3V,
and consequently

X6 = ^l 10 + B10 + 5A 2B2

(A
6 + B6

) + WA*B* (A 2 +
= ^l 10 + B10 + 5(S (X

3 -
3\/*

2

) + 10X/i
4

,

that is ^l 10 + B10 = X5 - 5\V + 5V4
-
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The above values of N and P (remembering that AB = p) are found by

substituting the expression just obtained for A^ + B10 in

N = A + A 10BW + B*&amp;gt;,

P = A B6

(A
10 + #).

From P =
X&amp;gt;

5 -
o\fj7 (X

2 -
p?),

(remembering that X/A = M, X2
/-i

2 = Z), we obtain

Hence

From these equations we obtain by elimination

2 + 5Z4

) + M* (M* - lOMf2 + 5Z4
)
= 0. (1)

Similarly by an elimination into the details of which it is unnecessary to

enter we obtain

3LMP + (D + M*)N= L (D - 2M*) (D - M*}\ (2)

which gives a linear relation between N and P.

Equations (1) and (2) form a non-uni-solutional system of which (as also

of its inverse) we are in possession of one complete integral, and I have some

grounds for suspecting that it may be possible to obtain from this a second

(so-called indirect) integral, but am unable for the present to pursue the

subject further.

The preceding investigation originated in my attention happening to be

called to Vieta s well known theorem for approximating to the Archimedean

constant (TT) by means of an indefinite product of cosines of continually

bisected angles. The implied connection of ideas will become apparent when

one considers that any one of such cosines may be expressed as a sum of two

binary exponentials with \ for the first index, and that thus Vieta s theorem

(although presumably obtained by him as a very simple consequence of the

method of exhaustions) in its essence depends on the integrability of a uni-

solutional difference equation of the 2nd order of the form treated of at the

outset of this paper.
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SUR LA REDUCTION BIORTHOGONALE D UNE FORME
LINEO-LINEAIRE A SA FORME CANONIQUE.

[Comptes Rendus, cvm. (1889), pp. 651 653.]

SOIT F une fonction lineo-lineaire des deux series de lettres

x
i&amp;gt; ^j - j^nj fi, 6t !

alors F contiendra n 2 termes. En assujettissant les x et les respective-

ment a deux substitutions orthogonales independantes, on introduit dans

la transformed n2 n quantites arbitraires, de sorte que, en leur donnant

des valeurs convenables, on doit pouvoir faire disparaitre ce nombre de

termes en ne conservant que les n paires dont les arguments seront (par

exemple)
%! 51 &amp;gt; ^2 b 2 &amp;gt;

^n n

On peut nommer les multiples de ces arguments les multiplicateurs

canoniques ; je vais donner la regie pour les determiner, et en meme temps

pour trouver les deux substitutions orthogonales simultanees qui arnenent

la forme canonique. La marche a suivre sera parfaitement analogue a celle

qui s applique a la reduction d urie forme quadrique a n lettres a sa forme

canonique au moyen d une seule substitution orthogonale ;
mais on remarquera,

a priori, une distinction esseutielle entre les deux questions. Pour le cas

d une seule quadrique, les multiplicateurs canoniques sont absolument de

termines
; mais, pour le cas actuel, il est evident que chacun de ces

multiplicateurs peut changer son signe, de sorte que ce sont les carres de ces

multiplicateurs qui doivent se presenter dans le resultat.

II sera utile de rappeler quelques faits elementaires sur les matrices.

Le carre d une matrice est la matrice qui se produit par la multiplication des

lignes par les colonnes
;

il sera une matrice non symetrique dont les ratines

latentes seront les carres des racines latentes d une matrice donnee. Au

contraire, le produit d une matrice par son transverse donnera (selon 1 ordre

de la multiplication) lieu a deux matrices symetriques qu on obtient par la

multiplication des lignes par des lignes ou bien par celle des colonnes par
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les colonnes; ces matrices seront distinctes, mais possederont les memes

racines latentes, c est-a-dire en affectant tous les termes dans la diagonale

de symetrie de 1 un ou de 1 autre avec la meme addition, soit \, le

determinant d une matrice ainsi affecte&quot;e sera le meme pour 1 un comme

pour 1 autre*.

En differentiant F par rapport aux x et aux
,
on obtient deux matrices,

dont 1 une sera la transverse de 1 autre, que je nommerai les matrices deter

minatives. Avec 1 aide de ces matrices on obtient une solution complete du

probleme voulu.

(1) Pour determiner les multiplicateurs canoniques :

Je dis que les racines latentes de leur produit seront les carres des

multiplicateurs canoniques.

II peut arriver qu un de ces multiplicateurs soit zdro; alors le dernier

terme de 1 equation aux racines latentes, qui n est autre chose que le carre du
determinant d une matrice determinative, s evanouit

;
et Ton voit que le cas

de la disparition d un des n termes dans la reduite canonique est indique par
l e&quot;vanouissement du determinant de la matrice determinative.

(2) Pour trouver les deux substitutions orthogonales canoniques:

Prenons une des deux matrices symetriques affectees de X dans chaque
terme de sa diagonale ;

en supprimant une quelconque de ses lignes, les

n premiers mineurs de la matrice diminuee qui restent divises chacun par
la racine carree de la somme de leurs carres (fonctions de

A,), en donnant

a X, successivement les valeurs des n racines latentes, fourniront les n2 termes

d une des substitutions orthogonales, et de meme on obtient 1 autre sub

stitution orthogonale en agissant semblablement pas d pas sur 1 autre

matrice affectee : ainsi le probleme de la reduction voulue est completement
resolu.

Prenons, par exemple,

F = 8x% xr) tyg + 7^/77.

* Toutes ces racines latentes seront non seulement reelles (comme elles doivent 1 etre a cause

de la forme symetrique de la matrice), mais aussi positives; car, en substituant \ a -X, les

coefficients de 1 equation latente (en commen&amp;lt;;ant avec le dernier) sont, respectivement, le carre

du determinant complet, la somme des Carre s des premiers mineurs, des seconds mineurs, etc.,

de la matrice determinative (le premier coefficient etant I unite et le second la somme des carres

des coefficients de la forme bilineaire). Chacune de ces sommes sera un invariant biortbogonal,
et le determinant de la matrice determinative Iui-m6me sera un invariant gauche de la forme

bilineaire.

Ajoutons que les deux matrices qui sont les carr^s cauchiens de cette matrice, envisages
comme discriminants, fourniront deux quadriques (dont chacune contiendra un seul des deux

systemes donnes de lettres) qui seront des covariants orthogonaux simultanes de la fonction

bilineaire donne&quot;e.
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(1) Pour trouver les multiplicateurs canoniques :

On prend la matrice determinative dans ses deux formes

8;-l 8;-4
-4; r -i; r

dont les produits affectes seront

65 -X; -39 80 -X; -36
-39

;
65 -X -36

;
50-X

Ainsi, en se servant de 1 un ou de 1 autre, on obtient

X2 - 130X + 2704 = 0,

dont les racines sont 26 et 104, de sorte que \/26 et 2 \/26 seront les multi

plicateurs canoniques.

(2) Pour trouver les substitutions, on assigne ses deux valeurs a

39 : 65 - X, c est-a-dire 39 : 39 et 39 :
- 39

et a
36 : 80 - X, c est-a-dire 36 : 54 et 36 :

- 24.

Ainsi Ton aura, pour les deux matrices de substitution,

J_. 1- 2 3

V2 V2 V13 V13
et

1_ ^ 3 2

V2
;

V2 V13 V13

et, en effet, on verifie facilement que

Si Ton donne les deux matrices symetriques ayant les memes racines

latentes qui doivent representer respectivement les deux produits cauchiens

d une matrice de 1 ordre n par elle-merne, on verra facilement que le probleme

de trouver cette derniere matrice a et^ virtuellement resolu plus haut, et que,

comme le probleme de trouver la veritable racine carree d une seule matrice

generale donnee, il admet 2n solutions.



63.

SUR LA CORRESPONDANCE COMPLETE ENTRE LES FRAC
TIONS CONTINUES QUI EXPRIMENT LES DEUX RACINES
D UNE EQUATION QUADRATIQUE DONT LES COEFFI
CIENTS SONT DES NOMBRES RATIONNELS.

[Comptes Rendus, cvm. (1889), pp. 10371041.]

Si Ui = \fWf_j + Ui_2 et w_j = 0, w =l, on peut appeler wf un cumulant
dont la succession X1} X2 ,

X3 , ..., X* est le type; design ons-le par t.

Alors on peut representer

Par ^t la succession ............ \z,\3 ,..., \
Par ^ ............

^i&amp;gt;
^2 , ^s&amp;gt; , ^i-i

parY ............ X2 , X,, ...,\i_1 .

De plus, on peut representer par la reunion du type 6 suivi par le

type t] par 00t ce que devient 0$ quand on intercale un zero entre la succes

sion 6 et la succession t; par 0(Qty la succession 6 suivie par la succession

Ot repetee i fois; et par J(00)
f T ce que devient r quand on intercale 00

i fois entre le t et le r.

T etant un type quelconque, on peut designer par [T] le cumulant dont
T est le type.

Ainsi, si les elements en T sont regardes comme les quotients partiels
d une fraction continue, et que, suivant la notation de 1 immortel Lejeune-
Dirichlet, on represente par (T) la derniere convergente a cette fraction,
on aura

Designons par ce que devient quand on renverse 1 ordre, et par
ce qu il devient quand on change le signe de chacun de ses elements,
Posons

j ai trouve et demontre le lemine suivant* :

Pour tablir cette proposition, on n a besoin que de se servir des deux identites suivantes.
Si T = W,

S. IV. 41
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Les rapports des trois quantitds [2Y) : [

V

T;] [2V] : pT/] sont independants
de i ; c est-d-dire sont les memes que les rapports de

Avec 1 aide de ce theorems et de 1 equation qui exprime une propriete bien

connue des convergentes successives de fractions continues, savoir

on etablit facilement le theoreme suivant :

On peut forire et d une seule maniere les deux racines d une Equation

quadratique simultantment sous les formes

ou tons les elements de 6, sauf le dernier (qui peut etre zero), et tons les

elements de t sont positifs.

Comme un simple corollaire de ce th^oreme de correspondance, en appli-

quant a la seconde forme la methode donnee par Dirichlet pour rdgulariser

une succession de quotients partiels dont quelques-uns au commencement

sont ndgatifs, on voit que les periodes des deux fractions convergentes
contiendront les memes elements, mais en ordre inverse.

Un exemple fera mieux comprendre la portee du theoreme.

Prenons liquation
23#2 - 68# + 50 = 0,

dont les racines sont

34 + V6 34 -V6
23 23

On trouve, pour le developpement de ces deux quantites, les fractions

periodiques en fractions continues

(1,2,1,2;4,2;4,2;4,2;...)

et (1,1,1,2;2,4;2,4;2,4;...)

respectivement.

Si T=t6r, [T] = [t] [0] [r] + [t ] [ 0] [r] + [t] [0 ] [V] + [f] [
(? ] [V].

On peut cependant ajouter que, de meme, si T tdru,

[T] = [t] [6] [r] [W] + [ ] [ ] [r] [w] + [] [tf ] [V] [w] + [] [6] [r ] fw]

+ [* ] [ ] [V] [w] + [ ] [ ] [r JM +
[&amp;lt;] [0 ] [V] |&amp;gt;]

+ [ ] [ ] [V] [

%

],

ou Ton remarquera que les trois premiers produits de la deuxieme ligne sont composes de deux

(le premier et le dernier) de formes analogues, et d un troisieme d une forme differente, et ainsi,

en general, si le nombre des types partiels t, 0, T, ... est i, on aura 2i-1 produits de cumulants

partiels et de leurs derives simples et doubles
;
car il y aura

(i
-

1) intervalles entre les i types
sur lesquels on doit faire tomber dans chaque maniere possible 1, 2, 3, ... (i-1) paires d accents.

Quand les types partiels deviennent monomiaux, les termes avec les accents doubles dans la

somme des produits deviennent zeros, et Ton retrouve la regie connue pour exprimer un cumulant

comme somme des produits des agr6gats de ses elements, en elisant ou en traitant comme unites

des paires et combinaisons de paires d elements conseeutifs.
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Or, en dcrivant

0=1, 2, t=l, 2, 3,

on aura

(ft (O*)-)
=

(1, 2, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, ...)

= (1,2,1,2; 4,2; 4,2; 4,2;...),

ce qui repond a la premiere racine.

On aura aussi

(0t (0*)&quot;)
= (- 1,

-
2, 3, 2, 1, 0, 3, 2, 1, 0, 3, . . .)

= (-1, -2, 3; 2, 4; 2, 4;...),

laquelle convergente, rdgularisee selon les regies de Dirichlet*, peut etre

remplacee par

(-2, 1,0, 1, 2; 2,4; 2,4;...),
c est-a-dire

(-2, 2, 2; 2, 4; 2, 4;...),

ce qui, selon les memes regies, equivaut a

-(1,1, 1,2; 2, 4; 2, 4;...),

laquelle est la valeur prise negativement de la seconde racine.

Terminons par 1 exemple tres simple

a?- 1 Oa;- 1 = 0,

dont les deux racines sont 5 + \/26, 5 - ^26, qui Equivalent aux fractions

continues

(10, 10, 10,...), -(0, 10, 10, 10,...).

Faisons (9 = 9,0, =1,9.

Alors (Ot (Qt)
x
) devient

(9,0; 1,9; 0,1, 9; 0,1,0;...),
c est-a-dire

(10; 10; 10;...),

la premiere racine; et (0t(0t)
x
) devient

(-9,0; 9,1; 0,9,1; 0,9,1;...),

ce qui equivaut a

(0, 10, 10,...),

laquelle est la valeur prise n&amp;lt;%ativement de la seconde racine.

On comprendra que dans les formules pour une racine et la negative
de 1 autre, rien n empeche que le disparaisse et qu ainsi les formules
deviennent

(*(o*)&quot;), (t(otT)
respectivement.

*
Vorlesungen ilber Zahlentheorie, 80

; 1871.

412
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Dans le cas ou les deux racines sont egales, mais de signes contraires,

non seulement le # disparait, mais aussi le t devient symetrique : ainsi Ton

retrouve la forme applicable a liquation Ax2
ft
=

0, pour lequel cas la

racine positive peut etre mise sous la forme

(abc, ..., cba, 0, abc, . . .
, cba, 0, abc),

c est-a-dire

(djbc, ..., cb, 2a,jbc, cb, 2a,j).

On peut encore sirnplifier un peu les expressions pour x et x (ou x et x

sont les racines de la meme equation quadratique) en ecrivant

formule vraiment surprenante par sa simplicite et sa sym^trie.
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SUR LA REPRESENTATION DES FRACTIONS CONTINUES
QUI EXPRIMENT LES DEUX RACINES D UNE EQUATION
QUADRATIQUE.

[Comptes Eendus, cvm. (1889), pp. 1084 1086.]

Nous avons donnd dans une Note precedents [p. 644, above], pour les deux
racines x et x d une Equation quadratique a coefficients entiers, les formules

jumelles

Mais ces formules admettent encore une simplification importante au

moyen des considerations suivantes.

Un type peut etre nomme omni-positif ou omni-negatif quand tous ses

elements sont positifs pour un des cas et tous negatifs pour 1 autre : il sera

nomine&quot; homonyme quand il est ou omni-positif ou omni-negatif sans specifier

lequel des deux il est.

Le zeio sera regardd comme un nombre (non pas neutre, mais) amphi-
bolique, c est-a-dire qui est en meme temps positif et negatif, de sorte qu un

type omni-positif ou omni-negatif ne cesse pas d etre homonyme en y ajoutant
ou y entremelant un ou plusieurs zeros.

De plus, on remarquera que (T) = (T).

Alors la theorie, atteignant son dernier terme de simplicite et de gene-
ralite

, donne lieu a 1 enonce suivant :

En supposant que t est un type homonyme quelconque et r un autre, et que
x, x sont les deux racines d une Equation quadratique a coefficients entiers, on
aura toujours

avec la facultt a t de disparaitre.

Ainsi, par exemple, en supposant que t disparaisse et que r devienne
monomial et egal a a, si

x = (a, a, a, . . .
,
ad infinitum),

on aura x =
(0,

-
a,
-

a, . . .
,
ad infinitum),
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c est-a-dire x =
(0, a, a, a, ..., ad inftnitum) ;

de sorte que ac = -- *.
x

On remarquera que les types T, ZOr
00

sont mutuellement inverses 1 un

de 1 autre, car

Nous nous sommes deja servi-j- dans nos conferences, tenues a King s

College London en 1859, sur la determination du nombre de solutions en

nombres entiers d un systeme d equations numeriqueslj:,
avec grand avantage

de cette idee d une sdrie de quantites omni-positive, omni-negative ou homo-

nyme et de la conception du caractere du zdro comme appartenant aux deux

categories des quantites positives et negatives a la fois.

Dans une Note a suivre, nous nous proposons de faire connaitre la con

nexion remarquable qui subsiste entre les racines de 1 equation

axz + 2bx + c =

et les developpements en fractions continues des fractions ordinaires -
,

ou p, q sont les nombres de Pell qui appartiennent au determinant 62
ac,

et, si nous ne nous sommes pas trompe, nous esperons fonder la-dessus une

regie pour 1 extraction simultanee des deux racines de 1 equation au moyen de

ces deux developpements.

*
Et, en general, quand x

, ,
on aura

x=((er),

ou est un type symetrique, ce qui est le theoreme de Gallois (Journal de Liouville, t. n. p. 385).

De m^me, si x = ((60)
x&amp;gt;

) (6 etant symetrique) et ainsi 6 6, on aura

de sorte que ((00)) est la forme generale de la fraction continue qui exprime la racine carr^e

d une quantite rationnelle quelconque.

[t See Vol. n. of this Keprint, p. 122.]

I Inedites jusqu a ce jour, mais qui doivent paraitre prochainement dans 1 American Journal

of Mathematics. C est dans nos recherches sur ce sujet que nous avons rencontre et discute la

tbeorie geometrique de dispositions de points dans un plan et dans 1 espace que notre Eminent

Confrere M. Halphen a retrouve&quot;e independamment depuis et & laquelle il a donnS le nom de

theorie d aspects. C est en reduisant la determination du nombre de solutions en nombres entiers

d un systeme de 3 equations a dependre d un agre&quot;gat
de pareilles determinations pour des

systemes de 2 equations que cette theorie s est forc6ment mise en evidence pour les points dans

un plan. De meme, en faisant dependre le probleme pour un systeme de 4 de celui de systemes

de 3 equations, on est amene a une theorie semblable pour 1 espace ; bien entendu, 1 ceil regarde

comme un seul point dans la theorie pour le plan devient lineaire, ou, ce qui revient a la meme

chose, un systeme de deux points, pour 1 espace.

Pour l 6tablir, nous nous servons encore de notre theoreme de Pimrnutabilite des rapports

de f 2&quot;]
: [T ]

- [T] : [T] quand Ttr (Or)* t pour toute valeur positive et entiere de i.
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SUR LA VALEUR D UNE FRACTION CONTINUE FINIE

ET PUREMENT PERIODIQUE.

[Comptes Rendus, cvm. (1889), pp. 11951198.]

ON salt que la valeur de la fraction purement p&riodique infinie
()&amp;gt;

ou t

est un type (c est-a-dire vine succession) d elements quelconques, est la racine

positive de 1 dquation

Cela conduit naturellement a la question de trouver la valeur de la

fraction continue analogue periodique mais finie (t
n
).

Avec 1 aide de notre formule donnee dans une Note precedente, qui sert

a exprimer un cumulant a un type compose de i types partiels comme une

somme de 2 -1
produits des i cumulants partiels et leurs derivees simples et

doubles, on peut resoudre cette question sans aucune difficult^.

Soient [t
n
]
= un , [ ttn

~l

]
=

&quot;tvn ,

on trouve que vn sera une fonction entiere et Ton 6tablit, au moyen de la

formule citee, entre un et vn les equations aux differences

un aun-i Bun_2
= cBvn_2 , vn_a cvn_2

= Mn_2 ,

ou a = [t], B=[ t][t ], c = [Y].

Done Bvn--i
= un aun_1}

avn + (B ac) vn^ = un = vn+l cvn ,

Vn+T. -(a + c)vn + (~Y~
l

Vn-i =

[car B ac = (J^1

, /A etant le nombre d elements en t].

Cons^quemment, par un principe bien connu, vn et un seront les coefficients

de kn dans le developpement d une fraction de la forme

A+Bk
I-(a + c)k-eJc?
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oil e = ()**, A et B tant convenablement determines pour 1 un et pour
1 autre cas.

Or

1 c&Done wn est le coefficient de kn en -
7 ^- et vn le coefficient de fc

n

1 (a + c) k eft
2

en - -- - de sorte que, si Ton ecrit
1 (a + c) k eA;

2

&amp;gt;n (.)
= . + (TO

~ 3 ) -4
V.W V, IA^

jusqu au premier terme qui devient z^ro, on aura

Vn = n-i ( + C)

et un = &amp;lt;l&amp;gt;n (a + c) c&amp;lt;E&amp;gt;n_x (a + c).

Ainsi Ton voit que

On peut aussi exprimer un et vn au moyen des racines de 1 equation

dont on remarquera que le determinant ([t] + [Y])
2 + e est le meme que

celui de liquation (1), puisque

i /r/n rv~i\2 i rvn r/n i /r/n i p#n\2 i - .

i \L^J L ^ J/ L ^J L^ J ? vL^J L J/

car, en supposant que p et cr sont les deux racines, on aura

un _ Ap
n -

B&amp;lt;r

n

v nn nun P cr

ou A, B sont des quantites connues
; et, en supposant que p

2 =
&amp;gt; cr

2
,
on aura

- = A et () =
, laquelle valeur on identifiera facilement avec la racine

positive de 1 equation

Si Ton suppose que les elements de t sont m en nombre et tous identiques

avec 1 unite, on aura

[^]
= [l^-i], [&amp;gt;]

= [in-i] )

et Ton obtient la formule peut-etre nouvelle
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est impair, e sera posi

ra-3 (m-4)(w-5)-

Si Ton suppose que m est impair, e sera positif et Wm prendra la

forme

en s arretant au premier terme qui devient ze&quot;ro.

Cette formule donne naissance a un corollaire interessant. Supposons
que la somme de deux termes separes par un seul dans la sdrie phyllotactique
1, 2, 3, 5, 8, 13, 21, ... est un nombre premier p. Soit m, ra-2 1 ordre de
ces deux termes

; alors je dis que le quotient du nombre de Tordre mi - 1

par celui de 1 ordre m-l (nombre toujours entier) par rapport au module p
sera congru a 1 unite si i est impair et a ze&amp;gt;o si i est pair ; de plus, dans ce
dernier cas ou i =

2j, le quotient de ce quotient divise&quot; par p sera congru a

(~XO + 1) Par rapport au meme module p.

On pourrait tirer sans doute d autres theoremes analogues, mais appa-
remment moins simples, au moyen de 1 equation

C est une chose qu on n avait nul droit (a priori) d attendre que le

quotient [

x n
]-5-|Yj, au lieu d etre une fonction rationnelle et entiere de

quatre quantitys
[f], ft], [* ], [V] ou (ce qui est Equivalent) rationnelle et

fractionnelle de [t], t], [f], est en effet une fonction rationnelle et entiere
d une seule

quantite&quot;, savoir de
[&amp;lt;]
+ [Y], c est-a-dire est un nombre phyllo

tactique affecte ou parametrique, nom qu on peut convenablement donner a la
valeur de

j&amp;gt;],
ou x est monomial et entier, [1] prenant alors le nom de

nombre phyllotactique simple ou unitaire.
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A NEW PROOF THAT A GENERAL QUADRIC MAY BE RE
DUCED TO ITS CANONICAL FORM (THAT IS, A LINEAR
FUNCTION OF SQUARES) BY MEANS OF A REAL ORTHO
GONAL SUBSTITUTION.

[Messenger of Mathematics, xix. (1890), pp. 1 5.]

ALL the proofs that I am acquainted with (and their name is legion) of

the possibility of depriving a quadric, in three or more variables, of its

mixed terms by a real orthogonal transformation are made to depend on the

theorem that the &quot;

latent roots
&quot;

of any symmetrical matrix are all real.

By the latent roots is understood the roots of the determinant expressed

by tacking on a variable A, to each term in the diagonal of symmetry to

such matrix.

I shall show that the same conclusion may be established a priori by

purely algebraical ratiocination and without constructing any equation, by
the method of cumulative variation. The proof I employ is inductive : that

is, if the theorem is true for two or any number of variables I prove that it

will be true for one more.

To illustrate the method let us begin with two variables. Consider the

form ax2 + 2hxy + by
2

.

If in any such form b = a, then by an obvious orthogonal transformation,
nn

_|_
nt /v* _ nt

namely, writing ^ and Jf for x and y, the form becomes

a (x
2 + y

2

) + h (x
2 - y

2
),

or (a + h) x
2 + (a

-
h) y

2
.

Now in general on imposing on x, y any orthogonal infinitesimal substi

tution, so that

x becomes x + ey,

y ,, y- e#,
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h in the new form becomes h + (a b)e, or say 8h = (a b) e, and

the variations of a and b need not be set forth.

Let an infinite succession of such transformations be instituted
;
then

either a and b become equal and the orthogonal substitution above referred

to reduces the quadric to its canonical form, in which case this one combined
with the preceding infinite series of such substitutions may be compounded
into a single substitution, or else by giving e the sign of (b a) the variation

of hz

may at each step be made negative so that h? continually decreases,
unless h vanishes. If h does not vanish it must have a minimum value,
and this minimum value may be diminished, which involves a contradiction:

hence, in the infinite series of substitutions supposed, either a and b become

equal or h vanishes, and in either case the quadric is reduced or reducible to

its canonical form.

Let us now take the case of three variables x, y, z.

Obviously, by the preceding case, we may make the term involving xy
disappear and commence with the initial form

ao? + by
2 + 2foz + 2gyz + cz\

Iff or g become zero the quadric may be canonified by virtue of the

preceding case.

Again, if b = a, by imposing on a, y the orthogonal substitution

_\L- /. _I__ J_ n

_ x |

9+

the term involving xz will disappear and the final result is the same as if /
were zero.

Let us now introduce the infinitesimal orthogonal substitution which

changes
x into x + ey + qz,

y -ex + y+0z,
z r)X 6y+z,

where e, rj, 6 are supposed to be of the same order of magnitude so that only
first powers of them have to be considered.

Then 8f= (a
-

c) rj
-

ge,

also the coefficient of 2#?/ becomes (a b) e fd grj.

Now whatever 77, 6 may be, we may determine e in terms of rj, 9 so that

this may be made to vanish, and the initial form of the quadric will be

maintained, provided that b is not equal to a.
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Hence instituting an infinite series of these infinitesimal substitutions,

provided we do not reach a stage where a and b become equal, we may
maintain the original form keeping 77, 6 arbitrary, and shall have

Suppose a and b to be unequal ;
therefore (a c), (b c} do not vanish

simultaneously, and consequently we may make & (f* + g
2

) negative unless

at least one of the two quantities f, g vanishes.

If neither of them vanishes / 2 + g* may be made continually to decrease

and will have a minimum other than zero, which involves a contradiction.

Hence the infinite series of infinitesimal orthogonal substitutions may be

so conducted that either a b or one at least of the letters /, g shall become
zero

;
and then two additional orthogonal substitutions at most will serve to

reduce the Quadric immediately to its canonical form.

I shall go one step further to the case of four variables cc, y, z, t and then

the course of the induction will become manifest. We may, by virtue of

what has been shown, take as our quadric

ax* + bf + cz* + 2/arf + 2gyt + 2hzt + dt2
.

Here, if any one of the mixed terms disappears, the quadric is im

mediately reducible by the preceding case, and if any two of the grouped

pure coefficients a, b, c become equal (as for instance a, b), then by an

orthogonal transformation one of the mixed terms (f or g in the case

supposed) may be got rid of; so that this supposition merges in the preced

ing one.

Impose on oc, y, z, t an infinitesimal orthogonal substitution, writing

00+ ey + 6z + \t for a,

ex + y + r)Z + fit y,

0x rjy + z + vt z,

\x p,yvz + t t.

Then 8/= (a
-

d) X - ge
- h9,

Bff
= (b-d)fji +fe - hrj,

8h = (c-d)v +fd + gr).

Also the coefficients of 2xy, 2xz, 2yz respectively become

(a-b)-ffi-g\,
(a c) 6 fv h\,

(b c) 77 gv hfji.

Suppose that no two of the grouped pure coefficients a, b, c are equal ;

then e, 0, 77 can be, and are to be, expressed in terms of X, //,
v so as to make

these three expressions vanish
;
that being done the initial form of the Quadric

is maintained throughout the series of substitutions and we may write

fSf+ g&g + hSh =(a- d)f\ + (b-d}gn + (c- d) hv.
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Of the three quantities X, /*, v it is sufficient for the purpose of the

argument to retain any two as X, //,
and to suppose v = 0.

Then, since we suppose that a and b are not equal,

(a
- d)f\ + (b-d) gp,

(where X, ^ are arbitrary) can always be made negative unless /, g are none
of them zero

;
so that if a and b never become equal nor f or g vanish

/
2 + #

2 + A2 cannot have any minimum value other than zero, which involves
a contradiction; hence in the course of the series of infinitesimal trans
formations either a and b must become equal, or / or g or both of them
vanish. If/ and g vanish simultaneously or even if one only of them vanish,
then one succeeding substitution, and if a and b become equal two succeeding
substitutions, will effect the reduction to the canonical form. This proves the
theorem for four variables.

The method is obviously extendible to any number of variables; in the
case just considered it is seen that in the infinitesimal orthogonal matrix
of substitution for the exceptional line or column (that which relates to the

excepted variable the t) it is not necessary to employ more than two arbitrary
infinitesimals and a like remark applies to the general case, so that if there
are n variables, whilst \ (n

2 -
n) is the number of infinitesimals that would

appear in the complete matrix, (n?
- 3n + 6), that is {(n

-
1) (n - 2)| + 2,

are sufficient for the purpose of the demonstration.

Thus then without recourse to any theorem of Equations it is proved that

any Quadric may be reduced by a real orthogonal substitution to its canonical
form *.

*
I have applied the same method to prove that by two real independent orthogonal substi

tutions operated on
xi, #2. ... ; 2/1, 2/2, ... yn

the general lineo-linear Quantic in the ar s and y s (with real coefficients) may be reduced to the
canonical form 2x

tyiy and have sent for insertion in the Comptes Eendus of the Institute a
Note in which I give the rule for effecting this reduction [above, p. 638].

It may be sufficient here to mention that if U is the given lineo-linear Quantic, its n canonical

multipliers are the square roots of the n canonical multipliers of the Quadric 2 (\* Or if we

fdU\*
***

please of 2
^ J

, which it may easily be shown a posteriori are necessarily omni-positive ;

and I need hardly add that although these two Quadrics are different, their canonical multipliers
are the same.
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ON THE REDUCTION OF A BILINEAR QUANTIC OF THE
TH ORDER TO THE FORM OF A SUM OF n PRODUCTS
BY A DOUBLE ORTHOGONAL SUBSTITUTION*.

[Messenger of Mathematics, xix. (1890), pp. 42 46.]

A HOMOGENEOUS lineo-linear function in two sets of variables

x, y,...z\ u, v,...w

will contain nz terms : two independent orthogonal substitutions performed
on the two sets will introduce twice ^n(n 1) disposable constants, and by
a suitable choice of these, w2 n terms of the transformed function may be

made to vanish so as to leave a sum of products of the new x, y, ... z paired
with the new u,v,...w: it will of course be found in general impossible to

obliterate any arbitrarily chosen (n
2

n) terms in the transformed function
;

since if in the n remaining products one letter of one set were combined with

more than one of the other set, this would (by means of a further super

imposed orthogonal substitution) be equivalent to taking away more than

(n
2

n) terms by means of only (n? n) disposable constants. It is very

easy to effect the transformation indicated by a method very analogous to

that of reducing a quadric in n variables by an orthogonal substitution to its

canonical form, and to show a posteriori that the substitutions are always
real in this case as in the other, when the original coefficients are real

;
but

it will, I think (although not necessary), be found interesting and instructive

to prove a priori the latter assertion by a similar method to that applied to

Quadrics in the last number of the Messenger. I will begin then with this

proof, reserving the complete solution of the problem to the end of the article.

The leading idea in this as in the preceding article is to regard a finite

orthogonal substitution as the product of an infinite number of infinitesimal

ones.

For axu + axv + ftyu + byv.

Let x, y ; u, v become x + ey, ex + y ;
u + \v, \u + v respectively,

then
Sa = a\ be, &/3 = ae b\,

aSa + /3S/3
= (aa

-
6/3) \ + (a/3

-
ba) e.

[* Cf. p. 638 above.]
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Heuce a2 + /3
2

may be made to decrease unless a = 0, 6 = 0, or a= 0, /3
=

0,

a a .

or j-
=

-75
= + 1, in which case since

b ft

(a + a) (x 4- y} (u + v) + (a a) (x y) (u- v)
= 2a (xu + yv) + 2ct (xv + yu),

(a a)(x + y} (u v) + (a + a) (x y) (u + v) = 2a (xu yv) + 2o (xv yu),

the form is immediately canonizable.

Hence in the infinite succession of infinitesimal orthogonal substitutions

(equivalent to a single one) either a and b or a and /? must vanish simul

taneously, on which supposition the form is canonical or else it is reducible to

the canonical form by a second finite orthogonal substitution.

Let us now proceed to the case of a ternary bilinear form in x, y, z
;

u, v, w.

I suppose by the previous case the form to be deprived of two terms, and

that we have to deal with the form

axu + byv + fxw + guz + hyw + kvz + czw.

Lemma. If f= 0, g = 0, or h = 0, k = the above form is reducible by
the previous case. Also if a2 = 62 and /= 0, h = 0, or g = 0, k = 0, or a2 = b2

(/V fy\
2

and
frj

=
( r ) the form is reducible to the previous case by a single

additional finite orthogonal transformation.

For the sake of brevity I leave the proof to my readers.

Introducing now two infinitesimal orthogonal substitutions with para
meters e, tj, ; \, /i, v*, we obtain the variations

Sf = ap he or), 8h = bv +fe cd,

&g = arj k\
c/j,,

Sk = bd + g\ cv,

also in order to keep the coefficients of xv, yu at null, we must have

a\ befvkri = 0,

b\ + ae g6 hp,
= 0.

From the previous equations we obtain

f8f+ gSg + hh + kSk = (of- eg) fi + (bh- ck) v + (ag- cf) tj + (bk
-

ch) 6.

(1) Suppose a2 b2 not zero
;
then p, v, 77, 9 will be independent and

their coefficients cannot all become zero unless f 2 = g
2 and h2 = k2

,
or else

/= and g = 0, or h = and k = 0, on either of which suppositions the form

becomes canonizable by virtue of the Lemma.

(2) Let a2 = b2
. Then we must have

fv + kr) (gO + hfi)
= 0,

which I shall satisfy by making /* gO = 0,kr} hp = 0.

The positive values of the parameters in each system are supposed to belong to the upper,
and the negative values to the lower half of each orthogonal matrix.



656 On the Reduction of Bilinear Quantics [67

Hence

2/S/= {(a/
-

eg) k + (ag -cf)h}p + {(ah -ck)g + (ak
-
ch)f} r,

p, r being two arbitrary infinitesimals.

Therefore S/8/ may be made negative unless the multipliers of p and T

are both zero, in which case by addition or subtraction we obtain fk = gh ;

consequently two out of the four variables /, g, h, k are zero, or else
j-=j-,

and on either of these suppositions the transformed function may be canon

ized by virtue of what has been proved in the case of two biliteral sets,

or may by a finite orthogonal substitution be brought to a form so

canonizable.

Hence it is clear that either /, g, h, k may all be made to vanish, or else

we must pass through a form known to be canonizable. This is the proof for

a bilinear function of triliteral sets, which may be easily extended to a bilinear

function of w-literal sets.

I will now give the method for effecting the reduction which is thus

proved to be always capable of being effected by real substitutions.

Let ^a
r&amp;gt;g

xryg be the given bilinear function B.

Then 2
[
-=

J
,
which is an orthogonal invariant of B qua the y s, is a

\tyt/

Quadratic function of the as, which will have an orthogonal substitute qua
the ac s of the form S [Xrav

2

]

If then B is reducible by a double orthogonal substitution to the form

2,[0rzrys], we must have 2 [#r#r]
2

orthogonally equivalent to 2[Ar#r
2

], and

this can only be the case when the s are respectively (in any order) the

squares of the X s.

The # s I call the Canonical Multipliers to B.

This gives rise to the following rule :

Form the Matrix [m].

From this derive a Matrix [M], a false square of [m], obtained by multi

plying each line in it by all the lines (according to Cauchy s rule, in fact, for

the multiplication of Determinants). Then the latent roots of [If] are the

squares of the Canonical Multipliers to B.

But if instead of S ( -r~ I
we take (-; )

and deal with it in like

\dys j \dxrj

manner, we shall obtain a matrix [n], such that [m] and [n] are transverse
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to each other, the lines and columns of the one being the columns and lines

of the other : the Cauchian Square of \n\ will give rise to a matrix [N]
different from [M] but having the same latent roots : in fact the coefficients

of the equation to the latent roots alike of [TO] and of \n\ with the signs in the

alternate places changed will be unity, the sum of the squares of all the

terms in [m] or [w], the sum of the squares of the minors of the 2nd, 3rd, ...

orders in [TO] or \n\ ;
and finally the last coefficient will be the square of the

dfterminant to [m] or [n] : so that we shall obtain as we ought the same set

of canonical multipliers whichever matrix [M] or [N] we employ ;
but in

order to obtain the substitutions which must be impressed on the x set and

the y set to arrive at the Canonical form in which only n products appear we

shall want both [J/] and [JV]. Let me, however, pause for a moment to call

attention to the interesting fact that the sum of the squares of the coefficients

in B by virtue of being a coefficient of the latent function to [M] or [N] is

necessarily a bi-orthogonal invariant to B
; so, too, all the other coefficients

in this function are such invariants : and among them the last, which is the

square of the determinant to [m] or [ri]. Thus then this determinant (which

may be termed the discriminant) is an invariant alike for the two theories
;

namely the better known one in which the x set and the y set are subjected
to the same general substitution, and the one here considered where these

sets are subjected to two independent orthogonal substitutions.

In either theory the vanishing of the discriminant is the signal of the

Canonical form becoming short of one term.

It is also proper to notice that the latent roots of [M] or [N], which by
virtue of [M ] and [N~\ being symmetrical matrices are necessarily real, are

for these particular forms of [M ] and [N] positive as well as real since the

coefficients with the alternate signs changed are all positive, being the sums
of squares of real numbers.

To complete the solution it remains to find the two canonizing orthogonal

matrices, but these are known by the ordinary theory for quadrics : thus the

x substitution will be that which canonizes [M] and the y substitution that

which canonizes [N~\.

Conversely, if [M] and [N] are supposed given, we shall know the linear

functions of the # s which substituted for ac
l ,
x2 ,

... xn and the linear function

of the y s which substituted for y1} yz,...yn ,
such that St\^tc1y1 shall be

identical with B, the X s being the latent roots common to [M] and [N],
There will be 2n systems of values represented by X^, \, ... \n% : thus then

2n matrices transverse to one another can be found such that their false

squares shall be respectively identical with any two given symmetrical
matrices having the same latent roots, and we are thus enabled indirectly,

through the theory of bi-orthogonal canonization, to obtain the solution of

s. iv. 42
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a problem which intrinsically has or seems to have nothing to do with

orthogonal or other transformation.

It is worthy of observation that this problem of finding the so-to-say

false square root common to two given symmetrical matrices having the

same latent equation, admits of precisely the same number (2
ra

) solutions

as the problem of finding the true square root of one general matrix. For
if [M ] be any given matrix of order n and [1] represents the unit matrix
of that order, namely the matrix all of whose terms are zeros except those in

the principal diagonal which are units, we know by virtue of a general
theorem that calling \, X2 ,...XW its n latent roots, each true square root

of [M] is represented by
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ON AN ARITHMETICAL THEOREM IN PERIODIC

CONTINUED FRACTIONS.

[Messenger of Mathematics, xix. (1890), pp. 63 67.]

THE well-known form of continued fraction for the square root of N, an

integer, is

(a; b, c, d, ..., d, c, b, 2a; b, c, d, ..., d, c, b, 2a; indefinitely continued)

which, if we denote the type a, b, c, d, ..., d, c, b, a by t, may be written under

the more convenient form

(t, 0,t, 0, t, 0, ... ad inf.).

If now we use [t] to signify the cumulant of which t is the type, and [ ],

[ ], [Y] respectively, the cumulants of the types got by cutting off a from

either end and from both ends of t, it is easily shown that whatever numbers

a, b, c, ... represent, the value of the continued fraction
{(t, 0)} is .jn,V It J

so that if
{(t, 0)} represents the square root of an integer, [t] must be

divisible by [Y].

At first sight one would imagine that it would be a difficult matter to

give a rule for determining whether such condition is fulfilled or not by any

assigned value of the symmetrical type t, but Mr C. E. Bickmore, of New

College, Oxford, has noticed that the case is quite otherwise, for that if we

put t under the form a, r, a, then, in order that {(a, r, a, 0)} may satisfy the

requirement of being the square root of an integer, the sufficient and necessary

condition is the equivalence

2a = (-^[T ][V ](mod. [T]),

where
yu-

is the number of elements in r.

Consequently r may be taken quite arbitrarily, and then an infinite

number of values be assigned to a, except in the case where [T] is even, and

at the same time [T ] and [V] are each of them odd.

42_2
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The proof in my notation is as follows :

Since t = a, T, a, we have Y =
T, and consequently j^ will be an

, ., L*J
integer it

[a, T, a]
=

(mod. [T]).

Expanding and remembering that [V]
=

[T ] (the type T being symmetrical),
we obtain

a2

[r] + 2a [r] + [V] =
(mod. [T]).

Hence 2a [r] + [Y] = (mod. [T]), (1)

and 2 [rj + [r ] [Y] =
(mod. [T]). (2)

But [TT-[T][V] = (-1)M-H

so that
[TJ = (- l)^+

a

(mod. [r]),

and therefore (2) becomes

2aEE(-)M[T ][Y](mod. [T]), (3)

which is thus shown to be a necessary condition.

It is also a sufficient condition, for multiplying (3) by [T ] we have

or, since [rj = (-)*+ (mod. [T]),

2a[T ]
= -[Y](mod. [r]),

which is the same as (1).

Suppose now that V is given and that we wish to ascertain if a can be

found of such a value that the congruence (3) shall be soluble. This will

obviously be the case if [T] is odd. It will also be the case if [T] is even,

provided [V] is also even, and only in that case
; for, when [T] is even, then

by virtue of the equation

MH-[r7=i,
[T ] must be odd.

We have, therefore, to find under what circumstances [Y] will be odd

and [r] even
;
in all other cases but these the congruence (3) will be soluble,

and then the most general value of a will be any term in an arithmetical

series of which the common difference is [T], unless [T] and [V] are both of

them even, in which case the common difference will be [T].

I proceed now to give a rule for determining the possible and impossible
cases of the solution of (3), to explain the grounds of which the following

statement will suffice.

(1) The value of a cumulant is not affected by striking out any even

number of consecutive zeros from its type.

(2) The parity (that is the character qua the modulus 2) of any cumu

lant will not be affected if we strike out three consecutive odd terms, whether
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they occur in the middle or at either extremity. For if t, r be any two types,
the cumulant

[*, 1, 1, 1, r]
= 3 [t] [T] + 2 [{] [T] + 2 [f\ [V] + [?] [V]

= [][r] + [r][YI(mod. 2),

that is =
[t, T] (mod. 2).

Also

[1, 1, 1, t]
=

[t, 1, 1, 1]
= 3 [] 4- 2

[&amp;gt;]

=
[*] (mod. 2).

(3) The value of any cumulant in the type of which 1, 0, 1 occurs any
where is the same as if 2 is substituted for 1, 0, 1

;
and therefore its parity

is not affected if the units on each side of the are omitted.

In what precedes in Nos. (1), (2), (3) the result, to modulus 2, is obviously
unaffected if for we write any even and for 1 any odd number.

In order then to determine the parity of [V] and of [T] we may proceed
as follows :

Let T be any assigned symmetrical type, V will then represent the type
divested of its two equal terminals.

Rules (1) for each even number in V write 0, and for each odd

number, 1
;

(2) elide any even number of consecutive zeros, and any number
divisible by 3 of consecutive units;

(3) elide any pair of units lying on each side of a zero
;

(4) repeat these processes as often as possible ;

then, I say, eventually we must arrive at one or other of the six following
irreducible types, namely

( ); 0; 1; 1, 1; 0, 1,0; 0, 1, 1,0*,

where ( ) means absolute vacuity ; accordingly V may be said to be affected

with one or the other of these six characters.

If now the reduced form of V is 0; 1, 1
; 0,1, 0, [V] is even, and the

congruence (3) will be soluble. In the other three cases [V] is odd, but [r]
will also be odd unless its terminal elements are odd in the case where
the reduced form of V is ( ), and even for the reduced forms 1 and
0,1,1,0.

In the following exhaustive table the second column indicates the even
ness or oddness of the terminals of T denoted by e and u respectively.

The third and fourth columns indicate the evenness or oddness (denoted
as above) of [V] and [T], along with the character of V7

in the third column.
In the fifth column the answer is given as to the determining congruence

*
Except for the symmetrical form of T there would be two additional (virtually undistin-

guishable) reduced forms 0, 1 and 1, 0.
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being soluble or insoluble, denoted by s and i respectively; and the last

column shows whether the common difference of the arithmetical series of the

values of either terminal, in the case of solubility, is equal to the modulus [r]

or its moiety.

The following examples are given to prevent the possibility of mis

apprehension in the application of the Algorithm.

(a) Let

r= 1, 9, 1, 1, 1, 2, 1, 7, 4, 2, 2, 2, 4, 7, 1, 2, 1, 1, 1, 9, 1.

Then V =
1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1

0, 1, 0,1,

=
0, 0,

= 0.

This corresponds to case (8), which is a soluble one, and accordingly we

have from Degen s Table

{(15, r, 15, 0)} = V(251),

15 being the first term of an arithmetical series whose common difference

is HT].

(/S) Let r = 2, 3, 1, 2, 4, 1, 6, 6, 1, 4, 2, 1, 3, 2.

Then V =
1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1

= 1,1, 1, 1, 1,1

( )

This corresponds to the soluble case (1), and accordingly we find from

Degen s Table {(10, r, 10, 0)} = V(109); 10 being the first term of an

arithmetical series whose common difference is [T].
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ON A FUNICULAR SOLUTION OF BUFFON S &quot;PROBLEM OF

THE NEEDLE&quot; IN ITS MOST GENERAL FORM.

[Acta Mathematica, xiv. (1890-1), pp. 185 205.]

&quot;...quaintly made of cords.&quot;

(Two Gentlemen of Verona, Act in. Sc. 1.)

THE founder of the theory of Local Probability appears to have been

Buffon (better known as a Naturalist, but who began his career as a Mathe

matician). Among a few other questions of a similar kind, which he proposed
in his Essai d Arithmetique Morale, the one which has obtained the greatest

notoriety is the celebrated one which goes by the name of the Probleme de

I Aiguille, the purport of which is as follows.

On an area of indefinite extent (say a planked floor) a number of parallel

straight lines are ruled at equal distances, upon which a needle, not long

enough to cross more than one of the parallels at the same time, is thrown

down : the probability is required of its falling in such a position as to be

intersected by one of the parallels.

An easier question of the same kind, which Buffon treats before the

other, is when a circle is used instead of the needle. This latter question he

solves by simple geometrical considerations too obvious to need recapitulation ;

to obtain a solution of the former he, and after him Laplace, had recourse to

a process of integration.

In a question given in the late Mr Todhunter s Integral Calculus (1st

edition, 1857, p. 268) the solution of the problem is correctly stated for an

ellipse, whose major axis is less than the distance between two consecutive

parallels, instead of for a circle or straight line : this important step in the

development of the theory is, I am informed, currently attributed to the

late Mr Leslie Ellis, of the University of Cambridge.

In the year I860, Lame proposed to give a course of lectures on the

subject at the Sorbonne, and, apparently without knowledge of the result

contained in Todhunter s treatise, reproduced the solution for the ellipse and

for any equilateral polygon. In the same year M. Emile Barbier, whose

lamented decease occurred in the course of the present year and who had
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attended Lame s lectures, discovered and published in Liouville s Journal
for that year a universal solution for an undivided plane contour of any form
whatever.

The subsequent history I am not able to trace further than to state that
in Czuber s Geometrische Wahrscheinlichkeiten (Leipzig, 1884) Barbier s solu

tion is extended to the case of any two rigidly connected convex figures (in
a plane)*. I propose to give here the finishing stroke to the theory as

regards plane figures by extending it to any number of them, rigidly connected
and of any forms, in the same plane. It is always to be understood, in what
precedes as in what follows, that the greatest diameter of the figure, or system
of figures, is less than the distance between two consecutive parallels.

Barbier s principle (see Czuber, pp. 117, 125) leads at once to the
conclusion that the probability of any figure (subject to the restriction
above stated) intersecting the system of parallels is to certainty as the length
of a cord stretched round the figure is to the circumference of a circle

touched by two adjoining parallels f. This circumference (with a view to

simplicity of expression) we shall adopt as the unit of length in all subsequent-
formulae.

By the disjunctive probability of a set of figures I shall understand the

probability of one or more of them intersecting one of the parallels: by the

conjunctive probability of the same, the probability of all of them intersecting
one of the parallels.

I start from Barbier s theorem that for a single figure the probability of

intersection is measured by the length of a stretched string passing round it:

this, it should be observed, is universally true whether the contour be curvi

linear or rectilinear or mixtilinear, composed of a single line straight or

curved or of any number of such a theorem almost unexampled for its

generality. The disjunctive probability for any number of figures A, B,C,...,H
I shall for the present denote by A:B :G : ... :H, the conjunctive by
A.B.C...H.

Let there be n + 1 figures given, let pt be the sum of the conjunctive and

erf of the disjunctive probabilities for these figures taken i and i together;
so that OTJ and p^ are identical, and +,, pn+l are monomial quantities.
Then by a universal theorem of logic we have the reciprocal formulae

*TB+1 =&quot;:E

+1

(-)**#, (1)
i=l

pn+l
=

l

~T (-)*&amp;lt;. (2)
i=l

* See Postscriptum, p. [679, below].

t The case of a straight line (the original question of the needle) may be made to fall under

this rule : for the line, as Barbier has observed, may be regarded as an indefinitely narrow ellipse

or other oval.
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Let us now suppose that we have obtained expressions for the disjunctive and

conjunctive probabilities of any number not exceeding n figures of any kind :

we may extend these to the case of n + 1 figures as follows.

(1) When the n + 1 figures are so situated that it is impossible for all of

them to be cut by the same straight line, we have pn+1
= so that crn+1 can

be found immediately in terms of plt p2 , ..., pn by using formula (1), or in

terms of CTJ, vr2 , ..., tn-n by using (2); that is &n+i can be found in terms of

known quantities ;
for by hypothesis all the terms of p^ or of art are known

when i is any number not exceeding n.

(2) When all the n + l figures are capable of being cut by the same

straight line, let XY be some straight line which cuts them all and call the

figures taken in the order in which they are cut by XY
A lt A%, A z ,

. Ln+i

Let a stretched string be made to wind round these n + l contours passing

alternately from one side of XY to the other, as in Fig. 1, and crossing itself

Fig. l.

in the n points ilf iz , ..., in lying between A 1} A z \
A z ,

A 3 \ ... A n ,
An+l

respectively. Let us call the figures enclosed by the successive n + l loops

of the winding string

/5j, Z3 2 ,
B3 , ..., Jjn +l&amp;gt;

It is obvious that any straight line which cuts all these loops will cut all the

given figures, and vice versa.

Hence A-^.A^.A^... A n+l = B1 .B2 . 3 ... Bn+l .

Let Pf, Hi represent what pi, TSI become when for the figures A we sub

stitute the loops B, so that
i = ra+l

TT ? ( V+ 1 P.
&quot;+l * \) -Lit

i = \

i=n+l
p s f_y+iTT--L n+i ^ \ )

ll
t&amp;gt;

i = l

and Pn+l = pn+1 .

*
It may be well to draw at once attention to the fact that different systems of straight lines

do not necessarily cut the figures A lt A.,,A S , ... in the same order; as, for example, if three

circles touch, or so nearly touch one another that each blocks the channel between the other two,

straight lines may be drawn whose intersections with any one of the three shall be intermediate

to their intersections with the other two.
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IIn+1 is known by Barbier s rule, because the loops taken together form a

single figure, in fact

llw+i = *&quot;i

where L is the length of the uncrossed string stretched round the system of

figures B, which is no other than that stretched round the given figures A.

Also, by hypothesis, IT; is known for all values of i not exceeding n. We
therefore know pn+\ which is the same as Pn+\- Hence vrn+i is known from

(1) : thus then pn+l and nrn+i are both known, so that when the conjunctive

and disjunctive probabilities are known in general for n figures they become

known for n + 1 figures ;
but when n = 1, p l and OTJ are equal to one another

and to the length of a given stretched string. Hence, by the usual process of

induction, we may conclude that the conjunctive and disjunctive probabilities

for any number of figures can always be expressed as a linear function with

positive and negative integer coefficients, or in a word as a Diophantine linear

function, of a finite number of lengths of certain stretched strings.

When there are only two figures A l ,
A 2 we pass a stretched string

between them crossing itself in i (see Fig. 2): then using (A i y(A 2) to

Fig. 2.

denote the length of this string, and (A^A^ to denote the length of the

uncrossed string (indicated by dots in the figure) stretched round A ly A 2 we

have

and vra = (A 1 ) + (A a)-p2

(where (-^i), (A 2) denote the lengths of the separate bands round A 1} A z

respectively).

But H2 =(^M 2),

and consequently

p,
= P2

= (A l XA 2)-(A 1A,\

*r2 = (A,) + (A,) + (A tAJ -
(A, X A,}.

We will now proceed to consider in detail the application of the inductive

method to the case of three figures for which, since each of these may be

replaced by a convex band passing round it, we may if we please for greater
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graphical simplicity substitute three convexes (that is contours which any
secant must intersect in exactly two points). Many cases requiring separate

discussion will arise, but one important consequence, rising to the dignity of

a principle, which holds good whatever may be the number of figures, governs

them all
; namely that the final result for either probability is a linear

homogeneous function of lengths of stretched bands drawn in various ways
round the given figures and depending for their course on the forms and

disposition of these figures exclusively, wholly uninfluenced by the presence of

any points external to them. Lines drawn from the pointed ends, or apices,

of the loops enclosing them do it is true make their appearance in the com

putations but, either coalesce into portions of the bands referred to, or else,

entering in pairs with opposite algebraical signs, disappear from the final

result. As a consequence, if for the sake of illustration we suppose the

figures to be any closed curves without singular points, the probability,

disjunctive or conjunctive, to be ascertained is a function exclusively of the

complete system of lengths of double tangents that can be drawn between

the curves and of the arcs into which they are severally divided by their

points of contact with those tangents.

We have for all the cases of three figures

*TS=PI ~p2 +pt
where p,

= (A,) + (A 2) + (A 3)

and p2
= (A, X A 3)

- (A 2A S) + (A 3 X A) - (A,AJ + (A, X A,)
- (*M-

Thus *73
- p3

= (A,) + (A 2) + (A 3) + (A 2A 3) + (A 3AJ
+ (A 1A t)-(A 9XA,)-(A,XA 1)-(A l )(A,). (3)

Similarly H 3
- P3

=
(B,) + (B.) + (B3) + (B2B3) + (B.BO

+ (BtBJ - (B, X B.)
-

(B, X A) - (B, X Bt),

where B1} B%, B3 are the loops of the string which passes round the figures

A 1} A 2) A 3 and crosses itself at i and j, as shown in Fig. 3. But P3 =p3 ,

Fig. 3.

and H 3 is the length of an uncrossed band stretched round the entire system
of figures A lt A 2 , A 3 (which will be expressed in symbols by writing
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Hence p3 =(A l A,A 3) + (Bz X B3) + (B3 X

+ (B, X B2)
- (BJ - (B2)

-

Moreover (B1 X ,)
= (A) +

and (5, X .)
= (*.) + (,),

because B1} Bz and B2 ,
B3 are pairs of consecutive loops. And whenever the

three given figures are capable of being cut by a straight line in the order

A!, A z ,
A 3 (that is except in the case^3

=
0, which is separately considered)

because both the crossing points, i and j, of the looped string necessarily fall

inside the uncrossed band round A l} A 3 . Thus the value of p3 is given by
the equation

p3
= (A,A ZA 3}

-
(A.A,) + CB.X *,) +W - (B2B3)

- (B,BZ) (4)

which, for immediate purposes, we shall find convenient to write under the

form

^3
= (A,A,A S)

- (A,A 3) + (B2 X Bt)
- (B2B3) + (B3 X BJ - (B^ - (B3). (5)

We shall apply the formula to the two classes which between them comprise
all the cases of three figures, namely

Class A. One of the figures, which we call A 2 ,
lies either wholly or

partially inside the crossed band round the other two.

Class B. Each figure lies entirely outside the crossed band round the

other two.

In Class A we recognize three species, namely

Aa. The figure A 2 does not cut either of the crossed strings ab, cd of the

band looped round A lt A 3 (Fig. 4), but lies wholly in the same

loop as one of them, which we call Aj_.

Fig. 4.
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Ab. The figure A z cuts one, but not both, of the crossed strings ab, cd

(Fig. 5), and part of it lies in the same loop as A l .

Fig. 5.

Ac. The figure A 2 cuts both the crossed strings ab, cd (Figs. 6 and 7) and

part of it lies in the same loop as A^

Fig. 6.

To avoid complicating these figures (4, 5, 6, 7) the band (looped round

A-i, A 2 ,
A 3 as shown in Fig. 3) which crosses itself at i,j is not given, but the

position of each crossing point is marked by a small cross. It should be

Fig. 7.

observed that in Fig. 5 (species Ab) j lies outside the crossed band round
A ly A 3 ;

in Fig. 4 (species Aa) i and j lie in the same loop, and in Figs. 6, 7

(species Ac) i and j lie in opposite loops of the crossed band round A lt A 3 .
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The discussion of species Aa is very simple ;
for it is clear that the con

junctive probability is

since it is obviously impossible for a straight line to cut A 2 and A 3 without

cutting At. Substituting this value for p3 in formula (3) we obtain the

disjunctive probability

v3
= (A,) + (A,) + (A 3) + (A,A,) + (A,A t)

-
(A, X A 2)

-
(A, X A s ).

The remaining two species belonging to class A may be discussed simul

taneously ;
for we have in all the cases (see Fig. 8), using e, f to denote the

points of contact with the figure A 2 of the strings which cross at the point
i (between A 1 and A z ),

(B2 X B3)
= (A, X A 3) +/ + ie - ef,

(B2B3)
= (A 2A 3) +fi + ie - ef,

so that (52 X B3)
- (B2B3)

= (A.2 X A,)
- (A 2A 3).

Hence, for all the species of class A, formula (5) becomes

Ps = (AiA^AJ - (A.A,) + (A,X A 3)
- (A 2A 3) + (B, X ,)

-
(B.B,)

- (B3).

In reducing the last three terms of this expression to a form which involves

the lengths of bands round the A s, a slight difference arises between species
Ab (in which, see Fig. 5, the point j and the figure A-^ are on the same side

of the string ab) and species Ac (in which j and AI are on opposite sides of

the string ab, see Figs. 6 and 7).

Thus, for species Ac, the crossed band round B1} B3 will not encounter

either of the points i, j, but will be identical with the crossed band (abcda,

Figs. 6 and 7) round A 1} A 3 ;
that is

Moreover, a moment s reflexion will show that the uncrossed band round
Blt B2 will combine with the loop B3 so as to form a single band: in fact we
have

where D is the crossed band round A l} A 3 with the loop which contains A^
distended until it also contains A,.
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But in species Ab (see Fig. 9), let the points of contact with A 3 of the

strings which cross at j (between A 2 ,
A 3) be g, h

;
and let a string jk, in

contact with A l at k, be stretched from j to the figure A l : then

(B, XB3)
= (A 1 X A a) + gj +jk + ka-ab- bg,

and (-Bi-Bj,) + (-#3)
= D + gj +jk + ka-ab -

bg,

where D is the band (abgchjlmna), derived from the crossed band (abgcdna)
round A 1} A 3 by distending the loop which contains A 1 until it also con

tains A.

Fig. 9-

Hence (B, X 5.)
- (B&) - (,) = (A X 4.)

- D,

and the general formula for the conjunctive probability (for class A) becomes

p, = (A^As) + (A, X A,) + (A 2 X A,)
- (A,A S}

- (A,A 3)
- D. (6)

Combining this with formula (3), which belongs to all cases of three figures,

we obtain

CT3 = (A,) + (A 2) + (A 3) + (A,A t) + (A tA aA,)
-

(A, X A,)
- D.

The species Aa, Ab, Ac are distinguishable from one another by the

difference in shape of the band D belonging to each. Thus in Aa the band

Fig. 10.

D is not distended at all, but is simply (^iX A 3); in Ab the loop containing
A l is distended on one side only ;

and in Ac is distended on both sides (see

Figs. 10 and 11). This difference in shape will be denoted by writing Dl
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for D in the general formula when the species is Ab, and Z)2 for D when the

species is Ac.

The dotted bands (pqjghjlmnp) of Fig. 10, and (abhlmna) of Fig. 11 are
what the dotted bands of Fig. 7 (species Ac) and Fig. 5 (species Ab) become,
when the former is doubly and the latter singly distended.

Varieties of the species in class A (namely one variety for Aa, two for Ab,
and three for Ac, making 6 cases in all) occur when we consider the situation
of the figure A 2 with respect to the uncrossed band round A lt A 3 . In all

cases where A 2 lies wholly inside this band we have (A 1 A 9A t)^(A 1A t), so
that in all such cases the general formula (6), which gives the conjunctive
probability, becomes

Aa. We have D = (A l }(A 3}

so that p3
= (A 2XA 3)-(A 2A 3)

(the same as the result previously obtained from a priori consider

ations).

Ab. 1. The figure A 2 lies wholly within the uncrossed band round A 1} A 3

ps
= (A, X A 3) + (A 2 X A 3)

-
(A 2A 3)

- D,.

Ab. 2. The figure A z cuts the uncrossed band round A lt A 3

Ac. 1. The figure A 2 lies wholly within the uncrossed band round A lt A 3 .

Ac. 2. The figure A 2 cuts only one string of the uncrossed band round
At, A 3 . In these two cases the formulae which give p3 are the same
as in the corresponding varieties of Ab, except that D2 takes the place
of A-
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Ac. 3. The figure A 2 cuts both strings of the uncrossed band round

A 3 . In this case the formula for the conjunctive probability

p3
= (A,A 2A 3) + (A, X A 3) + (A,^A 3)

- (A,A Z}
- (A,A a)

- D,
becomes greatly simplified ;

for (see Fig. 12)

Z)2
-
(A! A 2A 3)

=
rsjgu + vljht -rt-vu=(A^A z)- (A 2A 3)

so that
/&amp;gt;

8
= (AX4)-C&amp;lt;M 8 ),

which is evidently true, since every straight line which cuts both

and A 3 must also (in this case) cut A 2 .

Fig. 12.

We have now enumerated all the six cases of Class A, and given in each
case the formula for the conjunctive probability (from which, by means of

formula (3), the disjunctive probability may be determined immediately).
We proceed to the discussion of Class B.

In Class B (that is in the class where each figure lies entirely outside the
crossed band round the other two) we recognize four species, and in one of them
two varieties, making five cases in all. The enumeration is as follows.

Ba. There is one definite order of succession in which the three figures
can be cut by a system of straight lines. There are two varieties of

this species, namely
Ba. 1. The middle figure (A Zi see Fig. 13) lies wholly inside the uncrossed

band round the other two. The small crosses in this figure, as in

others, indicate the positions of the points i, j where the string looped
round A,, A 2 ,

A 3 (see Fig. 3) crosses itself.

Fig. 13.

8, IV.
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Ba. 2. The middle figure cuts the uncrossed band round the other two

as shown in Fig. 14. In this, as in the preceding case, both i and j

lie outside the crossed, but inside the uncrossed, band round

A A *
1 &amp;gt; 3

Fig. 14.

Bb. The figures may be cut in two different orders by two distinct

systems of straight lines (see Fig. 15). One system of straight

lines cuts the figures in the order A lt A 2 ,
A 3 ;

the other system cuts

them in the order A 3 ,
A lt A z .

Fig. 15.

Be. The figures may be cut by three distinct systems of straight lines

(Fig. 16).

Bd. The three figures cannot all be cut by any straight line (Fig. 17).

In all cases with the exception of Bd, which will be treated separately,

we have (see formula (4) ante [p. 668])

p3
= (A,A tA 3)

-
(A.As) + (B, X B3 ) + (B2)

-
(5,5.)

- (B&).

* This circumstance enables us to discuss Ba. 1 and Ba. 2 simultaneously.
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In Ba (see Fig. 18) we have

(B2B3)
=

(A 2A 3) 4- hi + ik kc cd dh,

(B1B2 )
= (A! A?) + mj +jn nffe em,

(B, X B3)
= (BJ + (B3) + ik - kc -cr- rj +jn - nf-fp -pi.

Fig. 16. Fig. 17.

Fig. 18.

Substituting these values in the general expression for p3 ,
we obtain

+W + (#3) -mr-rc + cd+dh- hp -pf+fe + em

where the term mr comes from mj rj, and the term hp comes from

hi pi; the other terms involving the points i, j or the points of contact

k, n of tangents drawn from them to the original figures disappear in pairs.

The terms

(,) + (5,) + (Ba)
- mr -rc + cd + dh - hp -pf+fe + em

will be seen to coalesce into a single band (whose course is marked in Fig. 18

by the continuous line aqigljsbkcdhmefna, all other lines in the figure being
dotted). This band we shall call Aj.

432



676 On Bufforis Problem of the Needle [69

Fig. 18 is drawn for the case Ba. 2, but the investigation of case Ba. 1 is

precisely the same as that of Ba. 2. In both cases we find

p3
= (A.A.A,) - (A,A 3)

- (A 3 A,}
- (A.A

for the conjunctive probability, and consequently

gives the disjunctive probability in both cases.

The band AT for the case Ba. 1 is shown by the continuous line of Fig. 19,

that is AI is the band atqglsvbxcdwuefya : its course is precisely the same as

that of the Aj for the case Ba. 2.

Fig. 19.

The difference between the two cases is this : in Ba. 1 we have

so that p3
= ^ l (A 1 A.2)-(A 2A 3)* &amp;gt;

whereas in Ba. 2 (and in all the cases to be subsequently considered) the

terms (A^A 3) + (A 3A 1 ) + (A 1 A.2) (A-i J. 2 J. 3) coalesce into a single band which

we shall call A, so that

p3
= A! - A.

The course of the band A is marked by the letters abkcdhmefna in Fig. 18.

The band A
x may be derived from A by supposing its rectilinear portion ab to

be pressed inwards by the figure A.2 so as to occupy the position aqglsb.

The investigation of the case Bb proceeds on exactly the same lines as

that of Ba. 2; we start from the same general formula and, by performing

precisely similar work, obtain the result

ps
= A 2 -A,

where (see Fig. 15) A is the band abxcdzefya whose course is indicated by

dots, and A2 is the band derived from A by supposing two of its rectilinear

portions ab, cd to be pressed inwards by the figures A l and A 2 .

*
By an easy rearrangement of the bands the value of p3

for this case may be expressed as

the difference of the two bands, atuelgdwvbxya and atqgleuwdglsvbxya (see Fig. 19), derived from

the uncrossed band abxya round A lt A 3 by twisting its rectilinear portion ab right round A^ in

opposite directions.
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In the case Be (Fig. 16) the work is simplified by observing that each of

the figures A ly A 2 ,
A 3 blocks the channel between the other two (that is, no

straight line can pass between any two of them without cutting the third).

Hence every straight line which cuts the uncrossed band round all the figures

must cut one or more of them
;
that is

1&3 (A^A^Ag)

and consequently formula (3) gives

pt
= (A^AJ - (A 2A 3)

- (A aAJ -
(A.A,)

Now it is easily seen that

(A,A 3) + (A, A,) + (A,A 2)
- (A,A 2A 3)

= A
and (^ 2 X^3) + (^3X^i) + (^ 1 X^ 2)-(^ 1)-(^ 2)-(^3) = A3

where A is the band obxcdzefya (shown by the dotted line in Fig. 16) and A s

is what A becomes when its rectilinear portions ab, cd, ef are pressed inwards

by the figures A lt A 2 ,
A 3 .

Thus p3
= A3 A.

The sole remaining case of three figures is Bd (Fig. 17), the case in

which no straight line can possibly cut all three figures. In it we have

obviously

Pa=0,
and therefore

^3
= (A,) + (A 2) + (A 3) + (A,A 3) + (A SA,) + (A,A,)

-(A 2XA 3)-(A 3 XA 1)-(A 1XA 2 ).

This case forms no exception to the general rule for finding the conjunctive

probability in cases belonging to class B.

We have A = abxcdzefya

(that is, A is the dotted band of Fig. 17), and since this band is not pressed
inwards by any of the figures the conjunctive probability according to the

rule would be A A = 0, which is right.

Having thus pointed out the general method of procedure, and illustrated

it by treating in detail the case of three figures, it does not seem desirable to

pursue the subject further in this direction for the present ; but, before

concluding, it may be worth while to notice that, in the general case of n
limited right lines, the probabilities with which we have to do become

Diophantine linear functions of the sides of the complete 2w-gonal figure of

which the n pairs of extremities of the lines are the angles. There will be

a group of such linear functions depending on the mutual disposition of the

n lines, but the number of formulae in any such group will be much greater
than in the case of n general figures : for, when we pass from these to

indefinitely narrow ovals, the portion of a definite band (appearing in any
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formula), partially surrounding any one of such ovals, may, according to the

mutual disposition of their major axes, have in common with it an infinitesimal

arc in some cases, in others an arc (to an infinitesimal pres) equal to a cir

cumference, and again in others to a semicircu inference of the oval; which

latter is ultimately the same as the length of the line whose double the

complete circumference represents.

By way of illustration let us consider the question of two needles or limited

straight lines rigidly connected. Neglecting the limiting cases, where one of

the lines terminates in the other, there will remain three hypotheses :

A. The lines intersect.

B. The lines tend to intersect in a point external to each of them.

C. One of the lines tends towards a point lying within the other.

Let p2 denote the chance of both the needles AB, CD being cut by one

of the parallels, r2 the chance of one or other of them being cut : then we

have the general formulae applicable to all cases

p2
= difference between the crossed and uncrossed bands round AB, CD.

A. When the lines intersect

p2
= 2AB + 20D -AD-DB-BC- CA.

A D

Fig. 20. Fig. 21.

B. When the lines tend to intersect in a point external to each of them

= BC-CA + AD-DB*,
*r2
= 2AB + 2CD -BC + CA-AD + DB.

*
Imagine a string passing from B to C, from C to A, from A to D, and from D to B. This

string cannot be kept tight unless fastened by pins at A, B, C, D. Inserting the necessary pins

and tightening the string, we agree to consider the consecutive portions of the string as alternately

positive and negative.

On these suppositions p.2 is the algebraical length of the band BCADB stretched round the

pins. The method of representation by means of pinned bands may be extended to the case of

two (or any number of) general figures.
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C. When one of the lines tends towards a point lying within the

other

p,
= (2AB + BC + CD + DB) - (AC+ CD + DA)
= 2AB 4- EG- CA-AD + DB,

OT,
= 2CD -BC+CA+AD- DB.

Fig. 22.

The complexity of cases for three right lines is such as would require a

separate study even to obtain a perfect enumeration of them
; consequently

I shall leave it to others to pursue the subject further whether as regards

principles or details. I will only add that the ascertainment of the general
law that the formulae contain no other arguments than lengths of tight
endless bands variously drawn round the given contours appears to me
a distinct step achieved in the prosecution of this extensive theory, and one

that is far from being obvious a priori. Buffon s problem of the needle, it

will be seen, has now expanded into a problem of n needles rigidly connected,
which may be treated as a corollary to that of n entirely separate general

contours, the mode of solution of which, it is believed, has been sufficiently
indicated in the investigations which form the subject of this memoir.

POSTSCRIPTUM. Since the above was set up in print my attention has

been called to the fact that the extension of Barbier s theorem referred to on

p. [664] is due to Prof. Crofton and is given by him in his celebrated paper on
the Theory ofLocal Probability contained in the Philosophical Transactions for

1868. Strange to say, no reference to this, so far as I can find, is made in

Czuber s treatise. It is the more singular that I should have overlooked the

fact inasmuch as it was an outcome of conversations with myself, when Prof.

Crofton was serving under me in the Royal Military Academy at Woolwich,
that he was put upon the track of investigations in local probability in which
he has since earned for himself so great and well merited celebrity. It may
be added that Prof. Crofton seems to have written in entire ignorance of

Barbier s discovery as he makes no allusion to it in his paper.
It is indeed a romantic incident in mathematical history that Buffon s

problem of the needle should have led up (as is undoubtedly the case) to
Crofton s new and striking theorems in the integral calculus reproduced in

Bertrand s Calcul integral.
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SUR LE RAPPORT DE LA CIRCONFERENCE AU DTAMETRE.

[Comptes Rendus, cxi. (1890), pp. 778780.]

[See p. 682, below
; footnote.]

EN etudiant la preuve de Lambert, du theoreme que TT ne peut pas etre

la racine carree d un nombre entier, je crois avoir trouve le moyen d en faire

1 extension au theoreme de Lindemann, c est-a-dire que TT ne peut pas etre la

racine d une equation rationnelle. Par exemple, supposons que TT soit une

racine de I equation
Aa? + Bx + C = 0,

ou en mettant Ax = p, que ATT soit une racine de

P
2 + Bp + AC=0-

prenons un nombre entier K, tel que K(B Air} soit de la forme

-
6) ,

etant &amp;lt; 1 ;
en mettant Kp = R, nous aurons liquation

0, (1)

dont KATT sera une racine et 1 autre une quantite dont la tangente sera

positive, 77.

Considerons la fraction continue

--
5- 7--&quot;

en mettant R = KAjr, on aura

S = Q-

en mettant R = r), on aura
=

77.

Or, prenons un nombre v tel que 2v &amp;gt; R2 et considerons les deux fractions

continues

S =

+ 1 - 2v + 3 -

R 2 R 2

- 2v + 5
&quot;



70] Sur le rapport de la circonference au diametre 681

R, R ^tant les deux racines de liquation quadratique (1)

*_:?
&amp;lt;*

-9.
&amp;lt;?

-5
OK . , &quot;r-f-l D&amp;gt;

wr-M /^r&amp;gt;

A, B, G, D, ... e&quot;tant des fonctions lineaires avec des coefficients entiers de R,

et Ton aura

/ _ B B\r) , _ C C\ij
*3 vl_ _

v At A i
&amp;gt;

* v+l Ttt ni &amp;gt;A A tf B f !?;

A
,
B

,
G etant les memes fonctions de R que le sont A, B, G de R.

Or, on peut demontrer que A
,
B

,
C

,
... seront des nombres positifs, et

A R C
A r W ^ chacune &amp;gt;77-

D _ D
De plus, toutes les fractions -77

--~- seront des quantites positives et
A A tf

moindres que 1 unite.

B B -B w R ^ AMais -r,--7 r^ =- n , dont le denominateur sera neces-
A A-A

sairement positif.

tifo rtnait.itra

D
Done la quantite positive -j, egale une fraction positive diminuee d une

autre fraction positive.

TV ri r\

Done -r, et les quantites semblables, ^, , ^ , ..., seront toutes des fractions
.A Jo C/

positives et moindres que l unite\

BB CC DD
Done -r-r-. , T^C, , -p^r, .... seront des fractions possedant ce meme carac-

AA BB CO
tere.

Mais tous ces produits AA ,
BB

,
CC seront des nombres entiers, ce qui

est impossible.

Je crois pouvoir faire une demonstration tout a fait semblable pour dtablir

que TT ne peut pas etre la racine d une equation d un degre quelconque dont

toutes les racines sont reelles. Pour le cas d equations avec des racines

imaginaires, il y aura quelque chose de plus a faire pour achever la demon

stration
;
mais j ai lieu de croire qu avec 1 aide de la theorie des modules de

quantit6s imaginaires il n y aura pas de grosses difficultes a vaincre. Enfin

j ajoute que deux quantites reelles ou imaginaires, dont 1 une est la tangente
ou le logarithme neperien de 1 autre, ne peuvent etre toutes les deux

fonctions alg^briques des racines de la meme Equation irrductible, a

coefficients entiers.



71.

PREUVE QUE TT NE PEUT PAS ETRE RACINE D UNE
EQUATION ALGEBRIQUE A COEFFICIENTS ENTIERS*.

[Gomptes Rendus, cxi. (1890), pp. 866871.]

LEMME. Soit

r
era

J = , ,m
, e m

n +
n +.

)

ou e
2 = e

2 =
e&quot;

2 = ... = 1
; n, n, n&quot;, ... sont des nombres reels positifs et plus

grands que Vunite; m, m, m&quot;, ..., des nombres reels ou complexes, et ou chaque

quotient partiel est assujetti a la condition que n 1 est plus grand que le

module de m.

Alors je dis que le module de J sera moindre que I unit6.

Supposons que ces conditions soient satisfaites par ,
-

.

n n
/

Soit m = a + ift.

Par hypothese n 1 &amp;gt; ^/(a
2 + /3

2

).

Servons-nous de M (x) pour signifier le module de x, alors

m\ M (m) n-\
- 1 ^ ; j*- ^^* 1

77?

de sorte que, si =
a, + i/3,, a,

2 + fi;
2

&amp;lt; 1 et, a plus forte raison, a,
2

&amp;lt; 1,

if/-Jz- M(m,} M (m,)

m M (n, + a,

\
l+ n/

* Cette Note doit etre substitute a la Note de 1 auteur qui a 6t& ins^r^e, par suite d un

malentendu, dans les Comptes rendus du 24 novembre dernier. La Note pr^cedente, qui ne

traitait que le cas le plus restreint du theoreme du texte, est affectee d inexactitudes qni la

rendent de nulle valeur.
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car (n t
+ a,)

2
, quand a.,

est compris entre les limites 1, 1, est plus grand que
(n,-l) .

Done, par hypothese,

et, evidemment, par le meme raisonnement, on trouve successivement

*(), jf/_a_\. M/^.
\nj

ou, ce qui revient a la meme chose, toutes les quantites

M )
W_W_\

\ n 1 ! em ]

\n,+
- - I

\ n f

seront moindres que 1 umte*.

Nous aliens demontrer, a 1 aide de ce lemme, que, si 6 est une racine d une

equation irreductible a coefficients entiers, tang 6 ne peut pas etre rationnel

ou meme une fonctiou rationnel le a coefficients rationnels de 6.

Supposons que A6n + B6n~l + ... + L= et que tang 6 soit une fonction

rationnelle de 9. On peut supposer que -4 = 1, car, si nous e&quot;crivons = AO-f,
alors 1 equation pour 6 peut s exprirner semblablement a celle pour 6, mais
avec le premier coefficient egal a 1 unite. De plus, si Ton peut ddmontrer

que tang ff ne peut pas etre une fonction rationnelle de
, alors, puisque

ff = Ad, et conse&quot;quemment tangtf ,
est une fonction rationnelle de tangtf, il

s ensuivra que, si tang est une fonction rationnelle de 6, tang & sera une
fonction rationnelle de 6

,
ce qui est contraire a la supposition faitej.

Ce lemme peut etre envisage comme une application de la proposition 8, m d Euclide. En
prenaut O le centre d un cercle a rayon units et N un point exterieur a ce cercle, Euclide y
enseigne que le segment de ON, compris entre N et le contour convexe, sera moindre que toute
autre ligne droite menee de N au cercle : a plus forte raison il sera moindre que la distance de N
a un point quelconque d un cercle interieur au premier. Voir la Note au has de la page [685, below]
pour une addition qu on doit faire a ce lemme.

t Voir le scolie pour le cas plus general ou les coefficients de 1 equation en sont des nombres
complexes [p. 686, below].

J L illustre Legendre aurait, il me semble, du faire une transformation analogue dans sa

presentation celebre de la preuve de Lambert de son theoreme (Note IV, Elements de Geometric).
Pour avoir n^glig^ cette precaution, la succession infinie de quantites toujours de&quot;croissantes qu il

tronve par le moyen du lemme de Lambert ne forme pas ne&quot;cessairement une succession de
nombres entiers, mais de tels nombres divises par des puissances toujours croissantes de A, le

de&quot;nominateur de 6, suppose rationnel, exprime comme fraction vulgaire reduite, ce qui n est

nullement impossible.
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Done, nous pouvons supposer que liquation en 6 soit de la forme

Evidemment on peut aussi supposer que 1 equation en 6 soit irreductible.

Ecrivons d tang 6 = r (6), de sorte que

1-
3-

5-.

on trouvera ^
O ~&quot;~

&quot;^ //1\ /To

7-. T (0) (3
-

ft)

9-.

et, en nommant

r(0)-02

&quot;to

7--

2r + 3 - .

(fl =^+1 (0)T(0

Soit
r&amp;gt;i

-

(0) ce que devient @r (^) quand on substitue 0,; pour dans la

valeur de T(#). Si, pour une certaine racine f de 1 equation supposee en 0,

T
fti (6)

= rr (#;), alors T,.!t
-

(0) en vertu du lemme aura un module moindre que
Tunite

; sinon, ce module deviendra eventuellement et restera, pour une

certaine valeur r, et pour toute valeur supdrieure, au-dessous d une certaine

limite, parce que dans ce cas %
rti (6} differera et continuera a difFerer par

une quantit^ aussi petite qu on veut de ^+
\-^l (dont le module a une limite

A r (ui)

sup^rieure dependant de la grandeur de #;) quand r est pris suffisamment

grand. Cela sera developpe au long dans une Communication ult^rieure.

Supposons que N soit le plus grand des modules carres des n racines,
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#1, #2, #3) &amp;gt; #n les n racines de 1 equation proposee en 6. Prenons 2r &amp;gt; N ;

alors, en vertu du lemme* et a cause du principe enonce plus haut, on aura

eventuellement (en preriant 2i N suffisamment grand) le produit des

modules de r (&i), r (#2), ..., Sr (6n} moindre que I unite pour une certaine

valeur de r et toute valeur de r sup6rieure a celle-ci.

Or, remarquons que, a cause de la valeur i unitd du coefficient de 6n dans

1 equation en 6, tous les A (6) et les B(6} seront des fonctions lineaires et

entieres de 6, O2
, ..., On~ l

,
car si

//,
&amp;gt; n 1, 6* devient une fonction lineaire et

entierede 0, &&amp;gt;, ..., en~\

Ainsi, en supposantque k soit un nombre tel qui rende kr(6} une fonction

lineaire entiere de 6, &2
, ..., 6n

~
l

, pour toute valeur de r,

sera une fonction rationnelle et entiere de 6
; or, en vertu de ce qui a ete dit,

le produit des modules de

sera moindre que 1 unite quand p est plus grand que le nombre que nous

avons nomine r. Mais le produit des modules de n quantites est le module

de leur produit ;
done

formeront une succession infinie de riombres entiers decroissants, ce qui est

impossible f.

Ainsi T (6) et consequemment tang 6 ne peut pas etre une fonction ration

nelle de 6 quand Q est racine d une equation a coefficients entiers.

Si nous supposons que tang# soit une quantite rationnelle pure et

simple, cela ne fait nul changement dans notre raisonnement
; ainsi, puisque

/ 77&quot;*

tangTr ( ou bien si Ton veut tang j
est rationnel, TT ne peut pas etre la racine

\ 4(/

d une equation algebrique a coefficients entiers.

Je dernontre par un precede a peu pres pareil a ce qui precede, la pro

position inverse, c est-a-dire que, si tang 6 est racine d une equation algebrique,
alors 6 ne peut pas etre une fonction rationnelle a coefficients rationnels de

tang 6. Or, dans cette theorie, il n y a nulle distinction entre les quantites
reelles et complexes, de sorte que V( 1) compte comme quantite entiere.

Done tang\/( 1), et consequemment e, base des logarithmes neperiens (qui

* On doit sous-entendre par le lemme la proposition ainsi nomm^e au commencement de cette

Note, rnais avec 1 addition essentielle, facilement prouve&quot;e, que quand les n croissent continuelle-

ment et les m restent constants, alors, en commengant avec un r suffisammeut grand, le module
de J deviendra une quantity aussi petite que 1 on veut.

t Voir le scolie [p. 686, below] pour le cas plus general ou liquation en e a des coefficients

complexes.
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en est une fonction algebrique) ne peut pas etre racine d une equation

algebrique a coefficients entiers. En reunissant les deux precedes applicables

a ces deux cas, on parvient a de&quot;montrer un theoreme plus general, a savoir :

Si une fonction trigonometrique quelconque et son amplitude sont liees

ensemble par une Equation algebrique a coefficients entiers, ni I une ni I autre

ne peut satisfaire a une equation algebrique a coefficients entiers, et comme cas

particulier compris dans ce thdoreme, une fonction trigonometrique et son

amplitude ne peuvent pas etre I une une racine d une Equation algebrique

a coefficients entiers et I autre aussi une racine d une telle equation*.

II y a un theoreme un peu plus general, au moins en apparence, qu on

peut demontrer par un raisonnement tout a fait semblable.

Nommons une quantite qui est racine d une equation algebrique irre -

ductible a coefficients entiers, simples ou complexes, quantite equationnelle,

et les racines de la meme equation algebrique irreductible a coefficients

entiers, quantitys equationnelles associees
;
de plus, nommons une quantite qui

est racine d une equation dont les coefficients sont fonctions rationnelles d un

nombre quelconque d autres quantites donnEes fonction Equationnelle de ces

quantites ;
alors on peut affirmer qu une fonction trigonometrique et son

amplitude ne peuvent pas etre, toutes les deux, fonctions equationnelles d un

meme systeme de quantites equationnelles associees. Cette proposition
donne lieu de soupgonner qu au moyen de formules propres aux fonctions

elliptiques on pourrait demontrer qu une fonction elliptique, son amplitude et

son parametre ne peuvent pas etre, tous les trois, fonctions ^quationnelles
d un meme systeme de quantites Equationnelles associees.

Scolie. On ne doit nullement exclure le cas ou 6 serait propose comme
racine d une equation a coefficients entiers, mais complexes.

Dans ce cas, si le coefficient du premier terme en cette Equation est a + ift,

alors afin de pouvoir rdduire liquation a sa forme canonique ou ce coefficient

est 1 uuite, sans que le tangent du nouveau 6 cesse d etre fonction rationnelle

de tang d, il faut ecrire ff = (a
2 + /S

2
) 0.

On remarquera aussi que les produits [p. 085, above]

* n [A r (d) r (6)
- Br (0)], * n [A^ (6) r (6}

- Br+l (6)1

au lieu d etre entiers et reels, deviendront quantites complexes, mais entieres,

dont les modules vont a 1 infini en decroissant; de sorte que la demonstration

donnee, pour le cas oh les coefficients de 1 equation en 6 sont des nombres

ordinaires, reste bonne pour le cas general.

* Ainsi on peut affirmer qu une fonction trigonometrique et son amplitude, ou bien un nombre
et son logarithme, ne peuvent pas etre tous les deux racines de deux Equations algebriques

quelconques a coefficients entiers. Par exemple, cos (cos XTT) ne peut pas etre un nombre

algebrique de Kronecker, quand X est rationnel, car son amplitude cosXTr est un tel nombre.

De meme v vM v&quot;
+ -- ne peut pas etre racine d une equation algebrique a coefficients

entiers.
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ON ARITHMETICAL SERIES.

[Messenger of Mathematics, xxi. (1892), pp. 1 19, 87 120.]

THE first part of this article relates to the prime numbers (or so to say
latent primes) contained as factors of the terms of given arithmetical series;
the second part will deal with the actual or, say, visible primes included

among such terms. Both investigations repose alike upon certain elementary
theorems concerning the &quot;index-sums&quot; (relative to any given prime) of

arithmetical series, whether simple and continuous as in the case of series

ordinarily so called or compound and interstitial as such before named series

become when subjected to certain periodic and uniform interruptions.

PART I.

1. Preliminary Notions.

Consider any given sequence

m + 1, ra + 2, m+3, ..., m + n,

in relation to any given prime number q.

Let r be the sum of the indices of the highest powers of q which are con

tained in the several terms of the natural sequence

1, 2, 3, ..., n,

s the sum of the indices of the highest powers of q contained in the given

sequence.

Then it is almost immediately obvious that s = or &amp;gt; r, that is s &amp;gt; r 1.

For the index-sum of the natural sequence will be represented by

and the index-sum of the given sequence by

= B + B + E

q

and this is at least equal to

that is s or &amp;gt; r.

\ q / \ q
2

J \ q
3

(mK\
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But there is another and more important theorem, less immediately

obvious, and more germane to the subject-matter of the following section,

which I proceed to explain.

Suppose 0-j, o-2 ,
&amp;lt;T3 , ..., &amp;lt;rn to be the several exponents of the highest

powers of q which are contained in

x+1, x + 2, x + 3, ..., x + n,

and let a be one of these n exponents which is not less than any other of them.

Call any term in the sequence

x + l, x+2, x +3, ..., x+n
which contains q*, say P, a principal g-term.

On one side of P the terms are less, on the other greater than P
;
in lieu

of any term substitute the difference between it and P, then I say that the

q- index of such altered term will be the same as when it was unaltered.

For let the principal term, or the chosen principal term if there are more

than one, be \q*, and let pep be any other term.

If p &amp;lt;
&amp;lt;r, \q&quot;

** p(f will obviously have p for its g-index ;
also if p = &amp;lt;r the

same will be true, that is supposing fj,q
p \qp to be positive, p will be its

^-index : for if we write X = aq + b and p = cq + d, where b &amp;lt; q and d &amp;lt; q,

a and c must be equal, since otherwise between \q
p and nqp there would be a

term (a + 1) q . q
p containing a higher power of q than the principal term :

hence p \ = d b and does not contain q. In like manner if \qp
fj,q

p is

positive, p is its ^-index for the same reason as before.

Hence the index-sum, qud any prime q, of the two sequences

m + 1, ra + 2, ..., P-l; P + l, P + 2, ..., m + n-l, m + n

is the same as the sum of the index-sums of

1, 2, 3, ..., P-m-l,
I, 2, ..., m + n-P,

Call the sum of these two index-sums s
,
then

/P_ m _n ,p_ m _ix /p_ m_^s= . + -M ; +&quot;( ^ + ...\qj\q2
\ q

3
J

_, (m + n - P\ /m + n - P\ ^fm + n-P+ E(- -} + E(-
)
+
E( 3

+ EC + E(
n-1

\ q
s

+ *(^1 + *()
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Hence ,9 = or &amp;lt; r. But the original index-sum of the sequence is diminished

by &amp;lt;r on account of P being omitted.

Hence s &amp;lt;r or s = or &amp;lt; r.

Thus we have s &amp;gt;i I, s cr&amp;lt; r + 1.

But this is not all : we may for certain relative values of m, n, and q

(without regard to the situation of the principal term) establish the inequality
s a &amp;lt; r.

I premise the obviously true statement that iff + g &amp;lt;h,
then

,.-, fh
&amp;lt;h + ![-

\q

Let now h be the number of terms in the natural sequence from 1 to n
which contain

q.

Then in the given sequence the number will be

7 fm + n\ fm\ fn\h + E - -)-E(-)-E(-),s&y h + e,
\ q / \qJ \qj

and the sum of the number of terms divisible by q in the partial sequences
on each side of P will be h + e1, where e = l or 0; let the respective
numbers be/, g. Then f+ g = h-l+e, where e = or 1, and, using the

same notation as before,

and
q

Hence if e = 0, s a &amp;lt; r,

f e= 1, s a &amp;lt;r+ 1,

the former inequality subsisting whenever

q \q \q

If for example m = n, then s a &amp;lt; r when

. a

which it is easily seen happens whenever E( }
is an even number

\qJ
s. iv. 44
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2. Proof that (m + l)(m + 2) ... (m + n) wAew m&amp;gt;n 1 contains a

prime not contained in 1 . 2.3 ... n*.

The universal condition independent of the relation between m, ?i, 9,

above found, namely, s a- = or &amp;lt; r will be found sufficient to establish the

theorem which constitutes the object of this section and which is as follows:

&quot;If the first term of a sequence is greater than the number of terms in

it, then one term at least must be a prime or a multiple of a prime greater

than that number.

When the first term exceeds by unity the number of terms, the sequence
takes the form m+ 1, m+2, ..., 2m 1, and since no term in this sequence
can be a multiple of m, the theorem for such case is tantamount to affirming

that one term at least is a prime number which is in accord with and an

easy inference from the well-known &quot;

postulate of Bertrand,&quot; that between

m and 2m 2 there must always be included some prime number when

&amp;gt;}.

Suppose if possible that m+1, m + 2, ...,m + n contains no other primes
than such as are not greater than n, and which therefore divide some of the

numbers from 1 to n.

Let q be any such prime, and P
q
a principal term of the sequence

m + 1, m + 2, . . ., m + n, qua q.

Then, by virtue of the proposition above established,

(m + 1) (m + 2) . . . (m + n)

~I\~
will contain no higher power of q than does 1 . 2 . 3 . . . n, and consequently if

P be the least common multiple of the principal terms in respect to the

several primes, say v in number (unity not being reckoned one of them), none

greater than n, we may infer that

(m + 1) (m+2)... (m + n)

~~P~
will be wholly contained in, and therefore not greater than 1 . 2 . 3 . . . n, if the

sequence m + 1, m+2, ..., m + n contains no prime or multiple of a prime

greater than n. To fix the ideas let us agree to consider that term in the

sequence which contains the highest power of q, and is the greatest of all

that do the same (if there be more than one), the principal &amp;lt;?-term.
The

least common multiple cannot be greater than the product of the principal

terms which are distinct from each other, and since even if they are all

distinct, their number cannot exceed v (the number of primes other than

*
It will readily be seen that, if this theorem is true, for n any prime, it will be so a fortiori

when n is a composite number.
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unity less than n + 1), it follows that P cannot be greater than the product

of the highest v terms in the given sequence. Hence we may infer that unless

(m + 1) (m + 2) . . . (m + n - v)

is less than 1 . 2 . 3 ... n, some prime greater than n must divide one term at

least of the sequence
ra + 1, m + 2, ..., m + n.

We might go further and say that unless 1 . 2 . 3 ... n is greater than

(m + 1) (m + 2) . . . (m + n - v) D,

T
I + E(}+E(*}-E(&quot;^}

where J}=Uq w \v \
,

(q being made successively each of the v primes between 2 and n inclusive

and II being used in the ordinary sense of indicating products), this same

conclusion must obtain.

Conversely the theorem is true when either of these inequalities is

denied. The denial of the first of them, which is sufficient for the object in

view, is implied in the inequality

(m + 1) (m + 2) . . . (m + n - v) &amp;gt; 1 . 2 . 3 . . . n,

which, since v depends only on n, may be written under the form

F(m,n)&amp;gt;I.2. 3...n.

This will be referred to hereafter, in this section, as the fundamental

inequality*.

Since F(m, n) increases with m, the theorem if true for m must be true

for any greater value of m, when n remains constant.

From this it will be seen at once that the theorem must be true when
m has any value exceeding n2 and n &amp;gt; 7.

For when n = 8 the number of primes in the range from 1 to 8 is 4 and
is equal to fyi : but as n increases the number of new primes being less than

the number of odd numbers must be less than
|?z.

Hence if n &amp;gt; 7 and m &amp;gt; n 2
,

F(m, n) &amp;gt; mn~v
&amp;gt; (tf}*

n
&amp;gt; nn &amp;gt; 1 . 2 . 3 . . . n.

This result enables us to prove that the theorem is true when

13&amp;lt;n&amp;lt;3000.

The theorem it will be borne in mind is true if some prime number
occurs in the sequence m + l, ra+2, ..., m + n, or in other words if the

above sequence does not consist exclusively of composite numbers. But

* The subsistence of the fundamental inequality for any given value of n implies for that

value of n the truth of the theorem to be established: but the converse does not necessarily hold.

The theorem may be true when the fundamental inequality is not satisfied.

442
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Dr Glaisher has found* that the highest sequence of composite numbers
within the first 9000000 contains only 153 terms, namely, the sequence
4652354 to 4652506 (both inclusive). Hence if the theorem is not true

when n &amp;lt; 3000, in which case n2 + n&amp;lt; 9000000, we must have n = or &amp;lt; 153,
and there ought to be a sequence of n composite numbers in which the first

term is less than (153)
2 which is 23409. But the longest sequence of com

posite numbers under 23409 is that which extends from 19610 to 19660

containing 51 terms, the square of 51 is 2601 and the longest sequence
under this number is that which extends from 1328 to 1360 comprising 33

terms. The square of 33 is 1089, the longest sequence below which is from

888 to 906 comprising 19 terms: the square of 19 is 361, the longest

sequence below which stretches from 114 to 126 comprising 13 terms.

Hence the theorem is true for all values of n not greater than 3000 and not

less than 13.

It is easy to show that the theorem is true for all values of n not greater
than 13.

(1) Suppose n= 13, which gives v = 6.

The theorem must be true when m is taken so great that

(m + 1) (m + 2) (TO + 3) (m + 4) (m + 5) (m + 6) (m + 7)

. &amp;gt; 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13,

which is easily seen to be satisfied when m= or &amp;gt; 100.

But there is no sequence of 13 composite numbers till we come to the

sequence 114 to 126, so that when m &amp;lt; 100 the theorem must be true as well

as when m = or &amp;gt; 100.

(2) Suppose n= 11, for which value of n, v = 5.

The theorem is true if

(m + 1) (m + 2) (TO + 3) (m + 4) (m + 5) (TO + 6)

&amp;gt;1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11,

which is obviously satisfied as before when m = 100, but there is no sequence
of 11 which precedes the sequence before named from 114 to 126. Hence
the theorem is true generally for n = 11.

When n.=7, i&amp;gt;

= 4 and the theorem is true for all values of m which make

(m + 1) (TO + 2) (m + 3) &amp;gt; 1 . 2 . 3 . 4 . 5 . 6 . 7, that is, &amp;gt; 5040,

which is obviously the case if m = or &amp;gt; 20, but there is no sequence of 7

composite numbers till we come to 89 to 97. Hence the theorem is proved
for n = 7.

When n= 5, v = 3 and the condition of the theorem is satisfied if

(m + 1) (TO + 2) &amp;gt; 2 . 3 . 4 . 5, that is, &amp;gt; 120,

* See table at the end of this section.
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as is the case if m= or &amp;gt; 10, but the first composite sequence of 5 terms is

24 to 28. In like manner when n = 3, v = 2 and the theorem is true when

w + 1 = or &amp;gt; 1 . 2 . 3, that is, m = or &amp;gt; 5, but 8, 9, 10 is the first composite

sequence of 3 terms. Similarly, when n = 2, v = l and the condition

m + 1 = or &amp;gt; 2 is necessarily satisfied since m = or &amp;gt; n by hypothesis.

Finally, the theorem is obviously true when n = 1, because m + 1, what

ever m may be, contains a factor greater than 1.

Being true for the prime numbers not exceeding 13, the slightest con

sideration will serve to prove that, as previously remarked in a footnote, it

must be true a fortiori for all the composite numbers between them. Hence
the theorem is verified for all values of n not greater than 3000, and it only
remains to establish it for values of n exceeding that limit.

To prove it for this case we must begin with finding a superior limit to

v, when n &amp;gt; 3000, under the convenient form of a multiple of ; .

logn

If we multiply together the first 9 prime numbers from 2 to 23 and
divide their product by that of the natural numbers up to 9 increased in the

ratio of 1 to 2 9
,
the quotient will be found to exceed unity; and since the

following primes are all more than twice the corresponding natural numbers,
if we denote by pll p2 , p3 , ..., the prime numbers 2, 3, 5, ..., we must have

pl .pz .pz ...pv &amp;gt;2
v

(l.2.3...v),

(provided that v &amp;gt; 22, as is the case if n = or &amp;gt; 89),

or log(l . 2 . 3 ... v) + (log 2) v &amp;lt; log (pi.pz.pz ...pv}.

But by Stirling s theorem (Serret, Cours d Alg. Sup., ed. 4, vol. II. p. 226),

V log V - V - % log V + % log 2-7T &amp;lt; log (1 . 2 . 3 . . . v),

and by Tchebycheffs theorem (Serret, vol. n. p. 236)*,

Iog(pl .p2 .p3 ...pv )&amp;lt;ri,

r

where n = %An + . (log n)
2 + $ log n + 2, and A = 921292 ....

O

Hence (log )(-)-(!_ log 2) (*-) + ($ log ZTT - 1 log \e} &amp;lt; n ,

and a fortiori log (v -%}(v- $)
-

(log %e) (v
-

|) &amp;lt; n ,

or

2
Hence, if we write

/j, log p = - n =
rij

we shall have
v\&amp;lt;

* For greater simplicity I have left out the term - An*, and thereby increased the superior
limit.
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But u, = ,-^L.
log/x

and therefore

log yu,
=

log TO!
-

log log /U,
=

log n,
-

log (log fy
-

log log p) &amp;gt; log ^ - log log fy.

Hence u &amp;lt;
:

^

log TOj log log TOI

2 TO

e 2
log n log log n + log

-
O

^
log w log log n (1 log 2)

TT i ,, L
1 \0&amp;lt;*U (logZi)

2
log log U

Hence, observing that -, ---
, ^-, r all decrease as the

u u u log u

denominators increase (provided as regards the second of these fractions that

u &amp;gt; e, as regards the third that u &amp;gt; e\ and as regards the fourth that u &amp;gt; ef),

we may find a superior limit to v in the case before us, where n &amp;gt; 3000, by

writing in the numerator of v |,

(log 3000)
2

log 3000 _2_
3000

n
&quot;3000&quot;

n&amp;gt;

3000
n

for (logw)
2
, logn, 2,

and in its denominator, first, log n log log n for log n log log n, and then

log log 3000, . 1-W2,
-,-.- log n and :

-^7^ log TO,

log 3000 log 3000

for log log n and 1 log 2 respectively.

Making the calculations it will be found that we shall get

r- .

logn
With the aid of this limit it will now be easy to prove the truth of the

theorem when n = or &amp;gt; 3000.

Let us suppose n = or &amp;gt; 3000.

(1) Suppose m&amp;lt; 2n, then m-\-n&amp;gt; \m and the theorem will be proved
for this case, if it can be shown that in the range of numbers from m to |m,
there is at least one prime number when m = or &amp;gt; 3000.

* From this it will be seen that the asymptotic ratio of v to - is less than the asymptotic

ratio which any superior limit to the sum of the logarithms of the primes not exceeding n bears

to n : this perhaps is a new result, at all events it is not to be found in Serret nor indeed is it

wanted for Tchebycheff s proof of the famous postulate which Serret has so lucidly expounded.

The correlative theorem that the asymptotic ratio of v to -- is always greater than the

asymptotic ratio which any inferior limit to the sum aforesaid bears to n is of course an obvious

and familiar fact.
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This will be the case (Serret, vol. II. p. 239), if (on that supposition)

$ . %n n, that is, if

n 25 lon 2 125 . 25

where 4 = 921 29202....

But when w = 3000, it will- be found that the terms on the second side of

the inequality are respectively less than

1341641, 66-9773, 47-5546, 4-5227,

whose sum is less than 750.

Hence, the inequality is satisfied, and accordingly the theorem is true

when m &amp;lt; 2n and n is equal to or greater than 3000
;
for when n satisfies

that condition the derivative in respect to n of the right-hand side of the

above inequality will be always less than .

(2) Suppose m or &amp;gt; 2n, then it is only necessary to prove that

log(i&amp;gt;7i
+ 1) (2 + 2). ..(3-y)&amp;gt; log (1.2. $...),

or, what is the same thing, that

log {1.2. 3. 4 ... (3n - i/)}
&amp;gt; log (1 . 2 . 3 ... w) + log (1 . 2 . 3 ... 2w),

v being the number of primes not greater than n, and n being at least 3000.

Call the two sides of the inequality P and Q. Then (Serret, vol. II.

p. 226)

P &amp;gt; log V(2-7r) + (3n
-

v) log (3w
-

v)
- (3n - v)

-
% log (3w

-
v)

&amp;gt; log \/(27r) + (3n
-

i/) log 3n + (3w i/) log (
1 -

-)
- 3w + z/

-
$ log 3ra.

\ oW/

&amp;gt; log V(27r) + 3 (log M) n + (3 log 3 - 3) n - (log n) v

+ (1
-

log 3) v - \ log 3 - log w
-

i/,

On the other hand,

Q &amp;lt; log V(2-jr) + n log w - n + log n + ^
+ log V(27r) + 2n log 2w - 2?i + log 2n + J^

&amp;lt; {2 log V(2?r) + log 2 +
}
+ 3 (log w) w + (2 log 2 - 3) n + log w.

Hence

&amp;gt; (3 log 3 - 2 log 2) 7i - log n
(i;
-

{)

- 2 log n - log 3 (v
- ^ -

{i log (367T) +

where v-%&amp;lt; 1 606 .
^~

log 74
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But

Hence*

P-Q&amp;gt; (-303) n - (1-606 log 3)

say P-Q&amp;gt;f(n)&amp;gt;0 when n = 3000.

On Arithmetical Series

3 log 3
- 2 log 2 = 1-9095415 &amp;gt; T909.

&quot;

- - 2 log n
-

{ log (36-Tr) +

[72

Also the derivative with respect to n of (log n)/(n) being

(-303) (1 + log n)
- 1-606 log 3 -

* -

P Q will increase as w increases and will remain positive for all values of n

superior to 3000.

Hence the theorem is true, whatever m may be, when n = or &amp;gt; 3000, and

since it has been proved previously for the case of n&amp;lt; 3000, it is true

universally.

I subjoin the valuable table, kindly communicated to me by Dr Glaisher,

referred to in the text above.

Table of Increasing Sequences of Composite Numbers interposed between

Consecutive Primes included in the first nine million numbers,

*
It will now be seen why I take separately the two cases of m greater and m less than 2n.

If we were to take simpliciter m= or &amp;gt;n and were to attempt to prove

log {1 . 2.3 ... (2re -v)}&amp;gt;
2 log (1.2. 3 ... n)

the inferior limit to the difference between these two quantities would then have for its principal

term, not (3 log 3 - 2 log 2 -
1-606) n but (2 log 2 - 1-606) n, which would be negative.

Of course there is no special reason except of convenience (in dealing with an integer instead

of a fraction) for making &quot;2n the dividing point between the two suppositions separately con

sidered in the text ;
ten where K as far as regards the second inequality does not fall short of some
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The table is to be understood as follows. The lowest sequence of as

many as 3 consecutive composite numbers is that included between 7 and

1 1 : the lowest of as many as 5 is that included between 23 and 29, of as

many as 7 that included between 89 and 97
;
between 13 and 17 there

is a break this indicates that the lowest sequence of as many as 15, or

as many as 17 first occurs in the sequence of 17 interposed between 528,

541. Similarly the break between 21 and 33 indicates that the lowest

sequence containing 23 or 25 or 27 or 29 or 31 or 33 terms first occurs

in the sequence of 33 composite numbers interposed between the primes
1327, 1361.

It is also necessary to add that in the first nine million numbers there

is no succession of more than 153 consecutive composite numbers.

3. Relating to irreducible arithmetical series in general*.

Let P be a principal term qua q in any irreducible arithmetical series

whose common difference is i, N any other term greater or less than P, and
D their difference. If q is not prime to i, no term in the series will be

divisible by q.

Just as in the case of a natural sequence when there is only one

principal term in the series it may be shown that the index of D qua q
will be the same as that of N

;
when there is more than one principal

term it appears by the same reasoning as before that the index of N
cannot be greater than that of D : (it will not now necessarily be equal
unless q is greater than the common difference i).

The index-sum qua q is zero when q has a common measure with i, and
we may therefore consider only the case where q is relatively prime to i :

certain limit, would have served as well : this inferior limit to *: would be some quantity a little

greater (how much exactly would have to be found by trial) than the quantity 6 which makes

6 log
-

(0
-

1) log (0
-

1) equal to the coefficient of ^ in the superior limit to v. As regards

the first inequality K would have to be a quantity somewhat less (how much less to be found by

trial) than the quantity r, which makes ^ =|, that is, 77
= 5. This is on the supposition made

throughout of using Tchebycheff s own limits, but if we use the more general, but less compact,
limits indicated in my paper in vol. iv. of the American Journal of Mathematics , any fraction
not less than and not so great as $? \ would take the place of f, and the extreme value of 17

would be VsVsS which is a trifle under 6. By a judicious choice of the value given to K, a value
of n could be found considerably less than 3000, which would satisfy both inequalities, and this
in the absence of Dr Glaisher s table would have been a matter of some practical importance,
but is of next to none when we have that table to draw upon. How low down in the scale of

number, n may be taken, without interruption of the existence of the fundamental inequality for
the minimum value of n in the case treated of in this section, it has not been necessary for the

purpose in hand to ascertain. That it holds good for all values of n above a certain limit
follows from the fact that 2 log 2 is greater than the coefficient of the leading term in the

superior functional limit to the sum of the logarithms of the primes not greater than n.

An irreducible arithmetical series is one whose terms are prime to their common difference.

[ Vol. in. of this Reprint, p. 530.]
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on this supposition, by virtue of what has been stated above, the index-sum

qua q of the series whose first term is m + i, and number of terms n, will be

equal to or less than

B lP=2i\ + E
iq

E _

iq iq- J iq

and therefore a fortiori

(n
-

1) A f(n ~ 1

iq J \ icf I \
iq&quot;

r, (n\ 7-. f n \ n f n \
&amp;lt; or = E - + E

(

-
)
+ EM - + . . .,

\qJ \lf/ \q J

that is, not greater than the index-sum of 2, 3, ..., n qua q.

Consequently, by the same reasoning as that employed in the last

section, the theorem now to be proved, namely, that if m (prime to i)
= or &amp;gt; n,

then (m + i)(m + 2i) ... (m + ni) must contain some one or more prime
numbers greater than n, must be true whenever

where vl is the number of prime numbers not exceeding n, and not contained

in i, and a fortiori when for vlt we substitute, as for the present we shall

do, v the entire number of primes not greater than n. This I term the

fundamental inequality for the general case now under consideration.

Suppose n = or &amp;gt; 3000. The logarithm of the first side of the funda

mental inequality when we write v for vl
is obviously greater than the ith

part of the logarithm of

(m + 1) (m + 2) . . . (m + i) (m + i + 1) . . . {m + (n
-

v) i} ;

and the inequality (subject to certain suppositions) to be established will be

satisfied, if on the same suppositions,

i log [1 . 2 . 3 . . . {ra + (n
-

v) i}] &amp;gt; log (1 . 2 . 3 . . . n) + i log (1 . 2 . 3 . . . m).

Suppose m =
n, and make

log [1.2. 3. ..{(i+ l)n-iv\]=T,

* If it had been necessary the condition in the text might have been stated in the more

stringent form that some aliquot part of the factorial of n (namely, this factorial divested of all

powers of prime numbers contained in i) would have to be greater than

(m + i) (m + 2i) ...{m+ (n-i) i}

if the theorem were not true for any specified values of m, n, i.

It will be noticed that when i is relatively prime to n, v\ is less than v so that n-v\&amp;gt;n-v :

some use will be made of the formula in the text when dealing with certain small values of n

and m-n towards the end of the section.
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Then T &amp;gt; log (2w) + {(i + 1 ) n - iv} log {(i + 1) n -
iv}

-
{(i + 1) w - iV}

-
log {(i + 1) n - iv},

U&amp;lt;(i+ 1) log V(2ir) + (i + 1) n log n - (i -f 1
) % + (i + 1) log n + -fa (i + 1).

Hence F(n, i) &amp;gt; i log V(2vr) + {(i + l)n iv} log {(i + 1) n}

+ iv - (i + 1) n log n
-

| log {(i + 1) n - iv} -( + *) log w ~
T? (* + !)

&amp;gt; {(i + 1) log(i + 1)} w- tlog {(i + 1) w
}

_
log {(i + l)n}

- H* + !) log w

-Jilog^TiO-^Ci+l),
that is &amp;gt; {(i + 1) log (i + l)} n -i log {(* + 1) n} v - (i + 2) log n - $ log (i + 1)

-
TV(t + l) (H),

so that when n &amp;gt;3000 and consequently v &amp;lt; + (l 606) ,
,
the inequality

to be established will be true a fortiori if

F(n, i) &amp;gt;

|(
+ 1) log (i + 1)

-
(1-606) i

|l
+ ^^-^l} n - (i + I) log n

-
{\ (i + 1) log (i + 1) + 1

{i log (2-Tr)} + -fa(i+ 1)]-

When i = l or 2 or 3 the coefficient of n is negative ; consequently the

limit to v before found is no longer applicable to bring out the desired

result.

The case of t = l has been already disposed of; that of i=2 may be

disposed of, as I shall show, in a similar manner; when i = 3, I shall raise

the limit n from 3000 to 8100 of which the logarithm is so near to 9 that

it may, for the purpose of the proof in hand, be regarded as equal to 9

without introducing any error in the inequality to be established, as the

error involved will only affect the result in a figure beyond the 4th or

5th place of decimals, whereas the inequality in question depends on figures
in the first decimal place. When this is done the theorem will be in effect

demonstrated for the case of i = 3 and n &amp;gt; 8100. For all values of n not

greater than 8100 I shall be able to show that the fundamental inequality

() is satisfied by employing the actual value of vl or v instead of a limiting
value of the latter.

Thus the fundamental inequality will be shown to subsist for all values

of n when i = 3 and m = n, and d fortiori therefore for all values of m and i

not less than n and 3 respectively.

Case of i = 2.

Suppose n = or &amp;gt; 3000, and take separately the cases m &amp;lt; or = 2n, m &amp;gt; 2n.

(1) Let m be not greater than 2n so that m + 2n is greater than 2m 1.
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By hypothesis m must be odd, and by Bertrand s Postulate

m + 2, 7n, + 3, w + 4, ..., 2m,

and therefore m + 2, m + 4, m + 6, .... (2m 1)

(seeing that the interpolated terms are all even) must contain a prime, and

thus the first case is disposed of.

(2) Since the fundamental inequality has been shown to be satisfied

when n &amp;gt; 3000, m &amp;gt; 2n, i = 1
,

it will a fortiori be so when n &amp;gt; 3000,

m &amp;gt; 2n, i = 2.

Hence the theorem is established for i = 2 when n &amp;gt; 3000. Finally as

regards values of n inferior to 3000, the reasoning employed for the case of

i = 1 applies a fortiori to the case of i = 2.

To see this let us recall the first step of the reasoning applicable to the

supposition of i = 1.

Because in the first nine million numbers there is no sequence of 3000

composite numbers, from Dr Glaisher s Table of Sequences (taken in con

junction with the fact that when m&amp;gt;n
2
,
the theorem has been proved to be

true whatever n may be), we were able to infer that it must be true when

n does not exceed 153: in the present case, if the theorem were not true

when 3000 &amp;gt;n&amp;gt; 153, there would be a sequence of 153 composite odd

numbers and therefore of over 305 composite consecutive numbers in the

first 9000000 numbers, whereas there are not more than 153, and so we

may proceed step by step till we arrive at the conclusion that the theorem

must be true when n &amp;gt; 13
;
and when n= 13, 11, 7, 5, 3, 2, 1 a like method

of disproof (but briefer) will apply as for the case of i = 1.

Case of i = or &amp;gt; 3.

Let n = or &amp;gt; 8100. Then we may without ultimate error write

1-10^4 -A_ _^_4.5_?_ 2

4 log 6 8100 * 8100 8100 n .. n
v \ &amp;lt; p r = ; T

]
&amp;lt;

I o4b
,

,

log 9 1 log 2 log n log n

and accordingly

F(n, 3) &amp;gt; J4 log 4 - (3 x T546) fl + ^|
I v y

4 log n (2 log 4 + | log 2?r + )

and ^(8100, 3) &amp;gt; (5 545 - 5 352) (8100)
- 36 - 5-863 &amp;gt; 0.

Hence the Fundamental Inequality is satisfied when n = or &amp;gt;8100.

To prove that it is satisfied for values inferior to 8100, observe that by

virtue of the formula (H) it will be so, ex abundantid, for all values of n not
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less than n and not greater than n, provided that, calling n v the number of

primes not exceeding ri,

(5 545) n 3 log (4n ) n v f log ri C &amp;gt; 0,

where C = 1 + log 2 + f log (27r)
= 3783.

On trial it will be found that the above inequality is satisfied when we

successively substitute for n, n
,
and for n v (found from any Table for the

enumeration of primes) the values given in the annexed table :

The fundamental theorem is therefore established when i&amp;gt;2 for all

values of n down to 29 inclusive.

It remains to consider the case where n is any prime number less

than 29.

Calling ft the difference between n and the number of primes (exclusive
of 1) not greater than n, to

w = 2, 3, 11, 17, 23
will correspond

M = l, 1, 6,10,14
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and for each combination of these corresponding numbers it will be found
that

1 . 2 . 3 . . . n = or &amp;lt; (n + 3) (n + 6) . . . (n + 3/i).

Hence the theorem is proved for these values of n, whatever n may be,
when % = or &amp;gt; 3. To

n = 13, n = 19

corresponds

/i= 7, /i=ll,

and for these combinations of n and /A it will be found that

1 . 2 . 3 ... n&amp;lt; (n+ 4) (n + 7) ... (n + 1 + 3/u),

so that the theorem is true for

= 13, 19,

except in the case where

m=13, 19.

That it is true in these excepted cases follows from inspection of the

series,

16, 19, 22, 25, &c.,

22, 25, 28, 31, &c.,

where 19 &amp;gt; 13, 31 &amp;gt; 19 : or it might be proved, but more cumbrously, by
the same method as that applied below to the only two values of n remaining
to be considered, namely

n = 5, n = 7,

for which we have respectively

fi
=

2, fi
= 3.

If n = 5 and i has no common measure with 2.3.4.5, i must be not less

than 7, but 1 . 2 . 3 . 4 . 5 &amp;lt; 12 . 19.

On the other hand, if i has a common measure with 2.3.4.5, then what
we have called v1} in formula (), is less than v, so that n v1 &amp;gt; 2, but

1. 2. 3. 4. 5 &amp;lt; 8. 11. 14.

These two inequalities combined serve to prove that, whatever i may be,

the inequality (@) is satisfied, and the theorem is consequently proved for

n = 5.

So again, when n = 7, if i has no common measure with 2.3.4.5.6.7 it

must be 11 at least. In that case the inequality 2 . 3 . 4 . 5 . 6 . 7 &amp;lt; 18 . 29 40
and in the contrary case the inequality 2.3.4.5.6.7&amp;lt;10.13.16.19 serves

to prove the theorem.

When n = I the truth of the theorem is obvious : hence combining the
results obtained in this and the preceding section, it will be seen we have

proved that whatever n and whatever i may be, provided that m is relatively

prime to i and not less than n, the product

(m + i) (m + 2i) ...(m + ni)
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must contain some prime number by which 2.3...W is not divisible, and

the wearisome proof is thus brought to a close. It will not surprise the

author of it, if his work should sooner or later be superseded by one of a less

piece-meal character but he has sought in vain for any more compendious

proof. He has not thought it necessary to produce the figures or refer in

detail to the calculations giving the numerical results inserted in various

places in the text : had he done so the number of pages, already exceeding
what he had any previous idea of, would probably have been more than

doubled*.

PART II f.

Explicit Primes.

In this part I shall consider the asymptotic limits to the number of

primes of certain irreducible linear forms mz + r comprised between a

number x and a given fractional multiple thereof kx, the method of

investigation being such that the asymptotic limits determined will be

unaffected by the value of r, and will be the same for all values of m which

* The author was wandering in an endless maze in his attempts at a general proof of his

theorem, until in an auspicious hour when taking a walk on the Banbury road (which leads out

of Oxford) the Law of Ademption flashed upon his brain : meaning thereby the law (the nerve,
so to say, of the preceding investigation) that if all the terms of a natural arithmetical series be

increased by the same quantity so as to form a second such series, no prime number can enter in a

hit/her power as a factor of the product of the terms of this latter series, when a suitable term has

been taken away/rom it, than the highest power in which it enters as a factor into the product of
the terms of the original series.

In Part II. I shall be able to apply the same method to demonstrate a theorem showing that

it is always possible to split up an infinite arithmetical series, if not in the general case, at least

for certain values of the common difference, into an infinite number of successive finite and
determinable segments such that one or more primes shall be found in each such segment :

a theorem which is, so to say, Dirichlet s theorem on arithmetical progressions cut up into

slices.

The whole matter is thus made to rest on an elementary fundamental equality (Tchebycheff s)

which, with the aid of an application of Stirling s theorem, leads (as the former has so admirably
shown) inter alia to a superior limit to the sum of the logarithms of the primes not exceeding a

given number, from which as has been seen in 2, a superior limit may be deduced to the
number of such primes. With the aid of this last limit together with an elementary funda
mental inequality and a renewed application of Stirling s theorem, all my results are made to
flow. Thus a theorem of pure form is brought to depend on considerations of greater and less,
or as we may express it, Quality is made to stoop its neck to the levelling yoke of Quantity.

Long and vain were my previous efforts to make the desired results hinge upon the properties
of transposed Eratosthenes scales : now we may hope to reverse the process and compel these
scales to reveal the secret of their laws under the new light shed upon them by the successful

application of the Quantitative method.

t I ought to have stated that the theorem contained in section 2 of Part I. originally

appeared in the form of a question (No. 10951) in the Educational Times for April of this year.
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have the same totient. The simplest case, and the foundation of all that

follows, is that in which & = and m = 2 : this will form the subject of the

ensuing chapter which may be regarded as a supplement to Tchebycheff s

celebrated memoir of 1850*, and as superseding my article thereon in vol. IV.

of the Amer. Math. Journ. [Vol. in. of this Reprint, p. 530].

CHAPTER I.

ON THE ASYMPTOTIC LIMITS TO THE NUMBER OF PRIMES

INFERIOR TO A GIVEN NUMBER.

1. Crude determination of the asymptotic limits.

Call the sum of the logarithms of primes not exceeding x (any real

positive quantity) the prime-number-logarithmic sum, or more briefly the

prime-log-surn to x, and the sum of such sums to x and all its positive

integer roots the prime-log-sum-sum, which in Serret is called
-fy (x).

Then it follows from elementary arithmetical principles that the sum of

this sum-sum to x and all its aliquot parts, that is

+

which we may call the natural series of sum-sums and denote by T(x},

is identical with the logarithm of the factorial of the highest integer not

exceeding x, and accordingly from Stirling s theorem may be shown to have

for its asymptotic limit x\ogx-x. the superior and inferior limits being this

quantity with a residue which, as well for the one as for the other, is a known

linear function of log a
1

. Serret, vol. II. p. 226.

If now we take two sets of positive integers,

P,P ,P&quot;, ...; q,q ,q&quot;, &amp;gt;

together forming what may be termed a harmonic scheme, meaning thereby

that the sum of the reciprocals of the numbers in the two sets is the same,

and extend the T series over x divided by the respective numbers in each set

and take the difference between the two sums thus obtained, there will

result a new series of the form

of which the asymptotic limit will be x multiplied by

P
and the value of/(n) will be

,

p: q:
* Published in the St Petersburg Transactions for 1854.
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7?

where, in general,
- means 1 or according as n does or does not contain t,
v *

or in other words the &quot; denumerant
&quot;

of the equation ty
= n.

I shall call the p s and qs the stigmata of the scheme :

P &amp;lt;1

the stigmatic multiplier, and the new series in
-ty-(x) a stigmatic series of

sum-sums (obtained, it will be noticed, by a four-fold process of summa
tion namely, two infinite and two finite summations).

It is possible, in general (as will hereafter appear), to deduce from the

asymptotic value of a stigmatic series of sum-sums, superior and inferior

asymptotic limits to the sum-sum itself. The asymptotic limits to the simple
sum will then be the same as those last named (Serret, vol. n. p. 236,
formulae (8) and (9)*) and will be multiples of #: dividing these respectively

by log a;, we obtain superior and inferior asymptotic limits to the number of

primes not exceeding x (Messenger, May 1891, p. 9, footnote [above, p. 694]).

It is obviously simplest always to take unity as one of the stigmata;
those employed by Tchebycheff are 1, 30; 2, 3, 5; this scheme as I term it

leads to the relation

the series extending to infinity but consisting of repetitions (with a differ

ence) of the above period, obtained by adding for the second period 30, for
the third period 60, for the fourth period 90, and so on, to each denominator
in the period set out. We may call this a period of 30 terms in which the
coefficients are + 1, 0, or - 1. So, in general, whatever the stigmata may be,
the stigmatic series will consist of periods of terms in each of which the
total number of terms will be the least common multiple of the stigmata.

* The fourth edition, 1879, of Serret s Cours d Algebre Supfrieure is referred to here and
throughout the paper.

t The + is used to denote that a quantity is omitted of inferior order of magnitude to x. The
strict interpretation of the &quot;relation&quot; is that the sum of the stigmatic series less the stigmatic
multiplier into x is intermediate to two known linear functions of logx.

S. IV. 45
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Thus, for example, the schemes 1; 2, 2 and 1, 6; 2, 3, 3 would give rise to

the relations

= (Jlog2+

=
(\ log 2 + f log 3 - i

log 6) x + = (i ^g 2 + i log 3) a + . . .

of which the periods are 2 and 6 respectively.

The three schemes above given, whose keys, so to say, are 2, 3, 5 respec

tively (these being the highest prime numbers contained in the stigmata),

possess the property that their effective coefficients are alternately plus and

minus 1, and, in consequence thereof, we may immediately deduce from them

asymptotic limits superior and inferior to the logarithmic sum-sum
-fy (x).

Thus, calling the stigmatic multipliers in the three cases

St2 ,
St3 ,

St5 ,

we obtain as limits to the coefficient of x in ty (x),

St.2 and 2St2 from the first,

8t3 |^3 second,

and 8ts %St, third scheme.

(Compare Serret, pp. 233, 234, where the A is the present 8t5 .)

The three pairs of limits will thus be

6931472 : 1-3862944,

7803552 : 11705328,

9212920 : 11055504,

which are in regular order of closer and closer propinquity to unity on each

side of it*.

The question then arises can no further schemes be discovered which will

enable us to bring the asymptotic coefficients still nearer to this empirical

limit f?

* Mr Hammond has noticed that the harmonic scheme 1, 12; 2, 3, 4 will also give rise to a

stigmatic series in which the effective terms are alternately positive and negative units, namely,

the stigmatic multiplier corresponding to which, say S 12 ,
is -8522758..., and therefore will

furnish the asymptotic coefficients Stl2 and |-Sf12 ,
that is, -8522758 ... and 1-1363687 ....

t The true asymptotic limit to the number of primes below x being according to Legendre s

empirical rule ,-^- ,
the asymptotic value of ^ (x) should presumably be x.

logo;
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It would, I believe, be perfectly futile to seek for stigmatic schemes,

involving higher prime numbers than 5, that should give rise to stigmatic

series of sum-sums in which the successive coefficients should be alternately

positive and negative unity, as in the above instances, but this although a

sufficient is not a necessary condition in order that limits to a sum-sum may

be capable of being extracted from the known limits to the sum of a series of

such sum-sums.

This will be most easily explained by actually exhibiting a new scheme

which is effective to the end in view, and showing why it is so.

Such a scheme is 1, 6, 70; 2, 3, 5, 7, 210, which, it will be observed,

satisfies the necessary harmonic condition : for we have

t _210 + 35+3_ 248
C TIT

~
210 SlO&amp;gt;

105 + 70 + 42 + 30 + 1

The stigmatic multiplier is here

log 2 + log 3 + i
log 5 + 1 log 7 +^ log 210 - log 6 - 7̂ log 70= 9787955,

which I shall call D.

The stigmatic series arranged in sets in two different ways then becomes

as a first arrangement

T \

V
wJ-

15/ U7/ V19

+ f
\TJ/ \TU/ \TI/

I ^n / f I 7i / &amp;gt; T* 1-fiT /
~&quot;

T \ o / &amp;gt; Ti/3f7/~y\ T?VVoy/ \oU/ \ol/ \DO/ \o7/ \70

,
/ x\ , / x\ . i x\ , i x\ . f x\ / x\

^(n)^(^)-^(n)-^(^)-^(^) + ^(^)

-t
aoo/

452
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-

(/Y\

//y*\ / fjr \ / nf* \
U/ \

&amp;gt; / w A / W I , / ^ \

147)
+ * (i)

- *
(iso)

+ *
(iTi)

-

x \ .
/ ac \ , i x \ , i x \ , f x \

_ _
)
_ ^ (
-

1 + -vlr I
--

I iM- 1 + -\M- I

157/ r U60/ T T V1637 r V165/
T r V167/

(/y\

//y\ / *y* \ / ft* \o/\ / v \ i/^X / l*/ \

TfTs)
+* (leg)

- * (no)
+ * (m)

-

(/&amp;gt;

\ / /V \ / ft* \ / ft* \ / ft* \w\ . / w A / P N t / ^ \ i/^\
ITS)

- * (iso)
+ *

(isi)
- *

(182)
+ * (m)

l96 m oo v209

the correlative arrangement being

is iT 20

(/y\

/ /*

S)-t(2
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&quot; ^ (no)
~ *

(112)
+ ^

(113)
~ *

(120)
+ ^ (m)

The terms in each arrangement, it will be seen, are separated by marks
of punctuation into groups : omitting the first group in either of them,
which may be called the outstanding group, in each of the others the sum of
the coefficients is zero.

Moreover, the sum of the coefficients from the beginning of each group is

always homonymous in sign, that is, will be non-negative in the first and
non-positive in the second arrangement : the consequence of this is that all

the terms of such groups may be resolved into pairs, whose sum will be

necessarily positive in the one and negative in the other.

Thus, for example, in the first arrangement the last but one of the groups
may be resolved into the pairs

* Each of these arrangements is to be regarded as made up of the outstanding group and an
nfimte succession of periodic groups. In the text we have set out the outstanding group and
the first period, the other periods will be formed from this one by adding to each denominator in
it successive multiples of 210.
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each of which is equal to zero or a positive quantity. So the eighth group

of the second arrangement is resoluble into the pairs

each of which is zero or a negative quantity.

It may be as well to notice in this place that the sum of the coefficients,

reckoning from the first term of the outstanding group to the term whose

denominator is n, is

t=n , f

2 2(--
;=o \p :

which by virtue of the obvious identity.

is equal to *{*-*} ,

This formula supplies an easy and valuable test for ascertaining the

correctness of the determination of the coefficients up to any given term in

the series.

These observations may be extended to any harmonic scheme whatever :

for it will be observed that

2 [sC^-E^

is a periodic quantity, arid therefore possesses both a maximum and a

minimum ;
whence it is easy to see that, by taking the outstanding group of

terms sufficiently extensive, all the remaining terms in either kind of

arrangement may be separated into groups similar to those above set out ;

namely, such that the complete sum of the coefficients in each group from its

first to its end term is zero and up to any intermediate term is homonymous,

that is, always positive in one and always negative in the other arrangement*.

* For example, from the harmonic scheme 1, 15; 2, 3, 5, 30, we may derive a stigmatic

series under the two forms of arrangement

In the above arrangements the groups are separated by semicolons and the period is marked

out by the colons. In this instance it will be observed that minimum and maximum values of
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The consequence of this is that the outstanding group in the first arrange
ment will always be less, and in the second arrangement always greater,
than a function of which the principal, or, as we may call it, the asymptotic

term, is the product of x by the stigmatic multiplier, say (St), the complete
function being in each case of the form (St)x associated with a known
linear function of log#. (Compare Serret, vol. II. p. 232.)

The importance of this observation will become apparent in a subsequent
section.

In the case before us (that is, for the scheme in the key of 7) confining
our attention to the principal term of either limit, the first arrangement
leads immediately (Serret, p. 234) to the superior asymptotic limit

As regards the inferior limit, we have

^r (x) &amp;gt;Dx- T
L

. -\f-Zb &amp;gt;\$Das*.

Substituting for D its value 9787955, we obtain the asymptotic limits

1-0873505 and -8951370.

The corresponding values got from the Tchebycheffian scheme (1, 30
;

2, 3, 5) being 11055504 and &quot;9212920, which are the \A and A of Serret.

We know aliunde that the true asymptotic values are each of them

presumably unity. The superior value above obtained by the new scheme is

thus seen to be better, and the inferior value worse than those given by
Tchebycheff s scheme. But these values correspond to what may be

termed the crude determination of the limits which the schemes are capable
of affording. The contraction of these asymptotic limits by a method of

continual successive approximation will form the subject of the following
section f.

s) -*()-* (g)-*(jj)-*(f()
are and 2, and accordingly in the first

arrangement the outstanding group has to be continued until the sum of the coefficients of the
terms which it contains is 0, and in the second until such sum is 2.

Writing Q = \ log 2 + \ log 3 + \ log 5 + j, log 30 - TV log 15= 96750

we may deduce from the above, the asymptotic coefficients fQ and Q -
TV . |Q; that is, 1-1610 ...

and -8992....
*
Compare the determination of the limits for the harmonic scheme 1

; 2, 3, 6 (American
Journal of Mathematics, vol. iv. pp. 243, 244 [Vol. in. of this Keprint, p. 542]).

t By the method about to be explained, it should be noticed, we may not merely improve
upon the results obtained by the crude method from certain harmonic schemes (which form a

very restricted class) but may also obtain limits to ^ (x)~x from harmonic schemes which with
out its aid would be absolutely sterile (see p. [715]).
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2. On a method of obtaining continually contracting asymptotic limits to

X

To fix the ideas let us consider the scheme (1, 30
; 2, 3, 5) which leads to

the stigmatic series

(1)
_

(6 ) + (7)
-

(10) + (11)
-

(12) + (13)
-

(15) + (17)
-

(18) + (19)

-
(20) + (23)

-
(24) + (29)

-
(30) + (31) . . .

,

x
in which for brevity (n) is used to denote

j \ /

The sum of this series is, we know, intermediate between

Dx + R (log x) and D& + R! (log as),

where D = &quot;9212920 ..., A = M055504 ... = fA
and R, RI signify two known quantities which for uniformity may both be

regarded as quadratic functions of log a; (in the first of which the coefficient

of (log#)
2

is zero). (Serret, pp. 233, 235.)

Omitting every pair of consecutive terms (ra) + (/*) in which &amp;lt; ,

and using [i/r (x)] to signify the asymptotic value of ty (x), we find

say &amp;gt; D x.

Similarly, omitting every consecutive pair of terms (m) (p.) in which

&amp;lt; 4. we findm

say &amp;lt; A #-

If instead of
[T|T (x)] we had deduced limits to

-\Jr (x) in the manner indi

cated above, we should have found

v/r (x) &amp;gt;D x + R (log x), ^ (x) &amp;lt; DIX + RI (log x) ;

the added terms being each of them quadratic functions of log x.

Repeating this process we shall obtain

where Z)&quot;= D + ^D -^A , A&quot;= D + ^D^- |D +

Similarly we may write

where D&quot;^ D + D&quot;- YV A&quot;, A &quot;= &amp;gt; + ^ A&quot;- |^&quot;+^ A&quot;,

and so on.
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If then we write for D, D
, D&quot;, ...

,
VQ ,

vlt vz ,
...

,

and for A, A , A&quot;&amp;gt; &amp;gt;

u
,
ulf u2 ,

...
,

we shall find in general

[^ (x)] &amp;gt; ViX, [i/r (x)] &amp;lt; UfX j

where .fl+*._

the complete statement of the inequalities being

^ (x) &amp;gt; ViX + R (i)

(log x\ T/T (a?) &amp;lt; UiX + R^ (log x),

where ^it
is to be noticed that the supplemental terms always remain

quadratic functions of log x.

(The result thus obtained differs in this particular from that stated by me
in the Amer. Math. Jour. (vol. IV. p. 241)*; the process therein employed

giving as supplemental terms rational integral functions of continually rising

degrees of logic. I am indebted to Mr Hammond for drawing my attention

to this simple but important circumstance which had strangely escaped my
attention previously.) To integrate the equations in u, v we have only to

write

and to take for plt p2 the two roots of the equation

that is
/B

The roots of this equation being each less than 1, on making i= x
we obtain v^ = F, uaD

= E, where E, F are deduced from the two algebraic

equations

This gives

.(|-l)+ ttl- M _ 137 x 145 _ 19865

^
&quot;

304 x 56
~
17024 ?

(compare J.mer. Ma^A. Jour., vol. iv. p. 242),

#=ff!f= 1-0765779...,

^=M$M= -9226107...;

whence we may infer that
i/r (ic) may be made intermediate between two

[* See Vol. in. of this Reprint, p. 539.]
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known functions UiX + r (log x), v^x + s (log as), where ui, Vi maybe brought

indefinitely near to the numbers

1-0765779..., -9226107...;

and the supplemental terms are quadratic functions of log a; depending upon
the value of i that may be employed. We may, therefore (subject to an

obvious interpretation), treat E and F as asymptotic limits to
^

.*
Ju

If we examine the ratio of the denominators m, /j,
of any pair of con

secutive terms throughout the entire infinite series, whether of the form

(TO) (/A) or (TO) + (/*), we shall find that is always less than q (namely
HfL

1 16688...), except in the case of the pairs that have been retained in

forming the equations between E and F, from which we may infer that

if any of the discarded pairs had been retained we should have obtained

values of E and F respectively greater and less than those above set forth.

If, on the other hand, q had turned out to be so much less than f as to cause

- in any rejected pair to be greater than q,
in such case in order to obtain a

7/t

value of E the least, and of F the greatest, capable of being extracted from

the given scheme, it would have been necessary to take account of every such

pair and perform the calculations afresh, thereby obtaining a new value of q

(say q) less than the former one
;
we should then have had to continue the

process of examining the rejected pairs and reinstating those (if any) whose

denominators furnished a ratio greater than q , thereby obtaining a still

smaller value
q&quot;. Repeating these operations toties quoties we should at

last arrive at a value of q superior to every ratio throughout the entire

stigmatic series
;

the corresponding values of the asymptotic limits would

then be the best capable of being deduced from the given scheme.

Per contra had we retained at the start any of the discarded pairs of

terms, we should have found for q a value greater than the value of
TO

in some of the terms retained, which would be a sure indication that the

retention of those terms had led to a greater value of q than was necessary ;

those pairs would then have to be omitted
;
the q calculated from the reformed

equations would be diminished by so doing and the resulting values of E, F
* For the complete analytical determination of the limits to

\j/ (x) see 3 of this chapter.

By making i sufficiently great uif vt may be brought indefinitely near to E, F: furthermore,

when the superior and inferior limits of
\f/ (x)-^-x are expressed as functions of x and i of the form

mentioned in the text, these limits may, by taking x sufficiently great, be brought indefinitely

near to u
t ,

vit and therefore to E, F, which I therefore speak of throughout as asymptotic limits

to
\f/ (x)--x. But more strictly the optimistic limits actually arrived at are E as little as we

please greater than E, and F as little as we please less than F.
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would be the best attainable, provided that care was taken at the outset

that no rejected pair gave a larger value to than any pair that had been

retained.

In the case we have considered initial asymptotic limits (namely D and
dr (x}

Dj) to - - were obtained from the scheme itself, but it will not always be
p

possible to do this when we are dealing with any harmonic scheme.

Thus, for example, from the fact that the minor arrangement of the

stigmatic series corresponding to the scheme [1, 6, 10, 210, 231, 1155; 2, 3,

5, 7, 11, 105] has (1) + (13) for its outstanding group [see p. 718], we may

(x
\

: r)
has NX for its inferior asymptotic limit, but are

J o/

unable from this arrangement to obtain an initial inferior asymptotic limit to

ty (x} itself, and still less shall we be able to obtain an initial superior

asymptotic limit to
&quot;fy(x)

from the major arrangement of the same stigmatic

series. It is therefore important to notice that the final asymptotic limits

arrived at by the method explained in this section, depend only on the

stigmatic multiplier and the coefficients of the stigmatic series, being quite

independent of the initial values employed, so that in the general case we

*lr(x)
may start from any given asymptotic limits to

, however obtained, with-
oc

out thereby producing any effect in the final result. The limits = 21og2
and VQ

=
log 2 obtained from the scheme [1 ; 2, 2] will do as well as any others

i/r
fx\

for our initial asymptotic limits to -
,
and we may, by substituting these

OC

limits in the retained portion of the stigmatic series, arrive at new limits

ult v-i which in their turn will give rise to fresh limits u2 ,
v2 and so on. We

shall in this way obtain a pair of difference equations (connecting Ui+1 , Vi+1

with Ui, Vi) which will be of the same form as those previously given [p. 713],

and it is to be noticed that in the solutions of these equations, namely

Ui = CPi + ClPl
* +E, Vi = Kpi + KlPj + F,

only the values of C, Clt K, Kl
will depend on the initial values of u, v; so

that, provided the roots of the quadratic in p (which are always real) are

each less than unity, we may, by taking i sufficiently great, make u t and Vi

approach as near as we please to E and F respectively ;
that is as near as we

please to two quantities whose values depend solely on the stigmatic series

employed.

The positive and negative divergences from unity of the E and F pre

viously found are respectively

0765779..., -0773893...;

these divergences as found by Tchebycheff being

1055504..., -0787080...
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which is already an important gain ;
but by varying the scheme we shall

obtain still better results.

Let us apply the method of indefinite successive approximation to the

scheme in the key of 7 treated of in the preceding section, namely [1, 6, 70
;

2, 3, 5, 7, 210], for which the stigmatic multiplier (the D of p. [707]), namely

is -9787955....

Preliminary calculations having served to satisfy me that the asymptotic
jij

ratio
j,

(the q) for this system was not likely to differ much from 110, which

may be called the regulator, I form the corresponding equations for E and F

by retaining only those pairs (m) (fj,)
in the stigmatic series for which

/
ffl

is greater than 1*10.

As previously explained no error can result whatever regulator we employ;
the worst that can happen will be that the result will not be the best attain

able from the scheme, and such imperfection can be ascertained by means of

the method previously explained ;
the result, if the best possible, will prove

itself to be so, and, if not the best, will indicate whether the regulator (or

criterion of retention) has been taken too small or too great.

Let us examine separately the two arrangements set out in the previous

section, the first being employed to obtain by successive approximations the

superior, and the second the inferior, limit.

Consider 1 the periodic part of the first arrangement : in the group

(11) + (13) -(14) -(15), the pair (13) -(14) being rejected, (11) -(15)
remains. Similarly, in the following group (19) (20) being rejected,

(17) (21) remains; in the third and fourth groups (23) (28) and

(31) (35) are to be retained. In the following group, all the consecutive

pairs from (73) to (98) both inclusive are to be rejected, leaving (71) (100)

available. (The corresponding pair to this in the next period, namely

(281) (310), gives f^, which is less than the assumed regulator.) All the

groups in the first period, following (100), will have to be rejected until we

come to the group beginning with (137), which leads to the available pair

(137) (190) : in the next period all the ratios will be too small with the

exception of (347) (400) which must be retained, but the term corre

sponding to this in the third period, namely (557) (610), will have to

be neglected.

Hence, in approximating to the superior limit, we may write

(A + TT + A + FT + TT + lir + sir)
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2. In the second arrangement, the first group in the periodic part being
-

(14)
-

(15) + (17) + (19), and f| (and cb fortiori ff) exceeding the regulator,

all these terms are to be preserved.

In addition to these, we shall find in the first period the available couples
-

(20) + (73) and -(110) + (139), and in the second period
-

(230) + (283) ;

no other couples will be available, and accordingly, we shall have

If then we write a, b for the coefficients of ui} vt in the first, and c, d
for the coefficients of V{, Ui in the second of the above equations, and make
u&amp;gt;i= Ui + E, Vi = Vi -V F, we shall obtain

&amp;lt;ui
= Cp

i +Clpi+E,

^ = Kp i + K1PI
* + F,

where p, p l are the roots of the equation

p a, =0,

d
, p c

that is p
2 -

(a + c) p + (ac
-

bd) = 0,

and E, F are subject to the equations

(l-a)E+bF=M,
dE + (1 -c)F= M,

which give

E =
(I-a)~(?~c)-bd

M
&amp;gt;

F
=(l-g~l- c

d

-bd
M-

On performing the calculations, we shall find

a = -29633..., b = 24973...,

c- -30153..., d = -30371...,

1 - b - c = -44873 . . . , 1 - a - d = &quot;39995

ac = -08935..., bd = 07584...,

a + c = -59786..., (1 -a)(l - c) -bd = 41563 ...,

p, p1
will therefore be the roots of

p
2 -

-59786/3 + -01350 = 0,

which are each less than unity.

Also #=1-0567265..., ^= 9418543...,

q= ]~
b ~ C

}
= 112196..

1 a d

This last number being greater than the assumed regulator 110, and less
&quot;

\~u~\
&quot;

than any of the retained ratios
&quot;

,
it follows that no better limits

\_m]
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than E, F can be extracted from the scheme [1, 6, 70; 2, 3. 5, 7, 210J ;
or

(as we may phrase it) E, F are the optimistic asymptotic limits to that

scheme.

Obviously, there is no reason to suppose that these are the closest

asymptotic limits that can be obtained from the infinite choice of schemes

at our disposal : on the contrary, there is every reason to suppose that these

limits may by schemes in higher and higher keys be brought to coincide as

nearly as may be desired to each other and to unity.

We shall presently obtain by aid of a new scheme a better result than

the E, F of the preceding investigation. But first it should be observed

that instead of forming the difference equations in u, v from the two arrange

ments, say the major and minor, of one and the same stigmatic series (the

former meaning the one used to find the superior and the latter the inferior

asymptotic limit), we may take these two arrangements, if we please, from

two distinct series corresponding to two different schemes.

I have had calculated, from beginning to end, the value of the coefficient

of each term in the stigmatic series of sum-sums corresponding to the first

natural period, containing 2310 terms of the scheme (1, 6, 10, 210, 231, 1155;

2, 3, 5, 7, 11, 105), the stigmatic multiplier to which, namely

-
* log 6 - iV log 10 - ^y bg 21 - ^T log 231 - TT^ log 1155,

is -9909532... (say N).

This stigmatic series, though too long for printing at full in the restricted

space of this Journal, is given later on in a condensed tabular form (see

Table A, p. 721). I will proceed to describe its essential features and the

use made of it to bring the asymptotic limits closer together. The maximum

and minimum sums of its coefficients are 2 and 2 : the first terms being

(1) + (13) (14) (15), the maximum is first reached at the second term
;
so

that the outstanding group in the minor arrangement will be (1) + (13).

But the minimum sum, 2, is not reached before the term whose argument
is (616). The outstanding group in the major arrangement will therefore

contain a very great number of terms, and there might be some trouble in

handling the groups, so as to secure the greatest possible advantage. For

this reason, I have thought it sufficient for the present to combine the major

arrangement of the scheme [1, 6, 70; 2, 3, 5, 7, 210] with the minor one

of the scheme [1, 6, 10, 210, 231, 1155; 2, 3, 5, 7, 11, 105].

Maintaining the regulator still at the same value as before, namely I lO,

the major arrangement will remain unaltered from what it was in the

preceding case. In the minor arrangement there will be found to exist the
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following 17 available pairs, all of which, except the last, belong to the first

period (the last one belonging to the second period), namely

(14) -(19), (15)-(17), (2l)-(31), (33) -(41), (44)
-

(53), (63) -(73),

(84) -(97), (105) -(241), (110) -(131), (195) -(223), (315)
-

(481),

(525) -(703), (735) -(943), (945) - (1231), (1484)
-

(1693),

(1694)
-

(2323), (4004) - (4633).

We may accordingly write

U{+1
= M + aU{ bvi,

where

= _L_.JL,.JL JL.JL _ _
&quot;1 f\ * ~t f C\ 1 I cio I f* ff l~ -* f\ ,-.

&quot;

I i /-\ ,

10 15 21
^

28 35 100 190 400

LJL 1 1 1

17 23
+

31
+

71
+

137
+
347

1 1 1 1
. j

7 14 15 21 33 44 63 84 105 TTO

1 1 1_ _ _
195 315 525 735 945 1484 1694 4004

13 17 19 31 41
^

53
T

73
T

97
T

131 223

_L _L JL l 1 1 1

241
+
481 703

+
943

+
1231

+
1693

+
2323

+
4633

from which, writing (1 a} E + bF M,

we shall find ut
= Cp

i + C^ + E,

where p, p l
are the roots of

p a, b

8
, p-j

that is p
2

(a + 7) p + ay b8 = 0.

The values of a, b
; 7, 8 are respectively

2963346 . . . , 2497346 . . .
;

&quot;2992774 . . .
, -31 07808

from which we see that p, p l being each less than unity the values of

ux ,
vx will be E, F, where

E=
(1 -)(! -j)-b8
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and on performing the calculation it will be found that

#=1-0551851..., ^= 9461974.

Also q
=
p
= 111518...,

which being greater than the assumed regulator, but less than any of the

retained ratios
,
the results thus obtained are optimistic, that is no better

ra

can be found without having recourse to some other harmonic scheme.

The advance made upon the determination of the asymptotic limits

beyond what was known previously is already remarkable. Tchebycheff s

asymptotic numbers stood at

1-1055504...,

9212920...,

corresponding to a divergence from unity

1055504... in excess,

and -0787080... in defect;

by the combined effect of scheme variation and successive substitution we

have succeeded in reducing these divergences to

0551851 ... in excess,

and -0538026... in defect;

in which it will be noticed that the divergence for the superior limit is only

a little more than half the original one.

The mean of the two limits, it will be seen, is now less than

1-0007.

The annexed table, in which for brevity c is written for c, gives in

a condensed form the stigmatic series to the scheme [1, 6, 10, 210, 231, 1155;

2, 3, 5, 7, 11, 105].

i x\
The coefficients, for all the terms 4r{ ]

from m = 1 to m=1155 (the
\mj

half modulus), are written down in regular batches of 10. The coefficients

for the ensuing terms up to 2309 can be got from these by the formula

C1 i55+ (
= cn56_t, the term following will have the coefficient zero; the rest of

the infinite series is then known from the formula c(+23ioi
= c t

.
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TABLE A.

The coefficients of the first 1155 terms of the stigmatic series to

[1, 6, 10, 210, 231, 1155; 2, 3, 5, 7, 11, 105]*.

1000000000 OOlTlOlOlO TTlOOOOTlO lOTOTOlOOO

imloiooo ooioTTooio loTooTiooi 1010101010

OOlTOOOTlO OOOOOOlTTO 101030101T OTlOOOOOOO

OOOOOTlOOO ITOOTOIOIT OOOOOOTOIO 1002001000

0010201110 OOIOTTOOIO ITOOOOOOTO 1010TT1T10

OOOOOOOOOT lOOOOOOOOT 101TT01010 TOIOOOOTIO

iTooToiooo nooToiooo ooiipTooio IOTOTOIOOT

lOlOTTOOlO OOlTOOTOlO 0000001200 1010301000

OTlOOOOOOT 10000T1000 OOOOTOlOlT OT1000T010

10TT001000 OOlTTOlTlO 0010200010 ITOOOIIOTO

lOlOTTOOlO OOOOOOOTlT 1000000010 IQlTTOlOlT

ToiooooTio ooooToiooo iTioToiooo oooooTooio

loTTooiooT 1010200010 ooiToTooio oooooooToo

1010301110 OllOOOOOTO 10000T100T 100010101T

ToioooToio iioTooiooo ooobToiTio ooiTToooio

1100T010TO 1010T21010 OOOOOOlOlT 1000000TOO

IQlTTOlOOO TOlOOOOTlT 1000101000 OTlOTOlOOO

OllOOTOOlO lOTOOOlOOT lOlTTOOOlO OOlTTOOOlO

OOOOOllTOO 1010300010 OTlOOOOTOO 10000T10TO

1000T01012 OOlOOOlOlO OOOTOOIOOO OllOTOlTlO

OOOOT00010 ITOIOOIOTO 1010271010 OOOOOTOOlT

lOOOOOTOOO lOlTTOlTlO TOIOOOOIOO lOOOTOlOOT

moioiooo ToiooTooio iTloooiooT loooToooio

0011000010 OOOOlOlTOO 1010371010 OTlOOOTOOO

1000011100 100010100T OOlOOOlOlT lOOTOOlOOO

TOlOTOlllO OTlOTOOOlO ITTOOOIOIO 101TTT1010

OOOOTOOOlT 10000TOOOO lOlTIOOOlO T010000210

1000101010 1T10T0100T OOIOOTOOIO OOTOOOIOOT

IIIOTOOOIO 0001000010 OOOTOOlTOO 10102 1.

* This table is to be read off in lines. The first three lines set out in full (omitting the null

terms) will mean

o10

28

-*()-*(*

70

14

(
x

(
X
43

ry.t

73

15 17

53

tit;

-
75

()
- *

(ft)
- * (s)

+ * (s)
+ *()

- * (BB)
-

f By actual summation it will be found as stated above [p. 718] that the sum reckoned
from the beginning of the positive and negative integers in this table always lies between
2 and -2 (both inclusive).

s. iv. 46
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If we confine our attention exclusively to the outstanding group of the

Major Arrangement, which extends to the 616th term inclusive, without taking

advantage of any of the other groups, we shall find, on making E 1 0551851,

F= 9461974, and N (the stigmatic multiplier)
- 9909532,

,1 ! JL --1 .JL..JL..J_..JL + J_
5
+

22
+

28 35 45
*

56
^

66
^

77
^
88

^
99

1

105 126 525

/I 1 1
j

1 11 J^ JL J_ J_ 1 \ p
&quot;VT7

+
23

+
29
+
37

+
47

+
59

+
7T
+

79
+
89

+
Tl3

+
227 j

&amp;lt; 1 0542390 ... which is inferior in value to E.

This is enough to assure us that a better result than the one last found

would be obtained by using the above scheme to furnish the major as well as

the minor arrangement, instead of combining it, as we have done, with the

scheme [1, 6, 70
; 2, 3, 5, 7, 210].

Mr Hammond has been good enough to work out for me in the annexed

scholium the complete approximation to the limits to
-ty (x} given by the

original scheme of Tchebycheff [1, 30; 2, 3, 5]: this approximation pre

serves precisely the same form as that obtained by the crude method, and,

although it lies a little out of the track which I had marked out for myself

in this paper, will, I think, besides being possibly valuable for future purposes

in a more or less remote future, serve as an example to clear up any obscurity

that may have pervaded the previous exposition of the purely asymptotic

portion of these limits*.

3. Scholium: Containing an example of the complete ith approximation

to the limits to the prime-log-sum-sum to x.

Using S to denote the stigmatic series

we have the inequalities

S&amp;gt;^-flog*-lj }S &amp;lt; Ax + f log x }

^

which, as explained in the preceding section, may be replaced by

(1).

(2).

* In the paragraph [last but one] of p. [709] in the preceding number, a theorem (too simple

to require a formal proof) is tacitly assumed which virtually amounts to saying :

If an equal number of black and white beads be strung upon a wire, in such a way that on

telling them all, from left to right, more white than black ones are never told off, then the whole

number of beads, as they stand, may be sorted into pairs, in each of which a black bead lies to the

left of a white one.
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If now we assume

^ (x) &amp;gt; piAx + qt (log #)
2 + n (log x) + Si (3),

A/r (x) &amp;lt; tiAx + Ui (log X)
z + Vi (log X) + Wi (4),

we obtain, by combining these inequalities with (1),

-flog a; -1

t (log x - log 24)
2 + r{ (log a; - log 24) + st

-

- 2T?^# -
Ui (log a; - log 29)

2 -
V; (log a; - log 29)

-
;,-.

Say i/r (a?) &amp;gt;^i+1Ax + qi+1 (log a;)
2 + ri+1 (log a?) + si+1 ,

where

ri+l = n-Vi + 2ui log 29 - 2qt log 24 - f ,

si+i = st
- W{ + qi (log 24)

2 -
Ui (log 29)

2 - n log 24 + vt log 29 - 1.

Similarly, combining (3) and (4) with (2), we find

+f log x

-log 6)
2 + Vi (log x - log Q) + Wi

-
$piAx -qi (\ogx-\og 7)

2

-ri(loga;-log 7)
-

Si

+ j^kAx + u{ (log x
-

log 10)
2 + Vi (log x - log 10) + w^

Say ^ (x) &amp;lt; ti+lAx + ui+l (log x)
2 + vi+1 (log x) + wi+1 ,

where

vi+l = 2vi - n + 2qt log 7 - 2ut log 60 + f ,

wf+1
= 2wi -Si-qi (log 7)

2 + m {(log 6)
2 + (log 10)

2

} + n log 7 - ^ log 60.

These, together with the four given above, constitute a set of eight differ
ence equations for the determination of Pi , q{ , n, Si , ti} u{ , Vi&amp;gt; Wi . Their
initial values are furnished by the inequalities

^ (x) &amp;gt; Ax | log x 1

* (x) &amp;lt; IAx + JL- ( log *) + f log x + l
(Serret, p. 236),

which give Po =l, $0
=

,
r = -

The values of #, ^ will be found to be

* =
509T9 |

51072 -
A
3 PI

5099
V&quot;&quot;a

462
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where p, p l
are the roots of the equation

203

and it is easy to verify that these values (which agree with the general ones,

involving arbitrary constants, obtained in the preceding section) satisfy the

initial conditions

The values of qt and uit obtained from the equations

qi+i
= qi~ Ui, ui+i

- 2wf
-

qi ,

with the initial conditions

a*
are

4 log 6 V a - a-1
J

5 / , a* a

8 log 6

where a, or1 are the roots of the equation

a? - 3a + 1 = 0.

The values of ri( sf ,
vi} wt are linear functions of qi} Ui whose coefficients

are linear functions of i in the case of /%-, Vi and quadratic functions of i in

the case of Si, Wi.

Thus we find, when the constants are properly determined,

rt
- = -

(2 log 6 + Xt) w; + {K- A, -2 log 29 +log6- (*+X)t}#,

Vi = (3 log 6 - id) ^ + (2 log 10 + X - 2* - Xi) qt
-

f ,

_. /243 .602\ 91 /244 .60\
where K = f log

(^ y-gH X = f log \Tfr^J

The substitution of these values of n and vt in the equations for deter

mining Si and Wf, will give a pair of equations of the form

si+l = Si-Wi + (a + U) qi+(c + di) u {
-

(1 + 1 log 29),
**i-f-i

v
fr t\ / i* &quot; x ^*_/

Wf+1 = 2w/i st
- + (e + fi) qi + (g + hi) Ui \ log 60,

where a, b, c, d, e,f, g, h are known constants, and qi} Ui are known linear

functions of a*, or*.

For example, the value of a is

(log 24)
2 -

(K
- X - 2 log 29 + log 6) log 24 + (2 log 10 + X - 2/e) log 29.

From these equations we should obtain a result of the form
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in which Clt O2 are constants and Qlt Q2 ,
Rlt R2 quadratic functions of i,

but the complete determination of these would occupy too much space to be

given here.

Sequel to Part II., Chapter I. 2.

Since 2 of this chapter was sent to press I have had asymptotic limits

to -^r(x)~x computed by means of a scheme whose stigmata contain simply
and in combination all the prime numbers up to 13 inclusive. The numerical
results obtained on the one hand and on the other the process employed to

determine d priori (so as to save the labour of working out the 30030 terms
of a complete period) the minimum and maximum values ( 1 and 4) of the

sum of the coefficients of any number of consecutive terms (the first included)
in the stigmatic series proper to the scheme, appear to me too noteworthy to

be consigned to oblivion.

This calculation differs from those that precede it in the circumstance
that it does not attempt to give the optimistic limits which the scheme will

afford, notwithstanding which the limits actually obtained will be found to

be each of them materially closer to unity than the optimistic limits furnished

by any of the preceding schemes.

The scheme I adopt is [1, 6, 10, 14, 105
; 2, 3, 5, 7, 11, 13, 385, 1001],

which satisfies the necessary condition that the sums of the reciprocals of the
numbers on the two sides of the semicolon are equal to one another.

The first thing to be done is to discover the maximum and minimum
values of

On taking n equal to 66, it will be found that the value of Sn is - 1 :

I shall proceed to show that this is the minimum, in other words that - Sn
cannot be so great as 2.

Denote the fractional part of any quantity x by F (x) : if - Sn is not less

than 2, then it may be shown that a, fortiori

(fl
\

YQJ
must not be less than 2, and therefore Q (TO) must be
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greater than 1 : now it is not difficult to show that Q (n) is only greater than

unity when
n=106 + 210/c or 71=136 + 210*

(* being a positive integer). But corresponding to these two values it will

be found that

so that on either supposition Q (n) + F TQJ
is less than 2.

Hence the minimum value of Sn is -
1, and consequently, since the

stigmatic excess is here 8 5, the maximum value, as appears from the foot

note below, will be 8-5 + 1, that is 4*. (By the stigmatic excess for any

scheme I mean the number of stigmata in the right-hand less the number of

those in the left-hand set. This excess is obviously equal to the coefficient,

with its sign changed, of ^ (-\ in the stigmatic series, where p is any

common multiple of the stigmata.)

It will be found, on summing up the numbers in Table B, that Sn first

attains the value 4 when n = 1891, and the value - 1 when n = 66.

For the inferior limit the outstanding group consists of all the terms

up to 1891 inclusive, and for the superior limit all the terms up to 66

inclusive. But in obtaining this limit advantage has been taken of the next

three groups, which end with 78, 418, and 20G8 respectively. Thus the

extreme limit of the following table is 2068, instead of being 30030 (that is

2.3.5.7.11. 13) which is the number of terms in a complete period. It

contains the coefficients of the first 2068 terms of the stigmatic series for the

scheme [1, 6, 10, 14, 105; 2, 3,5, 7, 11, 13, 385, 1001] written down in

horizontal order in regular batches of ten, as was done in Table A for the

*
If we call cn the coefficient of \1&amp;gt; (

-
)
and SLthe sum of such coefficients up to cn inclusive

\n /

(regarding c and S as zero), and take p the least common multiple of the stigmata, we have,

obviously,
SM= 0, cn=cM_n ,

and (Sn + SM_i_n) - (Sn_1 + SM_B)
= cn -cM . n =0.

Consequently, Sn+ Sli_1_^=S + Sp_1
=

-&amp;lt;V
=

T? (the stigmatic excess).

This is a valuable formula of verification, and moreover gives a rule for finding either the

maximum or minimum coefficient-sum when the other sum is given ; for if Sn has the maximum

value, S^i_n=ii-Sn ; if this is not the minimum let Sn be less than y-Sn ,
then SV-i-n will

be greater than Sn , contrary to hypothesis. Hence the minimum value of a coefficient-sum may

be found by subtracting the maximum from the stigmatic excess and vice versa.

(I may perhaps be allowed to add that this theorem suggests a generalization of itself, which

I think it is safe to anticipate may be formally deduced from it, namely :

If OL a2 , ... ,
an ; aj, a2 , ... ,

av be any given positive quantities (integer or fractional, rational

or irrational) such that Sa=2a, and if -m, M be the least and greatest values that

2E (ax)
- S.E (ax) can assume when x is any positive quantity whatever, then M-m= v-n.)



7*2] On Arithmetical Series 727

scheme [1, 6, 10, 210, 231, 1155; 2, 3, 5, 7, 11, 105] with the unimportant

difference that (for typographical convenience) negative coefficients are indi

cated by dots instead of by bars placed over them.

TABLE B.

The coefficients of the first 2068 terms of the stigmatic series to

[1, 6, 10, 14, 105
; 2, 3, 5, 7, 11, 13, 385, 1001].

1000000000 ooooioioio iiiooiooio loioioioio

loiiioiooo oiioioooio loioiiiooo loioioiiio

ooiooooiio ioooooioio loiiioioii ooioooiooo

ooooooiooi liooioioio ooioooioio looioiiooo

0010201000 ooioiiooio liooooooio loiosoiiio

oooooooioi looooooooi ooioioioio 2011000010

liooiooooo loooioiooi ooiiooooio 1020101000

1010120010 ooioooiooo ooooooiioo ilioioiooo

ooioiooooi 1000001 loo ooooioioio iiioooioio

loiiooiooo ooiiioooio 001030001 i looooiioio

loooioooio oooooioiii 1000000020 loioioioii

iiioooooio 0000201000 ilioioiioo ooooooooio

ooiiooiooo 1011200010 ooiooiioio oooooooooi

loioioiiio ooooooooio looooiiooi loooioiooo

ioioooioio 1200001000 0000201010 ooiiiooiio

loooioioio ooioiiioio oooiooion loooooiioo

loioioiooi ioioooooii loioioiooo ooioiiiooo

oiiooooooo 1020001000 liiiioooio 0010200010

oooooiiioo loioioooio ioiooooioo looiooioio

1000100012 ooioooioii ooooooiooo oiooioioio

ooooiiooio looiooioio 1010201010 oioooioon

loooioiooo 1010101210 ioiooooooo ooooioiooi

loiiioiooo ioioooioio illoooiooi loooioooio

oooiooooio ooooiiiooo loioiiiooo ooioooiooo

ilooooiioo 1000201000 ooioooiiii 1000001000

soioioioio oiiiioooio loioooooio loiiioioii

ooooiooon loiooioooo loioiiooio ioiooooioo

loooioioio liioioiooi ooioioooio ooioooiioo

liioioooio ioooooooio 0002001000 1010300010

ooiooioooi looooooooo loioioiiio ooiooiiooo

loooooioii ooioioioio iiioioooio liooioioio
loooioiiio oooioooon ooooiooooo loiiiiioio

1010002010 loooioiioi loioioioio ooooooooii

loiooiiooo ooioiooooo oiioooooio oiioooiooo

1011201010 ooioiooioo looooiiooo ooooioooio

ooiiooiiio ioooooooio 0010101012 ooioioooio

ooioooioio ilioiiioio ooiooooooi looioooooo

iiioooioio ioioiiooio loooiooioo loioioiioo
ioiooooooo loiiooioos loioioioio ioioooooii

oiooooiooo loioioioio ooiioioooo loooioioio
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In Tables I and II below, in addition to pairs of numbers (77) + (77 + 6},

meanng
_

and + (??)
-

(i? + 0) meaning

__

*j- -
r&amp;gt;

8

there will be found the unpaired numbers (15) and (66) in the one and (19),

(229) and (1891) in the other; to understand how these are got, it should be

observed that Sn (the sum of the first n numbers in Table B) first becomes

when n= 15, first becomes 1 when n = 66 and first becomes 2, 3, 4 when

n=l9, 229, 1891 respectively*.

TABLE I. TABLE II.

(17) +
(19)+
(23) +
(29) +
(41) +
(47) +
(59) +
(67) +
(79)+ (418)

(107)+ (135)

(210)+ (275)

(289)+ (385)

(419) + (2068)

(521)+ (585)

(629)+ (795)

(839)+ (936)

-(1049) + (1144)

(1717) + (1925)

+ (15)

(22)

(21)

(26)

(35)

(45)

(52)

(65) + (66)

(78)

+ (15)-

+ (21)-

+ (26)-

+ (33)-

+ (44)-

+ (63).

+ (65).

+ (75)-

+ (242)-

+ (285)-

+ (385)-

+ (385)-

+ (440)-

+ (494)-

+ (770)-

+ (1155)-

(17)- (19)

(31)

(29)

(43)

(61)

(73)

(71)

(103)- (229)

(271)

(323)

(421)

(439)

(493)

(571)

(841)

(1273) -(1891)

Call S the sum of the infinite series given by Table B : it may then easily be verified that



72] On Arithmetical Series 729

The reasoning employed in dealing with previous schemes serves to show
that superior and inferior asymptotic limits to

-fy (x)
~-

x, which we shall call

Elt Fl
in order to distinguish them from the corresponding optimistic limits

(E, F), may be found from the equations

F1
= M+cF1 -dE,]

where a is the sum of the reciprocals of the numbers occurring
in Table I with the sign +

and M is the stigmatic multiplier,

namely = I JL 1
a

15 21
+

22
+ &quot; +

2068

in Table II

= 33352...,

+

6=^+^ +^ + -&quot; +
i7T7=-

30580 ---

111 1
c = -

-\ + 1- ... -|

15 21 26 1155

, J_ J_ l^
1

17
+

19
+

29
+ -&quot; +

189l
= 27742...*,

may be resolved into term-pairs of the form

that shall contain among them all those in Table I, and

(x\

/ x \~
)

~ $ (

~
a }

that shaN contain among them all those in
I/ V. J + t /

Table 11 above.

The maximum value of Sn is here 4: if it had been 2, then instead of 3 unpaired positive
terms appended to

{\f/(x)-2,} there would have been but 1. This is what happens for the

scheme [1, 15; 2, 3, 5, 30] given in the footnote on p. [710]: and accordingly, we see that

(x
\

TJ] ,
for that scheme, is resoluble into paired terms of the form

So again, the minimum being (instead of -
1), there will be but 1 unpaired negative term to

/x\
append to

{&amp;lt;// (x)
-
S} , and accordingly, we see that

{i// (x)
- 2} -

-d&amp;gt;

(
-

)
in that scheme is resoluble

tx\
-

into term-pairs of the form - ^ (
-

)
+ ^ i

* The above values of a, b, c, d give a + c = -603 ... and ac- bd= -Q05 ... , and consequently
the roots of the &quot;characteristic&quot; equation p

2 -
(a + c)p + (ac

-
bd) = satisfy the necessary condi

tion of being each less than unity in absolute value.
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and M = ^ log 2 + 5 log 3 + v log 5 + = log 7
Z 3 O

&quot; !! l &quot;&quot; 4

+logll + logl3 + L
log 385 + log 1001

--~
log 10- log 14- log 105 = 98859....

Hence E, = ,.

(l ^~
b

\
M

&amp;lt;-;

= 1-04423 ... ,

(1 a)(l c)
- 6c

.. -95695....
(l-a)(l-c)-db

p
(so that the mean of E, and F1 is less than 0006), and -~ = 1*09120 ... *.

Thus then (see footnote to p. [694]) by taking x sufficiently great,

the number of primes not exceeding x, multiplied by log x and divided by x,

may always be made to lie between the numbers

1-04423... and -95695...,

the divergences of which from unity are

04423... and &quot;04304 ... (as against

Tchebycheff s -10555... and -07807...).

These divergences, there is little doubt, would become even more nearly

equal than they are, if anyone should feel inclined to undertake the very

laborious task of extracting the optimistic values (E, F) from the scheme

employed.

In order to understand this necessarily abbreviated sketch of a method

more easy to think out and apply than to find language to express, I must

not conceal that a careful study of the several schemes given, and of the

principles embodied in the calculations relating to them, is a sine qua non.

It may somewhat lighten the burden thrown upon the reader, if I add a few

words concerning one or two points, perhaps inadequately explained in what

precedes.

Let
fj,
be the least common multiple of the stigmata of any given harmonic

scheme and Sn the sum of the coefficients of

^ 0), ^

* In Tables I and II above, the ratio &quot;^- is greater than 1-09120 ... for every pair of terms,

except -(1049) + (1144) in Table I. In the case of this pair, we have |f = 1-0905 ..., which

shows that the exclusion of it from that table would have led to asymptotic limits better (but

very slightly so) than those arrived at in the text.
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in the corresponding stigmatic series. Then from the formula of [p. 710]
combined with the equation which connects the stigmata, it follows that

$M =0, 8n+IJ.
Sn .

Hence an infinite number of values of n will give Sn its greatest value ;

the difference of these values will be of the form kjj, p where // may, and

in general will, besides zero have various other values less than
//,,

thus giving
rise to the collections of terms called groups (see p. [709]) of which the period

of yu, terms will be composed. The same will be true when we substitute the

word least for greatest.

If now i be taken any number such that Si has its greatest value it may
be shown that the sum of all the terms in the stigmatic series subsequent to

(x\v)
will be negative or zero, and similarly when Si has

i /

its least value such sum will be positive or zero*
; consequently when i is

properly determined we can find immediately a superior limit in the one

case and an inferior limit in the other, to the sum of the first i terms of

the series.

I will conclude this portion of the subject with the remark that from the

values of E
l and F

1
it is easy to infer that if //.

is equal to or less than

( 95695 ...) k (1 04423 ...), and x exceeds a certain ascertainable number

whose value depends on k and
//,,

then between x and kx there will be found

1C

more than u,-.- primesf.
log x

* The reason of this is that the sum of all the terms beyond the ith may be separated into

partial sums, each containing p. terms, which ultimately vanish. If now

be one of them, then yi + y2 + ... +yt
will be zero when

&amp;lt;=/*,
and will have a constant algebraical

sign (or else be zero) when
t&amp;lt;fi ;

from which it follows (see footnote p. [722] where, be it observed,

a coefficient +X or -X is supposed to be represented by a sequence of X black or X white beads)

that each partial sum may be decomposed into an aggregate of quantities of the form + (77) -(n + 0)

or -
(77) + (77 + 6) according as the first coefficient in each such sum is positive or negative, and will

therefore, if not zero, have the same algebraical sign as that coefficient has, namely - or +

according as S
t
has its greatest or least value.

t In order that
fj. may be positive (which ensures the existence of some primes between x and

kx, when x exceeds a certain limit) it is only necessary to take i&amp;gt; 1-09120 ... (which differs very

little from -J-J), whereas if we limited ourselves to the results of the oft-quoted memoir of 1850

[see p. 704, above], we could not prove the existence of prime numbers between x and kx, for

a given value of x, however great, unless k exceeds f .
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NOTE ON A NINE SCHOOLGIRLS PROBLEM.

[Messenger of Mathematics, xxn. (1893), pp. 159, 160.]

THIS is a parallel question to the well-known one of fifteen schoolgirls

extended to the supposition of their walking for one week, three and three

together, so that in any the same day no two, and at the end of the week no

three, taking four walks a day, shall have walked more than once together.

Let us understand by the development of the array

a, b, c,

d, e, f,

9, h, k,

the four arrangements (abc, def, ghk),

(adg, beh, cfk),

(aek, bfg, cdh),

(a/A, bdk, ceg),

(corresponding, in fact, to the four sets of three lines through the nine

inflexions of a cubic).

If we suppose the nine girls to walk out four times a day, the same two

never being together more than once in the same day, and that at the week s

end each has been associated with every pair of the remaining eight, the

above will serve to represent one day s walks. To find the other six, I first

form the three following pairs of subsidiary arrays, by circular motion per

formed successively on the three columns of the primitive array, namely
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Then making any similarly placed line (I have taken the first) in each of

the above six groups circulate in one direction as regards the three on the

left, and in the opposite direction as regards the three on the right, we
obtain six new arrays: these together with the original one furnish the

following table :

a
&amp;gt; ^ f,

d, h, k,

c, a, h,

d, b, f,

g, e, k,

k, a, b,

d, e, c,

When the seven arrays in the above table are developed according to the

rule previously given, the triads thus arising will be found to be all distinct

or, which is the same thing, will comprise among them the whole of the

eighty-four ternary combinations of the nine symbols. We have therefore in

this table a solution of the proposed problem.

Of course the general problem, when n is any odd multiple of 3, is to

construct sets of $(n 1) synthemes, each containing ^n triads with no
element in common, and to distribute the whole number of triads into

(n 2) such sets.

This problem I solved very many years ago, but I believe have nowhere

published, for the case where n is any power of 3, by a method of compound
rhythmical displacement strictly analogous to (but of course more intricate

than) the one here exhibited.
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ON THE GOLDBACH-EULER THEOREM REGARDING
PRIME NUMBERS.

[Nature, LV. (1896-7), pp. 196, 197; 269.]

IN the published correspondence of Euler there is a note from him to

Goldbach, or, the other way, from Goldbach to Euler, in which a very
wonderful theorem is stated which has never been proved by Euler or any
one else, which I hope I may be able to do by an entirely original method
that I have applied with perfect success to the problem of partitions and to

the more general problem of denumeration, that is, to determine the number
of solutions in positive integers of any number of linear equations with any
number of variables. In applying this method I saw that the possibility of

its success depended on the theorem named being true in a stricter sense

than that used by its authors, of whom Euler verified but without proving
the theorem by innumerable examples. As given by him, the theorem is

this : every even number may be broken up in one or more ways into two

primes.

My stricter theorem consists in adding the words &quot;

where, if 2n is the
(?)

given number, one of the primes will be greater than -
,
and the other less

z

than --
.&quot; This theorem I have verified by innumerable examples. Such

primes as these may be called mid-primes, and the other integers between 1

and 2n 1 extreme primes in regard to the range 1, 2, 3 ..., 2n 1.

I have found that with the exception of the number 10, Euler s theorem

is true for the resolution of 2n into two extreme primes ;
but this I do not

propose to consider at present, my theorem being that every even number
2n may be resolved into the sum of two mid-primes of the range

(1, 2, 3...,2n-l).
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As, for example

4= 2+ 2 6 = 3+ 3 8=3+ 5 10 = 3+7
12= 5+ 7 14 = 7+ 7 16= 5 + 11

18= 5+13= 7+11 20= 7 + 13

40= 11+ 29= 17+ 23 50 = 13 + 37=19 + 31

100= 29+71= 41+ 59

200= 61 + 139= 73 + 127 = &c.

500 = 127 + 373 = 193 + 307 = &c.

1000 = 257 + 743 = &c.

And so on.

My method of investigation is as follows. I prove that the number of

ways of solving the equation x+ y = 2n, where x and y are two mid-primes

to the range 2n 1, that is twice the number* of ways of breaking up 2n

into two mid-primes + zero or unity, according as n is a composite or a prime

number, is exactly equal to the coefficient of x?n in the series11 1
-+... + ^

-XP l-ofl

where p, q, ..., I are the mid-primes in question. This coefficient, we know

a priori, is always a positive integer, and therefore if we can show that the

coefficient in question is not zero, my theorem is proved, and as a consequence

the narrower one of Goldbach and Euler. By means of my general method

of expressing any rational algebraical fraction, say $&amp;gt;x,
as a residue, by taking

the distinct roots of the denominator, say p, and writing the variable equal

to pe*, and taking the residue with changed sign of
2&amp;lt;p~

n
e&quot;

71^ (pe*),
we can find

the coefficient of x11 or (if we please to say so) of x2n in the above square,

and obtain a superior and an inferior limit to the same in terms of p, q, ...,l;

and if, as I expect (or rather, I should say, hope} may be the case, these two

limits do not include zero between them, the theorems (mine, and therefore

ex abundantia Euler s) will be apodictically established.

The two limits in question will be algebraic functions of p, q,...,l,

whereas the absolute value of the coefficient included within these limits

would require a knowledge of the residues of each of these numbers in

respect to every other as a modulus, and of 2n in respect of each of them.

In a word, the limits will be algebraical, but the quantity limited is an alge

braical function of the mid-primes p, q, r, ..., I.

Postscript. The shortest way of stating my refinement on the Goldbach-

Euler theorem is as follows :

&quot;

It is always possible to find two primes

* This number may be shown to be of the order .-, , and a very fair approximate value of

(log n)
2

it is where p. is the number of mid-primes corresponding to the frangible number 2n.
n
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differing by less than any given number whose sum is equal to twice that

number.&quot;

Another more instructive and slightly more stringent statement of the

new theorem is as follows. Any number n being given, it is possible to find

two primes whose sum is 2n, arid whose difference is less than n, n 1, n 2,

n 3, according as n divided by 4 leaves the remainders 1, 0, 1, 2

respectively.

Major MacMahon, to whom and to the Council of the Mathematical

Society of London I owe my renewed interest in this subject, informs me
that in a very old paper in the Philosophical Magazine I stated that I was in

possession of
&quot; a subtle method, which I had communicated to Prof.

Cayley,&quot;

of finding the number of solutions in positive integers of any number of

linear equations in any number of variables. This method (never printed)

must have been in essence identical with that which within the last month

I have discovered and shall, I hope, shortly publish.

I have verified the new law for all the even numbers from 2 to 1000,

but will not encumber the pages of Nature with the details. The approxi
mate formula hazarded for the number of resolutions of 2n into two primes,

u?

namely ,
where

/j,
is the number of mid-primes, does not always come

near to the true value. I have reasons for thinking that when n is sufficiently
u2

great, ^- may possibly be an inferior limit. The generating function

is subject to a singular correction when the partible number 2n is the double

of a prime. In this case, since the development to be squared is

&amp;gt;
+ xn + xzn + . . . + x* + X + . . . + &c.,

the coefficient of xm will contain 2/i, arising from the combination of with

2n, which is foreign to the question, and accordingly the result given by the

generating function would be too great by 2/i.

This may be provided against by always rejecting the centre of the mid-

range from the number of mid-primes. The formula will then in all cases

give twice the number of ways of breaking up 2n into two unequal primes.
Another method would be to take as the generating function not the square

of the sum, but the product of the fractions (without casting out n
1 xp

when it is a prime), but this method would be inordinately more difficult

to work with in computing series involving the roots of unity than the one
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chosen, which is in itself a felicitous invention*. Whether the method

turns out successful or not, it at the very least gives an analytical expression

for the number of ways of conjoining the mid-primes to make up 2w without

trial, which in itself is a somewhat surprising result. Having lost my pre

liminary calculations, it may be some little time before I shall be able to

say whether the method does or does not contain a proof of the new

theorem
;
but that this can be ascertained, there is no manner of doubt.

This is the first serious attempt to deal with Euler s theorem, or to bring
the question into line with the general theory of partitions.

It is proper to regard the range 1 to 2n 1 as consisting of two com

plementary flank regions, two lateral mid-prime regions, and a region reduced

to a single term in the middle, as for example,

1, 2, 3 : 4, 5 : 6 : 7, 8 : 9, 10, 11.

Or, again, 1, 2, 3 : 4, 5, 6 : 7 : 8, 9, 10 : 11, 12, 13.

And the question of 2n being resoluble into 2 primes breaks up into three,

namely, whether 2n can be composed with two flank primes, two lateral mid-

primes, or with the number in the central region repeated.

* For the generating function we may take any power greater than 2, instead of the square,

and the coefficient of a;
2 will then be the number of couples making up 2n multiplied by

(r
2 -

r) it
1 &quot;&quot;1

, which can be calculated by the same method as for the square, but is more difficult

and must give rise to numerous theorems of great interest, arising from the multiform representa
tion of the same quantity.

s. iv. 47
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ON THE NUMBER OF PROPER VULGAR FRACTIONS IN

THEIR LOWEST TERMS THAT CAN BE FORMED WITH
INTEGERS NOT GREATER THAN A GIVEN NUMBER.

[Messenger of Mathematics, xxvu. (1898), pp. 1 5.]

A SLIGHT reflexion will show that the number of such fractions

(- counting as one of them) with the limit n is the sum of the totients of

all the numbers from 1 to n.

Let us use Ej as usual to denote the integer part of j, rEj to denote the

totient (or number of numbers not exceeding and prime) to Ej, and JEj to

denote the sum of such totients for all numbers from 1 to j. Then we may
establish the following exact equation given by the author of this article, but

without proof and with some slight inaccuracy, in the Phil. Mag. for April,

1883 [p. 102, above]. The equation is

JEj + JE (ij) + JE ( j) + etc.,

or, more shortly,

The proof is as follows. Remarking that E(j- 1)= Ej
-

1, the right-

hand side of equation (1), when j is reduced to j 1 obviously suffers a

diminution equal to Ej.

j
On the left-hand side of the equation any term JE J- remains unaltered,

%

when for j is written (j-1), unless Ej is divisible by i, in which case the

term undergoes a diminution JEj. Thus for example J&quot;\T
- - Jff = 0, but

JEj
/! /&quot;= J (20). And, as in the case supposed, -f- is a factor of Ej, the

total diminution, when j-1 replaces j, will be the sum of the totients
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of the factors of Ej, which by a known theorem equals Ej. Hence

equation (1) is satisfied for j if it is satisfied for j 1, and as it is true

when Ej=l it is true for all values of j, as was to be proved. From

equation (1) it follows that JEj is of the order (Ej)
2

,
and making

where ej is zero when j = oo
,
we obtain

or
fj,
=

,
or approximately Jj

=
y

.

In the tables in the Phil. Mag. for April and September, 1883*, the value

3
of Jj is computed up to j = 1,000 and compared with the mean value j*.

From this table it appears that Jj is always intermediate between j
2 and

Q
-

(? + I)
2
,
and much nearer to their mean, which to an insignificant fraction

7T

g
prh is the same as -

2 (j
2

+j), than it is to either extreme. The first, at

least, of these statements ought to be susceptible of proof.

As a matter of philosophical interest as embodying a principle applicable
g

to other cases, I will show how I originally found the value j
2 for the

number of proper vulgar fractions in their lowest terms that can be formed

by means of the first integers.

It is obvious that the probability of any unknown number being divisible

by a prime number i is -
,
and of any two numbers, being each so divisible,

v

is -
2 ,

so that the probability of two unknown numbers being each not
%

divisible either by 2, 3, 5, 7, n, or any other prime, will be

which we know is equal to the sum of the reciprocal of the squares of the

f&amp;gt;

natural numbers, that is, is equal to . Hence the number of fractions in
7T

2

their lowest terms that can be got by combining each of j integers with

each of i others, found roughly by adding together the probable expectation

of any such combination consisting of two relative primes, will be j
2
,
and

the number of proper fractions in their lowest terms so capable of being

formed will be the half of this or -^ . It appears incidentally from this
7T~

[* p. 103, above.]

472
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Q
that the average or mean value of the totient of any number is into, or

rather more than, -^jths of that number.

In like manner, if we define a mid-prime to the number 2n to be

one which is greater than \n and less than fn, the range of numbers

amongst which such primes are to be found will, to a unit pres, be n. Let

us call the number of such mid-primes p. Then the probability of any
number and its complement in respect to 2n being each of them primes will

u?
be

z
. If now we seek the number of solutions of the equation in prime

numbers x + y= 2n, which will be an even or an odd number, according as n

is a composite number or a prime, we may suppose a row of n white balls

and n black balls, each series being marked with all the numbers from 1 to n

inclusive. It follows from what has been said that the sum of the expecta

tion of x being inscribed on any one of the white balls being itself a prime,

and its complement 2n a; upon one of the black balls being so likewise,

u? u?
will be n . , that is

* and as the same will be true when a; is a figure
n2 n

on a black ball and *2n x on a white, the total value of the expectation of

the equation in primes x + y=2n being satisfied will be the double of this,

2a2

or -
. I have had tables constructed for determining the number of the

n
solutions of this equation (a; and y being primes) from 2n = 2 up to 2w = 500.

u?
Call the number of solutions for any value of n, 6

;
on taking the

IV

average value of 6 for all values of 2n on the 1st, 2nd, 3rd, 4th, 5th, centuries

respectively, it will be found that

= -96344

= -99349

= 1-00603

= -98281

= -99764,

of which the sum is 4 94341 and the average is 98868, agreeing with wonder-
2u2

ful nearness to the rough estimate of the number of solutions being
J

.

71
*

fj,
is of the order of, and ultimately in a ratio of equality with, . ,

in the sense that,

however small e be taken, a limit Le can be found such that for all values of n beyond it, /* will be

71

limited on the two sides by (le). ;
this follows demonstrably from a known theorem

proved within the last few years, and as a consequence we see that the number of solutions in

mid-primes
&quot;

of the equation x + y= 2n will necessarily be of the same order as
-j

r-
2
and

presumably in a ratio of equality with it in the sense explained above, but this, of course, awaits

demonstration.
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I ought not, however, to suppress the fact that, from another point of

u? 2 it
2

view, this number might be expected to eventuate as instead of .

In equation (1) we may write F(j) for the sum of the totients of all the

numbers not exceeding j, and it then takes the form

# = * [Ej + (^ )
2

1
= Fj + FQJ) + F($j) + FQj) + etc.,

which, by the well-known formula of reversion (see Phil. Mag., December,

1884*), gives

Fj = ti
~

&amp;lt;/&amp;gt; (i?)
~

(ij)
- $ ttj) + &amp;lt;/&amp;gt;

( J)
- etc.

Thus for example the number of terms in a Farey series with 17 as a

limit should be equal to

i
(17 -8-5 -3+2-2 + 1-1-1+1 + 1-1)

+ (289 -64-25-9 + 4-4+1-1-1 + 1 + 1-1)

that is i(l) + i(191) or 96, which is right f.

*
I do not know whether the annexed important case of reversion has been noticed or not :

i being greater than unity, let y
i denote the sum of the negative ith powers of the prime numbers

2, 3, 5, 7, etc., and s
i
the logarithm of the sum of the negative ith powers of the natural

numbers 1, 2, 3, 4, etc. (which, when i is an even integer, is a known quantity), then it is easily

shown that

and therefore by reversion

i=i -
4*2i

~
3 s

si
-
i s

si + l*6i
~
f S

7i+ rV*ioi+ etc -

A very general case for reversion arises when
&amp;lt;/&amp;gt;i

= S -^ (n
8

. i). In this last application of

the formula r=l, * = 1
;
in the case considered in the text relating to Farey series r=0, s= - 1.

t And so in general, since by a well-known theorem

is always equal to unity, so that

(Ej)*
- 2JEJ + 1=E &;)+E (#) - .E (^j)

2+ etc. ,

we have always

2JEJ - 1 = (Eft - E (ij)
-

(i j)2+ E (ij)
2+ etc.

a very convenient, and, I believe, new formula for calculating the number of fractions in their

lowest terms where neither numerator nor denominator exceeds j.
To this E theorem there exists a pendant which may be called the H theorem, namely let Hx

mean the nearest integer (when there is one) to x, but when x is midway between two integers
Hx is to denote the first integer above x; let p, q, r, ...be the primes not exceeding the integers,
and call

Hn=n - 2H - +2H- - Zff + etc. ;

p pq pqr
then Hn will be the number of primes greater than n and less than 2n, so that Hn is always
greater than zero

; and if e (x) means unity or zero according as a; is a prime or not, we shall

always have

#n-ffn-i = e(2-l)-e(n).
I do not know whether this theorem has been previously noticed. It may be obtained by the

Eratosthenes sieve process applied to the progression n + 1, n + 2, n + 3, ... , 2n, replacing therein

every prime number by unity.
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If not already known, it may be worth while to register the two following additional theorems

concerning E^n and H^n, by which I mean what En and Hn become when the even prime 2 does

not count among the primes p, q, r, which are less than n, namely

- + etc. = 1.

2p 2pq

This paper was sent by Professor Sylvester to the editor on Feb. 12th,

1897, with a letter in which he wrote &quot;

I could subsequently send you the

valuable table referred to in the text, giving the number of solutions of the

equation x + y = 2n in prime numbers for all values of n up to 500.&quot; In

subsequent letters he made several slight additions to the paper. He

corrected the proof sheets about the end of the month, and then added the

first footnote and the last paragraph of the third note. His death took

place on March 15th.
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GENERAL INDEX

TO THE PAGES OF THE FOUR VOLUMES

Actions mutuelles des formes invariantives

derivees, sur les, m 218

D Alembert-Carnot, geometrical paradox, iv

238

Algebra, universal, iv 146, 208

Alliance, or Ueberschiebung, in 132, 217

Allineation, theory of, in 390

Allotrious factor, i 438, 580

Alternants, iv 416

Amphigenous surface, n 436, 478

Anakolouthic sum, n 40

Annihilator, iv 288, 451

Apocopated, i 580

Approximation, Poncelet s, to a square root,

ii 181, 200

to a linear function of two irrationalities,

in 635, 644

Arborescent functions, n 49

Arithmetic, see Numbers
addition to the vocabulary of, iv 588

theorems in, n 40, 484, 485

Arithmetical progression containing an in

finite number of primes, n 712 ; iv 620

Arithmetical series, On, iv 687

Arrangement, compound, n 325

Arrangements, a theorem of Cauchy for,

n 245, 290

Associated algebraical forms, i 198

Astronomical prolusions, n 519, 546

Asymptotic limits for number of primes,
m 530; iv 704

Asyzygetic invariants, extension of theorem,
iv 515

Atomic theory and theory of concomitants,
in 148

Axis of rotation of a rigid body, i 157

Barycentric perspective, n 342, 358

Bernoulli s numbers, n 254

Bezoutians, i 430, 444, 548, 557, 580

Bezoutic square, i 430, 444

Bezoutoid, i 555

Bicorn, n 469, 478 ; in 214

Binariants, in 571
;
iv 294

Binary system of cubics compared with ter

nary system of quadratics, n 15

Binomial extractor, in 14

Biorthogonal reduction of lineo-linear form,

iv 638, 650, 654

Bipartition, iv 34

Bipotential, in 38

Biquadratic, see Quartic

Bismarck, in 32

Bisyntheme, i 92

Boole-Mongian, iv 283, 380

Bring, Jerrard and Hamilton on quintic equa

tion, iv 531, 553

Brioschi s equation for symmetric functions,

iv 166

Buffon s problem of the needle, iv 663

Burman s law for inversion of independent

variable, 11 44, 50, 65

Caesura, 11 146

Calculus of forms, On the, i 284, 328, 402, 411;

ii 11

Canonic roots, ii 331

Canonical forms, i 184, 190, 202, 208

a memoir on elimination, transformation,

and canonical forms, i 184

for binary forms, i 190, 202

of cubic surface, i 195

of ternary cubic, i 201

Essay on, i 203

for odd degrees, i 208, 265

for even degrees, i 216, 271, 279, 293

a discovery in, i 265

of binary sextic, n 18

of quartic and octavic, n 18

for several variables, iv 527

Cartesian ovals, n 527, 550

Catalectic, i 211

Catalecticant, i 293

Cayley s theorem for number of invariants,

in 55
;

iv 458, 519

Central force, ii 547
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Centre of gravity of figures in homography,
ii 323

of a quadrilateral, 11 338

of a truncated pyramid, n 342

Characteristic, i 580

Chemistry and algebra, in 103, 150

Circle of convergence, n 301

Circle, successive involutes to, n 629, 630,

641, 663

Cissoid, in 16

Clausen and von Staudt s law for factors of de

nominators of Bernoulli s numbers, n
254

Clebsch, a theorem for curves of the fourth

order, iv 527

Coexistence, rational derivation from equa
tions of, i 40, 47, 54

Cogredience and contragredience, i 285

compound, i 287

Cogredient and Contragredient, i 581

systems, i 290

Colligation, in 23

Combinant, i 402, 411, 554, 580

Combinatorial aggregation, i 91

Commemoration-day address at Baltimore, in

72

Commutants, i 201, 255, 305

Compound cogredience, i 287

Compound partitions, n 113

Computing products without logarithms, n 34

Concomitance, complex, i 291

Concomitant, i 200, 286, 581

plexus, i 291

of given order and degree for any system of

forms, in 67, 113, 241

Concomitants, derivation of one from another,
i 287, 290

Cone projecting intersection of two surfaces,
i 169

Congruences, the resultant of two, in 475

Conies

intersections and contacts, i 119

having contact of third order, i 155

porismatic property of, i 155

intersections of two, i 162

meeting cubic curve in six consecutive points,
n 59

differential equation of, rv 282, 380

Conjugate equations, 11 399

Conjugate system of regular substitutions,

ii 623

Conjunctive, i 581

Connumerant, ii 133

Conoid, i 228

Consecutive points, four upon a tangent line

of a surface, i 177

Constructive Theory of Partitions, iv 1

Contacts of conies, i 119, 223

of lines and surfaces of the second order,

i 219, 227; ii 30

Contents of polygons, von Staudt s theorems

for, i 382

Continuants, ni 249

Continued fractions, i 641

for the quadrature of the circle, ii 691

improper, i 583

arithmetic theorem, rv 659

expressing the roots of a quadratic, iv 641,

645, 647

Contrary, reciprocal or complementary substi

tutions, i 200

Contravariant, i 200, 581

changing to a covariant, i 200

Contravector, ii 19

Convergence
circle of, n 301

corona of, n 301

Coreciprocants, iv 419

Corpus of matrices, iv 222

Correlations, of two conies, i 119

Correspondence between arrangements of com
plex numbers, rv 59

Correspondence of partitions, rv 24, 38

Covariant, i 200, 581

Crocchi s theorem, in 653

Cross-gratings used to prove formulae in

elliptic functions, in 667

Crystals, Fresnel s theory of, i 1

Cube root extracting machine, HI 18

Cubes, sum and difference, numbers so re

soluble, in 347

Cubic and linear form, concomitants of, in 97,

393

Cubic and quadratic, concomitants of, in 97,

394

syzygies, in 505

Cubic and quartic, concomitants of, ni 127,

398

reconciliation of two enumerations of con

comitants, in 132, 136

Cubic, binary, concomitants of, in 283, 579

generating function for covariants, in 113

Cubic curve

and conic of sextactic contact, ii 59

polygons inscribed and circumscribed, in

341

rational derivation of points, ii 107 ;
in

351

law of squares, in 359

triangles inscribed and circumscribed, in

474

Cubic Form, in integers, i 107, 110, 114
; n 63,

107 ; HI 312

Cubic, quadratic and quartic, in 625
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Cubic residues, 2 and 3 as, in 345

Cubic surface, expressed by five cubes, i 195

polar reciprocal, i 302

twenty-seven lines of, n 242, 451

Cubic, ternary, degeneracies of, i 335

concomitants of, i 192, 308, 327, 331, 599 ;

ii 13, 387

Cubics, two binary, concomitants of, m 97,

395

reconciliation of two enumerations of con

comitants, in 258

Cumulant, i 504, 580

Cursality or genus of a plane curve, in 14

Curve of any order, differential equation of,

iv 495, 524, 529

Curves in space analogous to Cartesian ovals,

ii 555, 559

Cyclodes, n 629, 641, 663

Cyclotheme, i 93

Cyclotomy, in 317, 326, 381, 428, 437, 446,

477, 479; iv 607, 626

Decimic, binary, concomitants of, in 256,

302

Definite integrals, two new, ii 208, 298

Degree of a symmetrical function in the co

efficients, i 595

Denumerant, ii 120; in 609, 614

of a diptych, ii 668

for invariants of octavic, in 52

Derivation, rational, from equations of co

existence, i 40, 47, 54

Derivative, of two equations, of specified de

gree, i 41

points of curves of third order, ii 107 ;

HI 351

Determinants

diminished, i 126, 136

compound, i 126

and quadratic forms, i 129, 147

minor, condition of all vanishing, i 147, 221

relative, i 183, 188

of two quadratic forms, summary of possi

bilities, i 236

relation of minor determinants of equivalent

quadratics, i 241, 647

a fundamental theorem, i 252

combination of, i 399

definition, i 581

Sylvester s theorems in the First Volume,
i 647

double, n 326, 331, 336

and polar umbrae, ii 327

of parallel motion, m 35

and duadic disynthemes, in 264

comprising the secular determinant, in 453

determinants composes, sur les, in 456

Dialytic elimination, i 133, 256, 581

for ternary forms, i 62, 76

restatement, i 86

extensions of, i 256

origin of, in 77

Difference and differential equations, ii 689 ;

m 546, 551 ; iv 630

Differential equation of conies, iv 282, 380

Differential equation of a curve of any order,

tv 495, 524, 529

Differential equations of a concomitant, i 352

Differential invariants, iv 245, 520

Differential transformation, ii 50, 65

Differentiants, in 113, 118, 124, 151, 232;

iv 165

Diploidal contact, i 225

Diplotheme, i 92

Diptych, ii 665

Discriminant, i 581

of the canonizant, ii 418

Discriminatrix, n 395, 478

Disjunctive, i 582

Ditheme, i 175

Divisors of cyclotomic functions, in 428, 437,

446, 479

Divisors of the sum of a geometrical series,

iv 607, 625

Double integration, i 36

Double six of lines, ii 243, 451

Duadic disynthemes and determinants, in

264

Duadic syntheme, in 170

Duodecimic, binary, concomitants of, in 489

Dyadism, in 23

E(x), the function, ii 177, 178, 179

Educational Times, index to occurrence of

Author s name in mathematical questions

from, iv 743

Eduction, n 147

Elimination

a new theory of, i 40

by inspection, i 54

note on, i 58

Dialytic method, i 61, 86

extensions of, i 256

linear method of, i 75

between quadratic functions, i 139, 145

Sketch of a Memoir on, i 184

from ternary forms, i 62, 76, 298

Elliptic integral of the first kind, n 203, 211

Elliptic motion, n 496

Emanant, i 288, 431, 582

Endoscopic and exoscopic, i 431, 582

1 Entrelacement d une fonction par rapport a

une autre, in 449

Equal roots and multiple points, i 367
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I Equation qui sert a determiner les inegalites

seculaires des planetes, i 366

Equation, roots of, difference functions in cor

respondence with power sums, iv 163

Equations of which all the roots are real,m 411

Equatrix, n 395, 478
Euler s numbers, n 254

Euler s theorem of reciprocity in partitions,
i 597; ii 120

Euler s theorem for parabolic motion, n 522
Euler s theorem for the partition of pentagonal

numbers, in 664, 685; iv 93, 95

Franklin s proof, iv 11

Euler s theorem for perfect numbers, iv 589

Evectants, i 329, 367
Even number, partition into two primes,

n 709

Expansion of first negative power of a power
series, n 103

Extent and content of a partition, iv 2

Eyes, ears, nose, lips and chin as singularities,
iv 293

Ezekiel s valley of dry bones, rv 282

Facultative point, in theory of quintic, i

436

Farey series, m 672, 687; iv 55, 78, 101,
603

Fermat s theorem, n 229, 232, 234, 241, 263;
iv 591

Fermatian, iv 607, 625
Finite differences, n 307, 308, 313, 318;

in 262, 633

Fluids, on the motion and rest of, i 28

Form, definition of, i 582

Forms, Calculus of, i 284, 328, 402, 411;
n 11

Formes-adjointes, i 200

Formes-associees, in 108, 199
Fractions

with limited numbers, in 672, 689 ; iv 84,

738 ; see Farey series

vulgar, a point in the theory of, in 440
Functional relations among the roots of a

quartic, i 192

Fundamental theorem of the theory of in

variants, in 117, 232; rv 458

Funicular solution of Buffon s problem, iv

663

Generating function

for invariants of octavic, in 52

for invariants of binary forms, m 58
for covariants, in 113

in partitions, iv 21

for reciprocants, iv 402

Geometrical notions and determinations,
iv 259

Geometrical problem, on a simple, i 392

Geometry, descriptive and metrical, n 8

Lecture before the Gresham Committee, n 2

Germany, the classical land of learning,
m 79

Goldbach-Euler theorem for primes, iv 734

Graphical conversion of a continued product
into a series, iv 26, 91

Graphical dissection, H. J. S. Smith on,
iv 49

Groups, ii 269

intransitive, n 275

continuous, iv 422

Halphen, on reciprocants, iv 290

Hamilton s numbers, iv 553, 585

Hammond s theorem on, iv 550, 557, 586

Hammond, benefit of intercourse with, rv 300

Hessian, or Hessean, i 583

of a cubic surface, i 195

Homaloid, i 175

Homaloidal Law, i 129, 150; n 717

Homogeneous functions, general properties,
i 165

Homonomial resolubility, n 289

Homonymous, ii 122

Huxley, on Mathematics, n 653, 654

Hyperdeterminants, i 185, 583
a discovery in, i 265

Imaginaries, the eight square, HI 642

Imaginary roots, Newton s rule for, n 376

Inaugural lecture at Oxford, iv 278

Independent variable, change of, ii 44, 50, 65
;

iv 445

Indicatrix, n 398

Induction and verification in Mathematics,
ii 714

Inertia, law of, for quadratic forms, i 381,

511, 583,; iv 532

Infinitesimal variation, i 33, 326 ; n 385

Integers, successions that cannot be indefi

nitely continued, in 656

Integration, double, i 36

Interaction of covariants and invariants,
in 207

Intercalations, theory of, i 511, 545, 583
effective scale of, i 582

Intermutants, i 201, 317

Interpolation, Lagrange s rule, i 645

Interpositions, theory of, i 614

Intuitional exegesis of generalised Farey series,

iv 78

Invariant factors of a determinant [unnamed],
i 221
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Invariants, i 583

of a function of even degree, i 273

number of, theorem of reciprocity, i 606

general theorem for number of, in 93, 117,

232 ;
iv 458, 515

limits to the order and degree of, in 101

Involutants, iv 133, 134

Involutes to a circle, n 629, 630, 641, 663

Involution of lines, n 236, 240, 304 ;
in 557,

651; iv 136

Irrationality, value of linear function of,

n 250, 305; m 635, 644

Irrationality of TT, iv 680, 682

Ivory s theorem for potential, in 45

Jacobi, at Trinity College, Cambridge, in 77

theorem of, proved by partitions, iv 60,

97

Jacobian, i 583

Jerrard s form for a quintic is singular,

i 211

Kant s Doctrine of Space and Time, n 719

Kenotheme, i 175, 583

Lady s fan, in 35

Lagrange s theorem for linear function of an

irrationality, 11 250, 305

theorem of interpolation, i 645

Lambert s theorem for elliptic motion, 11 496,

519

Latent integer, n 100

Latent roots of a matrix, iv 110

Law of succession, i 287

Law of synthesis, i 292, 348

Laws of verse, in 123

Lemniscate, in 14

Limits for the real roots of an equation,

i 423, 424, 620, 627, 630

for number of concomitants of binary forms,

m 110

to the order and degree of concomitants,
m 113

for prime numbers, in 530; iv 704

Linear complex, construction from five lines,

ii 237

Linear and cubic forms, concomitants of,

in 97

and quadratic forms, concomitants of, in

392

functions, two, concomitants of, in 392

substitutions, powers and roots of, in 562

Lineo-linear form reduced to canonical shape,
iv 638, 650, 654

Lines in space, involution of, 11 236, 240, 304 ;

m 557, 651 ; iv 136

Lines on a cubic surface, n 242, 451

Linkwork and linkage, in 9

Logarithmic waves, rectifiable compound,
n 694

MacMahon s transformation of subinvariants,

iv 164, 236

Malfatti s problem of inscribed circles, i 153

Mathematical questions in the Educational

Times, iv 743

Mathematics and Observation, n 655, 714

Mathematics, philosophy not calculation, iv

329

Matrices, i 247, 583

orthogonal, 11 615

inversely orthogonal, 11 615

powers and roots of, in 562, 565

properties of split, in 645

latent roots of, iv 110

involution of, iv 115, 219

systems, rv 133

vacuity, nullity and latency, iv 133

equations in, iv 152, 176, 181, 199, 206,

231, 272

and the law of Harriot, iv 169

multiplicity of, iv 210

zero, nullity and content of, iv 211

latent roots and vacuity of, iv 215

biorthogonally reduced to canonical form,

iv 638, 650, 654

Mean value of coefficients in an infinite deter

minant, in 253, 257, 277

Mechanical conversion of motion, in 7

Meicatalecticizant, i 293

Minor determinants, i 147, 584

and linearly equivalent quadratic functions,

i 241, 647

conditions for all to vanish, i 147, 221

Mixed reciprocants, iv 289, 312

Monadelphic, in 153

Mongian, iv 283, 380

Monotheme, i 175, 584

Monothetic equations, iv 169, 173

Motion, mechanical conversion of, in 7

Multipartite system of equations, resultant

of, H 329

Multiple quantity, iv 133

Multiple roots, i 66, 69, 370

and evectant of discriminant, i 367, 370

Mutual action of concomitants, in 218

Napier and Briggs, anecdote of, iv 279

Newton s rule for imaginary roots, n 376, 489,

491, 493, 495, 498, 514, 615, 623, 704;

m 414 ;
iv 160

Nomes, 11 272, 288

Nonic, binary, table of concomitants, ni 281,

293
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Nonions, in 647; iv 118, 122, 154

Notation for loci in space, i 175

Null system [unnamed], n 237

Nullity of a matrix, iv 133

Number, Space and Order, cardinal notions of

Mathematics, n 5

Numbers

theory of, i 107, 110, 114 ; n 177, 178, 225 ;

m 252, 438, 440, 446; iv 88

Wilson s theorem, i 39; n 10, 249, 293

expressed as four squares, n 101

of primes, n 225 ;
in 530 ;

iv 592, 696

of Bernoulli and Euler, n 254

cubic ternary form, i 107, 110, 114
;
n 63,

107; HI 312

as sums of cubes, in 347

law of reciprocity, in 433

resultant of two congruences, in 475

successions of integers not indefinitely con-

tinuable, in 580, 656

geometrical proof of a theorem in, in 635,

644

fractions with limited, in 672, 687 ;
iv 738 ;

see Farey series

Ely s proof of a theorem for residues, iv 50

Hamilton s, iv 550, 553, 585

vocabulary for, iv 588

dividing the sum of a geometrical series,

iv 607, 625; see Cyclotomy

perfect, iv 611, 615, 626

arithmetical series, iv 687

irrationality of IT, iv 680, 682

Numbers, Partition of, see Partitions

Octavic

canonical form, 11 18

invariants of, in 52

table of concomitants, in 115, 290

irreducible covariants, 111 480

reconciliation of two enumerations of con

comitants, in 509

Octopus, in 34

Operations, calculus of, n 567, 608

Optical theory of crystals, i 2

Orbit, under attraction of a circular plate,

n 539, 550

Orders

theory of, i 145, 170, 221, 549, 584, 587

loss of, deduced from discriminant, i 139

Orthogonal invariants, i 351

Orthogonal reciprocants, iv 249, 338

Osculants, n 364, 368

Oyster, twin-soul to the mathematician, ni

73

Pantigraph, in 12, 26

Paradox, in 20, 36

Partial differential operators, 11 567, 608

Partitions

Euler s theorem of reciprocity for, i 597 ;

iv 2

of numbers, n 86, 90, 176, 701; in 634,

680, 683; iv 92

symmetrical functions of, n 110

compound, n 113

Seven Lectures on, 11 119

a theorem of Cauchy for, n 245, 290

of an even number into two primes, 11 709

and rational fractions, in 605

fundamental theorem of the new method,
in 658

Durfee s theorem, in 659

Franklin s proof of Euler s theorem, in

664

expression of a certain product as a series,

in 677

Euler s theorem for pentagonal numbers,
m 685; rv 93, 95

a Constructive Theory of, iv 1

proof of a formula of elliptic functions,

iv 34

table of, iv 391

Pascal s theorem, i 138, 145, 151

Peaucellier s bar motion, in 7

Perfect numbers, iv 589, 604, 611, 615, 626

Permutants, i 201, 210, 214, 318

Perpetuant, in 592 ; iv 237

Perpetuitant, iv 138

Perspective, barycentric, n 342, 358

Persymmetrical, i 584

Pertactile point on a cubic curve, in 367

Plagiogonal invariants, i 351

Plagiograph, in 26

Plexus of forms, i 291, 346

Poinsot s representation of the motion of a

rigid body, 11 517, 577, 602

Polar reciprocal, i 303, 363, 377

of a cubic surface, i 302

Polar umbrae, n 327

Poles, in the theory of potential, in 49

Polhods, in 4

Polynomial functions, expressed by fewer linear

functions of variables, i 587

Poncelet s approximation for radicals, u 181

Post-Schwarzian, iv 321

Potential, theory of, in 49

Presidential Address to British Association,
n 650

Pressure of earth on revetment walls, n 215

Prime numbers between given limits, in 530 ;

iv 704, 711

inequalities for, iv 592

Goldbach-Euler theorem, iv 734

Prime radical circulator, n 97
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Principiant, iv 382

expressed as an invariant, iv 465

Probabilities, a class of questions, n 480

Probability, Buffon s problem, iv 663

Probationary Lecture on Geometry, n 2

Problem of least circle enclosing given points,
ii 190

Product, a continued, expressed as a series,

ra 677

Projectiles, a trifle on, n 55

construction for, n 61

Projective Eeciprocants, iv 382

Protomorphs, iv 250, 289

Pure Eeciprocants, iv 257, 289, 312, 341, 391,

403, 514

Quadratic (and quadric)

loci, contacts, i 119, 236; n 30

elimination, i 139

functions, solution of a system of, i 152

functions, relation between the minor deter

minants of, i 241, 647

polynomial, reducible to squares, i 378

forms, law of inertia, i 381, 511, 512;
iv 532

functions, resultant of three, i 402, 415

form indicating number of real roots of an

equation, i 402

radicals, linear representation of, 11 118

residues, fundamental theorem, 11 180

and cubic, concomitants of, in 97

syzygies, in 505

generating function for covariants, in 113

concomitants of, m 283

two quadratics, concomitants of, m 394
two quadratics and one quartic, concomi

tants of, in 622

cubic and quartic, concomitants of, in 625

and two quartics, in 627

Quadrinvariant, i 584

Quadruplane, in 28

Quantics
to order eight, generating functions for Co-

variants, in 113

of unlimited order, seminvariants of, in 568

Quartic (and Quartics)
invariants of, i 329, 599 ; in 283, 579

generating function, in 113

canonical form, i 269

ternary, i 334

two binary, reconciliation of two enumera
tions of concomitants, in 61, 63, 95

two binary, concomitants of, in 402
and cubic, concomitants of, in 127, 132, 136
and linear form, in 393

and quadratic, in 395

and two quadratics, in 622

Quartic continued

cubic and quadratic, in 625

two and quadratic, in 627
three binary, 111 630

Quasi-catalecticant, iv 400

Quasi-covariant, iv 411

Quaternions, iv 112, 122, 162, 183, 188, 225

Quintic, binary

concomitants, i 196, 204, 207; in 210, 284,
580

canonical form, i 193

condition for three equal roots, i 348
a syzygy, i 362

reality of roots in terms of invariants

ii 371, 376, 418, 482

generating function for concomitants, in 59
113

sextic and nonic, skew invariants of,

in 195

germ table for, in 577

table of deduction, in 591

Tschirnhausen transformation, iv 531, 553

Quot-additant, ii 87, 92

Quot-undulant, ii 87

Quotients, Sturmian, i 396, 495

Quotity, ii 86, 90

Eadicals, approximate linear evaluation, n
118, 181, 202

Eamification, in 23

Eational derivation of points of a cubic curve,
n 107; m 351

Eeciprocants, iv 242, 249, 255, 281, 301
Lectures on the Theory of, iv 301

Eeciprocity
method of, i 339

law of, for forms, i 403, 606 ; in 105, 174,
189

law of, in the Theory of Numbers, in 433

theorem of, in partitions, n 703

Eeduced-resultant, i 188

Beducihle cyclodes, ii 663

Eeduction in number of variables, i 587
;

see

Orders

Eelative determinants, i 188

Eesiduation, geometrical theory of, in 317, 352

Eesidues, Sturmian, i 438

Bespondent, inverse of concomitant of, i 340

Eesultant

of a system of equations, i 259, 584
;

ii 329,

363, 369, 694; m 426

of three forces, approximate linear repre

sentation, n 188

of a matrix, ii 334

Eevenants, in 593

Eeversion of series, ii 50, 65

Eeversor, iv 451
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Revetment walls, pressure of earth on, n 215

Rhizoristic series, i 516, 584

Riemann surface, iv 241

Rigid bodies, on the motion and rest of, i 33

Rigid body, rotation of, i 157, 217; n 517,

577, 588, 602; m 1

Roots

of an equation, i 66, 69

of numerical equations, rational or not, i 103

equality of, i 367, 370

Sturmian functions, i 45

multiple, i 69

limits to real, i 623, 627, 630

of a particular form of equation, n 360, 374,

378, 401

and Newton s rule, n 361

rule for separating, n 542

of the secular equation, in 451

of two polynomials, intercalation, i 517

of matrices, in 565

of unity, see Cyclotomy

Schlafli, double six of lines, 11 243, 451

School girls

problem for fifteen, n 266, 276

for nine, iv 732

Schwarzian derivative, iv 252, 284, 304

Secular inequality equation, i 634 ; in 451 ;

!V 110

Seminvariants to quantics of unlimited order,

m 568

Septimic, binary

generating function for covariants, in 113,

140, 144

covariants of, ni 146, 286

Series

reversion of, n 50, 65

for a certain product, in 677

Sextic, binary

geometrical form of reduction, i 176

canonical form, i 280, 283; n 18

generating function for covariants, in 60,

113

equation connecting three absolute invari

ants, in 214

concomitants, in 285

germ table for, in 578

Sign successions, n 615

Signaletic, i 584

Sines and cosines of multiple arcs, expansion

of, ii 294

Six-valued function of six letters, i 92 ;
n 264

Sorites, in 440

Sources of covariants, iv 164

Space of four dimensions, n 716

Spherical Harmonics, Note on, in 37

Square root extractor, in 18

Squares, four, expression of any number by,

n 101

von Staudt s theorems for polygons and poly-

hedra, i 382

Stigmatic multiplier, iv 707

Straight lines

on the Hessian of a cubic surface, i 195

on a cubic surface, 11 243, 451

Sturm s theorem, i 45, 57, 59, 396, 429, 513,

609, 620, 637; see Syzygetic

Subinvariants, in 568

as functions of power sums, rv 164

Subresultant, i 188

Substitution, i 585

representable by a given number of cycles,

ii 247, 292

regular conjugate system, ii 623

Superlinear equations, ii 378, 401, 482

Surd forms, approximate linear evaluation,

ii 181

Surfaces of second order, contacts and inter

sections, i 227, 237

Symmetrical functions

degree in terms of the coefficients, i 595

Brioschi s equation for, iv 166

Syntax, ii 269

Synthemes, i 91 ; ii 265, 277, 286, 288

Syrrhizoristic, i 585

Syzygetic

on a Theory of the Syzygetic relations of

two rational integral functions, etc., i 429

functions and multipliers, i 132, 585

equations in terms of the roots, i 458

Syzygies, in 489, 603

Tactic, ii 269, 277, 286

Tactinvariant, n 363

Tamisage, Tamisement, in 59, 99

Tangential on a cubic curve, in 352

Taylor s theorem, generalisation of, in 88

Tchebycheff, on primes, in 530; iv 711

Ternary cubic (see also Cubic curve)

concomitants of, i 192, 308, 327, 331, 599 ;

ii 13, 387

breaking into linear and quadric factors,

i 333

sextactic points, n 59

solution by integers, i 107, 109, 114; n 63,

107; m 312

Ternary denominational system of coinage,

in 476

Ternary quadric functions, resultant of three,

i 415 ; see Quadratic

Ternary system of quadratics compared with

binary system of cubics, ii 15

Ternary systems of equations, dialytic elimi

nation from, i 61, 83
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Tessellated, n 615

Tetrahedra, metrical relations, i 390, 404

Theorem of invariants, proof of the funda

mental, in 117, 232

Three binary forms, concomitants of, in

622

Totitives and Totient, n 225 ;
in 337 ; iv 89,

102, 589

Transformation, Memoir on Elimination,

Transformation and Canonical forms, i

184

Transformation

of partitions by the cord rule, iv 48

Tschirnhausen, iv 531

Trees, the geometrical forms called, in 640

Triangles inscribed and circumscribed to a

cubic curve, in 474

Trigonometry, spherical, Delambre s theorems,
n 564

Trisection and quartisection of the roots of

unity, in 381

Tritheme, i 175

of third degree, has six right lines at

every point, i 176

Tschirnhausen transformation, iv 531

Types, i 585; n 276, 283

Ueberschiebung, or Alliance, in 132, 217

Umbral, I 585

Unilateral equations, iv 152, 169, 225

Unity, roots of, in 438 ; tee Cyclotomy
Unravelment, i 322, 360

Vacuity of a matrix, iv 133

Valency, in 28, 103, 151

Vermicular, iv 294

Versors, in 30

Virgins, problem of, 11 113

Wave surface, i 1

Waves, in calculation of quotity, 11 91

Weight, i 585

Wilson s theorem in the Theory of Numbers,
i 39 ; n 10, 249, 293

Zeta, for squared product of differences, i 59,

586; n 29

Zeta-ic multiplication, i 47, 49
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