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PREFATORY NOTE MRS

HE present volume contains Sylvester’s Constructive Theory of

Partitions, papers on Binary Matrices, and the Lectures on the Theory
of Reciprocants. There is added an Index to the four volumes, and a
Biographical Notice of Sylvester. The Mathematical Questions in the
Educational Tvmes are as yet unedited, but an Index to them is appended
here. I have to acknowledge the kindness of Dr J. E. McTaggart, F.B.A.,
who secured for me the loan of the Essay on Canonical Forms, from the
Library of Trinity College, Cambridge, for Vol. 1, and that of Mr R. F.
Scott, M.A., Master of St John’s College, Cambridge, for the use of the
volume called The Laws of Verse, from which the matter contained in the
Appendix to Vol. 11 was reprinted, who supplied also the Autograph on the
Frontispiece of this Volume. To the latter gentleman, as well as to Major
P. A. MacMahon, Professor E. B. Elliott and Sir Joseph Larmor, I owe my
best thanks for reading through the Biographical Notice. In carrying
through the task of editing the Papers, I have, in general, thought it most
fitting not to offer any remarks of my own in regard to Sylvesters text,
though many times at a loss to know how best to act. In the Appendix to
Vol. 1 I have departed from this rule, giving there an account of Sylvester’s
chief theorems in regard to determinants. For two other cases the reader
may find notes, Proceedings of the London Mathematical Society, Vol. 1v,
Ser. 11 (1907), pp. 181—1385, and Vol. vi (1908), pp. 122—140 ; these refer
respectively to the paper No. 36, p. 229, and to the paper No. 74, p. 452,
both in Vol. 11 of the Reprint. Many corrections of errors in the printing of
algebraical formulae have been introduced, though many, it is to be feared,
still remain; but no alterations of Sylvester’s statements have been made
without definite indication, by square brackets or otherwise. To the Readers
and Staff of the University Press the very greatest credit and gratitude for
their watchful carefulness are assuredly due, many of the corrections in the
volumes being due to them.

H. F. BAKER.

June 1912,

M7 7304
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BIOGRAPHICAL NOTICE*.

Lord of himself and blest shall prove

He who can boast “I've lived to-day,
To-morrow let dispensing Jove

Cast o’er the skies what tint he may.

“ Sunshine or cloud ! the work begun
And ended may his power defy,
He cannot change nor make undone
What once swift Time has hurried by.”

Laws of Verse, p. 73 (from Horace).

JAMES JOSEPH SYLVESTER was born in London on 3 September 1814, 1814
of a family said to have been originally resident in Liverpool. He was
among the youngest of several brothers and sisters, and the last to survive.

His father, whose name was Abraham Joseph, died while he was young.
His eldest brother early in life established himself in America and assumed
the name of Sylvester, an example followed by all the brothers.

If we attempt to realise the scientific circumstances of the time of
Sylvester’s birth by recalling the dates of some of those whose work might

* The chief authority for the outward facts of Sylvester’s life used in this record is the
Obituary Notice by Major P. A. MacMahon, R.A., F.R.S., Royal Society Proceedings, rxm,
1898, p. ix. There is also an article in the Dictionary of National Biography, by Professor
E. B. Elliott, F.R.S. and Mr P. E. Matheson, M.A., which gives a list of authorities, and an
earlier article by Major MacMahon, Nature, 25 March 1897. Other sources of information are
referred to in the course of the following.



xvi Biographical Notice

naturally come before him, either in connexion with his subsequent career at
Cambridge, or with his own later investigations, we find it difficult to make
a choice. Of Englishmen Henry Cavendish (1781—1810) was dead, Thomas
Young (1773—1829) was forty-one, Faraday (1791—1867) was twenty-three,
and had just exchanged (in 1813) a bookbinder’s workshop for the laboratory
of the Royal Institution, Sir John Herschel (1792—1871) was twenty-two,
and George Green (1793—1841), who was afterwards to be examined with
Sylvester at Cambridge, was twenty-one. Cayley, with whom he was to be
so much associated, was born in 1821,and was Senior Wrangler in 1842. The
year 1814 was “ the year of peace,” and was the year in which Poncelet (1788
—1867) returned to Paris from the Russian prison in which he had recon-
structed the theory of conic sections; Lagrange (1736—1813) had just died,
but there were living Laplace (1749—1827), Legendre (1752—18383), Fourier
(1768—1830), Ampere (1775—1836), Poisson (1781—1840), Fresnel (1788—
1827), Cauchy (1789—1857). J. C. F. Sturm (1803—1855), whose theorem
was to have such an importance for Sylvester, was eleven years his senior;
Hermite’s life extended from 1822 to 1901. In Germany there were Gauss
(1777—1855), whose Disquisitiones Arithmeticae is dated 1801, Steiner
(1796—1863), von Staudt (1798—1867), Jacobi (1804—1851), W. Weber
(1804—1891), Dirichlet (1805—1859), Kummer (1810—1893), while Weier-
strass was born in 1815; and then there were Helmholtz (1821—1894),
Kirchhoff (1824—1886), Riemann (1826—1866), and Clebsch (1833—1872).
In Italy Brioschi, who took part in the development of the theory of in-
variants, was born in 1824 and died in 1897; and the name of Abel (1802—
1829) cannot be omitted. All these, and many others, went to form the
atmosphere in which Sylvester’s life was spent.

Until Sylvester was fifteen years of age he was educated in London—
from the age of six to the age of twelve with Mr Neumegen, at Highgate,
subsequently, for a year and a half, with Mr Daniell at Islington, then, for
five months, at the University of London (afterwards University College),
where apparently he met Professor De Morgan, who (except from 1831 to
1835) taught at this institution from 1828 to 1867; for Sylvester speaks
in 1840 (1 33) of having been a pupil of De Morgan’s. His gift for Mathe-
matics seems undoubtedly to have been apparent at this time; for
Mr Neumegen sent him at the age of eleven to be examined in Algebra
by Dr Olinthus Gregory, at the Royal Military Academy, Woolwich, and
1t is recorded that this gentleman was writing to Sylvester’s father two years
later to enquire for him, with a view to testing his progress in the interval.

1829  In 1829, at the age of fifteen, Sylvester went to Liverpool ; here he attended
the school of the Royal Institution, residing with aunts. The Institution,
it appears, was founded in 1814, largely by the exertions of William Roscoe
(1753—1831), and its school in 1819 ; it must not be confounded with the
Liverpool Institute, which grew out of the Mechanics Institute, founded in
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1825, by Mr Huskisson. The Head-master at this time was the Rev. T. W.
Peile, afterwards Head-master of Repton, and the mathematical master was
Mr Marratt. A contemporary at the school was Sir William Leece Drinkwater,
afterwards First Deemster, Isle of Man. At this school Sylvester remained
less than two years. In February 1830 he was awarded the first prize in the
Mathematical School, and was so far beyond the other scholars that he could
not be included in any class. While here, also, he was awarded a prize of
500 dollars for solving a question in arrangements, to the great satisfaction of
the Contractors of Lotteries in the United States, the question being referred
to him by the intervention of his elder brother in New York. At this early
period of his life, too, he seems to have suffered for his Jewish faith at the
hands of his young contemporaries ; possibly this may account for the episode
recorded, of his running away from school and sailing to Dublin. Here,
with only a few shillings in his pocket, he was accidentally accosted by the
Right Hon. R. Keatinge, Judge of the Prerogative Court of Ireland, who,
having discovered him to be a first cousin of his wife, entertained him, and
sent him back to Liverpool.

The indications were by now sufficient to encourage him to a mathe- 1831
matical career. After reading for a short time with the Rev. Dr Richard
Wilson, sometime Fellow of St John’s College, Cambridge, afterwards Head-
master of St Peter’s Collegiate School, Eaton Square, London, Sylvester was
entered* at St John’s College on 7 July, as a Sizar, commencing residence on
6 October 1831, when just over seventeen, his tutor being Mr Gwatkin.
He resided continuously till the end of the Michaelmas Term, 1833, though
he seems to have been seriously ill in June of this year. For two years from
the beginning of 1834 his name does not appear as a member of the College,
and apparently he was at home on account of illness. In January 1836 he
was readmitted, this time as a Pensioner, and resided during the Lent and
Michaelmas Terms, being also incapacitated in the intervening term. In
January 1837 he underwent his final University examination, the Mathe-
matical Tripos, and was placed second on the list. The first six names of
that year were Griffin, St John’s; Sylvester, St John’s; Brumell, St John’s;
Green, Gonville and Caius; Gregory, Trinity, and Ellis, Trinity. Of these,
George Green, born at Sneinton, near Nottingham, in 1793, was already the
author of the famous paper, “ An essay on the application of Mathematical
Analysis to the theories of Electricity and Magnetism,” which was published
at Nottingham, by subseription, in 1828. He died in 1841, more than fifty
years before Sylvester.

Of the general impression which Sylvester produced upon his con-
temporaries at Cambridge, it is difficult to judge. It is recorded that
he attended the lectures of J. Cumming, Professor of Chemistry in the

) * The Eagle, the College Magazine, x1x (1897), p. 603. A list of Sylvester’s scientific dis-
tinctions is given in this place (p. 600).
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University from 1815 to 1861, and, as required by College regulations,
the Classical lectures of Bushby. We know how keen was his interest in
Chemistry many years later in Baltimore (cf. his paper on The New Atomic
Theory, 111 148): and his writings furnish evidence of the pleasure he took in
introducing a Classical allusion. When he became Editor of the Quarterly
Journal of Mathematics in 1855 he secured the printing of a Greek motto on
its title-page:

8 v olola wpds yéveaw, émwornuy mwpds mwioTiw

kal Sudvoia wpds elkaciav €ore;

later on, the American Journal under his care also had (1v 298) a Greek
motto :

wpaypdrwy éheyyos o Bhemopévawv ;

in his older age the reading and translation of Classical authors was one of his
resources.

He was, in later life at least, well acquainted with French, German and
Italian, and rejoices (11 563) because these with Latin and English “may
happily at the present day be regarded as the common property and inherit-
ance of mathematical Europe.” He was also much interested in Music. We
are told that at one time he took lessons in singing from Gounod, and was
known to sing at entertainments given to working men. “May not Music,”
he asks (11 419), “be described as the Mathematic of sense, Mathematic as
Music of the reason ?...” Or again (111 123), “It seems to me that the whole
of aesthetic (...) may be regarded as a scheme having four centres, ..., namely
Epic, Music, Plastic and Mathematic” ; and he advocated “a new method of
learning to read on the pianoforte ” (111 8).

Of his interest in general literature, and his keen relish for a striking
phrase, no reader of his papers needs to be reminded. To his first long paper
on Syzygetic Relations, published in the Philosophical Transactions of the
Royal Society (1 429), he prefixes the words

How charming is divine philosophy !

Not harsh and crabbed as dull fools suppose,
But musical as is Apollo’s lute

And a perpetual feast of nectar'd sweets,
Where no crude surfeit reigns !

In his paper on Newton’s rule, also in the publications of the Royal Society
(11 380), he quotes

Turns them to shapes and gives to airy nothing
A local habitation and a name.

In his Constructive Theory of Partitions (1v 1) he leads off with

seeming parted,
But yet a union in partition ;
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the Second Act, in which the Partitions are transformed by cunning opera-
tions performed on the diagrams which represent them, is introduced by

Naturelly, by composiciouns

Of anglis, and slie reflexiouns ;
as the plot thickens he begins to feel more need of apology, and Act 111
begins with

mazes intricate,

Eccentric, intervolved, yet regular

Then most, when most irregular they seem ;
while, when he comes to the Exodion, and feels that, after fifty-eight pages,
direct appeal may have lost its power, he takes refuge in Spenser’s fairyland
with the lines

At which he wondred much and gan enquere

What stately building durst so high extend
Her lofty towres, unto the starry sphere.

Of his clever sayings we all remember many: “Symmetry, like the grace
of an Eastern robe, has not unfrequently to be purchased at the expense of
some sacrifice of freedom and rapidity of action” (1 309) ; or again, in support
of the contention, that to say that a proposition is little to the point is not to
be taken as demurring to its truth (11 725), “I should not hesitate to say, if
some amiable youth wished to entertain his partner in a ‘quadrille with agree-
able conversation, that it would be little to the point, according to the German
proverb, to regale her with such information as how

Long are the days of summer-tide
And tall the towers of Strasburg’s fane,

but should be surprised to have it imputed to me on that account that I
demurred to the proposition of the length of the days in summer, or the height
of Strasburg’s towers.” More direct still (111 9), disclaiming the idea that
the simplicity of Peaucellier’s linkwork should discredit the difficulty of its
discovery, “ The idea of the facility of the result, by a natural mental illusion,
gets transferred to the process of conception, as if a healthy babe were to be
accepted as proof of an easy act of parturition.” Some others will be found
referred to in the index.

It is also recorded that among the friends of his earlier life was
H. T. Buckle, anthor of the Hustory of Civilisation, with whom, in addition
to more serious reasons for sympathy, chess playing was a link of friendship.

Whether the many sides of Sylvester’s character, indicated by these
gleanings from his later life, were much in evidence at Cambridge, we do not
know. The intellectual atmosphere of the place at the time was extremely
vigorous in some ways. The Philosophical Society was founded in 1819,
largely on the initiative of Adam Sedgwick and J. S. Henslow, and
obtained a Charter in 1882; its early volumes are evidence of the great
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width and alertness of scientific interest in Cambridge at this time; papers
of George Green were read at the Society in 1832, 1833, 1837 and 1839;
James Cumming, whose chemical lectures Sylvester attended, Sir John
Herschel, De Morgan, and Whewell are among the early contributors.
Sir John Herschel’s Preliminary Duiscourse on the Study of Natural Philo-
sophy is dated 1831. The third meeting of the British Association was in
Cambridge, on 24 June 1833. Whewell's Hustory of the Inductive Sciences
was published at Cambridge in 1837, the Philosophy of the Inductive Sciences
in 1840. But we find* that in 1818 Sedgwick gave up his assistant tutor-
ship, whose duties were mainly those of teaching the mathematical students
of Trinity College, on the ground that “as far as the improvement of the
mind is considered, I am at this moment doing nothing....I am...very sensibly
approximating to that state of fatuity to which we must all come if we
remain here long enough.” This was before Sylvester’s student time, and
while mathematics at Cambridge was still suffering, partly from the long
consequences of the controversy in regard to Leibniz and Newton, and more
immediately from the loss of communication with the mathematicians of
the Continent due to the war. Yet Sir John Herschelt, writing in 1833,
feels compelled to speak very decidedly of the long-subsisting superiority of
foreign mathematics to our own, as he phrases it, and there seems to be no
doubt that mathematics, as distinet from physics, was then at a very low ebb
in Cambridge, notwithstanding the success of the struggle, about a quarter
of a century before, to introduce the analytical methods then in use on the
Continent. C. Babbage, in his amusing Passages from the Life of a Philo-
sopher, describes how he went (about 1812) to his public tutor to ask the
solution of one of his mathematical difficulties and received the answer that
it would not be asked in the Senate House, and was of no sort of con-
sequence, with the advice to get up the earlier subjects of the university
studies ; and how, after two further attempts and similar replies from other
teachers, he acquired a distaste for the routine of the place. His connexion
with the translation of Lacroix’s Elementary Differential Calculus (1816), and
his association with George Peacock, Sir John Herschel and others in the
Analytical Society, is well known; the title proposed by him for a volume
of their Transactions, “ The principles of pure D-ism in opposition to the
Dot-age of the University,” has often been quoted.

In addition to the better known accounts, there is an echo of what is
usually said about Cambridge in this connexion in an Eloge on Sir John
Herschel, read at the Royal Astronomical Society, 9 February 1872, by a
writer who compares the work of Lagrange on the theory of equations with
that of Waring, who was born in the same year, and was Senior Wrangler
at Cambridge in 1757. We may add to this the bare titles of two continental

* Life of Adam Sedgwick, by J. W. Clark, 1, p. 154.
1 Collected Essays, Longmans, 1857, pp. 30—39.
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publications of 1837, the year of Sylvester's Tripos Examination :—C. Lejeune
Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression,
deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor
sind, unendlich viele Primzahlen enthdlt; E. Kummer, De aequatione
a? + y? =2 per numeros integros resolvenda. Augustus De Morgan, who
was fourth Wrangler in 1827, speaking in 1865, at the inaugural meeting
of the London Mathematical Society, pronounces that “The Cambridge
Examination is nothing but a hard trial of what we must call problems—
since they call them so—between the Senior Wrangler that is to be of this
present January, and the Senior Wrangler of some three or four years ago.
The whole object seems to be to produce problems—or, as I should prefer
to call them, hard ten-minute conundrums....It is impossible in such an
examination to propose a matter that would take a competent mathematician
two or three hours to solve, and for the consideration of which it would be
necessary for him to draw his materials from different sources, and see how
he can put together his previous knowledge, so as to bring it to bear most
effectually on this particular subject.” This is the mathematician’s criticism
of the system then, and, to a large extent, still in vogue. A criticism from
another point of view is found in a letter* of Sir Frederick Pollock, written
in 1869, to De Morgan: “I believe the most valuable qualities for practical
life cannot be got at by any examination—such as steadiness and perse-
verance....I think a Cambridge education has for its object to make good
members of society—not to extend science and make profound mathema-
ticians....” These criticisms appear to agree in one implication, the dominance
of the examination in the training offered by the University; and they are
necessary to a right appreciation of Sylvester’s university life and subsequent
work. Accordingly, we do not hear, as frequently we do in the case of young
students at continental universities, of Sylvester being led to study for himself
the great masters in Mathematics. We find him, in 1839 (1 39), disclaiming
a first-hand knowledge of Gauss’s works; there is ro anecdote, known to me,
to put with that he himself tells of Riemann. In a sheet of verses issued
by himself, in February 1896—one of many such sheets, I believe—there is a
footnote containing the following : “...the hotel on the river at Nuremberg,
where I conversed outside with a Berlin bookseller, bound, like myself, for
Prague....He told me he was formerly a fellow pupil of Riemann, at the
University, and that, one day, after receipt of some numbers of the Comptes
rendus from Paris, the latter shut himself up for some weeks, and when he
returned to the society of his friends, said (referring to newly-published
papers of Cauchy), ‘This is a new mathematic.’” We find Sylvester, how-
ever, writing in 1839 of “the reflexions which Sturm’s memorable theorem
had originally excited” (1 44), and we know how much of his subsequent
thought was given to this matter. Whether he read Sturm’s paper of
* W. W. R. Ball, History of Mathematics at Cambridge, 1889, p. 113.
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23 May 1829 (Bulletin de Férussac, X1, 1829, p. 419; Mémoires par divers
Savans, vi, 1833, pp. 273—318), or in what way he learnt of the theorem, there
seems to be no record. It is not referred to in the Report on Analysis by
George Peacock, Cambridge British Association Report, 1833, pp. 185—852,
which deals at length with Fourier’'s method. Sylvester records (11 655—6)
that Sturm told him that the theorem originated in the theory of compound
pendulums, but he makes no reference to Sturm’s recognition of the applica-
tion of his principles to certain differential equations of the second order.

Another aspect of Sylvester’s time at Cambridge must be referred to.
At this time, and indeed until 1871, it was necessary, in order to obtain the
Cambridge degree, to subscribe to the Articles of the Church of England ;
one of the attempts, in 1834, to remove the restriction, is recorded in the Life
of Adam Sedgwick, already referred to (1 418; Sedgwick writes a letter to
the Tvmes, 8 April 1834). Sylvester was, in his own subsequent bitter
phrase (111 81), one of the first holding “the faith in which the Founder of
Christianity was educated ” to compete for high honours in the Mathematical
Tripos ; not only could he not obtain a degree, but he was excluded from the
examination for Dr Smith’s mathematical prizes, which, founded in 1769, was
usually taken by those who had been most successful in the Mathematical
Tripos. Most probably, too, had the facts been otherwise, he would have been
shortly elected to a Fellowship at St John’s College. To obtain a degree he
removed to Trinity College, Dublin, from which, it appears, he received in
turn the B.A. and the M.A. (1841). He finally received the B.A. degree
at Cambridge, 29 February 1872, the M.A. (honoris causa) following 25 May
of the same year.

1838 In the year succeeding his Tripos examination at Cambridge, he was
elected to the Professorship of Natural Philosophy at (what is now) University
College, London, and so became a colleague of Professor De Morgan. The
list of the supporters of his candidature includes the names of Dr Olinthus
Gregory, who had examined him in Algebra when a schoolboy of eleven, of
Dr Richard Wilson, who had taught him before his entrance at St John’s
College, of the Senior Moderator and Senior Examiner in his Tripos examina-
tion, of Philip Kelland, of Queens’ College, Senior Wrangler in 1834, after-
wards Professor at Edinburgh, and of J. W. Colenso, afterwards Bishop of
Natal ; the two last had been private tutors of Sylvester at some portions of
his career at Cambridge. He held the post of Professor of Natural Philosophy
for a few years only; Professor G. B. Halsted (Science, 11 April 1897) makes
a statement suggesting that the examination papers set by him during his
tenure of the office are of a nature to indicate that he did not find his subject
congenial. During these years he was elected a Fellow of the Royal Society
(25 April 1839), at the early age of twenty-five. About this time also an oil-
painting of him was made by Patten, of the Royal Scottish Academy, from
the recorded description of which it appears that he had dark curly hair and
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wore spectacles. It has been said that he took his Tripos examination in
January 1837; he at once began to publish, in the Philosophical Magazine
of 1837—38. The first four of his papers are on the analytical develop-
ment of Fresnel’s optical theory of crystals, and on the motion and rest of
fluids and rigid bodies; but the papers immediately following contain the
dialytic method of elimination, and the expression of Sturm’s functions in
terms of the roots of the equation, as well as many results afterwards included
in the considerable memoir on the theory of the syzygetic relations of two
polynomials, published in the Philosophical Transactions of 1853.

Leaving University College in the session of 1840—41, he proceeded 1841
as Professor of Mathematics across the Atlantic, to the University of
Virginia, founded in 1824 at Charlottesville, Albemarle Co., where* his
colleague, Key, of University College, had previously occupied the chair of
Mathematics. Such a considerable change deserved a better fate than befell ;
in Virginia at this time the question of slavery was a subject of bitter con-
tention, and Sylvester had a horror of slavery. The outcome was his almost
immediate return; apparently he had intervened vigorously in a quarrel
between two of his students.

On his return from America Sylvester seems to have abandoned mathe- 1844
matics for a time. In 1844 he accepted the post of Actuary to the Legal and
Equitable Life Assurance Company, and threw himself into the work with
great energy. He did not accept another teaching post for ten years, until
1854, but seems to have given some private instruction, as it is related + that
he had, what was unusual at that time, a lady among his pupils—whose name
was afterwards famous—Miss Florence Nightingale. He entered at the Inner
Temple 29 July 1846, and was called to the Bar 22 November 1850.
He also founded the Law Reversionary Interest Society. It was in 1846 1846
that Cayley, who had been Senior Wrangler in 1842, left Cambridge and
became a pupil of the famous conveyancer, Mr Christie, entering at Lincoln’s
Inn. He was already an author, and had in fact entered upon one of the
main activities of his life; for in 1845 he had published his fundamental
paper “On the Theory of Linear Transformations,” in which he discusses
Boole’s discovery of the invariance of a discriminant. To us, knowing how
pregnant with consequences the meeting was, it would be interesting to have
some details of the introduction of Cayley and Sylvester; the latter lived,
then or soon after, in Lincoln’s Inn Fields, and we are told} that during the
following years they might often be found walking together round the Courts
of Lincoln’s Inn, discussing no doubt many things but among them assuredly
the Theory of Invariants. Perhaps it was particularly of this time that
Sylvester was thinking when he described Cayley (1 376) as “habitually

* J. J. Walker, Proc. Lond. Math. Soc. xxviux (1896—97), p. 582.
+ The Eagle, x1x (1897), p. 597.
1 Biographical notice of Arthur Cayley, Cayley’s Collected Papers, Volume viir,

S. 1v. ¢
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1846 discoursing pearls and rubies,” or when, much later (1v 300), he spoke of
“Cayley, who, though younger than myself, is my spiritual progenitor—who
first opened my eyes and purged them of dross so that they could see and
accept the higher mysteries of our common mathematical faith.” It is in
a paper published in 1851 (1 246) that we find him saying, “ The theorem
above enunciated was in part suggested in the course of a conversation with
Mr Cayley (to whom I am indebted for my restoration to the enjoyment of
mathematical life)”; and Sylvester’s productiveness during the latter part of
this period is remarkable. In particular there are seven papers whose date of
publication is 1850, including the paper on the intersections, contacts and
other correlations of two conics, wherein he was on the way to establish
the properties of the invariant factors of a determinant, afterwards recog-
nised by Weierstrass; and there are thirteen papers whose date is 1851,
including the sketch of a memoir on elimination, transformation and canonical
forms, in which the remarkable expression of a cubic surface by five cubes is
given, the essay on Canonical Forms, and the paper on the relation between
the minor determinants of linearly equivalent quadratic functions, in which
the notion of invariant factors is implicit; while in 1852 is dated the first
of the papers “On the principles of the Calculus of Forms.” Dr Noether
remarks* how important for the history of mathematics these years were in
other respects; Kummer’s memoir, “ Ueber die Zerlegung der aus Wurzeln
der Einheit gebildeten complexen Zahlen in ihre Primfactoren,” appeared
in 1847 (Crelle, xxxv); Weierstrass’s “ Beitrag zur Theorie der Abel’schen
Integrale ” (Betlage zum Jahresbericht diber das Gymnasium zu Braunsberg)
is dated 1849; Riemann’s Inaugural-dissertation, “Grundlagen fiir eine
allgemeine Theorie der Functionen einer veranderlichen complexen Grdsse,”
is dated 1851. Referring to the discovery of the Canonical Forms in order
to enforce the statement that observation, induction, invention and experi-
mental verification all play a part in mathematical discovery (11 714), Sylvester
tells an anecdote which has a personal interest: “I discovered and developed
the whole theory of canonical binary forms for odd degrees, and, as far as yet
made out, for even degrees too, at one evening sitting, with a decanter of port
wine to sustain nature’s flagging energies, in a back office in Lincoln’s Inn
Fields. The work was done, and well done, but at the usual cost of racking
thought—a brain on fire, and feet feeling, or feelingless, as if plunged in an
ice-pail. That night we slept no more.”

To Englishmen, in whose minds the modern developments of physical
mathematics are associated with many familiar names, who recall Thomas
Young, Faraday, Herschel, George Green, Stokes, Adams, Kelvin, Maxwell,
the activity of Cayley and Sylvester may at first sight seem very natural.
But in fact the aim of such men as those first named was primarily the
coordination of the phenomena of Nature, not the development of any

* Charles Hermite, Math. Annalen, Lv, p. 343.
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mathematical theory. And if we think of such names as those of De Morgan, 1846
Warren, Peacock, their interest perhaps was either systematic or didactic;
their endeavours were necessarily largely directed to criticising, and expounding
to their countrymen, the proposals of continental mathematicians. But Cayley
and Sylvester were in a different position at the time of which we are
speaking ; neither of them had any official duties as teacher of mathematics;
to Cayley, as he afterwards said (in 1883) to the British Association, mathe-
matics was “a tract of beautiful country seen at first in the distance, but
which will bear to be rambled through and studied in every detail of hillside
and valley, stream, rock, wood, and flower.” To him and to Sylvester, Pure
Mathematics was an opportunity for unceasing exploration; or, in another
figure, a challenge to carve from the rough block a face whose beauty should
for all time tell of the joy there was in the making of it; or again, it was the
discernment and identification of high peaks of which the climbing might be
in the years to come the task of those to whom strenuous labour is a delight
and fine air an intoxication. And this spirit was a new one in England at
this time, of which we may easily miss the significance. It may therefore
help if we quote, without expressing any opinion as to its proportionate
justice, the impression of an American observer, Dr Fabian Franklin, who
succeeded Sylvester as Professor at Baltimore. Speaking* at the memorial
meeting held immediately after Sylvester's death, 2 May 1897, he says of
Sylvester, “His influence upon the development of mathematical science
rests chiefly, of course, upon his work in the Theory of Invariants. Apart
from Sir William Rowan Hamilton’s invention and development of Qua-
ternions, this theory is the one great contribution made by British thought
to the progress of Pure Mathematics in the present century, or indeed
since the days of the contemporaries of Newton. From about the middle
of the eighteenth century, until near the middle of the nineteenth, English
mathematics was in a condition of something like torpor....And, accordingly,
it proved to be the case that in the magnificent extension of the bounds of
mathematics which was effected by the continental mathematicians during
the first four decades of the present century, England had no share. It is
almost literally correct to say that the history of mathematics for about a
hundred years might be written without serious defect with English mathe-
matics left entirely out of account.

“That a like statement cannot be made in regard to the past fifty years is
due pre-eminently to the genius and labours of three men: Hamilton, Cayley
and Sylvester....Not only did other English mathematicians join in the work,
but Hermite in France, Aronhold and Clebsch in Germany, Brioschi in Italy,
and other continental mathematicians, seized upon the new ideas, and the
theory of invariants was for three decades one of the leading objects of
mathematical research throughout Europe. It is impossible to apportion

* Johns Hopkins University Circulars, June 1897,
c2
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between Cayley and Sylvester the honour of the series of brilliant discoveries
which marked the early years of the theory of invariants....”

It would not be right to omit reference to another factor in the mathe-
matical life of the time we are dealing with—the influence of George Salmon.
At what time Sylvester first became acquainted with him, I have not ascer-
tained ; but we know that the theory of the straight lines lying upon a cubic
surface was worked out in a correspondence between Cayley and Salmon
in 1849. Readers of Salmon are aware of the intimate way in which he
followed Sylvester's work, while Sylvester, in his papers, makes frequent
reference to Salmon’s books. There is a personal letter* from Salmon to
Sylvester, of date 1 May 1861, which exhibits the relations of the two
men in an interesting light, “...I should be very glad if there was any
chance of your preparing an edition of your opuscula. There have been, of
course, occasional little statements in your papers requiring verification.
Written, as they were, in the very heat of discovery, they are rather to be
compared to the hurried bulletins written by a general on the field of battle
than to the cool details of the historian. Honestly, however, I don’t think
there is the least chance of your going back to these former studies. I shall
be content to let you off some of these if you will do justice to what you have
done on the subject of partitions. I wish you would seriously consider
whether it is not a duty everyone owes to Society, when one brings a child
into the world, to look to the decent rearing of it. I must say that you have
to a reprehensible degree, a cuckoo-like fashion of dropping eggs and not
seeming to care what becomes of them. Your procreative instincts ought to
be more evenly balanced by such instincts as would inspire greater care of
your offspring and more attention to providing for them in life,and producing
them to the world in a presentable form.

“ Hoping you will meditate on this homily and be the better for it, I
remain, yours sincerely, GEO. SALMON.”

Salmon himself did a great deal for the rearing of many of Sylvester’s
offspring, and I suppose it would be hard to estimate how much of Sylvester’s
and Cayley’s reputation in their lifetime was due to his large-minded and
genial exposition.

Sylvester himself, in a paper of 1863 (11 337), supplies some answer to
such criticisms as this of Salmon’s: “in consequence of the large arrears of
algebraical and arithmetical speculations waiting in his mind their turn to
be called into outward existence, he [the author] is driven to the alternative
of leaving the fruits of his meditations to perish...or venturing to produce
from time to time such imperfect sketches as the present, calculated to
evoke the mental cooperation of his readers...

1854 It was not until 10 June 1863 that Ca.yley returned to Cambrldge,
as Sadlerian Professor of Pure Mathematics. In 1854, Sylvester was a

* Printed in the Eagle, the Magazine of St John’s College, xx1x (1908), p. 380.
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candidate for the Professorship of Mathematics at the Royal Military
Academy, Woolwich. At this time he had published the papers now reprinted
in Volume 1, the Theory of Invariants had an existence firmly established,
and Sylvester had an European reputation. But his candidature was
unsuccessful. This was in August of 1854. In December of the same year
he gave his Probationary lecture on Geometry before the Electors to the
Professorship of Geometry in Gresham College, London (11 2). In this he
was also unsuccessful. Professor G. B. Halsted has recorded that Sylvester
often deplored the time he had lost “fighting the world,” and he would
feel these disappointments keenly. However, the successful candidate at
Woolwich died a few months after being appointed, and Sylvester was
again a candidate. A letter on his behalf by Lord Brougham, of date
28 August 1855, speaks of him as my “learned and excellent friend and
brother mathematician Mr Sylvester.” This time he was elected. He took
up the appointment on 15 September 1855, being, for a year, lecturer in
Natural Philosophy as well as Professor of Mathematics. There is record
of the exact emoluments of the post, a salary of £550, a Government
Residence (K Quarters, Woolwich Common), medical attendance and right
of pasturage on the Common. The house was a pleasant one, with a good
garden, in which he could enjoy the shade of his own walnut tree, we
are told, and he was able to entertain his scientific friends. The conver-
sations with Cayley still went on; we hear of them walking to meet one
another, Cayley from 2 Stone Buildings and he from his home, their meeting
point falling near Lewisham. Sylvester retained this post until July 1870,
sometimes justifying, we are led to believe, the original hesitation of the
electors in regard to his efficiency as an elementary teacher ; there are stories
such as that of his housekeeper pursuing him from home carrying his collar
and necktie. His publications during this time are, approximately, those
reprinted in Volume II.

Sylvester gave seven lectures on the Theory of Partitions at King’s
College, London, in 1859 (11 119), not published until 1897, and then only
from outlines privately circulated at the time of delivery; Capt. (now Sir
Andrew) Noble collaborated with him in an important degree in his work
on the Theory of Partitions. He wrote the paper on the involution of lines
in space considered as axes of rotation (11 236). The long paper on Newton’s
rule and the invariantive discrimination of the roots of a quintic was
published in the Philosophical Transactions, 1864 (11 376). His work on
the proof of Newton’s rule made its appeal in various directions—Todhunter
remarks in his Theory of Equations, “If we consider the intrinsic beauty
of the theorem, the interest which belongs to the rule associated with the
great name of Newton, and the long lapse of years during which the reason
and extent of that rule remained undiscovered by mathematicians—among
whom Maclaurin, Waring and Euler are explicitly included—we must regard
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Professor Sylvester’s investigations as among the most important contribu-
tions made to the Theory of Equations in modern times, justly to be ranked
with those of Fourier, Sturm and Cauchy.”

1855  Sylvester’s outward life also contained points to be remarked. In April
1855 appeared the first number of the Quarterly Journal of Pure and
Applied Mathematics, edited by J. J. Sylvester, M.A., F.R.S. and N. M.
Ferrers, M.A.; this replaced the Cambridge and Dublin Mathematical Journal
which had first been edited by W. Thomson, M.A. (the late Lord Kelvin)
and then by W. Thomson, M.A. and N. M. Ferrers, M.A. In the Preface,
the plea is put forward that a more ambitious journal was necessary in view
of the growing state of the subject, and might render British mathematicians
less dependent on the courtesy of the editors of Foreign journals. Assisted
by Stokes, Cayley and Hermite, this joint editorship continued unchanged
until June 1877. ;

1856  In 1856 Sylvester was elected* to the Athenaeum Club, under the
special Rule II. The fact is worth recording. Sylvester was never married,
and in subsequent years this was the address he frequently appended to his
writings.

1859 In 1859 he delivered seven lectures on the Partition of Numbers, at
King's College, London, as noted above.

1861  In 1861 he was awarded a Royal Medal by the Royal Society, Cayley
having received that honour in 1859.

1863  On 7 Dec.t 1863 he was chosen correspondent in mathematics by the
French Academy of Sciences, in place of the great geometer Steiner, who
had died in the preceding April. We notice that he had just commenced
(in 1861) what was to be a long series of communications to the Academy,
and his paper on Involutions of lines in space had been presented to the
Academy by M. Chasles (11 '236). His closely following paper on the Double
Sixes of lines on a Cubic surface (11 242) he himself afterwards (i1 451)
notes as being an unconscious plagiarism from a paper of Schlifli, which
he had read as editor before its publication in the Quarterly Journal (Vol. 11
(1858), p. 116).

1864  His memoir in the Phil. Trans. on Newton’s rule is of date 1864
(11 376). In 1865 he delivered a lecture on the subject at King’s College,
London (11 498). A syllabus of this lecture forms the first mathematical
paper published by the London Mathematical Society. This Society was
inangurated by a speech of Professor De Morgan 16 Jan. 1865, with “the great
aim of the cultivation of pure Mathematics and their most immediate applica-
tions.” The Society consisted at its formation of twenty-seven members,
nearly all of whom were members of University College. Sylvester was
elected the second President at the Annual General Meeting held at Burlington

* As I have been able to verify by the courtesy of the Secretary.
t J. J. Walker, Proc. Lond. Math. Soc. xxviir (1896—97), p. 585,
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House on 8 November 1866 (in the rooms of the Chemical Society), and
held office until November 1868. He served on the Council for many years.

In 1869 Sylvester was President of the Mathematical and Physical 1869
Section of the British Association at Exeter. He took as the subject of his
Presidential address the charge that Huxley had brought against Mathe-
matics, of being the study that knew nothing of observation or induction
(11 650), nothing of experiment or causation. An incidental reference in
this address to Kant’s doctrine of space and time led to a lively controversy
in the pages of Nature, in which Sylvester’s trenchant style and wide range
of intellectual alertness may be well seen (11 Appendix). Characteristically
enough Sylvester reprinted the address, with annotations, and the cor-
respondence in regard to Kant, as an Appendix to his volume on the Laws
of Verse (Longmans, 1870)—a volume which should be consulted for an
appreciation of a side of Sylvester's activity which occupied him to the end
of his life.

In 1870 Sylvester retired from his post at Woolwich, in consequence 1870
of what he regarded as an unfair change in the regulations. As may be
seen in the article of G. B. Halsted, above quoted, Science, 11 April 1897,
and in the Leading Article which appeared in the Times, 17 August 1871
(see also Sylvester’s own letter to the Tvmes, 24 August 1871, and Nature,
Vol. 1v (1871), pp. 324, 326), there was much bitterness as to the question
of pension, which was however finally secured to him, if not on the scale
desired. For the next few years Sylvester resided near the Athenaeum
Club, apparently somewhat undecided as to his course in life. We hear
of him as reciting and singing at Penny Readings (cf. his remarks on the
utility of these in the Laws of Verse, p. 70), and as being a candidate for the
London School Board*, and, in The Gentleman’s Magazine for February 1871,
there appears “The Ballad of Sir John de Courcy,” translated from the
German by “Syzygeticus.”

In 1874 Sylvester gave a Friday evening discourse at the Royal Insti- 1874
tution on Peaucellier’s link bar motion. He was then sixty years old, yet,
even in the abstract of the lecture which remains (111 7), the vivacity with
which he dealt with the matter is very striking. His enthusiasm evoked a
wide interest in the subject.

In 1875 the Johns Hopkins University was founded at Baltimore. A 1875
letter to Sylvester from the celebrated Joseph Henry, of date 25 August
1875, seems to indicate that Sylvester had expressed at least a willingness
to share in forming the tone of the young university; the authorities seem
to have felt that a Professor of Mathematics and a Professor of Classics
could inaugurate the work of an University without expensive buildings or

* Sylvester’s election address as candidate for the London School Board for Marylebone in

the place of Professor Huxley, with a list of his scientific supporters, is found in Nature,
21 March 1872, p. 410.
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elaborate apparatus. It was finally agreed that Sylvester should go, securing,
besides his travelling expenses, an annual stipend of 5000 dollars “paid in
gold.” And so, at the age of sixty-one, still full of fire and enthusiasm, as
appears abundantly from the work he devoted to the papers here reprinted in
Volume 111, he again crossed the Atlantic, and did not relinquish the post
for eight years, until 1883. It was an experiment in educational method;
Sylvester was free to teach whatever he wished in the way he thought best;
so far as one can judge from the records, if the object of an University be
to light a fire of intellectual interests, it was a triumphant success. His
foibles no doubt caused amusement, his faults as a systematic lecturer must
have been a sore grief to the students who hoped to carry away note-books
of balanced records for future use; but the moral effect of such earnestness
as we see him shewing for instance in the papers 19—21 of Volume 111 (on
the true number of irreducible concomitants for the cubic and biquadratic),
and in paper 34 (on the system for two cubics), must have been enormous.
“His first pupil, his first class,” was Professor George Bruce Halsted; he
it was who, as recorded in the Commemoration-day Address (111 76)
“would have the New Algebra.” How the consequence was that Sylvester’s
brain “took fire,” is recorded in the pages of the American Journal of
Mathematics. Others have left records of his influence and methods.
Major MacMahon quotes the impressions of Dr E. W. Davis, Mr A. S,
Hathaway and Dr W. P. Durfee. Professor Halsted’s Article in Science
has already been quoted. From Dr Fabian Franklin’s long commemorative
address*, already referred to, another paragraph may be given: “One of
the most striking of Sylvester’s achievements was his demonstration and
extension of Newton’s improved rule concerning the number of the imaginary
roots of an algebraic equation....We who knew him well in later years can
find no difficulty in understanding the hold this problem had upon him.
It was the good fortune of his early hearers in this University to be present
when he came into the lecture-room, flushed with the achievement of a
somewhat similar task. A certain fundamental theorem in the Theory of
Invariants (11 117, 232), which had formed the basis of an important
section of Cayley’s work, had never been completely demonstrated. The
lack of this demonstration had always been, to Sylvester’s mind, a most
serious blemish in the structure. He had, however, he told us, years ago
given up the attempt to find the proof, as hopeless. But, upon coming
fresh to the subject in connection with his Baltimore Lectures, he again
grappled with the problem, and by a fortunate inspiration, succeeded in
solving it. It was with a thrill of sympathetic pleasure that his young
hearers thus found themselves in some measure associated with an intel-
lectual feat, by which had been overcome a difficulty that had successfully
resisted assault for a quarter of a century.”
* Johns Hopkins University Circulars, June 1897.
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The same writer gives an anecdote illustrating another side of the
picture, which may be repeated here. “The reading of the Rosalind poem
at the Peabody Institute was the occasion of an amusing exhibition of
absence of mind. The poem consisted of no less than 400 lines, all rhyming
with the name Rosalind (the long and short sound of i both being allowed).
The audience quite filled the hall, and expected to find much interest or
amusement in listening to this unique experiment in verse. But Professor
Sylvester had found it necessary to write a large number of explanatory
footnotes, and he announced that in order not to interrupt the poem he
would read the footnotes in a body, first. Nearly every footnote suggested
some additional extempore remark, and the reader was so interested in each
one that he was not in the least aware of the flight of time, or of the amuse-
ment of the audience. When he had dispatched the last of the notes, he
looked up at the clock, and was horrified to find that he had kept the
audience an hour and a half before beginning to read the poem they had
come to hear. The astonishment on his face was answered by a burst of
good-humoured laughter from the audience ; and then, after begging all his
hearers to feel at perfect liberty to leave if they had engagements, he read
the Rosalind poem.” It may be noted here that it was at Baltimore he
wrote “Spring’s Début, a Town Idyll,” two centuries of lines all rhyming
with “ Winn.” (January 1880.)

Sylvester’s own account of his life at Baltimore, and many other matters,
are sufficiently given in the Commemoration-day Address, 22 February 1877
(111 72); it is not necessary to dwell on this further here.

In 1878 appeared the first volume of the American Journal of Mathe- 1878
matics established by the University under Sylvester’s care. His first paper
is a long account of the application of the new atomic theory to the graphical
representation of the concomitants of binary quantics (111 148).

In 1880 he was awarded by the Royal Society the highest honour 1880
possible, the Copley Medal; on 11 June 1880, he was elected Honorary
Fellow of his old College of St John at Cambridge, Benjamin Hall Kennedy,
the famous schoolmaster and Greek scholar, being elected on the same day.
Their portraits are now both preserved in the College.

It is to this period of his life we must refer also the beginning of his
investigations in regard to matrices, especially binary matrices. He says
(1v 209) “my memoir on Tchebycheff’s method concerning the totality of
prime numbers within certain limits, was the indirect cause of turning my
attention to the subject, as (through the systems of difference equations
therein employed to contract Tchebycheff’s limits) I was led to the discovery
of the properties of the latent roots of matrices, and had made considerable
progress in developing the theory of matrices considered as quantities, when
on writing to Professor Cayley upon the subject he referred me to [his own]
memoir.” Here also, in the interesting communications to the Mathematical
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Club reprinted in the Johns Hopkins University Circulars, arose a new
interest in developing the Theory of Partitions, which issued in the Con-
structive Theory of Partitions (Iv 1—83) printed in the American Journal
(1883). In the course of the year 1883 the University of Oxford conferred
upon Sylvester the honorary degree of D.C.L.; and in December of that year,
soon after his sixty-ninth birthday, his great distinction was recognised
further in the same University by his election to succeed the illustrious
H. J. S. Smith as occupant of the chair of Savilian Professor of Geometry.
The Professorship had been founded in 1619 by Sir Henry Savile, Warden
of Merton College, the first professor being obtained by promoting Henry
Briggs from the post which Sylvester had vainly sought in 1854, that of
Gresham Professor of Geometry in London, so that, as Mr Rouse Ball remarks,
Briggs held in succession the two earliest chairs of mathematics that were
founded in England—the college founded by Sir Thomas Gresham having
been opened in 1596. Other holders of the Savilian chair were John Wallis,
1649,and Edmund Halley,1704. The companion chair at Oxford, of Savilian
Professorship of Astronomy, was held from 1870 to 1893 by the Rev. Charles
Pritchard, who was also an alumnus at St John’s College, Cambridge. These
two were now to be again members of the same house, as Fellows of New
College.

The election of Sylvester to Oxford was a matter of importance at Balti-
more. On 20 December 1883, a goodbye meeting was held in Hopkins’ Hall,
Baltimore, by invitation of the President, the guests including Mr Matthew
Arnold, Professor Newcomb and others. The following address was agreed
to, in Professor Sylvester’s presence*.

“The teachers of the Johns Hopkins University, in bidding farewell to
their illustrious colleague, Professor Sylvester, desire to give united expression
to their appreciation of the eminent services he has rendered the University
from the beginning of its actual work. To the new foundation he brought
the assured renown of one of the great mathematical names of our day,
and by his presence alone made Baltimore a great center of mathematical
research.

“To the work of his own department he brought an energy and a devotion
that have quickened and informed mathematical study not only in America,
but all over the world ; to the workers of the University, whether within his
own field or without, the example of reverent love of truth and of knowledge
for its own sake, the example of a life consecrated to the highest intellectual
aims, To the presence, the work, the example of such a master as Professor
Sylvester, the teachers of the Johns Hopkins University all owe, each in his
own measure, guidance, help, inspiration ; and in grateful recognition of all
that he has done for them and through them for the University, they wish
for him a long and happy continuance of his work in his native land, for

* Johns Hopkins University Circulars, January 1884, p. 31.
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themselves the power of transmitting to others that reverence for the ideal
which he has done so much to make the dominant characteristic of this
University.”

And thus at length, crowned with the gratitude of his American colleagues, 1884
Sylvester was acknowledged in one of the two ancient English Universities,
though not his own. And to this, at the age of seventy years, he did not
come without something new to say! On 12 December 1885, he delivered
an Inaugural lecture, On the Method of Reciprocants (1v 278), that is
of functions of differential coefficients whose form is unaltered by certain
linear transformations of the variables. This he followed up by a course
of lectures which, as finally edited, extend over more than two hundred pages
of the present Reprint. The matter evidently appealed to him as a general-
isation of the theory of concomitants, and he worked hard and enthusiastically
at the relations of the two theories, gathering round him a school of advanced
students. This was the last great continent of thought to be won by him,
though he wrote, in 1886, for the centenary volume of “ the leading Mathe-
matical Journal in the world,” Crelle’s Journal, a paper on the so-called
Tschirnhausen Transformation, which he ascribed to the inspiration of Bring
(1786) (1v 531), and a paper on a funicular solution of Buffon’s “ problem
of the needle” in 1890 (1v 663), besides other papers. In the Theory of
Reciprocants he had been anticipated in detail by Halphen (Thése, 1878),
as he acknowledges. The general idea of differential invariants had been
already formulated by Sophus Lie (see his paper on Differential Invariants,
Math. Ann. xx1v (1884) in which he states that his investigations go
back to 1869—72), as an application of his theory of Continuous Groups;
to this Sylvester paid but scant attention. On the other hand it may
be recalled that Sylvester had himself in cooperation with Cayley long
before stated and frequently employed the principle of infinitesimal trans-
formations, and in his first paper on Schwarzian Derivatives (1v 252) he
employs the idea of “extended” infinitesimal variations without remark.

One striking note in his Inaugural address at Oxford is the fulness of his
references to his colleagues in mathematical work—and of these, what he
said about Hammond, fully borne out as it was by the help he gave in the
Theory of Reciprocants, seems worthy of being recalled: “I should not do
justice to my feelings if I did not acknowledge my deep obligations to
Mr Hammond for the assistance which he has rendered me, not only in pre-
paring this lecture which you have listened to with such exemplary patience,
but in developing the theory;...saving only our Cayley (...) there is no one
I can think of with whom I ever have conversed, from my intercourse with
whom I have derived more benefit...” (1v 300)*.

* Another worker to whom he referred in warm terms was Arthur Buchheim. It was his
melancholy duty a few years later to write an Obituary Notice of this distingnished young
mathematician, who died at the age of twenty-nine. Nature, 27 September 1888, p. 515.
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1887  In 1887 the Council of the London Mathematical Society made the
second award of the De Morgan medal to Sylvester, the first award (in 1884)
having been made to Cayley.

1889  In 1889, at the request of a few College friends at Cambridge and
elsewhere, he sat to A. E. Emslie for an oil-painting, now hanging in the
Hall of St John’s College, which was exhibited in the Academy of that
year*. Tt is stated to be a good portrait, though, as he himself writes
(Kagle, Vol. x1x, 1897, p. 604), “I was in much trouble at that time...and
could scarcely keep awake from the effect of the light on my wearied eyes.”
This portrait is reproduced at the commencement of the present volume.
A copy of it 1s at New College, Oxford. An oil-painting by Patten, made
when he was twenty-six, has already been referred to. An engraving by
G. J. Stodart, from a photograph by Messrs I. Stilliard & Co., Oxford, appeared
in Nature, accompanying an appreciation by Cayley (Nature, Vol. XXXIX,
1889 ; Cayley's Collected Papers, X111, p. 48 gives the appreciation); he
himself is said to have much prized a particular photograph taken at Venice.
On the occasion of his leaving Baltimore a medal was struck in his honour,
of which an exemplar is in the library of St John's College, Cambridge,
giving in profile an idea of powerful features. Another medal, struck shortly
after his death, is now awarded triennially by the Royal Society of London,
for the encouragement of Mathematical Research. This also is a profile
with the same impression of strength. It is one side of this medal which
is reproduced at the beginning of this Notice (p. xv).

1890  On 10 June 1890 he was awarded the Honorary Degree of Sc.D. by the
University of Cambridge. Honorary degrees were conferred on this occasion
upon Benjamin Jowett, Henry Parry Liddon, Andrew Clark, Jonathan
Hutchinson, George Richmond, John Evans, James Joseph Sylvester and
Alexander John Ellis. The speech delivered upon Sylvester by the Public
Orator, with his own footnotes, is as follows (Orationes et Epistolae Canta-
brigienses (1876—1909), Macmillan, 1910, p. 83):

“Plus quam tres et quinquaginta anni interfuerunt, ex quo Academiae
nostrae inter silvas adulescens quidem errabat, populi sacri antiquissima
stirpe oriundus, cuius maiores ultimi, primum Chaldaeorum in campis, deinde
Palestinae in collibus, caeli nocturni stellas innumerabiles, prolis futurae
velut imaginem referentest, non sine reverentia quadam suspiciebant. Ipse
numerorum peritia praeclarus, primum inter Londinienses Academiae nostrae
studia praecipua ingenii sui lumine illustrabat. Postea trans aequor Atlan-
ticum plus quam semel honorifice vocatus, fratribus nostris transmarinis
doctrinae mathematicae facem praeferebatl. Nuper professoris insignis in
locum electus, et Britanniae non sine laude redditus, in Academia Oxoniensi

* Graves’ Catalogue of the Royal Academy, 1769—1904.
+ Genesis, xv. 5.

+ University of Virginia, 1841—45; Johns Hopkins University, 1877—83.
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scientiae flammam indies clariorem excitat*. Ubicumque incedit, exemplo
suo nova studia semper accendit. Sive numerorum fewpiav explicat, sive
Geometriae recentioris terminos extendit, sive regni sui velut in puro caelo
regiones prius idexploratas pererrat, scientiae suae inter principes ubique
conspicitur. Nonnulla quae Newtonus noster, quae Fresnelius, Iacobius,
Sturmius, alii, imperfecta reliquerunt, Sylvester noster aut elegantius expli-
cavit, aut argumentis veris comprobavit. Quam parvis ab initiis argumenta
quam magna evolvit ; quotiens res prius abditas exprimere conatus, sermonem
nostrum ditavit, et nova rerum nomina audacter protulitt! Arte quali
numerorum leges non modo poétis antiquis interpretandis sed etiam carmini-
bus novis pangendis accommodat}! Neque surdis canit, sed ‘respondent
omnia silvae§,’ si quando, inter rerum graviorum curas, aevi prioris pastores
aemulatus,
‘Silvestrem tenul musam meditatur avenal.’

Duco ad vos Collegii Divi Ioannis Socium, trium simul Academiarum
Senatorem, quattuor deinceps Academiarum Professorem, Tacobum Iosephum
Sylvester.”

During his residence at Oxford he founded the Oxford Mathematical
Society. “Members of that Society, even more perhaps than the attendants
at his formal lectures, have been impressed and excited to emulation as they
have seen his always commanding face grow handsome with enthusiasm, and
his eyes flash out irresistible fascination, while he expounded his latest dis-
covery or brilliant anticipation,” writes the Oxzford Magazine (5 May 1897).
From the same source we gather that, “ despondent over his lecturing work
he undoubtedly was, and the feeling of discouragement grew upon him.” In
1893 his eyesight began to be a serious trouble to him, and in 1894 he applied 1893
for leave to resign the active duties of his chair. After that he lived mainly
in London or at Tunbridge Wells, sad and dejected because his mathematical
power was failing. About August 1896 a revival of energy took place and 1896
he worked at the theory of Compound Partitions, and the Goldbach-Euler con-
jecture of the expression of every even number as a sum of two primes. He
was present at a meeting of the London Mathematical Society on 14 January
1897, and spoke at some length of his work, answering questions put to him
in regard to it. On 12 February he sent a paper, on the number of fractions
in their lowest terms that can be formed with limited integers, to the editor
of the Messenger of Mathematics, and corrected the proofs about the end of
the month (1v 742). At the beginning of March, he had a paralytic seizure 1897
while working in his rooms at Hertford Street, Mayfair. He never spoke
again, and died 15 March 1897. He was buried with simple ceremonial at

* Succeeded H. J. S. Smith as Savilian Professor, 1883—97.
1 Prof. Cayley in Nature, 3 Jan. 1889.

% The Laws of Verse, 1870 ; Eagle, x1v 251, xv 251, x1x 601 f., 604,
§ Virgil, Ecl. x 8. || 1. Ecl. 12,
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the Jewish Cemetery at Dalston on March 19, the Royal Society, the London
Mathematical Society, and New College, Oxford, being represented (Nature,
25 March 1897).

One rises from the task of editing Sylvester’s mathematical writings
for the Press, with a feeling that here was a great personality as well as a
remarkable mathematician, wide and accurate in thought, deep and sensitive
in feeling, and inspired with a great faith in things spiritual. “...is a very
great genius,” he is reported to have said when pressed on one occasion,
“I only wish he would stick to mathematics, instead of talking atheism.”

Of the detailed relations of his work with that of contemporary writers,
especially for the Theory of Equations, Dr M. Noether has written a masterly
and easily accessible account (Math. Annalen, Bd L, 1898). In his Presi-
dential address to the London Mathematical Society (Proceedings, XXVIII,
1896—97) Major MacMahon has given an appreciation of his work on the
Theory of Partitions, which should be consulted. Sylvester’s long devotion
to the Theory of Invariants, in conjunction with Cayley, transforming the
whole analysis of Projective Geometry, has left an ineffaceable mark on
Mathematics ; but in all questions of algebraical form, working more often
by divination than by computation, he is wonderful—his theorems in regard
to Sturm’s Functions, Canonical Forms, and Determinants suggest themselves
at once. So general are some of his results that even the recognition of other
theorems as particular cases of them may sometimes be difficult, as very
distinguished writers have found.

But another aspect of his mathematical work must, I think, be referred
to, if only to place in due proportion what has been said already. It would
seem that the multiplicity of the ideas which pressed upon Sylvester’s mind
left him little leisure to read, more than cursorily, the writings of other
mathematicians. He gives a proof of the theorem for six points lying upon
a conic section, known as Pascal’s theorem, by the method of indeterminate
coordinates, and no theorem of analytical geometry seems strange to him,
but he makes no reference to the philosophical interest of Poncelet’s imaginary
elements at infinity. He deals with von Staudt’s formulae for the mensuration
of pyramids, but von Staudt’s scheme for dispensing with the notion of length
in geometrical theory does not attract him. The ferment and broad con-
clusions as to the foundations of geometry, surely one of the most important
of nineteenth century speculations, stir no echo in his pages. Again, he
gives remarkable formulae in the Theory of Numbers, but Kummer’s investi-
gations in regard to ideal numbers, and the vast new regions opened by
them, even Gauss’s consideration of complex integers, he does not speak of.
His silence as to Lie’s theory of continuous groups has already been remarked ;
he is also silent as to the theory of systems of linear partial differential
equations; and though he gives important results as to the permutations of
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an assigned number of elements, he does not refer to the question of the
algebraic solution of the quintic equation, and writes nothing as to the
abstract theory of groups. Most remarkable of all, though he gives, and
evidently values, an evaluation of an elliptic integral, and proves, in a
wonderful way, by partitions, formulae of theta-functions, the majesty of the
new world which we associate with such names as those of Cauchy, Abel and
Jacobi, of Riemann and Weierstrass and others, does not greatly stir his
longing, so far as his writings declare. Indeed the abstract notion of a
function whether for a real, or a complex variable, never occurs in his papers ;
such a definite instance as Fourier’s use of trigonometric series in the Theory
of Heat, of 1822, fails to draw him from his combinatorial standpoint; to
him the solution of a differential equation is its solution in explicit form ;
and his formula for the quotity of a partition is an isolated result. For an
ordinary man, trained in a country where the importance attached to time
examinations tends to discourage the study of all mathematical doctrine,
this might be easy to understand ; but in Sylvester’s case it is very notice-
able, and should not be passed over without mention.

Sylvester’s position however is secure. As the physicist glories in the
interest of his contact with concrete things, so Sylvester loved to mark his
progress with definite formulae. He was however before all an abstract
thinker, his admiration was ever for intellectual triumphs, his constant
worship was of the things of the mind. This it was which seems to have
most impressed those who knew him personally. And because of this, his
work will endure, according to its value,—mingling with the stream fed by
the toil of innumerable men,—of which the issue is as the source. He is of
those to whom it is given to renew in us the sanity which is called faith.

H. F. BAKER.
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1.

A CONSTRUCTIVE THEORY OF PARTITIONS, ARRANGED IN
THREE ACTS, AN INTERACT AND AN EXODION,

[American Journal of Mathematics, v. (1882), pp. 251—330;
vI. (1884), pp. 334—336.]

Acr I. ONx PARTITIONS REGARDED AS ENTITIES.
: . seeming parted,
But yet a union in partition.
Twelfth-night.

(1) I~ the new method of partitions it is essential to consider a par-
tition as a definite thing, which end is attained by regularization of the
succession of its parts according to some prescribed law. The simplest law
for the purpose is that the arrangement of the parts shall be according to
their order of magnitude. A leading idea of the method is that of corre-
spondence between different complete systems of partitions regularized in
the manner aforesaid. The perception of the correspondence is in many
cases greatly facilitated by means of a graphical method of representation,
which also serves per se as an instrument of transformation.

(2) The most obvious mode of graphically representing a partition is by
means of a network or web formed by two systems of parallel lines or
filaments. Any continuous portion of such web will serve to represent a
partition, as for example the graph

»*
*

* ok ok ok

*
* *
* *

'R

* *

will represent the partition 3 5 5 4 3 of 20 by reading off the successive
numbers of nodes parallel to the horizontal lines of the web. This, however,
is not a regularized partition; the partition will be represented in its
regularized form by such a graph as the following :

* * »* * *
* * * * *
* * * *
* *
* * *



2 A Constructive theory of Partitions, arranged in  [1

which corresponds to the order 5 5 4 3 3, but it may be represented much
more advantageously by the figure

* * * * *
¥* * * * *
* * * *

* * *

* * [

which is a portion of the web bounded by lines of nodes belonging to the two
systems of parallel filaments. Any such portion becomes then subject to the
important condition that the two transverse parallel readings will each give a
regularized partition, one being in the present example 5 5 4 8 3, and the
other 55 53 2. Any such graph as this will be termed a regular partition-
graph, and the two partitions which it represents will be said to be conjugate
to one another. The mere conception of a regular graph serves at once by
effecting an interchange (so to say) between the warp and the woof, through
the principle of correspondence, to establish a well-known fundamental
theorem of reciprocity. In the last figure, the extent* of (meaning the
number of nodes contained by) the uppermost horizontal line or filament is
the maximum magnitude of any element (or part) of the partition, and the
extent of the first vertical line is the number of the parts. Hence, every
regularized partition beginning with ¢ and containing j parts is conjugate to
another beginning with j and containing ¢ parts. The ¢ontent of the graph
(that is, the sum of the parts) of the partition is the same in both cases (it
will sometimes be convenient to speak of the partible number as the content
of the elements of the partition). From the above correspondence it is clear
that if two complete partition-systems be formed with the same content in
one of which the largest part is 7 and the number of parts j, and in the other
the largest part is j and the number of the parts 7, the order (that is, the
number of partitions) of the first system will be identical with the order of
the second: so that calling the content n, it follows that » —¢ may be decom-
posed in as many ways into j— 1 parts as n —j into ¢ — 1 parts.

(83) This, however, is not the usual nor the more convenient mode of
expressing the reciprocity in question. We may, for the two partition
systems spoken of, substitute two others of larger inclusion, taking for the
first, all partitions of n in which no one part is greater than ¢, and the
number of parts is not greater than j (that is, is j or fewer), and for the
second system, one subject.to the same conditions as just stated, but with 2
and j (as before) interchanged : it is obvious that each regularized partition

* Extent may be used to denote the number of nodes on a line or column or angle of a graph;
content the number of nodes in the graph itself; but I have by inadvertence in what follows
frequently applied content alike to designate areal and linear numerosity.
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of one system will be conjugate to one regularized partition of the other
system, and accordingly the order of the two systems will be the same*.

(4) When 7= it follows from the general theorem of reciprocity last
established, that the number of partitions of n into j parts or fewer will be
the same as the number of ways of composing n with the integers 1, 2, ... j,
and is therefore the coefficient of #” in the expansion of

1
l—z.1-a*...1—ai"

Thus, then, we can at once find the general term in
1
l1-a)(l—az)(l —az?)...’
expanded according to ascending powers of a; for, if the above fraction be
regarded as the product of an infinite number of infinite series arising from
the expansion of the several factors

1 1 1
1—a’ 1—az’ 1—az?’""

it will readily be seen that the coefficient of #”a/ will be the number of ways
in which n can be resolved into j parts or fewer, that is, by what has been
just shown is the coefficient of 2™ in
1 .
l—z.1—a%...1—g’

and this being true for all values of », it follows that the entire coefficient of
a’ is the fraction last written developed in ascending powers of «; so that

iL
(1-a)(1-az)(l—az?)...
L . at+ -
l-2z l—2z.1-2° l—-2.1-22.1-2

=1+ E 500

as 1s well known.

The general term in
1
1-a)(1—az)...(1 —az)
is also well known to be
1—aitr 1 —git2, 1 —oit i
I—z. l—at:. 121 7

* The above proof ef the theorem of reciprocity is due to Dr Ferrers, the present head of
Gonville and Caius College, Cambridge. It possesses the double merit of having set the first
example of graphical construction and of putting into salient relief the principle of correspond-
ence, applied to the theory of partitions. It was never made public by its author, but first
promulgated by myself in the Lond. and Edin. Phil. Mag. for 1853. [Vol. 1. of this Reprint,
p. 597.]

1—2
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or in other words, the number of ways of resolving » into j parts none
greater than ¢ is the coefficient of «™ in the fraction
1—a 1—ait? . 1—git
l—z.1—2a%...1—2/ °’
which [denoting 1 — 22 by (¢)] is the same as
1) (2)... (7+7)
DD - D) G
and furnishes, if I am not mistaken, Euler’s proof of the theorem of reci-
procity already established by means of the correspondence of conjugate
partitions.

(3) [It may be as well to advert here to the practical method of obtain-
ing the conjugate to a given partition. For this purpose it is only necessary
to call a; the number of parts in the given partition not less than 7; a,, a,,
dg, .. ; ... continued to infinity (or which comes to the same thing until ¢
is equal to the maximum part), will be the required conjugate.]

(6) The following very beautiful method of obtaining the general term
in question by the constructive method is due to Mr F. Franklin of the
Johns Hopkins University * :

He, as it were, interpolates between the theorem to be established in
general and the theorem for ¢ =0, and attaches a definite meaning to the
above fraction regarded as a generating function when the factors in the
numerator are limited to the first ¢ of them, ¢ being any number not exceed-
ing 1, so that in fact the theorem to be proved, according to this view, is only
the extreme case of (the last link in the chain to) a new and more general
one with which he has enriched the theory of partitions. The method will
be most easily understood by means of an example or two: the proof and
use to be made of the construction will be given towards the end of the Act.

Let n=10,i=35,j=4.

Write down the indefinite partitions of 10 into 4 or fewer parts, or say
rather into 4 parts, among which zeros are admissible : they will be

(1) 10.0.0.0 5.5.0.0
(1) 9.1.0.0 5.4.1.0
(1) | 8.2.0.0 5.3.2.0
(1) | 8.1.1.0 sres il
(2)| 7.3.0.0 HELE W
)| 7.2.1.0 4.4.2.0
(1) P g 4 4.4.1.1
2)| 6.4.0.0 4.3.8.0
8){ 68140 4.3.2.1
(3)| 6.2.2.0 4.2.2.2
@] 6.2.1.1 3.8.3.1

3.8.2.2

* For a vindication of the constructive method applied to this and an allied theorem, see
p- [18] et seq.
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The partitions to which (1) is prefixed are those in which the first excess,
that is, the excess of the first (the dominant) part over the next is too great
(meaning greater than 7, here 5); those to which (2) is prefixed are those in
which after the batch marked with (1) are removed, the second excess, that
is, the excess of the first over the third element is “too great”; those to
which (3) is preﬁxed are those in which after the batches marked (1) and (2)
are removed, the third excess is “ too great,” and lastly those (only one as it
happens) marked with j (here 4) are those in which, so to say, the absolute
excess of the dominant, that is its actual value, is “ too great,” that is, exceed-
ing ¢ (here 5); the partitions that are left over will be the partitions of n
(here 10) into 4 parts, none exceeding ¢ (here 5) in magnitude.

It is easy to see from this how to construct the partitions which are to be
eliminated from the indefinite partitions of the n (10) into 4 (j) parts so as to
obtain the quaternary partitions in which no part superior to 5 (7) appears.
To obtain the first batch we must subtract 7 +1 (6) from » (10) and form the
system of indefinite partitions of 4 into four parts, namely :

4.0.0.0
3.1.0.0
.0.0
o ()
WL

(term-to-term addition) batch (1) will

O'—‘N)l\‘)
ol—‘r—ll\')b—l

and adding to each of these 6.0.
be obtained.

To obtain the second batch, form the quaternary partitions of n— (i + 2),
that is, 3, namely :

3.0.0.

2.1.0.

{but omit those in which the first excess is “too great” (greater than ¢); here
there are none such to be omitted] and bring the second element into the
first place; thus we shall obtain the system

0300
1200
1110

The augments of those obtained by adding 6.1.0.0 to each of them will
reproduce batch (2).

Again, form the quaternary partition-system of n — (¢4 3), rejecting all
those (here there are none such) in which the second excessis “too great.”
We thus obtain
2000
1100
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and now bringing the third element in each of these into the first place so as
to obtain

0200 .

0110

The augments of these last partitions obtained by adding 6.1.1.0 to each
of them will give the third batch, and finally taking the quaternary partition-
system to n — (¢ +j), that is, 1, rejecting (if there should be any such) those
in which the third excess is “too great,” we obtain 1.0.0.0, and bringing
the fourth element to the first place so as to get 0.1.0.0, and adding
6.1.1.1, the fourth batch 6.2.1.1 is reconstructed.

As another example take n=15,7=3, j=3,

The indefinite ternary partitions of 15 are

15.0.0 (1) 9.4.2 (1)

14.1.0 (1) 9.3.3 (1)

13.2.0 (1) 8.7.0 (2

137951 @) 8.6.1 (2)

12.3.0 (1) 8.5.2 (2)|  mpere are, of course, no
12.2.1 (1) 8.4.3 (1) partitions left in which no
11.4.0 (1) 7.7.1 (2)>part exceeds 3, as the maxi-
11.3.1 (1) 7.6.2 (2) mum content subject to that
11.2.2 (1? 1558 o o Wioatbraliube only 9.
10.5.0 (1) 7.4.4 (3)

10.4.1 (1) 6.6.3 (3)

10.3.2 (1) 6.5.4 (3)

9.6.0 (2) 5.5.5 (3)

9:5.1 (1)

The partitions marked (1) (2) (3) are those in which the first, second and
absolute excess respectively exceed 3.

Firstly, the indefinite ternary partitions of 15—4 or 11 augmented by
4.0.0 will obviously reproduce the system of partitions marked (1).

Secondly, taking the indefinite ternary partitions of 10 in which the

first excess, and those of 9 in which the second excess, does not exceed 3, we
shall obtain

and

[SURRVURNT i )
[URN SORNC i V)

5.
4.
4.
3.

B B Ot Ot Ot O O
(VU VLR S RN
WO
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which by metastasis become

O N = DO
OO b i Ut
[ERVLNE R U]

QO O OL Lo
[N ST ST A
WO~ O

and adding to each term of these two groups 4.1.0 and 4.1.1 respectively,
the systems of partitions marked (2) and (3) respectively result. -

(7) It may, I think, be desirable to give here my own construction for
the case of repeated partitions, which, having regard to its features of
resemblance to the one, preceding, it is proper to state preceded it in the
date of its discovery and promulgation. The problem which I propose to
myself is to construct a system of partitions of a given number into parts
limited in number and magnitude, by means of partitions of itself and other
numbers into parts limited in number but not in magnitude.

As before, let ¢ be the limit of magnitude, j the number of parts (zeros
admissible), and n the partible number; form a square matrix of the jth
order in which the diagonal elements are all 7+ 1, the elements below the
diagonal all of them unity, and those above the diagonal all of them zero,
say M,.

From this matrix construct M,, M,, M;, ... M;, such that the lines in M,
(g being any integer from 1 to j inclusive) are the sums of those in M,
added (term-to-term) ¢ and ¢ together.

Let (7, ¢) be the rth line in M, and [r, ¢] the sum of the numbers which
it contains.

Form the complete system of the partitions of n — [r, ¢] into j parts, and
to each such add (term-to-term) (7, g).

In this way, by giving r all possible values we shall obtain a system of
partitions of » into j parts corresponding to M,, which may be called P,.
I say that P,— P,+ P, ... + (=)’ P; will be the complete system of partitions
of m into j parts in which one element at least exceeds 7 ; where it is to be
observed that having regard to the effect of the — and + signs (which are
used here to indicate the addition and subtraction, or say rather the ad-
duction and sub-duction not of numbers but of things), each such partition
will occur once and once only; so that calling P the complete system of
indefinite partitions of n into j parts, the complete system of partitions of n
into j parts in which no part exceeds ¢ in magnitude will be

P—P+P,..+(-)yP;*

* It must, however, be understood that the same partition is liable to appear in more than
one, and not exclusively in its regularized phase, or as it may be expressed, the regularized
partition undergoes metastasis.
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(8) This construction, which I will illustrate by two examples, proceeds
upon the fact which, although confirmed by a-multitude of instances, remains
to be proved, that if k, k,, ... k; be any partition of n into j parts and the
number of unequal parts greater than ¢ be u, then the number of times in
which this partition, in its regular or any other phase, appears in P, is

plp = 11) 2 (p«q— i) (interpreted to mean 1 when ¢=0), and consequently

its total number of appearances in P — P, + P, ... is (1 — 1)#, that is, is 0.

From this it follows that the total number of partitions of n into j parts
none exceeding 7 in magnitude will be ¢'— C, + C, —..., where (, is the sum of
the number of ways in which the various numbers n,, n,, n;... can be decom-
posed into j parts, the numbers n,, n,, ns, ... being n diminished by the sums
of the quantities 1+ 1,7 +2, ..., 2 +j added ¢ and ¢ together; O, is therefore

n—mn, n—1g N—ngy
the coefficient of #» in 7'(01 z:)-fl w—:') z (1'*";].'); and consequently the number

of partitions of n into j parts none exceeding 7 in magnitude will be the
v . —_—g ] — it ] -t
coefficient of 2" in il oL “" as was to be shown.
l—z.1-2%...1-a)
(9) As a first example let ¢=2, j=3, n=12, the matrices and the
partitions corresponding to their several lines will be as underwritten; the
indefinite partitions of the reduced contents, n—[r, ¢], are written opposite
to the respective matrix lines to which they correspond, and their augments,
found by adding the line to this partition system, are written immediately
under them. The zeros are omitted for the sake of brevity.

3.0.0 9 81 72 711 63 621 54 531 522 441 432 333
12 111 102 10.1.1 9.3 921 8.4 831 822 741 732 633
1.8.0 8 71 62 611 53 521 4.4 431 422 3.3.2

93 84 75 741 6.6 651 57 561 552 462

7 61 52 511 43 421 331 322
813 7.23 6.3.3 6.2.4 543 534 444 435

5 41 32 311 221

113

430 93 g4 75 741 651
4 31 22 211
4131813793 633 624
3 21 111
243|543 453 3.5.4
16
548 |pia

In 6.8.3 there are two unlike elements greater than 2; accordingly 6.3.3
occurs 2 times in P, and 1 time in P,.
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In 7.3.2 there are again two unlike elements greater than 2, and 7. 3.2,
7.2.3 (the metastatic equivalent to the former) are found in P, and 7.2.3
in P,.

Again, in 5.4.3 there are 8 unlike elements greater than 2, and we find
5.4.3 5.3.4 4.3.5 in P,
5.4.3 4.5.3 SIS /2
5.4.3 » Ps.

But such terms as 11.1 10.1.1 9.2.1 8.2.2 in which there is only
one distinct element greater than 2 are found 1 time only in P, and not at
all in P, or P,.

As another example let n =12, 7= 4, j =3, then a similarly constructed
table to the foregoing will be as follows, in which, however, all matrices or
lines of matrices which have a sum too large to give rise to partition systems
are omitted.

oy 0@ AT 4 A SvveSiilied welt LaBoodi Bk - M1 812.2
B | 12 11.1 10.2 10.1.1 9.3 9.2.1 8.3.1 8.2.2
e o 6 5.1 4.2 4.1.1 8.3 3.2.1 2.2.2
g O S e B T elE | s w1 8.2
T 5 4.1 3.2 3.1.1 221
++:%1 6.1.5 5.2.5 4.3.5 4.2.6. 3.3.6
) 1
6.5.0 v 5

i 0
6.1.5 6.1.5

7.5and 6.5.1 are the only two partitions of 12 into 3 parts in which there
are two unlike parts greater than 4; each of these accordingly is found twice
(in one or another phase) in P; and once in P,. Every other partition of 12
into 8 parts in which one of them at least is greater than 4 will be found
exclusively and only once in P;.

(10) The two expansions for (1 —ax)(l—aa?)...(1—az’) and its
reciprocal may readily be obtained from one another by the method of
correspondence.

The coefficient of 2"a7 in the former is the number of partitions of n into
J unequal, and in the latter into j equal or unequal parts none greater than 7
or less than unity. The correspondence to be established has been given by
Euler for the case of ¢=o (Comm. Arith., 1849, Tom. 1. p. 88), and is
probably known for the general case, but as coming strictly within the pur-
view of the essay, seems to deserve mention here.
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If ky, ko, ks, ..., k; be a partition of n into j equal or unequal parts written
in ascending order, none exceeding 4, on adding to it 0, 1, 2... (j—1),

0
it becomes a partition of n +7 3 J into J parts none exceeding 7 +j — 1, and

et ‘
conversely, if A;, A,, ..., A; be a partition of n +7 5 J into J unequal parts none

exceeding i+j—1, written in ascending order, on subtracting from it
0,1,2...(j—1), it becomes a partition of n into equal or unequal (say rela-
tively independent) parts none exceeding . .

Hence the complete system of partitions of n into j unlike parts none
exceeding ¢ has a one-to-one correspondence with the complete system of the

Sl ;
partitions of n -7 2'7 into j parts none exceeding ¢—j+ 1. Consequently

the coefficient of @/ in the expansion of (1 —az) ... (1— az?) may be found

from that of a/ in the expansion of its reciprocal by changing ¢ into ¢ —j + 1

)

and introducing the factor z 2 .
(11) The expansion of the reciprocal may of course be found algebrai-

cally from the multiplication of the expansion which has been given of
1

Sl L e by (1 — a), or immediately by the correspondence
between partitions into an exact number j of parts limited not to exceed 7,
and partitions into j or fewer parts so limited.

By subtracting a unit from each term of k, k,, ..., k;, a partition of n
where no £ exceeds ¢, results a partition g, ¢, ... ¢;, a partition of n—j
where no q exceeds 7 — 1. Hence the coefficient of ¢/ in

1
l—azx.1l—aa?...1—aat

may be found from that in
1
l-a.1-az...1-az

by introducing the factor #/ and changing ¢ into 7—1, so that choosing for
the latter the alternative form
1— it 1 —git2 |1 — it
l-z.1—-2*...1—2*

’

the former becomes
11—zt ] —gite || ] — gitit p

: x

l—2.1—2%...1—2" 4

and consequently the coefficient of @/ in 1 —ax .1 — as? ... 1 — az® will be

1—gitt |1 —git2 | 1—g ﬂ%
1—z.1—2...1— 29
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(12) Before quitting this part of the subject it is desirable to make
mention of Dr F. Franklin’s remarkable method of proving Euler’s celebrated
expansion of (1 —2)(1—a*) (1—2% ... ad inf. by the method of correspond-
ence. This has been given by Dr Franklin himself in the Comptes Rendus of
the Institut (1880), and by myself in some detail in the last February
Number of the J. H. U. Circular*. The method is in its essence absolutely
independent of graphical considerations, but as it becomes somewhat easier
to apprehend by means of graphical description and nomenclature, 1 shall
avail myself here of graphical terminology to express it.

If a regular graph represent a partition with unequal elements, the lines
of magnitude must continually increase or decrease. Let the annexed figures
be such graphs written in ascending order from above downwards.

* *

* * *
* * * (A)
* * * * * *
* * * * * * *

* * * * *

(B) * * * * * * * (O)
* * * * * * * * * * *
* * * * * * * * * * * * * *

In 4 and B the graphs may be transformed without altering their con-
tent or regularity by removing the nodes at the summit and substituting for
them a new slope line at the base. In C the slope line at the base may be
removed and made to form a new summit; the graphs so transformed will be
as follows :

* * *
* * * * * (AI)
* * * * * * *
* * * * * * *
* *
B’ * * * C’
( ) * * * * * * ( )
* * * * * * * * * * *
* * * * ¥ * * * * * * * * *

4’ and B’ may be said to be derived from 4, B by a process of contrac-
tion, and " from C by one of protraction.

Contraction could not now be applied to 4’ and B, nor protraction to ¢’
without destroying the regularity of the graph; but the inverse processes
may of course be applied, namely, of protraction to A’ and B’ and contraction
to (", so as to bring back the original graph 4, B, C.

In general (but as will be seen not universally), it is obvious that when
the number of nodes in the summit is inferior or equal to the number in the
base-slope, contraction may be applied, and when superior to that number,
protraction: each process alike will alter the number of parts from even to

[* Vol. 1. of this Reprint, p. 664.]
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odd or from odd to even, so that barring the exceptional cases which remain
to be considered where neither protraction nor contraction is feasible, there
will be a one-to-one correspondence between the partitions of n into an odd
number and the partitions of n into an even number of unrepeated parts; the
exceptional cases are those shown below where the summit meets the base-
slope line, and contains either the same number or one more than the number
of nodes in that line; in which case neither protraction nor contraction will
be possible, as seen in the annexed figures which are written in regular order
of succession, but may be indefinitely continued :

* * * * * * * * * *
* * * * * * * * * * *
* * *
* * * * * * * *
* * < * * * * *
* * * * * * * % * * *
* * * L ] = * »

* * * * *

* * * * * *

* * * * % * *

* * * * * * * *

for the protraction process which ought, for example, according to the general
rule, to be applicable to the last of the above graphs, cannot be applied to it,
because on removing the nodes in the slope line and laying them on the
summit, in the very act of so doing the summit undergoes the loss of a node
and is thereby incapacitated to be surmounted by the nodes in the slope, which
will have not now a less, but the same number of nodes as itself; and in like
manner, in the last graph but one, the nodes in the summit cannot be removed
and a slope line be added on containing the same number of nodes without
the transformed graph ceasing to be regular, in fact it would take the form

* *
* * > * * *
* * * * « * *
* * * * * * *

and so the last graph transformed according to rule [by protraction] would
become :

* * * *

* * * *

* * * * *

* * * * * *

* * * * * * *

which, although regular, would cease to represent a partition into unlike
numbers.

The excepted cases then or unconjugate partitions are those where the
number of parts being j, the successive parts form one or the other of the
two arithmetical series

Hi+Lj+2, . 2 =1orj+1,5+2 ... %,

in which cases the contents are y* 2_] and 7 + respectively, and consequently
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since in the product of 1 —#.1—2a?.1~a*... the coefficient of 2" is the

number of ways of composing n with an even less the number of ways of

composing it with an odd number of parts, the product will be completely
g oy b LA

represented by = (=)iz ? *,

J

=+wm

(13) It has been well remarked by Prof. Cayley that barring the uncon-
jugate partitions, the rest really constitute 4 classes, which using ¢ and z to
signify contractile and extensile and ¢ and o to signify of-an-even or of-an-odd
order, may be denoted by

c.e ¢.o

xr.e &x.0.

Hence as each c. e is conjugate to an z o and vice versd, and cach c.o to
an . e and vice versd, the theorem established really splits up into two, one
affirming that the number of contractile partitions of an odd order is the
same as the number of extensile ones of an even order, the other that the
number of contractiles of an even is equal to the number of extensiles of an
odd order. - It might possibly be worth while to investigate the difference
between the number of partitions which each set of one couple and the
number of partitions which each set of the sub-contrary couple contain : the
sets which belong to the same couple and contain the same number of
partitions being those both of whose characters are dissimilar.

(14) There are one or two other simple cases of correspondence which
are interesting, inasmuch as the construction employed to effect the corre-
spondence involves the operations of division and multiplication, which have

not cecurred previously.

If Se=Q-2)1-2)1—-2) (1 —-a") (1 —2a°)...
and pr=1+2)1+25) A +2)(1 +x) (1 +2°)...
Jr.pz=1,

from which we obtain ¢x =1/fr and 1/dpz = fx.

The first of these equations has been noticed by Euler as involving the
elegant theorem that a number may be partitioned in as many ways into
only-once-occurring odd-or-even integers as into any-number-of-times-occur-
ring only-odd integers.

* Another proof of this theorem, deduced as an immediate algebraical consequence of a more
general one, obtained by graphical dissection, will be given in Act 2; and in the Exodion
I furnish a purely arithmetical proof by the method of correspondence of Jacobi’s series for

(]_ ia;""m) (l:E:l:’”'m) (1 bl 121-) (1 1;:x‘m.m) (1:]:3:“*"’") (1 = I{n)
(which includes Euler’s theorem as a particular case). I prove this theorem in a more extended
sense than was probably intended by its immortal author, inasmuch as I regard m and n as
absolutely general gymbols.
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The second, which I think he does not dwell upon, expresses that the
difference between the number of partitions with an even number of parts
and that of partitions with an odd number of parts of the same number  is
the same as the number of partitions of n into exclusively odd [unrepeated]
numbers (such difference being in favour of the partitions of even or of odd
order, according as the partible number is even or odd).

This latter theorem brings out a point of analogy between repetitional
and non-repetitional partition systems which appears to me worthy of notice.

Any one of the former contains a class of what may be termed singular
partitions, in the sense that they are their own associates, or more briefly,
self-conjugate in respect to the Ferrers transformation. Any one system of
the latter may also be said to contain a set of singular partitions (0 or 1 in
number) in the sense of being unconjugate in respect to the Franklin process
of transformation. Since then in this case the difference between the
number of partitions of an odd and those of an even order of the same
number is equal to the number (1 or 0) of singular partitions of that number,
so we might anticipate as not improbable that the like difference for the
repetitional partitions of a number should be equal to the number of singular
partitions of that number—and such is actually the case; for it will be shown
in a future section that the number of self-conjugate partitions of a number
is the same as the number of ways in which it can be composed with odd
integers.

(15) The correspondence indicated by the equation ¢z =1/fr can be
established as follows :

Let 2*.1, 2%.1m, 2”.n, ... be any partition of unrepeated general numbers,
where I, m, n ... are any odd integers not exceeding unity; and let & in
general denote ¢ parts £, then without changing its content the above parti-
tion can be converted into I, m], n#] . . which consists exclusively of odd
numbers.

It will of course be understood that the original partition may contain
any the same odd number as I multiplied by different powers 2%, 2, 2 ..
of 2, with the sole restriction that the A, A’, A, ... must be all unequal,

Conversely, any such partitions as I[e], ml, p0) may be converted back
into one and only one partition of the former kind. For there will be one
and but one way of resolving ¢ into the sum of powers of 2 (the zero power
not excluded), and supposing & to be equal to 2\ 4 2V 4 2V 4 . Jle] may be
replaced by 2M, 217, 2)7, and the same process of conversion may be simul-
taneously applied to each of the other products m(=, nl¥, ...

Hence each partition of either one kind is conjugate to one of the other,
and the number of partitions in the two systems will be the same, as was to
be shown.
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(16) But we have here another example of the fact that the theory
of correspondence reaches far deeper than that of mere numerical congruity
with which it is associated as the substance with the shadow. For a corre-
spondence exists of a much more refined nature than that above demonstrated
between the two systems, and which, moreover (it is important to notice)
does not bring the same individuals into correlation as does the former
method.

The partition system made up of unrepeated general numbers may be
divided into groups of the first, second, ... ¢th ... class respectively, those of
the ith class containing ¢ distinct sequences of consecutive numbers having
no term in common, with the understanding that no two sequences must form
part of a single sequence (so that the largest term of one sequence and the
smallest one of the next sequence must differ by more than a single unit),
and that a single number unpreceded and unfollowed by a consecutive
number is to count as a sequence.

The partition system, made up of repeatable odd numbers may, in like
manner, be resolved into groups of the 1st, 2nd, ... ¢th, ... class respectively,
those of the ¢th class containing ¢ distinet numbers; and the new theorem of
correspondence is that there is a correlation between the numbers of the 7th
class of one system and the sth class of the other; so that the number of
partitions in a class of the same name must be the same to whichever system
1t belongs; and thus Euler’s theorem becomes a corollary to this deeper-
reaching one, obtained from it by adding together the number of partitions in
all the several classes in the one system and in the other.

(17) As regards the first class, the theorem amounts to the statement
that the number of single sequences of consecutive numbers into which »
may be resolved is equal to the number of odd factors which n contains ; so
that if N=2¢.l1*. m*.n*... where I, m, n, ... are odd numbers, N can be
represented by (A +1)(u+1)(¥ +1)... such sequences; thus, for example,
if N=15=3.5 we have

1+2+3+4+5=4+54+6=7+8=15.

So 30 =4+5+6+T+8=6+T4+8+9=9+10+411,
21=2+3+4+5+6+7=8+9+10=13 + 14,
45=1424+3+...+9=54+6+7+8+9+10

=7+8+9+10+11=14+ 15416 =22+423.

So too if IV is a prime number it can only be resolved into the two sequences

SR o N1

2 2
different sets of ¢ distinct sequences as there are solutions in positive integers

and N. More generally N can be resolved into as many
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of the equation 2 (2,9, + @¥s + ... + 2;Y;) + 2, + 2, + ... +2; = N, of the truth
of which remarkable theorem, in its general form, I have for the present only
obtained empirical evidence, but may possibly be able to discover the proof
in time to annex it in the form of a note at the end, so as not to keep the
press waiting*.

(18) The proof for the case of the first class and the mode of establish-
ing the correspondence between the partitions of this class of the two kinds
is not far to seek. I use as previously a® to signify @ repeated b times.

Consider then any sequence of consecutive numbers for the cases where
the number of terms is odd and where it is even separately, calling s the
sum of the first and last terms, and 7 the number of terms; where < is odd, 5o

)

that s is odd) by s(;). Hence each partition of the first class of the first
kind may be transformed into one of the first class of the second kind.

that s is even, the sequence may be replaced by 2*2”, and where ¢ is even (so

It is necessary to show the converse of this, which may be done as
follows: Let A* be any partition of the second kind so that A is necessarily
odd. T say that this must be transformable into one or the other (but not
into both) of two sequences, namely, one of A terms of which the sum of the
first and last is 2x, the other of which the sum of the first and last terms is
A and the number of terms 2u. The former supposition is admissible if 2u is
equal to or greater than A +1, inadmissible if 24 is less than A +1. The
second supposition is admissible if N is equal to or greater than 2u +1,
inadmissible if A is less than 2u + 1.

The two conditions of admissibility coexisting would imply that 2 is
equal to or greater than 2u +2; the two conditions of inadmissibility the
one that 2u is equal to or less than A — 1, the other that A is equal to or less
than 2u—1, that is, A—1 equal to or less than 24 — 2, which are inconsistent.
Hence one of the two transformations is always possible and the other
impossible to be effected; which proves the correlation that was to be
established. A single example will serve to show that this correspondence is
entirely different from that otfered by the first and (so to say) grosser method,;
suppose V=15, then 1.2.3.4.5 will be a partition of the first kind and will
be converted by the new rule into 5.5.5, whereas, by the former rule, it would
be inverted into 1.1.1.83.1.1.1.1.5, that is, into 17.3. 5 belonging to the
third class instead of to the first.

(19) I will now pass on to the conjugate theorem corresponding to
Je=1/¢z.

* A complete proof of the general theorem will be given in the 3rd Act.
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It may be well here to recall that this identity essentially depends upon
the identity 1 —z =1/(1+ ) (1 +4*) (1 + 2*) ... which, interpreted ¥, signifies
that any number greater than unity may be made up in as many ways with
an odd as with an even number of numbers restricted to the geometrical
progression 1, 2, 4, 8 .... This may be called, for brevity, a geometric
partition. The correspondence to which this points is itself worthy of notice ;
one mode of establishing it would be to proceed to decompose N into such
parts in regular dictionary order—it would easily be seen that each pair of
partitions thus deduced would be of contrary parities, but it would not be
easy, or at all events evident, how to determine at once the conjugate to
a given partition by reference to this principle; but if we observe that it is
possible to pass from the geometric partitions of n immediately to those of
n+1 by the addition of a unit to each of the former, and consequently to

those of n+2 from the partitions of E%, En;—z, E%
obvious process of doubling and adding complementary units, another rule or
law of correspondence, which proves itself as soon as stated (and is not
identical in effect with that supplied by the dictionary-order method), looms
into the field of vision, than which nothing can be simpler. Hence we may
derive a transcendental equation in differences for u,, the number of geo-
metric partitions (with radix 2) to =, namely, to find the conjugate of any
geometric partition, look at its greatest part—if it is repeated add two of
them together: if it is unrepeated split it into two equal parts; these
processes are obviously reversible, just as in Dr Franklin’s method of
correspondence for the pentagonal-series-theorem ; and the method is equally
open to the remark made thereon by Prof. Cayley; that is to say, there
will be four classes, extensile even, extensile odd, contractile even and con-
tractile odd, and the number of partitions in any class will be the same
as in the class in which both the characters are reversed.

, - 2,1, by an

The application of this transformation to the construction indicated
by the equation fz=1/¢az will be obvious. Let any partition containing
only unrepeated numbers consist of odd numbers P q 1, ...t each
multiplied by one or more powers of 2; form batches of these terms
which have the same greatest odd divisor (p, ¢, 7, ... t), and arrange those
batches in a line according to the order of magnitude of PG AT ENE
Then we may agree to proceed either from left to right or from right to
left in reading off the batches, and that convention being established once
for all, as soon as a batch is reached which does not consist of a single
odd term, if it contain one term larger than all the rest that term is to be
split into two equal parts, but if it contain two terms not less than any

* Just so the equation 1/(1-z)=(1+z)(1+22)(1 +a%)... teaches that there is one and only

one way of effecting the unrepetitional geometric partition of any number—a theorem which has
been applied in the preceding theory.

8. 1V, 92
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others in the batch, those two are to be amalgamated into one. In this way
the order of a partition consisting of terms not all of them distinct odd
numbers, will have its parity (quality of being odd or even) reversed, and it
is obvious that if 4 has been under the operation of the rule converted into
B, B by the operation of the same rule will be converted back into A.
Hence it follows that (making abstraction of the partitions consisting
exclusively of unrepeated odd numbers) all the rest will be separable into as
many contractile of an odd as into extensile of an even order, and into as
many extensile of an odd as into contractile of an even order, so that the
difference between the entire number of the partitions of N into an odd and
those of an even order of repeatable numbers (odd or even) will be the
number of partitions of IV into unrepeated odd numbers, and those of an odd
or of an even order will be in the majority according as IV itself is odd or even*.

It will be convenient to interpolate here Dr F. Franklin’s constructive
proof of the theorems referred to in p. [4] of what precedes, as there will be
frequent occasion to refer to them in what follows. The theory is thus made
completely self-contained. I give the proofs in the author’s own words, which
I think cannot be bettered.

(20) Constructive Proof of the Formula for Partitions into Repeatable
Parts, limited in Number and Magnitude. The partitions herein spoken
of are always partitions into a fixed number, j, of parts, written in descending
order.

Take any partition of w in which the first excesst is greater than ¢;
subtracting ¢+ 1 from the first part we get a partition of w — (¢ +1); and
conversely if to the first part in a partition of w— (i + 1) we add ¢ + 1 we get
a partition of w in which the first excess is greater than 7. Hence the
number of partitions of w in which the first excess is greater than 7 is equal
to the whole number of partitions of w— (7 +1); so that if the generating

* Dr F. Franklin has remarked that ¢ the theorem admits of the following extensions,”
which the method employed in the text naturally suggests, and ‘‘which are very easily obtained
either by the constructive proof or by generating functions” :

1. The number of ways in which w can be made up of any number of odd and % distinct
even parts is equal to the number of ways in which it can be made up of any number of
unrepeated and k distinct repeated parts.

2. The number of ways in which w can be made up of parts not divisible by m is equal to
the number of ways in which it can be made up of parts not occurring as many as m times.

3. The number of ways in which w can be made up of an infinite number of parts not
divisible by m, together with & parts divisible by m, is equal to the number of ways in which it
can be made up of an indefinite number of parts occurring less than m times, together with &
parts occurring m or more times. (3) of course comprehends (1) and (2) as special cases.

Dr Franklin adds, ‘“ another extension is naturally contained in the mode of proof, which it
is perhaps not worth while to state.” See Johns Hopkins Circular for March, 1883.

+ The first excess signifies the excess of the largest part over the next largest; the second
excess the excess of the largest over the next part but one, and so on.
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function for the partitions of w is f (), that for those partitions in which the
first excess is not greater than i is (1 — ™) f(«). Confining ourselves now
to this class of partitions, consider any one of them in which the second
excess is greater than 7; subtracting ¢ + 1 from the first part and 1 from the
next, and putting the reduced first part into the second place we have a
partition of w — (7 + 2) in which the first excess is not greater than ¢; and
conversely if in any partition of w — (v + 2) in which the first excess is not
greater than 7, we add 7+ 1 to the second part and 1 to the first part and
transfer the augmented second part to the first place, we get a partition of w
in which the first excess is not greater than ¢ and the second excess #s greater
than 7. Hence the generating function for those partitions in which the
second excess is not greater than 7 is (1 —2™?) (1 — 2%*?) f(z). Considering
now exclusively the partitions last mentioned, any one of them in which the
third excess is greater than ¢ may be converted into a partition of w— ( + 3)
in which the second excess is not greater than 7, by subtracting 7 +1 from
the first part, 1 from the second part, and 1 from the third part, and
removing the reduced first part to the third place, and, as before, by the
reverse operation, the latter class of partitions are converted into the former.
Hence the generating function for the partitions in which the third excess is
not greater than ¢ is

(1 =) (1 = &) (1 — a™) f ().

So in like manner, the generating function for the partitions in which the
k-th excess is not greater than 7 is

(1 — 2 (1 — 2i+2) (1 — 29 ... (1 — ai+¥) £ (@) ;

and for the partitions in which the j-th or absolute excess is not greater
than 7, that is in which the greatest part does not exceed 7, the generating
function is

(I =2 (A -2 (1 —a™) ... (1 - 2™) f (a).

(21) Constructive Proof of the Formula for Partitions into Unrepeated
Parts, limited in Number and Magnitude. All the partitions to be con-
sidered consist of a fixed number, j, of unrepeated parts, written in descending
order.

Take any partition of w in which the first excess is greater than 7 +41;
subtracting ¢+ 1 from the first part we get a partition of w— (i +1);
conversely, if to the first part in any partition of w — (¢ + 1) we add 7 + 1, we
get a partition of w in which the first excess is greater than 7 +1; hence the
number of partitions of w in which the first excess is greater than 41 is
equal to the whole number of partitions of w—(i+1); so that, if the
generating function for all the partitions is ¢ (z), the generating function
for partitions whose first excess is not greater than ¢4 1 is (1 —ai#) ¢ ().

2—2
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Considering now only partitions subject to this condition, if in any such
partition of w the second excess is greater than ¢ + 2, we obtain by subtract-
ing ¢+ 2 from the first part and removing the part so diminished to the
second place a partition of w— (i + 2) subject to the condition; and con-
versely from any partition of w —(i+2) in which the first excess is not
greater than ¢4 1, we obtain, by adding 7+2 to the second part and
removing the augmented part to the first place, a partition of w, in which
the first excess is not greater than ¢+1 and the second excess s greater
than i+ 2; hence the generating function for the partitions in which the
second excess is not greater than 7+ 2 (which restriction includes the con-
dition that the first excess is not greater than 7 4+ 1)is

(I —a™*) (1 - 2) ¢ (2).
Confining ourselves now to this class of partitions, and taking any partition
of w in which the third excess is greater than i + 3, we obtain, by subtracting
i+ 3 from the first part and removing the diminished part to the third place,
a partition of w — (¢ 4+ 8) belonging to the class now under consideration;
and reversely. Hence the number of partitions in which the third excess
is not greater than 7 +3 is given by the generating function

(1 =) (1 = 2#2) (1 — &%) b (a).
Proceeding in this manner, we have finally that the generating function
giving the number of partitions into j unrepeated parts, in which the
absolute excess, that is the magnitude of the greatest part, is not greater
than 747, is
1 =) A =2+ (1 - 2™*3)... (1 — 2™) ¢ (2).
For example, if w=18, j=3, i =4, the partitions
15,2,1 14,3,1 13,4,1 13,3,2 12,51 12,4,2 11,5,2 11,4, 3
in which the first excess is greater than 5, become by subtraction of 5 from
their first part,
10,2,1 9,3,1 8,41 83,2 7,51 7,42 6,52 6,43
which are all the partitions of 13 ; the partitions
11,6,1 10,7,1 10,6,2 10,53 9,81 9,7,2

in which the first excess is not greater than 5, but the second excess is
greater than 6 become, by the subtraction of 6 from the first part and its
removal to the second place,

6,51 7,41 6,4,2 543 831 7,32

which are all the partitions of 12 whose first excess is not greater than 5;

the partitions
9,6,3 9,54 87,3 86,4

in which the second excess is not greater than 6, but the third excess (the
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greatest part) is greater than 7, become, by the subtraction of 7 from the first
part and its removal to the last place,

6,3,2 5,42 7,31 641

which are all partitions of 11 whose second excess is not greater than 6. The
only remaining partition of 18 is 7, 6, 5.

INTERACT.

Notes on certain Generating Functions and their Properties.

(22) (A) It may be as well to reproduce here (so as to keep the whole
subject together) the entire proof of the well-known expansions of

l+az.l+az?.1+aa®...1+ ax?,
and of the reciprocal of
l—-a.1—az.1—az?*.1—azs...1—az
which appeared in part in the Johns Hophkins Circular for February* last.
This is, I think, distinguishable from the ordinary proofs as being, so to say,
classical in form (using the word in an algebraical sense), inasmuch as it

establishes the identity of two rational integral functions, one explicitly, the
other implicitly given, by comparison of their zeros.

Let the coefficient of @/ in the expansion of
1+ az)(1 + az?) ... (1 + ax?),
say in the expansion of F(z, a), be called J, and

1—2t.1 —at1,,,]1 —gi7H
l—z.1—2*...1 —af

be called X;.

J, being the sum of the j-ary combinations of =, #7 ... 2* will necessarily
£+
contain #'+?*-+Jj, that is « 2 , and will be of the degree
1+ -D+..+(C—j+1)
. £4
in z, and therefore of the same degree as X;z 2

All the linear factors of X are obviously of the form z — p, where z — p
is a primitive factor of some bmomlal expression 27 — 1: the number of times
]
r
which is either 1 or 0. Now consider F (p, a), the value of F (, a,) when z

becomes p. Let ¢=~%kr+ 8, where § <r; then F(p, a)= (1 + a”)¥ multiplied
[* Vol. 1, of this Reprint, p. 677.]

that any z—p occurs in X will obviously be equal to E--—E‘y E
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by & linear functions of a, and consequently if j=/kr+ &, where & <r,
J, vanishes when & > 8, in which case
Ei_pd_pi=i_,
r r r y

Hence any linear factor #—p of X; possesses the two-fold property of
being unrepeated and of being contained in J,. Hence J, must contain
7+
X;z %, and being of the same degree as it is in « must bear to it a constant
ratio, which, by making =1, is seen to be that of the coefficient of &/ in
’ o1 =1)(@E=-2)...(t—j+1)
(1 + a), that is of 1.2.5..

to the product of the fractions
in their vanishing state

1—af 1—gim 1 — gi~it1

P ™ Tt Mg 5 2 4

that is, is a ratio of equality, so that J,=X;z 2 . QE.D.

(23) Again let X; and J, now stand respectively for

1—git 1 —gitz, 1 — gt

l—2z.1—2*... 1—ai

and the coefficient of a/in the reciprocal of 1—a.l1—ax...1—aa’ (say
F (%, a)); this latter is the sum of homogeneous products of the jth order
of 1, z, a2 ... 4% and is therefore of the degree 7j which is also the degree
(as is obvious) of X;in . For like reason as in what precedes « — p, any
linear factor of 4" — 1, is contained 1 or 0 times in X; according as

E%—J—E%—E7—f= i

Let the minimum negative residue of ¢+ 1 to modulus » be — &; F (p, a)
may be expressed as the product of § linear functions of a, divided by a
power of 1—a”, and the only power of a (say a’) which appears in its
development will accordingly be those for which the residue of 6 in respect
tor1s 0, 1, 2,... §, and consequently if a® appears in the development

T+ 6 [/

r

E —E%—E =0,

or conversely if # — p is a factor of X so that
. ; P
Efi_g__ Bi=Blal
i r 7
J, vanishes. Hence J, contains each linear factor of X;, and these being
simple, contains X itself, and on account of their degrees in z being the
same must bear to it a ratio independent. of #, which, by making z=1,
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so that the things to be compared are the coefficient of a/ in o and

1 — 2t | xi+2 ] == wi+j
PRSP T RA e e A
readily seen to be a ratio of equality, so that J,=X;. Q.E.D.

the product of the vanishing fractions

(24) (B) On the General Term in the Generating Function to Partitions
into parts limited in number and magnitude, by Dr F. FRANKLIN.

To prove that the coefficient of af in the development of
1 e (1 — 29 (1 = 29+2) ... (1 — 2i*)
Q1-a)(1—-az)(1—as?)...(1 —aa’) A-2)1—-a?...1—at) ~
I showed that the number of partitions of w into ¢ or fewer parts, subject
to the condition that the first excess (the excess of the first part over the
second) is not greater than j, is the coefficient of 2 in
1 — gih
(1-z)(1—a?)...(1=ai)’
and in general that the number of partitions in which the rth excess (the

excess of the first part over the (» —1)th) is not greater than j, is the
coefficient in

(USSTrONI S L0 )
A1-z)y(1—-a?..1-29)
If we look at the question reversely, namely, the coefficient of @/ in

1
A =-a)(1 —az)(1 —az?) ... (1 — az®)

being known to be
(1 — a2/ (A — a7t ... (1 — 2it)
Q-zy(1—a*...(1 =2 ~’

if we ask what is the significance of the fractions
1 — ai#t (1 =2/ (1 —2?) ... (1 — 2*7)
A—a)(1=a)...(A—a)""" (A—a)y1—-a...(d—a) ’

the answer is immediately given by the generating function itself. For
1 - gih
A-2)(1—a%)...(1 —2

£ 1 1—ait
TAl-aQ—-a)..(1-2) 1l—z

1 L 1
TA=—(1=a)...(1—a) (CO' o @it —ax))

1
l-a)(l—az)(1 —2*)(1—a%)...(1 =)

=co. of @/ in



24 A Constructive theory of Partitions, arranged in  [1

But- the coefficient of a/a® in the last written fraction is obviously the
number of ways in which w can be composed of the numbers 1, 2, 3, ... 4,
using not more than j1’s. And the number of 1’s in a given partition is
equal to the excess of the first part over the second part in its conjugate.
In like manner

A = 2 (1 — 277 ... (1 = 2i*7)
T (A-2)(1-2)...(1 — %)

1 .
1-a)(l —az)...(l—aa") (1 —a") ... (1 =2%)’

=co. of a/ in

and the coefficient of a/a¥ in the fraction on the right is the number of ways
in which w can be composed of the parts 1, 2, 3, ... 7, not more than j of the
parts being as small as . But the number of 1’s in a given partition is
equal to the excess of the first part over the second in its conjugate; the
number of 2's to the excess of the second part over the third, and so on.
Hence the number of 1’s plus the number of 2’s... plus the number of 7’s in
a given partition is equal to the excess of the first part over the rth part
in its conjugate; and we have thus proved that the coefficient of #* in the
development of
(1 — 2/ (1 — a2y ... (1 — 29+7)
A—2)1-2)...(1—z)

may be indifferently regarded as the number of partitions of w into parts
none greater than ¢ and not more than j of them as small as r or as the
number of partitions of w into j or fewer parts, the excess of the first part
over the rth part being as small as 5. These results may obviously be ex-
tended by introducing the @ in non-consecutive factors of the product

(1 =) (1 —a?)... (1 —af).

(25) (C) On the theorem of one-to-one and class-to-class correspondence
between partitions of n into uneven and its partitions tnto unequal parts,
by Dr F. FRANKLIN.

The number of partitions of w into & distinct odd numbers, each repeated
an indefinite number of times, is evidently the coefficient of a*z* in the
development of

x z® @0
(1raZg) (1ragZy) (1ragty) -

It is not easy to form the generating function for the number of
partitions containing £ sequences, but it is plain that the number of
partitions of w containing one sequence is the coefficient of #* in

Si+ 8 +8+...,
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where
S=x +2° +2° +2* +2° +... =1fw
a‘.3
S;=a% +2° +a7 +2° +x“+...=1_x2
a8
Sp=2a' +2° +a’+a¥+at+ . =1
wlo
S4=w‘°+a:“+x“+x”+w%+...=1_a;4
15
S5=x‘5+x‘~’°+x’35+x3°+x"‘5+...=-——1ww,,,
and in general
b y ZAr(r+1)
Sr = gitetst..+r s 23ttt (r+1) +...= _1 3 x"—'

So much of Prof. Sylvester’s theorem as relates to a single sequence

£ _ . adding to S,

1-2’

the first term of S,, we get 1—?;3; adding to S; the first term of S, and the

follows from inspection of the above scheme. For S, =

second term of S,, we get T%; adding to Sym4; the first term of S,,, the
second term of S,4,_y, the third term of S,pu_y), ..., and the mth term of S,

1
we get s thus the proposition is proved. The fact is made more

evident to the eye if we write the scheme as follows:

Si=x +2* +2° +2* +2° +... S;=a3+ax° +a7 +a° +a1 +...
S;=af +2° + a2+ +2%4 ... She A I B
Si=a®+a4 a8 +a®+ 2%+ ... S; = 2+ ¥ +aB 4.
S;=aB+a¥ a2+ 2%+ a%+... S; = S S
Sy =¥+ + a8+ 222 .. = s+ ...
Here i fﬂ L for instance, is obtained by adding the fourth column on the

right to the fifth row on the left.
It may be noted that we have thus found that

x x] xﬁ x'lln"'l
i Je i s LY vy A
o Tk 28 w‘}n(n+1)

_1—x+1—x,’+l—x”+"'+ 1—2" +...
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(26) [Compare Jacobi’s theorem contained in the last-but-one two lines

of the last but one page of the Fundamenta Nova, which may be easily
reduced to the form

& x8 x z z3 x°

[ SYE BRT k )  p wpr  raF

J.J. 8]

Act II. O~ THE GrAPHICAL CONVERSION OF CONTINUED PRODUCTS
INTO SERIES.

Naturelly, by composiciouns
Of anglis, and slie reflexiouns.

The Squieres Tale.

(27) The method about to be explained of representing the elements
of partitions by means of a succession of angles fitting into one another
arose out of an investigation (instituted for the purpose of facilitating the
arrangement of tables of symmetric functions)* as to the number of par-
titions of n which are their own conjugates. The ordinary graphs to such

partitions miust obviously be symmetrical in respect to the two mnodal
boundaries, as seen below.

* k ok ok
*
*
*
*

* %k k ¥ * ¥ %
* k% % % * % *

Let the above figure be any such graph; it may be dissected into a
square (which may contain one or any greater square number) of say ¢2 nodes,
n—1?

2
and subject to the sole condition that the number of its lines (or columns),
that is that the number (or magnitude) of the parts in the partition which

n—i?
it represents, shall be 7 or less; such number is the coefficient of z 2 in

and two perfectly similar appended graphs, each having the content

:, which is the same as that of "~ in
z

1
1-a?.1—a*...1—a%
20

l—a2.1—at...1—a%

l—-z.1—2a%...1-

or of " in

* By Mr Durfee, of California (Fellow of the Johns Hopkins University), to whom I suggested
the desirability of investigating more completely than had been done the method of arrangement
of such tables founded upon the notion of self-conjugate partitions, which M, Faa de Bruno had
the honour of initiating. The very valuable results of Mr Durfee’s inquiries, embodying, system-
atising and completing the theory of arrangement originated by Professor Cayley, and further
illustrated by the labours of Professors Betti and De Bruno, will probably appear in the next
number of the Journal.
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Hence giving ¢ all possible values we see that the coefficient of #" in the

infinite series
142 = = +.
1-.’0’1— l—a:'2 1—at1—a% "
is the number of self-conJugate partitions of », or which is the same thing

of symmetrical groups whose content is n.

(28) But any such graph, in which there is a square of ¢* nodes with its
two appendices, may be dissected in another manner into ¢ angles or bends,
each containing any continually decreasing odd number of nodes, and wice
versd, any set of equilateral angles of nodes continually decreasing in number
(which condition is necessary in order that the lower lines and posterior
columns may not protrude beyond the upper lines and anterior columns)
when fitted into one another in the order of their magnitudes will form
a regular graph. Thus the actual figure (where there is a square of 9 nodes)
formed by the intersections of the lines and columns may be dissected into
3 angles containing respectively 13, 11, 3 nodes ; and so in general the number
of ways in which n can be made up of odd and unrepeated parts will be the

same as the number of ways in which 2] can be partitioned into not niore

than j parts; hence we see that the coefficients of z”a/ in
(A +azx)(1+az®)...(1 + az7?) ...
a7
l—a2?.1—a*... 1l —a¥
are the same, so that the continued product above written is equal to
xjﬁ

bj)
L9 x2a+ o P T ey ey e L

and in

as 1s well known.

(29) In like manner if the expansion in a series of ascending powers of

a of the finite continued product
1+ ax) (1 +a2®) ... (1 + ax*?)
be required, the coefficient of 2" in the coefficient of a/ will be the number
of ways in which n can be made up with j of the unrepeated numbers
1,3,...2¢—1, and as 2/ —1 is the number of nodes in an equilateral angle
whose sides contain 7 nodes, it follows that this coefficient will be the number
—j ;

2

of ways in which 2 can be composed with parts none ezceeding ¢ —j in
n—j®
magnitude, and will therefore be the same as the coefficient of z 2 1in
1—gidh.1 a0, . 1—af
l—2.1=2"...1—af ’
and consequently the finite continued product above written is equal to
1 &= x?l—?]+2 1 2 x?t—2J+t 1 a&
l—-a2*.1—-2... 1 —aﬂj

zal + ...

1+... 4
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(30) If it be required to ascertain how many self-conjugate partitions
of n there are containing exactly ¢ parts, this may be found by giving j all

possible values and making p; equal to the number of ways in which n_;_f

can be composed with j or fewer parts the greatest of which is 7 —j, that is
(n—J*+ 2j— 20)/2 with j —1 or fewer parts none greater than 7 —j, so that
p; will be the coefficient of x®7*+¥-%) jn

1 - 1 — gt 1= g

l-z.1—22...1—a/!
or of z" in

— 2—2+2 — p2i—2+4 — p2i—2
1 —a® -2 e 1l—2 ? Rt

1= T2 7 s

the sum of the values of p; for all values of j will be the number required :
this number, therefore, writing w for 2¢ — 1, will be the coefficient of 2™ in
1—aom 1— o, 1 —gos

Y _ w41 w+4 q
ot 1=z @ et R + etc.;

the outstanding factor in the gth term in this series being #¢+@=V* we may
suppose ¢ the least integer number not less than 1+ 4/(n—w) and then
the subsequent term to the (¢ +1)th being inoperative may be neglected.

(31) In order to see how any self-conjugate graph may be recovered, so
to say, from the corresponding partition consisting of unrepeated odd numbers,
consider the diagrammatic case of the partition 17, 9, 5, 1 represented by the
angles of the graph below written

* * *

* k ¥ *kx *x ¥
* k¥ ok k k
* * * k

* ¥ ¥

* kX

* % % * * *k * *x ¥

The number of angles is the number of the given parts, that is 4, and the first
four lines of the graph will be obtained by adding 0, 1, 2, 3 to the major half
(meaning the integer next above the half) of 17, 9, 5, 1, that is will be
9, 6, 5, 4, the total number of lines will be the major half of the highest
term (17) and the remaining lines will have the same contents, namely
3,2,1,1,1, as the columns of the graph found by subtracting 4 (the number of
the parts) from the numbers last found, that is will be the lines of the graph
which is conjugate to 5, 2, 1. And so in general the self-conjugate graph
corresponding to any partition of unrepeated odd numbers ¢, ¢,, ... ¢; will be
found by the following rule:
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Let P be the system of partitions k,, k., ... k;, in which any term £, is the
major half of g, augmented by 6 —1, and I another system of &/, kv, ... &/,
obtained by subtracting j from each term in P, then P and the conjugate to
P’ will be the self-conjugate partition corresponding to the given ¢ partition.
Thus as an example, 19, 11, 7, 5 being given, P, P’ will be 10, 7, 6, 6;
6, 3, 2, 2 respectively, and the self-conjugate system required will be 10, 7,
6, 6, 4, 4,2, 1,1,1. Of course P’ might also be obtained by taking the minor
halves of the given parts in inverse (ascending) order and subtracting from
them the numbers 0, 1, 2, ... respectively.

To pass from a given self-conjugate to the corresponding unrepeated odd
numbers-partition is a much simpler process, the rule being to take the
numbers in descending order and from their doubles subtract the successive
odd numbers in the natural scale until the point is reached at which the
difference is about to become negative; thus the partition 6 6 5 4 3 2
is self-conjugate, and the correspondent to it is 11 9 5 1.

(32) The expansion of the reciprocal to (1 — ax)(1—as?®)... (1 — az®™)
may be read off with the same facility as the direct product. In this case we
are concerned with partitions of odd numbers capable of being repeated in
the same partition ; now, therefore, if we use the same method of equilateral
angles as before,and fit them into one another in regular order of magnitude,
it will no longer be the case that their sum will form a regular graph, for if
there be 6 parts alike, each line and column which ranges with either side of
any (but the first one) of these will jut out one step beyond the anterior line
and column (respectively), so that the line joining the extremities of the lines
or columns will be parallel to the axis of symmetry. The figure then corre-
sponding to ¢ odd parts can no longer be dissected into a square of nodes and
two equal regular graphs, but it may be dissected into a line of nodes lying
in the axis of symmetry, and two regular graphs one of which has for its
boundaries one of the original boundaries and a line of nodes parallel to the
axis of symmetry, and the other one the other original boundary and a line of
nodes parallel to the same axis, as seen in the annexed figure, where the axial
points are distinguished by being made larger than the rest.

*

* * * * *
* * * * * * *
* * ¥* * * * * *
* * * ¥* * * *
* * * * * *
* »* »* * * * *

* * * *

*

The graph read off in angles represents the partition 11 11 11 7 3 3.
On removing the six diagonal nodes it breaks up into two regular graphs, of
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which one is 5 5 5 8 1 1, and the other the conjugate thereto; hence the
coefficient of 2™ in the coefficient of @/ in the expansion of the reciprocal of
l—ax.1-as*....1—az" in ascending powers of ¢ is the number of ways
in which % can be resolved into j parts limited not to exceed ¢ — 1, which
n—j
is the coefficient of # 2 in
1—at. 1 —ait .. 1 —gitit
l—z.l—-a*...1—a

: 1 —a%,1 —g%te ] —g2+9—
o2t ip I~ l-a.1-a *

(33) Although I shall not require any intermediate expansion whatever
in order to obtain the transcendant @,z product in the form of a series, I will
give another of those which are sometimes employed together in combination
(see Cayley, Elliptic Functions, pp. 296—7) to obtain this result: thus to
prove that the continued product of the reciprocal of

(1 —az)(1 = as?) (1 — az?) ...

1s identical with

14 xZ a 3+ s a?
l—z'l—2za 1l—z.1—22"1-2a.1—-2%

z° a®
i l—2z.1 —mz.l—a':"l—-wa.—ltw"a_.l—w"a_*_etc'

if n is partitioned into j parts, the regular graph which represents the result
of any such partition must consist either of 1,2,3,...5—1 or of not less
than j columns, and its graph may accordingly in these several cases be dis-
sected into a square of 1, 4, 9, ... 72 nodes ; suppose that such square consists
of 8 parts, then there will be » — * nodes remaining over subject to distribu-
tion into two groups limited by the condition as to one of the groups that it
may contain an unlimited number of parts none exceeding € in magnitude,
and as to the other that it must contain j— @ parts none exceeding € in
magnitude, as seen in the following diagrams:

* * * * * * * * * * * * * *
* * * * * * * * *
* * * * * * * *
X X X X X
X X X X X
X X X
X X
* *
* *
* *

X X X X * * %
X X * *x *
X X * * *
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in all of which the partible number is 26, and j and 6 are 7 and 3 respectively.
Now the number of such distributions is the coefficient of #"~%¢/~9 in

T 1
1-z.1-2.. 1-2*"1—az.l —az*...1 —az®’

that is of 2”@’ in

z® a®

l—z. l—a*... 1—2 1—azx.1l—az... 1 —az®’

and consequently giving 6 all values from 1 to oo, the proposed equation
is verified.

(34) It may be desired to apply the same method to obtain a similar
development for the reciprocal of the limited product

(1 _ax)(l —aw“)...(l —'axi);

the construction will be the same as in the last case; the distribution into
two groups can be made as before; the second group will remain subject to
the same condition as in the preceding case (seeing that the number of parts
being less than j — 6, will necessarily be less than ¢ — 6, for j cannot exceed ),
but the first group will be subject to the condition of being partitioned not
now into an unlimited but into ¢— 6 (or fewer) parts none exceeding 6 in
magnitude, and the number of such distributions into the two groups will
accordingly become the coefficient of 2*~#¢i—* in

1—git91 ] —gi0+2 1 _g4° 1
l—z.1—2...1—2a° 1—ax.1—aa?...1 —qa®

or of a"af in the last written fraction multiplied by 2%. af, so that the re-
quired expansion will be

1-2° 2za 1—af.1—gi1 rta?
+

¥ AT A L R B R

1—at. 1 —gi1, 1 —gi—2 Al +
l—z.1—-2*.1—2* "l—ax.l—az®.1—aa® '

(35) It is interesting to investigate what will be the form of the mixed
development resulting from an application of the same method to the direct
product

l+az.14+a2...1+ az'.

For greater clearness I shall first suppose 7 indefinitely great. Consider the
diagram :

* * * * * * * * *
* * ¥ * * *

* * * * *

* * *

* *
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In the above graph j and 6 used in the same sense as ante are 5 and 3
respectively, so that there is a square of 9 points; an appendage to the right
of and another appendage below the square, which I shall call the lateral
and subjacent appendages respectively. The content of the graph being
25, there are 16 points to be distributed between these two appendages.
What now are the conditions of the distribution of the n — 62 points between
them ?

I say that there will be two sorts of such distribution—one in which the
lateral appendage will consist of # unrepeated parts, none of them zero, as
in the graph above, and the subjacent appendage of j— 6 unrepeated parts,
limited not to exceed € in magnitude, and another sort as in the graph below
written,

* * * * * * * * * * * *
* * * * * * *

* * *

* *

*

in which the jth line of the lateral appendage is missing, and consequently
the subjacent graph will consist of j— 6 unrepeated parts limited not to
exceed ¢ —1 in magnitude, for there could not be a part so great as € with-
out the last line of the square having the same content as the first line of the
subjacent appendage.

It should be observed that only the last admissible line of the lateral
appendage can be wanting, for if more than this were wanting, two lines of
the square would belong to the graph, and consequently there would be two
equal parts 6.

Hence there are two kinds of association of the appendages, one leading
to a distribution of n— 82 between one group of # unrepeated but unlimited
parts, and another of j— & unrepeated parts limited not to exceed 6; the
other to a distribution of n— 62 between one group of 6 — 1 unrepeated but
unlimited parts, and another of j— @ unrepeated parts limited not to exceed
-1

The number of distributions of the first kind is the coefficient of am—9*, qj—¢
in
6240
oz 2
l1—2z.1—2a%...1

—w"'(l + az) (1 + az?) ... (1 + az?),

the other of 2%, q/~? in
-0
@x 2
l—z.l—a*...1—a%

(A +az)A + az?)... (1 + az®?);
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hence the sum of the distributions of the two kinds is the coefficient of the

same argument in
et
2
- WA +ax®)+ (1 -2 {1 +ax.1+as*...1+ az®},

l—2z.1=2%...1—2f
that is of 2"a’ in

3———922—9 c (1 +ar.l+ax?...1 4+ a2 1+ (mw)
& a :

l—z.1—-2°...1—2%7 ~ 1-2a°

and consequently we obtain the equation

1+ax2xa+1 +ax.1+ azxt
1l—=z 1—z.1—22

l4+az.14ax*.14+a2®...=1+ 250t + ...

1+a$1+ax2l+am]—11+axgj Sj’lT—] ]+
l—z.1—2%...1—g31, 1 —xi 4 a A

and thus by a very unexpected route we arrive at a proof of Euler’s
celebrated pentagonal-number theorem; for on making a=—1 the above

equation becomes
=]

l-z.1-2.1-2..=1-(Q+2)z+(Q+a)a’... + (=) (1+ )z ¢ +....
Such is one of the fruits among a multitude arising out of Mr Durfee’s

ever-memorable example of the dissection of a graph (in the case of a

symmetrical one) into a square, and two regular graph appendages.

Even the trifling algebraical operation above employed to arrive at the
result might have been spared by expressing the continued product as the
sum of the two series (which flow immediately from the graphical dissection
process), left uncombined, namely,

L . 1 . Pe
1+1-i-a_xw2a+l+ax +aa'=x7a2+ Fazr.1+ax*. 1+ aa

l1-2 l—2z.1—-2% l—2z.1—22.1—-2°

®at+ ...,

together with

2
lltixx“a2+1 +az.1 + az? e,

e, 1—z.1-—22

which for @ = — 1 unite into the single series

1l —2—a*+ 2%+ 2" — 2 — 2 ete.

(36) I will now proceed to find the expression in a mixed series of the

limited product
1+az.14aat...1+ az'.

In each of the two systems of distribution (as shown already in the theory
of the reciprocal of such product) the second group will remain unaffected by
the new limitation, but the first group will now consist of partitions (limited
in number as before), but in magnitude instead of being unlimited, limited

8. 1V, 3
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not to exceed (¢ — @), so that we will have to take the coefficient of #"—¢*. ai—*
in the sum of

T — g0, 1 —gi01 1 — gih1
x

A R 7 ] (1 +ar)(1 +az®)...(1 + azb)

and
F1=6 im0 | — gi—0-1 ] — gi—e0+e

=
- l—z.1—-22...1 =2t

(1 +ax)(1 + az?) ... (1 + az®?).

This will be the same as the coefficient of 2”a’ in
362-6 . 5 3
e 1—20.1—gi~01,,.1— gi—20+2
2 [} 8—1\ _ ol il s '
z ? a®(l1+az)(1+a2®)...(1+ax )l—m.l—m2...1—w"—1.1—w"
x {1 —a? + (1 — £*20+1) (2 + ax®®)},
where the quantity within the final bracket is equal to

1—gitg— a0+ 4 g% g,

Hence the required series is

1 — gt 1 — i1, ] — g2
{1+ wwa+ g =1 a: (1 +az)s°a?

l—x l—2.1—2g°
1—a2.1—2"3.1— g
l—2.1—2*.1-2°
l—ag 1" 11— i
Hi L, s+ T T (4 et
1—23 1 -2, 1 — 23
l-z.1-2*.1-4
the indices in the outstanding powers of z being the pentagonal numbers
in the first, and the triangular numbers trebled, in the second of the above
series.

d+4az.l +a.z‘2.w12a3+...}

.1+aw.1+aw2.w‘8a‘+...},

In obtaining in the preceding articles mixed series for continued products,
it will be noticed that the graphical method bhas been employed, not to
exhibit correspondence, but as an instrument of transformation. The graphs
are virtually segregated into classes, and the number of them contained in
each class separately determined. (The magnitude of the square in the
Durfee-dissection serves as the basis of the classification.)

(87) Now let us consider the famous double product of
1 +az)(1+aa®) (1 + aa?) ...
by AL+az)(l+ar2®)(1+atad)....
Here it will be expedient to introduce a new term and to explain the mean-
ing of a bi-partition and a system of parallel bi-partitions of a number. The

former indicates that the elements are to be distributed into two groups, say
into a left and right-hand group: the latter that the number of the elements



1] three Acts, an Interact and an Exodion 35

(on one, say) on the left-hand side of each bi-partition of the system is to be
equal to or exceed by a constant difference the number (on the other, say) on
the right-hand side of the same bi-partition. If we use dots, regularly spaced,
to represent the elements (themselves numbers and not units), we get a figure
or pair of figures such as the following:

* * * * * * * * * *
* * * * * * * * * *
* * * * * * *

* * * * * *

for which the corresponding lines of the contour are respectively parallel—
hence the name. When the numbers of elements on the two sides are identical,
I call the system an equi-bi-partition-system—in the general case, a parallel
bi-partition-system to a constant difference j, where j is the excess of the
number of elements in the left-hand over that in the right-hand part of any
of the bi-partitions.

(38) Consider now the given double product—it is obvious that it may
be expanded in terms of paired powers a’+ a7 of a, and the coefficient of 2”
in the term not involving a will evidently be the number of equi-bi-partitions
of n that can be formed with unrepeated odd numbers; and so the coefficient
of 2" associuted with a/ or a7 will be the number of parallel bi-partitions of n
to the constant difference j that can be so formed.

For the equi-bi-partitions; suppose 0, l...1;, M, Ag...A; 1s an equi-
bi-partition, all the elements being odd and unrepeated; take successive
angles whose (say horizontal and vertical) sides are the major halves of 4, A;;
ly, Az ...; I;, \;; these angles will fit on to one another so as to form a regular
graph by reason of the relations

L>bL+1, L>L+1...0,>1:+1,
M>N+L >+ >+

Conversely any regular graph may be resolved into angles whose horizontal
sides shall be the major halves of one set of odd numbers, and their vertical
sides the major halves of another set of as many odd numbers, and these
two sets of odd numbers will each form a decreasing series; hence there is a

one-to-one conjugate correspondence between any bi-partition of n written in

regular order, and the totality of regular graphs whose content is 1—", so that

2

the number of the equi-bi-partitions of n will be the coefficient of .1:2—‘ in
1

l—z.1l—a*1~2%...
1

1—-221—at.1—2a%...’

which fraction is therefore equal to the totality of the terms not involving a.
3—2

that is of 2" in
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(89) Next for the coefficient of a/.

Let U, b, ... b, Uias Uiga, - Uives M1, Aa, oo A be an equi-parallel bi-partition
to the difference j (with the elements on each side written in descending
order); with the equi-bi-partition i, liis, ... lize; A1, Nay... N, form a graph,
as in the preceding case; say, for distinctness, with major halves of the
I series horizontal and of the A series vertical; over the highest horizontal
line the successive quantities*

-1 L,—-3 L,-5 L-(2-1)
5 v 5 >

may be laid so as to form a regular graph of which the content will be 4 ;‘72.
. ;ﬁ will correspond to
a parallel bi-partition of unrepeated odd numbers to a difference j; to obtain
the bi-partition the first j lines of the graph must be abstractedt, and the
graph thus diminished resolved into angles; the doubles of the contents
of each vertical side of these angles diminished by unity will constitute the
right-hand side of the bi-partition, and the doubles of the contents of each
horizontal side preceded by the doubles of the lines of the abstracted portion
of the graph increased by 1, 3, 5,...2j—1 respectively, will form the left-
hand portion. Hence the number of such bi-partitions will be the number
n—j*
2

Conversely every regular graph whose content is

into unrestricted parts, that is, will be the

of ways of resolving

coefficient of 2" in
1

l—a*.1—a2.1-2a%...

12
&7,

and this being true for all values of n and j, we see that the double product
in question will be identical with the infinite series

= 1:;;—1—_&6 v (1+a(@+a)+a2'(a +a?)+2° (@ +a)+...}.
(40) To expand the limited double product
1+ az)(1 +aa®)... (1 + az®™?)

into (I+alz)y(1+a?a®) ... (1 +ara®?)
the procedure and reasoning will be precisely the same as in the extreme
case of ¢ infinite, the only difference being that the elements of the bi-
partition instead of being unlimited odd numbers will be limited not to
exceed 20— 1. In the case of j =0 the equi-bi-partition will furnish a series
of nodal angles in which neither side can exceed the major half of 2¢—1,

* Any number of these quantities may happen to become zero.
+ If the actual number of horizontal lines in the graph is less than j, it must be made to
count as j, by understanding lines of zero content to be supplied underneath the graph.
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that is ¢, and the coefficient of #" in the term not containing any power of a
will consequently be the number of ways in which n can be divided into
parts limited as well in number as in magnitude not to exceed 7, and will
therefore be the same as the coefficient of 23" in the development of
1—2™. 1o+, 1—a%
-z dl-2*. 12

>

or, which is the same thing, of 2” in the development of
1—a2tt2 1 —g?te ] — g%
1-2t.1—at...1—0a% °
and when the bi-partition system has a constant difference j, the correspond-
ing graph will be of the same form, except that it will be overlaid with
J lines, obtained as in the preceding case by subtracting 1, 3,... 2j—1 from
the first j left-hand elements, and taking the halves of the remainders; the
graphs thus formed will be subject to the condition of having a content
n—j°
2

, and parts limited not to exceed ¢ —j in magnitude nor ¢+ j in number
1)-(2j-1)
2
in content; ¢+ j in number because without reckoning the j superimposed
lines the subjacent portion of the graph cannot contain more than ¢ lines].
The converse that out of every regular graph fulfilling these conditions may
be spelled out a parallel bi-partition with a difference j, and containing only
unrepeated odd numbers limited not to exceed 27— 1 in magnitude may be
shown as in the preceding case. Hence the coefficient of 2" in the coefficient

n—7.
9 into

[¢ —7 in magnitude because the topmost line cannot exceed (&

of @/ + a7 in the expansion, is the number of ways of resolving

parts none exceeding ¢ —j in magnitude nor ¢+ j in number, that is, is the
coefficient of #» in
1 — g2ity+e ] — x2i+2j+:_ 1 _ﬁia;j?
1-22. 1—-at...1—a%¥ )

Hence by the process of reasoning, which has been so often applied, we see
that the finite double product

1+az.1+aa®...1+ aa??

into 1+a'2z.14+a'a8...1 4 g 1%
1 gt ] — gt ] g 1—2% 1 — a2, 1 —a%2
T T R 1—a:""'+2x+1—x2"+2.1—x2"+‘

1—a%,1 — a2, 1 — g2
1 — g%t2 | 1 — g#He ] — g¥ite

z° + }

Compare Hermite, Note sur les Jonctions elliptiques, p. 35, where Cauchy’s
method is given of arriving at this and the preceding identity.
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Act III. ON THE ONE-TO-ONE AND CLASS-TO-CLASS CORRESPONDENCE
BETWEEN PARTITIONS INTO UNEVEN AND PARTITIONS INTO UNEQUAL

Parrts.
2 mazes intricate,
Eccentric, intervolved, yet regular
Then most, when most irregular they seem.
Paradise Lost, v. 622.

(41) Tt has been already shown that any partition of n into unequal
parts may be converted into a partition consisting of odd numbers equal or
unequal by, first, expressing any even part by its longest odd divisor, say its
nucleus and a power of 2,and, second, adding together the powers of 2 belong-
ing to the same nucleus, so that there will result a sum of odd nuclei, each
occurring one or more times; a like process is obviously applicable to convert
a partition in which any number occurs 1, 2,... or (»—1) times into one in
which only numbers not divisible by 7 occur with unrestricted liberty of
recurrence. The nuclei will here be numbers not divisible by » multiplied
by powers of r, and by adding together the powers of r belonging to the
same nucleus there results a series of nuclei, each occurring one or more
times. Conversely when the nuclei and the number of occurrences of each
are given, there being only one way in which any such number can be
expressed in the scale whose radix is r, it follows that there is but one
partition of the previous kind in which one of the latter kind can originate,
and there is thus a one-to-one correspondence, and consequently equality of
content between the two systems of partitions.

(42) To return to the case of =2, with which alone we shall be here
occupied, we see that the number of parts in the unequal partition which
corresponds after this fashion with a partition made up of given odd numbers
depends on the sum of the places occupied when the number of occurrences
of each of the odd numbers is expressed in the notation of dual arithmetic.
Such correspondence then is eminently arithmetical and transcendental in
its natnre, depending as it does on the forms of the numbers of repetitions
of each different integer with reference to the number 2.

Very different is the kind of correspondence which we are now about to
consider between the self-same two systems, as well in its nature, which is
essentially graphical, as in its operation, which is to bring into correspond-
ence the two systems, not as wholes but as separated each of them into
distinct classes; and it is a striking fact that the pairs arithmetically and
graphically associated will be entirely different, thus evidencing that cor-
respondence is rather a creation of the mind than a property inherent in the
things associated *.

* Just so it is possible for two triangles to stand in a treble perspective relation to each other,
as I have had previous oceasion to notice in this Journal.
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(48) T shall call the totality of the partitions of n consisting of odd
numbers the U, and that consisting of unequal numbers the V system.

I say that any U may be converted into a ¥ by the following rule: Let
each part of the given U be converted into an equilateral bend, and these
bends fitted into one another as was done in the problem of converting the
reciprocal of

1=az)(1 —az®)(1 — az’)...

into an infinite series, considered in the preceding section. We thus form
what may be called a bent graph. Then, as there shown, such graph may
be dissected into a diagonal line of points and two precisely similar regular
graphs. The graph compounded of the diagonal and one of these, it is
obvious, will also be regular, and I shall call it the major component of the
bent graph; the remaining portion may be called the minor component.
Each of these graphs will be bounded by lines inclined to each other at an
angle one-half of that contained between the original bounding lines, and
each may be regarded as made up of bends fitting into one another. The
contents of these bends taken in alternate succession, commencing with the
major graph, will form a series of continually decreasing numbers, that is to
say, a V partition. Asan example let 11 11 9 5 5 5 be the given U partition;
this gives rise to the graph

A D
* * * * * *
A’
* * * * * * *
* * ¥ * * * *
* * * * * *
* * * * * * *
E B
* * * * * * * *
C
» - * *

Reading off the bends on the major and minor graphs alternately, com-
mencing with BA D, CA'E respectively, there results the regularized partition
into unequal numbers
LKD) W RS e

(44) The application of the rule is facilitated to the eye by at once
constructing a graph, the number of points in whose horizontal lines are
the major halves of the given parts, and construing this to signify two
graphs, one the graph actually written down, the other the same graph
with its first column omitted ; for instance in the case before us the graph
will be*

* * * * * *
* * * * * *
* * * * *

* * *

* * *

* * *

* This may be regarded as a parallel-ruler form of dislocation of the figure produced by
making the portion to the right of the diagonal of larger asterisks revolve about that diagonal
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If we call the lines and columns in the directions of the lines and columns of
the Durfee-square appurtenant to the graph a,a,...a;, a,0,...a; [7 (here 3)
being the extent of the side of the square], the partition given by the rule
will be

Gmt+o—1, a+a—-2, atan—3, atoaz—4 a;+oa;—35,...
v @it o = (20 =-38)], [+ o —(20-2)], [ai+a—(20—1)], [a;—1],
and inasmuch as

;= 0r >@;= or >a;... and a,= or >a,= or >a,...

the above series is necessarily made up of continually decreasing numbers, at
all events until the last term is reached. But this term will form no excep-
tion, for the fact of ¢ being the content of the side of the square belonging to
the transverse graph ay, a, ..., &;, a;4, ... implies that a;= or > 7, hence

[a; + o — (2= 1)] — (@i —5) = a;— i + 1 > 0.

~In the above example the side of the square nucleus in the original total
graph was supposed to be the same for the major and minor graphs of which
1t is composed. If we suppose that graph to contain only ¢ nodes in the 7th
line, then the side of the square to the minor graph which it contains will
be ¢ — 1, and the number of parts given by the angular readings of the two
graphs combined will be 2¢— 1 instead of 2¢, as for example if the 8rd line
in the graph above written be 8 instead of 5, the resulting partition will be
11 10 9 8 2, but we may, if we please, regard this as 11 10 9 8 2 0 and the
last term will then still be a;—+¢, and the general expression will remain
unchanged from what it was before.

Next I proceed to the converse of what has been established, namely, that
every U may be transformed by the rule into a V, and shall show that any V'
may be derived from some one (and only one) U.

Whether the number of effective parts in the given ¥ be odd or even, we
may always suppose it to be even by supplying a zero part if necessary, and
may call the parts I, N, I, A, ..., I;, \;.  Suppose that it is capable of being
derived from a certain U: form with the parts of U a graph expressed in the
usual way by equilateral bends or elbows, then the side of the square appurte-
nant to the regular graph formed by the major half of this, say G, must have
for content the given number <.

until it coincides with the portion to the left of the diagonal; the graph thus formed (merely as
a matter of convenience to the eye) may be then made to revolve about an axis perpendicular to
the plane, so as to bring the diagonal out of its oblique into the more usual horizontal position.
All this trouble of description might have been saved by beginning not with a bent graph but
with a graph formed with straight lines of points written symmetrically under each other, which
is made possible by the fact of there being an odd number of points in each line. The graph so
formed then resolves itself naturally into a major and minor regular graph.
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Let a,, @5 ... a;, &, & ... a; be the contents of the first 7 rows and first
i columns respectively of @, then the equations to be satisfied are

a1+a,—1=ll, a2+a2—3=l2, a3+a3—5=l3..., a,;-l-ai—(?’l:—]):l,;,
G+a,—2=N;, Gt ag—4d=2n,y, as+a,—6=%5..., a -1 =A;.
Hence

G==M—=l—1 aa—ay=N—10l;—1...
Qg — =Ny —Li—1 a;=N\+7,
G—t=L—-N—-1 a—ay=05L—-A—1...
==k, — N, —1 a=L—-N+1-1,
and for all values of 6,
by > Ng > lgya-

Hence a,, a, ... a; are all positive, and a,, a5 ... a; are all at least equal to <.
There will therefore be one and only one graph G satisfying the required
conditions, namely a graph the contents of whose lines are

N N TR B P

[where 4,, 4,,... A,,— 1 is the conjugate partition to a, — 7, &, —1, ... &; — ];
the partition U will be found by subtracting unity from the doubles of each
of those parts. Thus then it has been shown that every U will give rise to
some one V, and every V be derived from a determinate U; hence there
must exist a one-to-one correspondence between the U and V systems. In
a certain sense it is a work of supererogation to show that there isa U cor-
responding to each V'; it would have been sufficient to infer from the linear
form of the equations that there could not be more than one U transformable
into a V'; for each U being associated with a distinct Vit would follow that
there could be no ¥’s not associated with a U, since otherwise there would be
more V’s than U’s, which we know aléunde is impossible.

As an example of what precedes let the partible number be 12. The
U system computed exhaustively will be

RIRRTONIS ROl sl BUBTL BN 19507 15 52002 50314
L3 S Gl - 0 ORI S P R
Underneath of these partitions I will write the major component graph,

and underneath this again the corresponding V'; we shall thus have the
table

* X X X E ¥ * O* x x W * * ® * * O *

11.1 9.3 9.1° Lt R e T I Y L

* O * * * *
* * » * * *

* k &k ok

*
*
*
*

* % % K K *

1.5 6.5.1 8.4 5.4.2.1 7.4.1 9.3
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52,12 5.3.1% 5.3:.1 5.17 34 31w a3ncden (3l ]
* * x % L R A Y * % * * % * et IN(o) 2
* * * * * (*)7 * * * * * * (*)9
* * * x * * * (%)®
* * * * % («)®

6.3.2.1 8.3.1 6.4.2 10.2 5.4.3 7.3.2 9.2.1 11.1 12
Thus we obtain for the V system :

7.5 6.5.1 8.4 5.4.2.1 7.4.1 9.3 6.3.2.1 8.3.1
O AN 102548 7.3.2 9.2.1 11,1 12

which are all the ways in which 12 can be broken up into unequal parts*.

The U’s corresponding to those given by the arithmetical method of
effecting correspondence would be:
7.5 1.8.5 1¥,1.6 8.7 8.9 .1%.3 1.3 13
L8 3 0456 12 8: o V8 dlafin it
instead of
11.1 9.3 9.1° 7.5 7.3.1> 7.1° 52.1* 5.3.1¢
8.3%3 , 5,17 , 3¢ 3 0.3 .0¢ 3 2% 1
so that there is absolutely not a single pair the same in the two methods
of conjugation.

(45) The object, however, of instituting the graphical correspondence is
not to exhibit this variation, however interesting to contemplate, but to find
a correspondence between the two systems which shall resolve itself into
correspondences between the classes into which each may be subdivided.

Thus we may call U; that class of U’s in which there are ¢ distinct odd
numbers, and V; that class of V’s in which there are ¢ sequences with a gap
between each two successive ones: the theorem now to be established is that
the V corresponding to any U; is a V7, so that class corresponds with class,
and as a corollary, that the number of ways in which n can be made up by a
series of ascending numbers constituting ¢ distinct sequences is the same as
the number of ways in which it can be composed with any 7 distinct odd
numbers each occurring any number of times. This part of the investigation
which I will presently enter upon is purely graphical. A few remarks and
illustrations may usefully precede.

In the example above worked out it will be observed that there are three
classes of U’s, namely,
1= 34 11.1 9.3 9.1¢ 7.5 7.15 52,12
3.1 3.1 3.1°: 7.3.1* 5.3.1* 5.3.1

* In Note D, Interact, Part 2, I show how this transformation can be accomplished by the
continual doubling of a string on itself,
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and three classes of V’s agreeing with those above in the number of parti-
tions in each, namely,
12 3.4.5: 11.1 9.3 10.2 8.4 7.5 9.2.1
7.3.2 6.5.1 5.4.2.1: 8.3.1 7.4.1 6.4.2
So again for n=16 there will be found to be eleven partitions into odd
parts of the third class, which, with their quasi-graphs and corresponding
partitions into unequal parts are exhibited below :

11.3.12 9.5.12 9.3:.1 91. 3514 Tewd sl
(+)? (x)? L (%) (=
ONG 1 8.5.2.1 8.6.2 10.5.1 9.4.2.1
8531 1° fhaerodlE 52.3.13 5.3%.12 5.32.1° 5.3.1°
(*)6 * * *  * *  * *  * (*)8
(08 (= * % (=
(#)?

11.4.1 9.5.2 8§.4.3.1 8.5.3 10.4.2 12.3.1

The transformed partitions above written are all of them of the third
class (that is consist of three distinct sequences) and comprise all that exist
of that class. 16 will correspond to 1 and 1.3.5.7 to itself. All the
other partitions of each of the two systems will be of the second class, and
will necessarily have a one-to-one graphical correspondence inasmuch as the
entire systems have been proved to have such correspondence.

It is worthy of preliminary remark that the association of the first classes
of U’s and V’s given in the previous section will be identical with the
association furnished by the graphical method—but whereas in converting V'
into U by the antecedent process, the two cases of the sequence being of an
odd or even order had to be separately considered, the graphical method is
uniform in its operation.

Thus 9 8 7 6 a sequence of an even order will be given graphically by

* * * * * * * *

* * * * * * * *

corresponding to 15% and 9 8 7 6 5 a sequence of an odd order will be
given graphically by

* Xk % ok k * k
* ok ok ok ok % ok
* ok ok ok ® ok kK
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corresponding to 57, whereas it will be observed that 15*= (9+6)2 and
9+5
=252
It may be noticed that when the major component is an oblate rectangle
it gives rise to a sequence of an even order, and when a quadrate or prolate
rectangle to one of an odd order.

I subjoin an example of the algorithm by means of which a given V
can be transformed into its corresponding U, taking as a first example
V=1098541

The process of finding U is exhibited below :

33355 (9)
2233 (3
442 (1)
133 (6)
10 8 4 (1)
951 (2
111 (3)
444 4
TTT (5)

32.5%. 7 will be the U required.

As a second example let V=12 10 9 8 5 4 1; the algorithm will be
as shown below :
9

(8)
(7)
(6)
L
(2)
3)
C)
(5)
17 11 15 15 will be the U required. Lines (1) and (2) are the parts of
the given V written alternately in the upper and lower line; lines (3) and
(6) arc obtained by oblique and direct subtraction performed between (1)
and (2); line (4) is obtained from (3) by adding the number of terms in (1)
to the last term in (3) which gives the last term in (4) and then adding in
successively the other terms in (3) each diminished by one unit; (7) is
derived from (6) by diminishing each term in the latter by a unit and taking
the continued sum of the terms thus diminished; (8) is found by the usual

‘wu
[ )
O
—_ O

—

o
ox 0 | O o
r 00 W o © |
Oy O i O
OO
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rule of “calling”* from its conjugate (7); and finally (5) and (9) are
obtained by subtracting a unit from the doubles of the several terms in
(4) and (8).

It thus becomes apparent that the passage back from a V to a U is
a much more complicated operation than that of making the passage from
a Uto a V, so much more so that it would seemingly have been labour in
vain to have attacked the problem of transformation by beginning from the

V end.

(46) I now proceed to the main business, which is to show that any U
containing 7 distinct odd numbers will, by the method described, be graphically
converted into a V containing 4 distinct sequences.

Let G be any regular graph; I what G becomes when the first column
of G is removed; a, b, c, d ... the contents of the angles of @G, H taken in
succession.

Also let 7 be the number of lines of unequal content in @, j the number
of distinct sequences in a, b, ¢, d, e,....

The two first lines of &, say L, I/, and also the two first columns, say
K, K’, may be equal or unequal.

If L=L'and K=K', a~-1=b, b~1=c.
If L=L and K>K',a—1=0b, b~1>c¢.
If L>L and K=K', a-1>b, b—1=c.
If L>L and K>K',a—1>b, b—-1>c.

Let G', H' represent what (7, H become on removing the first bend, that
is the first line and the first column, and let ¢/, j° be the values of ¢, 5 for
G', H’, so that j' is the number of sequences in ¢, d, e....

It is obvious from what precedes that in the four cases considered j' =j,
J=j—=1, y=j—1, j=j—2 respectively. But in these four cases 7' =3,
) =1—1, ¥ =1—1; '=v—2 respectively.

Hence on each supposition ¢—j=1"~j, and continuing the process by
removing each bend in succession, ¢ —j must for any number of bends have
the same values as it has for one bend ; but in that case if & and % are the
contents of the line and column of the bend, the reading of the corresponding
G, G’ will be A +k—1,h—1, so that for that case j will be 1 or 2 according
as h and & are not or are both greater than 1, that is according as 7 is
1 or 2%

* I borrow this term from the vernacular of the American Stock Exchange.

t For brevity I use line and column to signify the extent of (that is, the number of nodes in)
either.

+ The final graph after denudation pushed as far as it will go must be either a single bend, a
column, a line or a single node. In the first case i=2, j=2, in each of the remaining three cases
=1, 7=1.
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Hence 7 —j is always equal to zero, consequently a U of the ith class will
be transformed by the graphical process into a V of the sth class, as was to be
proved.

(47) I have previously noticed [p. 25 above] that the simplest case of
1=j=1 leads to the formula

3 6 10
£ gt focip Eot o i

q q° ¢ q L UL
+ + + -+ .= +1_q i gy

1-¢ ' 1~¢ 1-¢ 1-g 1-g¢
which is a sort of pendant to Jacobi’s formula
B S PRI NP e e SO S P R il
149 14¢ 14¢ 1+q¢ 7 14q 1+¢ 14+¢ 14¢
These formulae may be derived from one another or both obtained simul-
taneously as follows: From addition of the left-hand sides of the two
equations there results the double of
q qG q g q41—3 q81:—2
1 —g2+ 1—q“+ T—go o Y q“‘+ . or of 31(1—9“'“-’-1 _qai_z),
and from addition of the right-hand sides of the same there results the

double of
q qs qs qu (_ f (i—l—) qi (2i+:>j

1_gz+1__q,‘+1_qﬁ+1_ge+... or of 121\1_941_2 l—q‘“')'
Consequently in order by the operation of addition of the two equations to
deduce one from the other we must be able to show that these expressions
are 1dentical: observing then that 4:—3 and 8/ —2 are odd and even
respectively for all values of ¢, but (2 —1) and (24 3) odd or even,
according as for 2, 20— 1 or 2¢ be written, it has to be shown that

Pl (e ) )
(4) 1s equivalent to % gt }-;_q—l;;j:_-ﬁ =% !lf‘th::
. PR L il ]

Hence if 7 signify any number from 1 to o and k signify any number.
from O to ¢—1, it has to be shown that (4¢+ 1) (2% + 1) contains the same
integers and each taken the same number of times as (2m — 1) (4m + 1 + 4n),
where m is any number from 1 to © and = is any number from 0 to «o. But
the (4¢ + 1) (2k +1) is the same as (2k+1) {4 (k+ I+ 1) + 1} where & and I

* My formula is what Jacobi’s becomes when every middle minus sign in it is changed into
plus and every inferior plus sign into minus.
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each extend from 0 to o, and the (2m —1)(4m+ 4n+1) is the same as
(2m +1) {4 (m+ n+1)+1} where m and n each extend from 0 to o, and
the two latter expressions on writing k£ =m, [ =n become identical,
Again (B) 1s equivalent to
) i s i = qi—l.m‘—2 s
zl:q l_qsi—z —ll_qsi'
Hence we have to show that (81— 2)(1+j) when 7=2, 3,...0 and
7=0,1,2,.., (1—2), or say (82 +6)(1+7), where 1=1,2,... 0 and j=0,
1,2,...(2—~1) is identical with [(8]/+ 6+ 8m), where I=1, 2,... 0 and
m=0, 1, 2,... ©; the former of these is identical with
A +5){8(+k+1)+6},
where j=0, 1,...0; k=0, 1, ... 0, and the latter is identical with
A+H{8I+m+1)+6},
where =0, 1,... ®; m=0, 1,... ©, consequently the two expressions are
coextensive, which proves (B), and (4) has been already proved. Hence we
see that either of the two original equations can be deduced from the other
from the fact that their sum leads to an identity.

© qi (8046)

In like manner subtraction performed between the two allied equations
leads to the fissiparous equation
© Zo+e 24+ © (g (0+2) (241) Zit1-2i+s
%{1—%‘8i+2+1—$8i+8}= {1—-.1'“'“-*-1—:64“:‘}'
which gives birth to the pair

0

® m4i+3 ©  (2i+3. 4i+3 x2i+1 .4i+3
ISP PENEED) 8 i D - S
‘51—.7;8“'6 P il_wstﬂ+1_w81+4} (C)
© 28+2 @ wm‘+2.4i+1 a2+ 4i+s
and % 1= g5+ % {1 — ot itz T= x.si+8} g (D)

(0) is equivalent to
®© m‘i+3(l == 'Ti+1.si+6) 0';‘ 214143

o 1 — g8i+6 _;l—a:*‘i"""
which is an identity by virtue of the equivalence of
(#1+3)[1+2 {j < (¢4 1)}] that is (45 + 4% + 3) (1 + 2j) to (2A + 1) (41 + 3 + 4u)
where 7, &, A, 4 each extend from zero to infinity, and

(D) is equivalent to

% xsi+2 (1 — 2 (si+2)) B a wm'+s.4i+5

o 1 — g8+ i o 1 — g%it8’
which is an identity by virtue of the equivalence of
(8:+2) {1 + (j <)} that is {8(j+k+1)+2} (1 +5) to (2A+ 2) (4N + 5 + 4p),
each symbol j, £, p having as before the same,range, namely from zero to
infinity. Thus then the ditference of the two allied equations (as previously

their sum) is reduced to an identity which establishes the validity of each
of them.
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INTERACT, PART 2.

With notes of many a wandering bout,
Of linked sweetness long drawn out.
L Allegro.
(48) D. [Transformation of Partitions by the Cord Rule—The figures
below are designed to show how it is possible by means of the continuous
doubling of a string upon itself to pass from an arrangement of groups of
repetitions of » distinet odd integers to the corresponding one with like sum,
made up of r distinct sequences. Each of the two figures duplicated by
rotation about its upper horizontal boundary of nodes through two right
angles will represent an arrangement of repeated odd numbers, the parts
being represented by the contents of the wertical lines in the figures so
duplicated.
Fig. 1. Fig. 2.
B —A A B8

DF E E FO
| Y R K tHj
1 [N o) o PN

0r T

o
2r
S

C

The first duplicated figure represents the arrangement 33, 292, 23, 21, 97,
7,5% 3,1 whose sum is 183; its correspondent will be the contents of the
lengths of * ABC, CDE, EFG, GHK, KLM, MNO, OPQ, QRS, STU, UV,
namely the arrangement 29, 27, 24 (22, 21,), 18, 14,12, 10, 6 which is the
same number 188 partitioned into (ten parts but) nine sequences: the second
duplicated figure represents the arrangement 25, 23, 17, 15, 92, 73, 5% 1%,
whose sum is 180; its correspondent is represented by the lengths of
ABC, CDE, DEF, FGH, HKL, LMN, NOP, PQR, RST, TU, which is
the same number 130 partitioned into the (nine parts but) eight sequences
25, 22 (20, 19,), 15, 12, 10, 6, 1.

* A line containing 7 units of length represents (i+1) nodes.
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(49) E. On Graphical Dissection.—It may be not unworthy of notice
that there is a sort of potential anticipation of Mr Durfee’s dissection of
a symmetrical graph, in a method which, whether it is generally known
or not I cannot say, but is substantially identical with Dirichlet’s for finding

approximately § |:?—Z:| and other such like series (a bracketed quantity being
1

used to signify that quantity’s integer part). Constructing the hyperbola
ay =n, drawing its ordinates to the abscissas 1, 2, 3, ... n, and in each of
them planting nodes to mark the distances 1, 2, 3, ... from its foot, there
results a symmetrical graph included between one branch of the curve, its
two asymptotes, and lines parallel to and cutting each of them at the
distance n from the original. Its content will be the sum in question.
The Durfee-square to it will be limited by the square whose side is [y/n],
and this added to the original area gives twice over the area in which the

vn ]
number of nodes is 3 [g:] , and consequently neglecting magnitudes of the
pit

order A/n,
n An
3 [ﬁ:l =2n 21.—1,"=n(]ogn+20—1)
il 2 1 ?

and as a corollary

‘g{’{— m} =n(C=20+1)=(1—-C)n,
where C is Euler's number *57721, so that 1 — C for large values of n will be
the average value of the fractional part of n divided by an inferior number.
Furthermore a similar graph, but with zy=2n diminished by the portion
contained between a branch of the new curve, one of its asymptotes and two
parallel ordinates cutting that asymptote at distances » and 2n from the
origin (which portion obviously contains (2n—n) that is » nodes) will

represent s [2771:} , and consequently the sum g{[%”jl - 23 [%]}, that is
1 1 :

(see Berl. Abhand. 1849, p. 75) the number of times that ;—?-— [g:, equals or

exceeds §, as 7 progresses from 1 to n (within the same limits of precision
as previously) =2n(log 2n+2C—1)—n less 2n (log n 4+ 20 —1), that is
=(log 4—1)n, so that the probability of the fractional part of n divided by
an inferior number not falling under 4 is log 4 — 1*.

* What precedes I recall as having been orally communicated to me many years ago by the
late ever to be regretted Prof. Henry Smith, so untimely snatched away when in the very zenith
of his powers, and so to say, in the hour of victory, at the moment when his intellectual
eminence was just beginning to be appreciated at its true value, by the outside world. I was
under the impression until lately that he was quoting literally from Dirichlet when so communi-
cating with me, but as the geonietrical presentation given in the text is not to be found in the

S. 1V. 4
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(50) F. Mr Ely's method of finding the asymptotic value of the number
of vmproper fractions with a very large given numerator which are nearer to
the integer below than to the integer above*.

“Let a number n be divided by all the numbers from 1 to 7; then a
value is required for the number of residues which are equal to or greater
than 1. An example will make evident a method by which we may obtain
limits to the value sought. If n be 100 the residues =>4 are

() 4998 47 46 45 44 43 42 41 40 30 38 37 36 35 34
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
(2 32 30 28 26 2 22 %
34 35 36 37 38 39 40

o Z e
Dl
¢ L9
® 13

@ § 5w

memoir cited from the Berlin Transactions, I infer that it originated with himself. In compar-
ing Mertens’ memoir, Crelle, 1874, with Dirichlet’s (1849), upon which it is a decided step in
advance, one cannot fail to be struck with surprise that the point to which the closer drawing of
the limits to the values of certain transcendental arithmetical functions achieved by the former
is owing, should have escaped the notice of so profound and keen an intellect as Dirichlet’s, and
those who came after him in the following quarter. of a century. The point I refer to is the
almost self-evident fact that if in the cases under consideration
3¢ (Fi .z)=yz then ¢z =2Zpu (i) y (Fi.z)

where u (i) means 0, if ¢ contains any repeated prime factors, but otherwise 1 or I accordmg as
the number of prime factors in ¢ is even or odd. Dirichlet works with a function given implicitly
by an equation, Mertens with the same function expressed in a series, wherein exclusively lies
the secret of his success.

* It is proper to state that what follows in the text was handed in to me by Mr Ely on the
morning after I had proposed to my class to think of some ‘common sense method ”’ to explain
the somewhat startling fact brought to light by Dirichlet, of more than three-fifths of the

residues of n in regard to =1, 2, 3, ... n being less than = 5° Mr Ely’s method shows at once, in

a very common sense manner, why the proportion must be considerably greater than the half,
inasmuch as whilst the terms in the first few harmonic ranges are approximately in_2 . 2-”—3 . §i4’

etc., in number, the number of them which employed as denominators to n give fractional parts
greater than 3, instead of being the halves of these are only Qn—g, 315, 4_91_7' ete, The mean

value in both methods to quantities of the order of y/n inclusive, turns out to be the same,
whichever method is employed, but the margin of unascertained error by the use of Mr Ely’s
method (as compared with Dirichlet’s) is reduced in the proportion of 1: 1+44/2, that is, nearly
2:5.
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In which it will be observed that the residues = > 1 occur in batches. Let
X be the whole number, and #; the number in batch 2. In batch ¢ the
numerators decrease by ¢ and the denominators increase by 1. (Those
marked (a) of which the denominators are less than /200 are left out of
account for the present.) It is evident for the general case we have

approximately
n .
[i ¥ 1] .

or accurately

= n n 1#7
s [(¢+1)(2@'+1)] > |:(i+])(2z'+1)]+ '

Mr Ely is then able to show that by limiting the calculation of z; to the
values of © which do not exceed [4/n/2], so that roughly speaking the character
of 4/2n of the remainders is left undetermined (and no account taken of
them in finding the value of X), and giving to a; its approximate value

n n
G+1)(20+1) 23 +t3.5 47
[vn/2]th term, where it ought to stop, to infinity, the errors arising from
each of these three sourcest and therefore their combined effect will be
of the order 4/n, so that the asymptotic value of X will be

s thiin

g3tgztant)”

which is (2 log 2 — 1)n, with an uncertainty of the order 4/n, as was to be
shown.

and then extending the series beyond the

(51) It may be seen that Mr Ely’s method consists in distributing the
n numbers from n to 1 into what I have elsewhere termed harmonic ranges
and determining what portions of the several ranges employed as denomi-
nators to n give fractional parts, greater or less than 4. It may assist in
forming a more vivid idea of this kind of distribution, if the reader takes a
definite case, say of n = 121, the first (10) harmonic ranges will then comprise

* Ifind by an exact calculation that if R is the remainder of n in regard to (i+1) (2i+1) and

R=\(i+1)+p, where A<2i+1 and u<i+1, then for A\=20—1 or 26, z‘=|:(iT)1(L2i+—l)]+l

T for all other values of u. Hence it follows

f+D)@i+1)
that out of (2i%+ 3i + 1) successive values of n, (i2+1) and (12 +2i+1) will be the respective numbers
of the cases for which the one or the other of these two values of z; is employed, so that for
larger values of ¢ the chances for the two values are nearly the same, but with a slight prepon-
derance in favour of the smaller value. See p. [54].

t+ The error from the first cause makes the determination of X too small by an unknown
amount, that from the third cause too large by a known amount, and that from the second too
large or too small (as it may happen) by an unknown amount.

ifpu=i-1ori-2..,0ri-6,and z;=

4—2
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all the numbers from 121 to 12 inclusive, and the remaining 111 harmonic
ranges will comprise the remaining 11 numbers from 11 to 1; that is to say
11 of them will contain a single number, and the remaining 100 ranges be
vacant of content.

So again if n =20 the first four ranges will contain all the numbers from
20 to 5 inclusive; the 5th, 6th, 9th and 20th range will consist of the sole
numbers 4, 3, 2, 1, and the remaining 12 ranges will be vacant. I shall
proceed to compare the precision of Mr Ely’s result with that of Dirichlet’s—
for this purpose it will be enough to determine the asymptotic value of the
uncertainty and to take no account of quantities of a lower order than 4/z.

Let us then suppose that /(kn) ranges are preserved, and consequently
\/ G) fractions left out (k being an arbitrary constant which will eventually
be determined so as to make the uncertainty a minimum).

The first cause of error necessitates a correction of which the limits are 0
and \/ (%), the second cause a correction of which the limits are 4/(kn) and
— #/(kn) ; and the third, namely the overreckoning of

n n
GHrO@+D T G+ @+ "
where j = 4/(kn), a correction of which the value is —2%. or —% \/<%)
Hence making (log 4 — 1) n = U, the superior limit of X is

0+5 ./ () + Vi,

and the inferior limit U —% \/ (%) »/(kn). Consequently X = U + prié where

p<wk+ % \/G:), of which the minimum value is found by making % =%,

so that p < /2 and the uncertainty is v2.nb, Adopting Mertens’ asymptotic

n
value of the uncertainty of X l}l:l , namely 4/n, and using Dirichlet’s formula,
1

1 9, 1 .
2 [:%_n] —-23 l:%} , X has the same mean value as above, but the uncertainty
n

becomes (v/2 + 2) n¥ which is nearly two and a half times as great as that
given by the direct method employed by Mr Ely.

I use the word wuncertainty, it will be noticed, in a different sense from
error; the latter is objective, referring to fact, the former subjective, referring
to knowledge. Both methods in the case here presented give the same mean
value, and therefore the error is the same, but the uncertainty is widely
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different according to the method made use of. Of two formulae referring to
the same fact one might very well give the smaller error and the other the
smaller uncertainty.

I have shown above that for considerable values of ¢, the average value

: n 1L, L
of x; is (T-ﬁ)—(ff+_1)+§’ if then it may be assumed (and there seems no
reason for suspecting the contrary) that for =1, 2,..., 4/2n, the mean value

of %— [?] 18 1, U will not only be the mean value of the known limits of

X but also the mean value of X itself. The value found for & shows that the
most advantageous mode of employing Mr Ely’s method is to make the

n n n i
ssts st gFD@ D
is approximately equal to unity.

series stop at one of the terms which

(52) Tt is not without interest to consider the exact law for the extent
of a harmonic range of a given denomination, say 4: this it is easily seen will

n n
be always equal to [m] or {mil + 1.

I shall regard i as given and determine the values of n which correspond
to the one or the other of the two formulae: this will depend not on the
absolute value of # but on its remainder in respect to the modulus *+ 1.
To fix the ideas, let i =4 so that 724 ¢ = 20, and let n take in successively all
values from 40 to 59 inclusive.

Then corresponding to n equal to
40 44 48 52 56
41 45 49 533 57
42 46 50 54 58
43 47 51 55 59
the fourth range will be

10, 9 11, 10, 9 12, 11, 10 13, 12, 11 14, 13, 12
10, 9 11, 10 12, 11, 10 13, 12, 11 14, 13, 12
10, 9 11, 10 12, 11 13, 12, 11 14, 13, 12
10, 9 11, 10 12, 11 13, 12 14, 13, 12

that is in half the terms of the period l:%:l and in the other half

n .
['Lg—_H] + 1 gives the extent of the range.

So in general, if n =k (i +1) + A\ + p, where A =0, 1, 2, ... 3, and pu=0,
1,2, ...(s— 1), when the remainder of n to modulus (¢ +7) is of the form
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sl
A@E+2)+{0,1,2,...(A— 1)} that is in % cases the extent of the <th

harmonic range to n is [#7—2{-1,':] +1, and when of the form

A@E+D+ A+ L (G- 1)),

SiNE cases 1t is 3
2 24|

As the sum of the harmonic ranges to n is n itself, and

that is in the remaining

ntepminiies e
T 3T gt vt l Gy A P o g
it follows that if we separate all the numbers from 1 to » into two classes,
say vs and j’s, ¢ being any number for which n is of the form
k(@+1)+2+0,1,2,...(A—1),
and j any other number within the prescribed limits, then
SR D 8 n
%2—21‘, I:E:l = number of -
and consequently the number of the 7 terms has (1 — C) = for its asymptotic
value.
(53) In like manner the law previously stated in a footnote, p. [51], for
giving the extent of that portion of the ith range for which % contains

a fractional part not less than } may be verified. Thus let ¢=3 then
@+1)(20+1)=28, let n=256, 57, ... 83. Then for the values of n

28 32 36 40 44 48 52
29 33 37 41 45 49 53
30 34 38 42 46 50 54
31 35 39 43 47 51 55

the portion of the third range having the required character will contain the
numbers

8 9 10 11 12 13 14
8 9 10 11 12 14, 13 15, 14
8 9 10 12, 11 12, 11 14, 13 15, 14

8/ 10,9 11,10 12 11 ‘13,12 14)13! -15, 14

so that there are 2 (1 + 2+ 3), that is 3.4 forms of n out of 7.4 for which
n

4.7

residue of n in respect to (¢4 1)(2¢+ 1), there are ¢*+ 7 cases where the
.__n__ ) 2 1 __,_?z_

formula l:(i+ )@+ 1)] +1 and (v+ 1)* where the formula [(i+ )@+ 1)]

has to be employed. '

the formula +1 has to be employed, and so in general if E is the
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G. On Farey Series.

(54) This note is a natural sequel to and has grown out of the two
which precede ; it has also a collateral affinity with the subject-matter of the
Acts, inasmuch as a graph affords the most simple mode of viewing and
stating the fundamental property of an ordinary Farey series, and any series
ejusdem generis. For instance, let 4, B, C be a reticulation in the form of an
equilateral triangle, where B is a right angle, and n the number of nodes in
the base or height of the triangle; if the hypothenuse be made to revolve in
the plane of the triangle about (either end say about) 4, the triangle formed
by joining A with any two consecutive nodes of greatest proximity to the
centre of rotation traversed by the rotating line will be equal in area to the
minimum triangle which has any three nodes for its apices, that is its double
will be equal to unity. This law of uniform description of areas (say of equal
areas in equal jerks) is identical with the characteristic law of an ordinary
Farey series which deals with terms whose number is the sum-totient n:
but it will also hold good if the triangle be scalene instead of equilateral,
which corresponds to Glaisher’s extension of a Farey series, to the case where
the numerator and denominator of each term has its own separate limit
(Phil. Mag. 1879), or again, when the rotation takes place about the right
angle B as centre, which gives rise to a Farey series of a totally different
species, defined by the inequality ax 4 by < n, or again when the hypothenuse
is replaced by the quadrant of a circle or ellipse, and in an infinite variety
of other cases, as for example when the graph is contained between a branch
of an equilateral hyperbola and the asymptotes, which case corresponds to
the subject-matter of the theory of Dirichlet (Berl. Abhand. 1844) concerning
the sum of the number of ways in which all integers up to n can be resolved
into the product of two relative primes, which is the same thing as the half of
the number of divisors (containing no repeated prime factors) which eunter
into the several integers up to n, or as the entire number of solutions in rela-
tive primes of the inequality #y = or <n. The law of equal description of
areas ( pg’— p'q = + 1), Mr Glaisher has shown very acutely, is an immediate
inference (by an obvious induction) from the well-known fact that between a
fraction and its two nearest convergents (namely the one ordinarily so called
and that which is obtained by substituting § — 1 and 1 for the last partial
quotient), no.other fraction can be interposed whose denominator is not greater
than that of the one first named.

p// @J' > I 2

From the areal-law obviously follows the equation ;1—,,=xq—,~_:q (where
/ 4
g, }qi" }éﬁ are any three consecutive terms of the series), so that in order to

construct explicitly such a series from the two first terms, all we have to do
is to give to x at each step the highest value it can assume, consistent with
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the imposed limit or limits. Thus for example I have found by this method
when the limiting inequality is # + y = or < 15, the series
Orafiii b bl wilborg Bt e B @ople oo ‘el
15 14 138 12 11 0118 .78 o8
g s e B B i s
0 ool T 20031 T @Bl Bl Ruidy

and the complements in respect to unity of the several terms which precede

Sl
= O

i : 4 2 » :
5 taken in reverse order, and again for zy = or < 15 the series (which might

be called the Dirichlet-Farey series)

N it Wy TR ¥ Lo G S 0 S g

1 15 :°14, 13 . 12 - TSI & BN I§ T F
L2, 3.1 & 2 .3 T
e T 8 & 2088 41

In general if we agree to understand respectively by the decernent and
the secernent to z, the number of divisors without restriction, and the number
of divisors restricted to contain no square number, that go into #, and denote
the sum-secernent and sum-decernent of n by Srn and Dn respectively,
Dirichlet’s niode of looking at the question leads immediately to the equation

s9 g = Dn. Mertens’ equation [Sn = g,uiD g] obtained by a longer and
1 1

somewhat more difficult process is in point of fact merely that equation
reverted. On pointing out to Mr F. Franklin this elegant passage in
Dirichlet’s memoir, he remarked to me to the effect that it was an example,
which might admit of wide generalization, of a concept resembling that
inherent in the subject-matter of the ordinary Farey series; which excellent
and keen-witted observation led me to look into the subject from the point
of view herein explained. The present theory diverges from the ordinary
one in quite another and more natural direction (I imagine) than that pursued
by M. Darboux. whose article on the subject of quasi-Farey series (Bulletin
de la Société Mathématique de France, tome V1.) I have not been able to obtain
sight of, and can only conjecture its purport through the reference made to it
in a subsequent article which I have been able to procure in the same journal
by M. Edouard Lucas.

* It is advisable for the purpose of securing generality in reasoning upon Farey series not to
omit the initial and final terms ¢, } which seem generally to have been lost sight of by previous
writers on the subject Even then the series is only half complete, for after } should follow the
reciprocals of the preceding terms until } is reached. Thus a complete ordinary Farey series
beginning with ¢ and ending with } consists of two symmetrical branches with } as their point
of junction, each made up of two symmetrical sub-branches meeting respectively in the terms
4 and ¢, and such that the sum of a corresponding pair of fractions on the one side of } and of
their reciprocals on the other side is equal to unity : whereas in the two complete branches the
product of each corresponding pair is unity.
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(55) I prove the persistency of the fundamental property of ordinary
Farey series for such series generalized in the manner supposed above, as
follows.

Let us use O. F. S; to denote an ordinary Farey series for which the
limit is 7, and G. F. S. a Farey series in which, calling the numerator and
denominator of any term «, y, ¢(z, y) < =1, ¢ (2, y) meaning a rational
function which increases when either # or y increases. If in an 0. F. S; any

. a ¢ : .
two consecutive terms be L and in an O. F. S;,, 2—) intervenes between

% we know, ‘p'being greater than b and d, the two nearest convergents to

NS4
b’ d
g must be contained in O. F. S;, and consequently must be %, %l them-

selves, so that p=a + ¢, ¢ =0+ d, and as a corollary if (—l, z—l be consecutive
terms in any O. F. S., and %’ be any one of the terms which subsequently

intervene between g, f_i’ we must have p=or>a+¢ ¢g=or>b+d. In
order to fix the ideas let us suppose ¢ (z, y) to represent z +y, so that
rz+y<=n,

For the values 2, 3, 4, 5,6,7,8,9 ... of n, the G. F. S. will be

e R R R R S R
el §odgy/ 1A TN S Tho ] (4 32 (S) BRI | (E +83 3231
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1 TR (7 654352 (5 341’
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1(8 765 (7 352534(5 i
where the terms in parenthesis are the new terms which intervene as n

increases from any value to the next following integer, and where it will be

noticed that if %) be any such parenthesised fraction lying between 1% and

%, p=a+c and g=>b+d, just as in the successive form of an O. F. S.
The theorem to be proved may be made to depend on the following lemma.

If for any given value of n every two consecutive terms in a G. F. S.
appear as consecutive terms in an 0. F. S. for the same or any smaller value
of n; this will continue to be true for all superior values of n.

a ¢
b d
the G. F. S; which are also consecutive terms in O. F. S; where 1= or < j.

The proof is immediate, for let be any two consecutive terms in
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If a term ]q—) intervene between -g, % in G. F. §;,, p=or>a+c, g= or

>b+d, by virtue of the remark made. But if p>a+c ;n(;i g>b+d,

pl@ateb+d)<d(p9<j+1,
a+c . . ! : arh e a+c
but Fard is intermediate in value between b d hence T d raust have
appeared in a G. F. S;, where j' < j, which is contrary to hypothesis.

Hence g, ]5, % will have been consecutive terms in some O. F. S,

and in like manner any two consecutive terms in G. F. S. either remain con-
secutive in G. F. Sj;, or admit a new term between them which is consecutive
to each of them in some O. F. S, so that the supposed relation if it holds

good for j is true for all superior values of j; but will in any of

1
I 1
the supposed cases be a G. F. S.; consequently in all these cases no two terms
are consecutive in any (. F. S. which are not so in some 0. F. S., and there-
fore the law of equal description of areas will apply to them equally as to the

0. F. 8., as was to be proved.

The theory may be extended to G. F. S, defined by several concurrent
limiting equations. Thus for example Mr Glaisher has proved this for the
case of z<=m, y<=mn: I have not had time as yet to consider what are
the restrictions to which the limiting functions may be subject, but the
theorem is obviously an extremely elastic one, and the above proof suffices
for all the special cases which I have enumerated*.

(56) T am indebted to Mr Ely for the following additional examples of
Farey series, in the enlarged sense, which may interest some of my readers.
Ex. 1). z+y=o0r<20
1 R R s A o A 2

19°°9 17 8 15 7 13 6 17 11 16

514 9 13 4 15 11 7 10 12 3 14 11 8 13 5

Ay 8 408 8Bl AP PR T BB T B RS

12 7 9 11 13 2 13 11 9 7 12 5 8 11 3 10 7
8 8749 561789

Ex. (2). #*+y=o0r<20
1 112121212132 31323123

19°°9 8 15 7T 13 6 11 5 9 4 11 7 10 3 8 53 7 2 3 4°

* Since the above was in type I have discovered the true principle of Farey series, for which
see Note H following the Exodion.
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Ex. (8). y—wxz=or<15
,‘7_1121212‘3132‘341432

41391451611613715817910111213

5161117619137108179191011121314
14 15 16 17 18 1

15 16 17 18 19 1°

ExopioN. On the Correspandence between certain Arrangements
of Complex Numbers.

At which he wondred much and gan enquere
What stately building durst so high extend
Her lofty towres, unto the starry sphere.
Faerie Queene 1. x. 56.

(57) Starting from the expansion in a series of @z, multiplying in the
usual notation both sides of the equation by

Q-1 -¢1~-¢)...,

and intercalating the factors of this product between those of

A=-¢2)A—¢*2)...(L—qz)A —g°277) ...

taken in alternate order, there results the equation
1=+

A=) (1 =)A= @)1= gz) (1= ¢ (A =)= = (=) g%

and writing ¢ in place of ¢ and making z = F ¢™, Jacobi (Crelle, Vol. XXXIL
p- 166) derives the identity

(L) (1™ (1= @) (1&g ) (1= ¢4m) (L =q*)...= 3 (£) 7

From this equation, using the lower sign and making n= g M= %,
he observes, may be deduced Euler’s expression in a series for

CIRERE QL =Tt = P ¢

and using the upper sign and making n =%, m =g, another known series

1
E:
“given by Gauss in the first volume of the Géttingen Commentaries for the
years 1808-11.”
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It is not without interest, I think, to observe that by making 'n=1,

1 . o 2 ; -
m=g-+e (where ¢ is an infinitesimal), and using the lower sign we may

immediately deduce Jacobi’s own celebrated postscript (so to say) to Euler's

equation, namely,
247

+o . ——-}ie
Qz@ft R ls@h s o 'yl U ned
=1—3q+5g3—7q6.-.,
the general term being

247 2+7
= 3 ——+ie ——(f+1)e il
Srle - T e 2
0 q
247
which is =)V (2+1)q 2.

(58) It is obvious, that by the same right and within the same limits of
legitimacy as the equation involving g, n, m (or if we please to say so in g, m)
has been derived from the equation in (g, 2), the equation in g, z may be
recovered from the equation in ¢ and m, if this latter can be shown to be
true, morphologically interpreted for general values of m. I shall show that
regarding m and n as absolutely general symbols, such as 4/(— 1) or 4/2 or p
or the quaternion units, or any other heterogeneous or homogeneous units
we please, the equation in question which I shall write under the equivalent
form

A, { imto _ Boigog)

AFNAFAA-OIAF¢)AF L)1 =g = X (F)g* ?
[where c=a +b, and a, b are absolutely general symbols or species of units
entirely independent of one another] does hold good as a morphological
identity *. Thus interpreted, it amounts to a theorem in complex quantities,
dealing with arrangements of three sorts of elements which I shall call C’s,
B’s, A’s respectively, meaning by a C' any non-negative integer (that is zero
or any positive integer) multiple of ¢, by a B such multiple augmented by a
single b, and by an 4 such multiple augmented by a single a.

The C’s, the B’s and the A’s in any such arrangement will be regarded
as three separate series, the terms in each of which flow from left to right in
descending order, that is the multiples of ¢ which represent totally or with
the exception of a single b or a single a, the terms in each such series taken
in severalty are to form a continually decreasing series.

* This theorem isless transcendental than Newton’s binomial theorem wher:n g}:e ;ame latitude

2
not admit of direct interpretation when m is a general symbol. The passage from numerical

proximate equality to absolute identity, prepared but not perfected nor capable of being explained
by infinitesimal gradation, brings to mind the analogous transfiguration of sensibility into
sensation, or of sensation into consciousness, or of conscionsness into thought.

22+ ... does

is given to the meaning of the symbols in either case: for (14 z)™=1+mz+
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The total number of elements and the number of C’s will be called the
major and minor parameters respectively—the relation to the modulus 2
(that is the parity or imparity) of either one of them its character: and for
brevity, the terms major and minor character will be used to signify the
character of the major or minor parameter. The totality of all arrange-
ments whatever of A’s, B’s, C’s in which no element 7s repeated, will
constitute the sphere of the investigation, limited only by the absence of
what I term the exceptional or isolated arrangements, consisting exclusively
of a series of consecutive B’s ending in b, or of consecutive A’s ending in a.
Within the prescribed sphere I shall prove that a process may be instituted
for transforming any arrangement which shall satisfy the five following
conditions:

(1) That it shall be capable of acting on every licit and unexceptional
arrangement.

(2) That it shall transform it into another such arrangement.

(3) That operating once upon an arrangement, and then again upon the
operate, it brings back the original arrangement.

(4) That it leaves the sum of the elements in the arrangement un-
altered.

(5) That it reverses each of its two characters*.

From (3) it will follow that all the arrangements within the prescribed
sphere are associated in pairs, and from (1) that the sum of the elements in
each such pair is the same. This being so, it is obvious from the fact of the
parity of the total number of elements being opposite for any pair of associated
arrangements, that in the development in a series of

1-¢9A-¢)1A-¢)A—-g")...,
no term will appear in which the index of ¢ is other than the sum of the
terms in one of the exceptional (we may now call them unconjugated or
unconjugable) arrangements, and from the fact of the parity of the number
of the C’s being opposite in any pair, the same will be true of the develop-
ment in a series of

Q1+¢A+")A-¢)A + ¢g**)....
As regards the coefficient in this latter series of any term whose index is

* It will presently be seen that all the licit and unexceptional arrangements will be divided
into 3 classes and a specific operator be found for each class capable of acting on each arrange-
ment of that class and converting it into another of the same class, and which will satisfy
also the 3rd, 4th and 5th of the enumerated conditions. The total operator contemplated in the
text may then be regarded as the sum of these specific ones, each of which, within its own sphere,
will have to fulfil the five conditions of Catholicity, Homoeogenesis, Mutuality, Inertia and
Enantiotropy (the last a word used in the school of Heraclitus to signify ““ the conversion of
the primeval being into its opposite”). See Kant's Critique of Pure Reason by Max Miiller,
Vol. 1., p. 18.
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the sum of the elements in an unconjugate arrangement it will manifestly be
the number of ways in which the same complex number can be thrown under
the form of a sum of the arithmetical series

a, a+¢ ..., a+(@—1)c,

L
which is 12—1 ¢ + a,
: 125em 1
that is o+ §(a - b,
or of b, b+e ..., b+ (T =1)g,
s ;
which is %c = %(a - ).
T e P war )
If 2c+2(a b)—20+2(a b),
IR ST TY
% 2 g g . g §

which necessitates ¢ =j, and if

. W y 1
§c+%(a—b)=%c—%(a—b),

s pmpanen ou) B o e e
then P I+ d220y,
so that P+i— (=) =(J*-j)—(j>+j) or t=—].

K
. Texi(a-b b & : ‘
Hence the general term is 926*2(0 ), where 7 is an integer stretching
from zero to infinity, and in like manner, and for the same reason, the
2
general term in the former series will be (—)i¢? with the like in-
terpretation : or which is the same thing, comprising both cases in one and

interpreting ¢ to be integer stretching from - oo to + w0, the general term

ct%(a—b)

@ i
. . To+i(a-b
will be (F) q20+2(a h
(59) The task before us then is to show the possibility of instituting, by
actually instituting, a law of operation which shall satisfy the five preliminary
conditions of catholicity, homoeogenesis, reciprocity, reversal of characters and
conservation of sum,

The following notation will be found greatly to conduce to clearness in
effecting the needful separation into classes or species. A capital letter with
a point above, as X, will be used to signify the greatest value, and with a
point below, as X, the least value of any term in a series which that letter
is used to denote. X =0, X>0, X +Y =0, X +Y > 0 will signify respec-
tively that there are no X’s, that there are X’s, that there are no X’s and
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no Y’s, that there are either X’s or ¥’s or both in any arrangement under
consideration. B’s will be separated into ‘B and B”’s, or as we may write it
B ='BB’, where ‘B is the general name for all the B’s, which beginning with
the highest term B form an arithmetical series of which ¢ is the common
difference. If there is a gap of more than one ¢ between B and the next
lowest B, ’B is of course the single term B: B’is any B which is not a ’B.

So agam 4, is any A which belongs to a series of A’s forming an arith-
metical series whose constant difference is ¢ and lowest term a, so that
unless 4 =a, A,=0: any other 4 will be designated by ,4. The signs
of accent and point may of course be separate or combined : thus for example
¢ will mean the smallest C in any given arrangement, B will mean the
greatest B, 4 will mean the lowest 4, ;4 will mean the lowest of the ,4’s
and 4, the highest of the 4,’s. Every ‘B is necessarily greater than any B’,
and every ;4 than any 4,. If'B — b=0, this will indicate that all the B”s
will form a consecutive series of terms (that is having a constant difference c)
and ending in ), so that here B’=0, that is there are no B’s except those
that belong to the regular arithmetical progression ending in b. If ,4 =0,
all the 4’s will form an arithmetical progression ending in @. Thus we see
that the arrangements belonging to the 1st terms (those that I have called
exceptional) will consist of two species denoted respectively by

A +B+C=0 and (B=b)+A+C=0,

It may sometimes be found convenient to use a point to the left centre of a
quantitative letter to signify that the quantity denoted is to be increased,
and a point to the right centre to signify that the quantity denoted is to be
diminished, by ¢. Thus B- will mean B—¢, and -4, will mean 4, + ¢, the
first signifying the greatest B diminished by and the second the smallest A4,
increased by c. When any general letter, say X, is wanting as indicated by
the equation X =0, X must be understood to mean zero. So for instance
if 4 =0, and consequently ;4 =0 and 4,=0, ,4 =0. Again, when there is
a gap between the highest B and the one that follows it in any arrangement,
the arithmetical progression of 'B's reduces as above remarked to a single
term and there results ‘B=’B. It may be noticed also that always ‘B = B,
and 4, = 4.
The arrangements which are comprised under the forms

(@ A4, A—¢, A —2c,..., q,

B B, B—¢, B—2c,..., b,
may be regarded as belonging to what I shall term the first genus.

The second genus, namely that consisting of unexceptional combinations
of unrepeated 4’s, B's, C’s, may then be divided into the following three species,
the conditions by which they are severally distinguished being attached to
each in its proper place.
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1st Species. Conditions (y) ‘B—0>0,
or () 'B-b=0, C>0, C—¢c<='B-b
2nd Species. (8) '‘B—b=0, 4+C>0, C=0 or (—c>'B-1),
or (&) B=0, C>0, 4=0, or ;d—a=>C.
3rd Species. (¢) B=0, 4>0, ,4+C>0, (=0, or (>,4—a.

Where it is to be understood that the conditions set out in the same line
are simultaneous conditions. Thus for example the conditions of an arrange-
ment being of the second species are when all the conditions of the upper or
else all the conditions of the lower of the two lines written under that species
are fulfilled: the conditions of the upper line (be it noticed) are that ‘B is b,
and that there are either some A’s or some C'’s, and that if there are some C’s,
¢ —c¢>'B -0, and of the lower line, that there are no B’s and some C’s, and
thatif there are 4’s, 4 —a = > (, and so for the interpretation of the conditions
of the existence of each of the other two species.

To these (7) systems of conditions «, B, 4, 7/, 8, &, ¢ may be joined the
trivial system (w) A =0, B=0, ' =0%*; the (8) systems thus constituted will
easily be seen to be mutually exclusive and between them to comprehend the
entire sphere of possibility, leaving no space vacant to be occupied by any
other hypothesis. I will now proceed to assign the operators ¢, 4, & appro-
priate to the three species of the second genus.

Office of the Operator ¢. ¢ ="¢p+¢'.

When in Genus 2, Species 1, C=0 or ((—c¢>'B—'B, '¢ is to be per-
formed, meaning that for each ‘B, ’B- is to be substituted, and the inertia
kept constant by forming a new (' with the sum of the ¢’s thus abstracted.
In the contrary case ¢’ is to be performed, meaning that (' is to be resolved
into simple ¢’s and as many of the ‘B’s, commencing with ‘B and taken in
regular order to be converted into "B as are required to maintain the inertia
constant, that is ¢ is to be added to each B in succession, until all the ¢’s
which together make up ¢ are absorbed.

Office of the Operator . ="y 4+

When in Genus 2, Species 2, C =0 or (/> ‘B+ 4,y is to be performed,
meaning that for ‘B and A their sum is to be substituted, producing a €
[which, on the second hypothesis, will be a new (']. In the contrary case ¥’ is
to be performed, meaning that for (' is to be substituted B (which will form
a new 'B) and ' —'-B which will form a new 4,.

* It would be perfectly logical, and indeed is necessary to regard the trivial case as belonging
to the cases of exception, and then we might say that there are two genera, each containing
three species, those of the first genus solitary, and those of the second, each of them comprising
two sub-species, namely the sub-species subject to the action of the left-accented and that
subject to the operation of the right-accented operators. The trivial species of the first genus
consists of a single individual.
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Office of the Operator . ¥ ="¥+%.

When C >0 and ¢+ A, <.,4, "y is to be performed, meaning that for f
and A, their sum is to be substituted, producing a new ,4. In the contrary
case Y is to be performed, meaning that for ,4, A, forming a new A, and
A—A4, forming a new C are to be substituted.

(60) It will be seen that every species of the second genus consists
of two contrary sub-species having opposite characters, and it will presently
appear that any arrangement belonging to one of these sub-species under the
effect of its appropriate operator passes over into the other, which operated
upon in its turn by its appropriate operator becomes identical with the
original one, so that any two contrary sub-species may be said to be of equal
extent: in fact if the sum of the parts is supposed to be given there will be
as many arrangements in any sub-species as in its opposite, for each one will
be conjugated with some one of the others.

It may not be amiss to call attention here to the fact that the scheme
of classification adopted is, in a certain sense, artificial. Thus, for instance,
it proceeds upon an arbitrary choice between which shall be regarded as
the A and which as the B series, so that by an interchange of these letters a
totally different correspondence would be brought about between the arrange-
ments of the second genus, those of the first genus remaining unaltered. Nor
1s there any reason for supposing that these are the only two correspondences
capable of being instituted between tbe arrangements of the second genus—
in particular there is great reason to suspect that a symmetrical mode of
procedure might be adopted, remaining unaffected by the interchange between
4 and B. As a simple example of the effect of interchange, applying the
method here given, suppose 4 =0, B=0, a case belonging to the second
species and that sub-species thereof to which 4 is applicable, and imagine
further that the (' series is monomial. Then C will be associated according
to the scheme here given with b, C'—b, but in the correlative scheme it would
be associated with a, € — a.

(61) I need hardly say that so highly organized a scheme, although for
the sake of brevity presented in a synthetical form, has not issued from the
mind of its composer in a single gush, but is the result of an analytical
process of continued residuation or successive heaping of exception upon
exception in a manner dictated at each point in its development by the
nature of the process and the resistance, so to say, of its subject-matter.
The initial step (that applicable to species «) is akin to the procedure applied
by Mr F. Franklin to the pentagonal-number theorem of Euler, of which
I shall have more to say presently. It will facilitate the comprehension of
the scheme to take as an example the particular case where a and b represent
actual and real quantities, say, to fix the ideas, b=1, a = 2. Nothing, it will

8. 1V, 5
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be noticed, turns upon the fact of this specialization, which is adopted solely
for the purpose of greater concision and to afford more ready insight into the
modus operands.

To illustrate the classes and laws of transformation consider (with b =1,
a=2% c=a+b=3) all the arrangements, the sum of whose parts is 12,
namely 12,11.1, 10.2, 9.2.1, 8.4, 8.3.1, 7.5, 7.4.1,7.3.2, 6.5.1,
6.4.2,5.4.3 5.4.2. L.

One of these, 7.4.1, be]ongs to the exceptional genus. The rest will be
conJugated and fall into species in the manner shown below, where the first
species means where the conditions (y) or (v'), the second that where (8) or
(&), and the third where the conditions (e) are satisfied. The C’s, B's, 4’s
are now numbers whose residues are 0, 1 or 2 in respect to the modulus 3.
For greater clearness in each arrangement, numbers belonging to the same
series are kept together, the law of descent only applying in this theory to
elements belonging to the same series.

Species 1. 10.2 3.7.2; 4.8 3.1.8;7.5; 3.4.5; 6.4.2 6.3.1.2;
B Tu B Rl
Species 2. 9.1.2 9.3; 6.1.5 4.1.5.2;

Species 3. Caret.

Or again let the collection of arrangements be one in which the sum 1s 18.
The partitions of 18 are 18 17.1 16.2 15.3 15.2.1 14.4 14.3.1
0 IR TRA C T G SR8 DA 0 (53 e Ll g WAl (e S sl L Lz e (85
11.5.2 11.4.3 11.4.2.1 10.8 10.7.1 10.6.2 10.5.3 10.
10431981972963962195.4903.1
87387218648631 1T i S T .

764:176327'42753216 4.3 6.
In thls case there are no exceptional arrangements.

1st Species. 16.2 3.13.2; 4.14 3.1.14; 13.5 3.10.5; 13.4.1

R de b
9.4.3.2
4.3.2.1
5.4.2.1.

310417113411108378124«212 121071
6.7.4.1;6.10.2 6.3.7.2; 10.1.5.2 3.7.1.5.2; 9.4.5 9.3.1.5;
6756.340,7182341826486318,74-.5.2
6.4.1.5.2;

2nd Species. 18 17.1; 15.3 15.1.2; 12.6 12.5.1; 6.1.11
4.1.11.2; 9.1.8 4.1.8.5; 9.7.2 9.3.4.2; 0.6.3 9.6.1.2;
1ikis5¢® 188052

3rd Species. Caret.

If the partible number is 11, of which the partltlons are 11 10.1 9.2
8.38.2.17.47.3.16.56.4.16.3.25 .83.2.1, there will
be no exceptional arrangements and the pairs of unexceptlonal ones will be

as below.
* No use it will be seen is made of the accidental relation a=b+b.
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1st Species. 10.1 3.7.1; 7.4 6.4.1; 4.5.2 3.1.5.2.
2nd Species. 3.8 1.8.2.
3rd Species. 11 9.2; 6.5 6.3.2.

By interchanging a and b, that is making a =1, b= 2, the correspondence
changes into the following :

1st Species. 11, 3.8; 6.3.2, 6.5; 8.2.1,3.5.2.1; 7.4, 6.4.1.
2nd Species. Caret.
3rd Species. 10.1, 6.4.1; 7.4, 3.7.1.

According to Mr Franklin’s process the correspondence takes a form quite
distinct from either of the above, namely 11, 10.1; 9.2, 8.2.1; 8.3,
7.3.1; 7.4,6.4.1; 6.5, 5.4.2; 6.3.2, 5.3.2.1, all these arrange-
ments constituting one single species.

A careful study of the preceding examples will sufficiently explain to the
reader the ground of the divisions into species with their appropriate rules
of transformation, and might almost supersede the necessity of a formal proof
of the operator supplying the conditions of catholicity, homoeogenesis and
mutuality ; from their very definition they are seen to comply with the other
two essential conditions of inertia and enantiotropy.

Signifying by Q the total operator ¢ + -+, it has been already remarked
that Q will in the general case have two values which only come together
when @ =, or which is the same thing, each of them is 1; a special case of
the special case when the complex reduces to simple numbers, namely, it is the
case indicated in the well-known equation

— )2 — n3\2 — a5)\2 = 1 g %
(1 9) (1 Q) (1 Q) (1_q2)(1__q4)“'£=2_wq‘

But besides the two correspondences given by the two values of Q, if we
take the actual (no longer a diagrammatic case) b=2, a=1, we revert to
Euler’s theorem concerning the partitions of all pentagonal and non-
pentagonal numbers, and can obtain by Dr Franklin’s process, given in
Art. (12), a totally different distribution into genera and species, namely the
first genus instead of containing arrangements of the species

1,4,7,..3—2; 2,58,..3~1
will, as previously shown, consist of the very different arrangements (giving
the same infinite series of numbers as those for other sums)
5,14+1,14+2,...2%~1; 14+1,¢+2,¢+3...; 2.
The character of each arrangement in the new solution depends in part on

the relation to the modulus 2 of the whole number of parts and of the number
of parts which are divisible by 3, so that we may divide the conjugate arrange-

5—2
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ments into four groups* designated respectively by Oo, Oe; Eo, Ee, using the
capital letters to signify the oddness or evenness of the whole set of parts, and
the small letters the same for the parts divisible by 3. There will thus be a
cross classification of the arrangements of the second genus into groups over
and above that into species, each species in fact consisting of four groups,
which may be denoted as above, and of which Oo and Ee are one associative
couple, and Oe, Eo the other+.

(62) The following elegant investigation has been handed in to me by
Arthur S. Hathaway, fellow and one of my hearers at the Johns Hopkins
University, to which, although it does not exactly strike at the object
of the constructive theory here expounded, I gladly give hospitality in
these pages.

“The theorem to be proved is as follows:
1+ex®. 1+ e, 14 exth .,

X1+ex?. 1+ extth .1 4 eadt?®,,.

d=+wo aibag_'_us
x1—ah . 1l—g* 1=g,.= 3 .0°2 i

d=-w

where e2=1 and & = a + b, @ and b being any quantities whatever.

“The general term contains, say ¢ exponents of « selected from the first
line, j from the second line, and % from the third line, namely

a+ah,...0+a;_1 h,
b+ Boh, ... b+ Bk,
Tk, - vk,
where aq... %1, Bo--- Bjm1, Y1 ...k are respectively sets of 1, j, k unequal

integers arranged in ascending order, none representing a less integer than
its subscript. This term is (remembering that A =a +b)

€+ (=) gmatnd,
where
m=[(t+ 1)+ ... @+ D]+ [Bo+ ... Bl +[n+--- 7] (1)
n=lay+ ...t ]+[(Bo+ 1)+ .o Bima + 1)+ [y + o0 k] 2)

* It will be seen later on that there is a division into sixteen groups analogous to the
division into four groups first notieed by Prof. Cayley arising under the Franklin process.

+ The Oc and Eo conjugation has a very striking analogue in nature (as I am informed) in
the existence of dissimilar hermaphrodite characters in two sorts of the wild English primrose
and the American flower Spring-beauty or Quaker-lady—it being the law of nature that only
those of different sorts can fertilize one another. Possibly the double symbolic character of Oo and
Ee will justify or suggest the inquiry whether there may not be a latent duality in the unisexual
specimens of such flowers as those just mentioned, where male and female are found codomiciled
with the bisexual florets. There is also, it seems, a trace of analogy to the sparsely distributed
unconjugate individuals of my first genus in Darwin’s ** complemental males.”
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In addition to these we obtain by subtraction
m—n=t—j=1+j mod 2. 3)
Whence (since €2 =1) ¢t = ¢mn,

“Thus all the above general terms having the same m and the same n
divide themselves into positive and negative groups (corresponding to even
and odd values of k), a term from one group cancelling a term from the other
group. I propose to prove that the number of terms in each of these groups
are equal, except.when a certain relation exists between m and n, namely

_(m-n)(m—n+1)

2
corresponding to which there is but one general term having the same m and
the same n which falls into the positive group (#=0). This establishes the
theorem in question, as we see by putting m—n=38.

=0, (or m=0 if m =n),

m

“It is sufficient to consider (1) in connection with (3). In the first place
the first two partitions in (1) may be converted by a (1 : 1) correspondence
into an indefinite partition (bearing in mind (3)) with a decrease (m —n > 0)
in the sum or content of the integers by 4 (m —n)(m—n+1), as follows:
extend a, + 1 in a horizontal line of dots, and under the first dot extend S, in
a vertical line of dots, thus forming an elbow; in a similar manner form
elbows out of &, + 1, B, &c. until one of the partitions is exhausted ; this will
be according to (3), the first or the second, according as m < or >n, leaving
in the inexhausted partition m — n integers; place these elbows successively
one without the other, and ‘place on top (m—n> 0) horizontal lines of dots
corresponding to the successive unmatched integers decreased respectively by
0,1,...(n—=m—1)or 1, 2,... (m—n), according as m < or >n; in either case
the total decrease is § (m —n)(m —n+1). In other words, the above tri-
partition of m has a (1 : 1) correspondence with a bi-partition of

_(m—n)(gz—-n+l)’ (or m if m=n),

consisting of an indefinite partition on one side and a partition of unrepeated
integers on the other (y,,...v). Such a bi-partition (on removing the line
of demarcation) is an indefinite partition; and, conversely, every indefinite
partition involving @ different integers gives rise as follows to (1 + 1)¢ such
bi-partitions, the number of those involving even and odd values of % being
respectively the positive and negative parts of the expansion of (1 — 1),
which are equal: namely, first, the indefinite partition itself (k=0); second,
the 6 bi-partitions obtained by placing each of the @ integers successively on
the k side (k =1); third, the } 6 (6 — 1) bi-partitions obtained by placing the
360(6—1) pairs of the 6 integers successively on the % side (k= 2), and so on.

m
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The only exception to this equality of the number of partitions for even and
odd values of £ is when the partible number,

(m—n)(m—n+1)
LT e U/
is zero, for which case there is but one bi-partition [0]+[0](k=0). QE.D.

The tri-partition of m corresponding to the celibate case reduces to the
natural sequence above subtracted whose content is

m or m,

(m—n)(m—n+1)
2

which is the second or the first partition (according as m < or > n), the others
being wanting.”

(or 0),

(63) The same infinitesimal method which applied to the expansion of
0,z gives rise as was shown to the expression for the cubes of the successive
rational binomial functions may be applied to the development of

A+ax)(1+az®)(1 + az?) ...
given in Art. (35), but will not lead to any new result. Making a=—a7"",
where ¢ is infinitesimal, we obtain from the general theorem
-2 —-2)1-a®)(1=2%...

=1_1—a:‘w+1—w‘.1—wx5_!_—w‘.l—w.l—_wfwum

1—=z 1—z.1—2* l-z.1—2*.1—-a28
1—ac l1—2t.1—2
st by ety il i ¥ e
x—a a°—2a°

oo (l-a)(l-a)(1-a)...=1

ST 3
=l-z(Q+a)+2°(1+2%)...,

the same equation as results from writing ¢ =—1.

To arrive at any new result it would be necessary to have recourse to
processes of differentiation; the above calculation serves, however, as a
verification if any were needed of the accuracy of the theorem to which
it refers.

(64) Since sending what precedes to press I have thought it would be
desirable in the interest of sound logic to set out the marks or conditions
of the several species of the arrangements of unrepeated 4, B, C’s, somewhat
more fully and explicitly than before. And first, I may observe that since
it has been convenient to understand that when there are no X terms X shall
signify zero, the quantitative equation X =0 dispenses with the necessity of
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using the symbolical one X =0, and in like manner X >0 supersedes the
symbolical inequality X >0, and, of course, the same remark extends to the
equality or inequality X 4+ ¥ = or > 0.

We have then for what I shall term the first, second and third species of
genus 1, the conditions

C+B+4=0, C+'B+4=b, C+B+4,=0

respectively—the first, the trivial case of vacuous content; the second, of
only a complete natural B progression, that is, one ending with b (the
minimum value of B), and the third, the same for A similarly ending with
the minimum a. In what follows the conditions in each separate line are to
be understood to be not disjunctive but simultaneous or accumulative; they
of course refer to the species of the second genus.

Marks of species (1) () B—-0>0,
or (8) B—=b=0, 'B="B=>(—c¢, (>0.
» ' (2) (@) B=b=0, (—c>'B-'B,

or (8) B=b=0, ¢'=0[4>0],
or ('Y) B=O! A_a=>.0) O>OI
or (8) B=0, 4=0[C>0].

» » (3) (“) B=0, C>A—a/s 4 >0,
or (B) B=0, ¢=0[d—a>0].

The three inequalities included in brackets are only required in order
to exclude arrangements belonging to the first genus. Leaving these out of
account for the moment, merely for the sake of greater concision of state-
ment, it is easy to see by mere inspection of the above table that the three
species are mutually exclusive and share between them the total sphere
of possibility, for (1) a exhausts the hypothesis of there being other B's
besides those forming a complete natural progression, (1) 8 and (2) a of the
B’s forming such progression when there are existent C’s, and (2) 8 when
there are not. Also ((2) ¢, (2) 8), (3) « exhaust between them the hypothesis
of there being no B’s when there are some existent C’s, and (3) 8 of neither
B’s nor (s appearing in an arrangement.

Thus all unexceptional arrangements must bear the marks occurring in
one or the other of the first four lines of the table, and all those where no B’s
occur, either of the last line when there are neither B’s nor C’s, and of the
three preceding ones when there are no B’s but some C’s, and the total sum
of these hypotheses plus the hypothesis of the first genus together make up
necessity, as was to be shown.

The convention X =0 when an arrangement contains no X with the
consequent reduction of the conditions to a purely quantitative form has lent
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itself very advantageously to the above bird’s-eye view of the completeness
of the scheme (as covering the whole ground of possibility); it also will be
found to simplify the expression of the proof. I did not employ it until the
necessity for so doing forced itself upon my notice, for a very obvious reason,
namely that X is a B (or an 4), which is defined to be congruous to b (or @)
[mod ¢], which zero is not: there is thus an apparent paralogism in ad-
mitting that any X of these two where there is a B (or when there is an 4)
is congruent to b (or to a), but that when there is no B (or no A) then the
conventional least B (or 4) is zero. It will be seen, however, ez post facto,
that no inconvenience in working the scheme results from this extended
definition which constitutes an important gain to the perfect evolution of the
method. Tt is usually in the form of some apparent contradiction or paradox
that a scientific advance makes its first appearance.

(65) Aided by this clearer and fuller expression of the definitions of the
genera and species, I will now set out a logical proof that the respective
operators fulfil the three additional necessary conditions. 1 may observe
preliminarily that the Greek letterings a, 8; a, 8, v, §; a, 8, do not express
sub-species, for one distinguishing mark of species (or sub-species) may be
taken to be that conjugation cannot take place except between individuals of
the same species or sub-species, but it will be presently seen that individuals
belonging to the differently lettered divisions of the above species are
susceptible of mutual conjugation—and are therefore in conformity with
biological precedent to be regarded as mere varieties. Besides these varieties
of each of the species there is another entirely different principle of cross
classification applicable to each of them, namely in general an arrangement
must belong to one of sixteen groups designated by combining together one
out of each of the four pairs of opposite symbols X, C'; z, ¢; O, E; o, e,
where the large O, I refer to the oddness or evenness of the major, and the
small o, e to the same for the minor parameter; and in like manner the large
X and large O to the result of the operation appropriate to any arrangement,
being to extend or contract the major, and 2, ¢ to extend or contract the
minor parameter. There are thus eight pairs of groups, and conjugation can
only take place between individuals belonging to the same pair.

The pairs are as follows:

<Xa:00)’ (Xer)’ (XxEo)’ (Xa:Ee)

CcEe CcEo CcOe CcOo0 )’
nd (cozs)> (cem): (cee) (cuoe):

Species (1) and species (8) it will be seen may each be separately divided
into four sub-species denoted by the upper four, and species (2) into the four
sub-species denoted by the lower four pairs of combined characters, so that
there will be in all twelve (and not as might at first be supposed twenty-four)
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sub-species of conjugable arrangements. The different sub-species of the
same species do not admit of cross-conjugation ; it is the property which they
have in common of being subject to the same law of transformation when
passage is made from an individual to its conjugate, which binds them
together into a single species. In the arrangements peculiar to Euler's
problem, we see that there was no division of the second genus at the outset,
but that a separation would be made of it into two pairs of groups with con-
jugation possible only between individuals belonging to the same pair, and
consequently there may be said in this case to be two species of the second
genus, analogous, however, not to the species but the sub-species in the more
general theory. The final separation of a pair of groups into its component
elements has nothing to do with the concept of species, sub-species or variety,
but may be regarded as similar to the separation of the sexes.

In what follows, a bracket enclosing a letter will be used to denote that it
belongs to an arrangement after it has been operated upon by its appropriate
operator, or what may be called its operate.

Species (1). When B—b>0,if ¢ —¢>'B—'Bor ('=0, ¢ may be per-
formed, giving [('] ='B —’B + (' < (' so that the law of descending magnitude
is maintained ; we have then [B] —['B]=or > B—'B=>[(]—c; hence ¢’
has to be performed and will obviously restore the original arrangement.
Again if in the original arrangement B—-'B=>(C—c¢ and (>0, ¢ has to
be applied; a resolution of (' can take place into ¢’s and the (/¢ first ‘B’s,
and will each be increased by ¢ and [B] —’[B]= ' —c¢, so that either [(]=0
or [(]—c<(—c<[B]—'[B], and ‘¢ being applicable to the new arrange-
ment will convert it back to the original one.

First Species (8). When B—b=0 and B—'B=>(C—c and (>0, ¢’
can be performed, and the new arrangement as before may be operated upon -
by ¢' and so brought back to its original value. If ('=0 or (' —c>B—"B,
‘¢ could not be performed, for then B=15% and has no ¢ to part with to help
make up [(].

These two hypotheses belong to Species (2), which we will now proceed
to consider throughout its full extent. When B —b=0, then ‘B=0, and I
shall first suppose [(a) and (8)] that =0 or '—¢>B—b. When (=0 or
B+ 4 > (, then "y will be applicable, making [(']=B+ 4 ; if now [B]>0
and [4]>0, [B]+[d]=>B~-c) +(4d +c)=>B+ 4 =>[C], and

[(]-¢c=B+4 —c=[B]+4 >[B]-b.

Hence we are still within Species 2 and have fallen upon the case to
which the reversing operator y' has to be applied. If [B]=0,[4]=0 we
must have B[('] > 0, inasmuch as the original content (or inertia) is originally
greater than zero and is kept constant, and this is a case which still belongs
to Species 2 and falls under the operation of .
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If [B]=0 so that B= B=b and [4] > 0, then
[Ad]l—a=>d+c—a=>4+B=>(,

which also falls within the second species and is amenable to the reversing
operator '

Finally, if [B] > 0, that is B—b=0 and [4]=0,

[(1—c=B+A4—c=>[B]-b,

that is =>[B]—'B, and we are still within Species (2) and in the case
amenable to the reversing operator '

If now on the other hand we begin with an arrangement of the second
species in the case amenable to 4»’ we must suppose either B=0 or 4 =0, or
else (>0 and ('<=B+ 4.

Take first this last supposition. The operation of ¥’ gives [(]=> ( +c¢,

[B]=B+c and [d]=C—-c—B>B—b—B>—b=>c—b=>a.
And  [B]+[d4]=B+C-B=0<[0]
[Cl=c=>(C—c)+c=>B—-b+c=>[B]-[B].
Hence the operate is licit, belongs to the second species and is amenable to
the reversing operator "yr.

If B=0and 4=0, [B]=[B]=b and [4]=C—b and [(]=0 or > (.
If [C]1=0 since [A]>0, the operate is included in variety (8) of the
second species and amenable to the reversing operator ‘4, and if
[C1>C[C—c]>C—c>0,
that is >[B]—B which belongs to variety (a) of the second species; and
since [(]>C > [B]+[4] is amenable to the reversing operator "y
If B>0and 4=0, then (>0 [otherwise it would be an arrangement in
Genus 1, Species 2] [C]=0 or > (, [B]=B+c,
[4]=C—[B] >(c+B-b)— (c+B) >a,
and either [(']=0 and [4]>0 or
[Cl—c>(C=c)+c>B+c—b>[B] -
and [4]+[B]=C>[(C] Hence in either hypothesis the operate is still in
Species (2) and amenable to the reversing operator "y
Lastly, if B=0, 4 —a=> (' and ¢ >0, the arrangement is amenable to
the operator ', which will make [B]=b, [d]=C—-b<(C+a<d. We
have then [B]—b=0 and [(]=0, and consequently also 4 >0 or
[(]-¢>C—c¢>0,
that is > [B] —[B], and the result is still contained within Species (2) and is
amenable to the reversing operator 'y

(66) The following are examples of paired arrangements belonging to
the first species, adapted to the case of a=2,b=1. The ( and B terms are
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expressed; the A line is the same for each of any pair of this species, and
may be filled in at will,

1 B } 1L X1.
¢ 16.13.10.Y)  |19.16.13. 7
where X, Y represent any licit series of (s and B’s respectively.

"l’{fﬁ:zsj.Y}z{ﬁ'.glb(f%.y} ¢'{;X;s..913.10.4}={fg.w.ls.am}
"5'{{'49.1}:{%'.7.4} '¢{1O‘7'4}={7.2:1}

¢’{13.§:4'1}={16.7.4.1}.

The following are examples of paired arrangements of the second species
with @ =2 and b =1 as usual.

JX.12. X.12.9. Xa2.) (X
" 7.4.1.}:{ 4.1 } \p'{7.4.1.}= 10.7.4.1.}
| .2 Y v.s ) lr.s.e
12 X.15 X.
s I >y gl | ¥ 1 { }
v ~Ja1.} yidrsal=l10.7.4.1
{YS'} {YJ {Y.SJ Y.8.5
X.9.1 P 6.1
4,'{ ={ 1.} 1#’{1. ={4.1.}
Js wlag s ] l|s2

; X.9. LG
\;,'{ ...Hl. :
Y. Y.11.8

We come now to the third species. Here, I think, the reader will find it
a great relief to the strain upon his attention if I invite him before attacking
the demonstration to consider the annexed diagrammatic cases accommo-
dated to the supposition ¢ =2, b=1. The B’s it will be remembered,in this
species do not exist, and the action neither of ‘Y nor § introduces any B
into the transformed arrangement. In the examples given below the C and
4 terms occupy the higher and lower lines respectively—the comma is used
in the latter to mark off the ,4’s from the A4,’s.

QL% 05 (- 1968 g wus L il b |+ ('8,
Rade, 198 18,4 T 1411048, 2 {14:.11.8,2 TS 5
3 Jed THigs gy
8(17.8.0)—17.8’2 ’3(17.8.5,)—17_8’2

i _ 6. \ — 3.
%(17, 8.0.2)—’ s %(17.14, 8.0.2)—17, 21 Mo

9 N 12.9.3. L0 SE20N
w2 gl 8UBLRY 11148 5¢2

%,{ BB T, 1 1ol 016
,11.8.5.2f T 14, 8.5.2
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The left-hand accent is used here as elsewhere to signify that phase
of the operator which brings about an increase and the right-hand one a
decrease in the number of (’s. It will readily be seen that the action of the
operator in each of the above examples prepares the arrangement for the
action of the contrary one which will restore it to its original value. It is
worthy of notice that in any two associated arrangements above, an a
(here 2) may appear in each and must appear in one of them. I will now
proceed to the general demonstration. .

(67) Let us first suppose 4,=0, then ,4 >0, otherwise we shall be
dealing with the antecedent species and ‘S will be applicable, making
[A4]=[4,)=a[¢(]=4—a<( and >(4 —a). Thus the generated arrange-
ment is licit and belongs still to the third species; but now [0]+ [4,]=4
and [,4]=0> 4. Hence the reversing operator & is applicable to the new
arrangement; the remaining cases to consider (in which 4 =a for the
arrangement as well before as after being operated upon) may be separated
into those where (> 0, and at the same time either (' + 4, < ,4 or .4 =0,
which are amenable to the operator % and the complementary cases which
are amenable to Y.

In the cases first considered [A;]=A4,—c¢, LA]=0=4, [C]+0 or
> ( (and @ fortiori > 0), consequently the new arrangement is licit and still
belongs to the third species, and since either [(]=0 or else

[0]+[A1] > G+A1—.O=>[1A]

and [;d] >0, it is one of the complementary cases and is subject to the
reversing operator Y.

Again, any arrangement for which 4 = a belonging to the complementary
cases is defined by the conditions ;4 >0 and ¢+ A,=>,4 and is by
hypothesis to be subjected to the operator 'S which will make [4,]=4, +¢,
[4]1=00r>,4[0]=,4 —A4,—¢, and since ('=>,4 — 4,, [C]< C, so that
the operation leads to a licit new arrangement.

Also [0]+ [4,]=.4, and consequently either [,4]=0 or [('+ 4] < [.4],
which i1s a condition belonging to the first considered class of cases, subject to
the reversing operator %', and thus for the third as for both the antecedent
species of the second genus, it has been proved that each designated operator
prior to any arrangement being performed does not take away its licit
character nor carry it out of the species to which it belongs, and on being
repeated brings it back to its original form, and that the effect of any single
operation is to maintain the content (or inertia) of the arrangement constant
but to reverse each of its characters. This is the thing that was to be proved
and brings my wearisome but indispensable task to an end.
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(68) Another and perhaps somewhat clearer image of the classification
of the numbers of the second Genus may be presented as follows: The com-
binations of the characters XCOKxzcoe give rise to eight pairs of groups, say
eight classes. Of these classes four belong to Speecies 2, and may be repre-
sented by four indefinite vertical parallelograms, set side to side, and sub-
divided each of them into four, (say) black, white, grey and tawny stripes,
corresponding to the four varieties of the second species. The other four
classes may be similarly represented by four sueh parallelograms as before,
but separated by a transverse horizontal line into eight sub-classes, four
corresponding to the first species and four to the second. The upper
parallelograms may then be each divided into blue and green, the lower
into yellow and red stripes to represent the respective couples of varieties of
the first and third species. There will thus be in all thirty-two stripes,
namely four blue, green, yellow and red, and four black, white, grey and
tawny, each of which is bifid, representing two groups of opposite sexual
characters, which may be fittingly represented by the upper and under sides
of the sixteen unlimited single-coloured stripes of the first and the eight
unlimited double-coloured stripes of the second set of parallelograms.

The above logical scheme is not intended to convey any notion of the
relative frequency of the three speeies. The general case is that of the first
species. The second is conditioned by "B=b or B =0, and the third by B= 0.
When ‘B=15 it is about an even chance whether the arrangement is of the
second or first speeies, and when B = 0 of the second or third. Either equality
1s a particularization of the B series, the latter signifying that there are no
B’s in the arrangement, the former that there are B’s descending in rational
progression down to b: this supposition is apparently infinitely more general
than the former, because there is no limit to the number of terms in the
progression, and the case of a natural progression of B’s of the kind men-
tioned with any given number of terms as regards the probability of its
occurring in an arrangement seems to be on a par with the case of the B’s
being all wanting. Hence the first species is infinitely more frequent than
the second, and the second than the third. Aeccording to Prof. Max Miiller’s
theory of the relation of thought to language (if I interpret it rightly)
I ought to have thought out my divisions and schemes of opération in
language, but I certainly had formed in my mind a dim abstract of them
before I had found the language that was eompetent to give them expression.

In conclusion, I may remark that whilst the experience of the past indi-
cated the probability that there did exist (if one could find it) a method of
distributing the arrangements of the second genus into pairs, in such a way
that in each pair the total or partial character should be reversed in passing
from the one to the other, there was nothing to induce a reasonable degree of
assurance that both those characters should be found simultaneously reversed
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in one and the same distribution ; for aught that could have been foreseen to
the contrary, it might very well have happened that one mode of distribution
might have been needed to prove Jacobi’s theorem for the case of only
negative signs appearing in the factors on the left-hand side of the equation,
and a different one for the other case where only every third factor contains
such sign—indeed upon the principle of divide et impera or doing one thing
at a time (as invaluable a maxim to the algebraist as to the politician) I had
completed the proof for the former case without thinking of the latter, and
only when on the point of attacking it was agreeably surprised to find that
there was nothing left to be done, for that the proof found for the one
extended to the other—in familiar phrase, I had hit two birds with one
stone. We may now ask whether this was a happily found chance solution
or was predestined by the nature of things, and that simple necessarily
implies double enantiotropy of conjugation. Probably I think not, and if so,
a question arises as to the number of solutions for each of the two sorts of
enantiotropy and whether the number of each kind of simply-enantiotropic
conjugations is the same.

Viewed merely as a question of direct multiplication, I think it must be
allowed that what I have here called Jacobi’s theorem (including Euler’s
marvellous one, as the ocean a drop of water) is the most surprising revela-
tion that has been made in elementary algebra since the discovery of the
general binomial theorem, and that the space devoted to its independent, and
so to say, materialistic proof in these pages, although considerable, is not out
of proportion to its intrinsic importance.

H. Intuitional Ewegesis of Generalized Farey Series*.

(69) The demands of the press will only admit of a rapid sketch of what
appears to me to be the true underlying principles of the theory initiated by
Farey, honoured by the notice of Cauchy, and to a certain extent generalized
by Mr Glaisher, whose inductive method in the cases treated by him finds its
full development in the method of continuous change of boundary, explained
in the course of what follows. Let us start from the conception of an infinite
cross-grating formed by two orthogonal systems of parallel lines in a plane,
the distance between any two parallels being made equal to unity. The
intersections of any two lines of the grating may, as heretofore, be termed
nodes. A triangle which has nodes at its apices and at no other point on or
within its periphery, may be termed an elementary triangle, and the double
of the area of any such triangle will be unity. If any finite aggregate of
nodes be given it must be possible to pick out a certain number of them
which may be formed together by right lines so as to form a sort of ring-
fence, within which all the rest are included: the area thus formed, if it

* Continued from note G, Interact, Part 2.
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admits of being mapped out into elementary triangles, may be termed a
complete nodal aggregate. Any other contour consisting of lines of any form
(curved or straight) drawn outside of this ring-fence in such a manner that
no nodes occur between the two, may be termed a regular contour.

If any node O be taken as origin and any nodal lines through O as axes
of coordinates, and if ‘4, A’ are the nearest nodes to O in the radial lines on
which they lie, and if no nodes of the given aggregate are passed over as an
indefinite line rotating round O, passes from one of these radial lines to the
other, ’A0A is an elementary triangle, and if ‘p, ‘g ; p, ¢ be the coordinates
of ‘A, A respectively, ‘pg— p'q =€ where € is +- 1 or — 1 but is fixed in sign
when the direction of the rotation is given.

When the aggregate is complete, if the values of the coordinates of the
successive points passed over by the rotating line be called ... "p, “q; p, ’¢;
29 ?,4,p",q"; ..., we shall have a Farey series formed by the successive
couples p, ¢, that is p”’'g—p'¢"=¢; p'g—pg'=¢; pg —p'g=c.... Thus
we see that the Farey property is invariantive in the sense of being inde-
pendent of the position of the origin.

B

8’

o

Next I say, that if any contour to a given aggregate is regular, every
contour similar thereto in respect to any node of the aggregate regarded as
the centre of similitude is also regular, provided the boundary is simple ;
meaning that there are no interior limiting lines giving rise to holes or

perforations in aggregate, and no loops formed by the boundary cutting
itself.

In the above figure "BOB’ is any triangle whose sides are bisected in
‘4, 4, A’. Suppose O to be the origin, ‘A, A’ two nodes of greatest
proximity to O successively passed over by the rotating line for a given
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contour. As this contour expands uniformly in all directions through O, the
line “A A’ remains parallel to itself. Since "AOA’is an elementary triangle
so also must the similar triangles ‘A4 A4’, A’AB’,"AA’'B be all elementary,
consequently A4 will be the first new node intervening between ‘4, A4’
brought into the enlarged aggregate as ‘A4’ moves continuously parallel
to itself,and "4 04, AOA’ will be elementary triangles; it may be noticed in
order to bring this method into relation with that indicated by Mr Glaisher,
that the coordinates of this new node A are the sums of the coordinates
of its neighbours ‘4, 4. If the contour were not supposed to be simple,
this condition could not be drawn; for if there were a hole round the middle
point of ‘4 A’ the node A4 would be missing in the enlarged aggregate, and if
the first node to intervene as the contour went on enlarging be called (4),
‘40 (A) or (A4)OA’ or each of them would be a multiple of the elementary
triangle, so that the constancy of the value of the successive determinants
would no longer hold. In like manner it will be seen that on the same
supposition as above made, if in consequence of the contour contracting about
O as the centre of similitude, two points ‘4, A’ which originally are non-
contiguous, at any moment become contiguous, at the moment previous
to this taking place A (and no other point) must have intervened, and after
A has disappeared from the reduced aggregate, no other point can make its
appearance between ‘4, 4’

(70) Hence we may contract at pleasure the given contour about any
node as origin, and if the contour so contracted contains at least one node
besides the origin, it will suffice to determine whether the given contour is or
is not regular,

Thus for example in the case of a triangle limited by the axes and by the
right line # +y = n, we may make n» =1 and the trial series will then become
011
110
a triangular boundary of any size and wherever the origin is situated: this
includes the case of the ordinary Farey series when the origin is taken at
either extremity of the hypothenuse. So again for the area contained within
the axes and the hyperbola #y =n, we may take zy = 1 and the trial series
is the same as before.

which possesses the Farey property. Hence this will hold good for

(71) It is easy to form unperforated areas of any magnitude which shall
not satisfy the Farey law: for example we may as in the. annexed figure
draw a curve passing through the origin, the point (0, 1), and the point (2, 3),
0
T ’
obtained by treating any one of the three nodes which it contains as a centre
of similitude will be a “complete contour,” and the successive values of (p, ¢)

g does not satisfy the Farey law, and consequently no similar contour
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obtained by the rotation of a line round the origin in such contour will not
constitute a Farey series.

The theory will, I believe, admit of being extended to solid reticulations,
formed by the intersections of three systems of equidistant parallel planes,
determinants of the third order between the three coordinates of successive
points, replacing the pg” — p’q of the plane theory. The chief difference will
consist in the introduction of a new element in the multiplicity of the
“normal orders” in which a given set (of points in a plane or) of radii n
solido may be taken. (Points in a plane arranged in any order of sequence,
such that the successive determinants formed by their trilinear coordinates
are of uniform sign, are said to be in a normal order. Rays of a conical
pencil arranged in any order of sequence, such that their intersections by
a plane satisfy the above condition, are also said to be in a normal order: see
privately printed syllabus* of my lectures on Partitions, 1859, or M. Halphen’s
theory of Aspects.) But as far as I can see this will in no way militate
against the existence of the laws of invariance and similitude established
for the case of a plane reticnlation, but will only introduce a further principle
of invariance, namely that the law of unit-determinants if satisfied by one
normal arrangement of the points of the solid reticulation will be satisfied by
every other.

APPENDIX .

LIST OF CORRECTIONS SUGGESTED BY M. JENKINS TO
PROFESSOR SYLVESTER'S CONSTRUCTIVE THEORY OF PARTITIONS.

Page 5, 5 lines from end, 2n — (7 + 3) should be n — (¢ + 3).
» 6, between 2nd and 3rd rows of sinister table insert 13.2. 0.
s o o Heoihlh @nd SUN orona . pill ugily .2 2,
»  » in 6th row of dexter table, for 8.4 .3 (2) write 8.4. 3 (1).
» 11, line 8 from the end, interchange protraction and contraction
so as to read “contraction could not now be applied to 4’
and B’ nor protraction to C".”
» 13, line 25. If f(e)=(1-2) (1 -a*)(1—2*) (1 —a") (1 —a®), for
the second ? read 2°
[* Vol. 1. of this Reprint, p. 119.]
[t These corrections have been included in those made in the text preceding.]
8. 1v. 6
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Page 13, line 29, for “latter” read “former.”
» 15, line 11 from end, for {7 read [*.
,» 20, line 4, for 1 + 2 read 7 + 2.

» 5 line 5, for 142 read ¢ + 2.
2+i £45
w22, line 11, for Xjo 2 read X;z 2 .

» » line 20, for “the minimum negative residue of 7 —1" read

i+ 1.
L+l AT+l
» 25, line 7, for 0y read e 2
» 5 line 4 from the end, for “ to the 5th now ” read “ to the 5th row
now.”

27, line 15, for 15, 7, 3 read 13,11, 3.
line 19, for (1 4+ ax) (1 —az*) (1 —a=) ... read
1+ax)(1+az®) ... (1 +az¥7).

line 22, for

» »

z z
i3 read Y
» » line 30, for “angle whose nodes contain ¢ nodes ” read whose sides.
28, line 5, for “with j— 7 or fewer parts ” read j — 1.

a.

» »

! 1~ gett 1 —gotr, 1 —g@t3
A i 4 . w41
, , line 12, for 1 4 il z° + T T ete.
1 _—y z.co—-l 1 5 ww—l 1 _a;w—s
iy _ @+l ° +4
read 2® + =g ® + A zett 4 ete.

If in the expression in line 9, namely in
1 —ai—%+2 1 —g#i—9+e, 1 —gfi~2
1—-2*.1—a...1—a¥%? i
we put j =3 weobtain
1 —a2i=4, 1 — g% 1—a#i=2, 1 — g2

2—oj+ ot
b

—Optpori sy R S R POV IS5
l—a®1—2at 3 l—a2?.1—2at xz
1—g91.] —gv3
TTE s e i

since @ = 27— 1, and similarly for other terms when we put j=2 and j=1.

The correction which I offer seems to me to be right, and the expression
in the paper to give a wrong result in the case when n happens to be equal
to @+ 2; for then the number of parts being supposed to be exactly 7, the
first bend contains 2¢ — 1 or  nodes, and there is then no way of placing the
remaining 2 nodes so as to make the partition a conjugate partition—sup-
posing I have not misunderstood the article.

Page 29, line 8, for 19, 7, 6, 6 read 10, 7, 6, 6.

,» figure, either insert a node at junction of 5th column and 7th row
or remove a node from junction of 7th column and 5th row.
lines 7 and 8 from the bottom, if we remove a node from the

figure no change is required in these two lines; but if we

»

» »
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insert a node in the figure, then 11 11 11 7 3 3 should be
111111753and 55531 1shouldbe555321.
1

l—az.l—ax*...1—ax® It or G

Page 31, line 15 from end, after

z"al”
., 34, line 7, for a’ read af.
» 5 line 8, for (#® + az'®)} read (2 + 2*).

& (95 _
36, line 8, for llﬁ%—l—) read l_‘_(gzj_l)

n
, 37, line 4, for z* read z2.
» » line 7, for #%*+1 read a%+?,
» 40, line 6, a;— 1 is, I believe, the right final term; but it appears as
if it were the first of a pair instead of the last of a pair,
a; — 7 being a quantity which may vanish.
If the pair of expressions which in the text precede a;— 7, if definitely
expressed and not left to be understood, should be
[ai—l + oy — (21 = 3)], [ai—l +a;,— (20— 2)],
and not as in the text

[ai—l + i — (27: = 1)]: [ai—l +oa;— 27:]:
the factor which should precede a;— ¢ is [a; + a; —(2¢ — 1)].

I do not quite follow lines 9—138 of p. 40, possibly from the oversight
in the subseripts I do not see what is intended. But it seems to me the
following proof would be right:

The expressions of the same form succeeding a, +a;—1 and a, + a,— 2
must be continued so long as they are positive, and must be rejected when
they become negative.

Now from the fact of ¢ being the content of the side of the square belong-
ing to the transverse graph a;= or >4, ;= or >1, therefore a; 4+ a;—(2i — 1)
18 positive and is therefore one of the terms of the series. Also a;,, = or < ¢

and a4, = or <71, therefore a;, + a;, — (20 + 1) is negative and must conse-
quently be rejected.

The intermediate expression is a;+ a3, — 2¢; and for this we may in all
cases put a; — 4 as the last term of the series for the following reason :

If the extreme inside bend have more than one node in the row, then
@y =1 and a;+ a;4, — 20 is = @; —7, which is not negative since a;= or > 1.
If the extreme inside bend degenerate, so that it consists only of a vertical
line or of a single point, then @; =7 ; and since a;,, << in this case, therefore
@; + &4 — 21 is negative and inadmissible as a term in the series; but since
@; — =0 there is no harm in putting it as the final term in the series.

Page 601, Vol. 111. of this Reprint, line 6 from the end, for 3100 read 3110.

6—2



2.

SUR LES NOMBRES DE FRACTIONS ORDINAIRES INEGALES
QU'ON PEUT EXPRIMER EN SE SERVANT DE CHIFFRES
QUI N’EXCEDENT PAS UN NOMBRE DONNE.

[Comptes Rendus, Xcvi. (1883), pp. 409—413.]

DaNs le Philosophical Magazine, 1881, p. 1753, M. Airy, associé étranger
de I'Institut, annonce qu’il a calculé, pour I'usage de I'Institution of civil
Engineers, & Londres, les valeurs logarithmiques de toutes les fractions

ordinaires o dans lesquelles m et n ne contiennent nul facteur commun et

n’excédent pas 100, arrangées dans l'ordre de leurs grandeurs, et que le
nombre de ces fractions est 3043.

Je vais montrer qu’on peut appliquer la méthode dont M. Tchebycheff
s'est servi dans sa théorie célebre sur les nombres premiers, avec I'addition
que jy al faite*, pour trouver des limites supérieures et inférieures au
nombre d’un systéme pareil de fonctions quand la limite des valeurs de m et
de n est un nombre quelconque donné.

1. Je dis que si 7% signifie le nombre de nombres inférieurs et premiers
4 7, nombre entier (ce que nous nommons, & Baltimore, le totient de t), on
aura l'identité

3 (5 ) 222
A 2

C’est une conséquence du théoreme plus général que “si a,, a, ..., a;
sont des nombres entiers quelconques, et si 'on nomme le nombre des a
qui contiennent r la fréquence de r par rapport au systeme des a, et qu’on
prenne le produit de la fréquence de r par son totient, la somme de ces
produits (quand » prend toutes les valeurs de 1 jusqu’a linfini) sera la
somme des a.”

* Voir American Journal of Mathematics. [Vol. 111 of this Reprint, pp. 530, 605, 672.]
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2. Nommons Jz la somme-totient de 2, c'est-a-dire la somme des
totients de tous les nombres qui n'excédent pas la valeur de Ez (la partie
entiere de z).

Je me servirai désormais de (g) pour signifier la partie entitre de%J d

Or éerivons les suites successives

x, z-1, ..., (g)-i-l; (g), (‘;\)—l, S0 (§)+l;

i

(?3”)—1, (§)+1'; (g) @—1, o g (§)+1;

z N [/ @ z z z z
Lo P S SR ([ B, R . " (i P T (. P
<2q-1)’ (2g—1) Lo g (2q>+1’ <2q)’ (2q> | DY (2q+1>+ ;
q augmentant ad libitum,

Je dis que, “si r est un nombre entier quelconque qui se trouve dans les

suites d’ordre impair, c’est-d-dire commengant avec z, (§>, ( ), A CUmtll

s(l-s(8)o
& P
et que, si r appartient 4 une suite quelconque d’ordre pair, on aura
B() -2 (3)=0
2 r
Conséquemment, en appliquant le théoréme précédent, on aura
CRIRWI 20

j=2ou2i+1, on aura

S+ 8+ ...+ 8+ ...,

2 2
ot Sy, est la somme des totients des nombres qui sont en méme temps
égaux ou inférieurs & ¥ 2q‘7_ iet plus grands que & 2]—9, c’est-a-dire

ol zieleei- il
Suem () ().
Si donc on éerit
glelgrdodey Vox L&
on aura, quand 2 =un nombre entier pair (soit 21),
00 = (202 +9) = (@ +3) =i = T,

et, quand = un nombre entier impair (soit 27 + 1),

(x4 1)
o s

€x=(i+v1)(2i+1)—(i2+i)=
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Avec l'aide de ces égalités, si # est un nombre positif quelconque entier
ou fractionnel, on obtient facilement les inégalités

x? — 2z
Oz =ou > 3

24 2x+1
9$=0l1<——4——‘ »

En appliquant & ces deux inégalités la méthode d’approximation successive
que jai appliquée, dans* le Mémoire cité, aux inégalités auxquelles est
assujettie la fonction +r (2) (voir Serret, Algébre supérieure, édition de 1879,
t. I p. 233), je parviens facilement et rigoureusement & démontrer que,
étant donnée une quantité e aussi petite qu’on veut, on peut trouver une
limite supérieure L et une limite inférieure A a Jz, on

L=<7%+n)w“—Aw+R(logw)

A= (%_n') o — A’z R (logz),

ot R(log z), R’ (log «) sont tous les deux fonctions rationnelles et entiéres de
logz d’un degré fini, dont les coefficients aussi bien que 4 et A’ restent
toujours finis et ol %, 7’ sont tous les deux plus petits que e.

. 1 ) 3
Il s'ensuit que la fraction .%x) posséde une valeur asymptotique

(ce qui n’est pas démontré pour la fraction analogue \%, dans la théorie

paralléle de M. Tchebycheff) et que la valeur de % approche indéfiniment

prés quand « est pris suffisamment grand de 7—?—2, c'est-a-dire de *30396....

Il est facile de voir que la quantité Jz diminuée de l'unité n'est autre
chose que le nombre des fractions dans les Tables pareilles & celles de
M. Airy. Ainsi, pour le cas de =100 selon M. Airy, Je=3044¢. Pour

ce cas §—2x2= 3039°6.
m

Avec laide de ces limites on peut calculer la probabilité que deux
nombres dont la limite supérieure est trés grande soient premiers entre
eux. Car si cette limite est «, le nombre total des cas qui peuvent arriver
est 22, et le nombre des cas pour lesquels les nombres choisis sont premiers
entre eux sera 2Jz—1. Conséquemment, la probabilité en question

6
sera .
M. Franklin, I'auteur de la belle démonstration, insérée dans les Comptes
rendus, du théoréme d’Euler sur le produit (1 —&) (1 —a*) (1 —4°)..., a bien
[* Vol. 111. of this Reprint, p. 532.]
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voulu m’adresser la remarque que cette conclusion peut étre au moins con-
firmée, peut-étre méme absolument démontrée, de la maniére suivante :

« étant pris trées grand, la probabilité que deux nombres inférieurs
4 x, pris au hasard, ne contiennent pas tous les deux le nombre premier p,

sera 1 —l. Done, la probabilité cherchée sera

o H6-DE--Y)

qui est la réciproque de

N9 PP A 7
sdmt et et ant nt o

3 \ . N 6
c'est-a-dire est égal & =

Il y a une suite doublement infinie d’équations fonctionnelles exactes
qu'on peut former avec les J (x). En particulier, il y a une série simplement
infinie de telles fonctions ol les signes sont alternativement positifs et
négatifs, et conséquemment peuvent servir chacun & donner une suite infinie
de limites & Ja.

Ainsi, si I'on éerit

4 51 ¥ x x &

x z x z x x
+J§—JZ +2J§_3J§+2JT(—)_JE
x x x
+J:—J6 +2J1 3J - +2J Ji§
P B60b00 B e N T e M ARy, RNl
A atbo0000008 Y008 86000 000 0o oAb olo0 orlo AT, 38
z
Q &
+3 J15 4J +3J 4J +3J J’ﬂ
x
+‘3J27 4J +3J 32+3J Jﬁ
5P 0adb G950 0060000000 A0 FB000 400 900 h 3530 IRALAL 16 TB000B0 080000
RO e LB B SRR N WL R B .
on aura toujours, quand
= (k2 ALY =L & AL
x=(k*+ k), 0kx_2(lc‘-’+k)’
, ; (z+ 1)
et quand = +k)i—-1, Gka;=m—k),

et, quel que soit le résidu de  par rapport au module A2 + %, on peut calculer
la valeur de @,2. Enfin, si z est une quantité positive quelconque, on trouvera
2+ 2x+1

Orx=ou < 2 (k4 k) °

0.z =ou> =2
KT = 0U> S R’



3.

NOTE SUR LE THEOREME DE LEGENDRE CITE DANS UNE
NOTE INSEREE DANS LES COMPTES RENDUS.

[Comptes Rendus, Xcvi. (1883), pp. 463—465.]

LE théoréme de Legendre, cité par MM. de Jonquitres et Lipschitz, est
une conséquence immédiate d'un théoréme logique bien connu, lequel, mis
sous forme sensible, équivaut & dire que, si A, B, C, ... sont des corps avec
la faculté de s'entrecouper, contenus dans un vase d’eau, et si a, ab, abe, ...
représentent symboliquement les volumes de 4, de la partie commune &
A et & B, de la partie commune a 4, B, C, ..., alors le volume du liquide
déplacé par la totalité des corps sera

Sa — Sab + Sabc — ...

Conséquemment, ce théoréme admet une généralisation infinie dont je
donnerai un seul exemple.

Nommons les nombres premiers qui n’excédent pas n, nombres premiers
subordonnés & n, et distinguons entre eux ceux qui sont plus grands que
A/n comme supérieurs.

Le théoréme de Legendre équivaut 3 dire que, si P Pus ..., Pi sont
les nombres premiers subordonnés & 4/n, le nombre des nombres premiers
subordonnés & n du genre supérieur augmenté de l'unité est égal a

o (2%) o (p:;z) e <p1;2ps) g

Or, représentons la fonction }#(z + 1) par Az; alors on aura le théoréme
que la somme des nombres premiers subordonnés & n du genre supérieur
augmenté de l'unité sera égale &

An—Bpdk ﬁ) A(—"-—)—....
n—2p, (}Jl + Zp, ps o

Par exemple, si n =11, les nombres premiers subordonnés & 11 du genre
supérieur seront 5, 7, 11, et les nombres premiers subordonnés & 4/n sont 2, 3.




3] Sur un théoreme de Legendre 89

On doit done trouver, et en effet on trouve
(11.12)—2(5.6)—3(3.4)+6(1.2)=2(1+5+7 +11).

Je saisis cette occasion pour dire que j'ai fait calculer la valeur de J (n),
“ somme-totient de n,” pour toutes les valeurs entierés de n jusqu'a 500, et je

trouve que sans aucune exception J(n) est toujours plus grand que ;73—2(7#)
et plus petit que ;%(n+ 1)

Il reste & démontrer que ces limites sont d’application universelle pour
un nombre entier quelconque n.

On peut faire une extension illimitée du théoréme donné dans le numéro
précédent des Comptes rendus sur les sommes-totients, tout 3 fait analogue
& lextension ci-dessus donnée au théoréme de Legendre sur les nombres
premiers. Nommons, par exemple, u (j) la somme de tous les nombres
premiers et inférieurs & j, et Uj la somme

w(1)+u(2)+ ... +u ()
On établit facilement * I'identité
r=1 < .
5 A T
Ta(EL)u(l)=1iG+nG+2),

ol Az signifie le nombre triangulaire z (z + 1), et avec ce théoreme, en se
servant, comme dans la théorie des sommes-totients, du principet de la
division harmonique et en écrivant

Ui oUd 43U — 4y 50
Vi=Uj-20+3UL-alq50i- ..,

on en déduit facilement Vj= % —% quand j est pair,
bR g
Vi= (j:_—;)+'7%1 quand j est impair, etc.

Dans ma Note} Sur le nombre des fractions ordinaires inégales, etc., jai
omis de dire que 'équation

sgd rp I
7 2
peut étre écrite sous la forme
. , : iy
Jj+J G+ 4Tds . =Y ;9. (1)

[* With u (r)=47T(r), u (1) =4, T (r) being the totient of », we have
22 A (Erl) u (r)=3i(i+1) 2i+1).]

[t Vol. m. of this Reprint, p. 673.] [+ p. 84 above.]
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De méme, I'équation il o :
sagd 41U+
r r 6

équivaut & I'équation *
U; J Joapdy . 2dU+DG+2)
]+2U2+3U3+4 gt = g . (2)

I1 est facile de démontrer, avec l'aide des équations (1) et (2), que les

valeurs asymptotiques de ‘JI.;Z et —JU—f pour j indéfiniment grand sont 7% et

respectivement.

Cauchy, MM. Halphen et Lucas ont écrit sur les suites de Farey. Il est
donc bon de faire remarquer que Jj est le nombre des fractions et Uj la
somme des numérateurs des fractions dans une telle suite pour laquelle la
limite donnée est j.

[* For 3j(j+1) (j+2) read ¢7j(j+1) (2 +1).]



4.

SUR LE PRODUIT INDEFINI 1-z.1-2.1—2a%....
[Comptes Rendus, xcvI. (1883), p. 674.]

Dans le Johns Hopkins Circular, numéro de février*, on trouvera l'ex-
plication d’une méthode graphique pour convertir les produits continus en
séries. J’al appliqué cette méthode pour obtenir la formule connue (Cayley,
Elliptic Functions, p. 296)

1
l—-az.1—ax®.1—as’...
za I rra?
l—z.1l-azx l—2.1-2*.1-azx.l-aa?
z*a?
T—s.1-2.1-%.1-az.1-aw. 1—aw "

LIS\

+

Je me suis demandé quelle serait I'expression obtenue en appliquant la
méme construction (ou dissection) graphique (qui fournit la formule citée en
haut), au produit 1+az.l4+aa?.1+az®..., et jai trouvé sans aucune
difficulté I'expression suivante:

1+ ax? ,14+az.1+azt
U e i g g
3 —j i .
22 1taxr.l4ax?...1+axit 1+ax¥
2 qJ - 3 -
% % l—z.1-22...1 =21 1—a) ]
En faisant @ = — 1, on obtient

l-z.1-a*.1-a%...
-7
=l—-z(l+a)+22(A+a)+...+(=Yz 2 1+2)+....

Cest le théoréme bien connu d’Euler, lequel, sous ce point de vue, n’est
qu’'un corollaire d'un théoreme plus général.

Par la méme méthode, jobtiens la série pour les théta fonctions et
d’autres séries beaucoup plus générales, sans calcul algébrique aucun.

[* Vol. u1. of this Reprint, pp. 669, 686; and above pp. 30, 33.]



D.

SUR UN THEOREME DE PARTITIONS.
[Comptes Rendus, XcvI. (1883), pp. 674, 675.]

SOIENT s, §,, ..., 8; des suites de nombres consécutifs, telles que le plus
petit terme dans aucune d’elles n’excéde de plus de l'unité le plus grand
terme dans la suite qui précede; bien entendu que ¢ peut devenir 'unité et
qu'une suite quelconque peut se réduire & un seul terme. On peut envisager
ce systéme de suites comme une partition de la somme des nombres contenus
dans leur totalité: alors on aura le théoréme suivant :

Le nombre de systémes de i suites de nombres consécutifs dont la somme
est N est le méme que le nombre de partitions de N qu’on peut former avec les
repétitions de © nombres impairs. Comme exemple, en faisant N =10 et
1=1, 2, 3 successivement, on aura d'un coté les divers groupes de partitions

10 9, I, 2 1,3 6
1,23 4 82 235
I W (PP
6, 4
et de lautre (en se servant d’un indice supérieur pour signifier le nombre
des réflexions de sa base),
9,1 gl . u1)3. 5
™ 7,3 314
Pl 3,11,
5, 1°

En ajoutant ensemble les équations qui, pour la méme valeur de N,
répondent & toutes les valeurs possibles de 7, on retombe sur le théoréme
bien connu d’Euler que le nombre des partitions de N, en excluant seulement
les répétitions, est le méme que le nombre de ses partitions en excluant
seulement les mombres pairs. Ainsi, on peut envisager ce dernier théoréme
comme un corollaire d'un théoréme bien autrement profond et qui n’est pas
du tout facile & démontrer, sinon pour le cas le plus simple, c’est-a-dire quand
il n’y a qu'une seule suite. Pour ce cas, le théoréme peut s'exprimer en

disant que le nombre de suites de nombres consécutifs dont la somme est N est
égal au nombre de diviseurs impairs de N.



6.

PREUVE GRAPHIQUE* DU THEOREME D'’EULER SUR LA
PARTITION DES NOMBRES PENTAGONAUX.

[Comptes Rendus, Xcvi. (1883), pp. 743—745.]

UNE partition quelconque de n peut étre représentée par un assemblage
de points uniformément distribués sur un plan et limités par deux lignes
droites. Ainsi, par exemple, l'arrangement suivant:

sera la représentation graphique de la partition du nombre 22 dans les parties
09, oS 2

Mais, de plus, un tel arrangement de points peut étre distribué dans un carré
et deux groupes que je nommerai latéral et inférieur. Ainsi, I'arrangement
éerit ci-dessus peut étre décomposé dans un carré de neuf points, dans un
groupe latéral de huit et dans un groupe inférieur de cinq points.

Considérons les partitions de » dans j parties inégales. Tous les arrange-
ments de points qui correspondent & ces partitions peuvent étre classifids
selon la valeur du c6té du carré qui y correspond et que je nommerai 6.
Alors, pour une valeur donnée de 6, le groupe latéral contiendra néces-
sairement ou € ou € —1 lignes de points, car autrement il y aurait des
parties égales dans larrangement. Dans le premier cas, le nombre de
colonnes dans ce groupe inférieur peut étre un nombre quelconque, mais pas
plus grand que 6; dans le second cas, pas plus grand que § —1. Done, en
se rappelant que le nombre de partitions de » en 6 parties inégales est le
coefficient de x dans le développement de

)
x 2
l-z.1=a*.. 1—2f
et que le nombre de partitions de » dans j— @ parties inégales et pas plus
grandes que 6 est le coefficient de 2”a/~¢ dans le développement de

14+ ax)(1 + az?) ... (1 + ax?),
on voit que, quand le nombre de lignes dans le groupe latéral est 8, le nombre
[* See p. 32 above.]
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total d’arrangements de n dans j parties inégales qui correspondent & cette
espece de distribution sera le coefficient de 2~#a#~¢ dans le développement de

l+azr.14a2®...1+ az? %
l—z.l—a.. 1= °
De méme, le nombre des partitions qui correspondent 3 la seconde hypothése

sera le coefficient de 2"~#a/~¢ dans le développement de

l+ax.1+ax?...1+ qaf? ﬂ;—a

I—z.1-a .. 1—at1 *
En donnant & 6 toutes les valeurs depuis 1 jusqu’a infini, on obtiendra
toutes les partitions de n dans j parties inégales. Les cas ot § excéde j

n'offrent rien d’exceptionnel, car, pour ces cas, le coefficient de ai~¢ dans les
deux fonctions génératrices sera nul.

Or le coefficient de a"~#a/~¢ dans chacune de ces deux fonctions est le
méme que le coefficient de 2"a/ dans les produits qui résultent de leur
multiplication par z%af,

En comparant les coefficients de #"a/ pour toute valeur de n et 7, on

trouve donc
1 +2a) (1 +2%) (1 +2%) + ...
L
=1+1+afcofa+~1—+,—aw rat+ ...
1—-2 l—z.1—-22
l4+ax.14a2%...1+ aa? @ A
K Tp0g e S g B

1+ ax
1—2z

+ za + rat+ ...

l+ax.14az?...1+ axt™ %—o
l—2z.1—a...1 ~gf!

ad + ...

En mettant a = — 1, on obtient ainsi
30 302+
l—2.1—-a*.1—a%~—... =1—a:—.cc2—...+(—)"(a: 2 4z 2 )+...,
ce qui est le théoréme d’Euler.

En réunissant les deux séries dans une seule, on obtient, pour le cas
général,

A +2a) (1+ 2%a) (1 +2%a) + ...
_ 1+ aqx? 1+az.1+azt ., 1+az.1l4+as*. 1+ azs s
Skt Brri s g e T T=F. 1 —uh, Liges & 0 e

c’est-a-dire I'équation que j'ai donnée dans la Note précédente [p. 91].

Je dois dire que c’est M. Durfee, étudiant 3 Baltimore, qui, le premier
(dans un tout autre probléme), a fait usage du genre de décomposition
d’une assemblée réguliére de points dans un carré et deux groupes supplé-
mentaires dont j'ai profité dans l'analyse précédente (voir Jokns Hopkins
Circular, [Vol. 1L of this Reprint, pp. 661 f£.]).



7.

DEMONSTRATION GRAPHIQUE* D'UN THEOREME D'EULER
CONCERNANT LES PARTITIONS DES NOMBRES.

[Comptes Rendus, xcvi. (1883), pp. 1110—1112.]

CoMME confirmation de la puissance de la méthode graphique appliquée
a la théorie des partitions, la preuve suivante d'un théoréme que je crois étre
nouveau ne sera pas, je l'espere, tout a fait dépourvue d'intérét pour les
géomeétres; car il serait, il me semble, assez difficile d’en trouver une preuve
directe analytique au moyen de la comparaison de fonctions génératrices
comme on le fait ordinairement pour des théorémes de ce genre.

td

Euler a trouvé facilement, par une comparaison de telles fonctions, que
le nombre de partitions de » en nombres impairs est le méme que le nombre
de partitions de » en nombres inégaux; je précise ce théoréme en ajoutant
que le nombre de partitions de » en nombres impairs, qui se divisent en
1 groupes de nombres distincts, est égal au nombre de partitions de n en 7
suites tout & fait distinctes de nombres consécutifs.

Nommons U une partition en nombres impairs et V une partition en
nombres inégaux.

Je dis qu'on peut passer de U & V par la méthode suivante. Supposons,
par exemple, que U soit la partition 11.11.7.7.7.5.

Je forme deux assemblages réguliers de points en prenant dans l'un
d’eux, sur chaque ligne, un nombre de points égal & 11+1 11+1 7+1

20 Wi 1 e e’
1 5+1 - .
4 -2*-1, 7;— i O;— , et l'autre assemblage en diminuant de l'unité chacun

de ces nombres de points. On forme ainsi ces deux assemblages :
L. 2.
A _’—&___\

et, en comptant le nombre de points dans les angles successifs de chaque

figure, on obtient, dans I'un, 11, 9, 5, 2, et, dans Pautre, 10, 8, 3; en les

réunissant, on obtient Ja partition
11.10,9.8.5.8.2

b

qui est un V.
[* See p. 39 above.]
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Or il est facile de voir que dans cette méthode de transformation U
devient V, et I'on démontre (en construisant un certain systéme d’équations
linéaires) que, pour un V quelconque donné, on peut trouver un et un seul U
qui se transformera dans ce ¥, de sorte qu’il y a correspondance un & un
entre la totalité des U et la totalité des V, ce qui sert & démontrer le
théoréme original d’Euler. Mais si tel était le but de cette recherche,
cette méthode de transformation serait peine perdue, car il existe une tout
autre méthode, infiniment plus simple, d’établir une telle correspondance:
on la trouvera expliquée dans le cahier de I'American Journal of Mathe-
matics qui va paraitre. L’utilité de cette méthode spéciale de créer la
correspondance consiste en ceci: que le V ainsi conjugué avec un U
contiendra le méme nombre de suites distinctes de nombres consécutifs que
le U contient de nombres impairs distincts : cela veut dire que le nombre des
lignes inégales (disons ¢) dans l'un ou l'autre assemblage de points est
toujours égal & j, nombre de suites distinctes obtenu en opérant de la maniére
expliquée ci-dessus. La preuve en est facile; car si Pon enléve l'angle
extérieur & l'un et & I'autre des assemblages, on verra facilement que quatre
cas se présenteront : pour un de ces cas, j ne change pas de valeur, & cause
du changement opéré dans les deux assemblages; dans un autre cas, j
subira une diminution de deux unités, et dans les deux cas intermédiaires
d'une seule unité. Ces cas correspondent aux quatre suppositions qui
résultent de la combinaison des hypothéses que les deux premiéres lignes
ou les deux premieres colonnes dans l'un ou l'autre des assemblages sont ou
ne sont pas égales entre elles: de sorte qu'on verra facilement que le j et le
¢ seront toujours diminués de la méme quantité, ou 0, ou 1 ou 2, et
conséquemment on aura ¢—j constant ; si I'on enléve 'un apres l'autre les
angles des deux assemblages jusqu'a ce qu’on arrive a un assemblage qui
sera de l'une ou l'autre des quatre formes suivantes:

1. 2. =3 4.
—————

pour lesquels cas 1=2, j=2; ¢=1, j=1; 1=1, j=1; ¢=1, j=1; re-
spectivement on aura toujours ainsi ¢ =j, de sorte qu’il y a correspondance
une & une entre les partitions du méme nombre n qui contiennent justement
1 nombres impairs répétés (ou non) a volonté, et celles qui contiennent
justement ¢ suites distinctes de nombres conséeutifs, et conséquemment il y
aura le méme nombre des unes et des autres: ce qui est le théoréme que j'ai
voulu démontrer.



8.

SUR UN THEOREME DE PARTITIONS* DE NOMBRES COMPLEXES
CONTENU DANS UN THEOREME DE JACOBI

[Comptes Rendus, xcv1. (1883), pp. 1276—1280.]

Daxs le Journal de Crelle, t. XXXIIL p. 166, Jacobi fait la remarque que
le développement en série de ®,2 donne lieu & un théoréme que j’exprime
de la maniére suivante. !

Soient a et b deux quantités c=a + b; alors le produit infini

+» | Petila-b)
QF¢AFNA-g)AFE)LFF)A-g") .. =2 (F)fqg *
Ce théoréme étant vrai pour un nombre infini de valeurs de % sera, par

sa forme méme, nécessairement vrai quand a et b sont de symboles
absolument arbitraires, et l'on voit facilement que, pour le montrer dans
ce sens universel, il suffira d’énoncer un certain théoréme sur les nombres
complexes dont voici I'énoncé:

Désignons par C, B, A des nombres complexes de la forme fc, fc+1b,
Je+a, o foest ou zéro ou un nombre entier et positif quelconque.

Considérons un arrangement composé avec des C, des B et des A non répétés
ou avec des C, B, A pris seuls ou combinés deux a deuw, en excluant les
arrangements (que je nomme exceptionnels) qui ne contiennent que des B _formant
une série arithmétique dont b est le dernier terme et ¢ la différence constante,
ou des A formant une série semblable dont a est le dernier terme.

Par le caractére majeur et le caractére mineur d’un tel arrangement, je
désigne la parité ou Uimparité du nombre total des termes et du nombre des C
quil contient. Je dis qu'd chaque arrangement (non exceptionnel) on peut en
associer un autre pareil dont la somme totale des éléments (les A, B, C) sera
la méme, mais dont les caractéres seront tous les deux opposés.

La démonstration deviendra plus claire en se servant de la notation
suivante. En désignant par X un symbole d'une série de termes, je me
servirai de X et de X pour signifier le terme le plus haut et le terme le plus

[* See above, p. 59 fi.]
8. 1V. vt
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bas de la série, et en me servant de ¥ ou Z pour signifier un symbole ou
simple ou affecté de marques quelconques, j’emploie les notations

Y=0, Y+Z=0, Y>0, Y+Z>0,
pour signifier que les ¥ manquent, que les ¥ et les Z manquent tous les

deux, que les ¥ ne manquent pas, que les Y et les Z ne manquent pas tous
les deux.

Je divise les B (d’'un arrangement quelconque) en deux especes, ‘B et B,
dont ‘B représente un B appartenant & la série arithmétique (la plus grande
qu'on puisse former) commengant avee le plus grand B, et B’ les autres B
qui se trouvent dans 'arrangement.

Ainsi je divise les 4 en ,4 et en 4, ; A, signifie un A appartenant & la
série arithmétique la plus grande qu’on puisse former, dont @ est le terme
minimum (de sorte que, si arrangement ne contient pas un a, 4, manque)
et A signifie les autres 4 de l'arrangement.

Finalement un point au centre d’un symbole & droite ou & gauche
signifiera ce symbole diminué ou augmenté respectivement de c.

On voit que dans cette notation les arrangements exceptionnels seront
exprimés ainsi: ceux qui appartiennent & l'une des deux classes par les
conditions 'B—b=0 avec A+ C=0, et les autres par les conditions B =0
avec 4 +C=0.

Je divise les arrangements non exceptionnels en trois classes, dont les
conditions seront respectivement les suivantes: '

Premiere classe :
‘B—b>0 ou ((B=b=0 avec (—c='B-b).

Deuxie¢me classe:
'‘B—b=0 avec (C—c>’B—b on C=0, mais 4+C>0),
ou B=0 avec (4=0 ou 4—as0).
Troisieme classe :
B=0 avec A>0 et 4—a<C et ,4+C>0.

Toutes les hypotheses possibles se trouvent comprises dans ces tableaux
des arrangements exceptionnels et non exceptionnels.

A chacune des trois classes des derniers je vais assigner un opérateur qui
peut étre appliqué & chaque arrangement de cette classe et qui le trans-
formera dans un autre arrangement appartenant a la méme classe; cette
disposition, appliquée deux fois successivement, reproduira larrangement
sur lequel on opere, lequel ne changera pas la somme des éléments, mais
changera chacun des deux caracteres en sens opposé: cest-a-dire que chacun
des trois opérateurs que je vais définir, et que je nommerai ¢, ¥, 9, doit
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satisfaire & cinq conditions qu'on peut nommer catholicité, homaeogénése,
mutualité, inertie et énantiotropie.

1. ¢ signifie que, si =0 ou ('—c¢ >'B —'B, on doit former un nouveau
C, en substituant, pour chaque 'B, ’'B- (c’est-a-dire sa valeur diminuée de c¢),
et reconstituer I'inertie originale en ajoutant ensemble les ¢ ainsi soustraits
pour former un nouveau C, et que, dans le cas contraire, ¢ doit étre
décomposé en simples ¢, dont on ajoutera un au premier ‘B (le B le plus
grand), un an second B, etc., jusqu'a ce que tous les ¢ dont on a & disposer
soient épuisés.

2. 4 signifie que, si B>0 ou 0=0,0u (>‘B+ A, on doit former un
nouveau C en substituant & ‘B et 4 leur somme et que, dans le cas contraire,
€ doit étre décomposé en “Bet A si B>0etenbet A si B=0.

3. Y signifie que, si =0 ou '+ 4,=>4, il faut décomposer ,4 en
A, et C ou en a et C, selon que 4,=ou >0, et que, dans le cas contraire,
pour ¢ et 4, il faut substituer leur somme. On sera satisfait en étudiant
les conditions des trois classes que les ¢, 4, & possédent tous les trois cing
attributs voulus: la preuve en est facilitée en supposant que, dans chaque
série des C, des B et des A, prise séparément, on suit un ordre régulier de
grandeur dans l'arrangement de ces termes respectivement au multiple
de ¢ qui entre dans chacun d’eux.

Si I'on donne & @ et & b des valeurs quantitatives (ce qui est toujours
permis), et en particulier les valeurs 1 et 2 respectivement, on retombe
sur le théoréeme d’Euler, mais (chose & noter) la correspondance donnée
par le procédé général appliqué & ce cas ne sera nullement identique 3 la
correspondance donnée par le procédé de Franklin. En effet, les arrange-
ments exceptionnels ne seront pas les mémes dans les deux méthodes:
selon le procédé de Franklin, les arrangements non conjugables sont de
la. forme

5, t+1, ..., 20—=1 ou 7+1, 742, ..., 20,

tandis que la méthode actuelle donnera, comme non conjugués, les arrange-

ments de la forme
1,4, ..., 3t—=2 ou 2 5, ..., 3t-1.

La méthode employée ici fournira elle-méme toujours deux systémes de
correspondance absolument distincts, dont on obtient I'un, qui n’est pas
exprimé, en échangeant entre eux les a, 4 et les b, B, car la méthode n’est
pas symétrique dans son opération sur ces deux systémes de lettres.

by

Ce cas est analogue & celui de la correspondance perspective entre deux
triangles, laquelle peut étre simple ou triple, comme je I'ai montré ailleurs.
Jacobi, dans 'endroit cit€é, a fait la remarque que, pour a=1, b=2, en se
servant du signe supérieur (F) dans son théoréme, on retombe sur le

7—2
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théoréme d’Euler et que, pour le cas de a =1, b=1, en se servant du signe
inférieur, sur un théoréme donné (il y a longtemps par Gauss). On peut
ajouter que, si avec cette supposition on se sert du signe supérieur, on obtient
0 =0, mais si 'on écrit a=1—¢, b=1, en faisant e infinitésimal, on tombe
(chose singuliere) sur I'équation de Jacobi elle-méme,
A-¢PA—-¢»PA—-¢)P+..=1-3¢+5¢ —T¢°+....

Puisque j’ai introduit le nom de l'auteur des Fundamenta nova, qu'on
me permette la remarque que, dans les deux avant-dernieres lignes de
'avant-derniére page de cet immortel OQuvrage, on trouve un théoréeme qui
équivaut & I'équation

q qa q5 e q1+2 q1+2+3

Tvg T+¢ T+g¢ " "i+g l+gtive

or, le premier cas du théoréme intitulé: Sur un théoréme d’Euler, contenu
dans une Note précédente des Comptes rendus*, affirme que le nombre des
séries authmethues avec lesquelles on peut exprimer n est égal au nombre
des diviseurs impairs de %, laquelle considération méne immédiatement
4 une conséquence qu'on ne pourrait manquer d’observer (mais que M.
Franklin, effectivement, a remarquée le premier) et qui s'exprime par
I’équation

q qs _ _q )y —q1+2 q1+2+3
Tt et 1ot " Togq T i=g T icg ™
équation trés ressemblante & I'autre et qui peut étre combinée avec elle de
manitre 3 donner naissance 3 quatre autres équations de la méme espece.

ey

On n’a pas besoin de dire que le théortme qui constitue la matiére
principale de cette Note, en faisant ¢ =1 et en considérant b comme une
quantité arbitraire, contient ou au moins conduit immédiatement au dé-
veloppement de ©®,z dont Jacobi I'a traité comme conséquence.

[* p. 95 above. Cf. p. 25 above.]



9.

ON THE NUMBER OF FRACTIONS CONTAINED IN ANY
“FAREY SERIES” OF WHICH THE LIMITING NUMBER IS

GIVEN.

[Philosophical Magazine, Xv. (1883), pp: 251—257; xVI. (1883),
pp. 230—233.]

A Farey series (“suite de Farey ”) is a system of all the unequal vulgar
fractions arranged in order of magnitude, the numerator and denominator of
which do not exceed a given number.

The first scientific notice of these series appeared in the Philosophical
Magazine, Vol. XLVIL (1816), pp. 385,386. In 1879 Mr Glaisher published
in the Philosophical Magazine (pp. 321—336) a paper on the same subject
containing a proof of their known properties, an important extension of the
subject to series in which the numerators and denominators are subject to
distinct limits, and a bibliography of Mr Goodwyn’s tables of such series.
Finally, in 1881 Sir George Airy contributed a paper also to the Philosophical
Magazine of that year, in which he refers to a table calculated by him “some
years ago,” and printed in the Selected Papers of the Transactions of the
Institution of Civil Engineers, which is in fact a Farey table with the
logarithms of the fractions appended to each of them. Previous tables had
only given the decimal values of such fractions. The drift of this paper is to
point out a caution which it is necessary to observe in the use of such tables,
and which limits their practical utility: this arises from the fact of the
differences receiving a very large augmentation in the immediate neighbour-
hood of the fractions which are a small aliquot part of unity—a fact which
may be inferred @ prior: from the well-known law discovered by Farey
applicable to those differences, but to which the author of the paper makes
no allusion.

In addition to the tables of Farey series by Goodwyn, Wucherer, an
anonymous author mentioned in the Babbage Catalogue, and Gauss, referred
to by Mr Glaisher in his Report to the Bradford Meeting of the British
Association (1873), may be mentioned one contained in Herzer's Tabellen
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(Basle, 1864) with the limit 57, and another in Hrabak’s Tabellen- Werk
(Leipsic, 1876), in which the limit is taken at 50.

The writers on the theory are :—Cauchy (as mentioned by Mr Glaisher),
who inserted a communication relating to it in the Bulletin des Sciences par
la Société Philomathique de Paris, republished in his Ewzercices de Mathé-
matiques ; Mr Glaisher himself (loc. cit.); M. Halphen, in a recent volume of
the Proceedings of the Mathematical Society of France ; and M. Lucas, in the
next following volume of the same collection. I am indebted to my friend
and associate Dr Story for these later references.

For theoretical purposes it is desirable to count 4 as one of the fractions
in a Farey series. The number of such fractions for the limit j then becomes
identical with the sum of the totients of all the natural numbers up to j
inclusive—a totient to z (which I denote by 7z) meaning the number

of numbers less than # and prime to it. Such sum, that 1s, 2 7, I denote

by Tj. My attention was called to the subject by this number ]TJ expressing
the number of terms in a function whose residue (in Cauchy’s sense) is the
generating function to any given simple denumerant (see American Journal of
Mathematics,[Vol. 111 of this Reprint, p. 605]) ; and I became curious to know
something about the value of 7j. I had no difficulty in finding a functional
equation which serves to determine its limits (see Jokns Hoplkins University
Circular, Jan. and Feb. 1883*). The most simple form of that equation
(omitted to be given in the Circular) is
E+T§+T%+T2+T%+m=3;%
(where, when z is a fraction, T is to be understood to mean 7, j being the
integer next below z); and from this it is not difficult to deduce by strict
demonstration that 77/j% when j increases indefinitely, approximates
indefinitely near to 3/
I have subsequently found that if uz be used to denote the sum of all

r=1
the numbers inferior and prime to «, and Uj= 3 uz, then+
=7

oud J By Jogd GG +2)
U:}-I—2U2+3U3+4U4‘+...-—— 3

(where Uz, when # is a fraction, means the U of the integer next inferior to
). From this equation it is also possible to prove that Uj/j?, when j becomes
indefinitely great, approximates to 1/m%  Uj, it may be well to notice, is the
sum of all the numerators of the fractions in a Farey series whose limit is
j» just as 7} is the number of these fractions.

In the annexed Table the value of 7 (the totient), of 7% (the sum-totient),
and of 3/%. 2% is calculated for all the values of z from 1 to 1000; and the

[* See pp. 84, 89 above.] [t The right side should be 757 (j+1) (2j+1).]
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remarkable fact is brought to light that 7% is always greater than 3/7*. 2?
(the number opposite to it), and less than 3/7*.(x + 1)}, the number which
comes after the following one in the same table.

I have calculated in my head the first few values of Uz, and find (if
I have made no mistake) that it obeys an analogous law, namely is always
intermediate between 1/7*. #* and 1/72. (z + 1),

It may also be noticed that when n is a prime number, Tn is always
nearer, and usually very much nearer, to.the superior than to the inferior
limit—as might have been anticipated from the circumstance that, when this
is the case, in passing from n—1 to n the 7T receives an augmentation of

‘;
. . - 1 ]
n—1, whereas its average augmentation is only ;2(271—1).
In like manner and for a similar reason, when n contains several small

factors 7'n is nearer to the inferior than to the superior limit. For instance,
when n=210, T'n = 13414 and 3/7*. n?*=13404-79.

TABLE of Totients, of Sum-totients, and of 3/m* into the Squares of all the
Numbers from 1 to 1000 tnclusive.

2

[E = ‘30396355}
ks

i LISHYS sratif | 3
n T(n) T(n) ;112 n T(n)‘T(n) ;r_2n2 n 'r(n) T(n) ﬁ”z

1 30|/ 27| 18 | 280 | 22159 || 53 | 52 | 882 | 853-83
2| 1:22(/28(12 (242 23831 | 54| 18| 900| 88636
4| 2741|2928 [270|255'63 (|55 | 40 | 940 | 91949
6| 486(/30] 8|278(27356 (/56|24 | 964| 953-23
10| 7-60(/ 31|30 {308 29211 || 57 | 36 | 1000 | 987-58
12| 1094 || 32 16|324 311-26 || 58 | 28 | 1028 | 102254
18| 149033 | 20 | 344 | 331-01 || 59 | 58 | 1086 | 1058°10
22| 1946 /34| 16 | 360 |351-38 |60 | 16 | 1102 | 109427

2462 || 35 | 24 | 384 | 372:35 | 61 | 60 | 1162 | 1131:05
32| 30'40(|36| 12 |396 (39393 |62 | 30 [ 1192 | 116844
42| 36°78 /37|36 |432|416°12 ({63 | 36 | 1228 | 120643
46| 43777(/38 |18 450 | 43892 | 64| 32 | 1260 | 124503
58| 513739 | 24 [474 | 462:32 || 65 | 48 | 1308 | 1284:25
64| 5958 (40 | 16 | 490 | 48634 || 66 | 20 | 1328 | 1324°07
72| 6839 || 41 | 40 530 51096 || 67 | 66 | 1394 | 136449
80| 7781|(42 |12 | 542 | 53619 || 68 32]1426 140553
96 | 87'84 (43|42 | 584 {56202 || 69 | 44 | 1470 | 1447-17
102 | 9848 |44 | 20 | 604 | 58847 || 70| 24 | 1494 | 148942
120 | 109-73 | 45 | 24 | 628 | 615°52 || 71| 70 | 1564 | 1532-28
121°58 || 46 | 22 | 650 | 643°19 || 72| 24 [ 1588 | 157575

—
ORI B O OO OO W b B = =
1]
®

DO bt b bl bt ot o e
CODMTHINHR W= OWWPL-TD U WL -
— —

e
O PBLD
—

(2]

[02]

21 140 | 13405 [ 47 | 46 | 696 | 67145 || 73 | 72 | 1660 | 161982
22 150 [ 147°12 |48 | 16 | 712 | 70033 || 74 | 36 1696'1664'51
23122 |172!160°79 || 49 | 42 | 754 | 729'82 |75 40'1736 1709-80
24| 8|180(17508 |50 | 20 | 774 | 75991 || 76| 36 | 1772 | 175569
25( 20 | 200 {18998 | 51 | 32 | 806 | 79061 || 77 | 60 | 1832 | 180220
26| 12

212 | 20548 |/ 52 | 24 | 830 821'92[ 781 24 | 1856 | 184931 |

1 ‘ |
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TABLE (continued).

7(n)

T (n)

3

2
— N
2

7(n)

T (n)

3
= n2
w

T ()

3
—n2
T2

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

78
32
54
40
82
24
64
42
56
40
88
24
72
44
60
46
32
96
42
60
40
100
32
102
48
48
52
106
36
108
40
72
48
112
36
88
56
72
58
96
32
110

80
60
100
36
126
64
84
48
130

108

1934
1966
2020
2060
2142
2166
2230
2272
2328
2368
2456
2480
25562
2596
2656
2702
2774
2806
2902
2944
3004
3044
3144
3176
3278
3326
3374
3426
3532
3568
3676
3716
3788
3836
3948
3984
4072
4128
4200
4258
4354
4386
4496
4556
4636
4696
4796
4832
4958
5022
5106
5154
5284
5324
5432

189704
194537
1994-31
2043-85
209401
214477
219614
224812
230070
235390
2407-70
246210
2517-12
257275
262898
268582
274327
2801-33
286000
2919-27
297915
303964
310073
3162-44
322475
3287-67
335120
341534
348008
354544
361140
3677°96
374514
381292
3881-31
395031
4019-92
4090°14
416096
423239
430443
4377-08
445033
452419
459866
467374
479443
482572
490263
4980°14
505826
5136-98
5216-32
529626
5376-81

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

66
72
64
136
44
138
48
92
70
120
48
112
72
84
72
148
40

120

116
88
178
48
180
72
120
88
144
60
160
92

5498
5570
5634
5770
5814
5952
6000
6092
6162
6282
6330
6442
6514
6598
6670
6818
6858
7008
7080
7176
7236
7356
7404
7560
7638
7742
7806
7938
7992
8154
8234
8314
8396
8562
8610
8766
8830
8938
9022
9194
9250
9370
9450
9566
9654
9832
9880
10060
10132
10252
10340
10484
10544
10704
10796

5457-97
553974
562211
570509
578868
587288
5957-69
604310
612912
621575
630299
639083
647929
656835
665802
674829
683918
693067
7022°77
711548
720880
730272
7397°26
7492-40
758815
768451
778147
787904
797722
807601
817541
827541
837602
847724
8579°07
868150
878455
8888-20
8992-46
9097-33
920280
9308-88
941557
952287
963078
973929
984842
995815
1006849
10179-44
1029099
1040315
1051592
10629-30
10743-29

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
27}
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
249
243

196

198

80
132
100
168

64
160
102
132

96
180

48
210
104
140
106
168

=
180
108
144

80
192

222

96
120
112
226

72
228

88
120
112
232

72
184
116
156

96
238

64
240
110
162

10904
10976
11166
11230
11422
11518
11614
11698
11894
11954
12152
12232
12364
12464
12632
12696
12856
12958
13090
13186
13366
13414
13624
13728
13868
13974
14142
14214
14394
14502
14646
14726
14918
14990
15212
15308
15428
15540
15766
15838
16066
16154
16274
16386
16618
16690
16874
16990
17146
17242
17480
17544
17784
17894
18056

10857-88
1097309
11088-90
11205°31
1132234
1143997
1155821
11677-06
1179652
1191659
12037-26
1215854
1228043
12402-93
1252603
1264975
1277407
12899-00
1302454
1315068
1327743
1340479
13532°76
13661-34
1379052
13920-32
14050°72
1418173
1431334
1444557
1457840
1471184
14845-89
14980-54
15115-81
15251-68
1538816
1552525
1566294
1580124
15940°15
1607967
16219-80
1636053
16501-87
16643-82
16786°38
16929-55
1707332
1721770
17362-70
1750830
1765451

1780132

1794874

[9
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TABLE (continued).

n |7(n)| T (n) T%fﬂ n |7(n)| T (n) %nz ' n |r(n)| T (n) %n“

-

244 [ 120 | 18176 | 18096-77 |{ 299 | 264 | 27318 | 27174'65 || 354 [ 116 | 38174 | 3809150
245 [ 168 | 18344 | 1824541 || 300 | 8027398 | 2735672 || 355 | 280 | 38454 | 38307-01
246 | 80| 18424 [ 1839466 (| 301 | 252 | 27650 | 2753940 || 356 | 176 | 38630 | 38523°12
247 | 216 | 18640 | 1854451 {| 302 | 150 | 27800 | 2772269 || 357 | 192 | 38822 | 38739-85
248|120 | 18760 | 18694-97 || 303 | 200 | 28000 | 2790659 (| 358 | 178 | 30000 | 38957°18
249 | 164 | 18924 | 1884604 || 304 | 144 | 28144 | 28091-10 || 359 | 358 | 39358 | 39175°13
250 | 100 | 19024 | 18997-72 || 305 | 240 | 28384 | 2827621 || 360 | 96 | 39454 | 3939368
251 | 250 | 19274 | 19150°01 || 306 | 96 | 28480 | 2846193 || 361 | 342 | 39796 | 3961283
252 | 72{19346 | 19302:90 || 307 | 306 | 28786 | 2864826 || 362 | 180 | 39976 | 39832:60
253 | 220 | 19566 | 19456°40 || 308 | 120 | 28906 | 28835-20 || 363 | 220 | 40196 | 40052°97
254 [ 126 | 19692 | 19610°51 || 309 | 204 | 20110 | 2902275 || 364 | 144 | 40340 | 40273:95
255 | 128 | 19820 | 19765°23 || 310 | 120 | 29230 | 2921090 || 365 | 288 | 40628 | 4049554
256 | 128 | 19948 | 1992056 || 311 | 310 | 29540 | 2939966 || 366 | 120 | 40748 | 4071774
257 | 256 | 20204 | 2007649 || 312 | 96 | 29636 | 29589-03 || 367 | 366 | 41114 | 4094055
258 | 8420288 | 20233:03 || 313 | 312 | 29948 | 29779-01 || 368 | 176 | 41290 | 4116396
259 | 216 | 20504 | 2039018 || 314 | 156 | 30104 | 20969-59 (| 369 | 240 | 41530 | 41387-98
260 | 96| 20600 | 2054794 (| 315 | 144 | 30248 | 3016079 || 370 | 144 | 41674 | 4161261
261 | 168 | 20768 | 2070630 || 316 | 156 | 30404 | 3035259 || 371 | 312 | 41986 | 4183785
262 | 130 | 20898 | 2086528 || 317 | 316 | 30720 | 30545°00 || 372 | 120 | 42106 | 4206369
263 | 262 | 21160 | 2102486 || 318 [ 104 | 30824 | 3073801 || 373 | 372 | 42478 | 42290'15
264 | 8021240 | 2118505 || 319 | 280 | 31104 | 3093164 || 374 | 160 | 42638 | 4251721
265 | 208 | 21448 | 2134584 || 320 [ 128 | 31232 | 3112587 || 375 | 200 | 42838 | 4274487
266 | 108 | 21556 | 21507-25 || 321 | 212 | 31444 | 31320°71 || 376 | 184 | 43022 | 42973°15
267 | 176 | 21732 | 2166926 || 322 | 132 | 31576 [ 3151616 || 377 | 336 | 43358 | 43202:04
268 | 132 | 21864 | 2183188 || 323 | 288 | 31864 | 3171222 || 378 | 108 | 43466 | 4343153
269 | 268 | 22132 | 21995°11 || 324 | 108 | 31972 | 3190888 || 379 | 378 | 43844 | 4366163
270 | 7222204 | 2215895 || 325 | 240 | 32212 | 3210615 || 380 | 144 | 43988 | 43802:34
271 | 270 | 22474 | 2232339 || 326 | 162 | 32374 | 32304°03 || 381 | 252 | 44240 | 4412365
272 | 128 | 22602 | 2248844 || 327 | 216 | 32590 | 3250252 || 382 | 190 | 44430 | 44355°58
273 | 144 | 22746 | 2265410 || 328 | 160 | 32750 | 3270162 || 383 | 382 | 44812 | 4458811
274 | 136 | 22882 | 2282037 || 329 | 276 | 33026 | 3290132 || 384 | 128 | 44940 | 4482125
275 | 200 | 23082 | 2298725 || 330 | 80 | 33106 | 3310163 || 385 | 240 | 45180 | 45055°00
276 | 8823170 | 2315473 || 331 | 330 | 33436 | 3330255 || 386 | 192 | 45372 | 4528935
277 | 276 | 23446 | 23322:82 || 332 | 164 | 33600 | 33504°08 || 387 | 252 | 45624 | 45524°32
278 | 138 | 23584 | 23491-52 || 333 | 216 | 33816 | 3370622 || 388 | 192 | 45816 | 45759°89
279 | 180 | 23764 | 2366083 || 334 | 166 | 33982 | 3390896 || 389 | 388 | 46204 | 4599607
280 [ 96 | 23860 | 23830°75 || 335 | 264 | 34246 | 3411231 || 390 | 96 | 46300 | 4623286
281 | 280 | 24140 | 24001-27 || 336| 96 | 34342 | 3431627 || 391 | 352 | 46652 | 4647025
282 92| 24232 | 24172°40 || 337 | 336 | 34678 | 3452084 || 392 | 168 | 46820 | 4670825
283 [ 282 | 24514 | 24344°14 (| 338 | 156 | 34834 | 34726°01 || 393 | 260 | 47080 | 4694687
284 | 140 | 24654 | 24516°49 || 339 | 224 | 35058 | 3493180 || 394 | 196 | 47276 | 4718609
285 | 144 | 24798 | 24689-44 || 340 | 128 | 35186 | 3513819 || 395 | 312 | 47588 | 4742591
286 | 120 | 24918 | 24863-00 || 341 | 300 | 35486 | 3534519 || 396 | 120 | 47708 | 4766635
287 | 240 | 25158 | 25037-18 || 342 | 108 | 35594 | 3555280 || 397 | 396 | 48104 | 4790739
288 | 96 |25254 | 25211°96 || 343 | 294 | 35888 | 35761-01 || 398 | 198 | 48302 | 48149°04
289 | 272 | 25526 | 2538734 || 344 | 168 | 36056 | 3596983 || 399 | 216 | 48518 | 4839130
290 | 112 | 25638 | 2556334 || 345 | 176 | 36232 | 3617926 || 400 | 160 | 48678 | 48634°17
291 | 192 | 25830 | 25739°94 || 346 | 172 | 36404 | 36389-30 || 401 | 400 | 49078 | 4887764
292|144 | 25974 | 2591715 || 347 | 346 | 36750 | 3659995 || 402 | 132 | 49210 { 4912173
203 | 292 | 26266 | 26094'97 (| 348 | 112 | 36862 | 36811-21 || 403 | 360 | 49570 | 4936642
294 | 8426350 | 2627340 || 349 | 348 | 37210 | 3702307 || 404 | 200 { 49770 [ 49611-72
205 | 232 | 26582 | 26452:43 || 350 | 120 | 37330 | 3723554 || 405 | 216 | 49986 | 4985762
206 | 144 | 26726 | 2663207 || 351 | 216 | 37546 | 3744861 || 406 | 168 | 50154 | 5010414
207 | 180 | 26906 | 26812-32 | 352 [ 160 | 37706 | 37662-30 || 407 | 360 | 50514 | 5035126
298 | 148 | 27054 | 26993°18 || 353 | 352 | 38058 | 3787659 || 408 | 128 | 50642 | 5059899
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TABLE (continued).

n |7(n)| T'(n) %n2 n |7(n)| T (n) %M n {r(n)| T (n) ﬂ%?ﬂ

409 | 408 | 51050 | 50847°33 || 464 | 224 | 65630 | 6544214 || 519 | 344 | 82028 | 8187593
410 | 160 | 51210 | 51096-27 || 465 | 240 | 65870 | 65724'52 || 520 | 192 | 82220 | 8219175
4111272 | 51482 | 51345°83 || 466 | 232 | 66102 | 66007-51 || 521 | 520 | 82740 | 8250818
412204 | 51686 | 51595°99 || 467 | 466 | 66568 | 6629111 || 522 | 168 | 82908 | 8282521
413|348 | 52034 | 51846°76 || 468 | 144 | 66712 | 6657531 || 523 | 522 | 83430 | 8314285
414|132 | 52166 | 5209814 || 469 | 396 | 67108 | 6686013 || 524 | 260 | 83690 | 8346110
415|328 | 52494 | 5235012 || 470 | 184 | 67292 | 67145°55 || 525 [ 240 | 83930 | 83779:95
416 | 192 | 52686 | 5260272 || 471 | 312 | 67604 | 6743158 || 526 | 262 | 84192 | 8409942
417|276 | 52962 | 52855°92 || 472 | 232 | 67836 | 6771822 || 527 | 480 | 84672 | 8441949
4181180 [ 563142 | 53109-73 |[ 473 | 420 | 68256 | 6800546 || 528 | 160 | 84832 | 84740°17
419 (418 | 53560 | 53364°15 || 474 | 156 | 68412 | 6829332 || 520 | 506 | 85338 | 8506146
420 | 96| 53656 | 5361917 || 475 [ 360 | 68772 | 6858178 || 530 [ 208 | 85546 | 85383:36
421 | 420 | 54076 | 53874-80 || 476 | 192 | 68964 | 6887085 || 531 | 348 | 85894 | 8570587
4221210 | 54286 | 54131-04 || 477 [ 312 | 69276 | 6916052 || 532 [ 216| 86110 | 8602898
423|276 | 54562 | 54387-89 || 478 [ 238 | 69514 | 6945081 || 533 | 480 | 86590 | 863527
4241208 | 54770 | 5464535 || 479 | 478 | 69992 | 6974170 || 534 (176 | 86766 | 86677-03
425 (320 | 55090 | 5490342 || 480 [ 128 | 70120 | 70033-20 || 535 | 424 | 87190 | 8700197
426 | 140 | 55230 | 5516209 || 481 | 432 | 70552 | 7032531 || 536 | 264 | 87454 | 8732751
427 360 | 55590 | 5542139 || 482 | 240 | 70792 | 7061803 || 537 | 356 | 87810 | 8765366
428 | 212 | 55802 | 5568126 || 483 | 264 | 71056 | 7091135 || 538 | 268 | 88078 | 8798042
429 | 240 | 56042 | 5594176 || 484 | 220 | 71276 | 7120529 || 539 | 420 | 88498 | 88307:79
430 | 168 | 56210 | 5620286 || 485 | 384 | 71660 | 71499-83 || 540 | 144 | 88642 | 8863577
431|430 | 56640 | 56464°57 || 486 | 162 | 71822 | 71794°98 || 541 | 540 | 89182 | 88964-35
432|144 | 56784 | 5672689 || 487 | 486 | 72308 | 72090°73 | 542|270 | 89452 | 8929354
433|432 | 57216 | 5698982 || 488 | 240 | 72548 | 7238710 || 543 | 360 | 89812 | 8962334
434|180 | 57396 | 5725336 || 489 | 324 | 72872 | 7268407 || 544 | 256 | 90068 | 8995375
435 (224 | 57620 | 5751750 || 490 | 168 | 73040 | 7298165 || 545 [ 432 | 90500 | 90284-77
436 | 216 | 57836 | 5778226 || 491 | 490 | 73530 | 7327984 | 546 | 144 | 90644 | 9061639
437|396 | 58232 | 5804762 || 492 | 160 | 73690 | 7357863 || 547 | 546 | 91190 | 90948-62
438 | 144 | 58376 | 5831358 || 493 | 448 | 74138 | 73878:04 | 548 | 272 | 91462 | 9128146
439 | 438 | 58814 | 58580-16 || 494 | 216 | 74354 | 7417805 || 549 | 360 | 91822 | 91614:91
440|160 | 58974 | 5884734 || 495 | 240 | 74594 | 7447867 || 550 [ 200 | 92022 | 91948-97
4411252 | 59226 | 59115°14 || 496 | 240 | 74834 | 7477990 || 551 | 504 | 92526 | 9228364
4421192 | 59418 | 5938354 || 497 | 420 | 75254 | 75081-73 || 552 | 176 | 92702 | 92618-91
4431442 | 59860 | 5965254 || 498 | 164 | 75418 | 7538418 || 553 | 468 | 93170 | 9295479
4441144 | 60004 | 5992216 || 499 | 498 | 75916 | 7568723 || 554 [ 276 | 93446 | 93291-28
4451352 | 60356 | 6019238 || 500 | 200 | 76116 | 7599089 || 555 | 288 | 93734 | 9362838
446|222 | 60578 | 60463-22 || 501 | 332 | 76448 | 7629515 || 556 | 276 | 94010 | 9396608
4471296 | 60874 | 60734°66 || 502 | 250 | 76698 | 7660003 || 557 | 556 | 94566 | 94304-39
4481192 | 61066 | 6100670 || 503 | 502 | 77200 | 7690552 || 558 | 180 | 94746 | 9464331
44914481 61514 | 6127936 || 504 | 144 | 77344 | 7721161 || 559 | 504 | 95250 | 94982-84
4501120 | 61634 | 6155262 || 505 | 400 | 77744 | 77518-31 || 560|192 | 95442 | 9532298
451 1400 | 62034 | 6182649 || 506 [ 220 | 77964 | 7782562 || 561 | 320 | 95762 | 9566372
452 1224 1 62258 | 6210097 || 507 | 312 | 78276 | 7813354 || 562 | 280 | 96042 | 9600507
453 | 300 | 62558 | 6237606 || 508 | 252 | 78528 | 78442:06 || 563 | 562 | 96604 | 96347-03
454|226 | 62784 | 6265175 || 509 | 508 | 79036 | 78751°19 || 564 | 184 | 96788 | 96639-60
455 | 288 | 63072 | 62928-05 || 510 | 128 | 79164 | 7906093 || 565 | 448 | 97236 | 9703277
456 | 144 | 63216 | 6320497 || 511 | 432 | 79596 | 7937128 || 566 | 282 | 97518 | 9737655
4571456 | 63672 | 63482°48 || 512 | 256 | 79852 | 7968223 || 567 | 324 | 97842 [ 97720-94
458 | 228 | 63900 | 63760-61 || 513 | 324 | 80176 | 7999379 || 568 | 280 | 98122 | 98065-94
459 | 288 | 64188 | 6403935 || 514 | 256 | 80432 | 8030596 || 569 | 568 | 98690 | 98411-55
460 (176 | 64364 | 6431869 || 515 | 408 | 80840 | 8061874 || 570 | 144 | 98834 | 9875776
461 460 | 64524 | 6459864 || 516 | 168 | 81008 | 8093213 || 571 | 570 | 99404 | 99104-58
462 (120 | 64944 | 6487920 || 517 | 460 | 81468 | 81246°12 || 572 | 240 | 99644 | 99452-01
463 462 | 65406 | 6516036 || 518 | 216 | 81684 | 8156072 || 573 | 380 [ 100024 | 9980005
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TABLE (continued).

™(n)

T (n)

2
n
r2

7(n)

T (n)

3
s n2
T

n

7(n)

T (n)

LA
w2

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

240
440
192
576
272
384
224
492
192
520
288
288
292
586
168
540
232
392
288
592
180
384
296
396
264
598
160
600
252
396
300
440
200
606
288
336
240
552
192
612
306
320
240
616
204
618
240
396
310
528
192
500
312
360
312

100264
100704
100896
101472
101744
102128
102352
102844
103036
103556
103844
104132
104424
105010
105178
105718
105950
106342
106630
107222
107402
107786
108082
108478
108742
109340
109500
110100
110352
110748
111048
111488
111688
112294
112582
112918
113158
113710
113902
114514
114820
115140
115380
115996
116200
116818
117058
117454
117764
118292
118484
118984
119296
119656
119968

10014870
100497-95
100847-81
101198-28
101549-36
10190105
10225334
102606-24
10295975
103313-87
10366860
104023-93
10437987
10473642
10509358
105451-35
10580972
10616870
106528-29
10688849
10724929
10761070
10797272
108335-35
10869859
10906243
10942688
10979194
110157-61
11052389
110890-77
11125826
11162636
11199507
11236439
11273431
11310484
11347598
11384773
114220-09
11459305
11496662
115340-80
11571559
11609099
11646699
11684360
11722082
11759865
117977-08
118356-12
11873577
119116-03
11949690
11987837

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

576
144
630
312
420
316
504
208
504
280
420
256
640
212
642
264
336
288
646
216
580
240
360
324
652
216
520
320
432
276
658
160
660
330
384
328
432
216
616
332
444
264
600
192
672
336
360
312
676
224
576
256
452
300
682

120544
120688
121318
121630
122050
122366
122870
123078
123582
123862
124282
124538
125178
125390
126032
126296
126632
126920
127566
127782
128362
128602
128962
129286
129938
130154
130674
130994
131426
131702
132360
132520
133180
133510
133894
134222
134654
134870
135486
135818
136262
136526
137126
137318
137990
138326
138686
138998
139674
139898
140474
140730
141182
141482
142164

12026045
120643°14
121026-44
12141035
12179486
12217998
122565°71
12295205
12333800
12372655
12411471
12450348
12489286
12528285
12567344
12606464
12645645
126848-87
12724189
12763552
12802976
12842460
12882006
12921612
12961279
130010-07
130407-96
13080646
13120556
13160527
13200559
132406-52
13280806
133210-20
13361295
134016-31
134420-28
13482486
13523004
13563583
13604223
136449-24
13685686
13726508
13767391
13808335
13849340
138904:05
13931531
139727-18
14013966
14055275
14096644
14138074
14179565

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
il
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

216
544
294
456
(536
624
176
690
344
360
346
552
224
640
348
464
240
700
216
648
320
368
352
600
232
708
280
468
352
660
192
480
356
476
358
718
192
612
342
480
360
560
220
726
288
486
288
672
240
732
366
336
352
660
240

142380
142924
143218
143674
144010
144634
144810
145500
145844
146204
146550
147102
147326
147966
148314
148778
149018
149718
149934
150582
150902
151270
151622
152222
152454
153162
153442
153910
154262
154922
155114
155594
155950
156426
156784
157502
157694
158306
158648
159128
159488
160048
160268
160994
161282
161768
162056
162728
162968
163700
164066
164402
164754
165414
165654

14221117
14262730
14304403
14346137
14387932
144297-88
14471705
14513682
14555720
14597819
14639979
14682199
14724480
14766822
14809225
148516-89
14894214
14936799
149794°45
150221°52
150649-20
15107748
15150637
15193587
15236598
15279670
15322802
15365995
15409249
15452564
15495940
15539376
15582873
15626431
15670050
15713730
15757470
15801271
15845133
15889056
15933040
15977084
160211-89
16065355
16109582
16153869
161982°17
16242626
16287096
16331627
163762°18
16420870
16465583
165103-57
16555192
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TABLE (continued).

[9

T (n)

3
= n?
P

(n)

T (n)

S
72

n

()

T (n)

3
2
n
g

738
288
432
312
742
240
592
372
492
320
636
200
750
368
500
336
600
216
756
378
440
288
760
252
648
380
384
382
696
256
768
240
512
384
772
252
600
384
432
388
720
192
700

2352

504
336
624
260
786
392
524
312
672
240
720

166392
166680
167112
167424
168166
168406
168998
169370
169862
170182
170818
171018
171768
172136
172636
172972
173572
173788
174544
174922
175362
175650
176410
176662
177310
177690
178074
178456
179152
179408
180176
180416
180928
181312
182084
182336
182936
183320
183752
184140
184860
185052
185752
186104
186608
186944
187568
187828
188614
189006
189530
189842
190514
190754
191474

16600087
16645043
16690060
16735138
16780277
16825476
168707-36
16916057
16961439
17006882
17052385
170979°50
17143575
171892-61
17235007
172808°14
173266-82
17372611
17418601
174646°52
17510763
17556935
17603168
17649462
17695816
17742231
17788707
17835244
17881842
179285-00
179752-19
18021999
18068840
18115742
18162704
182097-27
18256811
18303956
18351161
18398428
18445755
184931-43
18540592
18588101
186356-71
186833-02
18730994
18778747
18826560
18874434
18922369
18970365
19018422
19066539
19114717

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

396
416
396
796
216
736
320
528
400
720
264
528
360
536
400
808
216
810
336
540
360
648
256
756
408
432
320
820
272
822
408
400
348
826
264
828
328
552
384
672
276
664
360
540
418
838
192
812
420
560
420
624
276
660
416

191870
192286
192682
193478
193694
194430
194750
195278
195678
196398
196662
197190
197550
198086
198486
199294
199510
200320
200656
201196
201556
202204
202460
203216
203624
204056
204376
205196
205468
206290
206698
207098
207446
208272
208536
209364
209692
210244
210628
211300
211576
212240
212600
213140
213558
214396
214588
215400
215820
216380
216800
217424
217700
218360
218776

19162956
19211256
19259617
193080°39
19356521
194050-64
19453667
19502332
19551057
19599843
19648690
19697598
19746566
19795596
19844686
19893837
19943048
19992321
20041654
200910-48
20140503
20190019
20239595
20289232
20338930
203886-89
20438509
204883-89
205638330
20588332
20638395
20688519
20738703
207889-48
20839254
20889621
20640049
209905°37
21041086
21091696
21142367
21193098
21243891
21294744
21345658
21396632
21447668
214987-64
215499-21
216011°39
216524°18
21703757
21755158
218066°19
218581-40

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

896
897
898
899
900
901
902
903

564
320
792
280
852
360
432
424
856
240
858
336
480
430
862
288
688
432
544
360
780
224
792
432
576
396
600
288
876
438
584
320
880
2562
882
384
464
442
886
288
756
352
540
444
828
296
712
384
528
448
840
240
832
400
504

219340
219660
220452
220732
221584
221944
222376
222800
223656
223896
224754
225090
225570
226000
226862
227150
227838
228270
228814
229174
229954
230178
230970
231402
231978
232374
232974
233262
234138
234576
235160
235480
236360
236612
237494
237878
238342
238784
239670
239958
240714
241066
241606
242050
242878
243174
243886
244270
244798
245246
246086
246326
247158
247558
248062

219097-23
219613-66
220130°71
220648-36
22116662
22168548
222204:96
22272504
22324573
22376703
22428893
22481144
225334°56
22585829
22638262
22690757
22743312
22795928
22848605
22901243
22954141
23007001
23059921
231129°02
23165943
23219046
23272209
23325433
232787°18
23432064
23485470
23538937
23592465
23646054
23699704
237534°14
23807185
238610°17
239149-10
23968864
24022878
24076953
24131089
24185286
242395°43
24293862
24348241
24402681
244571-81
24511743
245663:65
24621048
246757-91
24730596
24785461
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TABLE* (continued).

f

n r(n)| T(n) —1:)—;112 n |r(n)| T (n) 7r—2112 n (r(n) T (n) ‘ %nz
]904 448 | 248510 | 24840388 || 937 | 936 | 267256 | 266870°57 | 970 384 286076 | 285999-30 |
I905 720 | 249230 | 248953-75 || 938 | 396 | 267652 | 267440°51 || 971 | 970 287046 | 28658930 |
|906 300 | 249530 | 24950422 || 939 | 624 | 268276 | 26801105 || 972 | 324 287370 | 28717990 |
{907 | 906 | 250436 | 2500565°31 || 940 | 368 | 268644 | 26858219 || 973 828 ' 288198 | 287771°11
908 | 452 | 250888 | 25060700 || 941 | 940 | 269584 | 26915395 || 974 486 288684 | 28836292
909 | 600 | 251488 | 251159-31 || 942 | 312 | 269896 | 26972631 || 975 | 480 | 289164 | 288955°35
910288 | 251776 | 251712:22 || 943 | 880 | 270776 | 270299°28 || 976 | 480 | 289644 | 289548°39
911 910 | 252686 | 25226573 || 944 | 464 | 271240 | 27087286 || 977 | 976 | 290620 | 290142-03
912 288 | 252974 | 252819-86 || 945 | 432 | 271672 | 271447°05 || 978 | 324 | 290944 | 290736-28
913 | 820 | 253794 | 25337459 || 946 | 420 | 272092 | 27202184 || 979 | 880 | 291824 | 29133113
914 | 456 | 254250 | 253929-93 || 947 | 946 | 273038 | 272597:25 || 980 | 336 | 292160 | 29192660
915 480 | 254730 | 25448588 || 948 | 312 | 273350 | 27317326 || 981 | 648 | 292808 | 29252267
916 | 456 | 255186 | 255042°44 || 949 | 864 | 274214 | 273749:88 || 982 | 490 | 293298 | 293119°35
917 780 | 255966 | 2565599-61 || 950 | 360 | 274574 | 274327°10 || 983 | 982 | 294280 | 29371664
918 | 288 | 256254 | 25615738 || 951 | 632 | 275206 | 274905°94 || 984 | 320 | 294600 | 29431454
919 | 918 | 257172 | 25671576 || 952 | 384 | 275590 | 27548338 || 985 | 784 | 295384 | 29491304
920 | 352 | 257524 | 257274775 || 953 | 952 | 276542 | 276062°43 || 986 | 448 | 295832 | 295512°15
921 | 612 | 258136 | 25783434 (| 954 | 312 | 276854 | 276642:09 || 987 | 552 | 296384 | 296111-87
922 | 460 | 258596 | 258394°55 || 955 | 760 | 277614 | 277222:36 || 988 | 432 | 206816 | 29671220
923 | 840 | 259436 | 25895536 [| 956 | 476 | 278090 | 277803-23 || 989 | 924 297740 | 297313°14
924 240{259676 25951678 || 957 | 560 | 278650 | 27838471 || 990 | 240 297980 | 297914°68
925 720 260396 | 26007881 || 958 | 478 | 279128 | 27896680 | 991 | 990 | 298970 | 29851683
926 462 | 260858 | 260641°45 || 959 | 816 | 279944 | 27954950 || 992 | 480 | 209450 | 29911959
927'612 261470 | 261204°69 || 960 | 256 | 280200 | 280132°81 i 993 | 660 | 300110 | 299722-96
928 | 448 | 261918 | 26176855 || 961 | 930 | 281130 | 280716-72 || 994 420 | 300530 ' 300326-94
929 928 | 262846 | 26233301 || 962 | 432 | 281562 | 28130124 || 995 | 792 | 301322 300931'521
930 240 263086 | 262898-07 || 963 | 636 | 282198 | 28188637 || 996 | 328 | 301650 30153671
931 | 756 | 263842 | 26346375 || 964 | 480 | 282678 | 282472-11 || 997 | 996 | 302646 | 302142-51 |
932 [ 464 | 264306 | 264030°03 || 965 | 768 | 283446 | 28305846 998’498 303144 | 30274892
933 | 620 2649‘26r264596'93 966 | 264 | 283710 | 283645°41 || 999 648 | 303792 | 30335593
934 | 466 | 265392 | 265164°43 || 967 | 966 | 284676 | 284232:97 || 1000 | 400 | 304192 | 30396355
935 | 640 | 266032 | 265732:53 || 968 | 440 | 285116 | 284821-14 I
936 | 288 | 266320 | 26630125 || 969 | 576 | 285692 | 285409-92 |
! l

* In the extended as well as in the original Table it will be seen that the sum-totient is
always intermediate between 3/r?. n? and 3/=2. (n+1)2.
The formula of verification applied at every tenth step to the T column precludes the

possibility of the existence of other than typographical errors or errors of transcription.
Accumulative errors are rendered impossible.



10.

ON THE EQUATION TO THE SECULAR INEQUALITIES
IN THE PLANETARY THEORY.

[Phalosophical Magazine, .XVI. (1883), pp. 267—269.]

A VERY long time ago I gave, in this Magazine*, a proof of the reality of
the roots in the above equation, in which I employed a certain property of the
square of a symmetrical matrix which was left without demonstration. I will
now state a more general theorem concerning the product of any two matrices
of which that theorem is a particular case. In what follows it is of course to
be understood that the product of two matrices means the matrix corre-
sponding to the combination of two substitutions which those matrices
represent.

It will be convenient to introduce here a notion (which plays a conspicuous
part in my new theory of multiple algebra), namely that of the latent roots of
a matrix—latent in a somewhat similar sense as vapour may be said to be
latent in water or smoke in a tobacco-leaf. If from each term in the diagonal
of a given matrix, A be subtracted, the determinant to the matrix so modified
will be a rational integer function of A; the roots of that function are the
latent roots of the matrix ; and there results the important theorem that the
latent roots of any function of a matrix are respectively the same functions of
the latent roots of the matrix itself: for example, the latent roots of the square
of a matrix are the squares of its latent roots.

The latent roots of the product of two matrices, it may be added, are the
same in whichever order the factors be taken. If, now, m and »n be any two
matrices, and M =mn or nm, I am able to show that the sum of the products
of the latent roots of M taken 7 together in every possible way is equal to the
sum of the products obtained by multiplying every minor determinant of the
th order in one of the two matrices m, n by its altruistic opposite in the other :
the reflected image of any such determinant, in respect to the principal
diagonal of the matrix to which it belongs, is its proper opposite, and the
corresponding determinant to this in the other matrix is its altruistic

oppostte.
[* Vol. 1. of this Reprint, p. 378.]
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The proof of this theorem will be given in my large forthcoming memoir
on Multiple Algebra designed for the American Journal of Mathematics.

Suppose, now, that m and n are transverse to one another, that is, that the
lines in the one are identical with the columns in the other, and vice versd,
then any determinant in m becomes identical with its altruistic opposite in
n; and furthermore, if m be a symmetrical matrix, it is its own transverse.
Consequently we have the theorem (the one referred to at the outset of this
paper) that the sum of the z-ary products of the latent roots of the square of
a symmetrical matrix (that is, of the squares of the roots of the matrix itself)
is equal to the sum of the squares of all the minor determinants of the order
¢ in the matrix ; whence it follows, from Descartes’s theorem, that when all
the terms of a symmetrical matrix are real, none of its latent roots can be
pure imaginaries, and, as an easy inference, cannot be any kind of imaginaries ;
or, in other words, all the latent roots of a symmetrical matrix are real, which
is Laplace’s theorem.

I may take this opportunity of stating the important theorem that if
A, Ay, ... A; are the latent roots of any matrix m, then

: =2(m—7\,2)(m—>»3)...(m—>\,,-) X
R ARSI i e
This theorem of course presupposes the rule first stated by Prof. Cayley
(Phal. Trans. 1857) for the addition of matrices.

When any of the latent roots are equal, the formula must be replaced by

another obtained from it by the usual method of infinitesimal variation. If
1

¢m =m®, it gives the expression for the wth root of the matrix; and we see
that the number of sueh roots is o, where 7 is the order of the matrix.
When, however, the matrix is unitary, that is, all its terms except the
diagonal ones are zeros, or zeroidal, that is, when all its terms are zeros, this
eonclusion is no longer applicable, and a certain definite number of arbitrary
quantities enter into the general expressions for the roots.

The case of the extraction of any root of a unitary matrix of the second
order was first considered and successfully treated by the late Mr Babbage ;
1t reappears in M. Serret’s Cours d’Algébre supérieure. This problem is of

course the same as that of finding a function z::z of any given order of

periodicity. My memoir will give the solution of the corresponding problem
for a matrix of any order. Of the many unexpected results which I have
obtained by my new method, not the least striking is the rapprochement
which it establishes between the theory of Matriees and that of Invariants.
The theory of invariance relative to associated Matrices includes and transcends
that relative to algebraical funetions.
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ON THE INVOLUTION AND EVOLUTION OF QUATERNIONS.

[Phzlosophical Magazine, Xv1. (1883), pp. 394—396.]

THE subject-matter of quaternions is really nothing more nor less than
that of substitutions of the second order, such as occur in the familiar theory
of quadratic forms. A linear substitution of the second order is in essence
identical with a square matrix of the second order, the law of multiplication
between one such matrix and another being understood to be the same as
that of the composition of one substitution with another, and therefore
depending on the order of the factors; but as regards the multiplication of
three or more matrices, subject to the same associative law as in ordinary

algebraical multiplication.

Every matrix of the second order may be regarded as representing
a quaternion, and wvice versd; in fact if, using ¢ to denote 4/(— 1), we write
a matrix m of the second order under the form

a+b, c+dr,
—c+di, a-=bi, -

we have by definition,
m = aa+ bB + ¢y + db,

10 () s DR 0%
where a= 1 ﬁ_O—i’ Y=_1 ¢ 8—1.0.
Now w=a, E=y=8=-—a,

aB=PRa=B, ay=vya=ry, ad=0ar=34,

By=—qB=a, 7yd=-38y=8 B=-R=v;
so that we may for %, B3, v, 8, substitute 1, h, k, I, four symbols subject to the
same laws of self-operation and mutual interaction as unity and the three
Hamiltonian symbols. Now I have given the universal formula for expressing
any given function of a matrix of any order as a rational function of that
matrix and its latent roots; and consequently the gth power or root of any
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quadratic matrix, and therefore of any quaternion, is known. As far as I am
informed, only the square root of a quaternion has been given in the text-
books on quaternions, notably by Hamilton in his Lectures on Quaternions.

The latent roots of m are the roots of the quadratic equation
—20A+a*+ b2+ cE+d*=0
The general formula

dm =S, (m = A) (m—Ny) oo (m =)

A=A A= Ag) e (N =Ny

1
where 7 is the order of the matrix m, when 7 =2 and ¢m = m?, becomes

L 1
‘;‘ )\q_)\qm 27\'1q_ 1)"2q’
M= A, = A

where A\;, A, are the roots of the above equation. If u is the modulus
of the quaternion, namely is #/(a? + b+ ¢* + d?), and pcos @ =a, the latent
roots A,, A, assume the form

p(cos @ + i sin 6),
When the modulus is zero the two latent roots are equal to one another, and
to a, the scalar of the quaternion ; so that in this case the ordinary theory of
vanishing fractions shows that

1,50

l}n&: aa(ﬂ.*.q—-l).
& 4]

In the general case there are ¢* roots of the gth order to a quaternion. Calling
1
g = w, and writing m?= Am + B,

!cos <—0 + 2ka)) + ¢ sin (Q -+ 2km> - cos (g + 2k’w) + 7sin (9 + 2k’w)
o 9 q q

_ M g ,
A—,u 21 sin 6
q—1 .. (g—1
cos (—q— 0+ 2kw)+zsm (—q— 0+2km)
1 -cos(q;I0+2k’w)+isin(q;15+2k’w>

B=—p?

27 sin ¢

For the ¢ system of values k=% =1, 2, 8 ... ¢, the coefficients 4 and B will

be real, for the other ¢* — ¢ systems of values imaginary; so that there are ¢

quaternion-proper gth roots of a quaternion-proper in Hamilton’s sense, and

g*— q of the sort which, by a most regrettable piece of nomenclature, he terms
1

bi-quaternions. The real or proper-quaternion values of m? are
1

% {sin (9 + 2ka>) B s (9‘—1 0+ 2@)} ,
g ) g

sin 6
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1

p? meaning the or (when there is an alternative) either real value of the gth

root of the modulus.

In the gth root (or power) of a quaternion m, the form Am + B shows
that the vector-part remains constant to an ordinary algebraical factor prés;
and we know & priort from the geometrical point of view that this ought to
be the case. When the vector disappears a porism starts into being; and
besides the values of the roots given by the general formula, there are others
involving arbitrary parameters. Babbage’s famous investigation of the form

of the homographic function of € 21% of z, which has a periodicity of any

given degree ¢, is in fact (surprising as such a statement would have
appeared to Babbage and Hamilton) one and the same thing as to find the
qth root of unity under the form of a quaternion !

It is but justice to the eminent President of the British Association to
draw attention to the fact that the substance of the results here set forth
(although arrived at from an independent and more elevated order of ideas)
may be regarded as a statement (reduced to the explicit and most simple
form) of results capable of being extracted from his memoir on the Theory of
Maitrices, Phil. Trans. Vol. CXLVIIL (1858) (vide pp. 32—34, arts. 44—49).
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ON THE INVOLUTION OF TWO MATRICES OF THE
SECOND ORDER.

[British Association Report, Southport (1883), pp. 430—432.]

I¥ m, n be two matrices of any order ¢, then, taking the determinant of
the matrix z+ yn+ am, there results a ternary quantic in the variables
z, 9, z, which may be termed the quantic of the corpus m, n.

In what follows I confine myself almost exclusively to the case of a corpus
of the second order; the quantic may be written
22+ 2bzx + 2cyz + da? + 2exy + fy:
it is then easy to establish the identical relations
m?—2bm +d =0,
mn + nm — 2bn — 2cm + 2¢ =0,
n?—2cn +f=0.
It hence easily appears that any given function of m, n can, by aid of the
five parameters b, ¢, d, e, f, be expressed in the form 4 4+ Bm + Cn + Dmn.

This form containing four arbitrary constants, it follows that in general any
given matrix of the second order can be expressed as a function of m and n;
for there will be four linear equations between A, B, C, D and the four
elements of the given matrix. But this statement is subject to two cases of
exception.

The first of these is when n and m are functions of one another: for in
this case 4 + Bm + Cn + Dmn is reducible to the form P+ Qm, and there
will be only two disposable constants wherewith to satisfy the four linear
equations,

The second case is when the determinant of the fourth order formed by

the elements of the four matrices :

tl: tz
ta: t4

vanishes; writing

T, Te

m, n = ;

T3y Ty
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respectively, it is not difficult to show that the value of this determinant is
(trs— Tots2 4 (B —t) Ta— (i — T) b} (= t) 75— (11— T) &}
This expression is a function of the five parameters b, ¢, d, ¢, f, as may be
shown in a variety of ways.
Thus it is susceptible of easy proof that if w,, u, are the roots of the

equation u?— 2bu +d =0, and »,, v, the roots of the equation »*—2cv + f=0,
then, the two matrices being related as above, we must have

(m = ) (n = v;) =0,

(n = vy) (m — ) =0,
and consequently, by virtue of the middle one of the three identities,

vy + pgv, — 2 = 0.
Writing this in the form
(pavy + povs — 2€) (uyvy + vy, — 2¢) = 0,

this is 4e? — 2¢ . 4bc + (p? + p) vive + (02 + v32) papa = 0,
which gives e?—2bce + b¥f +ctd—df=0;
the function on the left hand is the invariant (discriminant) of the ternary
quantic appurtenant to the corpus, and we have this invariant =0 as the

necessary and sufficient condition of the involution of the elements of the
corpus; the invariant in question is for this reason called the involutant.

Expressing the values of the coefficients in terms of the elements of the
two matrices, namely
b=t +t, 2c=7+71,
d=tt,—t,t;, 2e=t,1+ Tity—tTs—1t;Te, [=T1Ti— ToTs,

it at once appears that the two expressions for the involutant are, to
a numerical factor prés, identical.

It can be shown & priori that the involutant of a corpus of the second
order must be expressible in terms of the coefficients of the function; and
therefore, being obviously invariantive in regard to linear substitutions
impressed on i, m, it must be also invariantive for linear substitutions
impressed on z, #, y, and must therefore be the invariant of the function.
The corresponding theorem is not true, it should be observed, for the
involutant of a corpus beyond the second order; for such involutant cannot
in general be expressed in terms of the coefficients of the function.

The expression for the involutant in terms of the #s and 7's may also be
obtained directly from the equation (m — u,) (n —»)=0. To this end it is
only necessary to single out any term of the matrix represented by the left-
hand side of the equation and equate it to zero: the resulting equation
rationalised will be found to reproduce the expression in question.
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I have thus indicated four methods of obtaining the involutant to a
matrix-corpus of the second order ; but there is yet a fifth, the simplest of all,
and the most suggestive of the course to be pursued in investigating the
higher order of involutants.

I observe that for a corpus of any order the function mn —nm is invarian-
tive for any linear substitution impressed on m and n. Its determinant will
therefore be an invariant for any substitution impressed on m and n. When
m and n are of the second order, reducing each term of (mn—nm)?, that is
mamn — ma*m — nm*n + nmem, and of mn —nm, by means of the three
identical equations, to the form of a linear function of mn, m, n, 1, it will be
found without difficulty that there results the identical equation

(mn—nm)*+1=0,
the coefficient of mn—nm vanishing. Consequently the determinant of the
matrix mn —nm is equal to I, which on calculation will be found to be
identical with the invariant of the ternary quadric function.

It is obvious from the three identical equations that if m, n are in
involution—that is, if their. involutant is zero—every rational and integral
function of m, n will be in involution with every other rational and integral
function of m, n. Hence follows this new and striking theorem concerning
matrices of the second order: If f(m,n) and ¢ (m, n) are any rational
functions whatever of m, n, the determinant to the matrix mn —nm 1is
contained as a factor in the determinant to the matrix fé — ¢f.

It may be noticed that f, ¢ need not be integer functions by stipulation,
because any linear function of mn, m, n, 1, divided anteriorly or posteriorly by
a second like function, can itself be expressed as a linear function of the same
four terms.

As a very simple example of the theorem, observe that the determinant
of m*n — mnm will contain as a factor the determinant of mn — nm.
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SUR LES QUANTITES FORMANT UN GROUPE DE NONIONS
ANALOGUES AUX QUATERNIONS DE HAMILTON.

[Comptes Rendus, xcvir (1883), pp. 1336—1340.]

ON sait qu’on peut tout & fait (et trés avantageusement) changer la base
de la théorie des quaternions en considérant les trois symboles ¢, j, & de
Hamilton comme des matrices binaires.

Sik, j sont des matrices binaires qui satisfont & 'équation hj = — jk, on

démontre facilement que, en écartant le cas ol hj =jh =0, k* et k? seront de
la forme

¢c 0 vy O

0 ¢ 0 g
c’est-a-dire cu, yu, ot u est I'unité binaire
1 0
0 1

On peut ajouter, si 'on veut, les deux conditions ¢?=1, 4*=1; alors, en
supprimant, pour plus de brieveté, le u, qui jouit de propriétés tout & fait
analogues & celles de I'unité ordinaire, on obtient facilement les équations
connues - _ _

=1, s#£=1, k=1,

hj=—jh=k, jh==kji=1, ki=—1ik=}j.

De plus, en supposant que (%, j) soit un systéme particulier qui satisfait &
I'équation 4j =—ji, on peut déduire les valeurs universelles de I, J qui
satisfont & I'équation IJ =—JT en termes de 7, . En effet, on démontre
rigoureusement que, en écartant toujours la solution mn = nm = 0, on aura

I =ai+bj + cij,
J =i + B + ij,

avec la seule condition aa + b8 + ¢y =0. De plus, si I'on suppose ?=j2=1u
et aussi [?=J? =1, on aura

a?+b+ct=1, a4+ B+ =1,
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de sorte que; en éerivant tj =k, [J = K et K = Ai + Bj + Ck, la matrice

a b ¢
« B 9
Al Bins@!
formera une matrice orthogonale. Une solution, parmi les plus simples, des
équations ¢j = —ji, 1* =, j* =1, est la suivante:
e i . |0 -1
z=]o @t J=15 0‘
et conséquemment
k== ] § amfl §
-8 0

ol 6= /(—1).

En écrivant une quantité binormale quelconque (cest-A-dire une matrice

binaire) sous la forme

a+b8, —c-—db,

¢ —dé, a— b0,
on voit qu’elle peut étre mise sous la forme au + b7 + ¢j + dk, ou il est souvent
commode de supprimer (c’est-a-dire de sous-entendre) sans écrire l'unité
binaire u.

On peut construire d’une maniére tout & fait analogue un systéme de
nonions en considérant l'équation m = pn, ol m, n sont des matrices ternaires
et p une racine cubique primitive de l'unité (voir* la Circular du Jokns
Hopkins University qui va prochainement paraitre), en prenant pour les
nonions fondamentaux = (I'unité ternaire)

1 0 0
01 0
0 0 1

et les huit matrices m, m?; n, n?; m2n, mn?; mn, m*n® construites avec les
valeurs les plus simples de m, n qui satisfont aux équations
nm=pmn, m=u, nP=u
Les valeurs

1 0 0 0 1 0]
m=,0 p 0| et n=[0 0 p
(s ol e 0 0

peuvent étre prises pour les valeurs basiques du systeme de nonions.

Une quantité ternaire (c’est-a-dire une matrice) quelconque s’exprime
alors sous la forme

a + bm 4+ Bm? + cn + yn® + dmdn + dmn® + emn + em?n?;

[* Vol. m1. of this Reprint, p. 647, Also below, p. 122.]
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mais, quand cette matrice M est capable de s'associer avec une autre N dans
Iéquation NM = pMN, alors il devient nécessaire que

a=0, bB+cy+dd+ee=0.

Je n'entrerai pas ici dans les détails de la méthode d’associer la solution
générale de I'équation NM = pMN avec une solution quelconque particuliére
de cette équation, mais je me bornerai & expliquer quelles sont les conditions
auxquelles les éléments de M et de N doivent satisfaire afin que cette
équation ait lieu.

M. Cayley a résolu la question analogue pour les matrices binaires dans
le beau Mémoire, qu'il a publié dans les Transactions of the Royal Society de
1858. En supposant que m et » sont les matrices

a b a v
c d ¢ d
il trouve que, afin que nm = — mn, il faut avoir

a+d=0, a/+d =0, aa’+bc +ct’ +dd =0.

Au lieu de cette troisidme équation (en la combinant avec les deux

précédentes), on peut écrire
ad 4+ a'd —be’ —bc=0.
Alors ces trois conditions équivalent & dire que le déterminant de la matrice
xu + my + nz (u étant I'unité binaire), qui, en général, est de la forme
2* 4 2Bzy + 2Cxz + Dy? + 2Eyz + Fz,
se réduira & la forme
z* + Dy* + Fz?,
car, dans le déterminant de azu + my + nz, c’est-d-dire de
z+ay+a'z by + bz
cy+c'z z+dy+dz
les coefficients de zy, 2z, yz seront évidemment
a+d, o' +d, ad +a'd—bc—bc

respectivement.

Passons au cas de m et n, matrices ternaires qui satisfont & 'équation

nm = pmn.
Formons le déterminant de zu + ym + zn, ot u représente I'unité ternaire
1 0 0

01 0
0 01
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Ce déterminant sera de la forme
@* + 3Ba*y + 302z + 3Dwy? + 6 Exyz + 3Fxz* + Gy* + 3Hy*z + 3K yz* + Lz,

et je trouve que, dans le cas supposé, il faut que les sept conditions souscrites
soient satisfaites; B=0, C=0, D=0, =0, I'=0, H=0, K =0, de sorte
que la fonction en =z, y, z devient une somme de trois cubes, mais ces
sept conditions, qu’on pourrait nommer conditions paramétriques, quoique
nécessaires, ne sont pas suffisantes; il faut y ajouter une huitiéme condition
que je nommerai @ =0.

Pour former ), voici la maniere de procéder:

En supposant que

| a b ¢ '
’ et n=|d & f'1,
.gh/’» g ¥ ¥ |
on écrit, au lieu de m, son transversal
' o d g
(SO RSN
v

et 'on forme neuf produits en multipliant chaque déterminant mineur du
second ordre contenu dans m avec le déterminant mineur semblablement
posé dans le transversal de n: la somme de ces neuf produits est Q.

Ces huit conditions que je démontre sont suffisantes et nécessaires (en
écartant comme auparavant le cas ou mm=mn=0) pour que nm=pmn.
On pourrait trés bien se demander ce qui arrive dans le cas ol les sept
conditions paramétriques sont satisfaites, mais non pas la huitiéme condition
supplémentaire.
Dans ce cas, je trouve* que mn et nm restent fonctions 'une et 'autre et
qu'on aura
nm= A+ Bmn+ C(mn),
mn =— 4 + Bynm + C (nm)?,
ou B,, B, sont les racines de '’équation algébrique
B*+B+1=0
4, C étant deux quantités arbitraires et indépendantes, sauf que 'une d’elles
ne peut pas s’évanouir sans l'autre, les deux s'évanouissant ensemble pour le
cas (et seulement pour le cas) ot @ (qui fournit la condition supplémentaire)
s’évanouit.

[* See footnote [t], p. 154 below.]



14.

ON QUATERNIONS, NONIONS, SEDENIONS, ETC.
[Johns Hopkins University Circulars, 111. (1884), pp. 7—9.]

(1) SuPpPOSE that m and n are two matrices of the second order.
Then if we call the determinant of the matrix # + my + nz,
a* 4 2bay + 2caz + dy* + 2eyz + f27,
the necessary and sufficient conditions for the subsistence of the equation

nm=—mn is that b=0, c=0, e=0, and if we superadd the equations
m*+1=0,n"+1=0, then d=1 and f=1, or in other words in order to
satisfy the equations mn =— nm, m*=—1, n*= — 1, where it will of course

be understood that in these (as in the equations m*+1 =0, n?4+1=0) 1 is
L 10
01 and 1 of* the f01m0 1
and sufficient condition is that the determinant of # + my + nz shall be equal
to & + 2 + 22

the abbreviated form of the matrix the necessary

The simplest mode of satisfying this condition is to write m = 8 Oi’
0 -1 . ' . . 0 —2 07
n=, ( »t meaning V(= 1), which gives e and nm= ..

It is easy to express any matrix of the second order as a linear function

of 1 (meaning (1) (1)> m, n, p, where p stands for mn.

For if Z’ l:i be any such matrix it is only necessary to write
’ a=f+ig, b=—h—Fki
d=f—-1ig, c=—h+k,
and then Z’ Z=f+gm+lm+kp.
The most general solution of the equations MN =— NM, M*=N*=-1,
must contain three arbitrary constants, namely, the difference between the

number of terms in m and %, and the number of conditions 6=0, ¢=0,
e=0, d=1, f=1, which are to be satisfied.

[* I denotes -1.]
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Suppose M, N to be the most general solution fulfilling these conditions ;
we may write

M= f+ gm+ hn + kp,
N=f"+9m+kn+kp,

where m, n is any particular solution and p = mn, and we shall have inas-
much as M*=1,

Ji—=g =1 =k + 2fgm + 2fhn + 2fkp = the matrix 1,

and consequently FHRE+E=1+f
J9=0, fh=0, fk=0.
Hence f=0 and g+ =1

Similarly f’ =0 and gE+ 2+ E= ],
and also inasmuch as MN =— N,
99 + RN + kK =0,

and since the equations M*=1, N*=1, MN=— NM imply if we make
MN =P that P*=~1, and MP =— PJM, and NP =— PN, it follows that
M, N, P, are connected with m, n, p, in the same way as the coordinates of
a point referred to one set of rectangular coordinates in space are connected
with the coordinates of the same point referred to any other set of the
same *,

Herein lies the ground of the geometrical interpretation to which
quaternions lend themselves and it is hardly necessary to do more than
advert to the fact that the theory of Quaternions is one and the same
thing as that of Matrices of the second order viewed under a particular
aspect t. ‘

(2) Let m, n now denote matrices of the third order.
We might propose to solve the equation mn = — nm.

The result of the investigation is that we must have m?=n? m*=0,
n'=0, and writing mn=p, m*=n*=gq, there results a set of quinions,
1, m, m, p, g, for which the multiplication is that marked (as) p. 144 of the
late Prof. Peirce’s invaluable memoir in Vol. 1v. of the American Journal
of Mathematics.

* There is another solution possible, obtained by writing

[0, X
—J;l,.:.%:"?:?, P+ g%+ R+ k=0
but this leads to a linear relation between m and n, so that mn=nm and consequently mn=nm=0
which is not the kind of solution proposed in the question.
t See my article in the Lond. and Edin. Phil. Mag. on “Involution and Evolution of
Quaternions,” November, 1883, [Above, p. 112.]
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But instead of this let us propose the equation mn = pnm, where p is
one of the imaginary roots of unity; if now we write the determinant of
2z + my + nz under the form

2° + 3ba*y + 3ca’z + 3dwz® + Gexyz + 3fy2* + gy* + Bhy*z + Bkyz* + 12,
it may be shown [cf. p. 126, below] that we must have
b=0, ¢=0, d=0, e=0, f=0, h=0, k=0,

and if we superadd the conditions m*=1, n*=1, we must also have g=1,
l=1, or in other words the determinant to # +my 4 nz must take the form
#*+y*+z*; but this condition (or system of conditions) although necessary
s not sufficient (a point which I omitted to notice in my article entitled
“A Word on Nonions” inserted* in a previous Circular).

It is obviously necessary that we must have (mn)*=1.

Now if the identical equation to mn be written under the form
(mn) — 3B (mn)* + 3Dmn — E = 0,

B may be shown to be a linear homogeneous function of b, ¢, and ¢; also
E=gl=1; but D is not a function of b, ¢, d, e, f29 bk, 1, and will not in
general vanish (as it is here required to do) when b, ¢, d, ¢, f, h, k vanish.
Its value is the sum of the products obtained on multiplying each quadratic
minor of m by its altruistic opposite in n: (the proper opposite to a minor
of m means the minor which is the reflected image of such minor viewed in
the Principal Diagonal of m regarded as a mirror; and the altruistic opposite
is the minor which occupies in n a position precisely similar to that of the
proper opposite in m). There are, therefore, 10 equations in all to be
satisfied between the coefficients of m and n when m?=n®=1 and

nm = pmn. >

These ten conditions I have demonstrated are sufficient as well as
necessary. Therc remains then 18 —10 or 8 arbitrary constants in the
general solution. If m, n is a particular solution we may take for M, N
(the matrices of the general solution),

M=a+Bm+ym?+ a'n+ B'mn+y'mn +a’'n + B'mn* + v m2n?,

N =a,+ Bym + yym? + a/n + Bymn + yym?n + o/ 'n* + B, mn? + " m2n?,
and 10 relations between the 18 coefficients must be sufficient to enable to
be satisfied the equations M®= N*=1, NM = pMN : but what these relations

are and how they may most simply be expressed I am not at present in a
condition to statet.

[* Vol. nr. of this Reprint, p. 647.]

+ The solution of this problem would seem to involve some unknown expansion of the idea
of orthogonalism. Unless MN=NM=0, a solution to be neglected, it may be proved that
a=0, a;=0.
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I showed in “A Word on Nonions” that the 9 first conditions are
satisfled by taking

1 0 0 0 0 1
m=0 p O n=p 0 0
0 0 p 0 p* O

The 10th condition is also satisfied; for the only quadratic minors (not
T {OFEE o R ORI (0%
0p’ 0p* 0p*
0p O0p* 00
00’00’10’
of which are zeros, and accordingly we find

having a zero determinant) in m are the altruistic

opposites to which in n are the determinants to each

I 000

m=n*=0 1 0

0 0 1,
0 0 p? 0 0 1
nm=p 0 O Ty'=ipiis- G0
04 i\ 0, 0 p 0

so that mn = pnm and m® =n®=1 as required.

I subjoin an outline proof of the fundamental portion of the theory of
Quaternions and Nonions above stated as it will serve to throw much light
upon the nature of the processes employed in that new world of thought to
which I gave the name of Universal Algebra or the Algebra of multiple
quantity : a fuller explanation will be found in the long memoir which I am
preparing on the entire subject for the American Journal of Mathematics.

(1) As regards the equation nm =— mn, where m, n are matrices of the
second order.

As before let the determinant of (z+ ym + 2zn) be
2* + 2bxy + 2cxz + dy? + 2eyz + f22

I may observe here parenthetically that the Invariant of the above
Quantic is equal to the determinant of mn — nm, and that when it vanishes
1, m, n, mn, as also 1, n, m, nm are linearly related—or, as I express it, this
Invariant is the Involutant of the system m, n or n, m. When m, n are of
higher than the second order, the Involutant of m, n, say Z, is that function
whose vanishing implies that the 9 matrices (1, m, m*{1, n, n*) are linearly
related, and the Involutant of », m, say J, that function whose vanishing
implies that the 9 quantities (1, n, n*{1, m, m®) are so related (Z, J being
two distinet functions), and so for matrices of any order higher than the
second.
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By virtue of a general theorem for any two matrices m, n of the second
order, the following identities are satisfied :

m?—2bm +d =0,
mn + nm — 2bn — 2cm + 2¢ = 0,
n=2cn+f=0.

If then mn + nm =0, since m and n cannot be functions of one another
(for then mn = nm), the second equation shows that b=0, ¢ =0, ¢= 0, and
conversely if b=0, ¢c=0, e=0, mn+nm=0, and m*+d = 0, 2+ f=0,
where, if we please, we may make d =1, f=1

(2) Let m, n be matrices of the third order, and write as before,

Det. (x + ym + zn) = 2* + 8baty + 3ca*z + 3dxy?
+ 6exyz + 3fx2® + gy® + 3hy?z + Sky2? + 1%,

Then by virtue of the general theorem last referred to* there exist the
identical equations

m* — 3bm? + 3dm — g =0,

m*n +mnm +nm? — 3b (mn + nm) — cm? + 3dn + 6em — 3h =0,
mn? + nmn + n*m — 3¢ (mn 4 nm) — 3bn? + 3fm + 6en — 8k =0,
n*—3en? + 3fn—1=0,

Let now nim = pmn, where p is either imaginary cube root of unity, then

(1) m*n+mnm+nm*=0 and (2) mn®+ nmn +n2m =0 ;
for greater simplicity suppose also that m*=n*= 1, where 1 means the matrix

1 0 0
0 1 0.
0 01

From the 1st and 2nd of the four identical equations combined it may be
proved that b=0, d=0; I do not produce the proof here because to
make it rigorous, the theory of Nullity would have to be gone into which
would occupy too much space; and in like manner from the 3rd and 4th
it may be shown that ¢=0, f=0+. Hence returning to the two middle
equations it follows that e=0, A =0, k=0, and from the two extremes that
g=11=1.

If then nm = pmn, m* =1, and #* =1, it is necessary that

b=0, ¢=0, d=0, e=0, f=0, g=1, h=0, k=0, I=1,
But these equations although necessary are manifestly insufficient ; for
they lead to the equations m*—~1=0, n*~1=0, and
(1) m*n+mnm+nm*=0; (2) mn?+nmn +n*m =0,
[* By Cayley’s theorem, if in Det. (x+ym+2n) we replace z by — ym —zn, the result vanishes
identically in regard to y and z.]

+ Except when m, n are functions of one another, so that mn and nm are identical and
consequently are each of them zero.
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but not necessarily to nm =pmn. In fact the supposed equations between
m and n involve as a consequence the equation (mn)*=1. Now the general
identical equation to (mn) is
(mn)* — 3B (mn)* + 3D (mn) — ¥ =0,

where B is the sum of each term in m by its altruistic opposite in =
=3bc—2=0, F=gl=1, and D is the sum of each first minor in m
by its altruistic opposite in n which sum does not necessarily vanish when
b,c, d, e f, h,k, all vanish. Hence there is a 10th condition necessary not
involved in the other 9, namely, D =0. These 10 conditions I shall show
are sufficient as well as necessary. For when they are satisfied since
(mn)y =1, mn.mn = n*m?

Hence from (1) min® + n?m? + nm*n =0,
and from (2) m*n? + n*m? + mn*m = 0.
Hence nm . mn = mn.nm *, and consequently nm is a function of mn [cf. p. 149,
below]. Hence we may write

nm = A + Bmn + C (mn)>

But the latent roots of mn and nm (which are always identical) are

1, p, p?, hence '
A+B+C, A+Bp+0Cp, A+ Bp*+Cp,

must be equal to 1, p, p? each to each taken in some one of the 6 orders in
which these quantities can be writtent.

Solving these 6 systems of linear equations there results:

A=0, B=0, C=1, p or p*
or A =0, B=1,porp, C=0.
Hence nm = @mn, or 8 (mn)* where 8 =1, p, p*
If nm = 0 (mn), nmmn =0 (mn)*=6.
Heunce mP=0n?.0n* = 6°n;
and m2n + mnm + nm? = 30m* = 36m =0,

so that m =0, and m*=0=1; and again if nm = mn,
m*n + mnam + nm® = 2m*n + mum = 3m*n =0,

* This equation is independent of the equation (mn)*=1; for
nm2n — mndm = (m*n + mnn +nm?) n - m (mn? + nmn +n2m) =0
by virtue of equations (1) and (2) above: accordingly these equations taken alone imply the
equations
nm=A +Bymn+ C (nn)?, mn= — 4+ Bynm - C (nm)?

where B), B, are the roots of B2+ B+1 -ATC=O; 4, C being arbitrary and independent except
that each vanishes when and only when the cube of mn and (as a consequence) of nm, is a scalar
matrix. [See below, p. 154. Footnote [1].]

1 By virtue of the general theorem that the latent roots of any function of a matrix are the
like functions of the latent roots of the original matrix. .
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so that m*n =0, n=0, and 7*=0 =1 as before, where it should be noticed

000 100
that 0 =1 means that 0 0 O is identical with 0 1 0.
000 001

Hence the only available hypothesis remaining is the equation nm = v . ma,
where v is one of the imaginary cube-roots of unity as was to be proved.

(3) It remains to say a few words on the general equation nm = kmn,
where m, n are matrices of any order . To avoid prolixity I shall confine
my remarks to the general case, which is, that where the determinants (or as
I am used to say the contents) of m and n are each of them finite; with this
restriction, the proposed equation is impossible for general values of k as will
be at once obvious from the fact that the totalities of the latent roots of mn
and of nm are always identical, but the individual latent roots are by virtue
of the proposed equation in the ratio to one another of 1: %, which, since by
hypothesis no root is zero, is only possible when k* = 1.

When the above equation is satisfied the w? equations arising from the
identification of nm with kmn cease to be incompatible and (as is necessary
or at all events usual in such a contingency) become mutually involved.
Thus, for example, when w=1 and k=1, the number of independent
equations is 0, that is, 1 — 1, when » =2 and £ =—1 the number is 3, that
is, 4 —1, when w =3 and k=p or p* the number is 8, that is, 9 —1; it is
fair therefore to presume (although the assertion requires proof) that for
any value of @ when % is a primitive wth root of unity the number of
conditions to be satisfied when nm = kmn is > — 1. Of these the condition
that the content of 4+ my+nz shall be of the form z®+ cy» 4 ¢’z will

supply

(L +—1)2(——w o) 3, that is, Ak 2,

and there will therefore be

»* — 3w (0 ~1)(0—2)
e s
to be supplied from some other source.

When £ is a non-primitive wth root of unity, the number of equations of
condition is no longer the same. Thus when =1 we know that » may be
of the form

A +Bm+Cm?+ ... + Lme,
where 4, B, ... L, and all the w?® terms in m are arbitrary, and consequently
the number of conditions for that case is 2w® — (0® + @) or @?— w. It seems
then very probable that if k is a gth power of a primitive wth root of unity
the number of conditions required to satisfy nm =kmn is w*— & where & is
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the greatest common measure of g and w: but, of course, this assertion awaits
confirmation.

When o = 4 besides the case of nm = mn, that is, of n being a function
of m of which the solution is known, there will be two other cases to be
considered, namely, nm = — mn and nm = imn: the former probably requiring
14 and the latter 15 conditions to be satisfied between the coefficients of s,
the coefficients of n and the two sets of coefficients combined.

It is worthy of notice that the conditions resulting from the content of
x 4+ my + nz becoming a sum of 3 powers are incompatible with the equation
nmm = ymnr when v is other than a primitive wth root of unity (e being of
course the order of m or n).

Thus suppose w=4; the conditions in question applied to the middle one
of the 5 identical equations give

mAn? + n*m? 4+ mnPm + nm*n + mamn + nmam =0 ;
when nm = vmn the left-hand side of this equation becomes
I+ + 2+ +7+3%) mPn?,
that is, is zero, but when nm = — mn, the value is
A+1-1-1-1-1)m*n?
which is not zero, and so in general. Thus the pure power form of the

content of z+ my+mnz is a condition applicable to the case of nm_r_z being a

primitive root of unity and to no other.

The case of nm being a primitive root of ordinary unity is therefore the
one which it is most interesting to thrash out.

There are in this case, we have seen, }(w*+ 8w —4) simple conditions
expressible by the vanishing of that number of coefficients in the content
of 4 my+nz and % (w—1)(w —2) supplemental ones. What are these
last? I think their constitution may be guessed at with a high degree
of probability. For revert to the case of w=3 in which there is one
such found by equating to zero the second coefficient in the identical
equation

(mn)*— 3B (mn)*+ 3Dmn — G = 0.

Suppose now  (m*n?)* — 3B’ (m*n2)? + 3D'm*n* — G’ =0
is the identical equation to m*n%. By virtue of the 8 conditions supposed to
be satisfied we know that nm = pmn as well as m*=1, n*=1, and consequently
that (m*n?)*=1. Hence B’=0, D’ =0, by virtue of the 7 parameters in the
oft-quoted content and of D being all zero, and thus the evanescence of B’ or
D’ imports no new condition,

s 1w, 9
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Now suppose =4, and that

(mn)* — 4B (mn)*+ 6D (mn) — 4Gmn + M =0,

(m2n2)* — 4B’ (m*n?)* + 6D’ (m*n?)? — 4G 'm*n* + M’ =0.
Here we know that B vanishes by virtue of b, ¢ and e vanishing, but D =0,
G =0, which must be satisfied if nm =mn, will be two new conditions not
implied in those which precede. It seems then, although not certain, highly
probable that B’=0, D’=0, will be implied in the satisfaction of the
antecedent conditions but that G’'=0 will be an independent condition, so
that D=0, G=0, =0, will be the three supplemental conditions: and
again when w=25 forming the identical equations to mn, m*n?, m*n®, and

using an analogous litteration to what precedes, the supplemental conditions

will be
D=0, G=0, M =0,

G=0, M =0,
MI/ 5 0’
and so in general for any value of w.

The functions D, @, M, etc., above equated to zero are known from the
following theorem of which the proof will be given in the forthcoming
memoir*,

If (mn)° + ky (mn)o= + ... 4 ks (mn)o—i 4 ... =0
is the identical equation to mn, then k; is equal to the sum of the product of
each minor of order 7 in m multiplied by its altruistic opposite in n.

The annexed example will serve to illustrate in the case of w =3 that
unless the supplemental condition is satisfied we cannot have nm = pmn.

Write m=1 0 0, n=0 c¢ Uk
Diep 90, - E 0 cp,
0 0 p cp? k& 1,0,
then the determinant to # + my + nz will be easily found to be
&t g+ (¢ + k) 2

but D becomes — 3pck, and does not vanish unless ¢=0 or k=0, and
accordingly we find

nm= 0 pc pk, mn=0 ¢ Kk
E 0 c, pk 0  pc,
p*c pk 0, pc pk 0.
When k=0 mn = p*nm, when ¢ =0 nm = p?mn, but on no other supposition

will %; be a primitive cube root of unity.

* This theorem furnishes as a Corollary the principle employed to prove the stability of the
Solar System. (See Lond. and Edin. Phil. Mag., October, 1883.) [Above, p. 110.]
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ADDENDUM.

Referring to the equation MN =-— NM, and to the eight equations
expressing M and N in terms of the combinations of the powers of m with
those of n, in which it is to be understood that M and N are non-vacuous,
we know that the sums of the latent roots of M and of N must each vanish
and consequently, as may be proved, that a =0, a’= 0, leaving 8 —2 or
6 conditions to be satisfied. If we further stipulate that M*=1, N*=1,
there will be 8 relations connecting the coefficients b, ¢, ... £ and ¥, ¢/, ... ¥/,
so that the 64 coefficients in the 8 equations connecting M, M?; N, N?;
MN, M*N*; M:N, MN? or say rather M, M?®; N, N?; pMN, p*M:N?;
pM:N, pMN?, with like combinations or multiples of combinations of powers
of m, n* will be connected together by 56 equations; the coefficients in
the expression for any one of the above 8 terms may then be arranged in
pairs f;, fi'5 9., 905 hs, hi'; ki, ki'; and in the expression for its fellow by
F, F/ Gy, Gy Hy, H ; K;, K{; so that the Matrix is resolved as it were
into 4 sets of paired columns and 4 sets of paired lines; the 4 different sets
of paired lines being found by writing successively 7 =1, 2, 8, 4.

It is then easy to see that there will be 4 equations of the form

2 (faG + fuGd)=1,
and 6 quaternary groups (that is, 24 equations) of the form

2 (fals' + fGs) =0,
with liberty to change f into ¥ or G into g or each into each: together
then the above are 28 of the 56 conditions required. But inasmuch as the
8 [m, n] arguments may be interchanged with the 8 [}, N] ones, we may
transform the above equations by substituting for each letter f its conjugate
d log A
Na
giving in all (if the two sets as presumably is the case are independent) the

required 56 conditions: the latter 28, however, may be replaced by others of
much simpler form+t.

(where A is the content of the Matrix) and thus obtain 28 others,

* It is easy to see that the sum of the latent roots of }iNJ must he zero for all values of o))
so that it is & homogeneous linear function of the 8 quantities m, m?, ..., mn, m*n2

t Iam still engaged in studying this matrix, which possesses remarkable properties. Is it
orthogonal? I rather think not, but that it is allied to a system of 4 pairs of somethings drawn
in four mutually perpendicular hyperplanes in space of 4 dimensions. In the general case of
MN=pNM where p is a primitive wth root of unity, there will be an analogous matrix of the
order w?—1 where each line and each column will consist of w+1 groups of w—1 associated
terms. 2

The value of the cube of any one of the 8 matrices 3, J?; ...; MN, M2N? may be expressed
as follows : It is P into ternary unity. Such a quantity may be termed by analogy a Scalar. To
find P; ; T imagine the 8 letters corresponding to M*N (but without powers of p attached) to be
set over 8 of the 9 points of inflexion to any cubic curve, the paired letters being made suitably

9—2
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To me it seems that this vast new science of multiple quantity soars as
high above ordinary or quaternion Algebra as the Mécanique Céleste above
the “ Dynamics of a Particle” or a pair of particles, (if a new Tait and Steele
should arise to write on the Dynamics of such pair,) and is as well entitled to
the name of Universal Algebra as the Algebra of the past to the name of
Universal Arithmetic.

collinear with the missing 9th point. Then among themselves the 8 letters may be taken in
8 different ways to form collinear triads and the product of the letters in each triad may be called
a collinear product; P, ; (which is identical with the Determinant to M?N7) will be the sum of
the cubes of the 8 letters less 3 times the sum of their 8 collinear products, and its 8 values will
be analogous to the 3 values of the sum of 3 squares in the Quaternion Theory. Each of these
8 values is assumed equal to unity.

It may be not amiss to add that the product of four squares by four is representable rationally
as a sum of four squares, so if we place (not now 8 specially related but) nine perfectly arbitrary
letters over the nine points of inflexion of a cubic curve the sum of their 9 cubes less three times
their 12 collinear products multiplied by a similar function of 9 other letters may be expressed
by a similar function of 9 quantities lineo-linear functions of the two preceding sets of 9 terms.

By the 8 letters of any set as, for example, b, ..., &’ being “ specialized,” I mean that they are
subject to the condition b¥’ +dd’ +ff’ + ki’ =0. When this equation is satisfied, and not otherwise,
M3 will be a Scalar, and it must be satisfied when MN =pNM.



15.

ON INVOLUTANTS AND OTHER ALLIED SPECIES OF
INVARIANTS TO MATRIX SYSTEMS.

[Johns Hopkins University Circulars, 111. (1884), pp. 9—12, 34, 35.]

To make what follows intelligible I must premise the meaning and laws
of vacuity and nullity.

A matrix is said to, be vacuous when its content (the determinant of the
matrix) is zero, but it may have various degrees of vacuity from 0 up to
the order of the matrix.

If from each term in the piincipal diagonal of a matrix A be subtracted,
the content of the resulting matrix is a function of degree w in A ; the o values
of XA which make this content vanish are called its latent roots, and if 7 of
these roots are zero, the vacuity (treated as a number) is said to be 7. This
comes to the same thing as saying that the vacuity is 7 when the determinant,
and the sums of the determinants of the principal minors of the orders w —1,
©—2,...(w—1+1) are each zero. A principal minor of course means one
which is divided into 2 [equal] triangles by the principal diagonal of the
parent matrix.

Again the nullity is said to be 7 when every minor of the order (w —%+ 1),
and consequently of each superior order, is zero. It follows therefore that
it means the same thing to predicate a vacuity 1 and a nullity 1 of any
matrix, but for any value of ¢ greater than 1, a nullity < implies a vacuity ¢
but not vice versd ; the vacuity may be 7, whilst the nullity may have any
value from 1 up to ¢ inclusive.

The law of nullity which I am about to enunciate is one of paramount
importance in the theory of matrices*.

* The three cardinal laws or landmarks in the science of multiple quantity are (1) the law
of nullity, (2) the law of latency, namely, that if A;, \g, ... Ao are the latent roots of m, then
SN A, o fAe are those of fm, including as a consequence that

ey (m=2g) (m=Ng) ... (m—2Ay)
S a8~ Tl s .
and (3) the law of identity, namely, that the powers and combinations of powers of two
matrices m, n of the order w are connected together by (w+1) equations whose coefficients
are all included among the coefficients of the determinant to the Matrix
z+ym+zn.
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The law is that the nullity of the product of fwo (and therefore of any
number of) matrices cannot be less than the nullity of any factor nor greater

than the sum of the nullities of the several factors which make up the
product.

Suppose now that A;, A, ... A, are the latent roots of any matrix with
unequal latent roots of the order w. It is obvious that any such term as
m—2N\, will have the nullity 1, for its latent roots will be 0, A,—2X,,
A=Ay, oo My — Ay, and consequently its vacuity is 1.

Moreover we know from Cayley’s famous identical equation that the
nullity of the product of all the o factors is .

Hence it follows that if M; contains 7, and J; the remaining @ —1 of

these factors (so that 7+ j = ), the nullity of M; must be exactly 7 and of
M; exactly j.

For the theorem above stated shows that M; cannot have a nullity
greater than ¢, nor M; a nullity greater than j.

Hence if the nullity of the one were less than ¢ or of the other less than j,
the nullity of M;M; would be less than 7 + j, that is, less than w, whereas its

nullity is @; hence the two nullities are respectively ¢ and j as was to be
shown.

Furthermore we know that the latent roots of (m —2\))* are (A, —\,)*;
(XQ — hl)a ; cee ()\,w ' hl)u.
Hence if the latent roots of m are all distinct, the nullity of (m —2)* is

unity and consequently by the same reasoning as that above employed it
follows that the nullity of

(m = M) (= M) (= A

is exactly <.

I will now explain what is meant by the Involutant or Involutants of a
system of two matrices of like order.

It will be convenient here to introduce the term “topical resultant” of a
system of w? matrices each of order w.

We may denote any matrix say

Ay Az ooe Oy
ag’l a“ 4008 a“,

.....................

by the linear form
U,y by F ot ..+ b e
+ gy toy Uty + .o Fdyy byw

...........................................

+ aw,l tw,1+ aw,2 @, 2 + 240 + aw,m tw,m
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where the ¢ system is the same for all matrices of the order ». If, then, we
bave w* such matrices, their topical resultant is the Resultant in the ordinary
sense of the w? linear forms above written, proper to each of them re-
spectively.

Suppose now that m, n are two independent matrices of the order o, we
may form o matrices by taking each power of m from 0 to —1 as an
antecedent factor, and can combine it with similar powers of n as a con-
sequent factor, and in this way obtain «? matrices, of which the first will be
the w-ary unity, that is, a matrix of the order @ in which the principal
diagonal terms are all units and the other terms all zero. The topical
resultant of these w? matrices I shall for brevity denote as the Involutant
to m, n.

In like manner, inverting the position of the powers of m and of n so as
to make the latter precede instead of following the former in the * products
above referred to, we shall obtain another topical resultant which may be
termed the Involutant to n, m.

The reason why I speak of these topical resultants as involutants to m, n
or n, m is the following :

In general if m, n are two independent matrices, any other matrix p, by
means of solving ? linear equations, may obviously be expressed as a linear
function of the w? products

(I w2 Fm o) (L, mynly <oaty no=h).
There are, however, exceptions to this fact.

The most obvious exception is that which takes place when n is a
function of m; for then any w of the ‘t products will be linearly related,
and there will be substantially only o disposable quantities to solve o’
equations.

Another exception is when the m, » Involutant, that is, the topical
resultant of the w? matrices, is zero; in which case the general values of
the w* disposable quantities each becomes infinite. So that m, n may be
said to be in a kind of mutual involution with one another. So, again, p may
in general be expressed as a linear function of the »* matrices

(1, n,m, ..., 00 (1, m, m3, ..., m*Y),
but when the n, m Involutant vanishes this is no longer possible.

When o = 2 the two involutants, considered as definite determinants, are
absolutely equal in magnitude and in Algebraical sign, but when o exceeds
2 this is no longer the case; the two Involutants are then entirely distinct
functions of the elements of m and n.
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100 0pk
Thus to take a simple example: if m=0 p 0 and n=4%k 0 p* it will
0 0 p? 10

be found by direct calculation of two topical resultants of the 9th order,
that the two involutants will be

81 (p — p*) (F* — p)* and 81 (p* — p) (K — p?)*
respectively. The reason why the two involutants coincide in the case of
@ =2 is not far to seek. It depends upon the fact of the existence of the
mixed identical equation

mn +nm — 2bn — 2cm 4 26 = 0;

from which it is obvious that the topical resultant of 1, m, n, mn is the
negative of that of 1, m, n, nm or identical with that of 1, n, m, nm.

By direct calculation it will be found that the Involutant m, u, or n, m,
: Al ® LBk
where W ol L W s

=G =gk +{(f-B) g~ =KV {(f-BF - (f' =K},

which is the same thing as the content of the matrix (mn —am). It may
also be shown d& priort or by direct comparison to be identical (to a numerical
factor prés) with the Discriminant of the Determinant to the matrix
(z +ym +zn) which is a ternary quantic of the second order. Its actual
value is 4 times that discriminant.

Let us consider the analogous case of Mechanical Involution of lines in
a plane or in space. There are two questions to be solved. The one is to
find the condition that the Involution may exist, that is, that a set of
equilibrating forces admit of being found to act along the lines; the second,
to determine the relative magnitudes of the forces when the involution
exists, and this is the simpler question of the two.

In like manner we may consider two questions in the case of m, n being
in either of the two kinds of involution; the one being to find what the
condition is of such involution existing, the other what are the coefficients of
the o* coefficients in the equation which connects the * products, when the
involution exists.

This latter part of the question (surprising as the assertion may appear
and is) admits of a very simple and absolutely general direct and almost
instantaneous solution by means of the Law of Nullity, above referred to,
as I will proceed to show.

The determination of the Involutants, or at all events of their product,
will then be seen to follow as an immediate consequence from this prior
determination of the form of the equations which express the involutions of
the two kinds respectively.
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But first it may be well to explain why and in what sense I refer in the
title to Involutants as belonging to a class of invariants. I say, then, that
universally involutants are invariants in this sense, that if for m and for =,
any function of m, or any function of n be substituted, the ratio of the two
Involutants, say I and J, remains unaltéred. By virtue of the Identical
Equation (m)* will be of the form of

A; 4+ B; + C;m? + ... +L,-m‘""1

and as a consequence it is easy to see that when m‘ is substituted for m,
I and J will become respectively PI, PJ where P is the wth power of the
determinant to the matrix formed by writing under one another the (w — 1)
lines of terms, of which the line B;, C;, ...; L; is the general expression.

Moreover, in the particular case where w =2 and I =J*, besides being an
Invariant in this modified sense, 7 will be an invariant in a sense including
but transcending the more ordinary conception of an Invariant; for if when,
for m and n, f(m, n) and ¢ (m, n) are substituted, I becomes I’, then I’ will
contain / as a factor; this is a consequence of the fact that when m and n
are in involution f(m, n) and ¢ (m, n) will also be in involution, for in
consequence of the identical equation

mn + nm — 2bn — 2em + 2e =0

fand ¢ and f¢ will each be reducible to the form
4 + Bm + Cn+ Dmn
and it is obvious from the ordinary theory of the determinants that the

topical resultant of 1, (meaning (1) (1)>, and three linear functions of 1, m,

n, nm, will contain as a factor the topical resultant of 1, m, n, mn.

Nor must it be supposed that Involutants are the only species of
invariants in the modified sense first described which appertain to the

* I for some time had imagined, and indeed thought I had proved, that the two involutants
were always identical. When crossing the Atlantic last month on board the ¢* Arizona,” having
hit upon a pair of matrices of the third order, for which the two topical resultants admitted of
easy calculation, I found, to my surprise, that they were perfectly distinct. The cause of the
failure of the supposed proof constitutes a paradox which will form the subject of a communication
to a future meeting of the Johns Hopkins Mathematical Society.

I will here only premise that the seeming contradiction between the logical conclusion and
the facts of the case takes its rise in a sort of mirage with which invariantists are familiar,
namely : the apparent & priori establishment of algebraical forms as the result of perfectly valid
processes, which forms have no more real existence in nature than the Corona of the Sun under
our Dr Hastings’ serutinizing gaze: the contradiction between the logical inference and the
truth being accounted for by the circumstance that any such supposed form on actual per-
formance of the operations indicated, turns out to be a congeries of terms, each affected with a
null coefficient ; we are thus taught the lesson that all @ priori reasoning until submitted to the
test of experience, is liable to be fallacious, and it is impossible to prove that a proof may not
be erroneous by any other method than that of actual trial of the results which it is supposed to
yield.
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system m and n. Thus, for example, when & =2 it is not only true that
the determinant of the matrix mn'—nm is such a kind of Invariant (which
for greater clearness it may be desirable to denote by the term Perpetuitant*),
but each element of that matrix will also be a perpetuitant, and these 4 per-
petuitants, when for m, n pm, ¢n are substituted, will be in an invariable ratio
to one another and to either square root of the Involutant.

In like manner it will eventually be seen that for two matrices m, n of any
order w, it is possible to form a matrix of the order  analogous to mn — nm

(which be it observed may be regarded as the Determinant of the matrix ' n)

each of whose w? terms will be in a constant ratio to each other and to any
wth root of I and of J.

I will now return to the problem of finding what is the form of the

equation which connects the w? matrices denoted by
1, m, m?, ... me ) (1, n, w3 ... noY)
when such an equation admits of being formed, that is, I = 0.

To fix the ideas let us suppose that m, n are matrices of the 8rd order of
perfectly general form so that the m, n involution necessitates the satisfaction
of one single condition, 7 = 0.

Let 4 +Bn+Cn*=0 be the equation whose form is to be determined
where 4, B, C, are each of them quadratic functions of m. I say that neither
4, B, nor C, can contain a non-vacuous linear factor. For suppose that any
one of them as 4 should contain the non-vacuous factor m + ¢, and that

A4 =(m + q) (am + p).

Then we may multiply the equation by (m + ¢)~* and thus obtain the

equation

(am + p) + B'n+ C'n*=Q,
that is, we have an equation in which not all 9 but only 8 of the terms
signified by (1, m, m?) (1, n, n?) = 0 are linearly related. But this obviously
implies, contrary to the hypothesis, the existence of two equations of
condition instead of one.

Hence then A must be of the form ¢(m —\) (m —A\') where A, A’ are
each of them a latent root of m; whether the same or different remains to
be determined.

In like manner it may be shown that B is of the form ¢, (m — ;) (m —A,")
and C of the form ¢,(m —A;) (m —A;). But now I say further that

(m=N\)(m=x), (m—A)(m—=%), (m—2n)(m=2n)
must be identical.
* Perpetuitant formed from perpetuity by analogy to Annuitant from Annuity. Perpetuant

would bave been better, but that it has already been applied by myself in the theory of Invariants
in a sense recognized and adopted by Cayley, Hammond, and MacMahon.
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For, firstly, suppose that any one pair of the M\’s, say A, N, are distinct.
If any other pair, say A,, A/, is not identical with this pair, on multiplying the
equation by m —\”, where A” is the 3rd latent root of M, the term containing
the term 4 (A ... A"”) will vanish, but B(A...A\"”) will not vanish and conse-
quently there will be an equation, if C (X ... \”) does not vanish, between 6
only, and if C'(A...7\"”) does vanish, between 3 only of the 9 terms denoted
by (1, m, m?) (1, n, n?), contrary to hypothesis.

The only remaining supposition is that 4, B, C are each perfect squares.
Suppose, then, that any one of them as 4 is a multiple of (m —N\)*; unless
B, C are each of them also multiples of the same, on multiplying the equation
by (m —2A") (m —\"), one of the three coefficients of 1, n, n* will vanish but
one at least of the other two will not vanish, which is impossible for the same
reason as before. Hence the left-hand side of the equation of involution
must contain (m —A)(m—2A’) as a sinister factor where A, A’ (whether the
same or different) are latent roots of A. And in like manner precisely, by
arranging the equation of involution under the form A’+mB’ 4+ m?*C’ where
A', B, C’ are quadratic functions of =, it may be found that the same
function must contain (n— ) (n—p’) where g, p’ are latent roots of n as a
dexter factor.

Hence the form of the equation must be
(m = \) (m =) (0 — ) (n— ) = .
It is easy to see that we cannot have A and A’ the same latent root of m
and at the same time u, 4’ the same latent root of m, for then the above

product would have at most the nullity 2 whereas it is an absolute null,
that is, has the nullity 3.

But I will now show that A, A" and u, u” must each consist of unlike
roots. Let ¢ be any term of the matrix

(m =) (m=X) (n— p) (n — ),
where ¢ will be a known function of the elements of m, n, of A, A entering
symmetrically, and of u, u’ also entering symmetrically : this is the same
thing as saying that ¢ will be a function of the elements of m and n, of X, u”,
and of the coefficients of the equations which contain the 3 latent roots of A
and p respectively.

Consequently the product of the 9 values of ¢ found by writing A", A/, A
for \”, and u”, w/, p for p”, will be a rational integer function of the elements
of m, n which vanishes when the Involutant I vanishes and must conse-
quently contain I as a factor. If then, in any single instance, the matrix

(m =y (n—p)(n—p")
does not vanish for some one value of A and u when I vanishes, it cannot
be the form, or one of two conceivably possible coexisting forms, of the
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left-hand side of the general equation of involution. A similar remark of
course applies to
(m =7y (M= N) (0 — py)2.

1010 0 p &
Let now m=0 p O, n=k 0 p
0 0 p 1 5 0

The latent roots of m are 1, p, p%, and of n are 6, pf, p*f, where
0= (1 +%); we have also

1 0 0 cea gl ol 00
m*=0 p* O, = pt -k k.
0 0 p k2 p —pk

The three values of (m —A") (m —\”) are
3 00 0 0 ©0 0 0 O
0 00, 0 3 O, ¢ 3 O,
0 00 0 0 3p 0 0 3p
and the three values of (n — ;) (n — p,) are

—ok+6 k +p8 1 +0k || —ph+p6 k +p0 1 +pbk |
POk —k+ 6 K 400 || p +pbk —k+p'6 B+ 6
B +0 p +0k —pk+ 6 || k2 +p8 p +pbk —pk+p6?

—pk +p20 Rt + @ 1 +p0k
PP +pk —k+ p2 I + pd
B4+ p0  p +p0k —pk + pt?
The general value of
(m =N,) (m = Ag) (n — ) (n — pa)
will (to a numerical factor prés) be a matrix consisting of a single column

accompanied by two columns of zeros, the non-zero column being some one
of the 9 columns found in the above 3 matrices.

Now by direct calculation we know that the n, m Involutant in this case
is a numerical multiple of (k*— p?)* and vanishes when A*=p? which gives
0 = y/(1 + p%), that is, — p = €*, and if we please k = 6~

Hence not merely one but three of the products of

(m = %) (m = N") (1 — ') (n — ")
will in this case vanish, for the above equations will cause the 2nd, 4th and
9th columns all to become columns of nulls.

If now instead of the factor (m —A’) (m — ") we substitute the factor
(m —N\), the three values of (m —\)* will become

0 0 0 dgn 0l =3 0. 0
0 =30 0 0 0 0 0 =3 0
O 50 1 e~ Bphh] w1/ DreimmBph Uy B 560 2 O
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so that if (m—APm—p)(n—p")
is to vanish, it will readily be seen that each of two columns of one or the
other of the two matrices representing (n — u) (n — ") will have to vanish

simultaneously, and that this cannot be brought to pass when 6= —p and
}* = p* = 6° whether we make k= 62 or — 6° or 6"
Hence (m—=Ap(n—p)(n—p)=0

is not an admissible general involution form of equation. Similarly by
interchanging the above special values assigned to m and n, it may be
shown that
(m=AN)(m—-N")(n—py=0
is not an admissible form, and consequently that the one universal form of
the invelution equation is expressed by saying that
(m—\) (m = \") (n— &) (n — )

is an absolute null. If no connexion exists between the elements of m and n,
we know from the law of nullity that the above matrix has a nullity 2, that
is, that all its minors except the elements themselves have zero contents.

The effect of the vanishing of I is to make the elements themselves one and
all vanish when the two sets of latent roots are duly selected.

So in general if
F=xe—A4 e+ A2 — A3 0= 0,
and G=p*— Bp + B~ — Bypo—3 ... =0,
are the two equations to the latent roots of m, n matrices of order w, and if
M=m— (4, = A)yme=2 + (4, — AN+ N) me—2 .
and N=n1—(B, —p)n? + (B, — BA + A)ne—3 ...,
MN =0 for some value of X and of p is the one equation of involution,
and NM =0 for some value of A and some value of ux is the other such
equation.

I will now show how to deduce from the above statement the following
marvellous theorem,

Let H represent the sum of the product of each term in the matrix M by
its altruistic oppostte in N (so that H is a function of X and p and of degree
o —1 in each of them) then will the ordinary Algebraical Resultant of
F, G, H* be exactly equal (in magnitude as well as form) to the product
of the two involutants to the corpus m, nt.

* The system of equations whose resultant expresses the undifferentiated condition of
involution, may be written under the form (z, ¥)°=0; (z,8)“=0; (z, ¥)*"1=0. Quere whether

such a resultant may not be written under the form of a determinant by an application of
the Dialytic Method ?

+ If I and J be the two involutants, I=0 will be the condition of left-handed involution of
m, n or right-handed of n, m, and J=0 of right-handed involution of m, n or left-handed of n, m,
for Involution, like light, *‘ has sides.” But IJ=0 will be the condition of one or the other kind,
or 80 to say of undifferentiated Involution.
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By the theorem proved at the beginning of this note, the nullity of M
and that of NV are each w—1, hence the nullity of MN and consequently
a fortior: its vacuity cannot be less than o — 1, and accordingly the identical
equation to M/ N may be written under the form

(MN) — H(MNY =0,

where H is the sum of the product of each element in the Matrix M or the
Matrix N multiplied by its altruistic opposite in the other. Suppose now
that /=0 then for some one system of A, u out of the «® systems given by
the equations =0, G =0, H must vanish (for the nullity and & fortior: the
vacuity of MN in that case becomes w); hence the double norm of H, that is,
the product of the w* values of H, or, which comes to the same thing, the
resultant of F, G, H, must vanish when 7 vanishes and must therefore
contain /; in like manner because the nullity of NM and & fortior: its
vacuity is @ when J =0, it follows that the same resultant, say R, must
contain also J; R will therefore contain 7IJ, from which it may readily be
concluded that it can differ from 1./, if it differ at all, only by a numerical
factor.

I need hardly pause to defend the assumption that I, J have no common
factor, and that it is the first and not necessarily any higher power of R
which contains IJ; the single instance, when

0 10 0 p k
m=0 p O, n=k 0 p
0 0 p° 1 £ 0

of I, J being respectively (to a numerical factor prés) the cubes of &*—p and
k* — p* which have no common factor, settles the first part of this assumption
at all events for the case of w=3, and as regards the second, it is only
necessary to show that neither 7 nor J is equal to, or contains a square or
higher power of a function of the letters in m and % as may be done easily
enough when ® =3 by another simple instance*. We may then at once
proceed to compare the dimensions of R with those of I and /.

* Limiting ourselves to the case of matrices of the third order, if we take for m, n the matrices

00 0 B O

d 0 f, D 0 F, it may be shown by direct computation that one of the Involutants
0hroO H 0

becomes

(bH — kBY? (fD —dF)? (bd+fh) (BD - FH) (dB — fH) . {(hF +bD)* - (bd +fh) (BD + FH)},

and consequently if there were any square factor in either involutant such factor would contain

the elements belonging to the two sets indecomposably blended, but on the other hand, if we
100 0 fF i

take for m, n the matrices 0 p 0, G 0 g, either involutant to m, n may easily be shown
00p2 h HO

(also by direct computation) to be made up of three factors, each of which is an indecomposable

cubic function of f, g, h, F, G, H. Hence it follows that neither involutant can in its general
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R being the product of w® values of A“~* u®~'+etc, where A, u are
codimensional with the elements in m and n respectively, is obviously of
the degree w?. (w —1) in regard to each set of elements, that is, of the degree
2w*(w — 1) in regard to the two sets taken together.

Consider now the degree of I'; this is the topical resultant of »* matrices
of the form m*. nJ, where

i=0,1,2 .. 0-1, j=01,2 ... 0o—1,

so that each term in 7 will consist of a combination of w? elements selected
2

respectively from these w® matrices. If o is even, there will be % pairs
of matrices, one of any such pair of the form mind, the other of form
m*~~% n#=17, and the combination of elements taken from any such pair

will be of the collective degree 2 (w — 1) in the two sets of elements, so that
2

the total degree of the Involutant will be %.2((0— 1) or 0®*(0—1). If

again o is odd, there will be } (w®+ 1) such pairs, and one factor (unpaired)
w~1 w-1

belonging to the matrix m 2 .n 2 of the collective degree (w —1). Hence

the degree of the involutant will be

(0= 1)(0—1)+ (0 —1) or w?(e0—1)
as before.

Hence the product of I.J is of the degree 2w?(w — 1), or the same as R,
and consequently (at all events to a numerical factor prés) R and IJ coincide,
which is the essential thing to be proved.

N.B. Asregards o = 3, the above proof is exact; for higher values of o
to make it valid, it must be demonstrated as a Lemma that the two general
twin involutants (even were they decomposable forms, which they un-
doubtedly are not) could not have any common factor, nor either of them
contain any square factor. The Resultant of ¥, G, H may be compared to
a cradle just large enough to contain the twin forms in question, so as to
give assurance that no other form is mixed up with them; and the proof
given above shows that this must be the case if neither twin is doubled

form contain any square factor. As a matter of fact, not only for ternary matrices but for
matrices of any order, there can be no reasonable doubt whatever in any sane mind that every
Involutant is absolutely indecomposable. One must try, however, to obtain a strict proof of this
upon the general principle of crushing every logical difficulty regarded as a challenge to the
human reason, which falls in our way; it is in overcoming the difficulties attendant upon the
proof of negative propositions that the mind acquires new strength and accumulates the materials
for future and more significant conquests. To prove that involutants in their general form are

indecomposable may possibly, I imagine, prove to be a hard nut to crack, or it may be exceedingly
easy. ?
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up upon itself, and if the two do not grow into one another, but like such
creatures each possesses a perfectly distinet organization.

A single instance will serve to establish the fact that the Resultant of
F, G, H is the very product IJ itself, without any numerical multiplier.
I bave made this verification for binary and ternary matrices, and as the
point is not one of an essential importance need not dwell here further
upon 1it.

To pass to a much more important subject, I am inclined to anticipate as
the result of a long and interesting investigation into the relations of the
involutants of a certain particular corpus of the third order that the sum of
the two involutants of any corpus admits of being represented by means of
invariants similar in kind to that which expresses the single involutant to a
binary corpus (m, n), namely, the content of (that is, the determinant to) the
matrix mn — nm, which itself (as previously observed) may be written as the

. . (mn : i
determinant to the matrix {m n}’ or say (m, n),; and in some similar way

it is, I think, not unlikely that the product also of the two involutants (the
resultant of ¥, @, H) is capable of being expressed; but I must for the
present content myself with exhibiting the bare fact of the existence of
invariants of the kind referred to for matrices of any order.

Suppose then that m, n is a corpus of the third order. Form the deter-
minant
m n m* n?
m n m* n? s
R (m, n, m? n?),.

m n m?* n?

The number of terms, half of them positive and half of them negative,
in such determinant is 24; but of these, all but 8 will obviously appear
as pairs of equal terms affected with opposite signs and so cancel one
another: the 8 excepted ones are those in which no m and n come together,
to wit:

mnm*n? + nmnrPm? + m*n*mn + n*mPnm
— mPamn® — nmPnim ~ mn*m*n — nfmnm?

The determinant to this matrix will be of the total degree 18 in the two
sets of elements belonging to m and n respectively, that is, of the degree 9
in respect to each set of elements per se. And so in general if m, n be of the
order w the determinant

(oA om0 s i)
will contain only 2 (7rw)* effective terms, of which half will bear the positive
and the others the negative sign,
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The determinant to this matrix will be of the order
0[2{1+2+...+(0—1)]], that is, (0w = 1) e?

in regard to the combined elements in m and =, that is, equi-dimensional
with either involutant to the corpus m, n.

Whatever else may be its properties (on which I do not dare yet to
pronounce), it is certain that such determinant (and over and above that,
every term in the matrix of which it is the content) will be an Invariant to
the corpus in the same sense in which either Involutant has been previously
shown to be entitled to bear that name. And here for the present it becomes
necessary for me to break off, bidding aw revoir to any reader who may
peruse this sketch, and trusting to meet him again in the broader field of the
American Journal of Mathematics, where I hope to be spared to set out this
portion of the theory with more certainty, and the whole doctrine of multiple
quantity with much greater completeness and in more ample detail than is
possible within the limits of the Circulars and in the short interval re-
maining between the present time and the date of my intended departure
for Europe.



16.

ON THE THREE LAWS OF MOTION IN THE WORLD OF
UNIVERSAL ALGEBRA.

[Johns Hopkins University Circulars, 111. (1884), pp. 33, 34, 57.]

IN the preceding Circular allusion was made to the three cardinal prin-
ciples or conspicuous landmarks in Universal Algebra; these may be called,
it seems to me (without impropriety), its Laws of Motion, on the ground that
as motion is operation in the world of pure space, so operation is motion in
the world of pure order, and without claiming any exact analogy between
these and Newton’s laws, i1t will be seen that there is an clement in each of
the former which matches with a similar element in the latter, so that there
is no difficulty in pairing off the two sets of laws and determining which in
one set is to be regarded as related by affinity with which in the other.
They may be termed the law of concomitance or congruity, the law of
consentaneity and the law of mutuality or community.

The law of congruity is that which affirms that the latent roots of a
matrix follow the march of any functional operation pelformed upon the
matrix, not involving the action of any foreign matrix ; it is the law which
asserts that any function of a latent root to a matrix is a latent root to that
same function of the matrix; in so far as it regards a matrix per se, or with
reference solely to its environment, it obviously pairs off with Newton's first
law.

The law of consentaneity, which is an immediate inference from the rule
for combining or multiplying substitutions or matrices, is that which affirms
that a given line (or parallel of latitude) can be followed out in the matrices
resulting from the continued action of a matrix upon a fixed matrix of the
same order, that is, in the series M, mM, m*M, m*M, ... (which may be
regarded as so many modified states of the original matrix) without reference
to any other of the lines or parallels of latitude in the series, or again any
column or parallel of longitude in the correlated series M, Mm, Mm?, ...
without reference to any other such column or parallel of longitude.
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An immediate consequence of this ebvious fact (a direct consequence for
the rule of multiplication) obtained by dealing at will with either of the
systems of parallels referred to, is that a: system .of simultaneous linear
equatlons in differences may be formed for finding each term in any given
line or in any given column at any point in the series, and the mtegratlon
of these equations leads at once to the conclusion that any term of given
latitude and longitude in the ith term of either series is a syzygetic functlon
of the tth powers of the latent roots of m.

If, then, M be made equal to multinomial unity, this at once shows that
supposing w to be the order of m, on substituting m for the carrier (or latent
variable) in the latent function to m, and mu]tlplymg the last term by the
proper multinomial unit, the matrix so formed is an -absolute null, which
proves the proposition concerning the “identical equation” first enunciated
by Professor Cayley in his great paper on Matrices in the thlosophzcal
Transactions for 1858.

This proposition admits of augmentatlon (1), from within, as shown in a
former note, by applying to it the limiting law of the nullity of a product
(a branch of the 3rd law), which leads to the very important conclusion that
the nullity of any factor of the function of a matrix which is an absolute
null, or more generally of any product of powers of its linear factors, is
exactly equal to the number of distinct linear factors which such factor or
product contains, at all events, in the general case where the latent roots are
all unequal ; and (2), from without, by substituting for m, m + en where n is
any second matrix whatever and e is an infinitesimal. This leads to the
catena of identities, to which allusion has been made in the preceding
Circular. ~ Then, again, the endogenous growth of the theorem (that which
determines the exact nullity of any factor of the left-hand side of the identical
equation) in its turn seems to lead to a remarkable theorem concerning the
form of the general term of any power of m into M.

Observe that every such term is expressed as a syzygetic function of
powers of the w latent roots, and contains, therefore, ® constants, so that the
total number of syzygetic multipliers 1s »*; but the number of variables in m
and M together is 2w®; and, consequently, apart from the o arbitrary latent
roots the number of independent constants in m*M should be 2w? — w. The
@ syzygetic multipliers ought then to contain only (2w — 1) arbitrary
constants, and such will be found to be the case by virtue of the following
hypothetical theorem : Calling A any one of the latent roots, the multipliers
of A in m*M will form a square of »? quantities; the theorem in question* is
that every minor of the second order in such square is zero, so that the
@ terms in the square is given when the bounding angle containing

* I have not had leisure of mind, being much occupied in preparing for my departure, to reduce
this theorem to apodictic certainty. I state it therefore with all due reserve.

10—2
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2w — 1 terms is given; and the same being true for the multipliers of
each latent root (which resolve themselves into @ squares) the number of
arbitrary quantities in all is @ (2w — 1) as has to be shown.

The law of consentaneity in so far as it relates to the decomposition of the
motion of a matrix into a set of parallel motions, has an evident affinity with
Newton’s second law *.

Remains the law of mutuality, which is concerned with the effect of the
mutual action upon one another of two matrices, and so claims kindred with
Newton’s third law.,

This law branches off into two, one of which may be termed the law
of reversibility, the other that of co-occupancy or permeability.

The law of reversibility affirms that the latent function of the product of
two matrices is independent of the sense in which either of them operates
upon the other, that is, is the same for mn as for mm, just as the kinetic
energy developed by the mutual action of two bodies is not affected by their

being supposed to change places.

As regards the second branch of the third law, the word co-occupancy
refers to the fact that although the space occupied by two similarly shaped
figures (say two spheres) is not absolutely determined (in the absence of other
data) by the spaces occupied by them each separately (for they may intersect
or one of them coincide with or contain the other), a superior as well as an
inferior limit to such joint occupation is so determined; the inferior limit
being the space occupied by either such figure, that is, the dominant of these
two given spaces, and the superior limit their arithmetical sum. So the
nullity resulting from the action in either sense of two matrices upon one
another is not given when their separate nullities are assigned, but has for an
inferior limit the dominant of these two nullities and for a superior limit
their sum ; the nullities of the two component matrices may also be conceived
under the figure of two gases or other fluids which are mutually permeable
and capable of occupying each other’s pores.

Although the limits spoken of are independent of the sense in which the
two matrices act on one another, it must not however be supposed that the
actual resultant nullity is unaffected by that circumstance ; thus, for example,
if the latent roots of a ternary matrix m are A, A, A", the nullity resulting
from (m — ) (m — \') acting sinistrally upon (m — X”)n, that is, of
(m—=2N) (m—=N) (m—=\")n is 3, but from the same acting dextrally upon
the same, that is, of (m —A”)n (m — A) (m — X), need not necessarily
exceed 2.

* Tor another and closer bond of affinity between the two laws see concluding paragraph of
this note. i
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Such then are the three primary Laws of Algebraical Motion; but as
Conservation of areas, Vis wiwva, D’'Alembert’s Principle, the principle of
Synchronous Vibrations, of Least action, and various other general laws
may be deduced from Newton's three ground laws, so, of course, various
subordinate but very general laws may be deduced from the interaction of
the above stated three ground laws, namely, the law of Congruity, the law of
Consentaneity, and the law of Mutuality.

The deduction of the catena of identical equations connecting two
matrices m and n from the second and third laws combined, affords an
instance of such derivative general laws. Another instance of the same is
the theorem that when the product resulting from the action upon one
another of two matrices, is the same in whichever of the two senses the
action takes place, the matrices must be functionally related, unless one of
them is a scalar, that is, a multiple of multinomial unity, at all events when
neither m nor n possesses a pair of equal latent roots.

This very important and almost fundamental law (seemingly so simple
and yet so hard to prove) may be obtained as an immediate inference from
that identical equation in the catena of such equations connecting the
matrices m and n, in which one of the two enters only singly at most in
any term. As for example if m and n are of the 3rd order, beside the
identical equation m?®— 3bm? + 3dm — g =0 we have* the identity

m*n + mum + nm? — 3b (mn + nm) — 3cm? + 3dn + 6em — 3k = 0.

But if nm =mn then mnm = m*n, nm* = mnm = m*n, so that this equation
becomes
cm?—2em+ h
mn — Qbmn + dn = m?2c — 2em + h, or n= m "',
unless m? — 2bm + d is vacuous.

The first branch of the third law, namely, the law of reversibility, is an
almost immediate inference from the rule for the multiplication of matrices,
and becomes intuitively evident when the process of multiplication in each
of the two senses between m and = is actually set out. The second branch,
namely, the law of co-occupancy or permeability, as it is the most far-reaching
s0 it is the most deep seated (the most caché) of all the primary laws of

[* See p. 126 above.]

1+ Whence it follows that 7 must be a function of m convertible into an integral polynomial
form, unless the numerator and denominator of the fraction to which » is equated vanish simul-
tanecusly, which is what happens when m is scalar. If the numerator exactly contains the
denominator n becomes a scalar. Seeing that a constant ¢ is a specialized case of a function of
a variable z although the converse is not true, we may say that whenever nm = mn, one at least of
the two matrices m and n is a function of the other, and that each is a function of the other

unless that other is a scalar. Compare Clifford’s ¢ Fragment on Matrices” in the posthumous
edition of his collected works.
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motion, I found my proof of it upon the fact that the value of any minor
determinant, say of the ¢th order, in either product of m and n (two matrices
of the order w) may be expressed.as the quantitative product of a certain
couple of rectangular matrices (in Cauchy’s sense of the term), of which one
is formed byi columns and the other by ¢ lines in the two given matrices
respectively. Such rectangle as shown by Cauchy (and as may be intuitively
demonstrated by the simplest of my umbral theorems on compound deter-
minauts) is the sum of the
’ 7 (o)

m(w—1)me

complete determinants of the one rectangle multiplied respectively by the
corresponding complete determinants of the other rectangle.

This shows at once the truth of the proposition in so far as relates to the
lower limit, that is, that if mn = p, and m, n have the nullities ¢, £, and p the
nullity 6, then 6 must be at least as great as e and at least as great as{. As
regards the superior limit the proof is also founded on the theorem in deter-
minants already cited, and the form of it is as follows. If e be any number 7,
it may be shown that ¢ must be at least as great as @ —r; hence giving 7 all
values successively from 0 to ¢~ 1,1t follows that e+ ¢ cannot be less than 6,
that is, that 8 cannot be greater than e +¢{.

The proof of the first law, that of concomitance or congruity, I ought to
have stated antecedently, is a deduction from the theory of resultants and
the well-known fact that the determinant of a product of matrices is the
product of their determinants. Thus each of the three laws of motion is
deduced independently of the two others.

As another example of a derivative law of motion, I may quote the very
notable one which results from the interaction of the first and second funda-
mental laws upon one another, and which gives the general expression for
any function whatever of a matrix in the form of a rational polynomial
function of the same and of its latent roots, to wit, the magnificent theorem
that whatever the form of the functional symbol ¢, and whether it be a
single or many valued function, if A;, A, ... A, be the latent roots of m,

(m =) (m =2 ... (m =)
M=) (M =Ag) . (M=)

¢m =S\,

2 2
As for example if ¢m =m? m? will have ¢~ roots which are completely

determined by the above formula.

The first law, as already stated, regards a single body or matrix, un-
influenced by the action of any external force. The second law regards
the effect upon a single matrix, subject to external impulses, taking their
rise in an external source; whilst the third law has regard to the mutual
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action or joint effect of two bodies or matrices simultaneously operating upon
one another.

Note. Making [in p. 149] m® — 3bm? + 3dm — g = F (m), we found
F'm)yn=cm?*—2em + g.

When two of the latent roots of m are equal, it is easy to prove that
F’m 1s vacuous, and conversely, that when F'm is vacuous, two of the latent
roots of m are equal ; but when F'm s vacuous it is no longer permissible to
drive it out of the equation, and accordingly the true statement of the
theorem in question is that when m. n are two matrices of (any) the
same order, such that mn=mnm, n must in general be a function of m, but
that this ceases to be true, when and only when m has two equal roots. The
theorem requires further investigation in order to make out what happens -
when, or how it can happen that, two of the latent roots of one and only one
of the two convertible matrices are equal; for supposing this to happen it
would seem to lead to the conclusion that » may be a function of m, but m
not a function of n; which, however, is not quite so paradoxical as it looks,
inasmuch as in ordinary algebra a constant may be regarded as a specialized
function of a variable, whilst a variable in no sense can be regarded as a
function of a constant. The following example of two matrices not functions
of one another, but forming commutable products, has recently occurred to
me in practice, and led to the discovery of the oversight I had committed in
stating the theorem in question in too absolute terms.

0pp 011
Itx=101, y=p0p* where p*+ p +1=0, it will be found that xy = yz,
p’p0  pp*0

but that neither « nor y is a function of the other; this may easily be
deduced from the fact that a*— p%r—2p =0, so that if y were any function
of z, it would be reducible to the form of a linear function thereof, and con-
sequently (on account of the zeros in the two matrices) ¥ must be a multiple
of z, which is absurd.

In like manner it will be found that y*- p*y —2p=0, and that conse-
quently # cannot be a function of .
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EQUATIONS IN MATRICES.

[Johns Hopkins University Circulars, 11 (1884), p. 122.]

I HAVE been lately considering the subject of equations in matrices.
Sir William Hamilton in his Lectures on Quaternions has treated the case of
what I call unilateral equations of the form a*+pz+¢=0, or 2 +ap+¢g=0,
where we may, if we please, regard «, p, ¢ as general matrices of the second
order. He has found there are six solutions, which may be obtained by the
solution of an ordinary cubic equation. In a paper now in print and which
will probably appear in the May number of the Philosophical Magazine,
I have discussed by my own methods the general unilateral equation, say

a? +patqae Tt +1=0,
where #, p, q ... 1, are quaternions or matrices of the second order, and have
shown, by a method satisfactory if not absolutely rigorous, that the number
of solutions is ® — w? + w, that is to say, the nearest superior integer to the
general maximum number of roots (w?) divided by the augmented degree
(w0 +1).

But after I had done this it occurred to me that there were multitudinous
failing cases of which neither Hamilton nor myself had taken account, as for
example 2% + px = 0, besides the solutions # =0, = —p, will admit of a
solution containing an arbitrary constant, I think; but that is a matter
which I shall have to look further into before committing myself to a
positive assertion about it. I have only had time to pass in review the

more elementary case of a unilateral simple equation, say pz =g, where p, q
are matrices of any order w.

If p is non-vacuous there is one solution, namely, = p~q; but suppose
p is vacuous: what is the condition that the equation may be soluble ?

(1) Suppose ¢ =0, p being vacuous has for its identical equation pP =0,
and consequently we may make # =AP where A is an arbitrary constant.

(2) Suppose q is finite and that « = r is one solution, then obviously the
general solution is # =7r + AP.
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We have now to inquire what is the condition that » may exist. I find
from the mere fact of # being indeterminate (and confirm the result by
another order of considerations) that the determinant of g +Ap must vanish

identically ; so that for instance when p, ¢ are of the second order and c?ei"
are the parameters to the corpus (p, q), we must have when d =0, which is
implied in the vacuity of p, f=0 and e=0. The first of these conditions is
known ¢ priort immediately from my third law of motion ; but not so, without
introducing a slight intervening step, the intermediate one (I mean the con-
nective to d and £, namely) ¢ = 0.

So in general in order that px+¢ =0 may be soluble, that is, in order
that p~'q where p is simply vacuous may be Actual and not Ideal, ¢ must
satisfy as many conditions as there are units in the order of p or ¢, all implied
in the fact that the determinant to p +Ag, where A is an arbitrary constant,
vanishes identically. When these conditions are satisfied p~'q¢ becomes
actual but indeterminate. (This, by the way, shows the disadvantage of
calling a vacuous matrix indeterminate, as was done in the infancy of the
theory by Cayley and Clifford—for we want this word as you see to signify a
combination of the inverse of a vacuous matrix with another which takes the
combination out of the ideal sphere and makes it actual.)

So in general in order that p~'q where p is a null of the ¢th order (that is
where all the (7 + 1)th but not all the 7th minors of p are zero) shall be an
actual (although indeterminate) matrix, it is necessary and sufficient that
P+ Ag, where A is arbitrary, shall be a null of the same (ith) order. What
will be the degree of indeterminateness in p~'q, that is, how many arbitrary
constants are contained in the value of # which satisfies the equation pz=20
remains to be considered.

The law as to the conditions is an immediate corollary to my third law
of motion, for if pz = q then p + A\g=p (1 +Az); consequently p + \g, what-
ever A may be, must have at least as high a degree of nullity as p. QE.D.
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SUR LES QUANTITES FORMANT UN GROUPE DE NONIONS
ANALOGUES AUX QUATERNIONS DE HAMILTON.

[Comptes Rendus, Xcviit. (1884), pp. 273—276, 471—475.]

Daxs une Note précédente*, j’ai fait allusion au cas ol le déterminant de
@ +ym+2zn devient une fonction linéaire de 4%, g 2* sans que la quantité
nommée @ s’évanouisse. Dans ce cas, on aura

(mn) 4 Q(mn)— R =0, 1)

R étant le déterminant de mn. (’est bien la peine, comme on va le voir,
de donner plus de précision aux équations qui lient ensemble mn et nm pour
ce cas.

En suivant la méme marche que pour le cas particulier o @ =0, on
trouvera sans difficulté les résultats suivants:

nm=——Q( n)?— C—gngn—gg—z, (2)
mn = —?(nm)’—% nm + ?2 (3)

¢ étant le produit des différences des racines de la fonction A* + QA — R, de
sorte que ¥ =— (4@ + 27R?).
Conséquemment on peut écrire
nm= A (mn)*+ Bmn +C, 4)
mn=— A (nm)*+ Bnm—C, (5)
o A et C peuvent étre tous les deux zéro, ou tous les deux des quantités

finies quelconques, mais non pas l'un d’entre eux une quantité finie et lautre
zéro, et B, B’ les deux racines par rapport & B de I’équation

B4+B+1+450=0t, (©)

* Comptes rendus, t. xcvir. p. 1336.

[+ It follows from 7 (mn+60)=(nm+ 6) n that M, =mn and N, =nm both satisfy equation (I};
further MN=NM (footnote * p. 127 above), so that (p. 149 above) there exists an equation
N=pM?+qM+r; from (1), if | M - N|+0, follows M2+MN+N2+Q=0. Hence (2), (3) can be
deduced. ]
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On peut vérifier, comme je l'ai fait, par un calcul algébrique direct, que
les équations (4) et (5), en vertu des équations (1) et (6), sont compatibles.

Or une chose digne de remarque, c’est ce qui arrive quand &= 0, car cela
servira & révéler un phénomene d’Algebre universelle d’'un genre que personne
n’avait encore méme soupgonné.

Dans ce cas, les deux équations (4) ct (5) changent leur caractere et
deviennent
Q(mn)*+ 3Rmn +3Q*=0,
Q(nm)*+3Rnm + 4Q*=0,
de sorte que mn et nm cessent d’étre fonctions 'un de l'autre.

Nommons, pour le moment, mn =u, nm =v; ‘on aura, comme auparavant,
uy = vy, sans que v et u soient fonctionnellement liés ensemble. Dans le
Johns Hopkins Circular de janvier 1884 (dans l'article intitulé On the three
laws of motion in the world of universal Algebra, [above p. 146]), on trouvera
le moyen' d’établir qu'en général cette équation améne & la conclusion que ou

co00
% doit étre un scalar, c’est-a-dire de la forme 0 €' 0, ou bien v un scalar, ou

00C
sinon que nm, mn doivent étre fonctions I'un de l'autre; mais on remarquera
(ce qui m’avait alors échappé) que, si Fu = 0 est I'équation identique en u et
que la dérivée fonctionnelle F'u est une matrice vide (vacuous), c’est-a-dire
dont le déterminant est zéro, le raisonnement est en défaut; cette vacuité a
lieu dans le cas, et seulement dans le cas, ou deux des racines latentes
(lambdaiques) de m sont égales. On peut généraliser cette conclusion et
Iétendre & deux matrices u et v d’un ordre quelconque au-dessus du
deuxieme ; c’est-a-dire quand les racines latentes de u (ou bien de v) ne
sont pas toutes inégales, il est des cas ol uv = vu, sans que u ou v soient des
scalars et sans que v et u soient fonctions I'un de l'autre. Par exemple, si
'on fait

ORIo8 S o2 0 1 1
u=|1 0 1| w=|p O p"’l,
o 0 | p P 0 |
on trouvera
Esprnpwal o
w=|p —p 1 |=ou
S ke L

Mais on démontrera sans difficulté que v ne peut pas s’exprimer comme
somme de puissances de w, ni vice versa v comme somme de puissances de u.

On n’a pas besoin de remarquer que la seule condition de I'existence de
racines latentes égales en u ou en v ne peut pas suffire en elle-méme pour
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assurer que uv = vu, mais il faut réserver pour une autre occasion la pleine
discussion de la totalité des solutions de cette équation importante.

J’ajouterai seulement cette remarque, qui est essentielle. En supposant
I'existence des équations
m®n + mnm + nm? = 0,
n*m 4+ nmn + mn? =0,
(mn)* + Qmn — R =0,
(nmP+ Qum — R =0,
qui ont lieu nécessairement quand le déterminant de z + ym + zn devient
une fonction lindaire de a* 3%, 2% et en regardant nm comme fonction de mn
(en vertu de l'équation mn.nm =nm .mn), alors, en additionnant aux deux
valeurs de nm (exprimé comme fonction de mn) données ci-dessus, qui corre-
spondent aux deux valeurs de ¢, c’est-a-dire 4/— (4Q® + 27 R?), on a & considérer
quatre autres valeurs, le nombre total en étant six. Car si l'on suppose
nm = A (mn)* + Bmn + C et si A;, A, A, sont les trois racines de A*+ QA — R =0,
les valeurs de A, B, C sont déterminées en mettant
Axlz + B7\-1+ O’=)\«i’
Ax22+B7\2+C=7\'j:
AN+ Br;+C =2y,

ol 1, j, k sont respectivement

.9 1 jJiesC IR
1 2 3 ou ) oublen 3 2 1
ANl T8

Les valeurs de 4, B, C données ‘ci-dessus correspondent au deuxiéme de
ces groupes de valeurs de ¢, j, k.

Si l'on écrit =1, j=2, k=3, on trouvera nm = mn.
Sil'on éerit 2=1, 5=3, k=2, en faisant X\, = A, on trouvera

i 3A (mn):— Qmn + 2AQ
3A2+Q i
Dans le cas critique ou ¢ =0, de sorte que 3A% + @ =0, 'équation devient
(mn)* + Amn — 2A% =0, comme dans le cas déja traité. Quand on suppose
Q égal & zéro et R (c’est-a-dire le déterminant de mn) fini, les seules solutions
possibles avec ces conditions sont celles fournies en écrivant ¢, j, k=2, 3, 1,
ou 3,1, 2; mais, pour le cas général, il n’y a pas de raison (au moins ¢res
évidente) pour exclure aucune des trois classes de solution. Si I'on admet la
légitimité des solutions de la troisieme classe, en écrivant

nm = A (mn)*+ Bmn + C,

on trouvera B>+ B+ %g=0
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au lieu de I'équation

B?+B+1+f%q=0,

qui est applicable aux solutions de la deuxiéme classe.

Avant de considérer 'équation zy = y, il importe d’avoir une idée nette
d'une certaine classe de matrices que je nomme privilégides ou dérogatoires,
en tant qu’elles dérogent a la loi générale que toute matrice est assujettie &
satisfaire & une équation identique dont le degré ne peut pas étre moindre
que l'ordre de la matrice.

3

Les matrices dérogatoires sont justement celles qui satisfont & une
équation d’'un ordre inférieur & leur ordre propre; on peut les nommer
simplement, doublement, triplement, ... dérogatoires, selon que le degré de
'équation identique & laquelle elles satisfont différe par une, deux, trois, ...

unités du degré minimum ordinaire.
. g ; a O
Pour le cas des matrices du deuxiéme ordre, il n’y a que les scalars 0
a
qui soient dérogatoires.

Pour le cas des matrices du troisi¢me ordre, en écartant les scalars de la

a 0 O
forme 0 « 0, toute matrice « dérogatoire peut étre ramenée ou & la forme
OF 0 a

a+b(e+e),
ol e est une matrice qui satisfait 3 'équation & = 1, c’est-a-dire une matrice
dont les racines latentes sont 1, p, p% ou a la forme
a+b(l+e+e),
ol e=1, =1 et fe=pe
p signifiant une racine cubique primitive de P'unité. Dans le premier cas,
2 —(2a+b) v+ (a*+ ab— 2b%) = 0,

et dans le second
2’ —2azx+a?=0,

car on trouvera facilement que
A+e+e)é(1+e+e)E=0.

Pour le cas du quatriéme ordre, en écartant les scalars et en se bornant
au cas ou l'équation identique dérogée (vue pour le moment comme une
équation ordinaire en z) ne contient pas des racines égales, toute matrice
« peut étre ramenée & l'une ou & I'autre des deux formes suivantes :

1+ ke
142

a+b(U+U®) ou bien a+b(U+ U=+kUs),
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ou U est une matrice du quatriéme ordre telle que U*+1=0; a, b, k sont
des scalars arbitraires et ¢ est une racine primitive biquadratique de I'unité;
quand, pour la seconde forme k=1, on trouvera qu’il y aura une dérogation
double de l'ordre de I'équation satisfaite par z, ’équation identique pour z neé
sera que du deuxieme degré.

En réservant les détails du calcul, voici le résultat général que jai
démontré rigoureusement (en m’aidant de la notation des nonions) pour
les matrices du troisitme degré qui satisfont & I'’équation zy = ya.

A moins que # ne soit une matrice privilégiée ou dérogatoire, y sera
toujours une fonction rationnelle et entiére quadratique de z, et de méme,
a moins que ¥ ne soit privilégiée, 2 sera une fonction pareille de .

Il est bien entendu que le caractére dérogatoire d’'une seule des deux
matrices n'empéche pas qu'elle ne soit une fonction entidre et rationnelle
quadratique de 'autre. Dans le cas ol et y sont tous les deux dérogatoires,
ni P'un ni lautre ne peut étre exprimé comme fonction explicite 'un de
Pautre, mais ils seront liés ensemble par une équation linéo-linéaire.

Il parait peu douteux qu'une régle semblable doive étre applicable &
I'équation 2y = ya, quel que soit I'ordre des matrices z et y, sauf quand
I'équation qui lie ensemble 2 et ¥ pourra étre d’'un degré moindre que Yordre
de chacune d’elles.

I1 est bon de remarquer que nulle matrice ne peut étre dérogatoire, sauf
pour le cas ol 1l existe des égalités entre ses racines latentes; mais ces
égalités peuvent parfaitement subsister sans que la matrice & laquelle elles
appartiennent soit dérogatoire. En général, si x=a + by + cy? on peut, par
une formule générale que j'ai déja donnée, exprimer y sous la forme '

a+ Bz + ya?;
avec l'aide des racines latentes de z, cette formule ne cesse pas en général
d’étre valable, méme pour le cas ou  contient des racines égales, en regardant
leur différence comme une quantité infinitésimale; seulement le nombre des
racines finies subira dans ce cas une diminution; mais, dans le cas ol
I'équation oy =yx (z étant dérogatoire) menerait & I'équation

z=a+ by + ¢y,
on trouverait que nulle fonction explicite de @ avec des coefficients finis ne
peut exprimer le ¥ cherché.

11 est & peine nécessaire d’ajouter que rien n’empéche, dans le cas ou I'un
ou l'autre de z et y ou tous les deux sont dérogatoires, qu’on puisse satisfaire
4 zy =y, en supposant que z et y soient des fonctions explicites chacune
I'une de lautre: tout ce qu’on affirme, c’est que, dans le cas admis, cette
supposition cesse d’étre obligatoire; c'est un cas trés semblable & ce qui
arrive dans le cas de défaut (failing case) du théoréme de Maclaurin: c'est
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celui ol une variable est une fonction sans pouvoir étre développée dans une
série de puissances d’une autre variable.

Dans ce qui précéde, on a vu un exemple du fait général que, m étant une
matrice donnée, 'équation ¢ (x, m) = 0, pour certaines valeurs de m, cesse
d’admettre la solution ordinaire = Fm.

Mais il existe encore une classe assez étendue d’équations entre z et m
pour lesquelles, quand m prend certaines valeurs, # n’a aucune existence
actuelle; par exemple, m étant une matrice vide d'un ordre quelconque, si
mz = 1, la matrice # devient inexprimable et n’a, pour ainsi dire, qu'une
existence idéale.

Je citerai encore 'exemple 2 =m, m étant une matrice du deuxiéme
ordre; si les racines latentes de m sont inégales, on trouvera, par la formule
générale, quatre valeurs de 2. Si les deux racines latentes sont égales et
finies, ces quatre valeurs se réduisent & deux; mais, si les deux racines sont
toutes les deux €égales & zéro, il n’y aura aucune valeur de x qui satisfasse &

a
I’équation donnée, c’est-A-dire si m A k; Péquation devient absolument
’ ka —a

msoluble, ou, si I'on peut s’exprimer ainsi, les quatre racines carrées de m
sont toutes idéales.
Dans le cas supposé, on vérifiera aisément que m*=0 et, vice versa, toute
a
racine carrée du zéro binomial est de la forme © %, de sorte que Pon peut
ka —a
dire qu’une racine carrée quelconque du zéro binomial ne posstde pas elle-
méme des racines algébriques quelconques, ou, en d’autres termes, une racine
algébrique quelconque du quaternion ¢+ 4/(—1)j est purement idéale et
nadmet pas d’étre représentée sous la forme d’'un quaternion. Finalement
Je remarque que toute matrice est d’'un certain ordre et d'une certaine classe;
lordre, c’est le nombre total de ses racines latentes; la classe, cest le degré
minimum de I'équation latente (c'est-a-dire de I'équation identique & laquelle
la matrice satisfait), lequel ne peut étre plus petit que le nombre des racines
latentes inégales.

Je dois ajouter (ce que j'aurais df dire auparavant) que, quand z est une
matrice ternaire dérogatoire dont toutes les racines latentes sont égales,
Péquation 2y =y peut subsister sans que ni # ni y ne soit une fonction
explicite I'un de l'autre, méme quand y n’est pas une matrice privilégide;
c'est le cas ol, e et { faisant partie d'un groupe de nonions élémentaires, on a
Zg=a+b(l+e+e)f Les calculs sont un peu compliqués pour ce cas
spécial, mais je crois ne pas me tromper en faisant cette correction. Le
champ de la théorie de la quantité multiple est tellement nouveau et inex-
ploité que, sans les plus grandes précautions, on est toujours en danger de se
beurter contre quelque cause imprévue d’incertitude ou méme d’erreur.
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SUR UNE NOTE RECENTE DE M. D. ANDRE*
[Comptes Rendus, xcviilL (1884), pp. 550, 551.]

LE théoréme de M. André est une conséquence immédiate de la géné-
ralisation que j’ai donnée du théoréme de Newton (Arithmétique universelle,
2° Partie, Ch. 1L) sur les racines imaginaires des équations.

On verra, en consultant mon travailt sur ce sujet (Proceedings of the
London Mathematical Society, No. 2), que si u,, u;, U, ... %, sont les co-
efficients d’une équation du degré m et si

Gy =rup—(r+1) 9ty Uy,
_v+r—1
ou ks T

v- étant une quantité réelle quelconque qui n’est pas intermédiaire entre 0
et — m, I'équation aura nécessairement au moins autant de racines imaginaires
qu’il y a de variations de signes dans la série Gy, Gy, Gs, ..., Gn.

b

En faisant ¥ = — m, on a le théoréme de Newton ; en faisant v =1, on voit
qu'on peut prendre G, = u,® — U, %,,;. - Conséquemment le théoréme de
M. André subsiste, quel que soit le signe de la quantité qu’il nomme a et
quels que soient les signes des quantités qu’il nomme u,, uy, ..., Upy.

De plus, le théoréme subsistera encore quand, outre ces modifications,
au lieu de 'équation
Up = QUp_y + BUps,
on derit VUp = AWy + BVp_,

ou 'vo; vl; Vzy oee 9 'vm:

1dentiques avec
’U/l u2 ua
Uq, R:

1 3 T e
é(m.m—l) mm(m——l}(m—2)

* Comptes rendus, séance du 18 février 1884,
[+ Vol. 1. of this Reprint, pp. 501, 507.]
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Il y a encore une autre extension importante & ajouter, en considérant

I'équation

Upey Un — Un? = Aa® + BB* + Cy,
dont jai donné une solution particuliere dans I'American Mathematical
Journal, Vol. 1v.  [Vol. uL of this Reprint, pp. 546, 633.]

11 est peut-étre digne de remarque que si, dans la formule établie pour v,,
on fait v infini, la régle calquée sur celle de Newton (mais plus générale)
enseigne que, quels que soient a, b, ¢ ou m, I'’équation

1 By 110
: ( o e 1.2...m)
x? z*
S -TEattreom)te?

ne peut jamais avoir plus de deux racines réelles.

+b(1—-x+
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SUR LA SOLUTION D'UNE CLASSE TRES ETENDUE
D’EQUATIONS EN QUATERNIONS.

[Comptes Rendus, XcviiL (1884), pp. 651, 652.]

L’fQuaTioN parfaitement générale du denxiéme degré en quaternions
sera de la forme

2 (axbxc + dwe) + f =0

et admettra seize solutions, qu'on pourrait obtenir d’une maniére directe au
moyen de quatre équations, chacune du deuxieme degré, contenant les quatre
€léments de 2 comme inconnus. De méme, I'’équation en quaternions ou en
matrices du deuxiéme ordre du degré o admettra w* solutions. Parmi ces
formes générales, on peut distinguer celles dans lesquelles tous les quaternions
donnés se trouvent du méme cdété du quaternion cherché, par exemple
ar®* + bx + ¢ = 0. On peut nommer de telles équations équations uni-
latérales. Hamilton a considéré le seul cas de l'équation quadratique
(voir Lectures on Quaternions, art. 636, pp. 631—2), et a déterminé le
nombre (6) des racines.

Or, je trouve que ma méthode générale de traiter les matrices amene
directement & la solution d’'une équation unilatérale d’'un ordre quelconque
o (c'est-d-dire la fait dépendre de la solution d’une équation algébrique
ordinaire) et donne sans la moindre difficulté et sans aucun effort d’in-
vention le nombre des racines. Ce nombre est exprimé par la fonction
@* — w*+ o, de sorte que le nombre des racines, pour ainsi dire évanouies
par suite de l'unilatéralisme de la forme, est w'—w’+ w*— @, c'est-a-dire
(0*— ) (0*+1). On comprend bien qu’en certains cas le nombre des
racines subit une réduction; par exemple, le nombre des racines de
24+ 1=0 est o et celui de 2*+ ke +1=0 est 20*— w. Il semble que le
nombre, pour I'équation

2+ Py + Pgy 21+ L+ Py =0,
doit étre (#+ 1) w?— fw, lequel, quand § = w — 1, devient le nombre général

*—w?+ . Les détails de ce petit travail seront donnés dans un prochain
numéro du London and Edinburgh Philosophical Magazine.
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SUR LA CORRESPONDANCE ENTRE DEUX ESPECES DIF-
FERENTES DE FONCTIONS DE DEUX SYSTEMES DE
QUANTITES, CORRELATIFS ET EGALEMENT NOMBREUX.

[Comptes Rendus, XcviL. (1884), pp. 779—781.]

Voict le théoréme & démontrer, dans lequel, par somme-puissance, on
sous-entend une somme de puissances de quantités données:

A i quantités on peut en associer ¢.autres telles, que chaque fonction symé-
trique (que est une fonction des différences) des premiéres sera une fonction des
sommes-puissances du 2¢, du 3¢, ..., du 1#m¢ ordre des derniéres.

Faisons, pour plus de clarté, v = 3.

Soient 7y, 5, 75 les racines de 1'équation
fr=ar*+br?+cer+d=0.

En prenant b, ¢, d; m, 7, 15 comme deux systémes corrélatifs de variables
indépendants, on trouve

r3 r 1
81,——2‘}‘.—,7'81, 8¢=—E7—,;‘8,-, 8¢=—2f—‘,;8,.
Donc 3ady + 208, + ¢d;= — 2 §,,

by b8¢+c8d=d2rf—1,;8,.

Soient a =a, b=38,¢=8.2.9, d=38.2.1.8§, et soient p1, P2» ps les racines
de I'équation

ap® + Bp*+qp + 8 =0,
Alors, si 5 8, ¢ =0, on aura (ads + B8, + v8;) ¢ = 0. C.Q.F.D.
L'intégrale générale de Ja premiére équation est
=g (=1 i —1y),
et celle de la derniére est
¢ = g5 (p* + pa* + ps’, pi + oo + pi°).
11—2
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Ces deux intégrales sont donc identiques, et, le raisonnement étant général
pour une valeur quelconque de 7, on voit que chaque fonction des différences
des r doit pouvoir s'exprimer comme une fonction de 7 — 1 sommes-puissances
consécutives des p (commencant avec la seconde), les r et les p étant liés
ensemble par les équations

art +brimt 4 erit 4 drit 4 L, =0,

ap® + If P+ 0,

o PP i : Pt .=
i(i—1) 1(r—1)(x—2) "
et conséquemment une fonction symétrique des différences des r sera une
fonction rationnelle et entiere des ¢ — 1 puissances consécutives (dont on a
déja fait mention) des p.

En prenant ¢ = o, on voit que le théoréme équivaut a dire que tous les
sous-invariants, sources des covariants de (a, b, c§z, ¥)% (a, b, ¢, dYz, y), ...
(3 l'infini), seront des fonctions des sommes-puissances prises & l'infini, avec
la seule exception de la somme linéaire, des racines de I'équation

a+bx+1— a? + 1 ;Z& + ... (& l'infini).

Tel est le théoréme capital découvert par M. le capitaine Mac-Mahon, de
I’Artillerie royale anglaise, dont il a fait le plus heureux usage en développant
la théorie des perpétuants (voir American Journal of Mathematics). 11 est
évident que le méme principe peut étre appliqué aux invariants de toute
espece, de sorte que, griice & la belle découverte de M. Mac-Mahon, avec la
généralisation (qui en sort presque intuitivement) que j'ai donnée, on est
aujourd’hui en état de traiter les parties les plus difficiles et les plus
essentielles de la théorie des formes algébriques, comme M. Schubert l'a
fait avec sa Zahl-Geometrie pour les figures dans espace, en faisant abs-
traction, pour ainsi dire, de toute question de substance (de matiére contenue
dans les formes), et en se bornant & un calcul purement arithmétique.

Je dois avertir que le théoréme de correspondance, tel que M. Mac-Mahon
I'a donné, a paru dans 'American Journal of Mathematics (Vol. VI. p. 131).
M. Mac-Mahon affirme (mais sans aucune preuve) que, si (a, 3, v, ... étant
des nombres entiers plus grands chacun que l'unité) ¢ est de la forme
Sresfty, ..., ou 1, 8, t, ... sont les racines.de I'équation

y as
(a°’ b9 T.2.3 " )(‘” Lr=9
alors (@08a, + 0,80, + @80, + ...) p =0,

et il donne & ¢ le nom de fonction symétrique non unitaire des racines. Ce
théoréme est vrai seulement pour le cas ol n est infini (ce que M. Mac-
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Mahon a oublié de dire), et dans ce cas il conduit & la conséquence que les
différentiants (c’est-a-dire les sous-invariants) de

(ay, @, as, ...) (=, 1)®
sont des fonctions symétriques non unitaires des racines de 1'équation
a2 s —3 =
e SR W Ll il
et vice versd. Or il est évident que chaque fonction symétrique non unitaire
d'un nombre infini de quantités n’est-autre chose qu’une fonction des sommes
de toutes les puissances de ces quantités au dela de la premigre. Voila
pourquoi j'ai attribué & M. Mac-Mahon, dans ce.qui précdde (pour le cas
d’'une équation dont le degre est infini), la connaissance du théoréme que jal
démontré dans toute sa généralité.

Qo+ a, &
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SUR LE THEOREME DE M. BRIOSCHI, RELATIF AUX
FONCTIONS SYMETRIQUES.

[Comptes Rendus, Xcviil (1884), pp. 858—862.]

DaNs la démonstration du théoréme sur une correspondance algébrique,
inséré dans les Comptes rendus de la semaine derniére [p. 163 above], jai
eu occasion de considérer I'intégrale de ’équation

d d d
(ao(ﬂ+ala‘—%+"'+a‘”—1d—7—%) ¢=0.

Je me suis apergu depuis que cette intégrale peut se déduire immédia-
tement du beau théoréme de M. Brioschi, sur les fonctions symétriques, &

savoir que:
d¢ , dé dé
by O—l_-9;-+ aod_a/r+al da,,

On en tire cette conséquence immédiate que, si ¢ est une fonction des n
premiéres sommes-puissances des racines de 1'équation

A2+ a, 21+ ... =0,

+...+a,,_,c%ﬁ =0.

avec exclusion de la puissance r®me, on aura
da, T ey Sy
et conséquemment F(sy, Sy, ..., Sy, Spi1, +-» Sn) Sera I'équivalent complet

de l'expression
d d f d \™
(aoﬂ-‘l‘alda—'m'{'...'l'an_rd—a;) .0.

Dans le cas que j'ai considéré, r=1, et nous avous trouvé

d d @A
(aod—al+a,,a—a—2+...+an_lﬁ) .0=F(82, 83, ...,Sn).

7

On peut trouver aussi facilement l'intégrale complete de I'équation

d d daE
(aoa—al+alt—i&;+... + ap— d_a,,) 4)—0,
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o l'astérisque signifie qu'on doit prendre le produit complet de Paction de la
forme linéaire agissant ¢ — 1 fois sur elle-méme. Ainsi, par exemple,

<a;—b+ b%})mmgmhe a’(;l) + 2ab(§é j + bz( ) + a(;lc
On trouvera sans difficulté que la valeur de cette intégrale est
Fis B +s2F,+ ...+ Fpy,

on chaque F est une fonction exclusivement de s, s, ..., Sp.

Conséquemment le ¢¥me coefficient d’'un covariant quelconque de

(2, ay, ..., an) (z, y)*

peut étre mis sous cette forine, si I'on se sert de s, pour exprimer la somme
des w'®™s puissances des racines de

R oty =0

"t + a2 + =
: D 1.2.3
En effet, en écrivant %’: s, tout covariant de degré arbitraire » apparte-

nant & ce quantic sera de la forme
[uh (uo, u1§3) 1): (um ul, uzisa 1)21 (uO’ ul: uZ) uslsy 1)3) P "] (m) .V)v,

ou, en général,

u,,+,=‘-l—7f:‘ v + %v3+ N
ds, ds, dsy
v, 6étant une fonction exclusivement de w, n; s,, S, ..., S, du poids @ + 1.
J’ajoute encore cette observation que tout différentiant (c’est-a-dire sous-
invariant ou seminvariant) d’'un systéme de 7 quantics des degrés m, y, ..., M
sera fonction exclusivement de s,, S5, ..., S} Gy gy oevy Tuy ooy Sgy gy oony Sar

et de 7 — 1 fonctions linéaires indépendantes de la forme
I +Aay + ... + LS,
soumises a la condition que I+ A+ ... + L=0.

Je ne sais §'il vaut la peine de dire, comme conclusion, qu’en combinant
le théoreme de M. Brioschi avec le mien sur les puissances (avec astérisque)
on trouve, pour I'équation

(aoc%—l+a1%+a,(%+ ...>‘¢>=O
(o1 le ¢ est sans astérisque), l’inté.gra]e partielle

d=F+F s+ Fy87+...+Fiy 7,
ou chaque F est une fonction arbitraire de $i,y, Siya, «--, Sn-

En effet, cette expression est I'intégrale compléte du systéme formé par
Iéquation supposée conjointe avec les équations

(aodd )¢ 0, (aoo%s clif= 0 oo (““dg )¢ 0.
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On voit aussi facilement que l'intégrale de

d d *i
(a,, E"‘alra”—l +...) ¢—-0
est ’ ¢=U,+ Uis,+ Uys2 + ... + U,_5,,
ou chaque U est une fonction arbitraire de s,,s,, ..., SALL Sah MaEll

On peut former un nombre infini de systdémes construits au moyen des

opérateurs (ao (—;i— -+ ) dont on connaitra d’avance les intégrales ; ainsi, par
r

exemple, le systéme de » équations

(ao(%+...)i¢=o, (a.,d%r+...)¢=o, (a,,%r+...)¢=0

aura pour intégrale compléte

¢=Us+sU,+52U, + ...+ Ui,
ou chaque U représente une fonction arbitraire de (818585 «++ S2—182i ... 8,), €N
omettant celles des quantités s,, s, ..., s,—, dont les sous-indices excédent n.

Pour indiquer le moyen de justifier ces énoncéds, prenons comme exemple
le cas des équations simultanées

(ay8a, + ... + 4,182, ¢ =0, ou Eip=0,
(a,8ay+ ... + ay,_,8a,) $=0, ou E, ¢=0,
(@odas+ ... + apn_sday) ¢ =0, ou K, ¢=0.
On trouvera facilement qu’en général EP=FE*3—2E*E, + E,, de sorte
que le systeme donné équivaut au systéme
" E**¢=0, E,p=0, E;p=0.
Pour que ces équations soient satisfaites séparément, il faut et il suffit
que ¢ soit respectivement de la forme
F (828384 ... 80) + 8, F) (828384 .. 8,) + 82 Fy (8,85, ... Sn),
G (51838, +v. Sn),  H (81884 ... 8p). :
Conséquemment, afin que les trois équations soient toutes satisfaites

simultanément, la condition suffisante et nécessaire sera que ¢ soit de la

forme
F(si...sn) + 8. F,(84 ... 8n)+ 82 Fy(s5... 8n),

laquelle est conséquemment lintégrale compléte du systéme donné. De
méme, on démontre facilement que l'intégrale compléte des équations
(ada, + ... + apny8a,)2 ¢ =0,
(@8a2+ ... + an_yda,) ¢ =0,

(@o8ay+ ... + an_,8a,) ¢ =0
sera
¢ = F (8585 ... Sn) + 81 Fy (855585 ... Sn).
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SUR UNE EXTENSION DE LA LOI DE HARRIOT RELATIVE
AUX EQUATIONS ALGEBRIQUES.

[Comptes Rendus, Xcviil (1884), pp. 1026—1030.]

ON peut envisager la loi de Harriot comme une loi qui affirme la possibilité
de décomposer d’une seule manitre un polynéme en z dans un produit de
facteurs linéaires composés avec les différences entre « et les racines du
polynéme. En réfléchissant sur la cause de cette possibilité et la manieére
de la démontrer, on voit facilement que le méme principe doit, avec une
certaine modification, s’appliquer & toute équation en matrices d'un ordre
quelconque dont les coefficients sont transitifs entre eux-mémes, c’est-a-dire
qui agissent les uns sur les autres. exactement comme les quantités de
PAlgébre ordinaire, si chaque coefficient, par exemple, est une fonction
rationnelle de la méme matrice. On peut nommer les équations dont les
coefficients satisfont & cette condition équations monothétiques : on remarquera
que de telles équations forment une classe spéciale des équations que j'ai
nommées unilatérales dans une Note précédente.

Pour fixer les idées, prenons comme exemple une équation monothétique
du second degré en matrices binaires, laquelle peut toujours étre ramenée &
la forme

2 —2pr+ Ap + B=0.

En supposant que p*—(a+B)p + aB =0 soit I'éguation identique de p,
on aura

o=P B 4 (@ = Aa— B} + B2 (8 1 y(B*— 48 - B)).

a—f3 B—a
Faisons {:_"_g V(@ — Aa~ B)=u, 7;3—:-2‘ V(B — A8 — B)=n.

Alors les quatre racines de p seront
: ptu+tv, p—u—v; pt+tu—v, p—utv.

Disons r,, ry, 73, 7.
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On trouve
(p—Br=@-B(p-)+@-B)(p-B=@—B)(p-B)
et de méme (p—aP=(B~a)(p—a),

de sorte que

u2+v2=%E—g(aa-Aa—B)+§::(Bﬂ-A3—B)

=(a+B)p—af—Ap— B=p*— Ap— B.
On a aussi wv =0 et conséquemment (u + v)*=u?*+v*=(uv—v)> Donc
(=) (z=—r)=(x—pP—(u+v)=2>—2pz+ Ap+ B,
(@=7) (0= 1) = (2= py —(u—0v)'=2* = Zpo+ Ap + B.

Or considérons le cas général d’'une équation monothétique du degré n
en matrices de ordre w.

Cette équation (que j'écrirai fo=0), en vertu de ce que j'ai nommé la
seconde loi de mouvement algébrique (c’est-a-dire la formule

_e(m=by(m—c)...(m=1)
e (a=b)(a—c)...(a=1) b4,

ou a, b, ¢, ..., sont les racines latentes de la matrice m), aura n*® racines
qu’on peut représenter par les symboles composés

rl’ r2) Q-0 rﬁ)}
ol chaque r parcourt les valeurs 1, 2, 3, ..., n.

En réfléchissant sur la maniére de démontrer le principe de Harriot, on
arrivera facilement & la conclusion suivante: en prenant une combinaison
quelconque de n symboles 7, ry, ..., 7,, de telle maniére que chaque r
parcoure toutes ses n valeurs, R,, R,, ..., R,, on aura

fe=(@—R)(z—=R)...(z — R,).
Ainsi on arrive au théoréeme suivant :

Toute fonction monothétique rationnelle et entiére de x du degré n en
matrices de Uordre o peut étre représentée de (1.2 .3 ... n)*"! maniéres
différentes comme un produit de n facteurs linéaires dont chacun sera la
différence entre x et une des racines de la fonction donnée.

Telle est la loi de Harriot, étendue au cas des quantités multiirration-
nelles.

Dans le cas de 'Algebre ordinaire, @ = 1, et le nombre des décompositions
de fz en facteurs, selon la formule, devient unique, comme il doit étre.

De méme, pour les quaternions, le nombre des décompositions d'une
fonction monothétique du degré n en facteurs linéaires sera zn. Par
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exemple, si n = 3, les racines de fr peuvent étre exprimées par les neuf
symboles

0.0 0.1 0.2
1.0 1.1 1.2
2.0 2.1 2.2

La fonction (comme on le démontrera facilement) peut étre mise sous la
forme x — 0.0 multipliée par une fonction quadratique dont les racines
seront des racines de fz, et conséquemment, par raison de symétrie, seront
les quatre racines :
1.1 1.2

2.1 2.2

donc la fonction quadratique dont j’ai parlé sera égale &
(x-1.1)(z—2.2)
et & (z—=1.2)(z—2.1).
Ainsi il y aura deux décompositions de fz qui correspondent aux deux
diagonales 0.0,1.1,2.2; 0.0,1.2, 2.1, et de méme il y aura des décom-

positions qui répondent aux diagonales 0.1,1.2,2.0; 0.1,1.0,2.2; 0.2,
1.0,2.1; 0.2,1.1, 2.0, de sorte que le nombre total est égal & 1.2.3.

De méme, quand fz est monothétique et matrice du troisiéme ordre, on
peut prendre les diagonales d'un cube. Par exemple, les racines de 'équation
monothétique du second degré en matrices du troisidéme ordre peuvent étre
représentées par

0.0.0 0.0.1 0.1.0 0.1.1

1.1 "1.1.0 1.0.1 "1.0.0

et l'on aura les quatre décompositions

(z—=0.0.042z—-1.1.1); (#—0.0.1F2z—1.1.0);

(z-0.1.042z—-1.0.1); (z-0.1.132—1.0.0);
et de méme, en général, pour le degré n, le nombre des diagonales (en se
servant de ce mot dans le sens analytique, bien entendu) sera

(1.2.3...n0

C'est ainsi qu'on trouve I'expression générale que j'ai donnée (wn)*~! pour le

nombre des décompositions quand le degré est n et que I'ordre des matrices
est w.

En multipliant ensemble toutes les équations de décomposition, et en
nommant v chacune des n® racines, on parvient a I'équation

7 (& = p)yr N = (fryme T

done, quoiqu’on ne puisse pas en général conclure que,si Xi=Y¥i (X et ¥



172 Sur une extension de la loi de Harriot [23

étant des matrices), X est nécessairement égal & ¥, il y a toute raison de
croire qu'on pourra démontrer que, dans le cas actuel, on aura

7 (@ =) = (fa).

Ainsi la régle de Harriot se reproduira de nouveau sous la forme trés peu
modifiée qu'un polyndme (monothétique) en z (élevé & une puissance
convenable) est égal au produit des ditférences entre z et toutes les
racines en succession de ce polynéme.

" On aura remarqué, dans ce qui précéde, qu'en appliquant la seconde des
trois lois du mouvement algébrique aux équations monothétiques, on a
trouvé que le nombre des racines est n“, et conséquemment est n? dans
le cas des quaternions, tandis que le nombre des racines pour la classe des
équations en quaternions unilatérales (& laquelle les formes monothétiques
appartiennent) est en général n*—n*+n (voir le numéro d’avril 1884 du
London and Edinburgh Phil. Mag.), de sorte qu'il y a une élimination
n(n—1)* de racines en passant du cas général au cas particulier.

Il reste & examiner s'il n'est pas possible d’étendre la loi de Harriot aux
équations unilatérales polythétiques. C'est ce que je vais étudier, mais sans
cela, et en me bornant au cas monothétique, il me semble qu’en attribuant
aux éléments des matrices des valeurs entitres (simples ou complexes), comme
le fait M. le professeur Lipschitz pour-les quaternions, on voit s‘ouvrir un
nouveau champ immense de recherches arithmétiques fondées sur la loi
fondamentale de Harriot généralisée de la manitre indiquée dans ce qui
précede.



24.

SUR LES EQUATIONS MONOTHETIQUES.
[Comptes Rendus, xci1x. (1884), pp. 13—15.]

DaNs une Note précédente sur une extension de la loi de Harriot, j’ai eu
occasion de considérer les équations dites monothétiques dont tous les coeffi-
cients sont des fonctions d’une seule matrice. Or il y a une circonstance tres
intéressante et importante relative aux équations de cette forme qu'il est
essentiel de faire connaltre; car, & défaut d’'une telle explication, le lecteur
de la Note citée pourrait facilement étre induit dans une erreur trés grave.
Voici en quoi consiste I'addition & faire.

Supposons que tous les coefficients d'une équation donnée soient des
fonetions d’une seule matrice m. En appelant # I'inconnue, on peut résoudre
I'équation en regardant & comme fonction de m, et I'on trouvera ainsi n®
racines, en supposant que = soit le degré de l'équation et » l'ordre de m.
Ces racines seront parfaitement déterminées: mais on n’a nullement le droit
de supposer qu'il n’y a pas d’autres racines qui ne sont pas des fonctions
de m, qu’on peut nommer racines aberrantes, et un exemple, des plus simples
qu’on puisse imaginer suffira & démontrer que de telles racines, en effet,

existent; je me servirai, pour cet objet, de léquatlon en quaternions (ou
matrices binaires) #* — px = 0.

En effet, on connait déja, a priori, la possibilité de V'existence des racines

aberrantes, car I'dquation en matrices 2+ ¢ =0, quand ¢ est une matrice
. q00

scalar | comme si, par exemple, ¢ =<0 ¢ 0), possede, on le sait, bien des
00gqg

racines qui ne sont pas scalars et conséquemment ne sont pas des fonctions

de g, et, de plus, ces racines contiennent des constantes arbitraires. Comme

ou va le voir, c’est aussi le cas pour I'équation *—px = 0, qui possede une

seule constante.

Si 'on veut trouver ses racines normales (ou non aberrantes), on n'a qu’a
résoudre cette équation comme une équation ordinaire, et l'on trouve ainsi

z=%{p+ (P}
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En nommant r et s les racines latentes de p, on obtient par ma formule
d'interpolation (pour ainsi dire), récemment citée par M. Weyr,

_1 s S o2,
x—2(pir—sris—rs>’

, . r(p—s) s(p-— . , \

c’est-a-dire = 0, p, gp— - ), (SP_ Tr)’ et il n’y a pas d’autres racines de
ce caractére. Mais sortons de cette restriction arbitraire (produit de la
paresse de l'esprit humain, qui se fatigue enfin en voyant sans cesse se

reproduire des horizons nouveaux et inattendus), et posons hardiment

_ap _ab
T R AL

ol a, 3, v, & sont les quantités & déterminer.

Puisqu’on fait abstraction des solutions 2 =0, #=p, on sent, en vertu de
la troisiéme lov du mouvement algébrigue, que x et z—p auront chacun un
degré de nullité (car leur produit possede deux degrés); ainsi, si a+8=0,

on aura
=0,

donc aussi px=0,
et p sera aussi une matrice vide, c’est-a-dire qu'on aura
ad — bc=0.

La solution pour ce cas (dont, dans ce qui suit, je veux faire abstraction)
sera
ac —a’
z=2A4 1
@ —ac

Dans tout autre cas, en égalant la raison du second au troisiéme membre
de 2* avec la méme pour pa, on trouve sans difficulté que « sera de la forme

—A(d—7) AD
e —p(a-7)
ou 7 et s sont les racines latentes de p, c’est-a-dire les racines de I'équation

A étant arbitraire.

r*—(a+d)r+ad—bc=0.

Alors, en calculant «* et px, et en les égalant terme & terme, on obtient
les quatre équations suivantes:

A(d—r)P +ube =bc—a(d-7),
bA(d—1)+p(a—1r)]=—0br,
cA(@=7r)+p(a—7r)]=-—crn
Abe +u(e—ry=bc—d(@—r7).
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En écartant le cas spécial pour lequel b =0 et ¢=0, on voit (et c’est
M. Franklin, de Baltimore, qui le premier s'est aper¢u de cette conclusion
capitale) que toutes ces équations seront satisfaites avec la seule supposition

AMd=r)+p(a—7r)+r=0,

de sorte qu'une constante reste parfaitement libre dans la solution aberrante
de I'équation #* — pz =0.

Dans le cas ou p=g' gon trouvera facilement les deux solutions déter-
minées
=" g et = i
00 0 d’

Dans ses Lectures sur les quaternions, Hamilton n’a pas mis le doigt sur
les cas véritablement singuliers des équations quadratiques unilatérales. La
condition de singularité, c’est-a-dire de la présence de I'un ou de 'autre des
cas ol une ou plusieurs des trois paires de racines de 'équation pa?+qz+r=0
disparaissent ou deviennent indéterminées (c’est-a-dire affectées de constantes
arbitraires), peut se résumer dans la seule équation I =0, ol I est I'invariant
quartique ternaire quadratique (en u, v, w) qui exprime le déterminant d’une
matrice up +vq + wr.
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SUR L'EQUATION EN MATRICES pz=aq.
[Comptes Rendus, xc1x. (1884), pp. 67—71; 115, 116.]

SOIENT p et ¢ deux matrices de l'ordre w.

Pour résoudre I'équation pz=zq, on obtiendra «® équations homogeénes
linéaires entre les w* €léments de l'inconnue z et les éléments de p et de g,
de sorte que, afin que I'équation donnée soit résoluble, les éléments de p et
de ¢ doivent étre liés ensemble par une et une seule équation.

Mais, si I'équation identique en p est écrite sous la forme

pe+ Bpe i+ Cp*—2+ ...+ L=0,
on aura apparemment, en vertu de 'équation p = zgaz™,
2qa™ + Brgv ot + Cxqu '+ ...+ L =0
ou bien q°+ Bg» 4+ O+ ...+ L=0;
done les o racines de ¢ seront identiques avec celles de p et, au lieu d’une
seule équation, on aura en apparence (au moins) o €équations entre les élé-
ments de p et de q.

Pour faire disparaitre ce paradoxe, il n’y a qu'une seule supposition &
faire : c’est que @, sous les suppositions faites, devient une matrice vide, car
alors ™% n'a plus une existence actuelle, et 'équation p =xqz™ n’aura pas
lieu ; c’est ce qu'on va voir arriver dans le cas général, ol px = aq.

Pour fixer les idées, supposons w =1 et faisons
a b a B
c d vy o

En égalant px & 2g, on obtient les quatre équations simultanées et homo-
génes entre A, u, v, 7 suivantes:

(a—a)A+cp—Br+ 0 =0,
I+ (@d—-a)p+ 0y — Br=0,
-+ 0u+(@—-8)v+cr=0,
OA+yp+bv+ (d —8)m=0,

Aop

7x=
v

Dl (/5=

p:
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et conséquemment on aura*
bc? + Byt — 2bcBy — 2abed — 2aB8y8 + (be + By) (a + d) (a+ )
—be (a2 + &) — By (a* + d?) + ad (a* + d?) + ad (& + &)
+2adad + a*d? + & — (a + d) (2 + 8) (ad 4+ ad) =0,
ou, en écrivant a+d=B, ad —~bc=D, a+8=0C, ad —By=1F,
(D-Fy+(B-C)(BF-(0D)=0;
Cest-a-dire, si R est le résultant de X2— Bz 4+ D, X*— Czx+ F, R=0 sera la
condition générale de la possibilité de satisfaire a 'équation pz = zq.
11 est facile de faire voir que ce résultat peut étre étendu au cas général
ol p et ¢ sont des matrices de I'ordre w: on n'a qu’a démontrer que si une
des racines latentes de p est égale & une de ¢,1'équation px = 2q est résoluble;
et de plus, sans que cette condition soit satisfaite, 'équation est irrésoluble.
Soient donc Ay, A, ..., A, les racines latentes de p et uy, pa, ..., po de q et
supposons que A;= y,, alors
(P=M)o=u(q— m)
et 'on peut satisfaire & cette équation en écrivant
2=(P =) (P—=Ng) oo (P— M) (q — o) (g — 145) -+ (§ — p).
Conséquemment, si les racines latentes de p et de ¢ sont les racines des
deux formes algébriques X + BX* + ... + L, X* + CX*'+ ... + M, quand
R (le résultant de ces deux formes) s’évanouit, le résultant des w? équations
homogeénes linéaires obtenues en égalant pxz =2q s’évanouira; mais B est
indécomposable et du méme degré (»?) que ce dernier résultant dans les
éléments de p et ¢q. Conséquemment les deux résultants (& un facteur
numérique pres) sont identiques: ce qui démontre que la condition R=0
est non pas seulement nécessaire, mais de plus suffisante afin que pz =g
soit résoluble.

Pour ce qui regarde la valeur de #, posons ¢ = UV, ou
U=(p—2) (P=2) (P =) V=(g—p) (9= pta) - (4 po);
le seul fait que z contient U comme facteur ou que « contient V comme
facteur suffit & constater que @ n’est pas seulement vide, mais de plus possede
an moins o — 1 degrés de nullité, cest-a-dire que tous ses déterminants
mineurs du second ordre sont des zéros.

Cela est la conséquence d'un théoréme que j'ai démontré dans le Johns
Hopkins Circulart relatif au degré de nullité des combinaisons des facteurs
latents d'une matrice, dont le théoreme relatif & 'équation dite identique de
Cayley ou de Hamilton n’est qu'un cas particulier, ou pour mieux dire le cas
extréme; seulement il faut y ajouter un théoreme qui fait partie de ma
troisieme loi de mouvement algébrique, c’est-a-dire que le degré de nullité
d’un facteur ne peut jamais excéder le degré de nullité du produit auquel il
appartient.

[* The expressions for p, ¢ in line 7 from the bottom of p. 176 should be interchanged; in
the last line of p, 176, for +yu read —yu.] [+ p. 134 above.]

8. 1v. 12
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Nous avons donc complétement résolu le paradoxe qui était & expliquer.
Mais, sur-le-champ, une nouvelle contradiction surgit, car il semble que nous
avons démontré que, dans tout cas sans exception, si px=xq, x est nécessaire-
ment une matrice vide, ce qui est évidemment faux, car on sait bien que, si,
o étant de l'ordre de p et de ¢, ¢= /(1) p, alors, afin que 'équation px = zq
soit résoluble, il n’est jamais nécessaire que # soit vide. Ainsi, par exemple,
pour les matrices binaires, 'équation gz =xq est satisfaite quand z est une
fonction quelconque de ¢, et 'équation gz = —zq est résoluble, pourvu que ¢
soit scalar, en imposant deux conditions (dont une que son carré soit scalar)
sur . Pour lever cette contradiction, revenons au cas ot w=2 et aux
équations fondamentales

(a—a)N+cpu—Br=0,
A +(d—a)u— L7 =0,
— A+ (a=8)v+cmr=0,
—yu+bv+(d—8)w=0.

Certes, si ces équations donnent des valeurs déterminédes aux rapports
N, #, v, 7, le raisonnement précédent rend certain que z doit étre vide,
Cest-d-dire que Az — uv =0, mais cette conclusion devient fausse aussitot
que p et q sont pris tels que ces rapports deviennent indéterminés, ce qui
arrive quand tous les premiers déterminants mineurs de la matrice

| (a—a) ¢ - B 0
b (d=a) O -8
— 0 (a —9d) c
0 —~ b (d—9)

s'évanouissent simultanément.
Dans ce cas, quoique la solution générale qui donne z vide tienne bon,

. - : : A
rien n’empéche qu'il n’existe d’autres valeurs de z, c'est-a-dire de ;i
vV T

pour lequels cela n’est pas vral

La matrice écrite en haut doit posséder et possede, en effet, la propriété
remarquable que, en supprimant une ligne horizontale quelconque et en
nommant A, B, C, D les quatre déterminants mineurs de la matrice rect-
angulaire qui survient, affectés de signes convenables, la quantité 4D — BC
contiendra le déterminant complet comme facteur. Il sera peut-étre utile,
avant de conclure, de donner un exemple d’'un genre nouveau de subsistance
de léquation pz =zq avec une valeur finie du déterminant de 2. Faisons
donc

a—8=0, d—a=0, bc—By=0,
on aura (a—d)N+cu—PBr=0,
bA—Br=0, —gA+cr=0,
—qyp+bv+(d—a)m=0,
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équations qui n’équivalent qu’a deux,
- Br=0, (a—d)A+ (cu—pBr)=0,

et le déterminant de x, c’est-a-dire Aw — uv, aura en général une valeur finie.

Dans la dernitre Note (insérée dans les Comptes rendus*) qui roule sur
I'équation en matrices binaires a? —pax = 0, j’ai remarqué qu’en addition aux
solutions normales
p-s A el

r—s’ s—7

z=0, z=p, x=r

(o1 7, s sont les racines latentes de p), on a la solution indéterminée (due en
grande partie & la sagacité de M. Franklin)
{— A(d—7) V) }
&=
pe —p(a—r)
avec la condition A (d—r)+pu(a—r)+r=0. Evidemment on a aussi la
solution tout & fait distincte
{— A(d—s) AD }
=
- pe —p(@~—s)
avec la condition A (d —s) + u (@ — )+ s = 0; mais on doit noter que, quand
on prend X\ =, on reprend les deux valeurs normales w=r£ —z, x=szs);:;
le fait curieux que, quand b=0 et ¢=0, les deux solutions aberrantes
forment un troisitme couple tout & fait déterminé a été déja noté, et 'on
peut y ajouter la remarque que si, en addition & b= 0, ¢=0, on a aussi

a—d=0,
alors Iindétermination reparait & pas redoublé, la solution entitre étant

dans ce cas extra-spécialement constituée par une paire de solutions dont
'une et l'autre contiennent deux constantes arbitraires au lieu d’une seule.

Je dois ajouter que, dans le cas ol ¢ racines de P (M, A, .oy Ap) sont
identiques avec ¢ de q (u, o, ..., ps), Péquation
pr = xq,
qui améne a pr=2xg, ..., p'z=xq

et, par conséquent, A
P=M) (PN z=2(g—w) ... (— pa),
sera satisfaite si I'on fait z= UV, ou

U=(p=2in) . (P=M), V=(g—pin) ... (9 — ),
[* p. 174 above.]
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de sorte que « (en vertu du théoreme déja cité) aura au moins w — 6 degrés
de nullité, c’est-a-dire tous ses déterminants mineurs de l'ordre 8 + 1 s’éva-
nouiront. Mais on sait, pour le cas olt = w (et 'on a toute raison de croire
pour le cas ot 8 a une valeur quelconque au-dessus de 'unité), qu'il existe
pour des valeurs spéciales de p et de ¢ des solutions singulieres de I'équa-
tion pxz=zq, lesquelles (comme dans le cas de I'equation de Riccati) sont
bien autrement intéressantes et beaucoup plus importantes que la solution
générale.

On remarquera que, quand 8 =, la solution générale disparait, tandis
que les solutions singulitres pour des valeurs particulieres de p et de g,
ayant toutes les racines latentes de I'un identiques avec celles de l'autre,
forment la base de la présentation des matrices sous la forme de quaternions,
nonions, ete.



26.

SUR LA SOLUTION DU CAS LE PLUS GENERAL DES EQUA-
TIONS LINEAIRES EN QUANTITES BINAIRES, CEST-A-
DIRE EN QUATERNIONS OU EN MATRICES DU SECOND
ORDRE.

[Comptes Rendus, xc1x. (1884), pp. 117, 118.]

SOIENT p, ¢ deux matrices d'un ordre donné et servons-nous du symbole
p( )q pour signifier I'opérateur, lequel, appliqué & une autre matrice 2 du
méme ordre, donne pag.

Alors, si I'on pose

P()a+p( )@t .. +pn( ) a=¢,
¢z sera une matrice dont chaque élément sera une fonction linéaire des
éléments de z; conséquemment, en supposant que les matrices p, ¢ sont de
Pordre w, on parvient ainsi & une matrice de l'ordre w? et conséquemment
¢ sera assujetti & une équation identique de l'ordre w?; disons #=0.

Je vais donner la valeur de ¥ pour le cas ol @ =2, c’est-a-dire ou F sera
une fonction du quatrieme degré. Supposons que P et P’ sont deux quantics
du second ordre dans les deux systemes de variables @, @, ..., 205 &, &, ..., En
contragredients. Alors, si I'on représente par P’ ce que devient P quand on
06 8, , Onys ...s On, a0 liew de &, &,,..., &, (P). Pi sera un invariant du
systeme donné pour toute valeur de 1.

Considérons le cas ol P = aa®+ bay + cy® et P’ =af®+ BEn + yn2.  Dans
ce cas, on trouvera que & [(2')? P* — 4(P’ . P)!] sera identique avec le résultat
de az® + by + cy?, ya® — Bay + ay?, de sorte qu’on peut le nommer le contra-
résultant des formes (a, b, c), (a, B,v). Je nommerai donc, en général,
Vinvariant { [(P) P2 — 4 (P'. P)*] le quasi contra-résultant des deux formes
P, P’ quand elles contiennent un nombre quelconque de variables.

Or, en revenant & I'expression ¢, nommons P le déterminant de

UWPr+ Us Py + oo + UpPn + LV
et @ le déterminant de
WGy + UGy + o oo + UpGn — 7,
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olt ¢, pour le moment, est traité comme une quantité ordinaire. J’ai trouvé
que le quasi contra-résultant de P, ¢, quand ¢ appartient & des matrices du
second ordre (lequel sera une fonction biquadratique de ¢), égalé a zéro, est
I’équation identique cherchée en ¢.

11 est probable, mais je n’en suis pas encore absolument convaincu, qu'une

méthode analogue donnera I'équation identique de ¢ pour des matrices d'un
ordre quelconque.

Si l'on suppose que les p et les ¢ sont des quaternions, rien ne change
avec l'exception que P et  seront définis comme étant les modules (les
tensors carrés) au lien d'étre les déterminants de ¢v + Zpu, — v + Zqu
respectivement.

Connaissant ainsi 'équation identique de ¢, on peut résoudre immédiate-

¢

ment I'équation
S(pxq) =T,

car, en écrivant p( ) q = ¢, on a I'équation connue

¢'+ Bp*+ Op*+ D + E =0,
et, conséquemment, en exceptant toujours le cas ou £ =0 (dans lequel cas
I'équation devient ou impossible ou indéterminée), on trouve
D+ Co + Bp* + ¢°

o T.

x:d)"lT:—

Par exemple, si 'équation donnée est paq + ras= T,
¢T'=pTlq+ rTs,
&7 = p*T* + prTsq+ rpTqs + r°Ts,
¢ = p*T® + p*rTsq® + prpTysq
+ rp’Tqs + pr2T's*q + rprTsqs + r*pLes® + r*T's?,
et, éventuellement, en ne se servant que des coefficients qui entrent dans les

fonctions P et @ par le moyen de formules connues, on réduit z & une somme
de multiples de termes de la forme

pT, »T, prT; pTq, rTq, prTq; pTqs, rTqs, prlys,
et ainsi en général. Donc le probleme de la résolution des équations linéaires

est complétement résolu ; seulement il reste & traiter en détail le cas singulier
ol la matrice appartenant & ¢ est vide.
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SUR LES DEUX METHODES, CELLE DE HAMILTON ET CELLE
DE L’AUTEUR, POUR RESOUDRE I’EQUATION LINEAIRE
EN QUATERNIONS.

[Comptes Rendus, XCIX. (1884), pp. 473—476, 502—505.]

UN célebre quaternioniste m’ayant demandé de lui expliquer la portée de
ma solution de I'équation linéaire en matrices sur la solution du méme
probléme en quaternions, il me semble désirable de donner explicitement
le moyen de passer d’'une solution & l'autre. Préalablement, il sera bon
cependant de remarquer que, faute d’un examen suffisamment attentif de la
forme du résultat obtenu ou plutét indiqué par Hamilton (Lectures on
Quaternions, pp. 559—561), on pourrait attribuer & sa solution une pro-
priété qu'elle ne posstde pas, celle de fournir le moyen de trouver la
solution de I'équation linéaire en quaternions sous wune jforme réduite
semblable & celle que fournit ma méthode: mais, en effet, l'examen dun
seul terme de m (voir au bas de la page 561), par exemple SrJr?, suffit &
montrer que le dénominateur m de Hamilton est du douzitme degré dans les
éléments des quaternions (b et a) de son équation Zbga=c (p. 559), tandis
que le degré pour la forme réduite n’est que huit. Il s’ensuit que le
numérateur (si lon avait la patience de le déduire des formules de
Hamilton), aussi bien que le dénominateur obtenu par ce moyen, serait
affecté d'un facteur étranger & la question, du quatriéme degré, dans les
éléments nommés.

J’ajoute qu’il est parfaitement possible de donner la valeur de « dans
Péquation Spap’ =T comme fonction seulement des p et p’ et des coefficients
des deux formes assocides sans aucune irrationnalité, Car le déterminant
du nivellateur Ep( )p/, disons N, étant obtenu sous la forme Q, + /(2y), le
déterminant du nivellateur

-1 0 N 0
p()p'+ ()
0 -1 0 N

(disons FN) sera aussi exprimé sous une forme semblable & celle-la, disons
D, + V(D).
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Or, au lieu de l'équation identique FN =0, on peut se servir d’un
multiple quelconque de cette équation pour obtenir I'inverse de N comme
fonction de puissances positives de N. Ainsi U'on peut, dans ce but, se servir
de Péquation @2 — @4 =0, au lieu de FN =0, et, avec 'aide de cette équation,
on obtiendra # exprimé en fonction des p et p’ et de fonctions rationnelles
des coefficients des deux formes associées; mais alors, au lieu d’8tre obtenu
sous sa forme la plus simple, son numérateur et son dénominateur con-
tiendront un facteur commun qui sera une fonction du huitidme degré
des éléments des p et des p.

Je passe & la régle pour traduire ma solution de 'équation en matrices
Spap’ = T en solution de cette méme équation quand les p, lesp’etle T, au
lieu d’étre matrices, sont donnés comme quaternions. Fvidemment tout ce
qui est nécessaire, c’est de connaitre l'équation qui serait identique pour
Zp( )p’; je vais donner la régle pour l'obtenir.

Sous le signe X, je suppose compris p, ¢, 7, ..., p, ¢’ 7, ....

Ecrivons la forme symbolique [Nz +(p)y +(q)z+...]%, disons X ; les co-
efficients de xy, 2, ..., symboliquement écrits, sont

2PN, 2() N, +.;
a(p), (q), ... il faut substituer Sp, Sq, ...; le coefficient de 12 est (p)* auquel
il faut substituer 7p?; finalement le coefficient de yz est (p)(q), auquel il
faut substituer S (Vp. Vq)*.

De méme, on construit et 'on interprete la forme
_ [+ (@)Y +() e +...]
(disons X").

On calcule+ la valeur de X2X*— 4 (X’X). Ce résultat (une fonction du
quatrieme degré en ) (disons QNN) sera une partie de la fonction qui doit
étre identiquement zéro. Le reste de cette fonction (disons 64, V) sera

[ZS8(VpVqVr) S(Vp' Vg Vi) ] N -S8SpSp’ S(VpVqVr) S(Vp' Vg Vi),
et je dis que QN + 64, N =0
sera I'équation identique en NN, et servira pour trouver la valeur de =, c'est-
a-dire N7'T comme fonction du quaternion 7, des quaternions p, g, ...,
P, ¢, ... et des symboles S, V, T; de plus la valeur ainsi obtenue sera z
sous sa forme réduite.

Il y a encore une petite observation & ajouter & mes remarques sur la
solution de Hamilton de I'équation Sbqa =c (Lectures, p. 559). Il divise ¢
en deux parties, le scalar w et le vecteur p.

, o " ’ R
Clest cette dernitre quantité (p) qu'il exprime sous la forme =; alors

= E(EC___')Szakz;?p, de sorte que, & défaut d’avoir recours & des réductions

[* See first note on p. 191 below.] {t+ See p. 181 above and p. 202 below.]
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ultérieures, le dénominateur de ¢ contiendra, non seulement le facteur
étranger du quatrieme degré dans les éléments des a et des b dont jai
déja parlé, mais encore le facteur étranger 3.S(ab).

On remarquera que, dans cette solution, on aura des combinaisons des b
avec des a et des fonctions quaternionistiques de ces combinaisons, tandis
que, dans la solution infiniment plus simple que je donne du probleéme, il ne
se trouve nulle part des mélanges de cette nature, mais seulement des
fonctions quaternionistiques de combinaisons des @ entre eux-mémes et des
b entre eux-mémes. Le vice fondamental de la méthode de Hamilton, c’est
la réduction du probléme donné a un autre, o, au lieu de ¢, il n’entre que sa
partie vectorielle. Néanmoins le travail de Hamilton (quoique sa raison
d’étre ne subsiste plus) méritera toujonrs d’étre regardé comme un monument
du génie de son grand et admirable auteur.

Cest 13, pour la premiére fois dans I'histoire des Mathématiques, qu'on
rencontre la conception de I'équation identique (voir Lectures, pp. 566, 567)
qui est la base de tout ce qu’on a fait depuis et de tout ce qui reste & faire
dans I'évolution de la Science vivante et remuante de la quantité multiple,
c’est-a-dire I'Algébre universelle, née & peu pres 250 ans aprés l'organisation
définitive de sa sceur ainée I'Arithmétique universelle, dans le Mémoire de
M. Cayley sur les matrices, dans les Philosophical Transactions, vol. 148.

Dans une Note précédente, on a vu que dans la nouvelle et seule bonne
méthode pour résoudre, par rapport & «, I'équation en quaternions

pap’ + qeq’ +rer’ +sxs’ + ... =T,

on fait trois opérations. La premiére, & laquelle on peut donner le nom de
nmwvellation, consiste & trouver le nivellant, c’est-a-dire le déterminant de la
matrice du quatriéme ordre appartenant & un nivellateur donné du second
ordre. La seconde, qu’on peut appeler déduction, consiste & obtenir 'équation
identique, & laquelle un nivellateur correspond au moyen d’un autre nivel-
lateur qu’on obtient du nivellateur donné en y adjoignant un couple de plus
de la forme — IV () 8s, ou, ce qui revient au méme, le couple »/(— N) ( ) /(= N),
ou N est considéré comme un scalar. Finalement, on arrive A la derniére
opération, que je nommerai substitution et réduction, et qui consiste & sub-
stituer & linverse du nivellateur sa valeur en fonction rationnelle du
troisieme ordre de lui-méme, puis & faire des réductions dont je parlerai
tout a I’heure.

Au moyen de ces opérations, on arrive a la valeur de linconnue de
I'équation sous sa forme réduite la plus simple qu’elle puisse prendre.

Pour obtenir la forme de I'équation identique, voici ce que j’ai trouvé en
appliquant la méthode indiquée dans la Note précédente.
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Pour plus de simplicité, je me sers de la notation suivante, qui s’applique
& des lettres quelconques, accentuées ou non, représentant des quaternions.

Je pose
Sp=(p), Tp*=p,, S(VpVa)=(pg), S(VpVqVr)=(pgr).

Alors, en écrivant

pOP+e()d+r()r+s()s'+...=],

on aura
N — 43 (p)(p) N + S [4(pyps + 4 (p')ps — 2pop’s] N?
=3 {4 (P)(P)p.p"

+8[(P)(9)(P9)- + (PN DP'C ] ~ 4(P)(P) 924

+4[(D@IPg’ s+ (P)(9)P20:] - 8pp (g7)(g'T")

+8LUD@PT + (P)@(g™)(pr)] + 8 (pgr)(p'gr')} N

+ 32 {p2p'? = 2p.p's. g

+4[Paga (P'9) + Pq (P9Y]— 4pap'apg . p'q

+Apapagr. 47" + 8 [pa (gr)(P'))(0'T) + P2 (97)(pg)(pr)]

+8[pg.rs.p7 . ¢S+ p'q . 7's . pr.gs] ~ 8 (p)(p)(grs)(¢7's)} = 0,
ol le dernier terme de la partie fonctionnelle de Iéquation est le nivellant
de N.

Quant & la substitution, si, dans 'équation précédente
Nt— AN+ BN* 4+ CN - D=0 *,
on remplace N7'T" par la fraction
NI — ANT + BNT — CT’
D ’
tous les termes du numérateur de cette fraction seront des multiples connus
de la forme PT'P, ot P est de I'une des formes suivantes : P P’q, pap, qp°;
P pg; p; ..., et ot de méme P’ a des types semblables avec des lettres
accentuées. Il ne reste plus qu'a réduire chaque P & sa forme la plus
simple, c'est-a-dire & lexprimer comme fonction linéaire de 1, p, 9, pg —qp,
et de méme pour P. Alors le numérateur de # ne contiendra plus que des
termes dont les arguments seront tous d’un des types suivants (je remplace
la moitié de pq — gp par [pq)): :
T, pT, Tp', pT'p, ply,
[pg]T, Tp'q) pT(p'q) [padT, [palTIp'e];

il faut y ajouter le type pgrI''q'p/, qui est déjd sous sa forme la plus simple
et n’exige aucune formule de réduction.

* D est le déterminant de la matrice qui appartient au nivellement N. Quand D =0, la
solution de Péquation Nz = I' devient ou idéale (ce qui a lieu en général), ou (ce qui a lieu pour
des cas particuliers) actuelle, mais indéterminée.
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Je n’entreprendrai pas pour le moment de calculer les coefficients de ces
arguments, mais j'indiquerai du moins les formules de réduction qui seules
sont nécessaires pour effectuer ce calcul. Ce travail, bien digne d’attirer
lattention de quelque jeune géometre, peut tres probablement amener & des
résultats qui, & 'aide d’une notation symbolique, pourront &tre présentés sous
une forme d’une simplicité tout & fait inattendue et pour ainsi dire pro-
videntielle. J’en ai eu l'expérience pareille dans d’autres recherches du
méme genre, dans la solution de certains cas d’équations quaternionistiques
du second degré.

Voici toutes les formules de réduction dont on aura besoin :
pP=2@)p—p P=[4(p)-p.lp—2(P)pe
pg=[pgl+ @ q+(@p-(p,
qp=—[pgl+ (P) ¢+ (Qp —(p),
- Pg=2(ppgl +2(P)(Qp+ @' —p) ¢ —2 (D) (P
pap =4 (p)lpel+[8(p)(9)— 2 (p]p

~B@r+ple= 2@ p+4@)(P0];
dans les formules on peut, au lieu de [ pq], écrire V (VpVy).

Remarque.—Quand un nivellateur devient symétrique, c’est-a-dire quand
p=p,q=q,..., alors les deux formes assocides coincident en une seule dont
le nivellant devient un snvariant orthogonal.

Qu'il me soit permis, avant de conclure, d’ajouter encore une petite
réflexion sur l'importance de la question traitée ici. Elle constitue, pour
ainsi dire, un canal qui, comme celui de Panama, sert & unir deux grands
océans, celui de la théorie des invariants et celui des quantités complexes
ou multiples: dans 'une de ces théories, en effet, on considére l’action des
substitutions sur elles-mémes, et dans l'autre, leur action sur les formes;
de plus, on voit que la théorie analytique des quaternions, étant un cas
particulier de celle des matrices, cesse d’exister comme une science indé-
pendante ; ainsi, de trois branches d’analyse autrefois regardées comme
étant indépendantes, en voild une abolie ou absorbée, et les deux autres
réunies en une seule de substitution algébrique.
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SUR LA SOLUTION EXPLICITE DE L’EQUATION QUADRATIQUE

DE HAMILTON EN QUATERNIONS OU EN MATRICES DU
SECOND ORDRE.

[Comptes Rendus, xc1x. (1884), pp. 555—558, 621—631.]

HaMILTON, dans ses Lectures on quaternions (p. 632), a fourni un moyen
de résoudre I'équation (en quaternions ou en matrices binaires) de la forme

2= 2px4+q=0;
mais les circonstances les plus intéressantes de la solution ne se font pas voir

dans sa méthode de traiter la question. Voici la maniere analytique directe
que nous employons pour obtenir # sous sa forme explicite.

On suppose a*—2Bx+ D=0
I'équation identique pour z, oit B et D sont des scalars 3 trouver.
En combinant ces deux équations en #, on obtient
2z=(p—~B)™(g—D),

et, en supposant que la forme associde & [1], p, q, c’est-a-dire le déterminant
de X + up + vg, soit

A+ 200 p + 200 + dp? + 2epv +
on aura*

4(d—2bB+ B x2—~4(e—bD —cB+ BD)a,+ f— 2¢D + D*=0.
Conséquemment, en écrivant u =B —b, v=D — ¢,
d=b=a, e—be=p, f—c=gq,
et, en comparant cette équation avec I'dquation donnée, on voit qu’on peut
écrire
wta=\ w4 B=20(ut+b), *+y=4r(v+c)

De plus, puisque p* —2bp +d = 0, on aura
P—=b+u)(g—c—v) _ _(p—~b+u)(g—c—1)

2(0*—d—w) 2M ’

[* The determinant of 2Bx,— D —2z,p+g being zero, if z, is a latent root of z.]

W=
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En éliminant », v entre les trois équations qui les lient avec b, ¢, &, B, v,
on trouvera l'équation bien remarquable

=8 [=0,
ol I est le discriminant de la forme associée donnée plus haut, c’est-a-dire
1 b ¢
I=1b d e|=df+2bce—dc*— e — fI?
c e f

de sorte que la quantité exponentielle symbolique représente une fonction
cubique et donne lieu & une équation cubique en A.

A chaque valeur de M correspondent les deux valeurs + 4/(A —a) de u
et & chaque valeur de » (autre que u = 0) correspondra la seule valeur
2)\+ Mb__-_e de .

u
Quand u=0,A=a=d —0? et I'équation
V=4 +y—4rc=0

a ses deux racines finies. Done, quand v =0, il faut que @l—%

prenne la forme et & cette valeur de w (qu'on peut envisager comme

6,
deux valeurs de u réunies en une) correspondront pour v les deux valeurs
données par I'équation quadratique ci-dessus.

Ainsi 'on voit quen général x a trois paires de valeurs déterminées et
quaucune de ces valeurs ne cesse d’étre actuelle et déterminde que pour le
seul cas ou l'une des trois valeurs de A est égale & zéro, c’est-a-dire ou I,
Iinvariant de la pleine* forme associée a (p, ), s'évanouit.

Cela revient & dire que [ est le critérium de la normalité de 1'équation
donnée.

Si 'on regarde p et ¢ comme des quaternions, on aura
b=Vp, c=Vq d=Tp’ e=8pSq—S(VpVyq), f=Tq¢
Il est bien digne de remarque que 47 est identique avec (pg — gp)-.
On peut démontrer que,si p et ¢ sont des matrices d'un ordre quelconque,

les racines de I'équation #? — 2pz + g = 0 seront toujours (comme ici) assocides
en paires ; car, si 'on écrit  + o, = 2p, on aura

x?—2,p+q=0,
et conséquemment, si p® — wbp*~* + ... = 0 est I'"équation identique connue en
P et 2° — wBx*? 4 ... = 0 'équation identique & trouver en z,a chaque valeur

* Nous avons déja défini la forme associée au corps p, q, , ... Par la pleine forme, on peut
sous-entendre ce que devient la forme associée quand on adjoint au corps une matrice unitaire.
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de B—b correspondra une valeur égale de b— B, c’est-a-dire que I'équation
pour trouver B sera de la forme F(B—b)*=0.

En se servant de I'équation conjuguée (c’est-a-dire en x,) dont la somme
des racines sera évidemment la méme que pour 'dquation en z, on obtient
immédiatement, dans le cas oll p et ¢ sont du second ordre, par le moyen de

la formule
_(p+bdb—w)(g—c—v)

= 20

et de 'équation en A, la valeur de Sa*.

Cette valeur sera 6[p + (28, — &) I%], de sorte que la valeur moyenne
d’une racine de I'équation 2*— 2pz + g =0 est p (la valeur moyenne pour le
cas ou p et g sont scalars), angmentée de (28.—84) / 5, ot I* doit avoir le
signe qui le rend égal & § (pg — gp). De méme on trouve

2a® = 2p2x - 6q,
et ainsi la valeur moyenne de «* sera
2p* — g + (48, — 28,) I'p,
et 'on peut trouver successivement, par la méme méthode, la valeur moyenne
d’une puissance quelconque de #. Les détails du calcul précédent, et encore
d’autres propriétés de 'équation en x, seront donnés prochainement dans le
Quarterly mathematical Journal ou quelque autre recueil mathématique.

Ici on n’a voulu que produire les résultats principaux obtenus par notre
méthode.

I’équation de Hamilton en quaternions ou en matrices binaires est celle
que nous avons traitée dans une Note précédente. C’est 'équation

at+ 2qr +r=0.

Nous avons trouvé que la solution de cette équation dépend d'une
équation cubique ordinaire en A, & chaque valeur de laquelle correspondent
deux valeurs de , et qu’elle est normale ou régulieére quand le dernier terme
de cette équation differe de zéro, L’équation est dite réguliére ou normale
quand sa solution dépend du nombre maximum de racines déterminées, c’est- *
a-dire de trois paires de racines déterminées; chaque paire est <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>