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ON A THEORY OF THE SYZYGETIC* RELATIONS OF TWO
RATIONAL INTEGRAL FUNCTIONS, COMPRISING AN
APPLICATION TO THE THEORY OF STURM'S FUNCTIONS,
AND THAT OF THE GREATEST ALGEBRAICAL COMMON
MEASURE.

[Phalosophical Transactions of the Royal Society of London, cXLIIL (1853),
Part 11, pp. 407—548.]

INTRODUCTION.

“How charming is divine philosophy !

Not harsh and crabbed as dull fools suppose,
But musical as is Apollo’s lute,

And a perpetual feast of nectard sweets,
Where no crude surfeit reigns !”—Comus,

Ix the first section of the ensuing memoir, which is divided into five
sections, I consider the nature and properties of the residues which result
from the ordinary process of successive division (such as is employed for the
purpose of finding the greatest common measure) applied to f(z) and ¢ (@),
two perfectly independent rational integral functions of @. Every such
residue, as will be evident from considering the mode in which it arises,
is a syzygetic function of the two given functions; that is to say, each of the
given functions being multiplied by an appropriate other function of a given
degree in @, the sum of the two products will express a corresponding residue.
These multipliers, in fact, are the numerators and denominators to the

. @ .
successive convergents to % expressed under the form of a continued frac-

tion, If now we proceed @ priori by means of the given conditions as to

* Conjugate would imply something very different from Syzygetic, namely, a theory of the
Invariantive properties of a system of two algebraical functions.
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the degree in @ of the multipliers and of any residue, to determine such
residue, we find, as shown in Art. 2, that there are as many homogeneous
equations to be solved as there are constants to be determined; accordingly,
with the exception of one arbitrary factor which enters into the solution,
the problem is definite; and if it be further agreed that the quantities
entering into the solution shall be of the lowest possible dimensions in
respect of the coefficients of f and ¢, and also of the lowest numerical
denomination, then the problem (save as to the algebraical sign of plus or
minus) becomes absolutely determinate, and we can assign the numbers
of the dimensions for the respective residues and syzygetic multipliers.
The residues given by the method of successive division are easily seen not
to be of these lowest dimensions; accordingly there must enter into each
of them a certain unnecessary factor, which, however, as it cannot be
properly called irrelevant, I distinguish by the name of the Allotrious
Factor. The successive residues, when divested of these allotrious factors,
I term the Simplified Residues, and in Arts. 3 and 4 I express the
allotrious factor of each residue in terms of the leading coefficients of the
preceding simplified residues of f and ¢. In Art. 5 I proceed to determine
by a direct method these simplified residues in terms of the coefficients
of f and ¢. Beginning with the case where f and ¢ are of the same
dimensions (m) in @, I observe that we may deduce, from f and ¢, m linearly
independent functions of @ each of the degree (m —1) in @, all of them
syzygetic functions of f and ¢ (vanishing when these two simultaneously
vanish), and with coefficients which are made up of terins, each of which
is the product of one coefficient of £ and one coefficient of ¢. These, in fact,
are the very same m functions as are employed in the method which goes
by the name of Bezout’s abridged method to obtain the resultant to (that is,
the result of the elimination of # performed upon) f and ¢. As these derived
functions are of frequent occurrence, I find it necessary to give them a name,
and I term them the m Bezoutics or Bezoutian Primaries; from these m
primaries m Bezoutian secondaries may be deduced by eliminating linearly
between them in the order in which they are generated,—first, the highest
power of & between two, then the two highest powers of # between three,
and finally, all the powers of # between them all: along with the system
thus formed it is necessary to include the first Bezoutian primary, and to
consider it accordingly as being also the first Bezoutian secondary; the last
Bezoutian secondary is a constant identical with the Resultant of f and ¢.
When the m times m coefficients of the Bezoutian primaries are conceived
as separated from the powers of @ and atranged in a square, I term such
square the Bezoutic square. This square, as shown in Art. 7, is sym-
metrical about one of its diagonals, and corresponds therefore (as every
symmetrical matrix must do) to a homogeneous quadratic function of m
variables of which it expresses the determinant. This quadratic function,



57] of two Algebraical Functions. 431

which plays a great part in the last section and in the theory of real roots,
I term the Bezoutiant; it may be regarded as a species of generating
function. Returning to the Bezoutic system, I prove that the Bezoutian
secondaries are identical in form with the successive simplified residues,
In Art. 6 I extend these results to the case of f and ¢ being of different
dimensions in @. In Art. 7 I give a mechanical rule for the construction
of the Bezoutic square. In Art. 8 I show how the theory of f(x) and ¢ (),
where the latter is of an inferior degree to f, may be brought under the
operation of the rule applicable to two functions of the same degree at the
expense of the introduction of a known and very simple factor, which in fact
will be a constant power of the leading coefficient in f(z). In Art. 9 I give
another method of obtaining directly the simplified residues in all cases,
In Art. 10 I present the process of successive division under its most general
aspect. In Arts. 11 and 12 I demonstrate the identity of the algebraical
sign of the Bezoutian secondaries with that of the simplified residues,

generated by a process corresponding to the development of %j under the
form of an vmproper continued fraction (where the negative sign takes the
place of the positive sign which connects the several terms of an ordinary
continued fraction). As the simplified residue is obtained by driving out
an allotrious factor, the signs of the former will of course be governed by the
signs accorded by previous convention to the latter; the convention made is,
that the allotrious factors shall be taken with a sign which renders them
always essentially positive when the coefficients of the given functions are
real 1 close the section with remarking the relation of the syzygetic
factors and the residues to the convergents of the continued fraction which

expresses %, and of the continued fraction which is formed by reversing

the order of the quotients in the first named fraction,

In the second section I proceed to express the residues and syzygetic
multipliers in terms of the roots and factors of the given functions; the
method becoming as it may be said endoscopic instead of being exoscopic*,
as in the first section. I begin in Arts. 14 and 15 with obtaining in this

* These words admit of an extensive and important application in analysis. Thus the
methods for resolving an equation (or to speak more accurately, for making one equation depend
upon another of a simpler form) furnished by Tschirnhausen and Mr Jerrard (although not so
Presented by the latter) are essentially exoscopic; on the other liand, the methods of Lagrange
and Abel for effecting similar objects are endoscopic. So again, the memoir of Jacobi, *“De
Eliminatione,” hereinafter referred to, takes the exoscopic, and the valuable “ Nota ad Elimina-
tionem pertinens’ of Professor Richelot in Crelle’s Journal, the endoscopic view of the subject.
In the present memoir (in which the two trains of thought arising out of these distinct views are
brought into mutual relation) the subject is treated (chiefly but not exclusively) under its
endoscopic aspect in the second, third and fourth sections, and exoscopically in the first and last
sections,
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way, under the form of a sum or double sum of terms involving factors
and roots of f and ¢, and certain arbitrary functions of the roots in each
term, a general representative, or to speak more precisely, a group of general
representatives for a conjunctive of any given degree in « to f and ¢, that is,
a rational integral function of @, which is the sum of the products of f and
¢ multiplied respectively by rational integral functions of , so as to vanish
of necessity when f and ¢ simultaneously vanish. This variety of representa-
tives refers not merely to the appearance of arbitrary functions, but to an
essential and precedent difference of representation quite irrespective of such
arbitrariness.

In Arts 16,17, 18, 19, 20, 21, T show how the arbitrary form of function
entering into the several terms of any one (at pleasure) of the formule that
represent a conjunctive of any given degree may be assigned, so as to make
such conjunctive identical in form with a simplified residue of the same
degree. The form of arbitrary function so assigned, it may be noticed,
is a fractional function of the roots, so that the expression becomes a sum
or double sum of fractions. I first prove in Arts. 16, 17 that such sum is
essentially integral, and I determine the weight of its leading coefficient in
respect of the roots of f and ¢ (this weight being measured by the number
of roots of f and ¢ conjointly, which appear in any term of such coefficient).
Now in the succeeding articles I revert to the Bezoutic system of the first
section, and beginning with the supposition of m and n being equal, I demon-
strate that the most general form of a conjunctive of any degree in & will be
a linear function of the Bezoutics, from which it is easy to deduce that the
simplified residues of any given degree in « are the conjunctives whose
weight in respect of the roots is a mintmum ; so that all conjunctives having
that weight must be identical (to a numerical factor prés), and any integral
form of less weight apparently representing a conjunctive must be nugatory,
every term vanishing identically. These results are then extended to the
case of two functions of unlike degrees. The conclusion is, that the weight
of the forms assumed in Arts. 16 and 17 being equal to the minimum weight,
they must (unless they were to vanish, which is easily disproved) represent
the simplified residues, or which is the same thing, the Bezoutian secondaries.

We thus obtain for each simplified residue a number of essentially
distinct forms of representation, but all of which must be identical to a
numerical factor prés, a result which leads to remarkable algebraical
theorems.

The number of these different formule depends upon the degree of the
residue ; there being only one for the last or constant residue, two for the
last but one, three for the last but two, and so on. The formule continue to
have a meaning when their degree in & exceeds that of f or ¢; but then,
as although always representing conjunctives, they no longer represent
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residues, this identity no longer continues to subsist. In Arts 22, 23, 24, 25,
I enter into some developments connected with the general formule in
question ; these, it may be observed, are all expressed by means of fractions
containing in the numerator and denominator products of differences; the
differences in the numerator products being taken between groups of roots
of f and groups of roots of ¢; and in the denominator between roots of
inter s¢ and roots of ¢ inter se. A great enlargement is thus opened out to
the ordinary theory of partial fractions.

In Art. 26 I find the numerical ratios between the different formulse
which represent (to a numerical factor prés) the same simplified residue,
and in Arts. 27 and 28 I determine the relations of algebraical sign of these
formule to the simplified residues or Bezoutian secondaries. In Art. 29
I determine the syzygetic multipliers corresponding to any given residue
in terms of the factors and roots of the given functions; but the expressions
for these, which are closely analogous to those for the residues, cease to be
polymorphic. They are obtained separately from the syzygetic equation,
and it is worthy of notice, that to obtain the one we use the first of the
polymorphic expressions for the residue, and to obtain the other the opposite
extremity of the polymorphic scale. In the subsequent articles of this
section, by aid of certain general properties of continued fractions, I establish
a theorem of reciprocity between the series of residues and either series of
syzygetic multipliers.

Section III. is devoted to a determination of the values of the preceding
formulee for the residues and multipliers in the case applicable to M. Sturm’s
theorem, where ¢a becomes the differential derivative of far. It becomes
of importance to express the formulae for this case in terms of their roots
and factors of fr alone, without the use of the roots and factors of /'@, which
will of course be functions of the former.

By selecting a proper form out of the polymorphic scale, the fractional
terms of the series for each residue in this case become separately integral,
and we obtain my well-known formule for the simplified residues (Sturm’s
reduced auxiliary functions) in terms of the factors and the squared differ-
ences of partial groups of roots. This is shown in Art. 35. In Art. 36 the
multiplier of #'z in the syzygetic equation is expressed by formulee of equal
simplicity, and in a certain sense complementary to the former. This
method, however, does not apply to obtaining expressions for the multiplier
of fz in the same equation in terms of the roots and factors of fz; for the
separate fractions whose sum represents any one of these factors, it will
be found, do not admit of being expressed as integral functions of the roots
and factors. To obviate this difficulty I look to the syzygetic equation itself,
which contains five quantities, namely, the given function, its first differential
derivative, the residue of a given degree, and the two multipliers, all of
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which, except the multiplier of fx, are known, or have been previously deter-
mined as rattonal integral functions of the roots and factors of fz. I use
this equation itself for determining the fifth quantity, the multiplier in
question. To perform the general operations by a direct method required
for this would be impossible; the difficulty 1s got over by finding, by means
of the syzygetic equation, the particular form that the result must assume
when certain relations of equality spring up between the roots of fz; and
then, by aid of these particular determinations, the general form is demon-
stratively inferred.

This investigation extends over Arts. 38, 39, 40, 41, 42, 43. It turns
out that the expressions for the multipliers of fx are of much greater
complexity than for the multipliers of f'z or for the residues. Any such
multiplier consists of a sum of parts, each of which, as in the case of the
residues and the factors of f’z, is affected with a factor consisting of the
squared differences of a group of roots; but the other factor, instead of being
simply (as for the residues and factors before mentioned) a product of certain
factors of fi, consists of the sum of a series of products of sums of powers
by products of combinations of factors of fx, each of which series is affected
with the curious anomaly of its last term becoming augmented in a certain
numerical ratio beyond what it should be in order to be conformable to the
regular flow of the preceding terms in the series®.

The fourth section opens with the establishment of two propositions
concerning quadratic functions which are made use of in the sequel. Art. 44
contains the proof of a law which, although of extreme simplicity, I do not
remember to have seen, and with which I have not found that analysts are
familiar : T mean the law of the constancy of signs (as regards the number
of positive and negative signs) in any sum of positive and negative squares
into which a given quadratic function admits of being transformed by
substituting for the variables linear functions of the variables with real
coefficients. This constant number of positive signs which attaches to
a quadratic function under all its transformations, which is a transcen-
dental function of the coefficients invariable for real substitutions, may be
termed conveniently its inertia, until a better word be found. This inertia
it 1s shown in Art. 45, by aid of a theorem identical with one formerly given
by M. Cauchy, is measured by the number of combinations of sign in the
series of determinants of which the first is the complete determinant of the
function, the second, the determinant when one variable is made zero, the
next, the determinant when another variable as well as the first 1s made
zero, and so on, until all the variables are exhausted, and the determinant

* The syzygetic multipliers are identical with the numerators and denominators (expressed in

’

fz

their simplest form) of the successive convergents to the continued fraction which expresses
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becomes positive unity. In Art. 46 I give some curious and interesting
expressions for the residues and syzygetic multipliers, under the form of
determinants, communicated to me by M. Hermite; and in Art. 47 I show
how, by the aid of the generating function which M. Hermite employs,
and of the law of inertia stated at the opening of the section, an instan-
taneous demonstration may be given of the applicability of my formulae for
M. Sturm’s functions for discovering the number of real roots of fir, without
any reference to the rule of common measure; and moreover, that these
formulz may be indefinitely varied, and give the generating function, out
of which they may be evolved, in its most general form. Had the law of
inertia been familiar to mathematicians, this constructive and instantaneous
method of finding formule for determining the number of real roots within
prescribed limits would, in all probability, have been discovered long ago,
as an obvious consequence of such law. I then proceed in Arts. 48 and 49,
to inquire as to the nature of the indications afforded by the successive
simplified residues to two general functions f and ¢; and I find that the
succession of signs of these residues serves to determine the number of roots
of f or ¢ comprised between given limits, after all pairs of roots of either
function contained within the given limits and not separated by roots of the
other function have been removed, and the operation, if nccessary, repeated
tottes quoties until no two roots of either function are left unseparated by
roots of the other; or in other words, until every root finally retained in one
function is followed by a root of the other, or else by one of the assigned
limits. The system of roots comprised between given limits thus reduced
I call the effective scale of intercalations; such a scale may begin with a root

of the numerator or of the denominator of %; and upon this and the

relative magnitudes of the greatest root of ¢a and fx it will depend whether
in the series of residues (among which fz and ¢z are for this purpose to be
counted) changes will be lost or gained as « passes from positive infinity to
negative infinity. In Art. 50 I observe that the theory of real roots of a
single function given by M. Sturm’s theorem is a corollary to this theory
of the intercalations of real roots of two functions, depending upon the well-
known law, that odd groups of the limiting function f’z lie between every
two consecutive real roots of fz. In Art. 51 I verify the law of reciprocity,
already stated to exist between the residues of fx and ¢z, by an d posterior:
method founded on the theory of intercalations. In Arts. 52, 53, 54, I obtain
a remarkable rule, founded upon the process of common measure, for finding
a superior and inferior limit in an infinite variety of ways to the roots of any
given function. This method stands in a singular relation of contrast to
those previously known. All previous methods (including those derived
through Newton’s Rule) proceed upon the idea of treating the function
whose roots are to be limited as made up of the sum of parts, each of which
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retains a constant sign for all values of the variable external to the quantities
which are to be shown to limit the roots. My method, on the other hand,
proceeds upon the idea of treating the function as the product of factors
retaining a constant sign for such values of the variable. In Art. 55, the
concluding article of the fourth section, I point out a conceivable mode in
which the theory of intercalations may be extended to systems of three or
more functions.

In Section V. Arts. 56, 57, I show how the fofal number of effective
intercalations between the roots of two functions of the same degree is given
by the inertia of that quadratic form which we agreed to term the Bezoutiant
to f and ¢; and in the following article (58) the result is extended to
embrace the case contemplated in M. Sturm’s theorem; that 1s to say,
I show, that on replacing the function of « by a homogeneous function of
xz and y, the Bezoutiant to the two functions, which are respectively the
differential derivatives of f with respect to x and with respect to y, will
serve to determine by its form or inertia the total number of real roots and
of equal roots in f(z). The subject is pursued in the following Arts. 59, 60.
The concluding portion of this section is devoted to a consideration of the
properties of the Bezoutiant under a purely morphological point of view;
for this purpose f and ¢ are treated as homogeneous functions of two
variables «, y, instead of being regarded as functions of x alone. In Arts.
61, 62, 63, it is proved that the Bezoutiant is an invariantive function of the
functions from which it is derived; and in Art. 64 the important remark is
added, that 1t 1s an invariant of that particular class to which I have given
the name of Combinants, which have the property of remaining unaltered,
not only for linear transformations of the variables, but also for linear
combinations of the functions containing the variables, possessing thus a
character of double invariability. In Arts. 65, 66, I consider the relation
of the Bezoutiant to the differential determinant, so called by Jacobi, but
which for greater brevity I call the Jacobian. On proper substitutions
being made in the Bezoutiant for the m variables which it contains (m
being the degree in z, y of f and ¢), the Bezoutiant becomes identical with
the Jacobian to f and ¢; but as it is afterwards shown, this is not a property
peculiar to the Bezoutiant; in fact there exists a whole family of quadratic
forins of m variables, lineo-linear (like the Bezoutiant) in respect of the
coefficients in f and ¢, all of which enjoy the same property. The number
of individuals of such family must evidently be infinite, because any linear
combination of any two of them must possess a similar property; I have
discovered, however, that the number of independent forms of this kind
is limited, being equal to the number of odd integers not greater than the
degree of the two functions f and ¢. In Arts. 67 and 68, I give the means
of constructing the scale of forms, which I term the constituent or funda-
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mental scale, of which all others of the kind are merely numerico-linear
combinations. This scale does not directly include the Bezoutiant within it,
and 1t becomes an object of interest to determine the numbers which connect
the Bezoutiant with the fundamental forms; this calculation I have carried
on (in Arts. 69, 70, 71) from m =1 to m =6 1nclusive, and added an easy
method of continuing indefinitely. In this method the numbers in the
linear equation corresponding to any value of m are determined successively,
and each made subject to a verification before the next is determined, there
being always pairs of equations which ought to bring out the same result for
each coefficient.

In the next and concluding Art. 72, I remark upon the different directions
in which a generalization may be sought of the subject-matter of the ideas
involved in M. Sturm’s theorem, and of which the most promising is, in my
opinion, that which leads through the theory of intercalations. Some of the
theorems given by me in this paper have been enunciated by me many
years ago, but the demonstrations liave not been published, nor have they
ever before been put together and embodied in that compact and organic
order in which they are arranged in this memoir,—the fruit of much thought
and patient toil, which I have now the honour of presenting to the Royal
Society.

P.S. In a supplemental part to the third section I have given expressions
in terms of the roots of ¢a and fa for the guotients which arise in developing

;%aj under the form of a continued fraction, and some remarkable properties
concerning these quotients. In a supplemental part to the fourth section
I have given an extended theory of my new method of finding limits to the
real roots of any algebraical equation. This method, so extended, possesses a
marked feature of distinction from all preceding methods used for the same
purpose, inasmuch as it admits in every case of the limits being brought up
into actual coincidence with the extreme roots, whereas in other methods a
wide and arbitrary interval is in general necessarily left between the roots
and the limits.
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SecTION I.

On the complete and simplified residues generated wn the process of developing
under the form of a continued fraction, an ordinary rational algebraical
fraction.

Art. 1. Let P and @ be two rational integral functions of z, and suppose

that the process of continued successive division leads to the equations

P —-MQ +R,=0
Q — MR, +R,=0

R,— M,R,+ Ry=0/> o)
so that

@ 1 1 1

P AR A ®)

which is what I propose to call an improper continued fraction, differing from
a proper only in the circumstance of the successive terms being connected
by negative instead of positive signs.

M, M, M,, &c., R,, R,, R,, &c. are, of course, functions of x: the latter
we may agree to call the 1st, 2nd, 3rd, &c. residues (in order to avoid the use
of the longer term “residues with the signs changed”); and by way of
distinction from what they become when certain factors are rejected, we may
call R,, R,, R,, &c. the complete residues. Each such complete residue
N.p,

D,
coefficients only of P and (), but p, an integral function of these coefficients,

will in general be of the form

, IV, and D, being integral functions of the

and of z; p, may then be termed the ¢th simplified residue, and ‘g‘ the «th

allotrious factor. Suppose P to be of m and @ of n dimensions in z, and
m — n=e, the process of continued division may be so conducted, that all the
residues may contain only integer powers of x; and we may upon this
supposition make M, of e dimensions, and M,, M,, M,, &c. each of one
dimension only in «; so that R,, R,, R;, ... will be respectively of (n—1),
(n—2), (n— 3), &c. dimensions in «.
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P and @ are supposed to be perfectly unrelated, and each the most general
function that can be formed of the same degree. From (1) we obtain

R =MQ-P
R,=MR, —-(Q
=(MM,-1)Q — M,P ’ (3)
Ry= (MMM, + M, + M,) Q — (MM, —-1) P
&e., = &e.

and in general we shall have
R =0QQ+PP, (4)

where it is evident that @, will be of ¢ + (¢ —1), and P, of (¢ — 1) dimensions
in z.

Art. 2. Hence it follows that the ratios P, :Q, : B, may be ascertained
by the direct application of the method of indeterminate coefficients, for @,
will contain e+ ¢, and P, will contain ¢ disposable constants, making e + 2¢
disposable constants in all. Again, Q,Q and P P will each rise to the degree
n+e+t—1 in z; but their sum R, is to be only of n—¢ dimensions in a.
Hence we have to make (n+ e+ ¢~ 1)~ (rn —¢), that is ¢ + 2. — 1 quantities
(which are linear in respect to the given cocflicients in P and @), as well as in
respect to the new disposable constants in P, and @),) all vanish, that is to
say, there will be ¢+ 2 — 1 linear homogencous equations to be satisfied by
means of e + 2¢ disposable quantities; the ratios of these latter are, therefore,
determinate, so that we may write

P.=x (P)
Q=X (Q)}; (5)
R.=n(R)

and when (P,), (Q.), (R,) are taken prime to one another, it is obvious that
(R.) will be in all of ¢ + 2¢ dimensions in the given coefficients, that is of ¢ in
respect of the coefficients of P, and of e + ¢ in respect of those of Q; A, will
correspond to what I have previously called the allotrious factor; being in
fact foreign to the value of R, as determined by means of the equation (4),
and arising only from the particular method employed to obtain it through
the medium of the system (1): it becomes a matter of some interest and
importance to determine the values of this allotrious factor for different
values of (*.

* These are identical with what I termed quotients of suecession in the London and Edinburgh
Philosophical Magazine (December, 1839) [p. 43 above]; but by au easily explicable error of
inadvertence, the quantities Q,, @,, &c. therein set out are not as they are therein stated to be,



440 On a Theory of the Syzygetic Relations [57

Art. 3. This may be done by the following method, which is extremely
simple, and would admit of a considerable extension in its applications, were
it not beside my immediate purpose to digress from the objects set out in
the title to the memoir, by entering upon an investigation of the special or
singular cases which may arise in the process of forming the continued
fraction, when one or more of the leading coefficients in any of the residues
vanish; such an inquiry would require a more general character to be
imparted to the values of the quotients and residues than I shall for my
present purposes care to suppose.

Let us begin with supposing e=1, and write

S=ax™+ ba" 4 ca™ 2 + &e. (6)
¢ = g1 + an—z + ,Yxn——s + &C. '

Let +r be the first residue ofJ—C, and o of fé’ h; d therefore of —_¢~, so that
v g My ? oy

w 1s the second residue ofz.

Let @ =X (w), o being entirely integer, and X a function of the coefficients
in f and ¢. If we make )»:%r, N and D being integer functions, D will

evidently be L2, where L denotes the first coefficient in the simplified residue
ayr, and is evidently of two dimensions in a, B8, &c., and of one in @, b, &c.;
Dw is therefore of 2 x 2 + 1, that is five dimensions in a, 8, &c., and of two
dimensions in @, b, &c.; but o (by virtue of what has been observed of the
equations in system (5)) is of three dimensions in a, 8, &c., and of two in
a, b, &. Hence N is of two dimensions in a, B, &c., and of none in a, b, &ec.
This enables us at once to perceive that N = a2

For + is of the form f— (pz + ¢) ¢, }

. P (M
and e is of the form ¢ — (p'z + g )
the quotients of succession or allotrious factors themselves, but the ratios of each such to the
one preceding, if in the series; so that—

Q is N
Y
Q, is Xi

Y

Q, is =2
3 x2
&e. ...

This error is corrected by my distinguished friend M, Sturm (Liouville’s Journal, t. vir. 1842,
Sur un théoréme d’Algébre de M. Sylvester), who appears, however, to have overlooked that I
was obviously well acquainted with the existence and nature of these factors, and their essential
character, of being perfect squares in the case contemplated in his memoir and my own.
MM. Borchardt, Terquem, and other writers, in quoting my formule for M. Sturm’s auxiliary
functions, have thus been led into the error of alluding to them as completed by M. Sturm.
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put N =0 makes o vanish, and therefore, upon this supposition, f and )
would appear to have a common algebraical factor +, that is to say, N
vanishing would appear to imply that the resultant of f and ¢ must vanish,
so that N would appear to be contained as a factor in this general resultant,
which latter is, however, clearly indecomposable into factors—a seeming
paradox———the solution of which must be sought for in the fact, that the
equation N =0 is incompatible with the existence of the usual equations (7)
connecting f, ¢, ¥r and w: but this failure of the existence of the equations
(7) (bearing in mind that N has been shown to be a function only of the
set of coefficients a, 8, &c.), can only happen by reason of a vanishing when-
ever N vanishes; a must therefore be a root of N, or which is the same thing,
N apower of a and hence N = a2

The same result may be obtained & posteriori by actually performing the
successive divisions; if the coefficients of any dividend be ¢, b, ¢, d, &e., and
of the divisor a, A3, v, 8, &c., the first remainder, forming the second divisor,
will be easily seen to have for its coefficients—

a, b ¢ a, b d a, b, e
1 1 1
a-2 0, a, B ) E" 0, a, B 5 CF , a, B &c
a, B, v a, B, o a, B, €
a, b ¢

Hence the coefficients in the next remainder (making | 0, a, B|=m)

a B, v
will be each of the form of the compound determinant,—
a) BJ fy
, b ¢ a, b d
O; y B ] O’ a, 4
1
poe’ a, B, v a, B, o
a, b, c a, b, d ) b’
0’ a’ B bl O’ a) ry ’ 0) a’ 8
a’ B’ 'Y a’ B) 8 a; B; €

The compound determinant above written will be the first coefficient
in the remainder under consideration; the subsequent cocfficients will be
represented by writing f, ¢ g, v, &c., respectively in lieu of ¢, e, Omitting

.1 . . .
the common multiplier —y the determinant above written is equal to
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a, b, ¢ a, b e a, b d a, b d
a 0, & Bix |0, a 6| -]10 a ! x {0 a vy
a, B, v a, B, e a, B, o a, B, &
a, b, ¢ a, b, d a, b, ¢
+10, a B | x jﬁ 0, a, v |~ 10, a
a B, v ( a B, o a B,
The last written pair of terms are together equal to
a, b, ¢
0, o B | x [-dBe+oyee+aa (85—,
a, B, v

which is of the form a?4 — a?8? (B8 — 4*) a; and the sum of the first written
pair is of the form B+ (aB*afB8 — ayBayB)a. Hence the entire deter-
minant is of the form a?(4 + B), showing that «* will enter as a factor into
this and every subsequent coefficient in the second remainder, as previously
demonstrated above.

It may, moreover, be noticed, that this remainder, when o has been
expelled, will for general values of the coefficients be numerically as well
as literally in its lowest terms, as evinced by the fact that there exist terms
(for example aa*ye) having +1 for their numerical part. The same explicit
method might be applied to show, that if the first divisor were e degrees
instead of being only one degree in z lower than the first dividend, a**
would be contained in every term of the second residue: the difficulty,
however, of the proof by this method augments with the value of e; but the
same result springs as an immediate consequence from the method first
given, which remains good mutatis mutandis for the general case, as may
easily be verified by the reader. Applying now this result to the functions
P and @, supposed to be of the respective degrees n and n — ¢ in z, and calling
the coefficients of the leading terms in the successive simplified residues
ay, dy, &y, &c., and denoting by a the leading coefficient in ¢, and as before denot-
ing the successive allotrious factors by A, A,, &c., it will readily be seen that

M= s M= Al A=, &,
that is ’ :
N = 1 N _ah P gy
N 27 o’ 3 ac;1a2'1 ’ 4T lea;z ’
and in general

Y 1 aa LS —
om - R
+1 ! ata? o
(8)
1. a2 a®
Ao = A€+ 2 %y om—2
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Art. 4. Strictly speaking, we have not yet fully demonstrated that the
complete allotrious factors are represented by the values above given for A,
but only that these latter are contained as factors in the allotrious factors;
we must further prove that there exist no other such factors. This may be
shown as follows: 1t is obvious from the nature of the process that the
complete residues will always remain of one dimension in respect of the given
coefficients, that is, first of one dimensiou in the set g, b, ¢, &c., and of zero
dimensions in & B, v, &c.; then conversely, of one dimension in «, 3, v, &c.,
and of zero dimensions in a, b, ¢, &c., and so on, the residues being evidently
required to conform in their dimensions to those of the first dividend and the
first divisor alternately. These coefficients then are always of unit dimensions
in respect to the given coefficients ; whereas it has been shown (Art. 2) that
the simplified residues in respect to these coefficients are successively of the
dimensions 2 + ¢, 4 + ¢, 6 + e, &c.

Let the complete residue corresponding t0 Ay, be M Xy o, that is

ae+1 a22 a;z azm_Z

e A
2 P3 2 L2 2m )
a,” ag" Xom—1

or say ML; in passing from a,, to gy, the dimensions rise 2 units for all
values of ¢ except zero, and when ¢ =0 the dimensions increase per saltum
from 1 to 24 ¢; hence the total dimensions of L in the joint coefficients

will be
{(e+1)—2(e+2)]—4d(m—-1)+4m+e=1,

and therefore M is of zero dimensions, and A, is the complete allotrious
factor. In like manuer if the complete residue corresponding to Agpni, be

MNpy10omis, that is
2
1 o af Xgm—1

L e s g Romyl
act . o +1)

or say M L, the dimensions of L will be
—(e+1)—4m+{e+2(2m + 1)}, that is, 1,

and hence, as in the preceding case, M is of zero dimensions, and Agp 4, is the
complete allotrious factor.

Art. 5. 1 proceed to show how the simplified residues may be most
conveniently obtained by a direct process, identical with that which comes
into operation in applying to the two given functions of x the method
familiarly known under the name of Bezout’s abridged method of climinatiou.
Let us call the two given functions U and V, and commence with the case
where U and V are of equal dimensions (n) in 2. The simplified «th residue
will then be a function of n — ¢ dimensions in «, and of « dimensions in respect
of each given set of coefficients, and may be taken equal to V.U + U, V, where
V., and U, arc each of (¢« — 1) dimensions in .
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Let
U=qa,a" + a8 + 2™+ ... + ay,
V=bya + bya" ™ + bya" 2 + ... +ba;
we may write in gencral, m being taken any positive integer not exceed-
ing n,
U = (08" + @™ 4 s ) 27 4 (Gagy 77+ R84 ),
V=(ba™ + b2 4 o+ b)) & (b @777 by L+ bn).
Hence
(box™ 4 byam=1 4 .. 4 by) U~ (g™ + a, 2™ + .o+ am) V
= oK1 4 Ko 4 K24 L 4 Ky, (9)
where if we use (r, s) to denote a,b;— a;b, for all values of r and s, we have
K= 0,m+1), ,K,=(0, m+2)+ (1, m+1),
m=(0, m+3)+ (1, m 4+ 2) + (2, m + 1),

and in general , K; =3 (, 5), the values of r and s admissible within the sign
of summation being subject to the two conditions, one the equality r+s=m+-1,
the other the inequality » less than 7. By giving to m all the different values
from 0 to m — 1 in succession, and calling

bot™ 4+ b,z - L+ by, @G TN L A
respectively @, and P,,, we have
QU — PV= K4+ Ka"+..+
QU — PV= Ko+ Ko+, .+ Ky
QU — PV= ,Ka'+ Kav+.. .+ K.r. (10)

Qn_]U—Pn_]V= n_]K]a:"“ + n_lKan_2+ e n—lKn

The right-hand members of these n equations I shall henceforth term the
Bezoutians to U and V.

The determinant formed by arranging in a square the n sets of coefficients
of the n Bezoutians, and which I shall term the Bezoutian matrix, gives, as
is well known, the Resultant (meaning thereby the Result in its simplest
form of eliminating the variables out) of U and V.

Eliminating dialytically, first 27 between the first and second, then 2"
and 2" between the first, second and third, and so on, and finally, all the
powers of x between the first, second, third, ... nth of these Bezoutians, and
repeating the first of them, we obtain a derived set of n equations, the
right-hand members of which I shall term the secondary Bezoutians to U
and V, this secondary system of equations being
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QU—P V=Ko 4+ K2+ Kav + ..+ K,

(K Q—KQ)U—-(K, P,— K, P)V=La4 La*4 _ + 1L,
(KK =K K Qo+ K Ko — K LK) Qo+ (KL K, — K K) QYU
—{(K,.K, =K, \K;) P+ K, Ky, ~ K. K) P+ (K, K, — K, K,) P, V>
=Ma 34+ My + ...+ M,_,
&e. = &e.

(11)

And we can now already without difficulty establish the important proposition,
. . . . U
that the successive simplified residues to -, expanded under the form of an

improper continued fraction, abstracting from the algebraical sign (the
correctuiess of which also will be established subsequently), will be repre-
sented by the n successive Secondary Bezoutians to the system U, V.,

For if we write the system of equations (11) under the general form
SU—-HV=A.az"+ Bav1 4 &e,

the degree of %, and H, in z will be that of @, and P, that is + —1; and
the dimensions of 4,, B,, &c., in respect of each set of coefficients is evidently
¢; consequently, by virtue of Art. 2, 4 277 4 B.a" 2+ &c., which is the
tth Bezoutian, will (saving at least a numerical factor of a magnitude and
algebraical sign to be determined, but which, when proper conventions are
made, will be subsequently proved to be + 1) represent the :th simplified

. U
residue to — *, as was to be shown,

e

Art. 6. More generally, suppose U and V to be respectively of n + e and
n dimensions in .

Let U= ga™ 4+ a,a" 1 4 gz 2 4+ &e.

V = ba® + ba™* 4 &e.

Making

U = (ctga®™ + @ a1 4 & 4 Gpm) T + (Ao @ + &C 4 B re),

V= (bya 4 bya™ 14 Lo+ biy) @7 A (b a7 4 &l 4 Dy),
we obtain the equation

Qu U= P,V =nK izt 4 L, Koante 2 4 &+ e, (12)
* ¥ is supposed to be taken as the first divisor, and the term residue is used, as hitherto in

this paper, throughout iu the sense appertaining to the expansion conducted, so as to lead to an

improper continned fraction, in that sense, in fact, in which it would, more strictly speaking, be
entitled to the appellation of excess rather than that of residue.



446 On a Theory of the Syzygetic Relations [57

where
Qm = (boxm + oo+ b)), Pe+m = (aox“—m oot a’e+m) 5

m](l = a’obm+1 H mlo= aobm+2 +a bm+1 e mKe = a'obm+e + a, bm+e—1 + &e. + aebm;
mKe+1 = aobm+e+1 + &e. + L7} by, — Qg rm1 by; &e, = &e.

By giving to m every integer value from 0 to (n — 1) inclusive, we thus
obtain n equations of the form of (12), each of the degree n+e¢—1 in z, and
of one dimension in regard to each set of coefficients.

In addition to these equations we have the e equations of the form

otV = byt + ba el 4 &e. 4 by o, (13)
in which g may be made to assume every value from 0 to (¢ — 1) inclusive,
and the right-hand side of the equation for all such values of u will remain
of a degree in z not exceeding n+ e~ 1, the degree of the equations of the
system above described. There will thus be e equations in which only the

(D) set of coefficients appear, and # equations containing in cvery term one
coefficient out of each of the two sets.

The total number of equations is of course n+e Betwcen the e
equations of the second system (13) and the » occurring first in order of the
first system (12), we may climinate dialytically the e 47 —1 highest powers
of z, and there will thus arise an equation of the form

07‘—1 U—‘ we+r—1V= an—r + L/xn_r_l + &C. + (L)’ (14)

where 6,_, and w,,,_, are respectively of the degrees r—1 and e+ —1 in «,
and L, L' ... (L) arc of » dimensions in the () set, and of (e + ) dimensions
in the (b) set of coefficients, and consequently Lan= 4 L'an—r= 4 . 4 (L)
must satisfy the conditions necessary and sufficient to prove its being (toa
numertcal factor prés) a simplified residue to (U, V).

Thus suppose
U=ayz* 4+ 0,8 + @, + a,x + ay,
V= bya® + by + b,.

Then, corresponding to the system of which equation (13) is the type,
we have
V=0ba*+bx+b,

xV =bya®+ b,a? + byz.
Again, to form the system of which equation (12) is the type, we write
boU = (a0 + wyw +ay) V=0, (a2 + a,) — (@,2° + 0,z + a,) (b,x + b,)
= — b, a® — (@b, + a,b) 2+ (byay — ay by — ab)) @ + (b, — anb,),
(0o 4 b)) U — (0% + a,2* + aot 4+ ay) V= (b + b)) a, — (02® + a,2° + a4+ a,) b,
= — b, @ — a but® + (byry — a,0.) © + (hya, — byay).
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Combining the two equations of the first system with the first of the second
system, we obtain the first simplified residue Lz + L', where

\ 0, b,, b, )
— L= b, b, b,
ahy, by + by, b, 4 ayby —bya,
and
0, b,, b,
L'=]b, by, 0

@by,  daoby 4 aby, b, — byay

By again combining the two equations of the first system with both of the
second system, we have the determinant

0, by, b, b,
b,, b, b., 0
by,  agb, +ab;, b, 4 ab,—ba,, a,b,— bya,
| aob,, ab,, a.b, — byay, by — a, b,
which is the last simplified residue, or in other terms, the resultant to the

system U, V.

Art. 7. It is most important to observe that the Bezoutian matrix to two
functions of the same degree (n) is a symmetrical matrix, the terms similarly
disposed in respect to one of the diagonals being equal.

Thus retaining the notation of Art. 5, so that
0, H)=aB—ba, (1, 2)=by—cB, (2,3)=cd—dy,

0, 2y=ay —ca, (1, 3)=05—4dp, &e.
(0, 3)=ad — da, &e.
&e.

when n=1 the Bezoutian matrix consists of a single term (0, 1);
when n =2, it becomes

0, 1) 0, 2)

0,2 (1, 2);
when n = 3, it becomes

(0, 1) (0, 2) (0, 3)

(0, 3)
(0, 2) ( + > 1, 3)
(1, 2)

(0, 3) (1, 3) (2, 3);
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when n =4, 1t becomes

O 1 (0.2 (03 (049

(0, 3) (0, 4)

0, 2) <+><+>(1,4)
(1, 2/ \@, 3)
(0, 4) 1, 4)

(0, 3) < - >< v > 2 4
(1, 3)/ \@ 3)

4 LY &H G Y;

when n=5, it becomes

(0, 1) (0, 2) (0, 3) 0, 4 0, 5)

(0, 2) + + + (1, 5)
.2/ \a, 3/ \q ¢

(©, 5)
(0, 4) + (1, 5)
(0, 3) + (1, 4) + ) (2, 5)
(1, 3) + (2, %)
(2, 3)
(0, 5\ /@, 5)\ /(2 5)
0, 4) + + + (3, 5)
(1, 4/ \(2, 4/ \(3, 5)

©5 &L5 (&5 G5 (%5,

and so forth., Every such square it is apparent may be conceived as a sort
of sloped pyramid, formed by the successive superposition of square layers,
which layers possess not merely a simple symmetry about a diagonal (such
as is proper to a multiplication table), but the higher symmetry (such as
exists in an addition table), evinced in all the terms in any line of terms
parallel to the diagonal transverse to the axis of symmetry being alike*.
Thus for n =5, the threc layers or stages in question will be secen to be,
the first—

©1n 02 ©3 O 53
©0,2) (0,3 (0,4 (0,5 (1, 5)
0,3 (0,4 (05 (L35 (25
0,4 0,5 (1,5 (25 (35
©,5 (135 (&5 G5 (45

* A square arrangement having this kind of symmetry, namely, such as obtains in the
so-called Pythagorean addition table as distinguished from that which obtains in the multiplica-
tion table, may be universally called Persymmetric.
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the second—
(1, 2) 1, 3) 1 4

L3 L4 (29
L4 (29 G
and the third—
(2, 3).
In general, when n is odd, say 2p 4+ 1, the pyramid will end with a single
term (p, (p+ 1)), and when even, as 2p, with a square of four terms,

(p-2) (p-1), (p—2).p)
(p—2), p) ((p—1), p)

Each stage may be considered as consisting of three parts, a diagonal set of
equal terms transverse to the axis of symmetry, and two triangular wings,
one to the left, and the other to the right of this diagonal ; the terms in each
such diagonal for the respective stages will be

0, n), (L, n=1), (2, (n=2))...(p, (p+ 1)),

p being g —1 when 7 is even, and 71;—1 when n 1s odd.

If we change the order of the coefficients in each of the two given functions,
it will be seen that the only effect will be to make the left and right triangular
wings to change places, the diagonals in each stage remaining unaltered.
The mode of forming these triangles is an operation of the most simple and
mechanical nature, too obvious to need to be further insisted on here,

Art. 8. When we are dealing with two functions of unequal degrees,
n and n+4 e, we can still form a square matrix with the coefficients of the
two systems of e and n equations respectively, but this will no longer be
symmetrical about a diagonal ; 1t is obvious, however, that if we treat the
function of the lower degree, as if it were of the same degree as the other
function, which we may do by filling up the vacant places with terms
affected with zero coefficients, the symmetry will be recovered; and it is
somewhat important (as will appear hereafter) to compare the values of the
Bezoutian sccondaries as obtained, first in their simplest form by treating
each of the two functions as complete in itself, and secondly, as they come out,
when that of the functions which is of the lower degree is looked upon as a
defective form of a function of the same degree as the other. A single
example will suffice to make the nature of the relation between the two scts
of results apparent.

Take
Jfr=a +b P +ct+dx+e,

dr=0 240 2>+ ya? 4 8z + e
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The general method of Art. 7 then gives for the Bezoutian matrix
0, ay, as, ae

ad ae
ary, <+>, <+>, be
by bé
ae be
ad, <+>< + >, ce — ey
bé ¢ —dy

ae, be, ce — ey, de — €.

We shall not affect the value either of the complete determinant, or
of any of the minor determinants appertaining to the above matrix, by
subtracting the first line of terms, each increased in the ratio of b: a, from
the second line of terms respectively; the matrix so modified becomes

0, ary, ad, ae
axy, ad, ae, 0
be
ad, ae 4 b, + , ce—ery
¢8—dy
ae, be, ce — ey, de — ed.

Again, adopting the method of Art. 6, we should obtamn the matrix

0, 02 3
(y) 8) e’ O
be
3, ae— b, + , Ce—ery
¢8 — dry
ae, be, ce — ey, de — 8.

Hence it is apparent that the secondary Bezoutians obtained by the
symmetrizing method will differ from those obtained by the unsymmetrical
method by a constant factor a?; and so in general it may readily be shown
that the secondary Bezoutians, by the use of the symmetrizing method, will
each become affected with a constant irrelevant factor a®, where « is the
difference of the degrees of the two functions, and a the leading coefficient
of the higher one of the two. When ¢ is taken unity, the Bezoutian
secondaries, as obtained by either method, will of course be identical.

Art. 9. There is another method* of obtaining the simplified residues
to any two functions U and V of the degrees n and n <4 e respectively, which,

* Originally given by myself in the London and Edinburgh Philosoplical Magazine, as long
ago as 1839 or 1840 [p. 54 above]; and some years subsequently in unconsciousness of that
fact, reproduced by my friend Mr Cayley, to whom the method is sometimes erroneously
ascribed, and who arrived at the same equations by an entirely different circle of reasoning.
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although less elegant, ought not to be passed over in silence. This method
consists in forming the identical equations (of which for greater brevity the
right—hand members are suppressed)

V = &e.
zV = &e.
zﬂ‘lif = &c.
U = &ec.
'V = &e.
zU = &e.

z YV = &e.
22U = &e.
2V = &e.
&c. = &ec.
22U = &e.
z¢ "V = &e.

If we equate the right-hand members of (e + 2i) of the above equations
to zero, and then eliminate dialytically the several powers of « from antets
to 1 (both inclusive), the result of this process will evidently be of (e + 1)
dimensions in respect of the coefficients in V, of + dimensions in respect
of the coefficients in U and of the degree z»— in @; it will also be of the
formn

(A + Bz +... +Lwc‘]) U+F+Gz+... + Qxe+;—1) v,

and by virtue of Art. 2, must consequently be the sth simplified residue to
the system U, V.,

Art. 10. The niost general view of the subject of expansion by the
method of continued division, consists in treating the process as having
reference solely to the two systems of coefficients in U and V, which them-
selves are to be regarded in the light of generating functions. To carry out
this conception, we ought to write

U= a,+ ay + a7 + a5 + &e. ad wnf.
V=b+ by + b.y* + by + &e. ad wnf,
and might then suppose the process of successive division applied to U and
V, s0 as to obtain the successive equations
U-MYV +R =0,
V — MR, +R,=0,
R, — M;R,+ R,=0,
&e. &ec.,
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M,, M,, M,, &c. being each severally of any degree whatever in y, and in
general the degree of y in M, being any given arbitrary function ¢ (¢) of ..
The values of the coefficients of the residues R, R,, R;,..., or of these forms
simplified by the rejection of detachable factors, become then the distinct
object of the inquiry, and will, of course, depend only upon the coefficients
in U and V and the nature of the arbitrary continuous or discontinuous
function ¢ (¢), which regulates the number of steps through which each
successive process of division Is to be pursued. Following out this idea in a
particular case, if we again reduce our two initial functions to the forms
previously employed, and write

U = aya™ + a, 2" + &e.
V = bya™ + b, + &e.;

and if, instead of making, according to the more usual course of proceeding,
the divisions proceed first through one step and ever after through two steps
at a time, which is tantamount to making ¢1=1, ¢ (1 + 0)=2, we push each
division through one step only at a time, and no more (so that in fact ¢ (s)
is always 1), we shall have

U-m V+R=0,

V - mZle +R2= 0)

R, —m, R+ R,=0,

Ry, —mgR, + R,= 0,

&e. &e.,

my, My, My, &c. being functions of the coefficients only of U and V'; and it is
not without interest to observe (which is capable of an easy demonstration)
that the simplified residues contained in R,, R,, &c., found according to this
mode of development, will be the successive dialytic resultants obtained
by eliminating the (:—1)th highest powers of z between the ¢ first of the
system of annexed equations (supposed to be expressed in terms of z)

U=0,
V=0,
xU =0,
zV =0,
22U = 0,
22V = 0,
&e. = &e
U =0,

a1 ) = 0.
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If we combine together 2+ 1 of the above equations, the higliest power of
x entering on the left-hand side will be "+ and we shall be able to eliininate
2 of these factors, leaving 2" the highest power remaining uneliminated,
If we take 27, that is ¢ pairs of the equations, the highest power of » appear-
ing in any of them will be 27+ and we shall be able to eliminate between
them so as still to leave &”** =1 that is 2"~ as before, the Lighest power
of z remaining uneliminated; and it will be readily seen that such of the
simplified residues corresponding to this mode of development as occupy the
odd places in the series of such residues, will be identical with the successive

simplified residues resulting from the ordinary mode of developing % under

the form of a continued fraction.

Art. 11. It has been shown that the simplified residues of fzr and ¢z
resulting from the process of continued division are identical in point of
form with the secondary Bezoutians of these functions, but it remains to
assign the numerical relations between any such residue and the corre-
sponding secondary.

To determine this numerical relation, it will of course be sufficient to
compare the magnitude of the coefficient of any one power of z in the one,
with that of the same power in the other; and for this purpose I shall make
choice of the leading coefficients in each. In what follows, and throughout
this paper, it will always be understood that in calculating the determinant
corresponding to any square the product of the terms situated in the diagonal
descending from left to right will always be taken with the positive sign,
which convention will serve to determine the sign of all the other products
entering into such determinant. Now adopting the umbral notatiou for
determinants*, we have, by virtue of a much more general theorem for
compound determinants, the following identical equation:—

<a1a2a3 am_1> 9 (a] (179 PSR am+1>
005 ov Ty Q00 e Oy gy
[0, ... am_lam> N (alaz am_lam+1>
\al Ul « oo Opu—1%m 00y .. O Oimt1
<a1 gy oo A1 ) % <a1a‘z cee ipa am+1>
- y
0 Qg ovv Qg1 Omy1 40y ..o Qp—10m
and consequently
<a1(12a3 am_1> <a1a2a3 vee A1 Oy amﬂ)

A Xy A vve Oyp—1 A 00y « v Oy pn O g1

- (axazas am_lam> N (alaz o O am+x> _ (“1“2 cvr Q1 )2

X0 « .. U1 Um a0y o ee Q1 Ging 040 o O 1y

* See London and Edinburgh Philosopkical Magazine, April 1851 [p. 242 above].
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and consequently when

<a1a2 ve Uy O > -0
- Y

Gy vos A Ay

<(L1 Az ... am—1> and <a1a2 vos Qyn (/Lm(lm+1>

@0y vee Oy By oo By Qo iy 1

will have different algebraical signs, it beiug of course understood that all the
quantities entering into the determinants thus wmbrally represented above
are supposed to be real quantities. Thistheorem, translated into the ordinary
language of determinants, may be stated as follows:—Begin with any square
of terms whether symmetrical or otherwise, say of 7 lines and r columns: let this
square be bordered laterally and longitudinally by the same number r of new
quantities symmetrically disposed in respect to one of the diagonals, the term
common to the superadded line and column being filled up with any quantity
whatever ; we thus obtain a square of (r+ 1) lines and columns; let this
be again bordered laterally and longitudinally by (r+1) quantities symme-
trically disposed above the same diagonal as that last selected, the place
in which this newline and column meet being also filled up with any arbitrary
quantity ; and proceeding in this manner, let the determinants corresponding
to the square matrices thus formed be called D,, D,.,, Dryp...: this
series of quantities will possess the property, that no term in it can vanish
without the terms on either side of that so vanishing having contrary signs.
Thus if we begin with a square consisting of one single term, we way suppose
that by accretions formed after the above rule it has been developed into
the square (M) below written, and which of course may be indefinitely
extended :—
a, L, m, p, s

I, b n q
m, n, ¢ T, U, (M)
pogq 1 d v
8, t, uw, v e

Here D,, D,, D,, D, D,, D, will represent, the progression

. a, !, m, p, s
a, I, m | @ Lo p L b,on qt
a/’ l 2 b l’ b’ n, q ’ b b bl
1, a, , L, b, n |, , m, n, ¢ r,ou |;
L, m, m, ¢, 1
m, n, ¢ pogr o dow
P d s, t u, v e
3 > > >
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so if we use the matrix

the determinants D,, D,, D,, D,, representing

: a, L m, p
a l, m ,
a, ! , r, b =n ¢
’ 7 > l> b; n > )
U, b m, mn, ¢ 7
m, n, ¢

p, ¢ 1 d

will possess the property in question; the line and column ¢, &; U, & not
being identical, the first determinant D, representing unity must not be
included in the progression.

We shall have occasion to use this theorem as applicable to the case of a
matrix symmetrical throughout, and we may term the progression (II), above
written, a progression of the successive principal determinants about the
axis of symmetry of the square matrix (M), and so in general. Now it is
obvious that the leading coefficients of the successive Bezoutian secondarics
are the successive principal determinants about the axis of symmetry of the
Bezoutian squares; they will therefore have the property which has been
demonstrated of such progressions; to wit, if the first of them vanishes, the
second will have a sign contrary to that of +1; if the second vanishes,
the third will have a sign contrary to that of the first, and so on.

Art. 12, Now let fz and ¢x be any two algebraical functions of z with
the leading coefficients in each, for greater simplicity, supposed positive:

and in the course of developing ;—eﬁ under the form of an improper coutinued
X

fraction by the common process of successive division, let any two consecutive
residues (the word residue being used in the same conventional sense as
employed throughout) be

Azt + Br + Cz2 4 &e.
Ba  C'a + D' + &c.
The residue next following, obtained by actually performing the division and
duly changing the sign of the remainder, will be

(47 -0)- (47~ s
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which is of the form

22 (B~ 407 o ¢ e

Thus the leading coefficients in the complete unreduced residues will be

1

4, B,

(BM - AC™,

and when reduced by the expulsion of the allotrious factor will become
A, B, BM — AC” and consequently, when B’ the leading coefficient of one
of the simplified residues vanishes, the leading coeflicients of the residues
mmmediately preceding and following that one will have contrary signs.

First, let fz and ¢z be of the same degree. As regards the numerical
ratio of each Bezoutian secondary to the corresponding simplified residue,
it has been already observed that there are always unit coefficients in the
latter of these, and the same is obviously true of the former; hence if we
call the progression of the leading coefficients of the simplified residues

-Rly R‘D RSa Rd; &C.,
and that of the leading coefficients of the Bezoutian secondaries
B, B,, B,, B,, &c,

we have

B=+R, B,=%+R, B=t%R, B,=t+R, &c

It may be proved by actual trial that B, =R, and B,= R,. Moreover,
since the signs are invariable, and do not depend upon the values of the
coefficients, we may suppose B,=0 (which may always be satisfied by real
values of the quantities of which B, is a function); we shall also, therefore,
have R, =0, and consequently B, has the opposite sign to that of B,, and R,
the opposite sign to that of R,, which is equal to B,: hence when B, =0,
B, and R, are equal, and consequently are always equal; in like manuer we
can prove that R, and B, have the same sign when R; and B; vanish, and
consequently are always equal, and so on ad lthitum, which proves that the
sertes B,, B,, ... B, is identical with the series R, R,, ... R,, and con-
sequently that the Bezoutian secondaries are identical in form, magnitude
and algebraical sign with the simplified residues.

Secondly, when fz and ¢z are not of the same degree, it has been
shown that the secondaries formed from the non-symmetrical matrix corre-
sponding to this case will be the same as those formed from the symmetrical
matrix corresponding to fr and Pz (where ®z is ¢z treated by aid of
evanescent terms as of the same degree as fr), with the exception merely
of a constant multiplier (a power of the leading coefficient of fz) being
introduced into each secondary. By aid of this observation, the proposition
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established for the case of two functions of the same degree may be
readily seen to be capable of being extended, from the case of f and ¢
being of equal dimensions in z, to the general case of their dimensions being
any whatever.

Art. 13.  Before closing this section, it may be well to call attention to
the nature of the relation which connects the successive residues of fr and
¢o with these functions themselves, and with the improper continued

bz

fractional form into which T is supposed to be developed in the process of

obtaining these residues.

If ¢z be of n degrees, and fz of n + e degrees in «, we shall have

o 1 1 1 1
j:x——Ql_ Q== g

where @, may be supposed to be a function of z of the degree e, and
Q2» @s» +-- Gn, are all linear functions of z; the total number of the quotients
@, o --- qn being of course m when the process of continued division is
supposed to be carried out until the last residue is zero. Upon this supposi-
tion the last but one residue is a constant, the preceding one a function of
of the first degree, the one preceding that a function of z of the second
degree, and so on.

Let us call the residue of the degree : in z, %,; it will readily be seen
that the successive complete residues arranged in an ascending order will be

Y, So?n; Y, (Qn—lqn - 1), Y, (%1—297»—1 n — Qn—o— Qn); &c,,

being in the ratios

L —1,&c.

1
1, Qnsy Qn—1— = Qn-fz_qn_l_qn

qn
Again, we shall have in general
Al.f_ LL¢:%L) (15)

A, being an integral function of @ of the degree n—:—1, and L, an integral
function of # of the degree (n+€)—:¢—1; and it is easy to sec that the
successive convergents to the continued fraction

1 1

1
— &ec.
Qe o qo

have their respective numerators and denominators ideutical with those of
the fractions
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Adopting the language which I have frequently employed elsewhere,
I call &, a syzygetic function, or more briefly a conjunctive of f and ¢, and
A, and L, may be termed the syzygetic factors to %, so considered. If we
divide each term of the equation (15) by the allotrious factor (M), we have

A . L
Mf_ j'j ¢ = Ru

A,

where R, is the ith simplified residue to (f, ¢); and if we call i

L

]TIL =1, so as to obtain the equation
TJ—td=R, (16)

we see that :‘, the fraction formed by the component factors to any simplified

(2

=7, and

residue of (f, ¢), will be identical in value (although no longer in its separate
terms) with one of the corresponding convergents to%, exhibited under the

form of an improper continued fraction. I shall in the next section show
how, not only the successive simplificd residues, but also the component
syzygetic factors of each of them, and consequently the successive con-
vergents, may be expressed in terms of the roots of the two given functions.

Since the preceding section was composed the valuable memoir of the
lamented Jacobi, entitled “De Eliminatione Variabilis ¢ duabus Equationibus
Algebraicis,” Crelle, Vol. XvL, has fallen under my notice. That memoir is
restricted to the consideration of two equations of the same degree, and the
principal results in this section as regards the Bezoutic square and the
allotrious factors applicable to that case will be found contained therein.
The mode of treatment however is sufficiently dissimilar to justify this
section being preserved unaltered under its original form,

SEcTIiON 11

On the general solution wn terms of the roots, of any two given algebraical
Junctions of x, of the syzygetic equation, which connects them with a third
Junction, whose degree in x is given, but whose form s to be determined.

Art. 14. Let f and ¢ be two given functions in « of the degrees m and
n respectively in «, and for the sake of greater simplicity let the coefficients
of the highest power of # in f and ¢ be cach taken unity, and let it be
proposed to solve the syzygetic equation

Tf—tdp+D,=0, (17)
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where %, is given only in the number of its dimensions in z, which I suppose
to be ¢; but the forms of 7, ¢, O, are all to be determined in terms of
R, hs ... o the roots of fand #,, 7, ... 7, the roots of ¢.

I shall begin with finding %, ; and before giving a more general represen-
tation of %, I propose now to demonstrate that we may make

D=2 (P, g X (2= lg) (@ = hg,) ... (& = hy)l, (18)
where Py ., is used to denote

(th+1 - ) (h,h“ — ) -en (thH — )
X (th+2 — ) (th+2 — ) ... (thH — M)
X (}zq%s = 1) (b y = ) - (Rg = M) R (hy, Ry ... hy),

R (hy, hy, ... hy) denoting any rational symmetrical function whatever of
the quantitics preceded by the symbol R, and ¢1, ¢s -.- @, @41 -~ @m being any
permutation of the m indices 1, 2... m.

Suppose =0 and ¢ = 0, then z is equal to one of the series of roots
he, by o b,
and also to one of the sertes of roots

M M2 eve N
Suppose then that
z=he=1,,

and consider any term of %,.
If in any such term « is found in the scries ¢, ¢. -.- ., then
(@ =hg) (@ —hg) ... (—=hg)=0.
But if not, then « must be found in the complementary series
g irs Rypo e g

and consequently I, , . will contain a factor he— 7. and Py g4 =0, m

every case therefore
Pogyna, X (%= ko) (@ — hg) ... (2 — hg,) = 0.

Therefore &, as expressed in equation (18) is a syzygetic function of f
and ¢ ; and we have found a function of the ih degree in z, and of course
expressible by calculating the symmetric functions as a function only of # and
of the coefficients of f and ¢, which will satisfy the equation

th—tb¢+5L=:0.
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It will be remembered that by virtue of Art. 2 we know d priori that all
the values of &, satisfying this equation are identical, save as to an allotrious
factor, which is a function only of the coefficients in f and ¢.

It is clear that we may interchange the & and », m and », and thus
another representation of a value of Y, satisfying the equation (17) will be

3= 2R (g, g, --- Mg,) X
(77'1L+1 —h) (77(]HLl —hy) ... (77'1L+1 — ho)

gy = 1) (Mg g = 112) - (= hom)
(77¢IL+3 ~hy) (77'1L+3 —hy) e (77%+3 — hum) (2~ ng) (x—1ng,) ... (2= 1g,).

Mgw~h) (Mg —la) oo (Mg~ hin)

Art. 15. If we employ in general the condensed notation

Lm,n..p
My e v |

to denote the product of the differences resulting from the subtraction of
each of the quantities N, w...» in the lower line from all of those in the

upper line I, m, n...p, the two values above given for %, may be written
under the respective forms

hy o hg .-k
B (hgys by, oo hy,). [ o Lqm] (&= hg,) (2= hg,) - (x = hy),
M Naoee M

M

M e
and ER(WS,)WQH'??&)'[ vir? T 6"] (@=m ) (@—m,) . (€—m,),

hyy  heeoo Ry,
in each of which equations disjunctively and in some order of relation each
with each

Dy Gos G5 gm=1,2,3...m,

and £E,E,E..86,=1,2,3...n

These two forms are only the two extremities of a scale of forms all equally

well adapted to express %,; for let v and » be any two integers so taken as
to satisfy the equation

vV+rv=1,

used to denote a rational function which remains unaltered in value when any
two of the quantities under either of the two bars are mutually interchanged,
then we may write

hay > hg, ., - g
R (hy, by, ... }qu; Meps My -+ 1’5.,) X [ vi1? pte m]
Mg » Mg

n

S’Lzz v+1) "lfv+2-- N (19)

x(&—hy)(@—hg) ... (% = hy,) x(m—ngl) (a:—n&)... (x_"’e.,)
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For 1if, as above, we suppose & = h, =1, any term of %, in which ¢, ¢,... ¢,
comprise among them a, or in which &, &, ... £ comprise among them o,
will vanish by virtue of the factors

(2= hg) (@ =hy) .. (2= hg,) X (z =) (T —7,) ... (% ~7,)5
but if neither « nor @ is so comprised, then a must be onc of the terms
in the complementary series qu,, Goys, --- ¢m, a0d @ one of the terms in the
complementary series &,.,, £,.2... &4, and therefore one of the quantities

hqv+l, h,,v+2 ... hg, will equal one of the quantities LISRE Rt and con-

sequently the term of %, in question will vanish by virtue of the factor
[:h'hﬂ—l’ h'lv+2 e hqm

775V+1, 775V+2 . 7751‘
within the sign of summation vanishes when z =k, = 9, that is, whenecver
fx=0 and ¢z=0. Hence %, as given by equation (19), will satisfy
the syzygetic equation 7.f —td+ % =0 for all values of v and » which
make v+ v =, and for all symmetrical forms of the function denoted by the

] vanishing. In either case therefore cvery term included

Art. 16. I shall now proceed to show how to assign the arbitrary
function whose form is denoted by this symbol in such a manner as to make
9, become identical with a simplified residue to f and ¢. To this end I take
for B (hy,, by, - hgys ngys e, oo Me,) the value

[h,h, by, ... hqv]
_ Mep Moy ooe e, _
[h'h’ hq2 }qu] o l:ngl, N, -»- ngv:I ’
Pgyirs Payiy o Rayy Meyirs My g oo Mn
we shall then have
[h,h, bg, - hqv] y [h'lv+1 thZ ]I'Jm]
Nep Moy -0 e, 775v+l775v+?... M,
[hqn hy, - h'lv] » [7781' L7 775.,]
h'lv+1’ h-‘]v+2 ... h‘]m LTI "75v+2 v Mgy
X (0= ) (=) oo (5= )} (&= 1) (2= 1) . (= mg))- (1)
I shall first show this sum of fractions is in substance an integral function
of the quantities hy, Ay... h; My 7o -.. 7a.  For greater conciseness write
in general x—h=FK, x~n=H; we have then, since
h—— n =H_E) h‘]r—— h'lszE‘]s_ E']r’ NE, — N, :Hfs—— H&r’
[Hg‘, ng Hgvil o [H5v+1' H§v+2 I{in]

o oy LEuw By Byl LEwy Fas - B - E, ... E, Hy .. H,

[Eqw, By, E,,] ) [Hgm, Hy, .o Hﬂ 22
E,, E, ..E, H;, H, .. H (22)

(20)

v



462 On a Theory of the Syzygetic Relations [67

On reducing the fractions contained within the sign of summation to a
) . N .
common denominator, &, will take the form DA where D will be the

product of the §m(m—1) differences of E,, K, ... E,, subtracted each from
each, and A the corresponding product of the differences wnter se of
H, H,...H,. Hence, unless the sum in question is an integral function
of the J’s and H'’s it will become infinite when any two of the £ series, or
any two of the H serics of quantities are made equal. Suppose now X, = E,;
the terms in (22) which contain E,— E, in the denominator will evidently
group themselves into pairs of the respective forms,

0B, ... E He... H I I
(E1L03 E'Iv) X(H£1 & £y) X [H£1’ HQ'-'H%] [H§v+l’ If; ]

[F E, ...E,]v‘JX{H&, 1, ...H;y]

IPREE

By By oo Bgy |\ Hsy ) H, o H,
and
BB, ... B ) x (He Hy, .. . He)x | 2 7" 2 g T e
( I3 (Iu) ( &AL g, £y) [H&,H£2...Hgyl»i[Hgvﬂ,II§V+2...H§:"]
[EQ’ E'Is E'Iv] % [Hfl’ Hfz va]
By By, By | He  H H,

the sum of this pair of terms will be of the form

[El E, }
p| E \Hy H,. . H |*|H,, HW...HJ

leEl—E; E,
[E E ...Eng

J
41’ e
b

{Eg E,
P E, H;l,lfgz...Hsvjl X ,HEH—]’HSVH"'HS?;J

+ Q E2 - E1 [Ez
E'lv+1’ Eqv+2 e E'Im:I

where @, it may be observed, does not contain H, — H,, so that g remains
finite when H,=H,.

The above pair of terms together make up a suin of the form

P 1 ¢(By BNV B~ (B, B)VE,

QE—E, VE XV E, :

which, as the numerator of the third factor vanishes when K, = E,, remains
finite on that supposition. Hence the whole sum of terms in (22) which is



57] of two Algebraical Functions. 463

made up of such pairs of terms, and of other terms in which E,— F, does
not enter, remains finite when £, — E,=0, and therefore generally when
D=0, and similarly when H,— H,=0, and therefore also when A=0;
hence the expression for %, in (22)is an integral function of the & and H
series of quantities, as was to be proved.

Art. 17.  Let us now proceed to determine the dimensions of the coeffi-
cient of *, the highest power of « in this value of %,, when supposed to be
expressed under the form of an integral function (as it has been proved to be
capable of being expressed) of ky, hy ... by 7, 15 ... 9 .

This coefficient 1s the sum of fractions the numerators of each of which
consist of two factors, which are respectively of v x v and of (m —v) x (n - »)
dimensions 1n respect of the two sets of roots taken conjomntly, and the
denominators of two factors respectively of v(m —v) and »(n —») dimen-
stons 1n respect of the same,

Consequently, the exponent of the total dimensions of the coefficient in
question

=w+(m—-v)(n—v)—v(m—-v)—v(n—v)
=(m—v—v)x(n—2v—0)
=(m—1)(n—1),

and thus is seen to depend only on the degree ¢ in « of %,, and not upon the
mode of partitioning ¢ into two parts v and », for the purpose of representing
Y., by means of formula (19).

Art. 18. I shall now demonstrate that every form in this scale (to a
numerical factor prés) is identical with a simplified residue to f, ¢, of the
same degree ¢ in z. Any such simplified residue 1s, like %,, a syzygetic
function, or to use a briefer form of speech a conjunctive of f, ¢; and if we
agree to understand by the “weight” of any function of the coetlicients of
Jand ¢ its joint dimensions in respect of the roots of f and ¢ combined,
I shall prove,—first, that any simplified residue of f and ¢ of a given degree
in 2 is that conjunctive, whose weight in respect of the roots of f and ¢
1s less than the weight of any other such conjunctive; and second, that %,
as determined above (in equation 22), is of the same weight as the simplified
residue, and can therefore only differ from it by some numerical factor.
For the purpose of comparison of weights, it will of course be sufficient
to confine our attention to the coefficients of the highest power in « (or
any other, the same for each) of the forms whose weights are to be compared.

Suppose f to be of m dimensions, and ¢ to be of n dimensions in z;
and let m=n +e.
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Suppose Af+Lp=Ax 4+ B+ ...+ K, (23)
A=z + 027 4+ Ay,
L=1lxt + a7+ .+,
the number of homogeneous equations to be satisfied by the ¢ + 1 quantities
Xos Ap... Ag, and the ¢+ e+ 1 quantities [, [, ... I, will be m + g—, and
therefore ¢ +1 and g +e+1 taken together must be not less than m +¢—¢+1,
that 1s 2¢ + e + 2 must be not less than ¢ + m —+ + 1, that 1s ¢ not less than
m——e— 1; and if this inequality be satisfied 2g +e+ 2 —(g+m—¢ +1) +1,
that is ¢+ ¢ +e—m + 2 will be the number of arbitrary constants entering
into the solution of equation (23).
If ¢ be greater than (n —1),let g=(n—1) +¢; and let
(A) = Xe@"™ + X8 + .0 + Apy,
(Ly=leze p La™ 2 4 ol s
and let (A), (L) be so taken as to satisfy the equation
MNf+L)ydp=Ax+ B+ ... + K
and make E=(A)+(f+gz+... + ha'™) ¢,
X=L)—(f+g9z+...+hx'™)f
S+ g ... h being arbitrary constants ; then
Ef+Xo=(MNf+(L)y¢p=A4z + Bx+ ... + K.

Now the total number of arbitrary constants in the system (A) and (Z)
will be n—14:+4e—m+ 2, that is 4 + 1; hence the total number of arbitrary
constants in 2 and X will be ¢ + 1 +¢, that is ¢ — n + « +2, which is equal to
q +¢-+e—m + 2, the number of arbitrary constants in the most general values
of A and L. Hence {A=E, L =X} is the general solution of the equation
Af+Ld=Ax+ Bx—+ ...+ K; and consequently the most general form
of Azt + Bz~ + ...+ K, which is evidently independent of the (t) arbitrary

quantities f, g ... h, will contain the same number of arbitrary constants
as enter into the system (A) and (L), that ts + + 1.

Art. 19. Let us now begin with the case of greater simplicity when
m=mn, that i1s e =0; and let us revert to the system of equations marked (10)
in Section I, in which U and V are to be replaced by f and .

First, let ¢ =n—1, then ¢+ 1, the number of arbitrary quantities 1n the
conjunctive, is n.

From the system of equations (10) we have, for all values of p,, ps, ps ... pa,

(PIQO + P2Q1 + ... 4 PnQn—l)f
“(P1P0+P2P1+ +PnPn—1)¢
= (p Ky + p2 i fCy + oo + praiKy) 2 + &e,
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and consequently the most general value of %, , in the equation
Toonf —taap+ ¥y =0,
where Yy =Aa" 'y Bx" 2 ... + L,
will be obtained by making
a1 = P+ o + - + puQunss
o =—pLy— poPy ...~ ppPn_,,
which solution contains n, that is the proper number of arbitrary constants.

Agamn, if t=n-2, 1 +1=n—1, which will therefore be the number
of arbitrary constants in the most general value of %,_, in the equation

Tn—2f - tn—z(,'b +9,,=0.
This most general value of %,_, is therefore found by making

Tp— = PllQo + PI2Q1 + ...+ Pann—l)

by =~ PllPo - Plzpl her P/nPn—u
where p’}, p,... p'n are no longer entirely independent, but subject to the
equation

Pll K, +P/2 SO+ L+ P/nn—lKl: 0,
s0 as to leave (n — 1) constants arbitrary.

We thus obtain %, ,=(p" K, +ps 1 Ko+ .. + pnaKy) a2+ &c.  In like
manner, and for the same reasons, the most general values of %,_; In the
equation

Tnosf — lhsp + Vn—s =0,
will be found by making
Tn—g = Plll Qo + Pue Q1 +...+ P//n Qn—la
ths=—p" Po—p 2 Pr.. — p"p Ppy,
where p"|, p”, ... p”n are subject to satisfying the two equations
P K+ p K+ e+ p =0,
Pl p s H 4 o+ K= 0,
S0 as to leave (n — 2) constants arbitrary; and we thus obtain
s =(p"1 Ky +p"s Ky + ... + p'nnidCs) 2™ 4 &,

and so on, the number of independent arbitrary constants in % decreasing
(as it ought) each time by one unit as the degree of & descends, until finally,
frf—td+Y=09, being a constant, the general value for %, is found by
making

7'():()01) Qo+ (Pa) Q1 + ... +(Pn) Qn—l:
o=~ (p1) Py~ (p2) Py—... - (Pn)Pn—u
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where (p,), (ps) ... (pn) are subject to satisfy the (n — 1) equations
(p)) K, + &e. =0,
(p) K, + &c. =0,

(p)) Ky + &c. =0,
which gives S =Ko (P + 1 K (pls 4 - + niKn (P

Now evidently the lowest weight in respect to the roots of U and V that
can be given to (p, K, + po S+ .- + pn niK(}) 2" + &c., when the multipliers
P1» Pz -+ pu are absolutely mdependent, is found by taking

=1 p,=0, py=0...p,=0,

which makes the weight of the leading coefficient in %,_,, the same as that
of K, that 1s 1.

Again, when one equation,
Pr K +p i+ .o+ panada =0,
exists between the (p)’s, the lowest weight will be found by making
ph=.K, p=—K, p;=0, pi=0..p,=0,
which makes the weight of the leading coefficient in %,_, depend on
KK, — KK,
which is of the weight 1 + 8, that is 4, in respect of the roots of f and ¢.

Similarly, &,_, will have its lowest weight when its leading coefficient
1s the determinant

Kl) K?) K3 )
K, K, K
K, WK, WK

the weight of which is 1 +3 4+ 5=09; and finally, the lowest weighted valuc
of %, is the determinant represented by the complete Bezoutian square; the
weight in general of ©,_; being 143 + ... +(2¢ — 1), that is #* or which
is the same thing otherwise expressed, the weight of the leading coefficient
of the lowest-weighted conjunctive of f and ¢ of the degree : in @ 18
(n—1)(m—)* It will of course have been seen in the foregoing demon-
stration, that the weight of K, [which means ¥ (a,b; ~ asb,), a», a being the
coefficients of 27—, 27 in f, and b,, b, of the same in ¢] has been correctly
taken to be r 4+ s in respect of the roots of £ and ¢ conjoined.

* n and m are supposed equal and (=n—1i.
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Art. 20. If now we proceed in like manner with the general case of
m =n+ e, 1t may be shown, in preciscly the same way as in the preceding
article, that the most general value of any conjunctive of f and ¢ will be a
linear function of ¢ functions,
4, "L+ ay,
R, N L R B L SRR, iy A

) N R D N T2

™ g™t 4 &e. + apzt,
and of the n functions,
Ko+ K4 ...+ K,
K K24 ...+ K,
&ec. &e.
w4 o Kot 4 g K,

and that consequently, if the degree of such conjunctive in x be (n - ?),
it will be of the lowest weight when it is a linear function of the entire
e upper set of functions, and ¢ of the lower set; and consequently, the

coefficient of the highest power of z in such conjunctive will be the
determinant

K, K, K. Kivooon. Kive |,
Ky K KooK Koy
Ko Ke oKeeesKaan Kiope

1, a, Ay ovnnn- Gimyy Qi oo Qigoy
1, Ay evenns Gimyy Qg eer Uigos
1...... Aimay,  Opees Biioy

1 ... a;

the weight of which is evidently that of
Kl X 1K2 X gKg oo X i—1Ki X (ai)e’
that is 148345 4+...4+4@2i—1)+eq

that is 2+ ei, or i(e+1), which is (n—s)y(m =) if t=n—1.
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Hence the weight of the leading coefficient in the lowest-weighted
conjunctive of f and ¢ of the degree ¢ in z 1s (m —i)(n~¢), m being the
degree of fand n of ¢.

From this we infer that any conjunctive of f and ¢ of the degree .,
of which the leading coeffictent 1s of the weight (m —:)(n—.), all the
coefficients being of course understood to be integral functions of the roots
of f and ¢, must, to a numerical factor prés, be equivalent to any other
of the same weight; and furthermore, any supposed function of z of the ith
degree which possesses the property characteristic of a conjunctive of vanish-
ing when f and ¢ vanish simultaneously, but of which the weight of the
leading coefficient would be less than (m — ) (n — ), must be a mere nugatory
form and have all its terms tdentrcally zero*.

Art. 21. We have previously shown, Art. 16, that Y, as defined by
equation (21), 1s an integral function of the roots f and ¢, and vanishes
when f and ¢ vanish. Moreover, its weight in the roots has been proved
to be (m — 1) (n — 1), and consequently, if by way of distinguishing the several
forms of %, we name that one where : in the equation above cited is supposed
to be divided into two parts, » and v, %,,,, we have for all values of v and »,
such that v+ v 1s not greater than n, %, , to a constant numerical factor prés
identical with the (v +»)th simplified residue to (f, ¢), so that the form of
Yy, depends only upon the value of v + ».

Art. 22, It must be well borne in mimd that this permanency of the
value of %, ., for different values of » has only been established for the case
where : can be the degree of a residue to f and ¢, that is to say, when &
1s less than the lesser of the two indices m and n. When « does not satisfy
this condition of mequality, the theorem ceases to be true. 1t is clear that
when m =n and v + v=m = n, %, ,, which always remains a conjunctive of f
and ¢, can only be a numerical linear function of f and ¢; and I have
ascertained when m =n on giving to v and v the respective values succes-
sively (0, n), (1, n—1), (2, (n — 2)) ... (n, 0) that

S'o,n‘:f; S'1,7»—1 = (n - 1)f+ ¢§ S'2,n~2 = Qz‘t ]1)*(; r”z")f'*' (n - 1) d”

Vi =f+(n-1)¢; Vo=
Thus, by way of a simple example, let
f=r+az+b=(x—h)(z—h),
p=a+ax+ B=(x—k)(z — k),

* And more generally it admits of being demonstrated by precisely the same course of
reasoning, that the number of arbitrary parameters in a conjunctive of the degree ¢, and of the
weight (m—¢) (n—¢}+e in the roots, cannot (abstraction being supposed to be made of an
arbitrary numerical multiplier) exceed the number e.
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= (@) (=h) i, —(@—h) (@@= k)=

)
RN /1] Kl

ARH

—ho
h_hgzkl"k {(h —k)(h _]‘72)}

: =k 1 f@—k) (hm ) (e — R
that 15 _EM—hih—h< —@—@Mm_mxm—kQ}
(R R E ((RY SURNY Y 48]

=(@—h)z+(x—h)x— (ks + k) z + (hhy + ki)
= {2 — (b + hy) @ + b} + (02 — (b + k) 2 + IoJy}
=(2*+az+b)+ (a*+ax+ B)
=f+¢;

so we find also ¥, , = ¢.

Art. 23. The expression %,,, which is universally a conjunctive of f
and ¢, continues algebraically interpretable so long as v+ » has any value
mtermediate between 0 and m + n; when v+ » =0 we must of course have
=0 and »=0, and %, , becomes the resultant of fand ¢; whenv+rv=m+n
we must also have the unique solution v =m and » =n, and ¥,, » becomes
necessarily £ x ¢, which we thus see stands in a sort of antithetical relation
to the resultant of fand ¢, say (f, ¢). Nor is it without iterest to remark
that /' x ¢ =0 implies that a factor of f or else of ¢ is zcro; and (f, ¢)=0
implies that if a factor of the one of the functions is zero, so also is a factor
of the other, that is that a factor of each or of neither is zero. As ; increases
from 0 to n or decreases from m +n to m —1, the number of solutions of the
equation » 4+ v =1 in the one case, and the number of admissible solutions
of the equation » + v =1 in the other case, which is subject to the condition
that » must not exceed m, continues to increase by a unit at each step;
there being thus n+1 different forms %,, when v+ v =n, and the same
number when v + v=m — 1. For all values of : intermediate between n and
(m— 1) (both taken exclusively) it is very remarkable that %, , will vanish,
as I proceed to demonstrate.
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Art. 24. The weight of the coefficient of the highest power of %,
(v + v being equal to ) 1s (m — 1) (n — 1), and consequently, when ¢ is greater
than n, and less than m, %, , would contamn fractional functions of the roots
of fand ¢, if there were in 1t a power ¢, but %,, has been proved to be
always an integer function of the roots. Hence the coefficient of z* will be
zero, and so more generally the first power of z m %, ,, of which the coefficient
1s not zero, will be =%, subject to the condition (since evidently the weight
of the several coefficients goes on increasmg by units as the degree of the
terms in x decreases by the same) that w be not less than (m—:)(t—n);
let then @ = (m —)(t — n), ¥, , becomes of the form Aw—<+ Ba— + &e,
where A 1s of zero dimensions; but this 1s impossible if 1 — @ < n, for then
Az + &c. 1s a conjunctive of weight lower than the lowest-weighted
simplified residue of the degree : —w. Hence o 1s not greater than «—n,
that is (m — ) (v — n) 1s not greater than :— n, that 1s m —; cannot be greater
than 1, that is ¢ when intermediate between m and n cannot be less than
m — 1, otherwise %, , will vanish identically. Moreover, when :=m—1,
=1 —n, and 1 — @ =n, and accordingly ¥, ,,_,—, 15 not merely, as we might
know, d priort an algebraical, but more simply a numerical multiple of ¢ for
all values of ». The same is of course true also, m being greater than n, for
every form %, ,_,, since this is always a conjunctive of f and ¢, of which the
former 1s of a degree higher than the % m question, so that the multiplier
of f m this conjunctive must be zero*.

Art. 25. To enter into a further or more detailed examination of the
values assumed by &, , for the most general values of m, n, ¢, would be to
transcend the limits I have proposed to myself in drawing up the present
memoir. What we have established 1s, that to every form of %, ,_, apper-
taining to a value of ¢ between 0 and n, there is a sort of conjugate form for
which . lies between m + n and m ; that for c=m —1 or e =n, %, ,_, becomes
a numerical multiplier of ¢; and that when . lies in the mtermediate region
between n and m—1, %, ., vanishes for all values of ». I pause only for
a moment to put together for the purpose of comparison the forms corre-
sponding to ¢ and to m +n —:. By Art. 16, making i =v + v,

N=3(2—ly)(@=hy) .. (=l )X (= ) (x—m, ) ... (x—17,)

l:h,h, hy, .. hqv} y [h,,w, Fgga - hqm}
nfl’ 7752 e nfv 775!'1—1’ nfv+2 T nsn
[hqn hg, .- hqv} o [775.’ Ny, e ngv}
h h h
Qo1 Tqut2 Tt m 775;,+1’ nfv+2 o nfn
* It thus appears that if the indices m and n do not differ by at least 3 units, & will have an
actual quantitative existence for all values of « between 0 and m+n; or in other words, the

failure in the quantitative existence of the forms &, only begins to show itself when this difference
is 3; thus if m=n 4+ 3, 9, exists, and 9,,, exists, but 9,,,=0.
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The conjugate form for which /=m4+n—. and m—v, n—», v take the
places of v, v and (m—v)(n—v), will be got by taking
Ye=3(z—hg ) (@ —hg,) ... (@ —hy ) % (z— 77£V+1) (z — 7]5”2) SNCAED
I:h‘h’ h‘h T h']”} X |:h'1v+l’ h'lv+2 v th}
7751’ 7752 e Mg, nfy+)’ nfy+2 T nén
I:hql, hq2 ]qu:l % |:7751, 7762 nfv‘l >

hgyerr Pgre - hqm Meyorr Moo Mo
which 1t will be perceived are identical, term for term, in the fractional
constant factor, and differ only m the linear functions of z, which in &, and

in &, are complementary to one another. Our proper business is only with
those forms for which , <n.

Art. 26. It will presently be seen to be mnecessary to ascertain the
numerical relations between %, , and %, , when « <, and this naturally brings
under our notice the Inquiry into the numerical relations which exist between
the entire series of forms %, ., for a given value of i, corresponding to all
values of v between 0 and ¢ mclusive.

In order to avoid a somewhat oppressive complication of symbols, I shall
take a particular numerical example, that 1s m =7, n= 6, : = 4, and compare
the values of 45 155 Moas V1; Vo, all of which we know to be identical
[to a numerical factor prés] with one another and with the second simplified
residue to f and ¢, that bemg of the fourth degree in «; our object m the
subjoined ivestigation is to determime the numerical ratios of these several
forms of & to one another.

First, let v=0, v=4. The leading coefficient %, , 1s

[mns J
T N2:74
which we know & priori (it should be observed) to be essentially an integral

function of the k and the % system. In this, the term containing 7 will be
evidently

7576
5 Unbatuidishil,

Bassn
s Unfululibohit | )

|:775 j| ’
MiN273M4

the 5 system to which the latter summation relates being now reduced
to consist of 7, 75,75, 75, M5.  In this expression, again, the coefficient of 7;?
is evidently 1. Hence, therefore, the leading coefficient in %, contains the
term 7, 76
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Secondly, let v =1, »=3. The leading coefficient in %, , becomes
M7 % N4Ms7s
s ‘h] hzhsl_l'_4h5}ls}lv )
[hzhs,hhshshv:l % |:774775776:I
Ay M2
In this, the factor affecting #,* will be
M727s % N47s5
s hy hohghyhshoh,
[h‘zhxhghshs}h} % [774775 } ’
h, TN

7 being now understood to be eliminated out of the 5 system mcluded within
the above summation. Again, in this latter sum the factor affecting %

will be
MmN % 74
b, hohshhishoh,

B
[h2h3h4h5h'sh7:I % |:"74 :|’ ( )
h, MiN27s

75 and 7, being now both eliminated out of the # system. This last sum can
of course only represent a numerical quantity.

3

So in like manner, again, if v=2, v=2, the coefficient of 97 M Ny,
will be similarly reducible to the form

_mm:l N ["73"74 }
hyh hyhihshgh.
2 1/t g/lyllyltyg 7 . C
hyh hshsh, % N34 ( )
LRyl hyhy |
So, again, when v = 3, » = 1, the coefficient of 70 in Oy ; will be
_"71 jl % |:"72"73"74 )
hihoh hehyshgh,
2 L 1/02ity _ 4'v570¢ d. D
hhshsh, % |:"72"73"74 ( )
_h]h2h3 B /)
and finally, the coefficient of 57, in 3, ; will be
—"71"72"73114_
hghsh
Lits/bs/ly | E
z [ hshh, |7 ()
| Paleshshg |

out of all which sums it is to be remembered that 7, and 7, are supposed
excluded from appearing. All these several coefficients being numbers
in disguise, we may determine them by giving any values at pleasure
to the terms in the h and 7 system.
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Let now o, =hy, 9y = ks, 95 = hy, p,=

of two Algebraical Functions.
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hy, then in (B) 1t will readily be seen

that all the terms included within the sign of summation vanish identically,
except the followng, namely,—

7"71"72"73 % 74
hyhohshshohs

hs

‘]?/]h2h3h5h6h7j| I: :l
MM

_771772774j|
hy h hohyhshoh,

[ hyhohhshoh, :I [ :l
Lfs M2
_"71"73"74 % "7" )

| Ay ’ | hshihshg h

Chabshihhedn] (m 1

x
| Fes IMEY SN
[ 7amams | N [m 7
' | hohhhohhs

(hohshihshohs | [
-hl

X

L2734 |

In each of these expressions the first factor of the numerator 1s identical
in value (by reason of the equations h,=mn,, hy=1,, hs=1,, hy=7,) with
(=) x the second factor of the denominator, and the second factor of the

numerator with (-)® x the first factor of the denomimator;

coefficient of 727 n &, is — 4.

In like manner the only effective terms of %, , will be

—"71"72_ % —"73"74 ] A"73774— % —"71"72
| hghy | hyhohshihs | hihs hahy h heh,
h h h5h6h7 7374 | l:h ¥ h h hﬂ 771779
X X
Lhsh 17 Lmms hyh, 17 Lmems
[mna] [ 72 1 [men] [ i
_hghii _h hihs h h L /7 g h4h/5h6h7_7
[ hihighshg hv_ y "79"74 ’ h h h 116}17 % Exn
_h2h4 LT s _h hy J L7274
me . [ s | [mme ]
Elh _h h h5hﬁh_, hih, | hohyh h6h71
[hlbqhshsh [7]17741 Lh Jhshe h] y 772773] )
hahs N2 Ak, L7

hence the

Any other term will necessarily contain in the numerator a factor, whose
symbolical representation will contain one of the quantities 9,, 7, 73,74, 10 the
upper line, and one of the quantities %, ks, ks, by, having the same subscript
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index, in the lower line, and which will therefore vanish; the number of
effective terms being evidently the number of ways m which four things
can be combined 2 and 2 together, and the value of each term is evidently
(=)? (=1)*°1, so that the entire value of the coefficient of 27 m %,,
1s + 6.

Precisely in the same manner, we shall find that the leading coefficient
%, ; will contain the term — 49, 9, the (— 1) resulting from the operation
(— 1) (=)*4, and in Y, , the term + 27, the + 1 resulting from the operation
(—1)*s. Hence it appears that % ,; V155 Vo) W5 ¥y, are to one another
in the ratios of 1; —4; 6; —4; 1; and so in general for any values of
m, n, ¢ (¢ being less than 7 and less than n) it will be found that

S'O,u S—l,l.—-]; S'?.,:.72 R S'l.,()
will be m the ratios of the numbers

t—1 simey b—1t—2 )

(= 1)20m "’)L—f—; (— 1)yt 3)1,7 g
Art. 27. The method employed in the preceding investigation will
enable us to affix the proper sign and numerical factor to %, or %,,, or m
general to %,,_,, in order that it may represent the Bezoutian secondary
of the degree : in #. This latter has been already identified with the
Pz
Ve
continued fraction. For this purpose, 1t will be sufficient to compare a
single term of any such & with the corresponding one in the Symmorphic
Bezoutian secondary. Let us first suppose that m=n, f and ¢ being of
the same degree. A glance at the form of the Bezoutian square will show
that if we form the Bezoutian secondary of the degree (n—7) in z, the

1; (—=1)ym1;

>

(__ 1 )L (m-—L)'

stmplified residue obtained by expanding - under the form of an improper

coefficient of its leading term will contain the term (—)(Z_DE (0, 9)%; (0, 7)
as usual denoting the product of the coefficient of 2" in f by the coefficient
of 2 in ¢, less the product of the coefficient of #* in ¢ by that of &~
in f; and as we suppose the first coefficients in f and ¢ to be each 1, if
we term the other coefficients last spoken of a; and «; respectively, this
said coefficient of the leading term of the ith Bezoutian secondary will

. i-1) . i-1°
contain the term (—)( 1).2 (a; — a;)}, and consequently (— 1)( 2 af and
Li4-1 s
() o
Now by the like rcasoning to that employed in the preceding article,
the coefficient of the leading term in %,,_;,, that 1s

[h,h, Py -e hﬂ
(@ = ) (% = ) oo (2= ) [h;’“ Syt
h J

Tiv1r i h‘]m
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will contain the quantity 3 (A, A, h;... k), and therefore will contain a
term {Z(hy hyhg. .. Ry)}, that 1s (=)%af, which 1s equal to (=) af since

. ;i1 .
(t—1)7 1s always even. Hence ¥,_;,=(~)""2 x the corresponding Bezoutian
secondary.

Art. 28. The above applies to the case where we have supposed m = n.
When this equality does not exist we may proceed as follows. Prefix to
¢, the first coefficient of which 1is still supposed to be 1, a term ez™, where
e 1s positive and indefinitely small, and let ¢z so augmented be called © ().

Then if 5, 5, ... 7, are the roots of ¢z, n;, 7, ... n,, together with the (- n)
1

values of (i—)m, will be the roots of ® ().

But 1t has already been proved that when (as here supposed) the first
coefficient of fz is 1, the Bezoutian secondaries to f and ¢ will be identical
with those to f and @ respectively; at least 1t has been proved that these
latter, when e = 0, but the form of ® 1s preserved, become identical with the
former, and consequently the same is true when e is taken indefinitely small.
Now if we call the (n —n) roots of ® which do not belong to ¢, 7ap,

M2 «+o Thns and make
|:h‘h ’ h‘]-z v h‘lij|
My N2 oo M
[bqn Py oen hql} ’
hflm ’ h‘]H—Z A h"]m
we have

Vot =SP (hy, by v ) [h‘h’ ha, “'h‘h],

My Pnge---Mm

\I,m—iyo = 2 (.72 - h']{-i—l) (.72 - hfhw) e (.72 - h’fIm)

where
[hq,, By h%}
1 M- M
PRy, by, oo hy)y= (@~ hgy) (@ =Py oo (2 — hy.) 2 7 };7 h
0 Iz Gi
[hfhu’ }Iqu-z A hflmj|

But since g,,1, nyo - .. 7 are infinite m value,

[h"" o h,,,] ={(= ) (= nas) oo (= 1)} G)

Mns1s Nnyeer Mne

)

Hence Wi, o= G> ZP(hy, hy, ... hg)
1\
= <7> S'm—i,()y
€
and S’m—i,() = ¢l \I'm—i,o'

But by what, has been shown antecedently, taking account of the fact of the
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leading coefficient of @ being e in place of 1, which introduces the factor ¢,
we have
@l

€Vipio=(—) B,
where B/ is the Bezoutian secondary of the (m — i — 1)th degree in « to f and
¢; but By has been proved = B;, the Bezoutian secondary of the same

i1
degree to fand ¢; hence ¥,_; o= (=) % B

Art. 29. If now we return to the syzygetic equation, 7f —t¢p + ¥ =0,
Y may be treated as known, having m fact been completely determined
as a function of the roots, as well in its most general form, as also so as to
represent the simplified residues to f and ¢ in the preceding articles; 1t
remamns to determine the values of 7 and ¢ as functions of the roots corre-
sponding to any allowable form of &, but I shall confine the investigation
to the case where ¥ 1s the lowest-weighted conjunctive or, which 1s the same
thing, a simplified residue to f and ¢ of any given degree in z; each value of

¢

% will then represent one of the convergents to 7 when expanded under the

form of a continued fraction. If & be of the :th degree in z, 7 is of the
degree (n — ¢ —1) and ¢ of the degree (m — ¢ —1). This being supposed, and
calling n — 1 ~1=v», m— 1 — 1 =p, I say that ¢ will be represented by G and

7 by I', where
|:h'11’ h'h h']u]
Ms N2 - NMn

[hql, hg, ...hqu:l’

hq,m» th? h‘Im

and 7 is an analogous form I'; hy, A, ... h,, as heretofore, being the roots
of £, and ,, n,...7a of ¢. To fix the ideas and make the demonstration
more immediately seizable, give m and n specific values; thus let m =35,

n=4%4 =250 that u=5-2—-1=2 Put ¥ under the form %, ,, so that
Y m the case before us

G=(=)Z@—hy)(@—hy)...(z—hy)

[h‘hh‘hh‘h ]

- _ _ MM Ml

=2 (2= hy)(z—hy,) by kg g,
hy hg,

Now make @ = A, then f= 0, and % becomes

l:hflsh‘la h‘h ]
s (hy— hq,) (hl _ hqg) L7 M2 s 74

h'Ia h‘]e h‘h ’
hql h(la
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[hl thkm ]
that is s LAuhs | Lmmams e

[y by by g
hy b
R, being kept constant in the above sum, but h,, A, Ay, h; being partitionable

in all the six possible ways Into two groups, as into ky, hs; ks, k, in the term
above expressed. This sum is evidently identical with

o] e
slmmmnd oo [hl } S L7
he hs ’ Th 27374 ho by )
hyhy h4h5

Again, ¢ becomes

.
M Na]

[712 hy :l
s 7 M2 M3 74 )

hy by
hl h5
G
But, when z=#,, -—, becomes

=)
[hg hs :l
hy ] M M2 M3 M4

_hz hs_ }Lzhz ’
Py by

Hence ¢t = ?—r becomes

.—hl T |:h-2/'13 :I
: hyh
that = Lfa] | 1172757
at 18 h2 h'sj h‘) 113 P}
L..hl _ Il4115
=(—1)¢.

Thus when z =4,, t=G. In like manner, when 2 =h,, or h,, or A, or h;,
t always = G; but ¢t and G are both functions of z of the same, namely
of only two, dimensions in . Hence ¢ is identical with (. So in general
1t may be proved, that whenever z =14, or h,or h, ... or ks, t and G, which
are each of only (m —1 — ) dimensions in «, are equal. Hence universally
t=(, as was to be shown. To find 7 we must avail ourselves of the sym-
morphie, or as we may better say (it being at the opposite extremity of the
scale of forms), the antimorphie, value of & represented by %, ., taking care
to preserve Y strictly identical under both forms of representation, in point
of sign as well as quantity. That is to say, we must make
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[hl, e ... hmJ
— N1 M L+2”'h(n
o, = (=)™ T (@ —7g) (& —1g,) - (£ —Mg,) Wﬂ;]
N Mg -+ Ta
7791.4-1’ 77q4+2 v nQn
2 ) ) (CC ) h]r ]Lg ...]],m
=(-) - z— e (— — ,
(=) 2(x—~ng ( Mo Nq, [ﬂqu Maerg - nq":l

Ny Mg -+ Mg,

where w=L(m—L)+m(n—L),
so that (=)0 = (—)mema—me = (=,

and consequently the same reasoning as was applied to ¢ to prove ¢= G, will

serve to show that — 7 =T, where
N> Mg, o nsy]
hy, hy ...y

N Ty '“’75,]’

F=(—)7n"2(w—77§])(x—7752) (“—ﬂgv) [

ﬂ;vﬂ, ﬂ;yw oo Mg,
or
[hl, hy ...h;m
Neps Mgy - Mg,
T= (=) % (= —n,) (&—m) .. (& - 775,,) N =
[775]) 7752 cee ﬂsv]
n5v+1’ n5v+2 ”'nfn
where w=mn—1—mv=mn—1-m@mn—1-1)

=qmu+m—1.

Art. 30. T have not succeeded in throwig ¢ and 7 under any other than
the sigle forms for each above given, and 1t is remarkable that whilst
apparently ¢ and 7 admit only of this single representation, & admits of the
variety of forms included under the general symbol %, , for a given value
of +; and it ought to be remarked that these forms, although the most
perfectly symmetrical and exactly balanced representations, and for that
reason possibly the most commodious for the ascertainment of the allotrious
factor belonging to them respectively, by no means exhaust the almost
mfinite variety of modes by which the simplified residues, that is, the
hekistobarytic, or if we like so to call them, the prime conjunctives, admit of
being represented as functions of the roots of the given functions; for if in
Art. 16, instead of writing

[hql, hq, ... hqv]

R= T Moy My, | -

I:hql, kg, ...]qu] y l:nsl, N, ...nsvjl
hqv+1’hqv+2"'hqm 7, N

v+l ’ nfv—f-‘z n

>
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we had made
P (hgy, by, . hgy; Mgy Moy« Me,)

lihql, hg, ... hqv] y [7]51, N, - 775»]
hqv+], lzqv+2 o hg, Moyt Moy Mt

V2 m

_R:

where P represents any function symmetrical in respect of kg, hy, ... h,,
and also in respect of Ner My -+ My, (the mterchanges, that is to say, between
2 v

one h and another h, or between one 7 and another 7, leaving P unaltered),
it might be shown that the value of %, , resulting from the introduction
of this more general value of B would (as for the particular value assumed)
always be expressible as an mtegral function of the roots; and consequently,
if P be taken of the same dimensions m the roots as the numerator of R
previously assumed, that 1s vy, %, , would contmue to be (unless indeed it
vanish) identical (to some numerical factor prés) with the corresponding
simplified residue. If, on the other hand, P be taken of less than ww
dimensions in & and 5, we know & prior: that %, , must vanish, as otherwise
we should have a conjunctive of a weight less than the minimum weight.
When P is of the proper amount of weight vy, it is I think probable that
another condition as to the distribution of the weight will be found to be
necessary i order that Y,,, may not vanish, namely, that the highest power
of any single 2 in P shall not exceed v, nor the highest power of any single
n exceed ». But as I have not had leisure to enter upon the inquiry, the
verification or disproval of this supposed law, and more generally the evolu-
tion of the allotrious numerical factor mtroduced into %,, by assigning any
particular form to P satisfying the necessary conditions of amount and
distribution of weight, must be reserved, amongst other points connected
with the theory of the remarkable forms (19) Art. 15, as a subject for future
mvestigation.

Art. 31. A property of continued fractions, which, if known, I have not
met with in any treatise on the subject (but which has been already cursorily
alluded to in these pages), gives rise to a remarkable property of reciprocity
connecting 7 and ¢ severally with % in the syzygetic equation 7/ — ¢+ = 0.

Let the successive convergents to the ordinary continued fraction

t 1.1 11
Q1+Q2+Q3+H>Qi—1+%

be called
oL b

my omy T M mg
respectively ; it is well known that

My by — mplyy = (=)11;
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but I believe that it has not been observed that this is only the extreme
case of a much more general equation, namely
Mypli = Milip = (=) P pps ¥,

where g, g, ... u; denote respectively the denominators to the convergents
to the continued fractions formed with the quotients taken in a reverse order,
that is, the continued fraction
111 11

Qi+ Gat Gt GG
This is easily proved when p=1; u, is of course (as usual) to be considered 1.
So more simply for the improper contimued fraction,

L 11 11

m; 91_%_'“%'—1_%"
of which the convergents are supposed to be

L oL b L

) Ry
my om, my, my

)

and the reverse fraction
1 1 11

R

of which the convergents are supposed to be

SR

o

we have the more simple equation

)

limi—p - li—pmi + por = 0.
And it is well known, or at all events easily demonstrable, that
L 1 1 1 1

b G QG @
mia 1 1 1 11

mi Gi— Ga— Qe G — @

Art. 32, If now we use subscript indices to denote the degree in z of the
quantities to which they are affixed, we have the general syzygetic equation

KTn—L—xfm - Ktm—n—x ¢n + KS:. = 0,

where K, a constant (which I have given the means of determining in the
first scction), being rightly assumed, K7,_,—;, Kt,—.—, become the numerator

¢

and denominator respectively of one of the convergents to £ expressed as

* See London and Edinburgh Philosophical Magazine, ** On & Fundamental Theorem in the
Theory of Continued Fractions,” Vol. vi., October, 1853. [See below.]
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an improper continued fraction, and K9, becomes the denominator to one of

b . . . _
the convergents to ““=', or, which is the same thing, to Tntg Conversely,

it is obvious that if we adopt as our primitive functions ¢fm and ¢,_,,
¢ being the value of K when =0, we shall obtain as the general form of
our syzygetic equation, bearing in mind that (m — 1) now replaces =,
Ky s o — K it + K't, =0
and similarly, if we adopt as our primitive functions 7,_, and c¢,, we obtain
for our general syzygetic equation, observing that (n— 1) now replaces m,
K'Yy tn — Kt + K'1.= 0
so that (making abstraction of the constant factors and looking merely
to the forms of the several functions which enter into the equations) we see
that on the first hypothesis, namely of ¢,,—; being substituted for ¢y, the con-
junctives of each degree in z change places with the second conjunctive
factors, that is the original multipliers of ¢ of the same degree in z, and
vice versd ; and in the second hypothesis, where 7,_, takes the place of f,,,
the conjunctives of each degree in x change places with the first conjunctive
factors, that is the original multipliers of f of the same degree in «, and
vice versd ; . and 7,_; being respectively multipliers of ¢ and f#, such that
the difference of the respective products is independent of z. These results
ought to be capable of being vertfied by aid of our general formule for ¢, 7,9,
and as this verification will serve to exhibit in a clearer light the nature
of the reciprocity between the conjunctives and the conjunctive factors,
it may be not uninteresting to set it out.

Art. 33. As usual, let %, A, ...k, be the roots of fr, and 5, 7,...9,
the roots of ¢x; the last conjunctive factor to ¢, which is of the degree
(m—1) in z, will be represented, neglecting powers of (=), by £n_., where

[hq.: b, ... hqm_lJ

bms =3 (2 —hg) (@ —hg) .o (@ = hgm,) —ZM*
am

e

If now we for greater simplicity make ¢,,_, = ¢ (), and call the roots of ¢,
7%, 7'z voo W'm_s, any such quantity as

h m
[’7?1) 77,2 e nlm.——-l} =t (th) = (th - hQn) (th_ th) cee (th - th—l)
¢ (hg) & (hq,) -.- @ (hgyy)

(th_ hql) (th - h(h) A (th - th-l)

= ¢ (h"h) ¢ (hQu) s ¢ (th-x)

1
= _R =7,
¢ (th)

* Since ¢ is always supposed less than n (n being the degree of the lower degreed of the two

tunctions f and @), the fact of the last quotient to tm being wanting to 81 41l not affect the

X

accuracy of the statement in the text above, since this latter will contain as many quotients as
can in any case be required for expressing ..




482 On a Theory of the Syzygetic Relations [567

R denoting a constant independent of the root A, selected, in fact the
resultant of the two functions fzr and ¢z, that is to say,

b (7a) ¢ (he) b (hs) -+ b (hm)-

But by our general formul® the simplified residue to fr and ¢ (z) of the
¢th degree in z will be represented by

I:h(lhﬂ’ h?wz h(;lm ]
N1, N2 oo Mma

[hql, b o By, } ;
h'QL-H’ hQL+2 e th
haon) ™ & (g™ b ()™
Rmﬂ(ﬁ( Qo1 Q42 qm
hQn’ th hQL
h h h

Q412 Q42 0t MOm

(hq,) ¢ (hQQ) M ¢ (hqt)

hgy hg ihg |’
Pgsrs Pgirs oov P

Y. o=2(x—hy)(@—hg,)...(x—hy)

therefore

Y. o= (@ —hy) (@ —hg,) ... (2 —hy) X <I

= B (@ ) (0= hy) o (2= hy)

or
SIL = -Rm_"_l tu

the relation which was to be obtained. So conversely, in precisely the same
manner, calling ¢, the conjunctive factor of the degree ¢ in z to t(x) in
the syzygetic equation which connects fz and ¢ (z) with a corresponding

simplified residue, we have

|:h91’ h‘]z ter hQL :I
=3 (@—he)(—hg) ... (x—hg LM Ma e B
@ ha)(@=hy) o (@ hy) e e

th+1’ hQL+2 et th
= Rt—lz (.72 - hq.) (.72 _ hqz) (.72 _ th) (,'b (hqll.;-l) ¢> (hhqwz) h¢ (th)

Q2 Qe
[h‘hﬂ’ ]LQL+2 b th:l

the conjugate equation to the one previously obtained*.

= RL—I S“

And evidently the same reasoning serves to establish the reciprocity,
or rather reciprocal convertibility, between the & series and the 7 series,
when in lieu of the original primitives fr and ¢z we take as our
primitives T (z) and ¢z, T (z) being the function which satisfies the
equation

T(x)fr—t(x)pz+Y=0.

* M. Hermite, by a peculiar method, first discovered one of these two conjugate relations of

reciprocity, applicable to the case of Sturm’s theorem, where ¢z =f'z, and I am indebted to him
£, Trsai N +1- T + | 43
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Art. 34. It may be remarked that if n=m —1, the last syzygetic
equation being thus ¢, ipm—s — Tz fm — V=0, when ¢,_, and f,, are taken
as the primitives, the corresponding equation will be of the form

t'matmes — T}m—-zfm + S,o =0;

these two equations must therefore be identical, and consequently ¢, = ¢y
(to a numerical factor prés), so that ¢, and ¢, are reciprocal forms; this
is also obvious from the consideration that ¢,_, must, by the gencral law
of reciprocity (established above), be a residue to ( f,., ¢m—), which the
latter function itself may be considered to be. Or the same thing is obvious
directly, by writing

h he) ... & (R
tm—1=t(w)=2(x_h4.) (x_h(h)"'(x_th-l)(hq f}Eq(;]()}Z: (—Q;L)q)(i/(lzqtlzq M):

and then making

b= (@ = hy) (@ =) . (2= by ) ) E(Ba) oo 8 ()

(th - hq.) (th - h‘]z) .o (h(lm - h(lm-l)

ho Y7t el b (F —1

h
— Rm— 2 (.Z‘ — th) vee (w - hqm—l) (hq — h([ )(#.7.(.‘?};2 - h;—-—) ’

t,m—l = Rm—2 ¢>:

or finally,

as was to be shown.

SectioN II1.

On the application of the Theorems in the preceding Section to the expression
in terms of the roots of any primitive function of Sturm’s auailiary
Sfunctions, and the other functions which connect these with the primitive
Junction and its first differential dertvative.

Art. 35. The formule in the preceding Section had reference to the case
of two absolutely independent functions and their respective systems of roots:
when the functions become so related that the roots of the one system
become explicitly or implicitly functions of the roots of the other system,
the formulse will become expressible in terms of these latter alone, and in
some cases the terms (of which the sum is always essentially integral) will
become separately and individually representable under an integral form.
Such, as 1 shall proceed to show, is the case for two functions, of which one
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is the differential derivative of the other.
d .

so that ¢ = ?1%:’ calling as before h, h, ...

the roots of ¢, we shall have in general

On a Theory of the Syzygetic Relations

hm the roots of £, and 7, 7, ...

[57

When f and ¢ are thus related,

Mm—1

] _ [hqm ] o [hqm ] _
hqv hQi+2 ver th hQN th o h‘k ]l’q:'+2’ hq|'+s i th

b,
["If‘:ﬂ")z .. "7m~J = (hqen — ) (h9i+1 — 1) e (hqi+l = M)
’ hQ|+1
= f hq:+1 = [hq,: hq,
Consequently

I:h%H’ hQ;+2 b th jl — I:hmu
M M2 oo Tm N1y Me

“[a 4

N

7717

] <.
» Mm—1
77m—1:| ]

— [hQin i X [hq:n ]
th’ h‘h Tt th_ hqm’ qi48 * QM—l
% [hémz i % l:hq»z :l
hQﬂ hQa R hQ:‘_ hq-u’ Qits Qm—
X oeeeesnnn
X |:th 1 xl: qm —l
hQU th ¢ hQi_ 9-x+1’ Qx+2 Qm 1_'
—h9i+1’ Q2 * " th ]
Hence LT 7/2 -+ Imt
[h qi+1? Q(+2 h Qm:l
hoy hg, - by,
— l:hqu.x ] X | Qi+ } X . [ ]
hQI'+"’ h’Qe+s b th hQH»l) qi48 th q¢+1’ hq-'+2 Tt th-l
_ ( )}(m—u (m—zuné’(hqm’ divg e th)’

the ¢ denoting the operation of taking the product of the squares of the
differences of the quantities which this symbol governs. Hence the Bezoutian
secondary to f and f” of the (m —¢— 1)th degree in z, namely

\:hqn b, ..o by, :l
Li—1
(_)"Tz(aj_h 1y M2 oo M

il)(x_hﬂ-) T— hmw’
%+ 2i+e ( q)\:q’ hqz ”'hq":l
hqi-ﬂ’ hQ:‘+2 th
becomes
(_)i i zg(h%’ th e th) (.72 - hQi+1) (.72 - h(li+2) v (.72 - h(lm)
= zg(hQI’ hQa v hQ|) (x - h91+1) ('77 - th+2) LR (.72 - th)’
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since (=) =1; this gives the well-known formula (enunciated * by me
in the London and Edinburgh Philosophical Magazine for 1839) for expressing
M. Sturm’s auxiliary functions in terms of the roots of the primitive, and
which I therem stated were immediately deducible from the gencral formule
(also enunciated in the same paper) applicable to any two functions. These
more general formule appear to have completely escaped the mnotice of
M. Sturm and others, who have used the special formule applicable to
the case of one function becoming the first differential derivative of the

other.

Art. 36. In precisely the same manner, if we form as usual the ordinary
syzygetic equation
tf'e— 1z +9=0,
we may find the different values of ¢ given by the complementary formule ;
and using ¢; to denote the multiplier of the degree ¢ In «, that is appertaining
to the resedue of the degree (m —¢ — 1) in z, we have

I:hgm hqz hq‘_ ]

M M2 oo M| _ B

2 hqn h(h cee /’[/q‘, (w h‘]l) (w h‘]sz) e (
h h 13

t = z - hQi)

qit1? 42 " m

=28 (hgp, hg, v hy) (@ —he) (& —hg) .. (&= D).

Art. 37. Thus, if we make 1=m —1,
fllx =ty = zé’(hm h?a th-x) (.72 - hq;) (.72 - th) (w - th-x)'

It is evident from the form of £z that it possesses relative to f, the samne
property as 'z, I mean the property that when « is indefinitely near to a real
root of fz, and is passing from the inferior to the superior side of such root,

‘}} hkefﬁ will pass from being negative to being positive, or in other

words, iz and f'z have always the same sign in the immediate vicinity
to a real root of fx. Hence it follows that f’z might be used instead
of f’z, to produce, by the Sturmian process of common measure, a serics
of auxiliary functions, which with fz and fi'z would form a rhizoristic series,
that is a series for determining (as in the manner of M. Sturm’s ordinary
auxiliaries) the number of real roots of fz comprised within given limits.
The rhizoristic series generated by this process will, it is easily seen, be (to a
constant, factor prés) the denowinators (reckoning + 1 as the denominator

’
1n the zero place) of the successive convergents to J}az thrown under the form

[* p. 45 above.]
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1 L M. Sturm’s own rhizoristic

)

. . 1
of a continued fraction - -
q1— §s— Qn—-1— Qqn
series, on the contrary, will be (to a constant factor pres) the denominators

. . ‘o . .
of the convergents to the mverse fraction L which will be of the form

Je
/1 1 1 1 . N . .
K < S f>; accordingly these two rhizoristic series will be
Qn — Qn— — Qo— ¢
equivalent as regards the number of changes and of combinations of sign
(afforded by each) corresponding to any given value of z, of which of course
the ¢’s are linear functions. This result agrees with what bas been demon-
strated by me* by a more general method (in the London and Edinburgh
Philosophical Magazine, June and July 1853), where it has been proved,

by means of a very simple theorem of determinants, that the two series

1 11 1 11 1 11 1

A R A A A A

1 1 1 1 1 1 1 1 1 1

G =G Gn— Gnot— B’ G Qo — s
always contain (for real values of ¢, ., ¢s ... ¢) the same number of positive
and negative signs.

and

Art. 38, Having now determined the general values of & and ¢ in
the equation ¢f'z — 7fz 4+ =0 as explicit integral functions of the roots
of fr, the more difficult task remains to assign to 7 its value similarly
expressed. This cannot readily be effected by means of substitutions in the
general formulz, the method we adopted for finding ¢ and ; but all the
other quantitics except T in the syzygetic equation being integral functions
of the roots, it is evident that 7 also must be an integral function of the
tf'z +9

2

To obtain the general form of 7 by direct calculation from this formula
would however be found to be impracticable ; the mode 1 adopt therefore
to discover the general expression for T corresponding to different values
of ¥, is to ascertain its value on the hypothesis of particular relations
existing between the roots of fz, and then from the particular values of 7
thus obtained to infer demonstratively its general form, as will be seen
below. The demonstration of 7 is unavoidably somewhat long, 7 being in
fact represented by a double sum of partial symmetrical functions.

same, and to obtain it we may use the expression 7=

Using the subscript indices of each function as the syzygetic equation
to denote its degree in z, we have in general

tm-i-—lf,x - an—i..gfw + Si = O,

[* See below pp. 616 and 621.]
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where if we make
h—x=k, ho—x=ky...hp—x=kn,
so that

- hm = ki - km:
C(hol, h92 e hgp) = C(kOU ko-z PO l(‘op),
we have in effect found
¥ = Ekmk(l . ]L C(ILQH—I’ Qg 0 k(lm)

and therefore

and
tm_i—l =+ Ekql sz kq'rn—i—l C(k%’ sz k‘]m-i—l) ;

we have also [/ (o) = (=)™ Zky ky, .ov By, y
Let us commence with the case where 1 =0; we have then
o=k, Ky bn),
tmy =3kg kg ooo Koy E(hgy kg oo ki)
we have thus
(=) Toe bndoy o ko =C ke, Ry o)
- Ekqlqu kg X Zhkg kg, o kg E(Ra Ky e Kog_))-

It may easily be verified that the negative sign interposed between the two
parts of the right-hand member of the equation has been correctly taken, for

¢ (ky, ky ... kp) contalns a term A2 k2om=2 k4, k2.,

Sho by, ...

om_, CODtAINS a term &k, oo Bn—o ko,

and
Ek‘h sz (Im -1 C(A qur

and thus the term k2m—v kpom=2  J4 k2. ., which does not contain
bk, ... kep, will (as 1t ought to do) disappear from the right-hand side of
the equation.

o+ Kom_) COntains a term k23 km=s k5o kly o,

Now suppose
kl = kz:

C(kl: kz k?n)= 0:
C(kQI’ Qo *°* k(lm—l) = 0’

except when one or the other of the two disjunctive equations

then

and also

G, 9o Q3o Gma =1, 3, 4...m
T G2y 93 +e- G = 2, 3, 4..m
is satisfied (by a disjunctive cquation, meaning an equation which affirms

the equality of one set of quantities with another set the same in number,
each with each, but in some unassigned order).
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Hence
Ek‘h k‘]z ter ka-x C(k(h’ kq k )

2 *°° Vm-1

=2kky ... ke E ey, s .. Fon)-
Hence when &, =k,, (=)™ 7y_, becomes

2

= Sk o Ry § (s B oo i),

that 1s
28 (ky, by oon o) o 2R by ool Ko+ 2Rk ol R},

the ¥ referring to ry, r, ... 7, supposed to be disjunctively equal to 3, 4 ... m.

Tm—y

Now Ty, Is of (m —2) dimensions in z, and whenever more than one
equality exists between the k’s, ¥, and t,—, both vanish (in fact every term
S + turf @

in each vanishes separately), and therefore =,_,, which = ,
kiky .. ko

will vanish,
Hence (=" 7, must be always of the form
Eg(hqu h‘]z th-x) X \I’ (l"qn kaz b ka—x’ ka)’

¥ denoting some integral function of (m — 2) dimensions in respect of the
system of quantities kg, kg, ... kg,. The result above obtained enables us
to assign the value of

W (ky, by oo bom, k),
when %, =k,, namely
BsS, (krgs Fong + e Foryyy) + sk .. B,

Now for a moment suppose, selecting (m —1) terms ki, k;, k... km out
of the m terms of the k series, that

Q (e, Fi, Fog oo Fom, o) = I = T3S, (o, By .. o) + B8, (B, By o Fon)
t... ¥ kzsm—:s (kly k:; km) + 2Sm—-2 (kl) k% km)y

where S; means that the quantities which it governs are to be simply added
together, S, denotes that their binary, S, that their ternary, and in general
S, that their r-ary products are to be added together.

When &, =%, Q becomes
o2 — T3 (Foy 48, (K, Koy oo b)) + B8 oSy (g, Koy oo Bo) + S (R, Kog oo o))
— e (RS, (g, Ko oo o) + Sy (B g v o)) ..
+ &y (b Sone (B, B oo o) + Sncs (s, B vv b)) & 28mes (B, B .. Fom),

which evidently equals
t {28m—e (bss K oo ko) + kiSins (Bs, Ky oo kom)],
that is + (B2 (brg, brg oon bory ) + 2k . Fom)
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Hence when & =%, ¥ =, and
(_)m Tmn—z = EC (h‘h’ th v hq'm-l) x (k‘h’ k‘]z e ka—l’ kq'rn) )

and so in like manner, when %, is equal to any one of the (m~ 1) quantities
ky, ks ... km, the form of 7,_, above written will have been correctly assumed,
But 7m., may be treated as a function of (m — 2) dimensions in %, and
consequently any form of (m — 2) dimensions in k,, which fits it for (m — 1)
different values of k;, must be its general form, and accordingly we have
universally,
(_)m Tm—g = EC (hQU h‘]z oo ILQ’I)'I-]) x {(w - th)m_2

— (@ =g "8 (= by, &=y, .ov — Dy, )

+ (@ =g, "8y (= hg, & —hy, ... w — hy,_,) + &e.

F (@ = hgp) Sy (8 —hgy, @ = hgy oo @ — by, )

+ 28 (@ —lig, @ —hy, ... = by, ).

Art. 39. With a view to better paving our way to the general form of
7 for all values of 4, let us pass over the case of ¢ =1 and go at once to the
equation
s T — T JT + 9y =0;

and to better fix our ideas let m =7, so that the equation becomes
tfz—mfr+9,=0;

we have then, preserving the same relation as before, that is, using & to
denote any root of fz, and & to denote h —z, the equation
t bk ko ki keshoky my = Zhg kg, & (g g g, beq, Foq,)
— Zhoykg ko g kg gy X Z kg Foq koloq, § (Ko lig, kg, kg 3

now 7, will vanish whenever more than three relations of equality exist
between the &’s, for then each term in both of the two sums in the right-hand
member of the equation above written will separately vanish; and of course
three relations of equality between the same are sufficient to make all the
terms in the first of these sums vanish. This relationship between the
different k’s corresponding to a multiplicity 3 may arise in different ways;
the multiplicity 3 may be divided into 3 units corresponding to 3 pairs of
equal roots, or into 2 and 1 corresponding one set of 3 cqual roots, and a
second set of 2 equal roots, or inay be taken en bloc, which corresponds to
the case of one set of 4 equal roots. I shall make the first of these supposi-
tions, which will sufficiently well answer our purpose in the case before us.

Thus I shall suppose
b=k, k:e = km k3 = ks,

then, as above remarked,
¢ (kqsk(z.kq,kqe kq7) =0
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for all values of gs, 4, g5, 96, 7, and therefore
Sk kg, & (kg kg leq, kg koq,) =05
also ko kg kg, kg Ke,kq, becomes
kikeokey (s ooy + 2h; (ke + Rkey + Fakts)),

and ¢ (kg kg kg kg vanishes, except for the cases where ¢, ¢e, ¢s, g, Tepresent
respectively, ¢; the index 1 or 4, g, the index 2 or 5, g, the index 3 or 6, and
q, the index 7.

Hence Sk ko kg ko, & (kgko,Fg,keq) = 22k kokishy & (Rikkoskr),
and consequently 7; becoines
+ 88 (o koheyliy) X (orkohsy + 2k, (ko + Teikey + Foshos) ).

Hence we are able to predict that the general expression for our = in the
case before us will be

= F 2 (kg kg, ko, kq,)
X {(ko? + kg + Keg2) = (kg + kg2 + ko) (g, + bo, + Figy + gy)
+ (g, + Fog, + kg)) (hgyeq, + Ko g, + Ko, K, + Kig,Keq, + Ko, B, + Kqka,)
— 4 (Reg, Fog, g, + Fog, g, g, + Ky g g, + Ko og kg, )}.

For in the first place, the fact that the r vanishes when more than three
relations of equality exist between the %’s, proves that we may assume 7,
of the form

38 (ko kg kg, fiq,) X & (ko kg g kg, 3 Koo keq)s
the semicolon (;) separating the %’s into two groups, in respect of each of

which severally ¢ is a symmetrical form. But if in the expression last
above written for v, we make

k1=k4) k2=k5: k3=k61
it becomes

T 8¢ (kikokisk) % (ko + 1 + ) — (he? + o + k?) (By + Foo + s + K)
o+ oy 4 Eoo - Fos) (B oy + FouJoy + ooy + By + Bl + osker)
— & (kykookes + Fyleoker + Rylesky + Kykesher))
Now in general if
o,=a"+a +a’+...+a,
and S, =2 (a5 ... ),
then or— 0, Si+ 0,8+ ... +r8, =0

Consequently the sum of the terms constituting the second factor in the
above expression

= (3 — 4) buTkey + (2 — 4) by (koo + By + heoky).
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Hence the above expression becomes
+ 88 (ki keykesker) (Rikeokes + 2 (Bikes + Kikes + k) ko).

Thus, then, whenever k,, &,, k; are respectively equal to any three of the
quantities kq, ks, &, k;, which may take place in twenty-four different ways
(twenty-four being the number of permutations of four things), our =, will
have been corvectly assumed; but &(k,k,k, k,) being replaccable by
& (hghg,hg,hg,), the 7 may be treated as a cubic function in Ay, &y, &y, and
arranged according to the powers of k,, &y, ks will contain only twenty terms ;
hence, since the assumed form is verified for more than twenty, that is, for
twenty-four values of Ay, hy, ks, 1t follows that the assumed form is universally
identical with the form of =, which was to be determined.

Art. 40. Now, again, in order to facilitate the conception of the general
proof, let us suppose fz to be of only five dimensions in #, 7 still remaining 3:
it will no longer be possible when we suppose a multiplicity three to prevail
among the roots, to conceive this nultiplicity to be distributed into three
parts, for that would require the existence of three pairs of roots, there
being only five. But we may, if we please, make hy=h,=h;, and hy="h;,
or else /iy = hy = hy = Ly, or in any other mode conceive the multiplicity to be
divided into two parts, 2 and 1 respectively, or to be taken collectively
en bloc. As a mode of proceeding the more remote from that last employed,
I shall choose the latter supposition. Then we obtain (r mow becoming
Ts2—q, that 1s m)

kkoleskobsry = + ki kg kg oy, x Zh by, & (Fegiky,),
and § (kg k,,) will vanish, except in the case where g, represents the indices
lor 2 or 3 or 4, and g, the index 5 ; also
Ekqlqukqskm = ktn4 + 4k ks
Hence our eqnation becomes
kikyr = + (ke + 40P ks) 4k ks & (ko k),
and T becomes — 48 (kr k) (b + 4K5).
If, now, we assume for the general value of = in the casc before us
7= 58 (ko ky,) {(Rq, + Koy + ko) — & (kg + Eg,)}s
when b, =k, =k, =k,, + becomes
+ 4 (b ks) {3k, — (4, + k5)},
that is + 48 (kiks) (B + 4ky).
Hence then for the two systems of values of /i, Ay, ks, namely
hy = IL4l by = hs
or <h.,=h,

hy =y
} hy = hy,

oy = Py
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the form of 7 will have been correctly assumed. But since the dertved form
is a linear function of Ay, h,, ks, this is not enough to identify the assumed
with the general form, since for such verification four systems of values rmust
be taken, four being the number of terms in a function of three varables
of the first degree. If, however, we had adopted a separation of the multi-
plicity three into two parts, and had started with supposing k =k, =k,
k, = k;, we should have found that + would have become

= 68 (ky, k) (2k, + 3ky).
Moreover, when these equalities subsist,
bk loke, + Bnleybos ko + Fekookoheg + bk b oy + bk ies
becomes 2k*k; + 3k,%k,?% and the common factor k*k, disappears in the course

of the operations for finding 7, and eventually we have to show (in order to
support the universality of the previously assumed form for 7) that
Fou + kg, + kg — 4 (kg, + ko)
becomes — 2k, — 3ks when
= st = kql

k‘]a = kq: = k5’

kq =k1:

2
and

which 1s evidently true. Hence then t will have been correctly assumed for

the following cases,

bhi=k,=k=5k
ki=k,=k=k;
and also for the cases

ki=k,=k, and ky=k,
ki=k,=k, and k, =k,
ky=k,=k, and k=1,
ki=k,=k, and ky=1Fk,
ky=ky=Fk, and by, =1k, >,
ky=ky=k, and kb, =k,

that is, for eight cases in all, whereas

four only would have sufficed. Hence,

ex abundantid demonstrationis, the form assumed for = is in the case before

us the general form.

Art, 41,

We may now easily write down the general form which =
assumes for all values of ¢ and prove its correctness.

If the roots be

hl, hg, IL3 i h’m:

and

tm—i— f ‘& — ’Tm—i—zf 4+ Y= 0,
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we shall have
+ Tm—i— = b {C (h‘hh‘hh‘]a th—t‘—l) X [Omice = OmimgSi + TSy F &e.

+ ()™ @ Sis + ()™ (00 + 1) S, )},
where o, denotes in general the sum of the rth powers of the (/+1) quantities

(w_th—i)’ (.72 _hin-H—l)’ (x_th)’
and S, denotes in general the sum of the products of the complementary
(m—1—1) quantities
(@ —=hg), (= hg) ... (®=hq, )
combined r and 7 together. It will of course also be understood that
g,=t+1, so that oo+ 1=7+ 2.

Art. 42. To prove the correctness of this general determination of the
form of Tp_; ., let us suppose in general that ¢+ 1 relations of equality
spring up between the m quantities k;, k...kn; we shall then easily
obtain (N representing a certain numerical multiplier)

Skokg, .. k
+Q=NE(y, by oo By S TR T

ki, ky... ky_s, being what the % system becomes when repetitions are
excluded, and being respectively supposed to occur m,, p,... m—s—y times
respectively, so that

Mt et ot g =M
the fractional part of the right-hand member of the cquation immediately
above written will be readily seen to be equivalent to

Sy Ko Keg, e Koo e

To establish the correctness of the assumed form, we must be able, as in
the particular cases previously selected, to prove two things; the one, and
the more difficult thing to be proved is, that when the series of distinct
quantities ki, k,, & ... k,, become converted into g, groups of k;; u, groups of
ks ... pim sy groups of k,,—;y, then that

z,ugl k92k93k94 cee kO

mei—11
or in other terms
1
%t k91k92k03 ree k9m—e—1 Z (/"'9)’

m—i-1

becomes identical with
Op—i-2— On—i—3 Sl + &e. + (_' 1)m~i——2 (0‘0 + 1) Sm—i—z-

The other step to be made, and with which I shall commence, consists
in showing that the number of terms in the expression last above written,
considered as a function of (m —¢—2)th degree of (¢ + 1) variables, is never
greater than the entire number of ways in which (¢ + 1) quantities out of m
quantities may be equated to the remaining (m —¢—1) quantities, namely
each of the first set respectively to all the same, or all different, or some the
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same and some different; in short, in any manner each of the ¢+ 1 quantities
with some one or another (without restriction against repetitions) of the
m—i—1 remaining quantities. This latter number being 1n fact the
number of ways in which (m—¢—1) quantities may be combined (<4 1)
together with repetitions admissible, by a well-known arithmetical theorem,
G+1)(E+2)... (m—2)
1.2...(m—-1-2)
always less than the other. It remains then only to prove the remaining
step of the demonstration*.

is (m—1— 1)i*Y, and the first number 1s , which 1s

Art. 43. To fix the ideas let m =10, 7= 5, and consider the expression
(ke + kb + k2 + b + B+ by — (kS + b + k7 + k@ + ke + o) (b + ke + B + Fy)
+ (i + ko4 Ry + kg + By + ko) (i, + Bikey + Bikey + Tookey + Bokes + Besky)
— T (bkykos + Rkooky + Rikesky + kokeg k).
Now suppose the six quantities k;, kg, kr, ks, ks, ki to become respectively
equal each to some one or another of the four quantities %, &, k;, ki, as for

instance, I shall suppose
by =ks=F; =k

ke =ky=1F
foyy = k.
Then ,uq=4', ,u,2=3, Mz = 2, My = 1,

and the formula of Art. 41 becomes

(3k? 4+ 282 + k) — (B2 + 2k + k) (kv + o + ks + )
+ Bk + 2k, + kg) (b by + By + Ry + Bookeg + heykoy + Regke)
=T (kkykg + by koykoy + Byloskey + Rokyky)
=3[k — k2 (b + by + k) + Ky} + Foy {(Rookes + ooy + Bosko,) + s (oo + Ko + K1)}
+ 2 {kd — k2 (k4 ks + k) + ka} + By {(Rukos + Eylou + el + (Roky + By) + &)
+ (kg — B (b + o + o)) + Ko} + b (Bakes + Bk + ko) + Ky (o + B + )}
— (koleskhoy + Fekoskey + kb, + ke lekey)
= — kykoky — 28 by ke, — Bk hekoy — 4oy kesk,

- — P, Ho, s M
- k’k2k3k4{kl+k2+k3+k4}'

* If this first step of the demonstration appear unsatisfactory or subject to doubt, it may be
dispensed with, and the result obtained in the succeeding article (the demonstration of which is
wholly unexccptionable) being assumed, it may be proved that the formula there obtained on a
particular hypothesis must be universally true, in precisely the same way and by aid of the same
Lemma in and by aid of which the formiula obtained in the Supplement to this section for the
f'z
fr
that is, by showing that otherwise a function of 2i -1 variables would contain a function of 2i
variables as a factor.

simplified quotients to upon a like particular hypothesis is shown to be of universal application,
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In the above investigation the quantities which with their repetitions
make up the &’s system, are ky, k,, ks, ks, appearing respectively 1, 2, 3, 4
times, that 1s to say repeated 0, 1, 2, 3 times; 7 is one more than the sum
of the repetitions 0 +1 +2 4+ 3, and the numbers 1, 2, 3, 4 arise from sub-
tracting from 7 the sums 1+243; 0+2+43; 041+ 3; 041 +2; respec-
tively, so that the remainders 1, 2, 3, 4 denote respectively one more than
the number of repetitions of k;, ko, ks, ks, that is, are the number of appear-
amces of ki, ki, ky, k3 and thus with a slight degree of attention to the
preceding process the reader may easily satisfy himself that the preceding
demonstration (although not so expressed) is in essence universal, and the
form of T as an explicit function of # and of the roots of fz is thus com-
pletely established for all values of m and of 4.

Supplement to SecTioN IIL

On the Quotients resulting from the process of continuous division ordinarily
applied to two Algebraical Functions in order to determine their greatest

Common Measure.

Art. (e)*. We have now succeeded in exhibiting the forms of the
At
fr
terms of the differences of the roots and factors of fz. It remains to exhibit
the quotients themselves of this continued fraction under a similar form.

numerators and denominators of developed into a continued fraction in

LeMMA.  An equation being supposed of am arbitrary degree n, there
exists no function of n and of less than 2¢ of the coefficientst, which vanishes
Jor all values of n whenever the n roots reduce in any manner to © distinct
groups of equal roots; or in other words, any function of n and the first 20 —1
coefficients of an equation of the nth degree, which vanishes for all values of n
in every case where the roots retain only i distinct names, must be identically
zero,

To render the statement of the proof more simple, let 7 be taken equal
to 3. And let the roots be supposed to reduce to p roots a, q roots b, and

* The articles in this and subsequent sections to which Latin, Greek and Hebrew letters are
Prefixed, although in strict connexion with the context, are supplementary in tlie sense of
having been supplied since the date when the paper was presented for reading to the Royal
Society, All the articles marked with numbers (from 1 to 72), and the Introduction, appeared
in the memoir as originally presented to the Society, June 16, 1853,

t In the proposition thus enunciated the coefficient of the highest power of z is supposed to
be & numerical quantity.
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rroots ¢. And let s, in general denote the sum of the rth powers of the

roots. Then we have evideutly

P +q +7T =S,

pa +qb +rc =3,

pa® + qb* + re* = s,

pad 4 gb® + rc® =g,

pat+ qbt 4 rct =s,,

ad wnfinitum.

Eliminating p, ¢, » between the first, second, third and fourth equations,

&e. &c.,
we obtain

1, 1,

a, b,

a, b

a®, b,

>

1

) 80

¢, 8§
=0.

02) 82

03) Sg

In like manner eliminating ap, bg, cr between the second, third, fourth and

fifth equations, we have

1, 1,
a, b
az, b
@, b

and so in general we have for all values of e,

1, 1,
a, b
a?,
ad, b,

1) sl
c, 8y
02) 83
¢ 8
17 Se
C,  Seqs
€% Sern
03) Sets

whence it may immediately be deduced, that, upon the given supposition of
there being only three groups of distinct roots, we must have the following
infinite system of coexisting equations satisfied, namely,

Sot + 81U + 8,0 + sw =0 say L,=0,

St+ su+sv+s,w=0 , Li=0,
St+su+sv+sw=0 , L,=0,
St +su+sv+sw=0 ,, L,=0,
sst+ssu+sgv+sw=0 ,, L,=0,

&e. &e. &ec. &e.;
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and conversely, when this infinite system of equations is satisfied the roots
must reduce themselves to three groups of equal roots.

Let now ¢ be any function of s, s, s, ... which vanishes when this is
the case. Then ¢ must necessarily contain as a factor some derivee of the
infinite system of equations above written, that is, some function of s,, s,, s,...
which vanishes when these equations are satisfied, that is, some conjunctive
of the quantities L,, L, L,, L, ...; but it is obviously impossible in any sunch
conjunctive to exclude s; from appearing, unless by introducing some other s
with an index higher than 6, and consequently ¢ cannot be merely a function
of Sy, $1, 825 83, 84, S5, nor consequently of n and the first five coefficients ; or if
such, it is identically zero. And so in generalany function of n and only 27 — 1
of the coefficients which vanishes when the roots reduce to ¢ groups of equal
roots, must be identically zero; as was to be proved.

Art. (b). It ought to be observed that the preceding reasoning depends
essentially upon the circumstance of n being left arbitrary. If n were given
the proposition would no longer be true. In fact, on that supposition, the
n roots reducing to ¢ distinct roots would imply the existence of n —<
conditions between the n roots; and consequently n—7¢ independent equations
would subsist between the n coefficients, and functions could be formed of ¢
only of the coefficients, which would satisfy the prescribed condition of
vanishing when the roots resolved themselves into ¢ groups of distinct
identities.

Art. (¢). Let D, ,,..» be used in general to denote the determinant
Srs Sr41s Spge e Srpia |

Sryr Srpits Sppte s Spppiea

Sror Srins Sppe o Sriti
then the simplified ¢th Sturmian residue R; may be expressed under the form
Dl,?,.’i...i ani — D2,3...i+1 vt D3,4..Ai+2 avt Lt Dn—i,n-i-l Y
which is easily identifiable with the known expression for such residue.

Now obviously the necessary and sufficient condition in order that the n
roots may consist of only repetitions of ¢ distinet roots is, that R; shall be
identically zero, that is to say, we must have

Dl,z...i =0, D?,s...i—u =0... Dn-i,n—iwx...n =0.
But the reasoning of the preceding article shows that although these equa-

tions are necessary and sufficient, they are but a selected system of equations
of an infinite number of similar equations which subsist®, and that, in fact,

* But quere whether any other sufficient system can be found of equations so few in number
a8 this system.
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whatever be the value of n, we may take 7, r,...7; perfectly arbitrary and
as great as we please, and the equation

Dhﬂz...h‘ =0

must exist by virtue of the existence of the n—1i equations last above written.

Art. (d). I now return to the question of expressing the successive

4
quotients of J}f as functions of the differences of the roots and factors; that
x
they must be capable of being so expressed is an obvious consequence of the
fact that the numerators and denominators of the convergents have been

put under that form, since, if

Ni—? Ni-l {V;z
Di~2 ’ Di—-1 ’ Di ’
are any three consecutive convergents of the continued fraction
1 1 1
Ql— Q2‘_ Qi,

we must have

Di-zNi'—‘ Ni-zDi = Qz

It would not, however, be easy to perform the multiplications indicated in
the above equation, so as to obtain @; under its reduced form as a lincar
function of z. I proceed therefore to find Q; constructively in the following
manner.

Let R, ,, R;_,, B; be three consecutive residues, f'z counting as the

Ri’ and is of the form%)x +]qi,,

. —

residue in the zero place, then Q; =~ &
1

Now in general if we denote the n roots of fz, where the coefficient
of 2™ is supposed unity, by hi, k,...h,, and if we use Z; to denote
S8 (hg,, he,...h)*, with the convention that Z,=n, Z,=1, we have, employ-

ing (%) to denote —% (=41},

— _Z2i~1Z21}—3 Zz(i)

R; VA Z2i-;' . Zg(i)_“ = {C(h(?u h9a cee h9i+l) (.72 - h9i+2) (z— h9i+s) tee (.72 - h9n)}>
Zgi-2Z21’-4 A 0

Ris= ”ZT;_TZ’%;._.T“Z;;TH 2 {8 (P, hoy - hg) (2= hgyy) (2= Pay) - (2 = ha,)},
VARV ATI AR

R, = Zm; S {E(ha, hay - Py y) (2= ho) (2= Rgy) oo (2 = g,

* ¢it will be remembered is the symbol of the operation of taking the product of the squares
of the differences of the quantities which it governs.
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The part of B;, within the sign of summation is
Zix" =3 (hgy + hgyy + oo F hg) Elhg, By, . Rg) 2™ 4 ke,
say Zyant — 7 a1 4 &,
and the part of R,_, within the sign of summation is
Z_ v — 7 a4 &,
and

Zi-x mn-i—H -7 'iﬂwn-—i

Z? g = L g Zi 1 Zyxw + (2 Z{ — Z,Z';_,)+ an algebraic fraction,
P Ly &

R T =Y s e e
X {Zi—lzix + (Zi—]Z[’ - ZiZ/L-])}

IRARE AR AT AL

T ZE I D Ty,

T; denoting Z;Zyx + (Zia 2 — Z;2';.,).

Ti)

Art. (e). If the process of obtaining the successive quotients and
residues be considered, it will easily be seen that each step in the process
imports two new coeflicients into the quotients, the first quotient containing
no literal quotient in the part multiplying « and containing the first literal
coefficient in the other part, the second quotient containing two literal
coefficients in the one part and three in the other, and in general the ith
quotient containing 2¢— 2 of the letters in the one part and 2¢—1 of them
in the other. Hence T; being made equal to Lz + M;, L; contains 27 —2
and M; contains 2¢ —1 of the literal coefficients of fz.

Moreover, we have Z; of the form

where Pia=28(hg, ho, ... hg) Moss Mo+ - Mows

P, =28k, ho, ... ho_ ) M6 Moy - Nons

and P;, which is the th simplified residue, vanishes when the 7 roots in any
manner become reduced to only ¢ distinet groups.

I proceed to show that if we make
Az + By= U =A% (z— )+ 4%, (e — h) + ... + A% (2 — hy),

where in general

Ay, represents S8 (he,, g, ... ho)) (he — ho)) (he — hg,) ... (he — he,_,),
then will
Ti = U,;.
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It will be observed that A;, is identical with what the simplified
denominator of the (¢ — 1)th convergent becomes when we write &, in place
of z, and consequently, when arranged according to the powers of A,, will be
of the form

ah ™+ chi T L+

where ¢, ¢, ... ¢; are functions of the coefficients, but containing no more of
them than enter into @;-., that is, containing only 2¢ — 2 of them.

Now 4; is made up of terms, each consisting of some binary produet of
€1, Coven i,
combined with some term of the series
Sha—e Shes . SO,

and any one of this latter set of terms expressed as a function of the coeffi-
cients of fr contains at most 2¢ — 2 of them.

Hence only 21— 2 of the coefficients enter into A;, and in like manner
only 2¢ -1 of them into B;.

The number of letters, therefore, in A4; and in B; is the same as in L;
and in M;, namely 2¢ — 2 and 2¢— 1 respectively.

Now let the roots consist of only ¢ distinet groups of equal roots, so that
Pi—2
Pi-l

T; becomes = Z2

I shall show that in whatever way the equal roots are supposed to be
grouped upon this supposition, there will result the equation

Ti: Ui>

P
where Ti= {2 (nq,, ne, .- Ma)}? F—2 ,

P ,= 3 {"Io,-"lom cer Non C("Ie,, Ny «++ "]o.-_,)},

Py =3 (10,705 -+ 10, § (M0, M, -« Ma)},
and Hy= Ay + A2+ ... + Au®nn
A, meaning 3 (0, —19,) (e ~ Ma,) -+ (Me = 6,,) E(Ma,, M, --- Maicy)}s
and n, meaning x — A,

Let the m factors be constituted of m, factors %,, m, factors n,... m;
factors ;. Then

Zi=p&(m, 1y .. m),
where B= MMy .. My,

Piy= p8(m, ma oo my) m™ gt L g
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and Pio=p 8 (s, my..mi) pM™igmet L pnt

+ F’QC("]I; Ny vnn "h) "hmr‘l ,,]27)12 oo "]i’mi—1
+ &e. &ec.

+wil (o, ms e Vi) MM T ™ gy,

2 I 2
where S =4 =8
e B M T
Hence
Ti=pE(m, ns... mi) {1] £ 022 b (0 9. 9) +... +Z]ﬂmﬂw}.
ny My m;

Again, in U; the term containing 4, will be
mym {2 (m— ) (m—ms) ... (i — 7) C("]z’ N3 oe- "]i)}2
=mym X (m2m3 e ’mi)2 X ("]1 - "]2)2 ("71 - "]3)2 e ("71 - "75)2 {C ("72: VPR "h’)}"’
#2
= TmX EOms maveemd) E(nas 3. M)
1

Hence
U= W, ... mi) {"hg("h"]s v 1) + 28 (mns .- "h’)_l_&c:} =T,

ny My

Hence, therefore, U; — T; vanishes whenever the roots of fx contain only ¢
distinet groups of equal roots, and it has been shown that U; and T; each
contain only 27 -1 of the coefficients of fz, so that U;—T7; is a function
only of n and these 27 — 1 letters, and consequently, by virtue of the Lemma
m Art. (¢), U; — T; is universally zero, that is, U; is identical with T}, as was
to be proved. In the same manner, as observed in a preceding note
[p. 494), the expression given in the antecedent articles for the numerator
of the ith convergents, having been verified for the case of the roots consist-
ing of only ¢ distinet groups, could have been at once inferred to be generally
true by aid of the Lemma above guoted.

Art. (f). Since the coefficient of x in 1} is Z;, x Z;, we deduce the
unexpected relation

Sy by hiy) X B8 (hyy by oo By) = P2+ P2+ ... + Py,
where Po=Z2{(hy—~ ho) (he —ha,) ... (he— ko) E(Na,, o, ... ho.y)}

So that every simplified Sturmian quotient to J}Cf, when the 7 roots of fz
are real, will be the sum of n squares. But the equation is otherwise

. ~1)...(n—t+2
remarkable, in exhibiting the product of the sum of 1 (nl 2) ((in— 0 )

-D...(n—141
squares by another sum of nﬂﬁl%j(izz—t—)

squares under the form of

the sum of n squares.
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If we denote the ith simplified denominator to the Sturmian convergents
Sz

to 75 by D, and if we call the ith simplified quotient X;z, we have
1
Xiw=Z(Diyhoy (2 —h,).

If we construct the numerators and denominators of the convergents to

1 1 1 1

Ql— Q2_@"'@’
according to the general rule for continued fractions, as functions of @, @,, Q,,
&c., so that calling the denominators A}, A,, A, ... Ay,

Al: Q’ A2: Qle‘_l AizQiAi—x_Ai~2:

VAT A SN AT

we have Az =% - -
VARV A SN AT

Di—-l Z,

A;_z being in fact the multiplier of 'z in the equation which connects fz
and f'z with the (i — 1)th complete residue, and consequently, retaining Q (z)
to designate the complete ith quotient, we have

VA A AT A
Zi2 Z41>—2 Z4i—4 e Z4(i)+1

IR AR A A
VA ATV AT AN

i (%) =

2 (Dicshe} (2= ho)

2 {Ai~1he}2 ('77 - he):

which equation gives the connexion between the form of any quotient and
that of the immediately preceding convergent denominator of the continued

’
fraction which expreSSestﬁx.
Jx

Art. (9). I have found that the coefficients of the n factors of fz in the
expression above given for the quotients possess the property that the sum
of their square roots taken with the proper signs is zero for each quotient
except the first (the coefficients for the first being all units), that is
Dihy+ Dihy + ... Dihy = 0 for all values of ¢ except ¢ =1. Moreover I find
that the determinant formed by the n sets of the n coefficients of the factors
of fr in the complete set of n quotients is identically zero, that is, the
determinant represented by the square matrix

1, 1, 1, 1,
Dk, (Dahy,  (Dihgy ... (Diky)
(Do),  (Dohy), (Db ...(Dohay | =0

...................................................

(Dn~1h1)2> (Dn~1h2)2; (Dn—1h3)2 rer (Dn—xhn)z
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Art. (k). It should be observed that U; is the form of the simplified
quotients for all the quoticnts except the nth (that is, the last), for which
the simplified form is not Uy, but U, + &(hy, h, ... hy), which arises from the
circumstance of the last divisor, which is the final Sturmian residue, not
containing a; it being evidently the case that the division of a rational
function of z by another one degrce lower, introduces into the integral part
of the quotient the square of the leading coefficient of the divisor, subject
to the exception that when the divisor is of the degree zero, the simple power
enters in lieu of the square. The general formula gives for the reduced nth
quotient the expression

p {(hl - h2), (hl -~ ha) (hl -~ hn) C(hm hy ... hn)}2 ('77 -~ hl))

which equals

E(ha, hy oo )L (R, by o hy) (2 — By).
Rejecting the first factor, we have

Eg(hm by ... hn) (x - hl)’

which is equal to the penultimate residue, which residue is (as it evidently
ought to be) identical with the simplified last quotient.

Art. (?). We have thus succeeded in giving a perfect representation

fﬁ that is, of
Ofa:’ at 1s, o
LIRS S
z—h x—h, T x—hy’

under the form of a continued fraction of the form

1 1 1
my(x—e)—~my(z—e)— """

where m,, m, ... m,; e, e, ... e, are all determinate and known functions

of hy, hy... k.

We may by means of this identity, differentiating any number of times
with respect to « both sides of the equation, obtain analogous expressions for

the series
1 1

CEyN AR ey R T
But to do this we must be in possession of a rule for the differentiation of

continued fractions whose quotients are linear functions of the variable.
I subjoin here the first step only toward such investigation.

Let the denominator of
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where ¢;, ¢;...q, are any n arbitrary quantities, be denoted by [, ¢, ¢s.+.qy],
so that the entire fraction will be equal to

(92 .. 9n]
{91, 920 @5 -+ Q)

Any such quantity as {gi, giy, ... ¢»] may be termed a Cumulant, of which
Qis Qiv1 ... @n may be severally termed the elements or Components, and the
complete arrangement of the elements may be termed the Type. The
cumulant corresponding to any type remains unaffected by the order of the
elements in the type being reversed, as is evident from any cumulant
being in fact representable under the form of a symmetrical determinant,
thus, for example, the cumulant {g¢;, ¢,, ¢s, ¢;] may be represented by the
determinant

¢, 1, 0 0},
1, ¢, 1, O
0, 1, ¢ 1
0, 0 1, g

and [qu, ¢, ., ¢u] will in like manner be represented by the determinant

Q4> 1, O> O >

1; Q3; 1> O
0) 1> q2) 1
0, 0, 1, ¢

which is equal to the former.

Art. (j). Let it be proposed in general to find the first differential
coefficient in respect to z of the fraction

[qi’ Qigr -+ Qn] =F,

[QU gz G5 --- Qn]

where each ¢ is a function of one or more variables.

I find that the variation of F; may be expressed as follows :

—OF;={8[q1, @2 Giss Gu] + 8 [Q0s 2o QiG] O
+8{q, @2 Gs-o- Gias Gns] [Ty Gual + -
+8[q0 o0 & oo Gives ][5 Grmry o - GiT}
+qy ¢ oo ]
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Art. (k). Suppose 1=2, and ¢y=a,z+0b, =%z + b, ... o= apz + by,
we shall have by virtue of the above equation,

%FQ, that 1s (% {q—ll—;q%_ %qln}

1
:—[ql, Q- qu]?
+ & [qns Gty Gnos oo @I}

{a,n12 + Uy @n® + Ups [Qn: (In-—l]2 + &c.

If we call F2=% every such quantity as [qn, gn— ... ¢;] represents to a

constant factor prés the (« — 1)th simplified residue (¢z counting as the first

bz

of them) to ﬁ’ and making certain obvious but somewhat tedious reductions,
.o 1 . .
and rejecting the comnmon factor — Foy’ we obtain the expression
C,R2 Rp2 Rz R,

o toatae,t e, eS¢

where Ry, R,... R, represent ¢z and the successive simplified residues
to fz, ¢x, while C; means the coefficient of the highest power of z in R;, and
C, the first coefficient in fz*.

Art. (). If we take go of the same degree as fr, and for greater
simplicity make the first coefficients in fr and gz, each of them unity,

* This result may be obtained directly as follows :—

Let fz, ¢po and the (m-1) complete Sturmian residues be called py, py, py ... py; let the n
complete quotients be called q,, ¢, ... ¢,, and let the allotrious factors to the residues p,, py ... pp
be called iy, u, ... 4, ; then

Po=01 P~ P2y PL=2P2 = Pay P2= 505~ Py &3
hence P10pg = poOpy=p120¢1+ (Py3p1 — PoBpy)
= P81+ Py 805+ (Py Bpy — Py 0p)
=&e.
=28y + P 8z + ps? By + - F Pl 0003
but we have in general p;=u,R;,

Ciy i
hence dg, = 1 Bt 5
d 250, = Jint R251:
an pi¥oq;= 52 Hi i B8
i

but it may be easily seen that

1 . .
R S except when i =1, for which case u;_,u;=1,
i1

)
Cl

hence p8q;= R26x, when i>1, and = -? R %6z when i=1,

1
CiaCy

which proves the theorem in the text.
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the successive simplified residues to I% will be identical with the simplified

Jz
residues to j%—;;ﬂ (including amongst them the quantity gz — fr itself),
and, since
(fe—gaz} gz~ {fo—ga} gz = g'afr — [ zg,

the right-hand side of the equation above written, when the residues, instead
of referring to f and ¢, are made to refer to f and g, taken of the same
degree in x, becomes equal to f'zgz — frg'z; and if we now agree to
consider f and g as homogeneous functions each of the nth degree in z and 1,
the equation becomes

R R? R R,z

atoetoaT oA

—@ D) f @ D)~ f 5 D) g (@ )

- e+ a19) (@) -2 o+ /) (&)
:l{dfdg dfdg} 1

mldedl dldel =n? (L9

where J indicates the Jacobian of the given functions f and g in respect to
the variables z and 1, meaning thereby the so-called Functional Determinant
of Jacobi to f and ¢ in respect of # and 1, which equation also obviously
must continue to hold good when we restore to the coefficients of z® in f and
g their general values.

It may happen that for particular relations between the coefficients of
J and g certain of the residues may be wanting, which will be the case
when any of the secondary Bezoutics have their first or successive terms
affected with the coefficient zero; the equation connecting the residues
with the Jacobian will then change its form (as some of the quantities
Cy, C, ... 0, will become zero); but I do not propose to enter for the present
into the theory of these failing, or as they may more properly be termed,
Singular cases in the theory of elimination.

Art. (m). The series last obtained for J (f, g) leads to a result of much
interest in the theory, and of which great use is made in the concluding
section of this memoir, namely the identification of the Jacobian (abstraction
made of the numerical factor n) with what the Bezoutiant becomes when in
place of the n variables in it, u,, U, ... u,, we write 2*, z*2...2, 1. Thus
suppose f and g to be each of the third degree, and let

Aa*+ Hz + G,
Hz*+ Bx + F,

Ga? + Fz + C,



57] of two Algebraical Functions. 507

be the three primary Bezoutics; if we make
=u, z=v 1=w,
these may be written under the form

Auw+ Ho+ Guw= L,
Hu+ By + Fuw= M,
Gu + Fv + Cw= N,

and 1if the Bezoutiant be called &, we have

dd ad aq
L:%, 11[:;%, N:%.

The simplified residues to f and g are L, (L, M), (L, M, N), where (L, M)
means the result of eliminating u between L and M, and (L, M, N) the result
of eliminating u and v between L, M, N; and by a theorem (virtually implied
in the direct method* of reducing a quadratic function to the form of a sum
of squares), if we call the leading coefficients of these quantities ), C,, C;,
we have

L (L,My (L M,Ny
atoe tog ¥
Hence, when n=3, 1J (f, 9)=& when in &, u, v, w are turned into 2, z, 1;

and so in general for any values of n, the Bezoutiant correspondingly modified,

becomes 7% J (f, 9), as was to be shown.

Sl

Art. (n). The expressions obtained for the quotients to I may be

. . x
generalized and extended to the quotients to (;;_a: where ¢z and fr are two

functions of z of any degrees m and n, whose roots are respectively, &, ks. .. km,
and f,, Ay ... hy. If we suppose

¢z 1 1 1 1

Jr Q@)= ¢:(®)~ ¢:(2) = 7 qmia ()’

where Q(z) is of n—m dimensions, and ¢, (%), ¢; (%) ... qm: (#) each of one
dimension in #, it may be proved that on writing

1 1 1 :Ni(x)
Q@) — @~ "q@) D)’

* Namely, that of M. Cauchy, adverted to in Section IV. Arts. 44—45. [p. 511 below.]

t Compare Jacobi, De Eliminatione, § 2. The general expression for the allotrious factor,
I may here incidentally mention, is given under the head Theorem a, § 16, which comes quite at
the end of the same paper.
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we shall have

g {(N Lo)z fAO (.72— ]Lg)} 011 (2), (A)
% {(D h9)2;f/h (z— ]Lo)} C'qpra (2), (B)
where C+0 =0, (B

(i1, (z) being the (i+ 1)th simplificd quotient. When () 1s a linear
function of z, in finding ¢,z from the formula (B), we must take D =1. The
proof of this theorem being generally true, may easily be shown to depend
upon its being true in the special case*, when m =g+ and n=p+7
(m being supposed less than n), and Ay, hy ... hy, become 4y, I, ... Le, s byl By,
while Iy, &, ... by become L, L,... L., ko, by ... k;; and the truth of the theorem
for this special case (if for instance we wish to prove the formula (B))depends

upon the expression
hyy by h;ﬂ) N hi‘_l>
(kly ]CO e km - (]Li', }L,j+1 Lee ]Ln

(/71, hy.. h) . (lzl, hy h,>
kyy k. T Nhiga, hige oo
being 1dentical with the expression

by hooiihen\ | (hy, Ry ---’%"-1) ) .l
{(kh k2 L k‘m ) - (}liv, ]’i"“ » }Ln x (Ilz' — ]?1) (hi' - ]lz) cee (/’1,,' hz‘-l)

9 (Zi, ks... km> L

(/1L ’
fyy by ooy By o hn>

as it may readily be shown to be. And the formula (A) may be verified
in precisely the same mauner. There is no difficulty in finding the values
of C'and €’, which are products of powers, some positive and some negative,
of the leading coefficients in the %imph'fied restdues, and recognising that

they satisfy the equation (B); when ¢z is of one degree below fz this equation
1s of the form €'+ ¢/ =0,

Art. (o). When ¢z =f’z, this expression for the (i +1)th simplified
quotient becomes X (D;h)*(x—h), as previously found; the correlative ex-
pression will be

7
~X (kY L @b,

* By virtue of the Lemma, that when ¢z and fr are two algebraical functions, no function
of the coefticients vanishing identically when i roots of fz coincide with ¢ roots of ¢x respectively
can be formed, in which there are fewer of the coefficients of f and ¢ respectively than appear

in the leading coefficient of the (n -7+ 1)th residue of }f .
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k being any root of f’z =0, which is equal to the former expression. The
general expressions above given for the simplified quantities are of course
integral functions of & and k, although given under the form of the sums

of fractions, by virtue of the well-known theorem that ?f’h’ where & is an
integral function of %, and the summation comiprises all the roots (k) of
Jh =0, 1s always integral.

Art. (p). It will be found that for all values of 7 greater than unity

E(ng)fko— 0,

=1 0

he _
(D hg);) n,

The theorem of Art. (n) is in effect a theorem of cumulants of the form

[ (), ¢ (@) ... ¢:(®) ... gu(2)],

where the elements are all independent of one another, and

Jr=[Q @) (@), ¢:(@) . (@], p2=[0(2), ¢:(2) .- ga ()},

n being any number whatever greater than ¢; this makes the theorem still
more remarkable. The urgency of thie press precludes my 1investigating
for the present the more general theorem which must be presumed to exist,
whereby ¢;., can be connected with [¢,, ¢,, ¢ ... ¢, or [¢s, g5... ¢;], and with
(. Gos @5 --- Qire] and [Qs, 5 ... gire], When each ¢ represents a function of an
arbitrary degree in z. The theorem so generalized would comprehend the
complete theory of the quotients arising from the process of continued
division, without exclusion of the singular cases (at present supposed to be
excluded) where one or several consecutive principal coefficients in one or
more of the residues, vanish.

and that

u [t

Art. (¢). The complete statement of two twin theorems suggested by
and intimately connected with the biform representation of the quotients

, given in the preceding article, 1s too remarkable to be omitted.

it
N

Suppose ¢z = f'z, and let the successive convergents to J}; be called
1 t.x the  tpa2

Tw’ T T, x> Tw’

where the subscript index to ¢ or T indicates the degree in @ Then 1f we
call the roots of fz, by, hy ... hy,, the theorem already cited in a preceding
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article, concerning the denominators of the convergents, may be expressed

as follows i—
Y SN UOY
(q&/zl) ' <¢lz2> <¢hn>
(1, hy)2, Iihy (T by
(T ), (Lohoy oo (Lohy)

..........................................

(Turh,  (Tocahol ... (Tosshy )

where it will be obscrved that the first line of terms consists exclusively
of units, since f'z = ¢« by hypothesis.

Correlatively I have ascertained that preserving the same assumption

- ¢’k 'k )
that ¢z =f'z, so that consequently i means f/J , the following theorem

obtains, namely that if 2y, &, ... k,_, are the (n — 1) roots of ¢z,

(95/]6])2 (ﬁ]}‘z\)z <?,kn_l>2
fkl , f /62 o f l('n——l

{tl (kl)}?) {tl (k_g)}? cee «[{1 (]‘~n__l)}2
{te (R} ity (kg)}z . {tz (l"n—l)}g

tnes (l))%  {taa (k)2 {tno(Bny)}®
It may consequently be conjectured, when ¢ and f are independent functions

bz .

of z and respectively of the degree n —1 and », and L~ 1s expanded under

S

. . . t by
the form of a continued fraction, of which, as before, ! n2

-,},—1, VAR are the
successive convergents, that we shall have analogous determinants to the
twin forms above given, each separately vanishing, these more general
determinants differing only from their model forms in respect of the upper-
most line of terms in the one of them, being each multiplied by certain
functions of ky, ks ... hy, respectively (all of which become units when ¢z = f'x),

and 1n the other of them by certain functions of &, &, ... ky.

The exact form, however, of such functions, and even the possibility
of such form being found capable of making the dcterminants vanish, remains
open for further mquiry.
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SectIiON IV,

On some further Formule connected with M. Sturm’s theorem, and on the
Theory of Intercalations, whereof that theorem may be treated as a
corollary.

Art. 44. As preparatory to some remarks about to be made on the formule
connected with M. Sturm’s theorem, it i1s necessary to premise two theorems
of great importance concerning quadratic functions, one of which, notwith-
standing 1ts extreme simplicity, 1s as far as I know very little (if at all)
known, and the other was given in part many years ago by M. Cauchy, but
is also not generally known. The former of these two theorems is as follows.
If a quadratic homogeneous function of any number of variables be (as it may
be in an infinite variety of ways) transformed into a function of a new set of
variables, linearly connected by real coefficients with the original set, in such
a way that only posttive and negative squares of the new variables appear in
the transformed expression, the number of such positive and negative squares
respectively will be constant for a given function whatever be the linear
transformations employed. This evidently amounts to the proposition, that
if we have 2n positive and negative squares of homogeneous real lincar
functions of n variables 1dentically equal to zero, the number of positive
squares and of mnegative squares must be equal to one another, so that
for example we cannot have

Ul Ul b U U~ Wi — Wy — - — Uy,
identically zero when n of the variables are linear functions of the remaining
n;

; and this is obviously the case, for if the equation could be identically
satisfied we might make

Upig = U1, Ungg =Us ... Usp = Up—,

and we should then be able to find w,,, as a real numerical multiple of u,,
and consequently should have the equation u,?{1 + %} = 0, which is obviously
impossible; & fortiori we may prove that in the identical equation existing
between the sum of an even number of positive and of negative squares
of real linear functions of half the number of independent variables, there
cannot be more than a difference of two (as we have proved that there canmot
be that difference) between the number of positive and negative squares.
Hence there must be as many of one as of the other; and as a consequence,
the number of positive squares or of negative squares in the transform of a
given quadratic function of any number of variables effected by any set of
real linear substitutions is constant, being in fact some unknown transcen-
dental function of the coefficients of the given function. I quote this law
(which I have enunciated before, but of which I for the first time publish
the proof) under the name of the law of inertia for quadratic forms.
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Art. 45, The other theorem is the following. If any quadratic function
be represented in the umbral notation* under the form of

(2 + a2 + ... + anZy)?,

where a,, @, ... a, are the umbre of the coeffictents, and 2z, @,... 2, the
variables, then by writing

a, a; a; a; a,
x + Z, + z; + Zy+ ...+ a:n=y]’
() ] Ay a, ay
Ay, U Ay, Uy Uy, Uy Ay, Ay
2 + Zy + 7 RV Tn == Yo,
Ay, Ay ay, Qs Ay, ay, dn
Ay, Uy, Ay Ay, Gy, g U, Oy, Qg
’ o+ 7 Ty+ ...+ ’ Ty =1y,
Ay, Uy, Uy Uy, Uy, Uy Ay, Uay U
&ec. &e. &c
, Oy ) _y
n—Jn
. s Agooe Uy 4
(a2 + @y + ... + Ggzy)* will assume the form
ay, ay Qyy Ay, Uy Ay, Qg oo Uy, Ay
221 a1, Uy ay, Ugy Qg Uiy Qg oee Ay, Ay
\%2+ Yt eyt .+ : Yy,
451 231 y, Uy a, a, Ayt
a, g5 Uy g,y Uo Ay

and consequently the number of positive squares in the reduced form of the

given function will always be the number of continuations or permanencies
of sign of the seres

a a, Oy |

b

ay, Ay, Uy
Uy, g, O3

Uy, Uy ovn O
U, Uy ... Oy
the several terms of this progression being in fact the determinants of what
the given function becomes when we obliterate successively all the variables
but one, then all but that and another, then all but these two and a third,
until finally, the last term is the determinant of the given function with
all the variables retained. This comes to saying that if we call the function
(suppose of four variables) £, and write down the matrix

&*f & &*f &f
dz?’ dzdz,’ dedr, dzdz,’
o df @ _dy
doyde,’  dep’  deyde,” deds,’
a2 & a&f d&f
degde,’ drdz,’ dzg’  dz,dz,’
dif d*f df a2f
dedr,” dedz,’ dedz,’  dzg’

1; ;

a; ay, Gy

* For an explanation of the umbral notation, see London and Edinburgh Philosophical
Magazine, April 1851, or thereabouts [p. 243 above].
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(where all the terms are of course coefficients of the given function expressed
as above for greater symmetry of notation), the inertia of / will be measured
by the number of contmuations of sign in the series formed of the successive

principal minor coaxal determinants (in writing which I shall use in general

&
(7, 8) to denote i dws) ,

(L1 (12 (13

) (2 1), (2,2, (23],
G, 3, 2), @3, 3

1, 1, d, 2), (1, 3), (1, 4)

2,1, € 2), 2, 3), (249

3, 1), 3,2, 3,3), 34

4, 1, 4 2), 4, 3), 4, b

and in like manner in general *,

Lo, D )
B R R

Art. 46. Reverting now to the simplified Sturmian residues, since by
the theory set out in the first Section these differ from the unsimplified
complete residues required by the Sturmian method only in the circumstance
of therr bemg divested of factors which are necessarily perfect squares and
therefore essentially positive, these simplified Sturmians may of course be
substituted for the complete Sturmians for the purposes of M. Sturm’s
theorem. The leading coefficients in these simplified Sturmians, reckoning
S’ (x) as one of them, will be

mZE (M, hy),  ZE (R, Ray bg) oo E (R, Ryl By,

which it is easily seen, as remarked long ago by Mr Cayley, are the successive
princtpal minor coaxal determinants of the matrix

Gy, Gy, Oy, O3...0,,

oy, Gy, O3 0"m;
T2 O3 c Tmi,
Tm—1; Om cor Tom—s,

* I have given a direct & posteriori demonstration in the London and Edinburgh Philosophical
Magazine, that the number of continuations of sign in any series formed like the above from a
symmetrical matrix, is unaffected by any permutations of the lines and columns thereof, which
leaves the symmetry subsisting, that is to say (using the umbral notation), if @), 6,, 6, ... §; are
disjunctively equal, each to each, in any arbitrary order to 1, 2, 3 ...4, the number of continua-
tions of sign in the series

ag,
%9,

gy, Ay
gy, g,

ag;, Agys gy
agl, ag,, a03

Qg 1192, aoa oo aoi

aol, a92, aos PR ao‘,

1)

3

is irrespective of the order of the natural numbers 1, 2, 3... 7 in the arrangement 6, 6,, 6, ... 6;.
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where in general @, = A7 + Ay + ... + k', and of course oo =m. M. Hermite
has improved upon this remark by observing, what is immediately obvious,
that if we use o, to denote, not the quantity above written, but

S e
x—h a:—h2+'“ z—hy’

the successive coaxal determmmants of the above matrix will become re-
spectively

1 § (b, hy)
e Seetnt
2 C(hh h‘n hs) C(hh h2 hm)

@ —T) @ —t) (@ —he) " @ —Ta) (@ —ha) v (@ — o)’

that is to say, these successive coaxal determinants, when multiplied up by
S, will become respectively

S(@—h)(@—hy) oo (@ = bw), ZE(h, b)) [(x—hs) (@ =Ry ... (=P}, ...
2 (hy by v ha),

that is to say, will represent the simplified Sturmian series given by my
general formule. M. Hermite further remarks, that the matrix formed
after this rule will evidently be that which represents the determinant of
the quadratic function (which may be treated as a generating function)

1

zaz—h,

{Uq + by + hPug 4 o 4 ™ um}2;

in which, since only the squared differences of the terms in the (k) series
finally remain in the successive coaxal determinants, we may wrte (z —h,),
(z—hy) ... (= hy) stmultaneously in place of A, k... k, without affecting the

result ; consequently the generating function above may be replaced by the
generating function

3

1
i+ @=h)w+@—h)Pus+ .o+ (@ =)™ )3,
z—~h

the corresponding matrix to which becomes

1
E x’j’%) 807 61 R 61»—2,
607 617 62" em—ly
617 627 em;

...........................
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where 6; denotes = (z—h), and 2—1—-—=fﬁ Hence every simplified

c—h Sz
residue 1s of the form
6, 6, ...0, 0, 6,0, 0,
f’x X 62: 63 b 67+l +f-73 X 60; 91 €r+l
07: GT—H cen 627—1 67: GT—H e 027‘+1

The residue in question will be of the degree m —r — 21n z, and consequently
we have, according to the notation antecedently used for the syzygetic
equations

0, 6, ... 0,
tr+1 — 2 63 .. 6r+1
9,., 67+1 627—1
0, 6, 6..6
€., 6, Oris
—Tr= 61 9r+2
97; er—H 627+l

Elegant and valuable for certain purposes as are these formulz for ¢,,,
and 7, they are affected with the disadvantage of being expressed by means
of formulee of a much higher degree in the variable # than really appertains
to them, the paradox (if it may be termed such) being explained by the
circumstance of the coefficients of all the powers of « above the right degree
being made up of terms which mutually destroy one another; upon the
face of the formule, ¢,,, and 7, which are in fact only of the degrees r +1
and r respectively in « would appear to be of the degree

1+3+564+...4+4(2r-1),
that is of the degree r2

Art. 47. 1 may add the important remark, which does not appear to
have occurred immediately to my friend M. Hermite when he communicated
to me the above most interesting results, that in fact, by virtue of the law
of inertia for quadratic forms, we may dispense with any identification of the
successive coaxal determinants of the matrix to the generating function

P {th + hytts + A2 Us + oo+ BT

p—h

with my formule for the Sturmian functions, and prove ab initio in the
most simple manner, that the successive ascending coaxal determinants
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(always of course supposed to be taken about the axis of symmetry) of the
matrix to the form above written, or to the more general form (which I shall
quote as (), namely)

Z(p— ) {pr () s+ o () s+ oo + i (Ry) U, (G)

(where ¢y, ¢. ... ¢,, are absolutely arbitrary integral forms of function with
real coefficients), will form a rhizoristic series in regard to f (that is a series,
the difference between the number of the continuations of sign between
the successive terms of which corresponding to two ditferent values of p will
determine the number of real roots of # lying between such two assumed
values), provided only that ¢ be an odd positive or negative integer. Nothing
can be easter than the demonstration, for whenever p is greater than any
one of the real roots as h; :—

Firstly, any pair of imaginary roots will give rise to two terms of the
form

(I+my=1Y(w+wsy/—1Yand (—my—1) (v —ws — 1),
or more simply
(L+My—1) (02— w+ 2vw /— 1)
and L= My—1)(v* —w* = 20w/ — 1),

where v and w are real limear functions of w,, 4, ... 4n. The sum of which
couple will be

2{L (v* — w?) — 2Mwv) {(Lv — Mwy — (L* + M) w?} = p* — ¢

2
L
so that each such couple combined will for every value of & give rise to one
positive and one negative square.

Secondly, any real root of the series k,, h, ... hy, when p 1s taken greater
than such root, will give rise to a positive square of a real linear function
of Uy, Uy .\v .

Thirdly, any real root of the same series, when p is beneath it in value
(g being odd), will give rise to the negative of the square of a real linear
function of the same. Hence the number of real roots between p taken
equal to one value (a), and p taken equal to any other value (b), will be
denoted by the loss of an equal number of positive squares in the reduced
form of the expression (G) when p is taken ¢ and when p s taken b;
that is by virtue of Art. 45 will be denoted by the difference of the number
of permanencies of sign in the successive minor determinants of the matrix
correspondimg to the quadratic form (G)* (which we have taken as our

* The inertia of the quadratic form (G) is the measure of the number of real roots of fx
comprised between o and p, and may be estimated in any manner that may be found most
convenient, If p be made infinity, and ¢/& be taken equal to A1, and the inertia of the corre-
sponding value of (G) be estimated by means of the formul® in ordinary use by geometers for
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generating function) resulting from the substitution respectively of a and
b in place of p, which gives a theorem equivalent to that of M. Sturm,
transformed by my formule, when we choose to adopt the particular
suppositions

g=—1, ¢h=1, ¢sh=h, Gh=k ... ph=h"".

This method of constructing a rhizoristic series to fr by a direct process
is deserving of particular attention, because it does not involve the use of the
notion of continuous variation, upon which all preceding proofs of Sturm’s
theoremn proceed. It completes the cycle of the Sturmian ideas. Happily
this cycle was commenced from the other end, for 1t would have been difficult
to have suspected that the root-expressions for the terms in the rhizoristic
sertes could be tdentified with the residues, had the former been the first
to be discovered, and much of the theory of algebraical common measure
laid open by means of this identification would probably have remained
unknown.

Art. 48. T proceed now to consider a theorem concerning the relative
positions of the real roots of two independent algebraical functions as
indicated by the succession of signs presented by their Bezoutian secondaries;
this more general theory of intercalations or relative interpositions will be
seen to include within it as a corollary the justly celebrated theorem of
M. Sturm.

Let the real roots of fx taken in descending order of magnitude be
hy, hy...hy, and the real roots of ¢z taken in the like order 7,, 7;... 7,
so that

Jr=(x—h)(®—hy)...(x—hp) H,

pr=(x—m)(@—m)...(z—n) K,

H and K being functions of « incapable of changing their signs. Now, asin
M. Sturm’s method, let us inquire what. takes place in respect to the sign of
¢ (@)

f@)’
magnitude from 4+ © to — w. If between + o and A,, 7 real roots of ¢z are
coutained, it is obvious that as z travels from + o to the superior brink
of A, the Indicatrix will change its sign from + to — and from — to + alto-
gether ¢ times, so that at the moment when « is about to pass through &, it

which I shall call the Indicatrix, as @ descends the scale of real

determining the nature of a surface of the second degree, the criteria of the number of real roots
in fz will be, or may be made to be, symmetrical in respect to the two ends of the expression fx.
This system of criteria, however, is not so good as that given by the Bezoutiant to the two
differential coefficients of f(z, 1) taken with regard to ¢ and 1 respectively, which will also
possess the like character of symmetrical indifference, and be one less in number than the
former.
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will be positive if 7 is zero or even, and negative if 1 is odd ; but the moment
after z has passed through the value k,, the indicatrix will be negative
on the first supposition, and positive on the other supposition. Hence
iminediately after the passage of z through A, the indicatrix will have been
once oftener negative than positive on the one supposition, and as often
negative as positive on the other. Again, in like manner as @ traverses
the iterval between %, and the inferior brink of %, if no 5 or an even
number of 5’s occupy this interval, the sign which the indicatrix had at the
beginning of this interval will have been reversed once oftener than restored;
but if there be an odd number of %’s so interposed, the number of reversals
and restorations will have been 1dentical ; and so for each successive interval,
reckoned from a value for # immediately subsequent to one real root of fz,
down to a value immediately subsequent to the next less real root of the
same ; and it is evident that the effect upon the sign of the indicatrix at
the end of every such interval depends, not upon the number of »’s grouped
together in such interval, but upon the form of the group as regards its
being made up of an odd or even number of terms, the first interval being
of course understood to extend from + oo to a value immediately inferior
to &,, and the last from a value immediately infertor to h, to — . Hence
as regards the relation of the sign of the mdicatrix at the beginning to the
sign at the end of every such interval, nothing will be altered by taking
away any even number of 7's that may be found therein. If we suppose
this to be done, we shall then have m some of the intervals one » occurring
and in the other intervals no %; that is to say, some of the A's will be
separated by single #’s, but other A’s will come together. Again, by removing
any even number of %’s not separated by n’s (and thus removing an even
number of intervals), it is clear that as many changes of sign of the indicatrix
will have been done away with from + to — as from — to +, and no effect
upon the excess of the one kind of changes of sign over the other kind of
changes of sign will have been produced. By removing pairs of &’s in this
manner, it may happen that »’s will again be brought together, any even
number of which, not separated by k’s, may again be removed and then pairs
of k’s not separated by #’s in their turn, and so continually foties quoties until
at length we must arrive at a reduced system of A's and #’s, where no two
k’s and no two #’s come together, or else all the 2’s and all the s will have
disappeared. Let the scale of A’s and 5’s thus simplified and reduced be
called the effective scale of intercalations. The number of &’s and the number
of n’s in any such scale will be equal, or will at most differ from one another
by a unit, since at each part of the scale, except at the end, every h 18
followed by an y and every 5 by an h. If the scale begins and ends with an
h, there will of course be one more & than 5 ; if it begin and end with an «,
there will be one more # than A ; if it begin with an A or an % and end with
an g or A, there will be as many of the one as of the other.
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Firstly, suppose the effective mtercalation scale to commence with an A
then in passing from 4 oo to just beyond the first h the sign of the indicatrix
% changes from + to —; 1t changes again from — to + as 1t passes the first
n, then again from + to — as it passes the second &, and so on; that is to say,
there will be a change always in the same direction from + to — as @ passes
from being just greater than to being just less than any h appearing in the
effective scale. Secondly, if the effective scale begin with 5, the indicatrix
will conversely be negative after passing the first and every subsequent
n, and change from — to 4 in the act of passing through the first and every
subsequent i So that on either supposition the changes of sign for the
effective scale always take place in the same direction, and the number
of I’s in the effective scale will be measured by the number of such changes,
and consequently will be measured by the difference between the number

of times that the indicatrix % changes its sign from + to — as x passes
through each in turn of the real roots of fz, and the number of times that
in passing through any such root it changes its sign from — to +; if the
former number be greater than the latter, the effective scale of interpositions
will begin with a root of fz; if it be less, the scale will begin with a root
of ¢x. If instead of beginning with + o and ending with — oo we begin and
end with any two limits, @ and b respectively (making abstraction of all roots
of fz or of ¢z lying outside these limits, and forming the effective inter-
calation scale with the roots comprised within these limits exclustvely),
we shall obviously obtain a similar result, but with the condition that the
changes from 4+ to — will be in excess if an even number of A’s and 7's
combined be cut off by the superior limit, and the effective scale begin with
an k, or if an odd number of A’s and 5’s combined be so cut off and the scale
begin with an 5; and in defect if an odd number of ks and x’s combined
be so cut off and the scale begin with an &, or an even number be so cut off
and the scale begin with an 5. If, now, supposing fz to be of n, and ¢
of not more than n, say m dimensions, we form the signaletic series fz, ¢z,
B,, B, ... B,, (where the B,, B, ... B,, are the Bezoutian secondaries or simplified

successive residues corresponding to %— expanded under the form of an
z
improper continued fraction), it may be shown, in the same way as for

Sturm’s theorem, that whenever % changes from + to — a change of sign
will be gained in the series, and when from — to + a change will be lost;
and that no change can be gained or lost except as @ passes through the
successive real roots of fr. Hence the difference between the number of
changes of sign in the above signaletic series when « is taken a, and the
number of the same when z is taken b, will indicate the number of roots
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of fz remaining in the effective scale of interpositions formed between such
of the roots of fz and of ¢x as lie betwecen a and b; calling the one
number 7 (a) and the other 7 (b), the sign of I (b) — I (a) depends not on the
relative magnitudes of « and b, but upon the manner in which the
effective scale commences; if I (a)—I(b) is positive, the effective scale
formed between the ¢ and b will commence with a root of fz; if negative,
it will commence with a root of ¢z.

Art. 49. In forming the scale of effective interpositions, it is evidently
not necessary to go on reducing the % series and the 7 series separately
and alternately; the same result will be effected more expeditiously by
eliding simultaneously any even number of ’s that come together without
being separated by an 5, and any even number of ’s that come together
without being separated by an h, and, repeating this process of simultaneous
elision, as often as may be required, until no two s or n’s come together.
Thus, for instance, denoting the magnitudes of the series of real roots of
Jand of ¢ by the distances of A and 5 points taken along a right line from
a fixed point therein, and supposing such series of roots between the limits
a and b to be

hhhnnnhonhnonhhnhyhhhhhgnh,
our first reduction brings this scale to the form
hyhhgnhnhh;
the next reduction brings it to the form

hnnyhy;
and a third and final reduction brings it to the form

hnhn;

and accordingly we shall find for such an arrangement of the A and 7
system

I —1(a)=+2

Art. 50. If we suppose ¢z = OZC; , by a well-known theorem of algebra,

any two consecutive roots of fz will contain between them an odd number
of roots of ¢z, and the number of real roots of f'z greater than the greatest
root of fr, and the number of real roots of S’z less than the least root of fa:
will each be even. Hence the effective intercalation scale between any two
limits @ and b will be formed by merely reducing the 5 groups to single
units, and the number of A’s in the scale so formed will be the total number
of &’s between the limits a and b. Moreover, since such scale commences
always with a root of f, or with an even number of roots of f'z followed by
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a root of fr, if the nnmber of A’s and 7’s cut off be cven, and with a root of
S’z or an even number of roots of fxz followed by a root of fz, if the number
so cut off be odd, it follows that for this case I (a¢)— 1 (b), @ being the
supertor limit, will be always positive, and will measure the total number
of real roots of fz lying between ¢ and b; this, then, is Sturm’s theorem,
treated as a corollary to the Theory of Intercalations.

Art. 51.  If we write down the last syzygetic equation between fz of m
and ¢z of n dimensions, namely

Tn—y (@) f& — tmy (2) Pz + ¥, =0,

it has been shown that the succession of signs in the series formed with fa,
¢z and their successive Bezoutian secondaries will contain the same nunber
of continuations and variations as the series formed with fz, ¢, (z), and
their successive Bezoutian secondaries, This indicates that the effective
scale of interpositions for fz and ¢z will contain an equal number of roots
of fx with the effective scale for fz and ¢, (2); the two scales however
will not necessarily be identical, because the roots of ¢z will not necessarily
be in the same order relative to the A’s in the one scale as those of ¢,_, (#)
relative to the A’s in the other scale. This equality is perfectly well explained
d posterior: by the form of ¢,_, (#), which by the formula in Section IL. will
be represented by

bhy, Pl - Phyp.,
2(@—=hy)(®—hg) ... (x—hg,_) T YR P B = W &

Now, whenever # 1is indefinitely near to any one of the roots of fa, as h,,,

this sum reduces to the simple expression
hy, Dl . dhyp = (b bl ... Sho] &1’,

m
and consequently in the immediate neighbourhood of every real root of fz,
¢z and t,_,(z) will have always the same or always a contrary sign,
according as ¢hy phy, ... dhy, is positive or negative, which will depend upon
the relative disposition of the real roots in f and ¢; in either case the
effective scale of interpositions for fz with ¢z and for fz with ¢, _,2 must
contain the same number of A’s; bant the difference will be, that if
dhydhy ... phuy 1s positive an h will occupy the first place in each scale, or
the second place in each scale; but if negative, then in one scale an A
will occupy the first place, and in the other scale the second place.

Art. 52. The same process of common measure or residues which serves
to furnish a rhizoristic series for fz or a syrrhizoristic series for fr and ¢z,
will serve also to furnish superior and inferior limits to the real roots of any
proposed equation. Thus suppose fz to be any rational integral function of
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z of the degree n and ¢a any other function of «, which I shall begin
with supposing to be of the degree (n —1), and let the successive quotients
resulting from the process of finding the greatest common measure of fz, ¢
continued until the last remainder 1s not a constant but zero, be supposed
to be (as they may generally be taken, but subject to cases of exception,
which will hereafter be alluded to) n linear functions ¢, g, ... gn; then we
shall have
¢z 1 1 1

1
fx Q1+QZ+”.Q7L—1+§;’

and therefore
¢z = KN,

Jz=KD,

where IV 1s the numerator and D the denominator of the continued fraction

and K is a constant; the value of this constant is immaterial but is
in fact

g Lo L L

- Ll-z L32 L52

Ly, L,, L,, L,, &c. being the leading coefficients of the last, the last but one,

the last but two, &c. of the Bezoutian secondaries to fu and ¢x. Accordingly,
if n=1,let D=¢q,=p,;

. 1
if n=2, let D:q2ql+1=ul{qg+;}=/’«1/’«2§
1

&e.,

) 1
if n=3, let D=Q3 {Q2Q1+1}+QI=/’“1#2{Q3+_}='u'1'u'2/b‘*.’

...........................................................................

and in general let

where

1 1
M=q, pe=q+—, =@+ — ... =qn+ :
1 2= Q2 o M3 = qs 1 Mn={qn Pt
Now suppose # to be so taken that

g, does not lie between + 1 and — 1

Qs » » + 2 and -2

qs ” ) + 2 and — 2L

7 . . +2and — 27 ()
qn— » » 2 and — 2

n » 2 1 and — 1/

where 1t will be observed that the excluded region lies between + 2 and — 2
for all the intermediate quotients, but between only 4+ 1 and — 1 for the first
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and last quotients. Then u, is positively or negatively greater than 1,

therefore — is a positive or negative fraction; but ¢, is positively or nega-
M

tively greater than 2; therefore u, will be of the same sign as g¢,, and also g,

will be positively or negatively greater than 1; therefore . will be a positive
2

or ncgative fraction; but ¢, 1s positively or negatively greater than 2;

therefore p; will be of the samc sign as g;, and also u; will be positively

or negatively greater than 1; and proceeding in this way, we find that all

values of u;, from ¢=1 to i=n—1, will be of the same sign as ¢;, and

positively or negatively greater than 1. Finally, will be a fraction,

Hn—

and therefore, since g, 1s positively or negatively greater than 1, u, =g, + L

n—1
will have the same sign as ¢, (but of course is not necessarily greater
than 1, nor would that condition serve any purpose were it satisfied). We
infer consequently, that when the conditions (w) are satisfied, w,, po,
Hs ... py, Will respectively have the same signs as ¢, ¢....¢,; and therefore

D= ppypy ... pn has the same sign as ¢,¢:q;... ¢,. Now suppose
=0z + by, Qs = Gy + by ... gn = Qnx + bn,

and solve the 2n equations

zx+b=+c¢, arxt+b=4c..tpx+by = cCu, rz+by,= cn,
agr+b=—c, ap+b=—0c ... 0y &+by,=—cny, apx+by=—Ccn,
where

=1, =2 ¢=2..¢;,,=2, c¢,=1

Whenever in any one of the n pairs of equations above written the coefficient
of z is positive, the upper equation of the pair will bring out the greater
value of z; but when the coefficient is negative the lower equation will give
the greater value. Take the pair

a;x + b;= Ciy
a;x + b1 = — Ci.

If @, is positive a;z + b; will always be positive, and greater than c;, between
#= oo and z = the greater of the two values of #; if a; Is negative a;z + b;
will always be negative, and less (that is nearer to — o) than —¢;, for all
values of z between the same limits as before. So again 1t will be seen
in like manner, that whether a; be positive or negative, between z = — o and
x = the lesser of the two values of x corresponding to the above pair of
equations, a;x + b; will always retain the same sign, and will be greater than
+ ¢;, or less than —¢;, according as «; is negative or positive, If, then, we
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take the greatest of the greaters of the n pairs of values of z, that is the
absolute greatest of the 2n values, and the least of the lessers, that is the
absolute least of the same, say L and A, then between L and A, qy, Qs ... qn will
each always retain an invariable sign, and will then fall without the limits
+ ¢, 4 Co» --- + Cuy, £ Cn, 50 that between + oo and L and between A and — o,
fafe .. pn, that is a constant multiple of f(2), will retain the same sign as
0,92 - .- qn, that is will never change its sign from the beginning to the end
of one interval, nor from the beginning to the end of the other; and con-
sequently L and A will be a superior and inferior limit respectively to the
real roots of fz. It will of course be observed that it is indifferent for the

purposes of the foregoing theorem, whether %: be expanded under the form

of a proper or an improper fraction, that is whether we employ the ordinary
or the Sturmian process of successive division ; for changing the signs of the
residues will only have the effect of changing ¢; into (+)g;, and the pair
of equations (4)¢; =% ¢; remains the same whether the + or the — sign be
prefixed to ¢;. The resalt is, that if we form the 2n quantities

+1—b, +2-b, +2-b, +2-0b,, +1-0,

1 122 Qs ap—y n

the greatest of them will be a superior, and the least of them an infertor
limit to the roots of fa*.

It may be remarked that if the successive dividends in the course of
the process be multiplied respectively by &, &, ... &y, % will take the form
by ke ks ka,

‘I1+Q2+‘13_+”' an’

and if we write

ax+b=%¢, a@+b=4C...0x+by=4c¢,
and make

a=1, =14k, =14+k...ca=1+kn,

the same reasoning as above will show that the greatest and least of the 2n
quantities

£1-b +(l4k)—by t(Ltk)—buy £1-Dn

b
ay Ay Ap—y 229

will be a superior and inferior limit to the roots of fz.

For greater simplicity, again, consider k,, k, ... &y, to be all equal to unity;
we may make this addition to the theorem as above stated. namely calling

* For a generalization and improved form of statement of this theorem see Supplement to
the present Section.
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L, Ay Ly, A, ... Ly, A, the greatest and least values of the terms contained
respectively in the series marked below 1, 2, 3 ... n, namely—

i‘l—b} i2_b2 i2_[33 i2—bn—1 il“bn

b ) .. ’ b 1
21 [¢23 s Up—y Ay ( )
ilfz)z i2"b3 i2—bn—1 il“bn 9
e e T @)
+ la— b, + 2a— bn_l’ + 1a- b ’ (3)
3 N—1 n

Oy’ a, ! (n=1)
+ 1- bn
T (n)

L, Ay; Ly, Ay ... Ly, Ay will be respectively superior and inferior limits to fz,
¢x and their successive residues. As a corollary, we see, of course, that L
and A, the superior and inferior limits to the roots of the given function f,
must always lie between + o and the greatest root, and between — oo and
the least root, of the arbitrarily assumed function ¢a.

Art. 53. Let us now assume somewhat more generally that ¢z is any
number of degrees 8, in # lower than fz, which will cause the first quotient
ge, to be of the degree 6, in z;, and let us further suppose that ¢« stands in
such a relation to fz that the following quotients, gq,, go, .. qe,, aTe of the
degrees 6;,6;...6, in z (6, 6;... 8, being supposed not necessarily units,
as they would generally be, but any positive integers whatever, as may
happen in consequence of one or more of the leading coefficients in any
residue vanishing); then

gz 1 1 1 1

— e

Jr o g+ et gt g,
where 8, + 6,4+ 6,4+ ... + 8, =n; and consequently fz will be equal to the
denominator of the last convergent above written, multiplied by a constant,
so that we have now ¢ fz = m;m, ... m,, where

m,=(qy , Myg= 0+_...mp=Qg_+/'~.
1 Qe, 2 = qo, m p—1 Myy

And as in the case previously considered, so long as

>1 > 2 > 2 >1
q&( or ), %,( or ), qu< or >,..- qu< or ),
<-1 <=2 <—-2 <-1

Sz will have the same sign as go,qs,--- o,
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Let now Qo,=%¢, Go,=*+Ci---Qo, =% Co,
where a=1 ¢=2...cu=2 c=1
Consider any pair of the above equations as @2 — ¢ =0.

Firstly, suppose all the roots of this equation are impossible; g2~ c?
must be positive for all values of z, and gy, can never lie between + ¢; and
— ¢;; moreover, since upon the hypothesis made, go, + ¢; and ¢4 —c; always
retain the same sign, namely, that of the coefficient of the highest power of
ge,, 1t follows that qo, must also always retain the same sign; for if we con-
struct the two curves y = gq, + ¢; and y = g4 — ¢;, these will both lie on the
same side of the axis of z, and never cut the axis, consequently the curve
y = qg;, which lies between them, must also lie on the same side as either of
them, and never cut the axis.

Hence, then, if the roots of the equation are all impossible, g, will
always retain the same sign, and will never fall within the region bounded
on two sides by + ¢; and — ¢;.

Secondly, suppose the equation to have one or more possible roots, and
l; to be the greatest, and A; the least (which of course, if there is but one
possible root, will be identical). If the leading coefficient of g, 1s positive,
the greatest root (I) of the equation gy, — ¢; =0 will exceed the greatest root
(I') of the equation @ + ¢;=0; for between z = and z=1, qq, must go
through all values intermediate between o0 and —¢;; hence there must be a
quality [ intermediate between I’ and + oo, which will make go=c¢;. In
like wanner, if the leading coefficient of g, 1s negative, it will be seen that
the greatest root of gg 4 ¢;=0 will exceed that of g4 —c¢;=0. Moreover,
in the one case qq will be always positive and greater than ¢;, and in the
other always negative and less than ¢;. In cvery case, therefore, between
+ 00 and I;, ¢p, retains the same sign, and does not fall within the region
bounded by +¢; and —¢;; the same thing may be shown to be true for
all values of z between — oo and A;. Hence, then, by the same reasoning as
that employed in the preceding article, we are enabled to affirm, that if we
form the equation

(90° —1) (g0 — 4) (90— 4) ... (Ts,_, — 4) (g5, — 1) = 0, (¥)
its greatest root will be a superior limit, and its least root an inferior limit
to the roots of the equation Jz =0, whatever be the value of the assumed
function ¢z ; and if the above equation (y) has no real root, all the roots of
Jx will be imaginary.

Art. 54. In the preceding two articles it has been supposed that all the
quotients are taken integral functions of z; but the process of successive
division may be so conducted as to give rise to quotients of the form

ax‘+bmi"‘+.‘.+c+%+.., +L

x’b
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Suppose then that we have in general

gr_1 11

Je a4 e+ g
where ¢,, ;... g, are each of the general form above written (but of course
¢ and i’ being not necessarily the same for any two of the quotients), and
suppose that the sum of the degrees in « of ¢, ¢,... ¢, is n +¢, where ¢ is

essentially (as it must be) positive. Then we shall find, as in the last article,
that L and A being called the greatest and least roots of

(-1 (@' —4) .. (Pua — (g2 1),
D, the denominator of the last convergent to the continued fraction above
written, will never change its sign between 4 o and Z, nor between A and

—o0; but here we shall have

Jz=Kat x D.
Hence #*.D will be invariable in sign within each of these two intervals.

Firstly, let ¢ be even; then fz will be invariable in sign, whatever L
and A may be for each such interval.

Secondly, let ¢ be odd; then if L is >0 and A <0, fz cannot change
its sign in either interval ; but if L is <0 or A >0, fz will change its sign as
x passes through zero, but will be invariable for each of the three regions
contained between + o and L, L and 0, or 0 and A (as the case may be),
and A and — o0 ; so that universally I and A will be a superior and infertor
limit to the roots of fz, making abstraction of the roots (if any such there be
in fz) whose value is zero.

Art. 55. T shall close this section with offering (for what it is worth)
a bare suggestion as to the mode in which the theory of Intercalations may
hereafter be found to admit of being extended from a system of two general
functions of z, to a system of three general functions of z, y, four general
functions of =, y, 2, and in general to a system of e general functions of e —1
variables, or which is the same thing, of e homogeneous functions of e
variables. In the case of two functions of z, fx and ¢z, fz=0 and ¢z =0
may be considered to represent two systems of points in a right line; and
the theory relates in this case to the relative positions of these two
“ Kenothemes ” or point systems; and of course using z and y to denote the
distances of any point in a line from two fixed points therein respectively,
instead of fz and ¢z, we may employ two homogeneous functions of « and y,
as f(z, y) and ¢ (z, ), to denote these two systems of points. So, similarly,
if we have three functions of two variables, f(z, ¥), g (z, ¥), h(=, y), which
I shall suppose to be of the same degree, we may consider the mutual
relations of the Monothemes, that is to say, the three plane curves, denoted
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by the equations f(z, ¥)=0, g(=, y)=0, h(z, y)=0. Now every two of
these will intersect one another in a system of points, which we may call
(f, 9) for the intersections of f and g, (g, k) for those of g and %, and (&, f)
for those of h and f. If we take any two of these systems of intersections,
as (f, g) and (g, k), they will both lie upon one of the given curves (g).
And by rcading off the two systems of points (f, g) and (g, k), arranged
according to the order upon which they are disposed upon the curve g, we
may, by following the course of such curve, form a scale of effective inter-
calations for these two systems, and in like manner for the two systems
(g, k) and (h, f); (b, f) and (f, 9). Now I believe that it will be found that
when £, g, h represent any algebraical curves consisting of a single continuous
line, either extending to infinity in both directions, or returning to itself
(and I have fully satisfied myself of the truth of this for the case of ellipses),
each effective scale of intercalation will contain the same number of pairs of
points; if, however, the curves consist of more than one branch, as if hyper-
bolae be considered, such is no longer necessarily the case; from these facts,
conjoined with the light thrown upon the subject by its relation to the
theory of combinants explained in the succeeding section, I am induced to
infer the probability of the truth of the following law (which, for avoidance
of further uncertainty, I confine to the case of functions of the same degree),
namely, that if £, g, » be three homogeneous functions of =, 3, and 2 of the
same degree, and if U, V, W be any three linear functions of f, g, k, and if
U=0, V=0, W=0 be treated as the equations to three cones, and if we
form an effective scale of the intercalations of the lines of intersection of U
and W, and V and W, according to the order in which they are disposed
upon W (which seems to require that the lines shall be continuous, in order
to admit of a fixed order of reading off the intersections of any two of them
upon the third); then, whatever value may have been given to the coeffi-
cients in the linear functions, the number of elements remaining in any sach
scale will (as I conjecture) be constant, and some theory (to be discovered)
for three functions, analogous to that of Bezoutian residues for two functions,
will serve to determine the number of the clements so remaining. And so,
in like manner, but with a difficulty increasing at each step (as at the next
step we should have to pass into quasi-space of four dimensions), a theory of
intercalations may be conjectured to exist for any n general functions of
any (n — 1) variables.

Development of the method of assigning a superior and inferior limit
to the roots of any algebraical equation.

Art. (@). Since the articles in the preceding part of this section on the
method of discovering limits to the roots of an algebraical equation were
written, the method of which the germ is therein contained has presented
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itself in a much more fully developed form, which I proceed to exhibit: for
greater simplicity I shall suppose ¢z to be of n—1, and fz to be of n
dimensions in #, and that by means of the ordinary process for common
measure (except that as in Sturm’s theorem the signs of all the remainders

are changed) %: has been thrown under the form of the improper continued
fraction
L1

= G—G—
where q,, ¢; ... qn are all restricted to signify simple linear functions of «.

Suppose the series q,, ¢, g; ... gn to be resolved into the distinct sequences

G19z2-- Qs QinQive -« Q75 Qi1 Qi - Q41 oo Iy
in such a manner that in each sequence, as ¢y, giys-.. s, the coefficients
of z have all the same sign, but that in any two adjoining sequences the
coefficients of « have opposite signs, so that for instance in ¢; and ¢;,, the
coefficients of x are unlike, as also in ¢; and g¢;,,; there will of course be
nothing to preclude any of these sequences becoming reduced to a single term.

The first theorem is, that the greatest and least roots of the product of
the cumulants [p. 504 above]

(9:95 -+ 4] X [@inaGive e @) oo X [Q011Qiir 42 - @]
are superior and inferior limits to the roots of fz. To prove this theorem
I begin with premising the two following lemmas, one virtually and the
other expressly contained in the Philosophical Magazine for the months of
September and October of the present year* [p. 641 below].

* Each of these two lemmata flows readily from the faculty previously adverted to engaged
by every cumulant of being representable under the form of a determinant. As to the second
lemma, it becomes apparent immediately when the cumulant is so represented, by separating the
matrix into two rectangles and expressing the entire determinant according to a well-known rule
for the decomposition of determinants as a function of the determinants belonging to these two
rectangles taken separately. As to the first lemma, by reason of the cumulant [w, w, ... @ ww;,]
being so representable, we know that when [wjw,...w; w0,]1=0, [wjw,...w,] and [wyw,... @y,
must have opposite signs. Suppose, now, that the theorem is true when the number of elements
in the type does not exceed i; then the roots of [w)w,...w, ], say of y,_,, being called
hyyhg.. hyy, and of [wjw,..wi 0], say of y;, being called %, k,... k;, these may be
arranged in the following order of magnitude k,, ky, ko, by, ky... ke, hey, k5 and if the roots
of [w,wy ... wywywpy], 885 Of Yyyy, be called 1, Iy ... Iy, from the fact of the leading coefficients
in ¥, ; and y;,, expanded according to the powers of x having the same sign, it follows that
when z=o, y,; and ¥, have the same sign, but they have contrary signs when z=k,; but
Y-, does not change its sign between x=ow and z=k;, hence y,,, does change its sign between
z=o and z=k;, and therefore a root of y;,, lies between o and %,; in like manner precisely it
may be shown that a root of y,,; lies between — o and k;; and since y; , changes its sign
between k; and k,, between k, and ky... and between k,_; and k;, ;,, must likewise change
its sign between one and the other extremity of each of these intervals, and hence the roots
1, 1y... Iy, are intercalated between o, %, ky ... k;y =, or which is the same thing, k;, k,... k;
are respectively intercalated between I, I, ... l;1;; consequently, if the theorem is true up to 4,
it is true for i+1, and therefore true universally; but is manifestly true when =2, for then
=+ makes [wyw,], that is, v w,~1 positive; but w;=0 makes it negative, which proves
the theorem contained in Lemma A.
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Lemma A. The roots of the cumulant [g,q;...¢;], in which each element
is a linear function of x, and wherein the coefficient of z for each element,
has the like sign, are all real, and between every two of such roots is con-
tained a root of the cumulant [qq.... ¢:—], and ex converso a root of the
cumulant [¢.qs ... ¢;]; and (as an evident corollary) for all values of p and e
intermediate between 1 and ¢ the greatest root of [q,¢,... ¢imyq:] will be
greater, and the least root of the same will be less, than the greatest and
least roots respectively of [qaGus1 -+ Go—1qy)-

Lemma B.  For all values of the elements ¢,¢, ... ¢,, the cumulant

(0@ -+ Qo-190GosrGote -+ ] = [© % -+ Go190] X [Qor1Gut2 - Gnl
—[9e- @] X [Quis - @)
Thus for example the cumulant [abed], that is
abed — ab —cd—ad + 1 =[ab] x [ed] —[a] x [d]=(ab—-1)(¢cd—1) — ad,
and {abede], that is
abede — abe — abe — ade — cde + a + ¢ + e = [abc] [de] — [ab] [e],
that is = (abc—a—c)(de—1)—(ab—1)e.

Art. (B). Also suppose that ¢,¢s... quQuyr .. gn are all linear functions of
x, and that the coefficients of x have all one (say the positive) sign in
G, --- 9o, and all the contrary signs in g,4; ... gn, and let I be not less than
the greatest root of [¢.¢s...¢.] or of [Guyi...¢n), and also let A be not
greater that the least root of each of these same two cumulants; then by
Lemma A, L and A will also be respectively greater than the greatest, and
less than the least roots of [q1q: --. gu-1] and of [Guye ... gu]. Now the coeffi-
cient of the highest power of z in both {g,q....¢.] and in [¢1qs... qu—s] 18
positive, but as t0 [Gu41 ... gn] a0d [Guys ... gu] 1s of contrary signs in the two,
namely, negative in that one of those cumulants which contains an odd, and
positive in that one of the two which contains an even number of elements.
Hence by virtue of Lemma B, L and any quantity greater than I substituted
for z will make [q;¢; ... ¢s] to have always the same sign, and in like manner
it may be shown that A and any quantity less than A substituted for  will
also cause [¢,q; ... gn] to retain always the same sign. Hence L and A are
superior and infertor limits to [¢y¢s... ¢»]; and the same reasoning would
evidently apply if we had supposed the signs of the coefficients of z in the
first partial series of elements to have been negative, and in the other series
of elements to have been positive.

The greatest and least roots of [¢1qs ... qu] X [Qusr -+ qn] evidently satisfy
the condition to which L and A are subject, and may be taken in place of L
and A respectively. They will accordingly be superior and inferior limits to
the cumulant

(% Quots - Gu)-
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Again, by virtue of Lemma B it may readily be shown that

(919> Gois GorrrQonre -+ Qo> Qo -+ Gl
=[@%- o] X[Go1Qorrzeer Qo] X [Qupir - )
— [0 Qo] X [Qorge - ] X [Guogr -+ ]
(0% 2] X[Qon- Qo] X [Quue- @l
H[@ge o Qo] X [Qors o Qo] X [Gugra-oe @l

and hence if ¢, ¢, ... g, are all linear functions of z in which the coefficients
of # have all the same algebraical sign in any one (taken per se) of the three

series
G1qz-.. Qs Qo412+ Go,s Gogt1 +-- Gn,

but so that this sign changes in passing from one series to another, it is
easily seen, by the same reasoning as in the preceding case, that the two
positive and two negative products on the right-hand side of the equation
all give the same sign to the coefficient of the highest power of z, and
consequently that if L and A be superior and inferior limits to

(@ o) [Qowr - Qo) [unn - @),

and consequently by Lemma A, to
(920 Qo) [qose - o) [Qorns o+ Qo) [Qupee o Qo)
and to [qm2+2 e Qn]y

L or A substituted for z will cause [q,¢, ... ga] to retain always the same sign,
and will consequently be superior and inferior limits thereto; and so in
general ; whence it follows, returning to the theorem to be demonstrated,

that the greatest and least roots of

(9:¢:--- ¢:) X [qisaGive - @] X +oe X [Gya - @),

will be superior and inferior limits to the cumulant [¢iq.... g,), that 1s to
C fx*, and therefore to fz, as was to be proved,

Art. (). The second theorem is the following: if ¢, ¢,... ¢g» be linear
functions of z, say @,z + b,, .z + b, ... ayx + by, in which the coefficients of z

* If % expanded as a continued fraction by means of the common measure process gives
rise to the quotients ¢, g5... ¢4, and if L, I, ... L.y, L, be the leading coefficients of the
successive simplified residues, (L, being, in fact, the final simplified residue, that is, the
resultant to ¢z, fr), we must have ¢pz=C[q,, g5 ... 9.}, f£=C[4y, g5 ... ¢,), where (supposing ¢z
to be of n~ 1, and fz of n dimensions in z),

1 % L 2Ly 12, &e.

Ex LG—len—stn—ﬁ &e.y "

C=
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have all the same sign, and if we take the quantities wu,, pta... pn—, all
having the same sign as a,, @, ... dn, but otherwise arbitrary, and make
1 1

1 1
b=, b=t —, =g+ — .. bna= + v k= ,
1= M 2= M2 i 3= M3 e n—1 = Mn—1 fns n fons

then the greatest of the quantities
ky=b k=0, kn—by
o e T an

say L, is a superior limit, and the least of the quantities

_k]_b] _k2_b2 _kn_bn
o a;, T g

say A, 1s an inferior limit to the roots of fa.

L and any value greater than L substituted for z will evidently make
=k, @a— Ky ... @u— kn, all of them positive.

Hence, when « = or > L, ¢, is positive and > u,, and

1 1 1 1 .. ..
—=>k,—=>u,+———, that is, 1s positive, and > u,,
t el M # PO Y P te
11 1 1 . .
—— = >k—<>pu,+—— —, that 1s, is positive, and > u,,
L R P Ha
1 1 1 1 1 . .-
and Gn— ———— > - , that is, is positive,

Qn—1 — Qn—2 " % Mn—1 Mn—1
and consequently the cumulant [¢,¢,¢; ... ¢a], which
1) ( 1 1>
= X{@—= ] X [q,— -] x &e.,
1 <q G % q2— ¢

remains of a constant sign when L and any quantity greater than L is
substituted for z. Hence L is a superior limit. In like manner A and any
quantity less than A will evidently make ¢, + &, ¢o 4+ ks ... @ + &y, all of them
negative, so that, when z = or < A, ¢, is negative, and < — g,,

1 1. .
q.— —< k;— — 1s negative, and < — py,,
% e
1 1. .
¢s— — < ks — — is negative, and < — p,,
2 2

1 1 1 1

and Gn — —— =< -
Qnsr—Qqn—2 ¢ Hp—a  Pn—a

1s negative.
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So that [¢;, g;...¢x] for all values of = less than A will preserve an invariable
sign, and consequently A is an inferior limit to fz.

Art. (8). It may be remarked that the quantities

R S SR S B
’ ,uq’ Hs ,u.g’ -2 ,u'n—.'i’ Mn-— ,un_g’ fion

may be derived successively from one another, according to the same law,
from whichever end of the series we begin.

If we take any two consecutive terms as

1 + 1
Hi g}
nt

pi+

=1 ]
the effect of diminishing u; is to decrease the first of these two terms, and
pro tanto, to tend to reduce the limit; but on the other hand, L being

increased, there is brought into play an opposite tendency, which operates
pro tanto to increase the value of the limit.

Art. (¢). It 1s of importance to remark, that by a right selection of
the system of quantities u,, w,... un—y, Which enter into the composition of
ky, ks ... ky, L may be made to coincide with the greatest root of [y, ¢y ... ¢u];
and so in like manner by a right selection of another system of these
quantities, whereby to form &, &, ... k,, A may be made to coincide with the
least root of the same. Thus let w,, g, ... pn—y be so chosen, that

QI_k1=0y q2_k2=0'--Qn_kn=0;

are all satisfied by the same value of z.

Then G = ph, q2=,u,;.+£, q3=,u,3+l...qn= 1 ,
! He Mon—
exist simultaneously.
Hence ,u,;.=q2—l, /1,3=q3—1=q3.s_1.__l,
¢ ) Q=G
_ 1 1 1
,‘Ln—l—Qn—l_qn_g_qT_"s_---q—l)
1 1 1
pn =

gn— — Qn—z_-n %’
which is satisfied by making
[Qny Qn-1, Qn—2 --. QI] =0.

It remains then only to show that the greatest root of z in this equation
substituted for z in ¢y, g;... ¢, will make p,, fty ... s all of one sign, and
that the least root of z similarly substituted, will also make them all of one,
but a contrary sign, which may be proved as follows.
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We have
=, He=[q, @1+ ¢y pe=[0%g] + (¢ @] &e
Mny = [% /I Qn—l] - [Q1Q2 o Qn—z] H

and by Lemma B the superior limit to [¢;¢. ... ¢»] will be a superior limit
also to [¢1qs - Gn—s), and to

(2¢) [9%%] - (2% @]
Consequently this superior limit will make u, g, ... uny have all the same
sign as that of the coefficients of z in ¢, ¢, ... ¢». And in like manner, the
inferior limit to [q;qy ... gu] Will cause u,, ps ... gy to have all the contrary
sign to that of these coefficients.

Thus then we see that when the coeffictents of 2 in the partial quotients

bz

to T expressed as an improper continued fraction form a single series of
x

continuations of signs, by a right choice of the arbitrary constants u;, ps- .. pn—s

the superior or inferior limit given by this new method may severally and

separately be made to coincide with the greatest and least real root, or each

in turn with the sole real root of fz, if there be but one.

Art. (§). The general method of enclosing the roots of fz within limits
is founded upon the combination of the two theorems above demonstrated.
An arbitrary function ¢z, one degree in x below fz, being assumed, and by
aid of the auxiliary function ¢, fz being thrown under the form

Clgg - ¢ 6% ¢vr @7 (@Di(Ds-s (D],
in which the coefficient of « is supposed to change sign in the passage from

¢ to ¢/, from ¢, to ¢, &c, a superior limit is found to each of the
cumulants

(9% @) [@'¢ - - [(@h(@:- (@l

taken separately, by means of the second theorem, and then by virtue of the
first theorem the greatest of these superior limits is a superior limit to the
cumulant

(9 g (Dh - (Da)s

and consequently to fz, and so mutatis mutandis the least of the inferior
limits of the same partial cumulants is an inferior limit to the total cumulant

(90 ¢ (@ (s (@0
Art. (7). When all the roots of fz are real, if ¢z be so assumed that all

its roots are intercalated between those of fr, the partial quotients to %

will form but one single series. In order that ¢a may fulfil this condition,
it 1s necessary that the coefficients of ¢ shall be subject to certain conditions
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of mequality, not necessary to be investigated here; but no conditions of
equality, that is, no equations between the coefficients of ¢z, are introduced
by this condition; or in other words, the coefficients* of ¢z, the auxiliary
function, are independent and arbitrary within limits; and we have shown
that in this case the auxiliary constants g, m, ... un_y may be so determined
that the limits may be made to come separately and respectively into
contact with the two extreme roots. When all the roots of fz are not real,
the quotients (however ¢ is chosen) can no longer be made to form a single
sertes. It still however remains true, that, by a due choice of the auxiliary
function followed by a due choice of the auxiliary constants, this coincidence
may be brought about, so long as there is a single real root in fz.

It is rather important to demonstrate this universal possibility of
effecting a coincidence of the limits to the roots with the extreme roots
themselves, becanse it is the most striking feature which distinguishes the
method of limitation here developed from all others previously brought to
light.

Art. (6). Before entering upon this demonstration I may make the
passing remark, that every method of root-limitation is implicitly a method
of root-approximation.

For instance, let e be any given quantity between which and + o it is
known that a root of fzr lies. Then if we write x:e+§, and form the
equation y"f<e+%> =0, and find L a superior limit to y, it is clear that

| S . .
ety will lie between ¢ and the root of fr say E, next superior to e. Again,

making Y=et %

e +ilﬁ + Ll’ still nearer to & than e +l was; and so we may proceed advanc-

L

ing nearer and nearer, and always from the same side towards & at each

+;—,, and finding a superior limit I’ to y’, we shall have

step, and finally obtain & under the form ¢+ }J + 55 I + 5
manner calling E, the root next below ¢, we may find

Y +&c And in like

1 1 1
E—e—K_K_A”y &e.

Art. (u). In establishing the theorem of coincidence above adverted to,
the following notation will be found very advantageous. Let Q denote
a Type of any number of Elements, as ¢, ¢; ... @i, ¢:, and let Q0 denote this

* It need scarcely be stated that f'z is the simplest form of ¢z, which satisfies the condition
in question.
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same type when the last element, and Q) the same type when the first element
is cut off, and QY the samne type when both extremes are cut off, so that the
apocopated type Q' will mean ¢, ¢.... ¢iy; the apocopated type "0 will
mean ¢.q; ... ¢, and the doubly apocopated type ‘Q’ will mean ¢,, gs ... gia.

If now a type Q be made up of the types Q,, Q,... Q; put in apposition,
and if we use in general [Q2] to denote the cumulant corresponding to the
type , there will be a very simple law * connecting [Q] with

(2] (2], [Q] - [Qie], [Qe], [Q],
(23], Q5] Q4] - [Diea), [Q),
[(Qe], [Qs] - [ Qi) [ Qia), [ Q]
[Q7] [ Q] - [ Qi) [ Qi)
This law will be seen to be obviously deducible by siccessive steps of
expansion from the fundamental theorem given in Lemma B, Art. (a), for

the case of 1= Q,0,, and will be best understood by showing 1ts operation
m a few stmple cases.

Thus let Q =0,Q,7. Then
[Q] =[] ¥ [Q] - [Q7] x Q).
Let 0 =0,0,0,. Then
(2] =[] x [Qa] x [D] = [Q1] x [Qu] x [Q] = [Q] X [Q7] x [Qs]
+ [Q4] x Q] x['Q).
Let 0 =0,0,0,0,. Then
[Q] =[] x [Q2:] x (2] x [2] .
—[Q4] % ['Q] x [Q] x [Q] =[] x [Q] x ['Q] x [Q]
=[] x [ 2] x [Q] x [QF +[Q4] x (23] x [Q] x [24]
+[Q3] x Q] x [Q7] x ['Q] + [&] x[Q3] x ['Q] x['Q]
—[Q3] x [Q] x ['Q] x [Q],
* The cumulant corresponding to any portion or fragment of a type may be said to be
a partial cumulant to the entire type, and a type whose elements are constituted out of the
elements of two or more types placed in juxtaposition may be said to be the aggregate of these
types; the law giveu in the text above niay then be said to have for its object the expansion of
the complete cumulant to any type in terms of complete and partial cumulants to the types
of which the given type is the aggregate.
+ The sign of equality is employed here to denote the relation between a concrete whole and
the aggregate of its parts.

T The number of distinct factors entering into these products, taken collectively, is evidently
i+2 (i~ 1)+ (i -2), that is 4 (i - 1).
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and so in general if O =0,Q,... Q;, [Q2] may be expanded under the form
of the sum of 27 products separable into ¢ alternately positive and negative
groups containing respectively 1, (1 —1), $ (1 — 1) (¢ — 2), ... (f— 1), 1 products.

Art. (¢). In every one of the above groups forming a product the accents
enter in pairs and between contiguous factors, it being a condition that if
any { have an accent on the right the next  must have one on the left,
and if it have one on the left the preceding £ must have an accent on the
right, and the number of pairs of accents goes on increasing in each group
from 0 to v—1. This rule serves completely to define the development in
question *,

For greater brevity let [Q.), [Q], [Q.], ['©.] be denoted respectively
by we, @', ‘w,, ‘w’, then when the type Q, consists of a single element,

w,=1, ‘w,=1, ‘o,=0.

It should be observed that the two equations w,=0, @, =0 cannot exist
simultaneously, for if Q, represent qu, ¢, ... g,

’ 7t / r” e
W =QqiW¢— W, W= 10— @ o, &ec.,

so that if w,=0 and ©’, =0, we have 0”, =0, 0", =0, &c., and thus, finally,
—1 =0, which is absurd.

Now, if we suppose Q,, Q,...Q, to be types every element in each of
which is a linear function of #, the coefficients of z in these elements being
positive in ,, negative in £}, and so on alternately, and Q is the aggregate
of 2,,9,...Q,, it may easily be made out that each term in the development
of w in terms of w,, @, '©,, ‘@' w,, &', ‘@, @5, &c. will have the same sign
when we give to z a value which is a superior limit, or an inferior limit to

* When each partial type Q consists of a single element, every doubly accented @ will vanish,
and every singly accented Q will become unity; hence we may derive the rule for the expansion
of the cumulant [a, a,a, ... a;] in terms of a,, a, ... a;, which will accordingly consist of

L (ay85...a)+ =2 ———1——— (a,a,...a;) ¥ &c.,
Q¢ Rgyy X ArGriy

the indices e and f, e+ 1 and f, &c. being understood to be all distinct integers (which agrees
with the known rule for the expression of the denominator of a continued fraction in terms of
the quotients). The number of terms in this expansion, in consequence of the vanishing of the
quantities affected with a double accent, reduces from 2! down to the ith term in the series
commencing with 1, 2, 3, &c. defined by the equation u,, =u;+u;,, that is

L /1+/B\iH 1 /1-5\in

s () - B (50T

the number, therefore, of products in which double accents occur in the general expansion of

Wy, ... w;] 18
[y, i) L [1ea\i 1 <1_\/5>i+1
w5 (50) e (5E)

G asa, ... a; -2
Ao leiy
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the roots of each of the cumulants w,, @, ... w., and consequently to those
of the cumulants @', @’ ... @%; ‘@, ‘@ ... '@, '@}, ‘@ ... @ ; the products
affected with positive signs being all positive or negative in themselves, and
those affected with negative signs being reversely all negative, or all positive.

Thus, for example, if
Q=0 sz

’ 7
0=, 00— ©,; W,

and the sign of the leading coefficient in ‘w, will be the contrary of that
in w,, but o, and @', have both the same positive sign; so again if
92919293,

’t 1t s !
W =000 — W) Wy — Wy Wy + @) Wy W3,

where the leading coeflicients in o, and ‘e, have contrary signs, as have also
those in @, and o', while @, and ‘e’, have the same sign; and of course
the leading coefficients in @, w;, @, ‘w; have all the same sign, they being
all positive, and so in general. But the superior limit to the roots of any
integral algebraical function of z substituted in place of z causes the signs
of the resulting values of the functions to coincide with the signs of the
leading coefficients, so that in the example last above given, L a superior
limit to all the factors in the several products in the equation substituted
for z will make w,w,0;, — 0 w0, — 0,0 0;, 0,'®, w, to have all the same
sign. The like will be true of A the inferior limit; for if Q,, Q,, {, contain
respectively n,, m,, ny; elements, the values of the four products last above
written, when # = — o, will be to the values of the same when z =+ in
the respective ratios of

(_)m,+'m2+m3 . 1’ (_)m,+m2+ms_2 : 1, (—)mx+mz+’m,—2 : 1’ (_)mt+m2+m,—4 : 1’

and so in general. Hence we deduce the theorem, that if the total type
represent the aggregate in apposition of the partial orders Q,, £, ... Q. (the
elements being understood to be linear functions of z, which are subject
to the law of alternation in the signs of the coefficients of z in passing from
one partial type to another), no superior limit to w,, ®,... w, can make
vanish unless each separate product in the expansion of w In terms of
@y, @, ... w, and the appurtenant apocopated cumulants vanish separately.

Art. (\). From the above theorem we may deduce the following law,
namely, that if the roots of ,, w, ... @, be supposed to be arranged in order
of magnitude, and A to be that one of them which is nearest to + o or to
— o, then if e is even it is impossible for A to be a root of @. Thus suppose
e =2, and consequently w = @, w,— o', ‘w,; if X be a root of w, and one of the
two extremes of the roots of w,, @, put in order of magnitude, A cannot be
a root of ‘w,, for the roots of ‘w, are confined between the roots of w,; but
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if A make w and w, each vanish, we must have ’;’w, =0, hence o,/=0
as well as w, =0, which is impossible. In like manner if a root of w, were
the extreme root, the same impossibility could be in like manner established.

Again, suppose e = 4, so that

ow oo, oo, 0o v, o oe;e
1 2 2 3 3 4 1 2 Ws 1 2 3 4
©0 = W w,w,w, {1 — — — +

0w, Ow; W, ®, 0,0, 0, W, W30,

tr 1! r oy ot
Wy W3 Wy w1w2w3w4}

Wy W3 Wy W W W3 Wy

Let A continue to denote one or the other extreme of the roots of
o, w,wy0,. 1f A makes w =0 we have

’
w0, 00;0,=0, o/ wwwo,=0, oo, ow =0, w, w0y w0, = 0,
14
oo w,0,=0, o) wo,0,=0 ©o)/0,0,=0 o)/o, o e =0.
Now suppose that A is a root of e,, then the equations remaining to
be satisfied are

7 r 2! 27 77 t 17 ? 7
o ww0, =0, o)) o,0,=0, o0)w,0)0,=0, o/ o) o, e,=0.

Since w, and o’; cannot both be zero together, X cannot make «'; or ‘o,
zero; and because A 1s an extreme to the roots of w,, w;, @,, A cannot make
o', or ', or w, or 'w; or @, or ‘w, zero, so that in fact when 2 =\ none of the
singly accented quantities w can be zero. As regards the doubly accented
quantities o, the same thing cannot be affirmed, because if any O contains
only one element the corresponding value of @ with a double accent vanishes
spontaneously. Again, any of the unaccented quantities w may vanish,
because we may suppose any of these to have an extreme root X. Conse-
quently the first, second and fourth of the equations remaining to be satisfied,
might be satisfied on making the necessary suppositions as to the form of the
quantities w and the values of the extreme roots; but the third remaining
equation o’’w,0’;’w,=0, in which only singly accented quantities @ occur,
remains incapable of being satisfied on any supposition whatever. And the
same thing would be true if we suppose X to be a root of any other w instead
of w,. Hence A cannot make w =0 when e = 4.

In like manner, if ¢ be any even number 2¢, there will be an equation
w’1 ’wzw’3’w4w’5/ws s w’?e-—l’w% =0,
to be satisfied by that value (if it exist) of z which, besides being an extreme
(on either side) of the roots of w,, w, ... @, arranged in order of magnitude,
also makes w =0. But as such equation cannot be satisfied, neither extreme

root of the roots of w;, w,... w can be a root of w, as was to be proved.
Consequently, unless ¢z is so assumed that the number of changes of sign

oz

in the coefficients of z in the quotients resulting from Fs expanded as an
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improper continued fraction is even (for if the changes from sequence to
sequence are odd the number of sequences themselves is even), the method
of limitation in the text cannot give the means of drawing either limit
indefinitely near to one or the other extreme roots of fr.

Art. (x). It now remains to prove the converse, and to show, first, that
when the number of changes is even, that is, the number of sequences odd,
this coincidence can always be effected; and secondly, that it is always
possible when jfz has one or more real roots, so to assume ¢z that the
number of sequences shall be odd.

The first part of the proposition is easily proved. Thus suppose e=3,
so that

!t ’ 7 Pttt
W=, W W3 — W) W3 — O, W3+ W, @, W3.

If we suppose A, either extreme of the scale formed by writing in order
of magnitude the roots of w,, @,, w,, to be a root common to @, and to w;, and
if ‘@’,=0, which last equation may be satisfied by supposing the type Q,
to consist of a single element, the separate equations

www; =0, o)/ w,w,=0, wo,)v,=0 o\ o, o,=0

will all be satisfied; and so in general it may be shown without difficulty
that if e= 2¢+ 1, and if X be a root common to

0,=0, w;=0, w;=0... wppy =0,

and if @,, @, ..., be all ssmple linear functions of z, so that consequently
'‘w,=0, 'w;=0..."0',,= 0, each separate term in the development of o
will vanish singly and separately, and consequently X will be a root of w:
for since XA makes w, =0, w; =0 ... @y, = 0, every product in the developed
form @, in which @;, @;... @y, do not each bear at least one accent, will
vanish; and if we consider any product in which w,, ;... wq, are all
accented, if in any two of these immediately following one after the other
as Wy, Wiy, an accent falls to the right of the first, and to the left of the
second, the intervening term wy will bear a double accent, and will therefore
vanish, since wy is supposed to be a linear function of z; but it is impossible
when every o is accented to prevent two accents of contiguous odd terms
in any such product, from falling to the right of the left, and to the left
of the right, term of the two, since the contrary would imply that all the
accents would fall to the right, or all to the left, which, as above remarked,
is impossible, on account of the two extreme terms being only simply
accentable, that is, w, only to the right, and w,, only to the left. Hence,
when « substituted for A makes w,, @; ... wsey, all vanish, and when ,, w, ... wx
are all linear functions of z, z = X\ will be a root of w.
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Art. (v). I believe that the remaining part of the proposition may be
rigorously demonstrated, namely that when any of the roots of fr are real,
and the number of odd integers not exceeding the index of the degree of
Jfx is m, and the number of imaginary pairs of roots in fr is u, ¢z may be so

assumed that the quotients to % expanded under the form of an improper
continued fraction, may be made to take the form Q,, Q,, Q;, Q,... Qu,,,
where Q,, Q,... Qy are linear functions of z, and 7 is any number assumed
at will, not less than w, and of course not greater than m; and where
Wy, @3 ... Wyyy Will have in common a root N, which may be made at will the
greatest or the least root of w,w,wy...w,4,; theinvestigation, however, accord-
ing to the present light which I possess on the subject, appears complicated
and tedious, and therefore, in order that the press, which is waiting for the
completion of these supplemental articles, may not be kept standing, must
be adjourned to some future occasion. For the present I content myself
with showing the truth of the law for the simple case where fx is a cubic
function of z.

¢

Firstly, If 7:: gives rise to a single sequence of quotients Q, we know,

from the theory of intercalations, that it is necessary that all the roots of fx
shall be real, and in order that when this is the case the quotients may form
a single sequence (), it is only necessary so to assume ¢z, that its roots may
be intermediate between those of fa.

Secondly. If the roots of fx are not all real, or if they are all real, but
do not comprise the roots of ¢z intercalated between them, and if for greater
brevity of ratiocination we stipulate that ¢z shall have its leading coefficients
of the same sign as that of the leading coefficient of fz, the leading coefficients
of the three quotients will either bear the respective signs + + —, or the
respective signs + — +, or the respective signs + — —; in the first and last
of these cases there would be two sequences, and therefore, by what has been
shown above, the method of limitation of the text could not give a limit
coincident with a root. Let us then look to the remaining case, and inquire
whether, and how, ¢ may be assumed so that fz shall become representable
to a constant factor prés by the cumulant [p (z —a), —q (z—B), r(z —a)),
where p, ¢, r are all positive, and a is a root of fa.

Let this cumulant be called hfx.

Nothing in point of generality will be lost if we suppose the leading
coefficient of hfx to be —1. We then have

We=[p@—a), —q@=F), r(z-a)
=—pgr(z—ay(z—b)—(p+7)(z—a)
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and writing —-;—Jjﬁa =22+ Bz + C and making z=¢a, we find from the above

identity that
p+r=a*+Ba+C that is, p=a*+ Ba + C —r,

and pgr(z—B) ==z +a+ B,
hence B +a+B=0, thatis, B=—B—aq,
1 1
and pqr =1, and therefore gr == @TBas O=r

Hence if ¢z be so assumed that the quotients to }é—: are p(z—a), —q(z—p),

r(xz — @), we have
hpe=[-qz—RB), r(e—a)]=—qr(z+B+a)(z—a)-1
=—gqr(@*+ Bz—a*—aB)—-1= —Z%{m?+Bm—a2—aB+p}.
Hence ¢ () is of the form
m{z*+ Bz —a*—aB + (¢ +aB+ 0 —r)}=m(a*+ Ba + ' —7).
If we call the three roots of fz, a, b, ¢ respectively, we have

1 1
q=r(a2+Ba+C—r)=r{(a—b)(a—c)—r}’

and since q and » are both to be positive, we see that ¢ must be taken the
greatest or least of the three roots if they are all real, so that a* + Ba + C
may be positive, which it will of course necessarily be if b and c are imaginary ;
we must also have a*+ Bu+ C'—7 positive, so that the form of ¢z is
m [(a*—a*) + B (x—a)—t}, t being necessarily positive, but otherwise
arbitrary, a form containing two arbitrary constants, one of which is subject
to satisfy a certain condition of inequality; whereas when fz 1s of such
a form as to admit, and ¢z is supposed to be so assumed as to cause i to

dx

come to pass that the quotients to =~ form a single sequence, then the three
x

coefficients in ¢z remain exemnpt from all conditions of equality but are
subject to two conditions of inequality. And so in general when the degree
of fz is # and the number of sequences 2¢ + 1, it is to be inferred that the
n coefficients of ¢ will be subject to satisfy n — ¢ — 1 conditions of inequality
and ¢ conditions of equality.

Art. (§). The theory of the determination of the minimum interval
between either limit determinable by this method and the nearest root,

pa

gives rise to a defined even number of sequences (which will include the

or between the two limits so determinable when ¢z is so assumed that



=N i/

1 2
Cip = <f_’ + V])
the roots of the system of ¢+ ¢’ equations thus modified will & fortior: be

limits to the roots of fz, but then the quantities

4 1 + 1 + 1 + 1 vt 1 1
e — -, n+-, - —,
tar ta # fim ,“'i—z’ P Mi-1 ! P ? L5} Vit

form the same single series as would correspond to the two sequences

GGz Qi Qi1 oo Qitirs
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treated as a single sequence, and the same is obviously the case for any
number of sequences*,

Art. (7). If we consider a single sequence as q,, ¢, ... ¢», and write
= (2—0c), G=0(x—C)... ¢n=ay(z—cp),
where a,, ¢, ... 4, are supposed to have all the same sign, and write
af (w—c)l=p?% af(@—c) = (;;,2 + l>2 e Ot (@ — ) = (—1~>2,
M1 HMn—1

it seems not unlikely that the interval between the greatest and least of the
roots of the above equations will be a minimum when the interval between
any pair is the same for each pair, that is, when

+ 1 4 1 1
/ﬂ=,“'2 ,u]=l~‘3 o _ _ fn
a, o, s ay

If we assume these equations, and write u; = a,§, the equation for determining
£ will be
[m,& @& af.. a,E]=0.

If n= 2 this equation becomes a,a,£*—1 =0.
If n = 3, rejecting the factor &, it becomes

0,0, 8 — (al +a,)=0.

If n= 4 it becomes
Oy U3 E — (010 + aa, + a,0,) E2 4+ 1 =0,
If n = 5, rejecting the factor &, it becomes

BB A £ — (0 Ually + Oy By + A1 Qs + A2, 05) E2 4 (A + @y + ;) =0,

* Tt follows from this, that if ¢;, ¢,... ¢,, be all linear functions of «, and if

e=ai-n - (s 2V} o= (e ) e (s ),

no root of Q can lie between the extreme roots of the function K, used to denote the cumulant

Vo =@ Jab ... 2947

the square roots being understood to be taken so as to make the sign of the coefficients of «
all of them positive; and from a preceding article we know that either extreme root of Q can
be made to coincide with a corresponding extreme root of K. Hence we have an & priori
solution of the following question, namely, ‘“To determine the (n-1) positive quantities
H1s Mo --- Hn1, 5O &S to make the greatest root of @ a minimum and its least root & maximum ; ”
for the greatest root of K will be the minimum greatest root of Q, and the least root of K the
maximum least root of Q. Calling these respectively I and A, the two systems of values of
H15 Hg ... M- Tequired will be obtained by substituting respectively I and A for z in the equations
1

1 1
M=NGE pe= =Nt =, = A - — M= £ =
# Ho Hy—g
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and so in general, the equation in £ being always of a degree measured by
the integer nearest to and not exceeding g; and it is easy to be seen that

for all values of n, the second coefficient divided by the first will be an
inferior limit to & (of course actually coinciding with it for the cases of
n=2 and n=3). Hence we have the following valuable practical rule
for finding a superior and inferior limit to the cumulant

[a(z—c), @(z—0¢)...an(z—cn)],
where @, a,...a, have the same sign, namely if C' be the greatest, and

K be the least of the quantities ¢, ¢;... ¢,, C+ A will be a superior, and
K — A an inferior limit, A being taken equal to the positive value of

1 1 1 1
(—--+—+—+...+ ;
Ay Aoy At Oy y O

and it may be noticed that ' and K are the quantities which would them-
selves be the superior and inferior limits to the given cumulant if the series
of terms a,, a,... @y, instead of presenting only a sequence of continuations
or permanencies, presented only a sequence of changes or variations of sign.

SecTioN V.

On the Theory of Intercalations as applicable to two functions of the same
degree, and on the formal properties of the Bezoutiant with reference to
the method of Invariants.

Art. 56. If fz and ¢z be any two given functions of z of the same degree
m, we may form a system of m Bezoutics to fand ¢ (as shown in the first
section), the coefficients of the powers of #™~1, 2™?... 4" 2 in which will
compose a square matrix of m lines of m terms each, which will be symmetrical
in respect to the diagonal which passes through the first coefficient of the
first Bezoutic and the last coefficient of the last Bezoutic; and we may
construct a quadratic homogeneous function of m new variables, such that its
determinantive matrix shall coincide with the Bezoutic square so formed.
This quadratic form may be considered in the light of a generating function.
All its coefficients will be formed of quantities obtained by taking any two
coefficients in one of the given functions, and two corresponding coefficients
in the other given function, multiplying them in cross order, and taking
the difference: each coefficient of the generating function in question will
consist of one or more such differences, and will thus be of two dimensions
altogether, being linear in respect to the coefficients of f, and also linear
in respect to the coefficients of ¢. This generating function I term the
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Bezoutiant, and it may be denoted by the symbol B(f, ¢): the determinant
of Bis of course the resultant to f, ¢, and the matrix to B is the Bezoutic
square to f, ¢. Now we have seen that the decrease in the number of
continuations of sign in the series 1, B; (#), B, () ... By (z) (where B, (z),
B, (%) ... Bu(z) are the m Bezoutics to f, ¢), as x changes from a to b,
measures the number of roots of fz retained in the effective scale of inter-
calations taken between the limits ¢ and b. If we take the entire scale
between + o and — o the total number of effective intercalations will be
the same, whether reckoned by the number of roots of f or of ¢ remaining;
for these two numbers can never differ except by a unit, since no two of either
can ever come together; but the number of each remaining in the effective
scale will be m —2{ and m — 27 respectively, ¢ being the number of pairs
of imaginary roots and pairs of unseparated real roots of f, and ¢ being the
similar number for ¢ ; so that we must have v =1".

Now obviously this number becomes measured by the number of con-
tinuations of signin the signaletic series 1, (B,),(B;) ... (Bn), where in general
(B;) denotes the principal coefficient in B; (z).

But (B)), (B,) ... (Bw) are the successive ascending coaxal minor deter-
minants about the axis of symmetry to the Bezoutic square ; and accordingly
the number of continuations just spoken of, measures the number of positive
terms in the Bezoutiant when linearly transformed, so as to contain only
positive and negative squares, or in other words, measures the inertia of the
Bezoutiant, the constant integer which adheres to it under all its real linear
transformations.

Art. 57. This inertia is the same number as, In the case of a homogeneous
quadratic function of three variables used to express a conic referred to
trilinear coordinates, serves to determine whether such conic belongs to the
impossible class or to the possible class of conics, being 3 or 0 in the former
case, and 1 or 2 in the latter; or as in the case of a homogeneous quadratic
fanction of four variables used to denote a surface referred to quadriplanar
or tetrahedral coordinates, serves to determine whether such surface belongs
to the impossible class or to the class consisting of the ellipsoid and the hyper-
boloid of two sheets (which are descriptively indistinguishable), or to the
hyperboloid of one sheet, being 0 or 4 in the first case, 1 or 3 in the second,
and 2 in the third. The most symmetrical (but least expeditious) method
of finding the inertia of any quadratic form is that which corresponds to the
method of orthogonal transformations, and is, in fact, the usual method
employed in geometrical treatises on lines and surfaces of the second degree.
If we apply this method to the Bezoutiant B considered as a homogeneous
quadratic function of the m arbitrarily named variables w,, w,, ... un
in order to measure its inertia, that is to say, the number of effective
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interpositions between the two systems of roots, we must construct the
determinant

&B d*B d2B d*B
dudu,”  duyduy, " dudug,
4B B, 4B d*B
dindn,”  dug TN duydu " dugduy,

Dy =

................................................
................................................

d*B d*B d*B d*B
dumdt,’  dugduy’  dumdus " diugy?

All the roots of D (\)=0, as is well known, are real; the inertia of B, being
measured by the number of positive roots of D(—N\), will be equal to the
number of continuations of sign in D (A) expressed as a function of \ of the
mth degree,

If in fz and ¢z we reverse the order of the coefficients, and fz and ¢z
so transformed become fiz and ¢z, it is obvious that the roots of f; and
¢, being the reciprocals of the roots of f and ¢ respectively, the number
of effective intercalations to f; and ¢, must be the same as for f and .
Accordingly we find that the form of the Bezoutiant to f and ¢ is the same
as that of the Bezoutiant of £; and ¢,, the sole difference (one only of names)
being that B (u;, s .ss Um—1, Um) for the one becomes B (up, um—s ... %, %)
for the other. The equation D(X), which determines the snertia of B,
remains precisely the same, as it ought to do, for either of the two systems

JSand ¢ or £, and ¢..

Art. 58. The theory in the preceding articles of this section may be
made to embrace the case involved in Sturm’s theorem; for if

Jr=ax™ + @+t Gy @ A 2™,

Fflz=ma,x™ 4+ (m— 1) 2™ oo+ g,

ﬁm:mfm—f’m

= "™ 4 20,8 4 L+ My,

and

the Bezoutian secondaries, or which is the same thing, the simplified Sturmian
residues to fz and f’z, will evidently be the same as those to fiz and [’z
Accordingly, if we form the signaletic series

fiaz, Sf'z, By, By...Bp_,,

where B,, B,... B,_, are the Bezoutian secondaries to fiz and f'z, the
number of variations of sign between consecutive terms in this series, when
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x is made + o, will measure the number of pairs of imaginary roots in fz;
and fr and f’z forming always a continuation, and the highest coefficient of
f’z being supposed positive, we see that the terms of the rhizoristic series
will be 1, (B,), (By) ... (By-,), consisting of positive unity and the successive
ascending coaxal determinants of the Bezoutian matrix to f'z and fiz. Hence
then the form of the Bezoutiant to f'z and fiz will serve to determine the
number of pairs of imaginary, and consequently also the number of real
roots to fz. It should be remarked that the form of the Bezoutiant to f'z
and fz, considered as a quadratic function of w, wuy... up_ and of the
coefficients in fz, will remain unaltered when for fz we write fiz, for this
will change the signs throughout of fz and fz; and consequently the
coefficients in the Bezoutiant, which contains in every term one coefficient
from f'z, and one from fiz, will remain unaltered in sign.

Art. 59. It appears then from the preceding article, that for every
function of z of the degree m, there exists a homogeneous quadratic function
of (m — 1) variables, the ¢nertia of which augmented by unity will represent
the number of real roots in the given function. Now this inertia itself
may be measured by the number of positive roots of a certain equation
in A formed from the quadratic function (in fact the well-known equation
for the secular inequalities of the planets) all whose roots will be real.
Hence then we are led to the following remarkable statement. “An alge-
braical equation of any degree being given, an equation whose degree is one untt
lower may be formed, all the roots of which shall be real, and of which the
number of positive roots shall be one less than the total number of real roots
of the given equation.”

Let us suppose fz written in its most general form, the first and last as
well as all the intermediate coefficients being anything whatever : by reversing
the order of the coefficients f'z will become fiz and fiz will become f'z; the
Bezoutiant to fiz and f'z (which we may term the Bezoutoid to fz) will remain
unaltered except in sign and the equation of the (m — 1)th degree in \ formed
from the Bezoutoid remain unchanged; consequently the equation in'\ enables
us to substitute, for the purpose of calculating the total number of real roots
in fz, in lieu of Sturm’s auxiliary functions to fx, another set of functions
which remain unaltered when the order of the coefficients is completely
reversed, that is in effect, when we consider the number of real roots of

f(i) in lieu of those of f(z). And of course more generally the equation

of the mth degree in A formed from the Bezoutiant to any two functions
Jz and ¢z of the mth degree each in =, supplies a set of functions for
determining the total number of effective intercalations between the roots
of fz and ¢x, which do not alter when we consider in lieu of these the
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roots of f <£> and ¢ (i) This substitution of functions symmetrically formed

in respect to the two ends of an equation for the purpose of assigning the
total number of real roots in lieu of the unsymmetrical ones furnished
by the ordinary method of M. Sturm, had been long felt by me to be a
desideratum, and as an object the accomplishment of which was indispensable
to the ulterior development of the theory, and it is certain that I did not
in anticipation exaggerate the importance of the result to be attained.

Art. 60. It may happen that the Bezoutiant to f and ¢ (each of the
mth degree) may become a quadratic function of less than m independent
variables, or the Bezoutoid to f (a function in z of the mth degree) of less
than (m — 1) independent variables. This will take place whenever f and ¢
have roots in common, or whenever f has equal roots. The number of
independent relations of equality between the roots of f and ¢, and the
amount of multiplicity, however distributed, among the roots of f, will
be indicated by the number of orders thus disappearing out of the general
form of the Bezoutiant and Bezoutoid in the respective cases*. In what
particular mode the form of each would be affected according to the manner
of the distribution of the equalities and the multiplicity requires a specific
discussion, which I must reserve for some future occasion.

Art. 61. I shall devote the remainder of this memoir to a consideration
of the properties and affinities of Bezoutiants or Bezoutoids, regarded from
the point of view of the Calculus of Invariants. For this purpose it will be
more convenient hereafter to convertall the functions which we are concerned
with into homogeneous forms, and I shall accordingly for the future use
S and ¢ to denote functions each of x and y, which I shall write under
the form

F=a @™+ ma, 2™y + dm(m—1) a8y + ..+ any™,
¢ =Dbya™ + mbx™ 'y + km (m — 1) a2y + ... + bpy™

In what follows a knowledge of the general principles of the Method of
Invariants is presupposed, but a perusal of my two papers on the Calculus
of Forms¥ in the Cambridge and Dublin Mathematical Journal, February and
May, 1852, will furnish nearly all the information that is strictly necessary
for the present purpose. The first point to be established is, that B, the

* 1 have elsewhere defined how this word order, as lere employed, is to be understood.
If F, a homogeneous function of «;, z,...%,, can be expressed as a fuuction of uy, uy... %,
(all linear functions of &, &, ... &,), F is said to be a function of n -7 orders, or to have lost 7 of
the orders belonging to the complete form.

[+ See pp. 284, 328, 411 above.]
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Bezoutiant of fz and ¢z, is a Covariant to the system f, ¢; the variables
m B being in compound relation of cogredience with the combinations of
powers of z and y,

.Z'm_l, x’ln—2y’ mm—3y2 e 'ym—l'

That is to say, I propose to show that if f, g, b, k& be any four quantities,
taken for greater simplicity subject to the relation fk—gh =1, and if on
substituting fz + gy for z and hz + ky for y, f(, y) becomes

Agz™ + mA oty + fm(m — 1) Aya™ 2y + Apy™, say G (2, y),
and ¢ (z, y) becomes
Byam + mBya™ ™y + dm (m —1) B,a™ 2 y? + B y™ say T (, y),

and if B’ (w/, uy' ... u,,) be the Bezoutiant to G and T, B (uy, u, ... u,,) being
that to f and ¢, then, on making w,, u, ... u,, the same lsnear functions of
uy, ) . uy as

(Jz+gm™, (fe+gy)™2 (ha + ky) ... (fo + gy) (ha + Ey)y™2,  (ha + kyy™,
are respectively of

mm—l, xm—2y e mym—2, yhb'-l’

B will become identical with B. T was led to suspect the high probability
of the truth of this proposition concerning the invariance of the Bezoutiant
from the following considerations: Firstly, that for the particular case
where f and ¢ are the differential derivatives in respect to @ and y re-
spectively of the same function F (=, y), the Bezoutiant of f and ¢, which
then becomes the Bezoutoid of ¥, determines the number of real factors
in F, which obviously remains the same for all linear transformations of F.
Secondly, that taking f and ¢ in their most general form, the invariant to
their Bezoutiant, that is the determinant of their Bezoutiant, is an invariant
of f and ¢, being in fact the resultant of these two functions; now as every
coucomitant (an invariantive form of the most general kind) to a concomitant
is itself a concomitant to the primitive, so it appeared to me, and is I believe
true (although awaiting strict proof), that any form satisfying certain
necessary and tolerably obvious conditions of homogeneity and isobarism,
a concomitant to which is also a concomitant to a given form, will be itself
a concomitant to such form; this principle, if admitted, would be of course
at once conclusive as to the Bezoutiant being an invariantive concomitant
to the functions from which it is dertved.

Art. 61*. Since the publication of the two papers above referred to on
the Calculus of Forms, I have made the important observation that every
species of concomitant, however complex, to a given system of functions,
may be treated as a simple invariant of a system including the given system
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together with an appropriate superadded system of absolute functions; thus
an ordinary covariant involving only one system of variables, as u, v, w ...
cogredient with z, y, z ... the variables of a systenr S, 1s in fact an invariant
of the system S combined with the system wy — vz, vz —wy, wa —uz, &ec,
u, ¥, w ... being treated as constants; so again a simple contravariant of S
is an invariant of S combined with the form wz +wvy + wz + &c.; so again,
to meet the case before us,a covariant to the binary system f and ¢ expressed
as a function of w;, uy... Um, where uy, u,...u,, are cogredient with 2
™y ... y™, may be regarded as an invariant of the ternary system
£ ¢ Q, where

Q = w4, y™ " — muy™ 2 + dm (m— D uy™2ad L+ (=)™ 2,

(41, Uz ... uy being here to be treated as constants); and accordingly the
differential equations which serve to define in the most general and absolute
manner such covariant of f, ¢, or invariant to f, ¢, Q, say I, will take
the form

d i . d d
( ' Ta +b°db>+2(a1d~ao+b‘db2>+3( 2 da +b2db>+
Fd d
+m(\dm_1m+bm_1m> =0,

d d d d
— (ul du, + 2%‘6&13 + 3u, i, +o+(m—=1) Uy dio,_,)

d d d d
((am d am‘—1+ bm dbm—1> +2 (am -1 d + bm—l dbm_2>

d d d
+3(am—2m+bm—2dbm_3>+...+m<ald_ao+bld_b_0> I=0.
d d d i
— (um dum_ + 2um—1 du Uy + 3u'm—2d T (m — 1) Uy ;1&1)

These equations may be proved to be satisfied when I is taken = B, the
Bezoutiant to f; ¢, and thus B may be proved to be a covariant to f, ¢,
but the demonstration is long and tedious. An admirable suggestion, well
worthy of its keen-witted author, for which I am indebted to Mr Cayley,
will enable us to prove the invariantive character of B by a much more
expeditious method.

Art. 62. For greater simplicity begin with considering functions of
a single variable #; and in order to fix the ideas, suppose m to be taken
5, and write
Jr = a4 bt + ca® + da* +ex + I,

bz = az® + Bat + 2 + 62 + ex 4\,

and let % :j@g&_a;_—fci,wﬂ; this is of course an integral function of z and &/,
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since the numerator vanishes when #=«'; and we have by performing the
actual operations,

Y =(aB — ba) 2tz + (ay + ca) 22 a* (x + &) + (ad — da) 2% 2" (&® + z2’ + ™)
+ (ae — ea) zz’ (a* + 22’ + xa’ + &%) + (an — la) (2* + P2’ + 2%’ + za”® + oY)
+ (by — cB) w2 + (b8 — dB) 2?2 (z + &) + (be — eB) wa’ (4* + xx’ + &%)
+ (DN = IB) (2 + 22 + 22 + )
+ (¢ — dry) &2 + (ce — ey) zx’ (z + &) + (A — ly) (2® + @z’ 4 27)
+ (de — ed) zx' + (dA — 18) (z + z)
+ (ex —le);
and if we arrange & under the form
A, o0+ A2 + A 2t + A, o'n’ 4+ A, oo
+ A4, B+ Ay 0+ Ay, a4y, P+ Ay
+ 4, A, ot + Ayt + A, a% + Ay 2P
+ A, zxt + A,z + Ay, + A, e + 4,2
+ Ao 2t A28 A2 + A2 +4,,

it will readily be perceived that the matrix formed by the twenty-five
coefficients, namely

A4,4, A4,3: A4,2: A4,1, A4,o,
A3,4: A3,3: Aa,z: Aa,l: Aa,o»
A2,4: A2,3, A2,2, A2,1, Ae,o,
A1,4, A1,3: Al,?: A1,1y A],o:

N

074y A0,3) Ao,?: AO,I: AO,O)

will be symmetrical about its dexter diagonal (that one, namely, which
passes through A,, and 4,,), and will be identical with the Bezoutian
square corresponding to the system f, ¢; in fact, using the notation
previously employed in the first section, it becomes

0, 1) (0,2 (0,8 (0, 4) (0,5

0, 3 4
- {( >} {(0 ) <o+5>1
12 a3
0, 5
(0, 4) +
(0, 3) { + 1, 4)}

1, 5)
(1, 4)
(0, 5)
0, 4) Jl +

——

—~
e
]
~—
—_—— ———
+

{(1: 5)

+ } (2, 5) (a)
(2, 3)

1, 4 Jl

{(1, )l (@ 5)}
+ + (3, 5)

(
(0,3 (1, 5) (2, 5) (3, 3) (4 5)
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(r, §) being used in general to denote the difference between the cross
products of the coefficients of 2 and «* in f and ¢. Restoring now to
m its general value, and taking f and ¢ homogeneous functions of z and y,
and making
g S EPSE PSS @Y)
zy — &'y

we see without difficulty that
N EAT’S {mrym—l—rw’sy’m—l—s},

where A, , 1s the term in the »th line and sth column of the Bezoutiant
matrix to f and ¢. This is the 1dentification, the idea of which, as before
observed, is due to Mr Cayley.

Art. 63. If, now, we consider the system of functions
S (@, y) = ae@™ + ma, @y + ...+ any™,
¢ (2, y) = bya™ + mb, 2™y + ... + bpuy™,
Q(z, y) = uny™ ' — (M = 1) Uy Y™ @ £+ ... 4 (=) uz™

evidently f(z, y) ¢ («, y') = f(«', ¥) ¢ (%, y) is a covariant with f and ¢, and
therefore (which is a mere truism) with the entire system f, ¢, Q. So also
is 2y’ — «'y, and therefore %, the quotient of these two, 1s a covariant to the
system. Hence, therefore, by virtue of a general theorem given in my

Calculus of Forms,
d d

1s a covariant to the system; and, again, therefore,

d d d d
© (g a2 (g~ a)®

is a covariant thereto. Now & is of (m —1) dimensions in #, ¥ and also of
the same in «, ¥. Consequently this latter form will contain only the
quantities 1w, Uy ... um_,, and the coefficients of f and ¢, so that the powers
of z, y; «,y will not appear in it.

0
Now 2 § { ar ymrr ' y’m—l—s} ,
L od d gy d\m d

g
‘e 1 @ ]
et _d_ _d_ _ d \m1 i m—2i
(=Y Q <dy" _da:’> _um((i5'> +(m—1) U (dw> dy'+"'

(_d_)m-—l
e + ul dyl )
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1 d d d d
f @ ANa (e, - )Y
thereore {1‘2.3“.( ——1)}29(dy,’ dx/)Q(dy: dx)

0 0 0
= 21 (A,-,ruz,-“) +2 3 21 (Arsur+1u8+1);

m-~1m-
r and s being excluded in the latter sum from being made equal; but this
latter expression is the Bezoutiant to f, ¢. Hence the Bezoutiant of £, ¢
is an invariant to f; ¢, (), that is a covariant to the system f, ¢, as was to be
proved. The mode of obtaining the covariant %, used in this and the pre-
ceding article, is very remarkable. I believe that the true suggestive view
of the process for finding it, is to consider

Sl y) @, y)—f(@,y) b (zy)
as a concomitant capable of being expressed under the form of a function
of & and w, w standing for the universal covariant zy’ — 2’y ; ¥ is then to be
considered, not properly as a quotient, but rather as an invariant of the form
Y, a function of w of the first degree, where % is treated as constant.

Art. 64. B is not an ordmnary covartant of f and ¢, it belongs to that
spectal and most important family of invariants to a system to which I have
given the name of Combinants*, namely Invariants, which, besides the
ordinary character of invartance when linear substitutions are impressed
upon the variables, possess the same character of invariance when linear
substitutions are impressed upon the functions themselves containing the
variables ; combinants being, as 1t were, Invariants to a system of functions
i their corporate combined capacity qud system. That the Bezoutiant
possesses this property is evident; for if instead of fand ¢ we write kf +i¢
and k’f +1'¢, any such quantity as a,b; — asb, (a,, b, being coefficients in £,
and a,, by the corresponding ones in ¢) becomes

(katy +ib,) (K ag + 7'by) — (ag + ibg) (Ka, +i'b,),
that is (ki' — &5) (arbs — asby),

so that B, the Bezoutiant, becomes increased in the ratio of (i’ — k)™,
that 1s remains always unaltered in point of form and absolutely immutable,

provided that ki’ — k2 be taken, as we may always suppose to be the case,
equal to 1.

We derive immediately from this observation, the somewhat remarkable
geowmetrical proposition, that the intersections with the axis of z made by
any two curves of the family of curves u = Af(z) + u¢ (), (f and ¢ being
functions of z of the same degree) give rise to a constant number of effective
intercalations, whatever values be given to A or u for the two curves so
selected.

* For some remarks on the Classification of Combinants, see Cambridge and Dublin
Mathematical Journal, November, 1853 [p. 411 above).
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Art. 65.  B(u,, %, ... u,,) being a covariant of the system f and ¢, and
Uy, Us ... Uy, cOgredient with ™=, am=2y .. y™1 it follows from a general
principle in the theory of invariants, that on making u,, u, ... u,, respectively
equal to the quantities with which they are cogredient, B will become
an ordinary covartant to f and ¢. By this transformation B becomes a
function of z and y of the degree 2 (m — 1) in z and y conjointly, and linear
in respect to the coeffictents of £, and also in respect to those of ¢. The
only covariant capable of answering this description is what I am in the
habit of calling the Jacobian (after the name of the late but ever-illustrious
Jacobl), a term capable of application to any number of homogeneous
functions of as many variables. In the case before us, where we have two
functions of two variables, the Jacobian

4 dé

T 9= - h G

af de ray oy

dy’ dy
We have then the interesting proposition*, that the Bezoutiant to two
functions, when the variables in the former are replaced by the combinations
of the variables in the latter, with which they are cogredient, becomes the
Jacobiant. So in the case of a single function F of the degree m, the
Bezoutoid, that is the Bezoutiant to ZZZF, fli on making the (m — 1) variables
which 1t contains identical with z™=% am=3y ... y™* respectively, becomes

identical with the Jacobian to %ﬁ; flj that 1s the Hesstan of ¥, namely

oF - oF
da?’ dady
&F  &F |
dady’ dy
As an example of this property of the Bezoutiant, suppose
J=aa®+ baty + cxy? + dy?,
¢ = ax® + By + yxy® + 8.
The Bezoutiant matrix becomes

aB —-ba, ay-co, ad—da,

a8 da
ary — ca, , by—cB,
bry -

ad — da, by —¢B, ¢6 — dry.
* 1 have subsequently found that this proposition is contained under another mode of

statement, at the end of Section 2 of the memoir of Jacobi, “De Eliminatione,” above referred to.
+ For a strict proof of this proposition see Supplement to Third Section of this memoir.
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The Bezoutiant accordingly will be the quadratic function
(aB — ba) u? + {(ad — da) + (by — cB)] u? + (¢d — dy) uy?
+ 2 (ay — ca) u, uy + 2 (ad — da) uyu, + 2 (by — ¢B) uyus,
which on making
w=at u=ay, uU;=y,
becomes
Lat + Moty + Narp + Py + Qu, 3
where L, M, N, P, Q respectively will be the sum of the termns lying in the

successive bands drawn parallel to the sinister diagonal of the Bezoutiant
matrix, that 1s

L =aB ~ ba,

M =2 (ay — ca),

N =3 (aé —da) + (by — cB),
P =2(by—cp),

Q =cé —dy.

The biquadratic function mn z and y, (B), above written, will be found on
computation to be identical in point of form with the Jacobian to f, ¢,
namely
(Bax® + 2bzy + cy®) (Ba* + 2yaxy + 36y?) — (3aa? + 2By + yy?) (ba? + 2czy + dy?),
this latter being n fact

3Lat + 3Mary + 3Nzy* + 3Py + 3Qy.

The remark is not without some interest, that in fact the Bezoutiant, which
1s capable (as has been shown already) of being mechanically constructed,
gives the best and readiest means of calculating the Jacobian; for in summing
the sinister bands transverse to the axis of symmetry the only numerical
operation to be performed is that of addition of positive integers, whereas
the direct method involves the necessity of numerical subtractions as well
as additions, masmuch as the same terms will be repeated with different
signs. Thus if

J=aa® + baty + ca®y® + daty® + exyt + Ly,

¢ = ax® + Bty + ya*y? + 0x%y® + exyt + N\,
using (7, s) in the ordinary sense that has been considered throughout, we
obtain by taking the sum of the sinister bands in (a)* for the value of B
when we write ¢, 2y, 2% zy?, y* in place of u,, uy, us, Uy, s,

(0, D)2 +2(0, 2)a7y +{3(0, 3) +(1, 2)} a5 + {4 (0, 4) +2(1, 3)} 2%
+{5(0, 5) +3(1, 4) + (2, ) &% + {4 (1, 5)+2(2, 4)) a*y°
+{3(2 5+, H 2y +2(3, B)ey +(4 5)y*

* Vide Art. 62 [p. 552 above).
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The direct process requires the calculation of
(5axt + 4baty + Scaty® + 2dwy’ + eyt) (Bat + 22y + 32y + dexy® + Ay
— (Baat + 4Ba%y + Bya®y® + 28y + eyt) (bat + 2c2%y + Bda®y? + dexy® + Sly),
each coeffictent of which will contain the numerical factor 5; so that to
reduce the Jacobtan to its simplest form each coefficient will necessitate
the employment of additions, subtractions, and a division, instead of additions

merely, as when the Bezoutic square is emnployed. For instance, to find the
coefficient of #*y from the above expression (a) we have to calculate

1{25(0, 5)+16 (1, 4)+9(2, 3) +4(3, 2)+ (4, 1)},
that 1s

112500, 5)+(1A6—-1)(1, 4+ (99— 4 (2, 3)},
which is 5 (0, 5) + 3 (1, 4) + (2, 3), agreeing with what has been found above
for the value of such coefficient, by a simple process of counting. The same
remark will, of course, also apply to the computation of the Hessian of F
by means of its Bezoutoid.

Art. 66. This relation between the Bezoutiant and the Jacobian led me
to inquire whether, as would at first sight appear probable, the Bezoutiant
were the only lineo-linear quadratic function of m variables covariantive
to fand ¢ (the word lineo-linear being used to denote the form of coefficients,
such as those in the Bezoutiant, linear in respect of the coeffictents in ¥
and the coefficients of ¢). If so, then there would have existed a method
of performing the inverse process of recovering the Bezoutiant from the
Jacoblan, almost as simple as that of deriving the Jacobian from the
Bezoutiant. On investigating the matter, however, I found that such is
by no means the case*, but that there exists a whole family of independent

* This might have been concluded immediately from the following observation. Let .J,
the Jacobian of f and ¢, be expressed under the form
Aga?m=2y (Im—2) 4, 2Py + 4 (2m ~ 2) (2m ~ 8) 4, 2™ Tyt p 4 Ay, 0y™™
then we know [p. 282 above] from the Calculus of Forms, that, D being taken to represent the
persymmetrical Determinant

Ao: Al’ sz ’ Am—l ’
4y, Ay, Ay, , Ay

4y Ay Ay o s A
Apss Amy Amisy coroeer Aomey

D=0 is the condition to be satisfied in order that J may be representable under the form of the
sum of powers of (m-1) linear functions of & and y, and D itself is an invariant to J, and
consequently an invariant and (as is obvious from its form) a combinantive invariant to f and ¢.
Moreover, which is more immediately to the point, we know that the quadratic form Q

~1)(m-2
Aul+24, {u, (m—1)ug} + 4, {{(m— 1) u, 32+ 21y <(—m—)2(+l)) us} +&Cu+ Ao U2,
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lineo-linear quadratic covariants of m variables to every two homogeneous
functions of # and y of the mth degree. I have, moreover, I believe,
succeeded 1n determining the number of such lineo-linear quadratic forms
for any value of m, of which all the rest, in whatever manner obtained,
may be expressed as linear functions, the coefficients of the linear relations
moreover being abstract numbers; in other words, I have succeeded in
forming the fundamental or constituent scale of lineo-linear quadratic forms
of m variables covariantive to f and ¢; a result of too great interest,
as exhibiting the affinities of the Bezoutiant to its cognate forms, to be
altogether passed over in silence. Supposing the number of linearly inde-
pendent forms of the kind to be », then speaking d priors any of the forms
taken at random might seem to be equally eligible to form one of the v
included in the fundamental scale, combined with any (v —1) others inde-
pendent inter se, and of which the selected one is also independent. In fact,
however, this is not so; for it will always be more satisfactory to contemplate
the fundamental scale of forms as generated successively or simultaneously
by a uniform process; and in the case before us, the process which I have
hit upon, and which I believe 1s the simplest that can be employed for
generating the fundamental scale, will be found not to include directly the
Bezoutiant among the number. There will thus arise two subjects of
inquiry ; firstly, the mode of forming the fundamental scale, and proving
its fundamental character; secondly, determining the numerical relations

will be an invariant to f, ¢ and €2 (this last quantity 2 being defined as in p. [551]), and a com-
binantive covariant to f and ¢ in the same sense precisely as the Bezoutiant is a covariant
to the saine, and like the Bezoutiant is lineo-linear in respect of the coefficients of f and ¢.
If we operate with the symbol E, where E represents

2,2 E%()+ 20,0, E%I + (vg? + 20, 4) £;+ &e, + v2 d—A%,:g s

upon K any invariant of f and ¢, we shall obtain EK, a quadratic function of v,, %, ... vy,
which by the rules of the Calenlus of Forms we know will be a contravariant to f and oy
and the matrix corresponding to which must evidently be persymmetrical. It is an interesting
subject of inquiry, which I reserve for some future occasion, to determine the Co-bezoutiant,
the Diseriminant of which must be employed for K, so that when this discriminant is operated
upon by E, the matrix corresponding to EK may become identical (term for term) with the
matrix which is the inverse to the Bezoutiant matrix, which inverse, as Jacobi has so simply
and beautifully demonstrated, possesses this persymmetrical character. Vide the *‘ De Elimina-
tione,” Section 5. The investigation of the arithmetical connexion between the @ of this note
and the fundamental Co-bezoutiants must be also similarly reserved. I believe it to be generally
true, and have verified the fact for the case of two cubic functions, that EQ gives a quadratic
form such that the corresponding matrix is the inverse to the matrix of Q. The calculations
necessary for extending the verification of this remarkable proposition for functions of =z, y
exceeding the third degree (notwithstanding that thiey are much abbreviated by the application
of the rules of the calculus) still remain excessively laborious. The abbreviation alluded to
consists in confining the verification in question to the comparison of either one of the two
unreiterated terms at opposite corners of the matrix to EQ with the corresponding term in the
inverse matrix of Q; if these coincide, it is easy to prove that every other pair of corresponding
terms in the two matrices must also coincide respectively with one another.
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which connect that very important form, perhaps of all its kind the most
important, with the forms comnprised in the fundamental or constituent scale.
These questions I propose to consider more fully at a future period. For the
present I shall content myself with giving a method of forming the constituent
scale (without, however, seeking the proof of all the forms extra to such
assumed scale being linear functions of those comprised within it), and
with determining the numerical relations between the forms in this scale
and the Bezoutiant for a limited number of values of m. All the forms
which we are seeking, besides being lineo-linear quadratics, must also be
combinantive invariants to f and ¢, remaining (as forms) unaltered for any
linear substitutions impressed either upon the variables or upon the functions
contalning the variables.

Art. 67. I must here premise that if there be any two forms of the
same degree (and that degree odd) in z and ¥, a combinant may be formed
from them, which will be linear in respect to each set of coefficients*. Thus
calling the two functions

Az + (20 + 1) 87y + 1 (Cn+ 1) 2naa®™ ' + .+ dopa ™
et + (20 + 1) 2"y + 3 (2n 4+ 1) 20,2 g% + ..+ gy, Y,
the lineo-linear combinant in question will be
T=aytnn—2n+1) a0, +3 (2n+1) 2n ay0,

2n+ 1) (2n) (2n—1
+( - )1( 2n):§ - )“a%n—z&c'_&c"

which, using our customary notation, will be of the form

(2n+1)2n
1.2

Cn+1)(2n)(2n—-1)..
1.2.3...n

0, 2n +1)—(2n+1)(1, 2n) + (2,2n—1) + &c

+ (=) :(n+2) (n, n+1).

As a corollary to this proposition (which, as well as the proposition itself,
will be needed for the purposes of the ensuing determination), taking any
function of an even degree in z, y, F (=, y), there will exist a combinant to

% and %%" by virtue of what has been stated above, which will be

* 1 may add here incidentally (although not wanted for our present purposes) that as a com-
binant in which each set of coefficients enters linearly can always be formed to a system of
functions two in number of as many variables and of any odd degree, 8o reciprocally can a com-
binant in which each set of coefficients enters linearly be always formed to a system of functions
each of the degree 2, of which and of the variables contained in them, the number is any odd
integer [cf. p. 606 below].
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Mr Cayley’s well-known quadrinvariant to #'; namely, if

F=aya™ 4+ 2na0, 2 + ... + aony™,

this will be
1 n2n(2n—1) (n+ 1)
oaqn_2+...+'2‘(—) 1.2,

Aolop — 20, Qon—y + 2—71(2721 —1

The proposition itself is easily proved; first, the expression I' being
expressed entirely in terms of quantities of the form (r, s) remains unaltered
for linear substitutions impressed upon the forms f and ¢; it remains then
only to show that T satisfies the differential equations to T' treated as a mere
invariant, namely

d d d
j 2y B0 g (20 D

“da TN da, Aomrs r—o
L+ a, 0%1 + 2a, &%+3a2&i;+ e+ Cn 41, a Oi+1
and
am+‘£:1+2am;ia;%1+'"+(2n+l)a‘¢% .

+ Gnny +20t2nd~——+-..+(2n+1)ozld-d0

From the hemihedral symmetry of T, which only changes its sign when the
order of the coefficients in f and ¢ 1s simultaneously reversed, it is obvious
that one of these equations cannot be satisfied without the other being so too.
Looking then exclusively at the first of them, we see that this is satisfied by
virtue of the equations

d d
{ o+ (04 Dm g T=0
{ 24, 2 +2 T=0
lda2 na?n—ld " - Y

d d
{(2n+1)amd +a°6l;1} T=0.

(gn1

Hence then the differential equations to 7' being satisfied proves that it is
an invariant, and, as above observed, its form shows upon its face that it is
a combinant.

Precisely in the same way it may be demonstrated, that to two functions
each of the same even degree 2m as
2m (2m — 1)

Aox™ + 2ma, ™1y + 5

A& TEY 4 L A Y™,
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+ 2m (2m —1)

and 0™ 4 2may aF Ty 5

a2$21n—2 y? + e+ Qo y2m’

there will be a quantity
2m (2m — 1)

B) (o Uy _g + &C. — 277la1a2m—1 + Ao,

G = a,0m — 2ma, T

which, although not a combinant, will satisfy the differential equations
necessary to prove it to be an ordinary invariant to the two given functions.

Art. 68. Now let us consider the three forms, f, ¢ and the subsidiary
form Q, where

S=a@™ + ma @y 44 ay™,
¢ = bea™ + mba™ 1y 4+ ... + bmy™,
Q=uy™ ' — (m—1)uy™ 2z + &e. + (=)™ upa™,

where u,, %, ... u,, are to be treated as constants.

Make /= L A
ae ”“f_m(m—l)...(m—%) (Ed—a:-*-ndy "

1 d d \Z+
Em'+1¢=m(m_1)m(m_2i) (‘Ed_x'*‘nd_y) ¢,

© being any integer such that 204+ 1 does not exceed m, and now consider
Ey.\f, Ex,, ¢ as two functions of the degree 204+ 1 in & 7 (x and y being
regarded as constants); and by virtue of the formula in the last article,
form 77}, the lineo-linear combinant of Eyof and Ey,, ¢; T; will then be
lineo-linear in respect to the coefficients in f and ¢, and of the degree
2{m — (20 + 1)} in respect to # and y. Again, let

1 d i)zi Q

E2iQ=m(m—1)...(m—2i+1) (Ed_x+ndy )
EyxQ treated as a function of £ and 5 of the degree 2¢ will furnish a quadrin-
variant @; of the degree 2 (m —1— 2¢) in respect of « and y, and quadratic
in vespect of the system u,, Uy ... 4y We have thus two forms, T; and @,
each of the same even degree 2 {m — (214 1)} in respect of @, y. Forming
between these the lineo-linear invariant G;, G; will be a function lineo-linear
In respect of the coefficients of f and ¢, and quadratic in respect of the
system w,, u, ... 4. Moreover, G; will (by the general principle of successive
concomitance) be an invariant in respect to the system f, ¢, 1, and combi-
nantive in respect to f and ¢. Thus then G; for all admissible values of
v will belong to the family of forms to which the Bezoutiant is to be
referred.

It requires to be noticed, that when ¢ is taken zero, so that T; and G;
are of the degree 2 (m — 1), E,; for this case must be taken equal to 02, which
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evidently fulfils the required conditions of being of the degree 2 (m—1)in
(z, y), and quadratic in respect of the coefficients of Q. If, now, m be even,
we may take for 27+ 1 successively all the odd numbers from 1 to (m—1)
inclusively, and there will be {m forms @;; when m is odd we may take
for 2¢+ 1 successively all the odd numbers from 1 to m, and the number
of forms of G; will be & (m + 1). It should be observed, that when m is odd
and 20 +1=m, T; will become identical with the lineo-linear combinant
to f and ¢, and @; with the quadrinvariant to Q; and no power of # or y will
enter into either, so that Gy, will become simply Tpn X Q. I am now able

to enunciate the proposition, that Gy, G,... Gm_l, when m is even, and
2
@,, G, ... Gy, when m is odd, form the constituent scale of forms, of which

2
the Bezoutiant and all other lineo-linear quadratic functions of m variables,

which are combinants of the system f; ¢, will be numerically-linear functions.
I propose to term the members of this scale Co-bezoutiants.

As regards the present memoir, I shall content myself with exhibiting
a partial verification of this law as regards the connection of the Bezoutiant
with the @ scale of Co-bezoutiants, and a complete determination of the
numerical multipliers which express this connection for the cases comprised
between m=2 and m =06 taken inclusively. It is impossible to predict
for what ulterior purposes in the development of the Calculus of Invariants
these numbers may or may not be required, and it seems to me desirable
that a commencement of a table containing them should be made and placed

on record. The remaining pages of this memoir will accordingly be devoted
to the ascertainment of them.

The theory of the Bezoutoid being included within that of the Bezoutiant,
need not hereafter call for any special attention; I may merely notice that
the Bezoutoid to a function of the degree m will be a numerico-linear

function of {(m—3) of the G’s if m be odd, and } (m —4) of the @’s if m
be even.

It will be more convenient hereafter to denote the G's as G,, @,, G4
respectively, in lieu of Gy, &, G,, &c., and to continue at the same time to
give to the I"s and (s the same subscripts as the corresponding G's.

Art. 69. Firstly. Suppose m=2,
S =ax*+ 2bxy + cy?,

¢ = oz’ + 2Bzy + vy,

Q=uy—u,x.
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Then
E\f=(az + by) £+ (bz + cy) 1,
Erp = (az + By) £ + (Bz + yy) 0,
T = (az + by) (B + vy) — (bz + cy) (az + By)
=(aB —ba) #* + (ay — ca) zy + (by — ¢B) 7,
Q= O = w2y — 2uu,xy +ulad,
and therefore
Gh=(aB — ba) u? + (ary — ca) uyuy + (by — ¢B) wt.

Let us now form in the usual manner the Bezoutiant to #, ¢ ; this is the
quadratic function which corresponds to the matrix

(208 — 2ba), (ary — ca) %

(ay —ca), (2by — 2¢PB)
that is

3 B=(afB = ba)u? + (ary — ca) wyuy + (by — cB)u = G, or B=2G,.
Secondly. Suppose m = 3.
J=aa* 4+ 3ba*y + Bexy® + dy?,
¢ = az® + 3Ba%y + Syxy® + 8y,
Q = uy* — 2uyyx + w2
We have then
E, f=(az* + 2bzy + cy?) € + (ba? + 2cy + dy) 7,
E\p = (aa® + 2Bzy + vy*) € + (Ba? + 2ymy + 8y") 7,
T, = (a2® + 2bay + cy*) (Ba* + 2yxy + 8y?) — (ba® + 2cxy + dif) (aa® + 2Bxy +yy?)
= (aB —ba) z* + 2 (ay — ca) #*y + {3 (by — ¢B) + (ad — da)} z*?
+ 2(b8 — dP) zy® + (c6 — dy) ¥,
Q= Q% = w2y — du 1w’z + (du? + 2upug) y22® — duuya® + ug ot

Supplying for facility of computation the reciprocals of the binomial
coefficients to the index 4, namely

1, _i’ %) _i) 1,
we obtain
G\ = (aB —ba)u? + 2 (ay — ca) uyuy + {2(by — ¢B) + % (ad — da)} u;’
+ {(by — cB) + 3 (ad — da)} uyus + 2 (b6 — dB) uyuy + (¢8 — doy) us™
It will here and henceforth be more useful to employ [r, s] to denote, not

the difference of the cross products of the (r+1)th and (s+ 1)th entire
coefficients in # and ¢, but the ditference of the cross products of these
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coefficients divided each by its appropriate binomial coefficient. We may
Jthen write -

@ =[0,1]u2+2[0, 2] wuy +([1, 2] + 1 [0, 3]) w2, + (2[1, 2] + 2 [0, 3]) w?
+ 21, 3)uyue + (2, 3]
Again,
@ = (ad — da)— 3 (by —cB)} (wyus — u?) = ([0, 3] — 3[1, 2]) w1y
— ([0, 3]1=3[1, 2]) u,.
Hence
@ —1G=[0,1]u?+ 2[0, 2] wyus+ 2[1, 2] wyus + ([0, 3]+ [1, 2])
+ 2 [1, 3] wyus +[2, 3]wt

But, again, the Bezoutiant of f, ¢ corresponds to the matrix

3[0, 1), 310, 2], [0, 3),
3[0, 2], [0,31+9(1,2], 3[1,3],
(0, 3], 3[1, 3], (3, 4]

Hence summing the sinister bands to form the coefficients, we have
B=3[0, 17 u2+ 60, 2] uu, + (3[0, 8]+ 9[1, 2]) u* + 6 [1, 8] upns,
+[2, 3] u? = 3G, — Gs.
Thirdly. Suppose m=4,
S =azt + 4baty + Gca®y? + ddzy® + eyt
¢ = azt + 482y + 6yay? + 48z + ey,
Q = u,y* — Bupy*e + Buya® — w2
Then
Byf = (az+by) £ + 3 (ba + cy) £+ 3 (cx + dy) & + (dw + ey) v?,
therefore
T, = {(aa: + by) (8 + €y) } _3 {(ba: + ¢y) (yz + 8y) }
— (0@ + By) (d= + ey) — (Bz + vy) (cx + dy)
=([0,3]=3(1, 2))2* + ([0, 4] — 2[L, 3Dy + ([1, 4] -3 [2, 3]
and
@ = (Y — w) (u5y — u@) — (uy — us)?
= (uatly — u®) Y* — (Ugty — Usths) @Y + (U — u?) 2%
Hence supplying the binomial reciprocals

1) - ‘%) 1)
we have

Gs=([0, 3] — 3[1, 2]) (wyu, — w?) + 3 ([0, 4] — 2[1, 3]) (waty — i)
+([1, 4] — 3[2, 3]) (uarey — uyd).
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Again,
T,=(az® + 3baty + Bcay® + dy®) (B2® + 3ya*y + 3dzy® + ey)
— (az® + 3Ba%y + 3yxy® + 8y°) (ba® + Bca*y + 3day® + ey?)
=[0, 1]2*+3 [0, 2] 2%y + (3[0, 3]+ 6 [1, 2]) «*y*+ ([0, 4]+ 8[1, 3]) 2%
+(3[1,4]+ 6[2, 3] 2%* + 3[2, 4] =y +[3, 4] ",
and
Ql =0
=Y — 6wy e + (Y 4 6w u) yia® — (2uu, + 18u,u,) 2%y°
+ (ug? + buyu,) y2af — Bugu,ya® + ula’.
Hence, supplying the reciprocal binomial coefficients,
L -4 +4% —4% 7% —& L
we find
Gy =[0, 1]w* +3[0, 2] wu; + (£ [0, 3] + 2 [1, 2]) (9’ + 6wy )
+ (45 [0, 47+ & [1, 3]) (wy2ey + Yuy i)
+ (3 [1, 4]+ 22, 3]) Qus® + 6ugu,) + 32, 4] ugu, + 3, 4] usd
Now the Bezoutic square, taking account of the binomial factors in f and ¢,
may be written under the form

400,11, 6 [0, 2], 410, 3], [0, 41,
i 410, 3] [0, 4]
610, 2] [+ 24 [1, 2]} ’ [+ 16 [1, 3]} 404

o [L08) [ B8] e
[0, 4], 4 (1, 4], 612, 4], {3, 4].
Hence the Bezoutiant B becomes
410, 1] w2 4+ 120, 2] wyus + (40, 3] + 24 [1, 2]) w? + 2 [0, 4] w,
+ (20, 4]+ 32[1, 3]) upty + 8 [1, 4] ure, +([1, 4] + 24 (2, 3]) ud
+12[2, 4] wywey +[3, 4] ul

And we ought to have B=cG, +eG,, to satisfy which equation we must
manifestly have ¢= 4; to find e, compare the coefficients of 4,2, this gives

410, 8]+ 241, 2]=238[0, 8]+ 72 [1, 2] +e(3[1, 2] - [0, 3]);
accordingly we ought to be able to satisfy the two equations
36 —g=4, 124 3e=24,
each of which accordingly we find is satisfied by the equality e=1§.
Substituting in the equation for B above written, we thus obtaln
B=4G, +1£ Gy,
which will be found to be identically true.
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Art. 70. We may now see our way to a more concise mode of obtaining
the numerical coefficients, by which they may in fact be computed and
verified with comparatively little labour, connecting the Bezoutiant with the
Co-bezoutiant forms of the constituent scale. It will not fail to have been
remarked, that throughout the preceding determinations I have presumed
the truth of the formula, which admits of an immediate verification, that for
all values of m and w we have the identical equation

d d\®
(E an +7 @> {coxm + me, a™y+dm(m—1)cx™ Yy + ...+mcm_lxym“1+cmym}

=m(m—-1)...(m—w+1) {LOE“‘ +olf '+ io(w—1) L2§“’2n2+...+Lmn“’},
where

—w—1
Ly=cx™ “+ (m— ) cg™ y +(m— w)ﬁl——;’— Cua™ Oty L+ Cpn Y™

—w-—1
Ly=c, @ % +(m— o)cx™ "y +(m— o) &;—— Ca™ Y i+ o Y &

.............................................................................................

L.,=c,a™*+(m—) o, 2™y +(m — w) m= Cua™ IR L+ e Y™

w
2
Let us now proceed to determine by an abridged method the linear relations
corresponding to the cases of m= 5, m = 6, and first for m = 5.

Let
J=ax® + 5baty + 10ca®y® + 10da®y® + Sexy* + hy?,
¢ = az® + 5Bz + 10ya®y* + 1084y + Sexy* + 9y’
Q =uy* — dwyis + buya® — duya® + wat,
In forming Gy, G, G, let us confine our attention to the terms w2 u;us, U .
A comparison of the coefficients of these with those in the Bezoutiant (B)
will be sufficient for assigning the three numerical quantities which connect
B with G, G;, @, 1 omit wu,, because G, is the only one of the G’s for
any value of m which contains w? or wu,, and in G, the terms containing

u,? and w,u, are

{0, 1] % + (m — 1) [0, 2] uynty,
and the corresponding part of the Bezoutiant is
m [0, 1]u? +m (m — 1)[0, 2] wyu,;
so that if we write
B=c¢,G + ;G + ¢G5 + &e.,

the two terms u,* and w,u, will only enable us to form one equation with the
¢'s, namely, ¢,=m. Again, instead of considering the entire coefficients
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of wyu, and wu,, it will be sufficient to take a single argument of either
of these coefficients (in the forms to be compared), as for instance [0, 3] and
(1, 3] Then ¢, being known, c,, ¢; will be determined; but for the purposes
of verification I shall furthermore compute the whole of the coefficient of u,u,.

Accordingly, calculating the @ system in reverse order, we have
Gy=1{[0,5]—5[1, 4] + 10 [2, 3]} {w,us — by, + Sus?)
={[0,5]—5[1,4]+10[2, 3]} wyus + ...,
E, f=(ax* + 2bzy + cy®) £* + 3 (ba* + 2cxy + dy°) £

+ 3 (ca® + 2dzy + ey®) En® + (da? + 2emy + fy?) 7
L. =&c &c;

therefore
Ty = {(az® + 2baxy + cy?) (8a* + 2exy + ny?) — (aa® + 2Bzy + i) (da* + 2exy + hy)}
— 3 {(b2 + 2wy + dy’) (va* + 20@y + ey®) — (Ba® + 2ywy + 8y*) (ca® + 2dwy + ey?))
=([0,3]=-3[1,2D) & + (2[0,4] + ...)a*y + {[0, 5] + [1, 4] — 8 [2, 3]} #** + &ec.
The number — 8 results from the calculation 1 —3 (4 —1)=- 8,
Again,
E,0 = (uy— 2upyz + usa®) E2 — 2 (uy? — 2w,y + u,a?) En
+ (uy* — 2u yx + u,®) 77,
therefore
Qs = (0 Y* — 2uyx + Uy %) (U y® — 2u,yx + Us®) — (U — 20, yT + U ZY
= Uy — 2w, Y ® + wusyat + &c.,

all the terms and parts of terms unexpressed being free of u,, and therefore
not necessary for our purpose. Hence supplying the reciprocal factors

1, -4 & ..,

we have

Gy = [0, 3] wuy + ([0, 4] +) wouy + 3 ([0, 5] +[1, 4] +[2, 3]} wyus + &e.
Again, expressing E, f and E,¢ in the usual way, we obtain
T, = (a2 + 4ba*y + 6ca?y® + ddxy® + ey*) (Bt + doya®y + 6822 y* + dexy® + nyt)

— (az* + 4Bz%y + 6ydy* + 4dzy® + ey) (bat + dea*y + Odaty’ + dexy® + hy')

=[0,1]2* +4 [0, 2] "y + (6 [0, 3] +) «°y* + (4 [0, 4] +) &y
+([0, 5] + 15 [1, 4] + 20 [2, 3]) &*y* + &e.

(where it may be observed that the numbers 15 and 20 in the coefficient of
a*y* arise from the quantities 42 — 1, 62— 4%).
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Again,
Q= QO = u2a® + 8w u, @ y + 12u, us 2®y* — Buyu, @ )P + 2u usatyt + &e.
Hence supplying the multipliers

-1 1 -1 1

1, 8 98’ 56 +76’

&e.
we have
Gy =[0, 1]uz2 +4[0, 2] wyus + 220, 3] wyus + # [0, 4] uu,

+ 45 ([0, 5]+ 15 [1, 4] + 20 [2, 3)) wyus.
Again, the Bezoutiant

B=5[0,1]u2+2.10[0, 2] myus + 2.10[0, 3] v, us
+2.5[0, 4] wyus +2 [0, 5] wiuy + &c.

Accordingly, if we write B =c¢, @& + ¢, + ¢; G, we have, as above remarked,
¢, =55 and to determine ¢,, ¢;, we have, by comparing the coefficients of

UyUs, Uy i[l B) Gl’ G37 G5’

20=92 +¢,
10=32 + ¢,

These two equations, then, as it turns out, are not independent, but are
satisfied stmultaneously by

ey =22
Finally, equating the coefficients of the several arguments in u,u;, we have
0=56x&+32xt+c from the argument [0, 5],
0=35x4+5 xt+5¢, from the argument [1, 4],
0=1>5x 33+ 582 x § 4+ 10¢; from the argument [2, 3].

The first of which equations gives

the second gives

and the third gives

We have thus abundantly verified the accuracy of the calculation, and there
results the relation

B=5G, + 320G, + 3G..
Lastly, let m =6,

J=aa® 4+ 6ba®y + 15¢aty? + 20da*y® + 15ea®y* + Ghay® + Uy,
¢ =aa’ + 682"y + 15yaty® + 208a°y* + 15ea’y! + Gnay® + Nyf,
Q =u 3y’ — duyyiz + 10u,y2a? — 10u, 22 + Huy yat — uga®.
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I shall here confine myself to the determination of a single argument in
each of the terms w2 w iy, u iy, U Uy, U s, Uy %,; this will be ample for the
purpose of verification, as the equation to be assigned is of the form

B=c¢G + ¢G4 ;G

The arguments which I select as the most simple, will be those expressed by
the symbols (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6) respectively; then we have

T, = (az + by) (92 + Ay) F &e. — (ha + ly) (ax + By)
=0, 3] +.. )2+ (0, 6] +... )2y +(...) &,
Qs = (my — wyz) (Y — usx) T &c.
= s+ .. )Y — (s + .. )yz + (...) 2%
Hence supplying the binomial reciprocals
1, -4, 1,
G =([0, 5] + ...) wyus + 3 ([0, 6]+ ...) wyus + &c.
Again,
Ty=(aa® + ...) (82° + Bex®y + 3nzy® + Ay®) T &e.
— (da? + 3ea?y + Shay? + lyf) (a + ...)
=0, 8]+ ...)7° +(3[0, 4] +...) 2% +(3[0, 5] +...) &y
+([0, 6]+ ...) #*y* + &e.
Qs = (wy® F &c.) (usy® T Bugy® + 3us72* — ua®) — &
=g+ ...) Y — Buaug + ..) Yo+ Buus + ...) ya® — (s + ...) y*@° + &e.,
and the reciprocal binomial multipliers will be

-1 41 -1

¢ 157 30 &

1,
Hence
Gs=1[0, 3Jwus + 4 [0, 4] wars + 2 [0, 5] waus + o5 [0, 6] waus &c. &e.
Finally,
Ty = (aa® + &) (B2® + byzty + 1082%y* + 10ea2y® + Snayt + \y°) — &e.
=([0, 1]+ ...) 2 +5 ([0, 2]+ ...) 2y + (10 [0, 3] + ...) a%y?

+ (100, 4]+ ...) &y + (5[0, 5] +...) &% + ([0, 6]+ ...) z7® + &e.
Q1= Q =u Y 4 (10w, +...) Y + (200, us + ..) yoa® + (20uu, + ...) y'a?

+ (10uwu; 4+ ..) Yoot + Quaug + ...) y'z? + &c.
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and supplying the numerical series

11 -1 1 -1 .
» 7107 3B 1200 2107 952 OO
we have

Gi=[0, 11w+ 5[0, 2] wyus + 42 [0, 8] wyus + 5[0, 4] wyu,

+ §§T [0: 5] U u; + ‘1—%‘3‘ [0, 6] Uy g + &e.

Again, the Bezoutiant
=6[0, 11w+ 30 [0, 2] wyus + 40 [0, 8w % + 30 [0, 4] uu,

+12{0, 5]u,us + 2[0, 6] wyu,; + &c. &c.= B.
Hence making

B=61G1+63G3+65G5:

from u* and w4, we obtain respectively

3

¢ =0,
5¢,=30;
hence from u,u; and w,u, we obtain respectively
240 4 ¢, =40 0.
30 4 o, = 30} o G=%
hence from w,u; and w,u; we obtain respectively

6X L +403 4o=12, thatis ;=12 -8 - 12 =

6 X dg+4245+4c,=2 thatis e, =2—-3—F=%;
hence

c; =48,

and the equation sought for is

B=6G, 442G, + 18G,.

[57

Art. 71. The following table exhibits the relations between the
Bezoutiant and the correspondent system of Co-bezoutiants for all values

of m between 1 and 6 under a synoptical form.

m=1 B=@,

m=2, B=2G,

m=3, B=3G -G,

m=4, B=4G, +180G,,
m=25, B=5G+5G,+3G,
m=06, B=6G +48G,+ 120G,
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These series could if wanted be easily extended, and the calculation of the
coefficients reduced to a mere mechanical procedure.

If we suppose m to be 2¢ or 2i — 1, we have the equation
B=c¢G+c, G+ ... +coy Gory,

and 1t appears from the foregoing instances that the comparison of the
coefficients, either of w2, or of w,u, on the two sides of the equation,
will serve to give ¢, (m being known), ¢; may be found by a comparison
of the coefficients either of wu,, or of wu,, and so on for ¢;...cy;
all the coefficients in the equation for B above given, thus admitting of belng
found separately and successively and in two modes, so that there is a check
at each step upon the correctness of the computations: the only exception
to this last remark is (when m is odd) for the last coefficient of which the
above condensed method affords only a single determination. I need hardly
add the remark, that in substituting z™, ™%, ... 4™ % y™ 1 in place of
Ug, Us ... Un—1, U Tespectively, all the G's become (to a numerical factor prés)
identical with one another and with the Jacobian to the system (f, ¢).

Art. 72.  The foregoing theory took its origin (as will have been readily
imagined) in meditations growing out of the celebrated theorem of M. Sturm.
There appear to be several directions in which a development or extension
of the subject matter of that theorem may be sought for. Thus a theory may
be constructed relative to a single function of one or more vartables, viewed
in all cases as representing a geometrical locus. In the limiting case, when
this locus becomes a system of points in a right line, we have the theorem
of Sturm ; generally the theory will be that of contours. Or, again, a theory
may be formed in which the number of functions s always kept equal to that
of the variables, We have then a theory of discrete points corresponding
to roots, the number of real ones of which comprised within given limits
it is the object of such theory to determine. M. Hermite, in a memoir
recently presented to the French Institute, appears to have made a valuable
addition to the Sturmian theory extended in this direction, to which the
beautiful researches of M. Cauchy and the joint labours of MM. Liouville and
Sturm, with reference to the disposition of the imaginary roots of equations
appear to have led the way. Finally, the number of variables may be supposed
to be arbitrarily increased, but made always inferior by a unit to the number
of the functions in which they are contained, or which comes to the same
thing, we may construct the theory of a system of homogeneous functions
equal in number to the variables in thern, which in its simplest case becomes
the theory of Intercalations which has been here partially considered, and
which (as has been shown) embraces (not as a particular case, but as an
implied consequence and easily extricated result) the theorem of M. Sturm.
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General and Concluding Supplement.

Art. (X). The expressions given in Art. (n) [p. 507 above] for the partial

quotients of the continued fraction represented byj;—j, are restricted to the
supposition of all these partial quotients (except the first) being linear in z;
when the first partial quotient is linear the formula (B) of that article continues
applicable on replacing (D;hg) by 1. I was forcibly struck by the peculiarity
of these formul® not ceasing to be true in consequence of the first partial
quotient being supposed non-linear; and reflecting upon this, I was soon led
to perceive that all the partial quotients might be supposed to be arbitrary
integral functions of #, and the formule would still continue to apply to
any such of them as might happen to be linear, although, as 1t were, imbedded
among a group of other non-linear partial quotients. From this 1t was but
an easy step to perceive that the formulee (A) and (B) must admit of extension
to the representation of partial quotients of any form, and that the dimorphism
of the representation of the linear partial quotients could only be a consequence
of the equation in integers w4+ » =1 having two solutions =0, »=1 and
u=1, v=0. I now proceed to enunciate the very remarkable general
theorem (or as it may perhaps not inappropriately be termed Algebraical
Porism), by virtue of which any partial quotient of a given degree in z
belonging to an infinite continued fraction, all of whose partial quotients are
algebraical functions of 2, may be expressed to a constant factor prés, by
means of the numerator and denominator (or if we please either one of these)
of the convergent tmmediately antecedent to and of the numerator and

denominator of any convergent not antecedent to the partial quotient which
1s to be determined.

Axt. (2). Theorem. Let @, Q,... Q;, Qiis .. Qn, &c. each of an arbitrary
degree in =z, be the n first partial quotients of an algebraical continued
fraction; let @y, be the partial quotient to be determined and of the given
degree w;,;; let

1 1 1 1 ¢
Q-Q-@=""0 fi@@’

1 1 1 1 1 1 _9@.
G-Q-G&-Q—Qun @ F(»)
let w and v be any couple of integers of the w;,, + 1 couples which satisfy the
equation » 4+ u = w;,,; then, as usual, denoting the product of the differences

of each of one set of terms from each of another set, by writing the former
under the latter, and calling 7, 7. ... 7, the u roots of ® (), and hy, hy ... hy

O

and
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the m roots of F(z), (P and F being supposed respectively of u and m
dimensions in «), and forming the disjunctive equations

8,0, 0,..0,=1,2,3.. 4
t foy B by =1,2,3...m,

we have the following equation, wherein ¢ and f are written for ¢; and £;,

Qin=K,,x= {(¢n91¢7]92 e @M, X (fhy fhay oo Sl
l:nel s Mg o 7]%} % [llgl, Ilt2 ven }Ltu}
% htu+15 htu+9 . }ltm 7)91/4—1’ 7]9»4-2 ...7]9“
|:7]91, 7]92 7]9'/:] % [btl’ ht2 e htu}
N8y115 Moys0 -+ Moy, hluu ’ htw«z (N htm

X (% = ng,) (& — ma,) +oe (& — 1)} (£ — ) (@ —Dg,) ... (% — h,u)}} ,

and moreover the different values of K, , depending upon the different modes
of breaking up w;4; Into two parts » and » are all (to a numerical factor prés)
equal to one another. Thus then the theorem pointed at in Art. (p) is
discovered, and the way laid open (by an unexpected channel) for a complete
discussion of the theory of the singular cases which may occur in the
expansion of any rational algebraical fraction under the form of a continued
fractron.

Art. ()). In the above expression, if we suppose w;y; =1, we have y=1
and » =0, or v = 0 and » =1, and remembering that

h
®h and — Fn.
[m, nz...nJ an l:hl, hy . hJ Y

.Iltl } [779 :l ’
=F’h, and ! =Py,
[1142, ht3 con htm 4 7792 R 7793 ves 779/4, 779]

Qi+ becomes by virtue of the general formula representable under either
of the equivalent forms

K, e {((j) o) (a: - 7)9)} and K, , ¢ {(fht)2 ;’/Z: (z — t)} ,

K, and K,, being either equal, or differing only in the sign, agreeably to
the formule (A) and (B) [p. 508 above].

Art. (7). It may be worth while to notice, that, although (of course)
these formulx and the general formula of Art. (2), when supposed converted
into functions of # and of the coefficients of F' and of @ by the reduction,
integration and summation of the symmetrical functions of the roots which
enter into them remain universally valid, and subject to no cases of exception,
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yet antecedently to these processes being performed the formulz as they
stand may become illusory when any relations of equality exist between the
roots of @ inter se, or between the roots of F inter se. Thus in the case before
us, if @ have equal roots the formula commencing with K, , is illusory, and
if ¥ have equal roots the other of the two formule becomes illusory.

Let us take the second of these and suppose that F () has
k, roots ¢;, k, roots ¢, ... kp roots ¢p,

we may pass to the actual case from any case where the roots are infinitesi-
mally near to the actual roots of F(z), and all infinitesimally different from
one another. Moreover the choice of the infinitesimal variations being
arbitrary, let the &, roots ¢; be replaced by a group of roots

c,+96, ¢+ op1, &+ Splz e 6+ Sp]kl_l,

where p, is a prime root of the equation p/=0, and & is an infinitesimal
quantity, and suppose each of the other groups to be varied in an analogous
manner. Then it may eastly be shown from this that the second of the
formule in question will become

(Y™ (oor @) (2= )

1 d\* ’
(g, Fe

and similarly, the twin formula becomes

o3 () mer () (= )
o=t (d%)x Py,

*

Corresponding modifications will admit of being made by aid of a like
method in the general formule of Art. (3) upon a similar supposition as to
equalities springing up between the roots of fz per se and of ¢ (z) per se,
or between the roots of fz and ¢ tnter se.

* ¥or in general if p is & prime root of the equation p*=1, and if fx have w roots all equal
to ¢ and Y is any other function of # and if & is an infinitesimal quantity, then rejecting all
powers of & higher than the (w - 1)th degree,

Y(etd)  yle+pd) ¥ (c+p%) ¥ (et pe71d)
J(c+8)  fr(e+pd)  flle+p2) T fllc+poTd)

{$ e+ 3)+pd (c+p8) + p™ (c+p™)+ .0 +p27 P (c+ 9271 3)]
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Art. (7). If in Art. (3) we take ¢ =0, the formula for §;,, will become
[7]91, 7]92 “oe ﬂov:l % [llh , ht2 ceo htu:l
htu.;.]! htu+rz e htm 779,/4.1! 770,/4.2 e 770;@
[7]91, 7]92 cee ’ﬂgyjl % l:htl , hte cee htujl
779,,4.1 ) 779,,4.2 e "79,L htu+1’ htu.;.z e htm
X {(@=n6) .. (= m0,)} (2= hy)) .. (2 = huy)},

u and » being any two integers whose sum s @, which 1is identical (as it
ought to be) with the expression virtually contained in the formulae of
Section II. for the syzygetic multiplier of @ (z) in the syzygetic equation
connecting Fz and ®z with their first residue when ®z is supposed to be o,
dimensions in z lower than Frx identical, videlicet, in other words, with the
PO (x)”

Ql =K’u,v

integer part of the algebraical fraction

Art. (). When @ (z) =F' (z),
© (1), B () oo. ® (b
[h], hy ... h..,m]
+wivy? h2+‘ﬂi+l hm
and we may consequently (using an extreme term in the forms in the
polymorphic scale of forms representing Qiy,), write
Qi = (O™ e Ky 28 Py b o b)) (fiha) (Sio)? -
(ﬁhw-'+1)2 (x - hl) (‘7" - h2) (‘7" - hwin)'

becomes identical with (=) @ui™ @i §(hy, hy... by,,,),

Art. (7). The following observations will serve to complete the theory of
the singular cases in the expansion of an algebraical continued fraction.

Preserving the notatton of Art. (3), let
gi=m— (o, +w+... + o+ 1)
Then (calling the roots of Fa, hy, hy ... hy) the (2)th simplified residue to
ﬁ%’ in accordance with the general formula for the residues in the second

section (for greater simplicity selecting an extreme term of the polymorphic
scale), will be represented by

®h,, Oh,, Bk, ... Ohy,

E[hl, — .“hd‘](m—hl)(m—h2)(m—h3)...(m—h,‘.),

h1+dp h2+d"’ h3+d|' e hm

which will be of the form I;asi<t + &c., all the terms containing higher
powers of & vanishing by the coefficients becoming zero. If in the above
expression we should use ¢/ in lieu of oy, where i is o; diminished by any
integer inferior to w;, we should get other forms of the same residue, but
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these will all be of higher dimensions in the roots or cocfficients than
the one just given, and in fact the forms thus obtained corresponding to the
values o, oy =1, 03— 2 ... oy — w; + 1 substituted for ¢; in succession, would,
by aid of the relations of condition between the coefficients of ®u and Fu
implied in the value of w;, adunt of being exhibited as a scale in which each
form would be an exact algcbraical product of the form which precedes it,
wultiplied by a function of the coefficients, and did space permit thereof
it would be perfectly easy to give the forms of these multiplicators. But
I pass on to the representation of what is nore material, namely, the form
of the complete residue 1in the case supposed, merely observing (as an
obiter dictum) that the existence of each singular partial quotient (meaning
thereby a quotient non-linear m ) only affects the form of the single
stmplified residue mn immediate connexion with itself, and not at all the form
of the other residues antecedent or subsequent to that one.

Art. (). Let the th simplified residue be called R; and the correspond-
ing complete residue [R;], then applymng a method similar to the method
given in Section I, we shall find that

L™ Lty &e.
B;

wWi—yt1 Wi—gt1 )
Lil 11 Li:; &C.

)[R =

L; representing the leading coefficient in the sth simplified residue, and the
sign of interrogation (?) denoting some function of w,, w,... w; (possibly a
constant) remaining to be determined. And reverting to Art. (1), the
quantity that would be called K, , according to the notation employed in
the formule expressing @, in that article, will (abstraction being made of
the algebraical sign and using for greater brevity (s), (+ — 1), &c. to express
14 w;, 1 + o, &) come to be represented by
L) LYY LYY &e.

’L('l) Lé(L;ZD L%(t;fi) &C ’

i = 1= .
a similar convention being supposed to be made respecting the numerator
and denominator of each convergent as was made respecting them in the
particular case treated of in Art. (f), page [502].

Art. (19). I will merely add a very few words in generalization of the
method of limiting the roots of fz given in the Supplement to the fourth
Section [p. 528 above]. As an inferior limit to fz is identical with a
superior limit to f(— ), we may confine our attention to superior limits
alone. Suppose then that

¢« 1 1 1 1 1 1 1 1 1
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where the partial quotients ¢} are each of any arbitrary degree in #, and have
all one algebraical sign in the coefficients of the highest powers of # from @,
to @i, and all the same sign (contrary to the former), in the coefficients of
the highest powers of z from @ to 'y, and so on alternately, then firstly
a superior limit to the superior limits of the cumulants [Q;, Q,... @],
[QF, @ - Q) .. [(@) (@) ... (@] will be a superior limit to fz, so that it
remains only to give a rule for finding a superior limit to a cumulant
[Q., @, @ ... Qi], which, secondly, is to be found by making

QI_M1=0; Qz_Mzz(), Qs_M3=0 Qi—Mi=0,
where M=, My= ot L, My=pyt - =L

23 2] Mi—

s B ... fi Deing any quantities entirely independent and arbitrary except
in regard to their being all of the same sign as the leading coefficients in the

elements Q,, @, ... Q;.

We may then find L,, L, ... L; any superior limits to the roots of z m
these 7 equations respectively ; L, the greatest of these, will be a superior
limit to the proposed cumulant [@;, Q.... @;]; and it may be observed that
M., M, ... M; are the general values which satisfy the equation

1 1 1
MI—M—_—W_... ]‘”Ti—o,
subject to the condition that for all values of e
1 1 1 1

Me_ Me—l_ Me—z_ MI
shall have a given invariable sign. The first part of the process, as just
shown, consists in separating the type of the total cumulant which represents
Jz mto partial types, the point for each fracture of the total type being
marked by a change of sign in the elements of the type for the value

#=+o0; 1t 1s eastly seen therefore from this, that if va’f 1s the generatrix

of the cumulant in question, the number of such fractures (that is, the
number one less than the number of partial cumulants) will be the number
of changes of algebraical sign in the signaletic series, consisting of the
leading coefficients In Fz and in each of the odd-placed complete residues
respectively, together with the number of changes of sign in the signaletic
series, consisting of the leading coefficients in ®z and in each of the even-
placed complete residues respectively.

The syzygetic theory of two algebraical functions, and the allied theory
of algebraical continued fractions with their principal applications, may,
I think, now be said to be completely made out, as well for the singular
cases as for the general hypothesis.
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Art. (). I will conclude with observing that the theory within developed
gives the means of transforming (explicitly and without the aid of sym-
metrical functions) into an algebraical continued fraction, any given sum of
algebraical fractions of the form

G Co Cs3 Cn
ik h L

where each ¢ and h is supposed known. For let the above sum be called

F “ then if hy, ¢ be used to denote any pair of corresponding terms of the

. Dh,
b series and the ¢ series, we have —r
F'hy

proved. Again, if D;z represent the simplified denominator of the ¢th con-

=y, as is well known and easily

vergent to the continued fraction equal to % which 1s to be found, say

1 1 1
(d,z+ B)) — (d,z + By))— """ (dpx+ B,)’
we have [p. 476 above]

Dim=zm——~—~(m— ) (z—hy) ... (z—hy)
hl) h2

hiss, hivs ... I

(6D L (b, by ... by) Dhy, Dhy ... Dby
-y F’hF)’hg...F’hi (@ =) (@ =ho) ... (& = Is)

= (—-)iz? ey ciC(h, heoo b)) (m—hy) (3 —hy) ... (. — hy)}.
Therefore
(Dih = {2 (esC5 -+ Ciya) & (ay g oo higy) (hy = hg) (B = By) oo (By = by y)}?
= {2 (CaCs - Ci11) EF (Pa, b oo yyy) T (hoy g oo Bi)]?s

and the simphfied (¢ + 1)th quotient, that is, the value of 4,2 + B;;,, when
divested of the allotrious factor, has been proved [cf. p. 508 above] to be equal to

P
S (Dih g (o= I

it 1s therefore now known as a rational and sntegral function of z; by, hy... hy;
€1y Cy-.. Cn.  The allotrious factor itself is made up of the product of squares
of quantities all of the same form as the leading coefficient in D;z, which,
from what has been shown above, 1s seen to be equal to
i-1
(=) 2 Z{(crCs .. €) & (M, o ... By}

Hence each term in the continued fraction

1 1 1
(d,z+ B))— (Adsz + By) — " (A + B,)’
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which 1s to be made equal to

C C C
! o4+ =

x—h, x—bh

is completely assigned in terms of « and the given quantities ¢ and k.

Art. (9). The number of effective intercalations between the roots of
dx, Fz 1s easily seen to be equal to the excess of the number of positive
real numerators over the number of negative real numerators in the partial

. L 7 . .
fractions of which —~ is the sum, and hence we see d priori, as an obvious

Fz

consequence of a simple extension of the reasoning in Art. 47 [p. 515 above],
that the inertia of the quadratic function

1
— Ig

Dl
where ¢p = The
we may see that the formule given for the residues to fa, f'z in Art. 46
continue to apply to the residues Fz, ®=. That is to say, these residues
when divided out by Fz will be respectively represented by the successive

principal coaxal determinants to the matrix
Sy, T Y
S, S, S ... Sa,
S23 SS’ S4 M Sm+l$

, will represent the value of the index in question. So too

..............................

Sm-l; Sm, Sm+1 LR Szm-—z;
where in general
Co
x—hy
and using the same matrix as above written with 8’ substituted for S, where
in general

Cn
T h,t
h2 +-u+m_hn n

& g,
S

S, =c (2= h) b+ (@—hs) by + ... + Cu (@ — ) b,
the successtve principal coaxal determinants of the new matrix represent the
successive denominators to the convergents of the continued fraction which

by
expresses - .

Fx

The expression for the numerators to the convergents may also, there 1s
no doubt, be obtained by some simple modification (dependent on Intro-
ducing the quantities ¢, ¢, ... ¢,) of the formula in Art. 41, p. [492].

I annex, more with the hope of suggesting than (in all instances) of
conveying a full conception of the force of the definitions, a Glossary, or
rather a Repertory of the principal terms of art employed in the preceding
pages, which might otherwise be apt to occasion some difficulty to persons
unfamiliar with the subject.
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(GLOSSARY OF Nkw OR UNUSUAL TrRMS, oR oF TERMS USED IN A NEW
OR UNUSUAL SENSE, IN THE PRECEDING MEMOIR.

Allotrious.—The allotrious factor to a residue or quotient in the process of
common measure applied to two algebraical functions is the constant factor of
which such residue or quotient must be divested in order to become an integral
and irreducible function.

Apocopated.— Applied to a type in the Theory of Cumulants, denotes a type the
final or initial element of which has been taken away. If both are taken away,
the type is said to be doubly apocopated.

Bezoutic.— For definition of Primary and Secondary Bezoutics see first Section.
Bezoutiant to two functions, each of degree =, is a homogeneous quadratic invarian-
tive function of n variables, the form of which serves to assign the index of the
scale of the effective intercalations of the real roots of the two given functions,

Bezoutoid.—The Bezoutiant to two homogeneous functions obtained by dif-
ferentiation from one homogeneous function of two variables. The Bezoutoid to a
given function of m dimensions in the variables is accordingly a quadratic function
of (m —1) variables, the form of which is sufficient for determining the number
of real roots in the given function.

Characteristic.—The employment of this word has been avoided in the pre-
ceding memoir; but as it contains an idea of capital importance in analysis, and
especially in all inquiries of the kind here treated of, I subjoin the definition of
its meaning. The characteristic of a simple condition of any kind is the rational
integral function (in its lowest terms) whose evanescence necessarily and uni-
versally implies and is implied by the satisfaction of such condition. A simple
condition has always a single characteristic, abstraction being made of the alge-
braical sign, whicl remains indeterminate, In like manner, a multiple condition,
or a system of conditions, will have for its characteristic a plexus of rational
integral functions, whose evanescence necessarily and universally implies and is
implied by the satisfaction of such multiple condition or system of conditions.
The number of functions in the characteristic plexus will however in general
greatly exceed the index of the multiplicity of the conditions, and need not always
be a unique system. There are however exceptions to this: thus the duplex
condition, that a biquadratic function of « shall contain a cubic factor, or that a
curve of the third degree shall have a cusp, will each be definitely characterized
by a plexus of two functions, and no more.

The spirit of the higher analysis resides, and is to be sought for, in the logic
of characteristics,

Co-bezoutiant.—Any homogeneous quadratic function similar in form and in
its property of invariance to the Bezoutiant,
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Cogredient and Contragredient.— A system of variables is cogredient to another
system when it is subject to undergo simultaneously therewith linear substitutions
of a like kind, and contragredient when it is subject to undergo linear substitutions
simultaneously therewith but of a contrary kind.

Combhinant.— A function of the quantities appearing in a given set of functions
which remains unaltered as well for linear substitutions impressed upon the
variables as for linear combinations of the functions themselves,

Concomatant.

Nomen generalissimum for a form invariantively connected with
a given form or system of forms.

Conjunctive.—A syzygetic function of a given set of functions. Any function
which universally, and subject to no cases of exception, vanishes when a certain
number of other functions all vanish together must be a conjunctive (that is
a syzygetic function), or a root of a conjunctive of such functions. But if its
vanishing is subject to cases of exception, then all that can be predicated of it
is that it is syzygetically »elated to such functions, but it may, and usually does
happen, that it will be syzygetically related to them in more than one way.

Contravariant. — A function which stands in the same relation to the primitive
function from which it is derived as any of its linear transforms to an inversely
derived transform of its primitive.

Covariant.—A fonction which stands in the same relation to the primitive
function from which it is derived as any of its linear transforms to a similarly
derived transform of its primitive.

Cumulant.—The denominator of the simple algebraical fraction which expresses
the value of an improper continued fraction. See I'ype, infra.

Determinant.—This word is used throughout in the single sense, after which
it denotes the alternate or hemihedral function the vanishing of which is the
condition of the possibility of the coexistence of a system of a certain number
of homogeneous linear equations of as many variables,

Dialytic—If there be a system of functions containing in each term different
combinations of the powers of the variables in number equal to the number of the
functions, a resultant may be formed from these functions by, as it were, dissolving
the relations which connect together the different combinations of the powers
of the variables, and treating them as simple independent quantities linearly
involved in the functions. The resultant so formed is called the Dialytic Resultant
of the functions supposed ; and any method by which the elimination between two
or more equations can be made to depend on the formation of such a resultant
is called a dialytic method of elimination. In such method accordingly the process
of elimination between equations of a higher degree than the first is always reduced
to a question of elimination between equations which are of the first degree only.

Discriminant.—The resultant of the n differential coefficients of a homogeneous
function of n variables. See Resultant, infra.
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Digjunctive.—A disjunctive equation is a relation between two sets of quantities
such that each one of either set is equal according to some unspecitied order of
connexion with some one of the other set.

Fffective scale of intercalations is the series of the real roots of two functions
of x written in order of magnitude after repeated processes of removing pairs of
roots belonging to either the same function (when not separated by roots of the
other function): the roots of the two functions follow each other alternately.

Efluent.—From every homogeneous function of any number ¢ of variables of
the degree mm/, where m, m’ are any two integers, may be formed (as shown in the
Calculus of Forms, Section IL) a covariantive function of the degree m and of u
variables, where p is the number of permutations that can be obtained by dividing
m into ¢ parts (zeros admissible), in which all the coefficients are numerical
multiples of the given coefficients ; covariants so formed may be termed effluents
of their primitive. An example of this occurs in the footnote to Section V
[p. 557], where the quantity there called € is a quadratic effluent of the Jacobian.

Element.—A simple component of the type to a cumulant. See Cumulant,
supra.

Emanant.—The result of operating any number of times (suppose ¢ times) upon
a given homogeneous function of any number of variables «, y, z ... { with the
operative symbol
(m’i+y’i+z’£+ +t'i>
d dy dz 7 dt)’
is called the ¢th emanant of the function operated upon. Every emanant is a
covariant to its primitive, the new variables ', %, 2’ ...t being cogredient with
the variables z, y, z...¢ with which they are respectively associated. £y,.f,
E,,,$, page [561], are emanants of / and ¢. The process of emanation is one of
incessant occurrence in the theory of invariants. When the order of the emanant
is the sanle as the degree of the function (supposed to be rational and integral)
from which the emanant proceeds, the formn of the original function is repro-
duced in the final emanant, the names only of the variables being changed.

Endoscopic, Ewxoscopic.—When the coefficients of the functions concerned in
any investigation are regarded as integral indecomposable monads, the method
is called exoscopic, and endoscopic when the coefficients are treated with reference
to their internal constitution as composed of roots or other elements.

In addition to the examples in the footnote to Section I.*, these words have a
marked and most important application in the theory of Invariants, especially
of two variables.

Form.—Any function may be regarded as an opus operatum ; the matter
operated upon being the variables, and the substance of the operations being the
form, which resides in the function as the soul in the body. A form is always
common to an infinity of functions, but for greater brevity may be and frequently
is called by the name of some specified function in which it is contained.

[* p. 481 above.}
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FPundamental —The fundamental scale of a system of Invariants or Concomitants
is a set of the same, whereof every other is a Rational Integral Function.

Hessiam or Hessean, named after Dr Otto Hesse, of Konigsberg (the worthy
pupil of his illustrious master, Jacobi, but who, to the scandal of the mathematical
world, remains still without a Chair in the University which he adorns with his
presence and his name), is the Jacobian to the differential coefficients of a homo-
geneous function of any number of variables. It is to a Jacobian what a Bezoutoid
is to a Bezoutiant, or a Discriminant to a Resultant.

Hyperdeterminants.—See Memoir of Mr Cayley, Cambridge and Dublin
Mathematical Journal, May 1845, and Crelle’s Journal of about the same date.

Improper continued fraction is a continued fraction differing only from an
ordinary one in the circumstance of negative signs being substituted for positive
signs to connect the terms.

Inertia.—The unchangeable number of integers in the excess of positive over
negative signs which adheres to a quadratic form expressed as the sum of positive
and negative squares, notwithstanding any real linear transformations impressed
upon such form.

Intercalations.—The theory of intercalations is the theory of the relative
distribution of the real roots, or point-roots, of two or more equations, but in this
theory the number of roots mutually interposed is to be taken only with reference
to the number 2 as a modulus.

Invariance—The property (under prescribed or implied conditions) of re-
maining invariable.

Invariant.—A function of the coefficients of one or more forms which remains
unaltered when these undergo suitable linear transformations.

Inverse.—The inverse to a given square matrix is formed by selecting in its
turn each component of the given matrix, substituting unity in its place, making
all the other components in the same line and column therewith zero, and finally
writing the value of the determinant corresponding to the matrix thus modified
in lieu of the selected component. If the determinant to the matrix be equal
t0 unity, its second inverse, that is the inverse to its inverse, will be identical, term
for term, with the original matrix.

Jacobian.—The Jacobian to n homogeneous functions of » variables is the
determinant represented by the symmetrical collocation in a square of the =
differential coefficients of each of the n functions.

Kenotheme—A finite system of discrete points defined by one or more homo-
geneous equations in number one less than the number of variables contained
therein.

Limiting Series.—One set of quantities whose extreme values are exterior to the
extreme values of a second set is set to limit the latter.

Matriz.—A square or rectangular arrangement of terms in lines and columns.
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Minor Determinant.—Any determinant retained represented by a square group
of terms arbitrarily chosen out of a matrix is a minor determinant thereto. The
simple terms of the matrix are the last minors, and of course if the matrix is
a square, it will itself in its totality represent a single complete determinant.

Monotheme.—A line, or finite system of lines, defined by one or more homo-
geneous equations two less in number than the number of the variables contained
therein,

Order.—The orders of a homogeneous function are the linear functions of the
variables the least in number by aid of which the function admits of being
expressed.

Persymmetrical.—A symmetrical matrix, in which all the terms in the diagonal
bands transverse to the axis of symmetry are identical, is said to be persymmetrical.
Example. An addition table.

Quadrinvariant.—An invariant of which the terms are quadratic functions
of the coeflictents of the primitive.

Relation (simple and compound). Vide Substitution, infra.

Resultant.—The resultant of n homogeneous general functions of n variables
is that function of their coefficients which, equated to zero, expresses in the
simplest terms the condition of the possibility of their coexistence.

Rhizoristic.—A rhizoristic series is a series of disconnected functions which
serve to fix the number of real roots of a given function lying between any
assigned limits,

Signaletic.—A signaletic or Semaphoretic series is a sequence of disjunctive
terms, considered solely with reference to the algebraical signs of plus and minus
which they respectively carry.

Singular.— A proper algebraical function of a given degree, n, in one variable
in its most general form, will, in respect to that variable, be of the nth degree
in the denominator and the (n — 1)th degree in the numerator, and will admit
of being represented by a continued algebraical fraction of n terms, all of them
linear.

But for particular values of, or relations among, the coeflicients entering into
the given fraction this mode of representation fails, and the continued fraction,
instead of consisting of linear terms # in number, will consist of terms, some of
them at least, non-linear, and fewer than n in number. These then are the
singular cases (or cases of singularity) in the theory of the development of an
algebraical fraction under the continued fraction form; and it will be seen that
according to this definition the case of the development of any proper algebraical
fraction in which the degree of the numerator is more than one unit below that of
the denominator, belongs (strictly speaking) to the class of singular cases; and
this view of the case supposed is perfectly correct and conformable to the analogies
of the subject.
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Substitutzon (lnear, similar or contrary).—A linear substitution is said to be
impressed upon a system of variables when each variable is replaced by a linear
conjunctive of all the variables, The matrix formed by the coefficients of sub-
stitution arranged in regular order is called the Matrix of Substitution, and is of
course a square. When two substitutions (impressed on two systems of variables)
have the same matrix, they are said to be similar, and contrary when their matrices
are contrary, that is mutually inverse to each other. When two systems of
variables are supposed to be subject to the condition that their substitutions
are always similar or always contrary, they are said to be related or in simple
relation, the relation being of cogredience in the one case and of contragredience
in the other.

‘When a linear substitution is impressed upon a system of independent variables,
a corresponding linear substitution is necessarily impressed at the same time upon
every complete system of homogeneous combinations (that is, products and powers
and products of powers) of these variables, the matrix to which latter substitution
will consist of terms which will be functions (depending upon the degree of the
homogeneous combinations) of the terms of the matrix to the primitive substitution,
This matrix may be termed a compound matrix, having the primitive matrix
for its base,

If, now, two systems of independent variables are subject to be synchronously
impressed with substitutions, the matrices to which (not being both of them simple
matrices) have for their bases matrices which are either similar or contrary, these
two systems will be said to be in compound relation of cogredience in the one case,
and of contragredience in the other,

Syrrhizoristic— A syrrhizoristic series is a series of disconnected functions
which serve to determine the effective intercalations of the real roots of two
functions lying between any assigned limits.

Syzygetic.—A syzygetic function or conjunctive of a number of given rational
integral functions is the sum of these affected respectively with arbitrary functional
multipliers, which are termed the syzygetic multipliers. When a syzygetic function
of a given set of functions can be made to vanish, they are said to be syzygetically
related.

Transform.—Equivalent to the French noun substantive srangformée.”

Type.—The type of a cumulant is the series of the simple elements (or quotients),
arranged in a fixed order, of which the cumulant is composed.

Umbral,—The umbral notation is a notation according to which simple
quantities are denoted by syllables, instead of by single letters (the composition
of these syllables being governed by the mode in which the quantities which they
express are obtained); and the single letters of such syllables are termed umbral
quantities or umbre.

Weight.—In this memoir (throughout the earlier sections) the weight of any
quantity composed of the product of the coefficients of any given function or
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functions of z is used to denote the number of roots of x appertaining to the given
function or functions which must be employed to express such quantity. More
generally, when dealing with a system of homogeneous functions, the weight
of a quantity may be defined with respect to any selected variable therein as the
sum of the weights in respect to such variable of the several coefficients of which
the quantity is composed (the weight of each several coefficient meaning the index
of the power of the selected variable in that term of the given function or functions
which is affected with such coefficient). These two definitions of weight may be
perfectly well reconciled with each other by understanding the weight of a quantity
formed from the coefficients of a function or system of functions of = to mean the
weight, in respect to unity, of such quantity when the given functions are treated
as homogeneous functions of # and 1,

Zeta.—The symbol ¢ (preceding a row of bracketed terms) is used to denote
the product of the squared differences of the terms which it affects.

[ ] A bracket of this form, when enclosing a superior and an inferior row
of terms m and n in number respectively, indicates the mmn products of the
differences obtained by subtracting each term in the second row from each term
in the first row; when enclosing an arrangement of terms in a single line, it is
used to denote the cumulant of which such an arrangement is the type.





