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ON TANGENT BUNDLES OF FIBRE SPACES AND QUOTIENT
SPACES.

By R. H. SzczArRBA.*

Introduction. One of the most important invariants associated with a
differentiable manifold is its tangent bundle. Indeed, the tangent bundle
has been involved, directly or indirectly, in virtually all of the recent progress
in differential topology. In spite of this, relatively little has been done toward
the determination of the tangent bundle of a given manifold or class of
manifolds. (Two exceptions to this statement are Borel and Hirzebruch,
[], Proposition 7.5 and Wu, [12], p. 86.) In this paper, we investigate
the tangent bundles of manifolds occurring in differentiable fiber bundles.

The first section of the paper is devoted to the statements of the main
theorems. Theorem 1.1 gives information about the tangent bundle of a
quotient manifold X /@ in terms of a (-equivariant embedding of the manifold
X in Euclidean space. The second result, Theorem 1.2 describes the tangent
bundle of the total space of a bundle with fiber ¥ and group G in terms of
a (-equivariant embedding of F in Euclidean space and Theorem 1.3 is a
combination of Theorems 1.1 and 1.2 applying to bundles with fibres X/G.

The next two sections give applications. In Section 2, we apply Theorem
1.1 to quaternionic projective spaces and, in Section 3, to manifolds of
constant positive curvature. The remaining four sections give proofs of
results stated in the first three sections.

Finally, T would like to express my gratitude to W. S. Massey and L.
Auslander for many stimulating and informative conversations during the
preparation of this paper.

1. The main theorem. Let £ be a fibre bundle® and suppose a group
H acts on E¢ and Bg with ng(ha) = hag(x) for o€ B, h€ H. Then ¢
induces a map =¢": E¢/H — Be/H and, under suitable circumstances, the triple
(Be/H,n¢,Be/H) is again a fiber bundle with fiber F¢ and group G¢ (see
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*We use the term fiber bundle to mean “espace fibré,” as defined in Cartan [3],
exposé 6. Qur notation is that of Borel-Hirzebruch [2].
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686 R. H. SZCZARBA.

Lemma 4.1). TUnder these circumstances, we say that H acts on the bundle &
and denote the quotient bundle by &/H.

Suppose M is a differentiable manifold. We will denote the tangent
bundle of M by (M) and the trivial r-plane bundle over M by 67 =67 (M).
If ¢ is a differentiable fiber bundle, we denote by r#(£¢) the bundle of vectors
in +(F¢) tangent to fibers and by 71 (&) the bundle of vectors in r(Z¢)
orthogonal to fibers (in some Riemannian metric).

Clearly =(E¢) is equivalent to the Whitney sum rr(§) @71 (£) and
71 (&) =netr(Be), the bundle over B¢ induced by ¢ from 7(Bg).

For the remainder of this section, all bundles will be differentiable.

Suppose ¢ is a principal bundle with E¢ compact and let ¢: Ee— R* be
an embedding which is equivariant relative to a representation a: G¢— 0(n).?
Giving F¢ the Riemannian metric induced by ¢ and letting vy be the normal
bundle of the embedding ¢, we see that G¢ acts on both vy and 7r(&) as
described above. Now if «(&) denotes the n-plane bundle associated with
the a-extension of £ (see [2], p. 477), we have

TaEOREM 1.1.
m(Be) @ mr(€)/Ge @ ve/Ge=—a(£).

For example, suppose &= (8", P,(R)) is the standard Z,-bundle
where §* is the n-sphere and P,(R) is n-dimensional real projective space.
Then, the usual embedding ¢: S*~> R**! is equivariant relative to the repre-
sentation «: Z,— 0(n 1) which takes the non-zero element of Z, into the
negative of the identity in 0(n +1). Thus by Theorem 1.1,

T(Pa(R)) @ v/Z>=a(é).
Now, a(&) is easily seen to be the (n--1)-fold Whitney sum of the line

bundle é associated with ¢ and vy/Z, is trivial since vy has a Z,-equivariant
cross section. Therefore, we have the well known result?

T(Pu(R)) @ 6* = (n+1)&.

The analogous result for complex projective space follows in exactly the
same way.

Next, let ¢ be a principal bundle and suppose G¢ acts (on the left) on
a manifold F. Let ¢ be the associated bundle with fiber F and suppose

2 Mostow [8] has shown that, if Eg and Gg are compact, such embeddings always
exist. See also Palais [9].

® This result and the analogue for complex projective space are proved by Milnor
in his notes on characteristic classes pp. 10-12 and 74-75. See also Atiyah [1], Lemma
4.5.
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y: F— Rr is embedding which is equivariant relative to a representation
B: Gg—0(n). Now, since B, — ¢ Xa,F and Eg = Bt XGER", ¢ induces
an embedding ¢: EBe— Fgg.

TaroREM 1.2.

() © vp =7 B(€).

To illustrate, suppose £ is a principal 0(n)-bundle, £ the associated
vector bundle, and ¢ the associated sphere bundle. The usual embedding
Y1 8»1 C RBn is 0(n)-equivariant and, since » has an 0(n)-equivariant cross
section, the normal bundle of the induced embedding ¢: F,— EZ is easily
seen to be trivial. Thus,

7 (8) ® 6" —m#E
where 6 is the trivial line bundle over F, (see Wu [12], p. 86).

Now suppose & and 5 are principal bundles and suppose G¢ acts on Ly
with (g2)g’ =g (zg’) for g€ G¢, ¢’ € Gy, and € Ey. Then, G¢ acts on By
and we can form the bundles & with fiber Ey, & with fiber By associated
with ¢ Furthermore, the map 1 X =: E¢ X E— E¢ X B induces maps

mt Be X By ——— B XGan=E$2,
el E&XG§E7I=E§1_>E$XG§B"7=BE2

and the triples & = (¢ X Iy, w1, Bg,), &= (Hg, ms, Bt,) are principal bundles.
(¢ is a principal G¢ X Gy bundle and ¢, a principal Gy bundle. See Lemma
4.2 below.)

Let (¢ X Gy act on By by (¢4, 92)® = ¢g12g.* and let ¢: Ey— R" be an
embedding equivariant relative to a representation y: G¢ X Gyp— 0(n). Then
1Xy: Be X Ey— Ee X B* induces an embedding ¢: Eg— Eog) where
a: Gg—0(n) is the restriction of y to G¢ X 1. (The diagram of Section 5.1
should help clarify the situation here.)

THEOREM 1.3. With notation as above,
7 (&) @ 17 (L) /Gy @ ve/Gy—=7v(L).

For example, let £ be a principal 0(n + 1)-bundle and = (8", =, P, (R))
the standard principal Z,-bundle. Denote by & the S»-bundle associated with
& by & the P, (R)-bundle associated with & by ¢, the principal Z, X 0(n +1)-
bundle =1 : B¢ X 8"— Eg, and by ¢, the principal Z,-bundle =,: Eg —> FH,.
If y: S»— R is the usual embedding and y: Z, X 0(n+1) —>0(n—+1)
the multiplication map (identifying Z, with the center of 0(n 4 1)), it is
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eagily seen that ¢ is equivariant relative to the representation y so, by
Theorem 1.3, we have 17 (&) @ vo/Z =7y (&).

Now, if y;: Z, X 0(n 4 1) > Z, =0(1) and y»: Z, X 0(n 4 1) = 0(n + 1)
are the projection maps, one sees easily that v(&)=y1(&) ® y2(&), v1(&) = Z.,
and y,(&) =7rgz#§. (We use ¢ to denote the line bundle associated with &
and £ the (n - 1)-plane bundle associated with &) Furthermore, since the
embedding ¢: §»— R*** has a Z, X 0(n-}1) equivariant normal field, it
follows that v¢/Z, is trivial and we have

7r(£) @ 6" =, @ mg,*E.
As a consequence, we have the formula of [2], p. 517 (see [13], Lemma
5.1).
o(rr(€:)) =M2:"+1(1 + 01(£) ) trg*0;(€).

In exactly the same way, we can treat bundles with fiber P,(C) and
group U(n - 1) and bundles with lens spaces as fiber and suitably restricted
groups.

2. The tangent bundle of quaternionic projective space. Let a«:
Sp(1) = SO (4n + 4) be the composite.

Sp(1) > 8p(1) X - - X 8p(1) CSp(n+1) CSO(4n+4)
where the first map is the diagonal map. Then Sp(1) acts on S*»+* C Rn+¢
via « and defines a principal Sp(1)-bundle ¢ with F¢= S**2 and Bg = P,(H),

the n-dimensional quaternionic projective space. Then, by Theorem 1.1, we
have

T(Pa(H)) © 7r(€)/8p(1) @ v/Sp(1) —a(8)

where v is the normal bundle to the embedding §**+* C R*+4, 1In fact, « (&)
is the (n-1)-fold Whitney sum (n - 1)& where £ is the 4-plane bundle
associated with ¢ and v/Sp(1) is trivial. Further, if 8: Sp(1) = SO(3) is
the 2-fold covering (see Steenrod [11], p. 115), we prove in Section 6 that
7 (&)/Sp(1) =pB(£). Thus we have* (compare Lemma 4.5 of [1]).

TarorEM 2.1. 7(Po(H)) @ B(€) ® 6= (n+1)E

For any vector bundle ¢, we denote the Stiefel-Whitney class by w(¢)
= > w;(¢) and the Pontrjagin class by p(¢) =X pi(¢). If M is a manifold,
w(M) =w(r(M)) and p(M) =p(r(M)).

¢In [7] the author and W. C. Hsiang prove an analogue of Theorem 2.1 for real,
complex, and quaternionic Grassmann manifolds.
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To compute the characteristic classes of P,(H), we need the following.

Lemyma 2.2. Let v be a generator of H*(P,(H); Z) and w € H*(P,(H); Z>)
its reduction modR. Then

w(B(§)) =1, p(B(£)) =1+ 4,
w(@) =14u,  pE)=1+0)
We will prove this lemma in Section 7. As an immediate consequence,

we have (see Hirzebruch [5] and Borel and Hirzebruch [2], pp. 517-520)

COROLLARY 2.3. Letve H*(P,(H); Z) be a generator andu € HX(P,(H); Z)
its reduction mod 2. Then

w(Pa(H)) = (14-u)",
p(Pa(H)) = (1 4v)242(1 4 4v) .

3. Manifolds of constant positive curvature. Let } be a compact
orientable Riemannian n-manifold of constant positive curvature. As is well
known (see Hopf [6]), M is finitely covered by the n-sphere S™ where the
group of covering transformations G acts on S* via a representation o:
G—>0(n+1). Let {= (8%, M) denote the covering and » the normal
bundle of the embedding 8 C B**. Since » clearly has a G-equivariant cross
section, v/@G is trivial and we have

THEOREM 3.1. (M) P 6t =0a(f).

We now consider some special cases.
Let Z,, be the cyclic group of order m with generator g. For any integer
g relatively prime to m, we define a representation «(q): Z,—> SO(2) by

. cosy siny
«(9) (9) = —siny cosy
where y=2wrg/m. If qi,* - -, gn are relatively prime to m, we let Z,, act on

§2mt C R®%+2 vyia the direct sum a(1) @ a(q:) D - - - @ a(gs). This action
defines a principal Z,, bundle & with E¢=8?*' and B is the lens space

L(m;qi, 5 qn).

CoroLLARY 3.R. Let L=L(m;q,- * -,qs) and & be the principal Z,,-
bundle over L. Then

(L)@ =6LDED - - Dé,

where &, 1s the 2-plane bundle associated with & and & is the 2-plane bundle
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associated with the a(q;)-extension of &  Furthermore, if v is a generator
of H*(L;Z) and u its reduction mod 2, then

p(L) = (1+2?) }I (1+ %),
w(L) = (14u) H (14 gu).

The first part of the corollary is an immediate consequence of Theorem
3.1 whereas the expressions for the characteristic classes follow easily from
the fact that the «(g)-extension of ¢ has classifying map

A
L C By, ——> Bgo(s)-

Here L is considered the (2n - 1)-skeleton of By, and A is induced by the
homomorphism «(q): Z,— 80 (2).

Let H,, denote the generalized quaternion group with generators ¢ and b
and relations aba=1"> and a”=0? where r=2m"1, For any odd integer g,
let B(q): Hn—> S0 (4) be the representation defined by

cosy siny 0
—siny cosy
B(Q)(a‘)'— cosy -—Siny B
0 siny cosy
b 0 I
BB = | o

where I is the 2 X 2 identity matrix and y = gx/2",

If gi,- - -, qu is a sequence of odd integers, we let H,, act on S*m+® C Rn+
via the direct sum B(1) ® B8(q:) B - - D B(¢gn). The action defines a
principal H,-bundle ¢ with He= 8%+ and Be=N(m;q1," * *,qn)-

CoRoOLLARY 8.3. Let N=N(m;qs," * *,qn) ond ¢ be the principal
H,-bundle over N. Then

T(N) @O =6LD6HD - D&

where &= B(1) (§) and &= B(g) (§).

Furthermore, if w is the non-zero element of H*(N;Z,) =~ Z,,

(3.1) w(N) = (1 4 u)w,
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The first part of Corollary 3.3 follows immediately from Theorem 3.1.
We will prove equation (3.1) in Section 7.

Remark. Note that, since the homomorphism B(g¢): H(m)— SO (4)
factors through Sp(1) C SO (4), the group of the bundle r(N) @ 6* admits
a reduction to the sympletic group. Thus we can say that N has a generalized
almost quaternionic structure.

We return now to the general case. Let M be a compact orientable
manifold of constant positive curvature and let S be a p-sylow subgroup of
the fundamental group G of M. Then § is cyclic for p > 2 and either cyclic
or a generalized quaternion group for p=2 (see P. Smith, [10]). Con-
sidering M as S/, we see that the inclusion may § C ¢ induces a map of
S8»/8 onto S»/G and S*/S is either a real projective space, a a lens space, or
an N(m,q,- * *,¢n) defined above. (Here n=4r -3 and 2" is the order
of S.) Furthermore, the map of S§*/8 onto M induces a monomorphism on
mod p cohomology (see, for example, Cartan-Eilenberg, [4], p. 259.) Thus,
since we know the characteristic classes of 8*/S, we can compute the Stiefel-
Whitney classes of M as well as the modp components of the Pontrjagin
classes for any prime p.

4. Two preliminary lemmas.

Lemyma 4.1. Let & be a principal bundle with Ee compact and suppose
a group H acts (on the left) on K¢ such that

(4.1) (ha)g="h(zg) for he H, x€ Ee, and g€ Gy,
(4.2) the induced action of H on Be is without fized points,
(4.8) the spaces E¢/H and Be/H are Hausdorff.

Then the triple (Ee¢/H,nd,Bg/H) 1s a principal Ge-bundle where =¢ is
nduced by .

Proof. All we need to show is that, for any 2,y € E¢/H with wfz = =¢'y,
there is a unique g € G¢ with g —y and that the resulting map of

A’ ={(z,y) € Be/H X E¢/H 5> s — gy}
into G¢ is continuous.

The fact that there is a unique g € G¢ with zg =y for (2,y) € A’ follows
from the corresponding property for & To see that the resulting map
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{1 A’— G¢ is continuous, we let A = {(2,y) € B¢ X Be¢> mex =—mgy} and let
f: A— G¢ be the map with af(z,y) =—=y. Now H acts on 4 by h(z,y)
= (ha, hy) and f(ha,hy) =f(z,y) (by (41)) so f induces a map f,:
A/H —> G¢.  Furthermore, the identity map of Eg X Eg onto itself induces
a map y: A/H — A’ which is clearly continuous, onto, and, by (4.2), one-one.
In fact, since g is compact and A closed in F¢ X Eg¢, A/H is compact so y
is a homomorphism. Letting f': A”— G¢ be the composite f,y~*, we see that
af (z,y) =y for (z,y) € A’. This completes the proof of Lemma 4.1.

Now, let £ and H be as in the lemma and suppose G¢ acts on F. Then,
we can form the F-bundle associated with both & and &/H. In fact, H acts
on B XGgF (on the first factor) and one sees easily that (EgXGgF) /H
= (B¢/H )><(;$F. Thus the F-bundle associated with £/H is the quotient
by H of the F-bundle associated with &.

LeMMA 4.2. Let & and ¢ be principal bundles and suppose G¢ acts on
B, with g(zh) =g(xh), g€ Gg, x€ B, and h€ G,. Then G¢ acts on B,
and the triple (E§><G§ Eeym, By Xa, Be) is a principal Ge-bundle where =
s induced by the map 1 X m;: B¢ X E — Ee X B,

Proof. Let
A={(27) € E; ><G'§E§><E§ Xag B> mz =2},
A, ={(2,9) € B¢ X B¢ > mgw = my},
Ay ={(2z,y) € B X B, 5 mw =my},
and let f,: A, — G¢, fo: A, — G be the maps with afi(2, y) =y for (z,y) € 4,
1=1,2. Then we define f: 4 — @, by the formula f(z,2") =f,(f1 (¢, 2")y, )
where (2,7”) in A is represented by (z,y,2",4") in B¢ X E; X B¢ X E;. The

verification that f is well defined and has the required properties is left to
the reader.

5. The proofs of the main theorems.

Proof of Theorem 1.1. Since t(Bg) =11 (£)/G¢ and 71 (£) @ 7 (€)
= 7(H¢), it suffices to show that (r(E¢) @ ve)/Ge=a(£). Now, r(Bg) @ ve
is trivial and can be considered as the bundle over E¢ induced by ¢ from the
trivial n-plane bundle over R”. Thus, we have an equivalence F': F — E¢ X R
where E is the total space of 7(F¢) @ vp. In fact, this equivalence is G-
equivariant so induces an equivalence between E/G¢ and Ee X ¢, R*. How-
ever, B /G is the total space of (r(E¢) @ vp)/Ge and Eg X GSR"-—_——Ea(g) 80
Theorem 1.1 is proved.
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Proof of Theorem 1.2. We first prove the following lemma.

LemMa 5.1. Let n be a differentiable n-plane bundle. Then tp(z)
—
=TT,

Proof. Suppose n is associated with the 0(n)-bundle ¢ and r=r(R").
Then the total space of 7#(y) is simply E; Xowm) Er. (See [2], p. 478).
The lemma now follows easily from the fact that E.= RE» X B".

To prove Theorem 1.2, we first note that the bundle r#(¢) @ vy over E,
is induced by ¢: E;— Eg) from the bundle 7#(8(£)). Now, by Lemma 5.1,
rr(B(£)) is induced by g : Lgey = Be from B(£) and, since mg)¢p = mg,
the theorem is proved.

Proof of Theorem 1.3. The following diagram should help the reader
keep track of the bundles involved in this proof.

11Xy
Eg)(En —— F X B»
pl pz
¢
Ee XagEq————éEg XagR”
Té
T2 To(§)

Eg X @ Bq —_— Bg
¢ g,

Note, first of all that the map =,: F¢ Xe, Ey— Ee Xa, By induces a
bundle epimorphism =,: 77 (1) = 77(&) with kernel 7r(¢;). Choosing a
Riemannian metric on X¢ Xa, Ly, we see that rr(&) is equivalent to
TF(CZ) @ 71'2#1'14‘({2) so that TF(ZI)/G= [’TF(Cz) @ Wz#TF(ég)]/G'q. In fact, if
we choose the Riemannian metric on FEg Xa, By, to be invariant under the
action of Gy, we have

[TF(gz) 8> 7'2#71'“(52)]/(;?7 = TF(Zz)/G'I @D Tz#TF(EZ)]/G'I-

Now my*rr(&;) /Gy is easily seen to be equivalent to rr(&:) so, to prove the
theorem, we need only show that [rr(&) @ vel/Gn=1y(£).

Let p: E¢— Ey be the projection map. It is easily seen that +r(&)
= ptr(Hy)/G¢ and that vy = pary/Ge (see [R], p. 478) so that
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[rr (&) @ vel/Gn=[p*r(Bn) /G ® pavy/CGel/Gn
= p#r(EBy) © wl/Gs X G,
Now +(Hp) @w is trivial so the total space of [rr(&) D vel/Gy is
Ee X Eq X B*/G¢ X Gy and, since y: Iiy—> B* is equivariant, the action of
Ge X Gy on Eg X By X R* is exactly the action which defines y(¢;). This.
completes the proof of the theorem.

6. The proof of Theorem 2.1. We will need the following lemma.

Lemma 6.1. Suppose & and 4 are principal bundles with En= Be and
suppose Gy acts (on the right) on & with (¢g'z)g =g’ (xg) for g€ Gy, v € Ly,
and ¢’ € G¢. Let A= {(x,y) € B¢ X B with nev —mgy}, f: A— G the map
with x =f(z,y)y, and suppose s: Be—> E¢ is a cross section with the property
that f(s(zgt)g,s(x)) ts independent of x for all g€ Gy. Then the map
B: Gq—> G¢ defined by B(g) =f(s(zg™t)g,s(z)) is a homomorphism and
&/ Gy is equivalent to the B-ewtension of +.

Proof. First of all,

B(9:1)B(g2) =1 (s(zg:*) gu, s () )] (s(2g271) g2, 8 (@) )
=[(s(zg2g17") gu, 8 (29271) ) f (s (2g27) g2, 5 (2) )
since f(s(zg?)g,s(z)) is independent of x. But then (Bg.)B(g:))s(z)
=8(2g579:7) g1g. s0
B(g:)B(g2) =7 (s(2g2719:7) 9192 5(2))
= B(9:92)

and B is a homomorphism.

Now define y: He—> Ey X Ge by y(2) = (me(z), f(sme(2),2)). Then,
for g€ Gy,
y(2g) = (me(2g), f (sme(2g),29)
= (mg(2)9,f(s(me(2)9),29))
= (29,1 (s(29) 97 2))
= (29,1 (s(29) g7, 5(2) )f (s(2),2))
= (29, B(9)7f (s(2),2))

where z—mz(2). Thus ¢ defines a bundle map o: Be/Gy—> E’,,><Gn Ge
(where G4 acts on G¢ via 8) which is easily seen to be an equivalence.
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Theorem 2.1 is an immediate consequence of the following.

COROLLARY 6.2. Let 4 be a principal bundle, ¢ the principal 0(m)-
bundle associated with tr (), and Ad: Gy— 0(m) the adjoint representation.
Then £/Gy is equivalent to the Ad-extension of 1.

Proof. Let T'(Gy), denote the tangent space to Gy at z¢€ Gy, R,:
T (Gy)e—> T (Gy) sy the map induced by right translation, and L,: T(Gy),
— T'(G4) 4o the map induced by left translation. Then

Ad(g) =RyLy1: T(Gy)e—> T (Gy)e.

Let p: By X Gy—> Ey be the principal map and duy: T'(Gy)e—> T (Ey)o
the map induced by py: Gyp—> By, po(g9) =p (2, g). Clearly du, takes T(Gy),
isomorphically onto the fiber of r»(£) containing @. We define a cross section
s in € by

s(z) = [dpa(v1)," + -, dpa(vm) ]

where vy, * +, vp is a base for T'(Gn)e and [dpo(v1),- - -, dps(vm) ] denotes
the frame determined by dpy(v1), * -, dps(vm).
Now,
s(zg7t) g = [Rydpag1(v1),- -+, Rylpogr (vm) ]
= [ByLg1dpa(v1)," - -, BoLigrdps(vm) ]

since p(u(z, 97%), 9') = (2, g7¢g’). Therefore, the map B: Gn—> 0(m) defined
in Lemma 6.1 can be identified with the adjoint representation and the
corollary is proved.

7. The proofs of Lemma 2.2 and Corollary 3.3. Let
w=2w;€ H*(Bo);Z2)

be the universal Stiefel-Whitney class and p= X p; € H*(Bgo(n) ; Z) the uni-
versal Pontrjagin class. We will need the following three lemmas.

Lemma 7.1. Let j: Sp(1l) C SO(4) be the standard inclusion and
)\.(]) : BSp(l) “'>BSO(4) the induced map. Then

(7.1) A= (1+0)%
(7.2) A(G)fw=14u,
where v is a generator of H*(Bgy1);Z) and u its reduction mod 2.

Proof. Let 8* C Sp(1) be unit quaternions of the form @ - bs. Then
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S is a maximal torus. If 8! X 8! is the usual maximal torus in SO (4)
and d: S*— St X S* the diagonal map, then the diagram

d
St — St X St

8p (1) ——> SO(4)
j

is commutative. Passing to classifying spaces, we obtain a corresponding
diagram in cohomology. Equation (7.1) is an immediate consequence of
this diagram (see [2], p. 487) and equation (7.2) follows from the fact
that p; reduced mod 2 is w»?.

LemMA 7.2. Let A(B): Bsyy = Bsos) be induced by the two fold
covering B: Sp(1) > 80(3). Then

AB)p=1+4u
where u 1is a generator of H*(Bgp1y;7Z).
Proof. 'The short exact sequence
1—-Z,—»8p(1) ——>80(3) > 1

defines a fiber map A(B) : Bspa) —> Bsos) with fiber By, If (E, d,) denotes
the integral cohohomolgy spectral sequence of this fiber space, it is not
difficult to show that B, 0* =~ FE.22=~Z, E,*°=<Z, and F,"* =< F,"3=0.
From this, it is immediate that H*(Bgy);Z)/M(B)*H*(Bso(s) ;%) = Z, and
the lemma follows.

LeMMA 7.3. Let A(3): Bu,—> Bspy be induced by the inclusion i:
H, C8p(1). Then A(i)*: H*(Bsp(r);Z2) = H*(Bn,;Z.) is an isomor-
phism into.

Proof. In fact, A(3) : B, —> Bspq) is a fiber map with fiber Su(1)/Hp.
Using the fact that H®(Bag,,;Z,) is non zero (see [4], p. 254), we see that
the mod 2 cohomology spectral sequence is trivial. This proves the lemma.

Now, Lemma 2.2 follows immediately from Lemmas 7.1 and 7.R. To
prove equation (3.1) we notice that the map of H,, into SO (4) factors into
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i i
the composite H,,——> Sp(1) ———> 80 (4). The result now follows from
Lemmas 7.1 and 7. 3.

YALE UNIVERSITY,
New HAvVEN, ConN.
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