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ON TANGENT BUNDLES OF FIBRE SPACES AND QUOTIENT 

SPACES. 

By R. H. SZCZARBA.* 

Introduction. One of the most important invariants associated with a 
differentiable manifold is its tangent bundle. Indeed, the tangent bundle 
has been involved, directly or indirectly, in virtually all of the recent progress 
in differential topology. In spite of this, relatively little has been done toward 
the determination of the tangent bundle of a given manifold or class of 
manifolds. (Two exceptions to this statement are Borel and llirzebruch, 
[2], Proposition 7.5 and Wu, [12], p. 86.) In this paper, we investigate 
the tangent bundles of manifolds occurring in differentiable fiber bundles. 

The first section of the paper is devoted to the statements of the main 
theorems. Theorem 1.1 gives information about the tangent bundle of a 
quotient manifold X/G in terms of a G-equivariant embedding of the manifold 
X in Euclidean space. The second result, Theorem 1. 2 describes the tangent 
bundle of the total space of a bundle with fiber F and group G in terms of 
a G-equivariant embedding of F in Euclidean space and Theorem 1. 3 is a 
combination of Theorems 1. 1 and 1. 2 applying to bundles with fibres X/G. 

The next two sections give applications. In Section 2, we apply Theorem 
1. 1 to quaternionic projective spaces and, in Section 3, to manifolds of 
constant positive curvature. The remaining four sections give proofs of 
results stated in the first three sections. 

Finally, I would like to express my gratitude to W. S. Massey and L. 
Auslander for many stimulating aind informative conversations during the 
preparation of this paper. 

1. The main theorem. Let t be a fibre bundle' and suppose a group 
H acts on Et and Be with 7rq(hx) ==h7r(x) for x C Et, h EH. Then 7q 
induces a map 7rq': Et/H -> B/XI and, under suitable circumstances, the triple 
(E/H,, 7', Be/IH) is again a fiber bundle with fiber FW and group Ge (see 
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'We use the term fiber bundle to mean "espace fibre," as definecl in Cartan [3], 
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685 



686 R. H. SZCZARBA. 

Lemma 4. 1). Under these circumstances, we say that H acts on the bundle t 

and denote the quotient bundle by a/H. 

Suppose 1l is a differentiable manifold. We will denote the tangent 
bundle of M by r(M) and the trivial r-plane bundle over M by 0r Or (M). 
If t is a differentiable fiber bundle, we denote by 1F (t) the bundle of vectors 
in T (E:) tangent to fibers and by r1 (t) the bundle of vectors in r (E:) 
orthogonal to fibers (in some Riemannian metric). 

Clearly T (Et) is equivalent to the Whitney sum 1 F (t) 0 r_- (d) and 

71(d) we#r(Be), the bundle over Et induced by 7q from r(Be). 
For the remainder of this section, all bundles will be differentiable. 
Suppose e is a principal bundle with E: compact and let +: E R -- n be 

an embedding which is equivariant relative to a representation a: G 0(n).2 

Giving Et the Riemannian metric induced by c) and letting vq be the normal 
bundle of the embedding +, we see that G: acts on both vq and TF (t) as 
described above. Now if a (4) denotes the n-plane bundle associated with 
the a-extension of t (see [2], p. 477), we have 

THEOREM 1. 1. 

r (B@) ODQ ()/G I vG/G ED(4v)e 

For example, suppose e = (Sn, 7, Pn (R) ) is the standard Z2-bundle 
where Sn is the n-sphere and Pn(R) is n-dimensional real projective space. 
Then, the usual embedding : Sn > Rn+t is equivariant relative to the repre- 
sentation a: Z2 -- 0 (n + 1) which takes the non-zero element of Z2 into the 
negative of the identity in 0 (n + 1). Thus by Theorem 1. 1, 

r (Pn (R) ) EDvq/Z2 = a (e) e 

Now, a (e) is easily seen to be the (n + 1)-fold Whitney sum of the line 
bundle e associated with e and vq/Z2 is trivial since vF has a Z2-equivariant 
cross section. Therefore, we have the well known result3 

7(Pn (R) ) ED 01 -= (n + 1)t 

The analogous result for complex projective space follows in exactly the 
same way. 

Next, let e be a principal bundle and suppose G: acts (on the left) on 
a manifold P. Let g be the associated bundle with fiber F and suppose 

2 Mostow [8] has showvn that, if E, and G, are compact, such embeddings always 
exist. See also Palais [9]. 

3This result and the analogue for complex projective space are proved by Milnor 
in his notes on characteristic classes pp. 10-12 and 74-75. See also Atiyah [1], Lemma 
4.5. 
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F: P- Rn is embedding which is equivariant relative to a representation 
/3: G-- 0 (n). Now, since E= Et X G4F and Ef() =Et X GJR?, & induces 
an embedding p: E-- Epq). 

THEOREM 1. 2. 

TFQE) 0 v 8 (e) 

To illustrate, suppose e is a principal 0 (n)-bundle, t the associated 
vector bundle, and g the associated sphere bundle. The usual embedding 
V: Sn1- C Rn is 0(n) -equivariant and, since v~p has an 0(n) -equivariant cross 

section, the normal bundle of the induced embedding 0: EC-- E' is easily 
seen to be trivial. Thus, 

TFQg) 00 v=7rC 

where 01 is the trivial line bundle over EC (see Wu [12], p. 86). 

Now suppose e and 77 are principal bundles and suppose G: acts on E7 
with (gx)g'= g(xg') for gC Ge, g'C G77, and xCE71. Then, Ge acts on B77 
and we can form the bundles e, with fiber E7, t2 with fiber B77 associated 
with S. Furthermore, the map 1 X 7r: Et X E -> Et X B induces maps 

7r1: E X E77 -E E XXG GB7,= Et2, 

7r2: E X GeE7= Et, Et X G B7 BE! 

and the triples , = (E: X EN,, 7ri, E&2), 42 (E&1, 72, EE2) are principal bundles. 
(C, is a principal Gt X Gq bundle and t2 a principal Gq bundle. See Lemma 
4. 2 below.) 

Let G X Gq act on Eq by (g1,g2)x g1xg2?1 and let Vb: Eq ->Rn be an 
embedding equivariant relative to a representation y: G: X Gq -> 0 (n). Then 
1 X f: Et X Eq -- Et X Rn induces an embedding c): E1 -> E,() where 
a: G- - 0 (n) is the restriction of -y to G: X 1. (The diagram of Section 5. 1 
should help clarify the situation here.) 

THEOIREM 1. 3. With notation as above, 

TF (e2) 0 TF(C2)/G77 0 voI/Gq 7y(Cl). 

For example, let e be a principal 0 (n + 1) -bundle and v = (St, 7r, Pn(R)) 
the standard principal Z2-bundle. Denote by e, the S?l-bundle associated with 
$, by $2 the P. (R)-bundle associated with e, by C, the principal Z2 X 0 (n + 1)- 
bundle 7ri: E: X Sn -? ES, and by C2 the principal Z2-bundle 7r2: EY1 -- EE2. 
If v: Sn -Rn+1 is the usual embedding and y: Z2 X 0(n+ 1) -0(n+ 1) 
the multiplication map (identifying Z2 with the center of 0 (n + 1)), it is 
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easily seen that ' is equivariant relative to the representation y so, by 
Theorem 1. 3, we have TF (e2) G VqIZ, y ('t) y 

Now, if y,: Z2 X O(n + 1) - Z2 0(1) and y2: Z2 X O(n + 1) ->(n + 1) 
are the projection maps, one sees easily that -y(W=)= yi(C) 0 y2(1), 7i(0i) =2p 

and 72 (L) =7T2#$. (We use g2 to denote the line bundle associated with g2 

and $ the (n + 1)-plane bundle associated with e.) Furthermore, since the 
embedding VI: Sn -* Rn+1 has a Z2 X 0 (n + 1) equivariant normal field, it 
follows that vI/Z, is trivial and we have 

TF ($2) G 0 =2 0 7r6*6. 

As a consequence, we have the formula of [2], p. 517 (see [13], Lemma 

5.1). 
()(TF($2)) = (1+W (1(g) )i'2r*W(e) 

i+j=n+1 

In exactly the same way, we can treat bundles with fiber P, (C) and 
group U (n + 1) and bundles with lens spaces as fiber and suitably restricted 
groups. 

2. The tangent bundle of quaternionic projective space. Let a: 
Sp (1) ->SO (4n + 4) be the composite. 

Sp (1) ->Sp (1) X . * X Sp (1) C Sp (n + 1) C SO (4n + 4) 

where the first map is the diagonal map. Then Sp (1) acts on S4n+3 C R4n+4 

via a and defines a principal Sp (1)-bundle e with EC - S4n+3 and BC =-- P"(H)= 
the n-dimensional quaternionic projective space. Then, by Theorem 1. 1, we 
have 

r(Pn (H) ) (DTF(e;)ISp (1) DVISp (1) ==a(d;) 

where v is the normal bundle to the embedding S4n+3 C R4,,+4. In fact, a (t) 
is the (n + 1)-fold Whitney sum (n + 1) d where t is the 4-plane bundle 
associated with e and v/Sp (1) is trivial. Further, if /8: Sp (1) -* SO (3) is 
the 2-fold covering (see Steenrod [11], p. 115), we prove in Section 6 that 

TF(6)/Sp(1) ,(]d). Thus we have4 (compare Lemma 4.5 of [1]). 

THEOREM 2.1. T(Pn(H) ) D (e) D 0= (n + 1). 

For any vector bundle g, we denote the Stiefel-Whitney class by w(g) 
= w (g) and the Pontrjagin class by p (g) E pi(g). If 11M is a manifold, 

w (M) =w (r (M) ) and p (M) =p (Tr (M) ). 

4 In [7] the author and W. C. Hsiang prove an analogue of Theorem 2. 1 for real, 
eomplex, and quaternionic Grassmann manifolds. 
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To compute the characteristic classes of Pn (H), we need the following. 

LEMMA 2. 2. Let v be a generator of H4(Pn(H); Z) and u C H4(Pn(H); Z2) 

its reduction mod 2. Then 

w (,lS() 1, pQ3(4)) 1+ 4v, 

w(e) = + X, p(e) (1 + v)2. 

We will prove this lemma in Section 7. As an immediate consequence, 
we have (see Hirzebruch [5] and Borel and Hirzebruch [2], pp. 517-520) 

COROLLARY 2. 3. Let v C H4(P (H); Z) be a generator and u C H4(P,(II); Z) 
its reduction mod 2. Then 

w (P. (H)) ( + u) 11+= 

p(Pn(H)) ) (1 + V)2n1+2(1 + 4v) 

3. Manifolds of constant positive curvature. Let 31 be a compact 
orientable Riemannian n-manifold of constant positive curvature. As is well 
known (see Hopf [6]), M is finitely covered by the n-sphere Sn where the 
group of covering transformations G acts on Sn via a representation a: 
G - 0(n + 1). Let e -(Sn, rpM) denote the covering and v the normal 
bundle of the embedding Sn C Rn+l. Since v clearly has a G-equivariant cross 
section, v/G is trivial and we have 

THEOREM 3. 1. T(31) ED 016-a) 

We now consider some special cases. 
Let Zm be the cyclic group of order m with generator g. For any integer 

q relatively prime to m, we define a representation a (q): Z,, -->SO (2) by 

a(q) (g) COs'y siny 
I siny COS'/ 

where y = 2irq/m. If ql,* . *, qn are relatively prime to m, we let Z", act on 
S2n+, C R2,,+2 via the direct sum ac (1) G a (ql) G . . . E c (qn). This action 
defines a principal Zm,, bundle t with EC - S2n+1 and Be is the lens space 
L (rn; ql, . . .*, qn) v 

COROLLARY 3. 2. Let L L (in; q1, . .qn) and 4 be the principal ZM7- 

bundle over L. Then 

T(L) G 01 =to ED el ED . . . n 

wvhere & is the 2-planie butndle associated with t and dj is the 2-plane bundle 
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associated with the oc(qj)-extension of e. Furthermnore, if v is a generator 
of H2 (L; Z) and u its reduction mod 2, then 

n 
p(L) (1 +v2) HI (1+q2v2), 

j=1 

n 
w (L) (1+ U) H (1 + qju). 

j=1 

The first part of the corollary is an immediate consequence of Theorem 
3. 1 whereas the expressions for the characteristic classes follow easily from 
the fact that the oc(q)-extension of e has classifying map 

A 
L CBz >BSo(2) 

Here L is considered the (2n + 1)-skeleton of Bzm,, and A is induced by the 
homomorphism a (q): Z. -> SO(2). 

Let H. denote the generalized quaternion group with generators a and b 
and relations aba = b and ar = b2 where r - 2n,-1. For any odd integer q, 
let /8(q): Hm SO (4) be the representation defined by 

cosy siny 0 

(q) (a -sin7 Cosy 
cos-y siny 

0 siny cos-y 

/3 (q) (b)) j- I 

where I is the 2 X 2 identity matrix aild y = qir/2'-l'. 

If q1, *, q.n is a sequence of odd integers, we let Hm, act on S4,1+3 C R4n+4 

via the direct sum g(1) G,,3(q1) ED . *ED (qn). The action defines a 
principal Hm-bundle e with EC- S4n+3 and B = N((m;q1, *l,qn). 

COROLLARY 3.3. Let N=N(m;qj,- **,q,) and e be the printcipal 

H,n-bundle over N. Then 

r(N) E = 01 =oE eo 6 eD n 

wheere e0o (1)e() and j -/3(qj) (e) 

Furthermore, if it is the non-zero element of H4(N; Z2) Z2, 

(3.1) w(N) = (1 + U)n+1. 
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The first part of Corollary 3. 3 follows immediately from Theorem 3. 1 
We will prove equation (3. 1) in Section 7. 

Remark. Note that, since the homoluorphism a (q): H (in) - S0 (4), 
factors through Sp (1) C SO (4), the group of the bundle r(N) T D 01 admits 
a reduction to the sympletic group. Thus we can say that N has a generalized 
almliost quiateriionic structure. 

We return now to the general case. Let 11 be a compact orientable 
manifold of constant positive curvature and let S be a p-sylow subgroup of 
the fundamental group G of 11. Then S is cyclic for p > 2 and either cyclic 
or a generalized quaternion group for p- =2 (see P. Smith, [10]). Con- 
sidering llI as S?l/G, we see that the inclusion may S C G induces a map of 
S'I/S onto SI/G and Sn/S is either a real projective space, a a lens space, or 
an N(rn, q,, . , q1,) defined above. (Here n = 4r + 3 and 2n$+1 is the order 
of S.) Furthermore, the map of SnI/S onto M induces a monomorphism on 
modp cohomology (see, for example, Cartan-Eilenberg, [4], p. 259.) Thus, 
since we know the characteristic classes of Sn/S, we can compute the Stiefel- 
Whitney classes of M as well as the mod p compolnents of the Pontrjagin 
classes for any prime p. 

4. Two preliminary lemmas. 

LEMAA 4. 1. Let e be a principal bundle withb Et compact and suppose 
a group H acts (on the left) on Et such that 

(4. 1) (hx)g = h(xg) for h C H, x C Et, and g C Gt, 

(4.2) the intduced actioin of II ot Bt is without fixed points, 

(4.3) the spaces E/II and Be/H age Hausdorff. 

Then the triple (E~/H, 7w', Be/H) is a principal G~-bundle where 7rq' is, 
induced by re. 

Proof. All we need to show is that, for any x, y C E/II with 7rx =- 47qy 
there is a ulnique g C Ge with xg = y and that the resulting map of 

A' = { (x, y) C Et/H X Et/H 9 7r&X = 7y} 

into Gt is continuous. 

The fact that there is a unique g C Gt with xg - y for (x, y) C A' follows 
from the correspoilding property for t. To see that the resulting map 
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f': A'-- Gt is continuous, we let A - { (x, y) E ET X ET 3 7Wqx = 7rty} and let 
f: A -G be the map with xf(x,y) = y. Now H acts on A by h(x,y) 
= (hx, hy) and f(hx, hy) f(x, y) (by (4. 1) ) so f iliduces a map fi: 

A/IH -- G. Furthermore, the identity map of Et X Et onto itself induces 
a map y: A/H -- A' which is clearly continuous, onto, and, by (4. 2), one-one. 
In fact, since Et is compact and A closed in Et X E@, A/H is compact so y 
is a homomorphism. Letting f': A'-- Gt be the composite f,y-1, we see that 
xf'(x, y) - y for (x, y) C A'. This completes the proof of Lemma 4. 1. 

Now, let t and H be as in the lemma and suppose Ge acts on F. Then, 
we can form the F-bundle associated with both t and a/H. In fact, H acts 
on E XG F (on the first factor) and one sees easily that (Ee X G F)/H 
- (E~/H) X G F. Thus the F-bundle associated with e/H is the quotient 
by H of the F-bundle associated with t. 

LEMMA 4.2. Let 4 and t be principal bundles and suppose Ge acts on 

EC with g(xh) g(xh), gE Gt, xE EC, and hCE G. Then Gt acts on B 
and the triple (E X G E,7r, E X G Bt) is a principal Ge-bundle twhere r 

is induced by the map 1 X rc: Et X E ->E X B. 

Proof. Let 

A = {(z, z') E Et X G EC X Et X>Ge Et D 7Z = 7r'}, 

Al { (x, y) E Et X Et 3 7x- 7rty}, 
A2 { (x, y) C EC X EC 7rwx 7r=y}, 

and let fl: At-> Gt, f2: A2 -- Gc be the maps with xfi(x, y) y for (x, y) C A,, 
i 1, 2. Then we define f: A-- Gc by the formula f (z, z') f2 (f1 (x, x') y, y') 
where (z, z') in A is represented by (x, y, x', y') in Et X EC X Et X Eg. The 
verification that f is well defined and has the required properties is left to 
the reader. 

5. The proofs of the main theorems. 

Proof of Theorem 1. 1. Since -(B) =-Tri()/Gt and r_?() F 0 (e) 
T(EB), it suffices to show that (1 (E~) O v+) /Gtc a (t). Now, r (E) 0 vq 

is trivial and can be considered as the bundle over Et induced by p from the 
trivial n-plane bundle over Rn. Thus, we have an equivalence F: E -->E X Rn 
where E is the total space of r(E:) 0 v+. In fact, this equivalence is G~- 
equivariant so induces an equivalence between E/QG and Et X Ga Rn. How- 
ever, E/Gt is the total space of (T (E) 0 v+) /Gt and Et X Ga R" =Ea (t) sO 
Theorem 1. 1 is proved. 
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Proof of Theorem 1. 2. We first prove the following lemma. 

LEMMA 5. 1. Let Vq be a differentiable n-plane bundle. Then TF(q) 

7= ?#r. 

Proof. Suppose -q is associated with the 0(n)-bundle C and T =r(Rtn). 

Then the total space of TF (-) is simply EC Xo(n) E,. (See [2], p. 478). 
The lemma now follows easily from the fact that ET - Rn X Rn. 

To prove Theorem 1. 2, we first note that the bundle TF (t) 0 vo over EC 
is induced by p: EC-- E6() from the bundle TF(/3(e) ). Now, by Lemma 5. 1, 
rF(/3($)) is induced by 7r-(C): Ep(C) -BC from i((e) and, since r 

the theorem is proved. 

Proof of Theorem 1. 3. The following diagram should help the reader 
keep track of the bundles involved in this proof. 

lx" X 
E@XEr, -*EXR" 

EC X Gc En - EC X oc Rn 

7r2 {7ra() 

EC X GC Bq1 -- BC 

Note, first of all that the map 7r2: EC X G Eq - EC X G Bq induces a 
bundle epimorphism 7r2: TF($) TF (2) with kernel T (g2). Choosing a 
Riemannian metric on EC X G, En, we see that TF (4) is equivalent to 

TF(62) 7r2#TF(62) so that TF (l)/G= [TF(C2) 0D7r2#r(2)]/G. In fact, if 

we choose the Riemannian metric on EC X Gc; E to be invariant under the 
action of Gq, we have 

[TF (2) 0 7r2#TF (?2) ] /Gq=rTF (g2)/Gq o 2#TF (2) ]/Gq 

Now 7r2#TFF(42)/Gq is easily seen to be equivalent to TF (2) so, to prove the 
theorem, we need only show that [TFF(41) 0 v]j/Gnq =y(t). 

Let p: EC-->Eq be the projection map. It is easily seen that TP(41) 

p#T (En) /IG and that v=-p#v*/QG (see [2], p. 478) so that 
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[TF (4&) 0 vo]I/Gq [p#r(Eq)/GC 0 p#i'1t,/GC]/G7j 

= p#[r (Eq) 0 v]/GC X Gq. 

Now r(Eq) 0 vw is trivial so the total space of [TF(41) ff vfl/Gq is 

EC X Eq X Rl/GC X Gq and, since 4,: Eq -> Rn is equivariant, the action of 

GC X Gq on EC X Eq X RX is exactly the action which defines y (c). This, 
completes the proof of the theorem. 

6. The proof of Theorem 2. 1. We will need the followinig lellmma. 

LEMMA 6. 1. Suppose t and 7 are principal bundles wit71 E-q -BC anzd 

suppose Gq acts (on the right) on t with (g'x)g = g'(xg) for g C Grq x c El, 
and g'E GC. Let A - { (x, y) C EC X EC with7rCx = 7rcy}, f: A-> G the rnap 
with x = f(x, y)y, and suppose s: BC -*EC is a cross section withb thbe property 
that f(s(xg-1)g, s(x)) is indepemdent of x for all g E Gr. Then the map 
/3: Gq >GC defined by /3(g) =-f(s(xg-1)g,s(x)) is a homomorphism1, and 

I/G,q is equivalent to the ,-extension of -. 

Proof. First of all, 

1 (gj#), (g2) f (s (Xgl-l) g1, S (X) ) f (s (xg2-1) g2, S (X)) 

f (s (Xg2-1g1-I) gl, S (xg92-1) ) f (s (xg2-1) g2, S (X)) 

since f(s(xg-1)g, s(x) ) is independent of x. But then (,3gl))f(g2) )s( } 
s (xg2-l'l-') g9g2 so 

/3(gj)# (g2) f (s (Xg2-1g1-1) g1g2, S (X)) 

/ (g9g12) 

and /8 is a homomorphism. 

Now define I: E-->E X GC by ip(x) (7rC(x),f(s7re(x),x)) Then,, 
for g E GC, 

q(xg) = (WC (xg), f(s7rC(xg), xg) 
= (7C(x)g, f(s(7rC(x)g), xg)) 

(zg, f (s (zg)g-1, x) ) 

(zg, f (s(zg)g-1, s (z) )f (s (z), x)) 

(zg, 3 (g)-lf (s (z), x) ) 

where z = 7rC(x). Thus ql defines a bundle map +P0: EC/Gr-- Eq X Gq GC 
(where Gq acts on GC via /3) which is easily seen to be an equivalence. 
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Theorem 2. 1 is an immediate consequence of the following. 

COROLLARY 6.2. Let - be a principal bundle, t the principal 0(m)- 
bundle associated with rF (n), and Ad: Gq -- 0(m) the adjoint representation. 
Then t/Gq is equivalent to the Ad-extension of -q. 

Proof. Let T (Gr)c denote the tangent space to Gq at x C Gq, Rg: 
T ( Gq) _ > T ( Gr) $9 the map indueed by right translation, and Lg: T( Gr) $ 

> T(GqG) ga the map induced by left translation. Then 

Ad (g) =-RgLg-l. T (Gq), - T(Gq) e. 

Let pt: Eq X Gr--Eq be the principal map and d,u: T(G) -> T(Eq) c 
the map induced by : Gq En, p (g) = (x, g). Clearly dck takes T (Gq)e 
isomorphically onto the fiber of TF (4) containing x. We define a cross section 
s in e by 

s(x) = x[d,(vL)*, dx(vm) 

where v1, *v,vr is a base for T(Gq), and [d1u,(v,), d,d,(v7m)] denotes 
the frame determined by d, (v1) d Id, (v"$). 

Now, 

s (xg-1) g [RgdAxg-i (viL), * ., Rgduix-1 (Vm)1] 
[RgLg-=d (v1), * *, RgL,-idu. (Vm) I 

since u /t(x, g-1), g') ==14(x, g-1g'). Therefore, the map ,B: Gq -> 0 (m) defined 
in Lemma 6. 1 can be identified with the adjoint representation and the 
corollary is proved. 

7. The proofs of Lemma 2. 2 and Corollary 3. 3. Let 

= - wj C H* (Bo (n); Z2) 

be the universal Stiefel-Whitney class and p = E pj C H* (Bso (n) ; Z) the uni- 
versal Pontrjagin class. We will need the following three lemmas. 

LEMMA v.1. Let j: Sp(1) C SO(4) be the standar-d inclusion and 
A(j): BSp(l) -Bso(4) the induced map. Then 

(t ) ~~~~~A(j)*p (1 + V)2p 

where v is a generator of f4 (Bsp(l) ; Z) and u its reduction mod 2. 

Proof. Let S' C Sp (1) be unit quaternions of the form a + bi. Then 
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S' is a maximal torus. If S' XS' is the usual maximal torus in SO (4) 
and d: S'-> S' X S' the diagonial map, then the diagram 

d 
Si > Si x Si 

:1 d 

Sp(1) - > SO(4) 
I 

is commutative. Passing to classifying spaces, we obtain a corresponding 

diagram in cohomology. Equation (7. 1) is an immediate consequence of 

this diagram (see [2], p. 487) and equation (7. 2) follows from the fact 

that pi reduced mod2 is w2z2. 

LEMMA 7. 2. Let A(,f) Bsp(l) Bso(a) be induced by the two fold 

covering /3: Sp (1) ->S0 (3). Then 

(8) *p 1+4u 

where u is a generator- of H4(BSP(i) ;Z). 

Proof. The short exact sequence 

1->Z2-->Sp(1) > S0(3) ->1 

defines a fiber map A(,/3): Bsp(1) -> Bso(3) with fiber Bz2. If (E, dr) denotes 

the integral cohohomolgy spectral sequence of this fiber space, it is not 

difficult to show that E.,04 2 Z2, Eoj4'0 Z, and E,1'3 E_1,3 0. 

From this, it is immediate that H4(BSP(1) ;Z)/XQ3)*H4(Bso(3) ;Z) ~Z4 and 

the lemma follows. 

LEMMA 7.3. Let A(i): BH",->Bsp(l) be induced by the inclusion i: 

H,, C Sp(1). Then A(i)*: H* (BSP(1) ;Z2) ->H* (BHrn;Z2) is an isomor- 

phism into. 

Pr-oof. In fact, X (i): BHT,, ---- Bs (1) is a fiber map with fiber Su (1) /Tqn 

Using the fact that H3(BHm;Z2) is non zero (see [4], p. 254), we see that 
the mod 2 cohomology spectral sequence is trivial. This proves the lemma. 

Now, Lemma 2. 2 follows immediately from Lemmas 7. 1 and 7. 2. To 

prove equation (3. 1) we notice that the map of H,, into SO(4) factors into 
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i i 
the composite Hm Sp (1) - SO (4). The result now follows from 
Lemmas 7. 1 and 7. 3. 
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