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NOTE ON DOUBLE POINTS OF IMMERSIONS

ANDRAS Sziics

ABSTRACT. We show that not any smooth manifold can be double point man-
ifold of a smooth self-transverse immersion of a closed n-manifold into the eu-
clidean space R*t*, We investigate also the double covers which can (or can
not) occur in this situation.

0. Notation

In this note M™ will denote a closed smooth n-manifold and f : M™ — R"t¥
shall be its selftransverse immersion. (n and k will be sometimes specified).
0,(f) will denote the (n — k) dimensional closed manifold formed by the double
points in R*t¥, If f has no triple points then 8;( f) is an embedded submanifold
of R*tk¥, Its preimage f~!(62(f)) C M" will be denoted by Dz(f). (The
manifolds D,(f) and 6;(f) can be defined in a standard way even if f has
multiple points, although in this case they are not embedded in M™ and R"+*
but immersed there.)

1. Immersions M" — R*"~!
Let k be n — 1, i.e. we consider immersions M™ — R?"~!. Then the double
point set 6;(f) is a 1-manifold. Call a component C of 6;(f) nontrivial if the
double cover f~!(C) — C is nontrivial, i.e. f~}(C) is connected. Let §(f) € 2,
be the parity of nontrivial components of the curve 8,(f).

Question (M. Rost): Given M™ what are the possible values of §(f)?
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Theorem 1:

a) I n is odd then for any n-manifold M™ there are immersions fy, fi : M™ —
R*"=1 with different values of 6: 6(fp) = 0 and 6(f1) = 1.

b) If n is even then for any immersion f : M™ — R?"~} the following holds:

6(f) = (WiW 1 (M), [M]).

Proof: (This proof uses ideas of Uwe Kaiser and Li Bang He [6)).

a) For n odd any immersion ¢ : M" — R?" has a nonzero vectorfield and
so by a thcorem of Hirsch it is regularly homotopic to an immersion g :
M™ — R?"~!. By Whitney's theorem there are immersions M" — R?"
with arbitrary number of double points. Let go : M™ — R*" and ¢; : M™ —
R?" be immersions with 0 and 1 double point respectively. Now it follows
from the lemma below that the corresponding maps go : M™ — R?"~! and
g1 : M™ — R™~! have § invariants 0 and 1 respectively. (Compare with

[7D)-

Lemma: Let § : M™ — R?"~! be a generic immersion and let A : M — R!
be a function such that the map g = (§,h) : M — R¥™ = R?"~1 x Rl g(z) =
(g(z), h(z)) is a generic immersion. Then the number of double points of ¢ =

8(5) mod 2. (+)

Proof: Let 7 be the free involution on the double point set D(§) such that
g(z) = g(vz). Denote by £, the line bundle over 8(g) = D(g)/r for which the
sphere bundle is D(g).

Then both sides of (*) coincide mod 2 with (W;(¢;),[6(§)]). For the right side
(i.e. for 8(g)) this is so by definition. For the left side (for the double points of
g) it is also easy. Namely let ©(z) be h(z) — h(rz). Then ¢ : D(§) —» R' is an
antisymmetric function (i.e. ¢(rz) = —p(z)) and so ist defines a section s of
the line bundle £,.

The double points of ¢ correspond to the pairs (z, 7z} such that z € D(§) and
h(z) = h(rz). These pairs are precisely the zeros of ¢ and the latters are in
1 — 1-correspondence with the zeros of s, and the pairity of the zeros of s is
(W1(¢€,),[6(g)]). The lemma and thus part a) of Theorem 1 are proven.

b) Let v denote the normal bundle of D,(f) in M and let E! be the trivial line
bundle. Then v @ &! = TM|p,(s). Hence Wi(v) = Wi(M)|p,(s)- Then

(W1(), [D2(f)]) = (W1 W a1 (M), [M])

because the homology class in H;(M; Z;) represented by D;y(f) is dual to
Wa-1(M) (see [3]). On the other hand if n is even then §(f) = (Wi(v),
[D2(f)]). Indeed, both sides coincide mod 2 with the number of those
components of the double point set Dy(f) which have nonorientable normal
bundles in M. [ |
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2. Immersions M3 — R*

In the next theorem we deal with immersions of closed 3-manifolds in R* having
no triple points. The double point surface 82(f) can be any surface of even Euler
characteristic (see [8]). What sort of double covers can arise over 8;(f) as the
double cover Dy(f) — 6,(f)?

Theorem 2: Let f : M® — R* be a selftransverse immersion having no triple
points and let F' be a nonorientable component of the double point surface

62(f) (C R*). Then the double cover f~1(F) — F can not be trivial.

Proof: Suppose that the cover f~1(F) — F is trivial. Then f~!(F) = F{UF;,
where F} and F; are disjoint and both homeomorphic to F.

Let us denote by ¢, and £, the normal line bundles of the embeddings Fy C
M? and F, ¢ M3. Identifying F with F} and F; we can say that the normal
bundle of F in R* is the sum ¢; & ¢,. Let S(£1) and S(£2) be the S%-sphere
bundles over F' associated to ¢; and £3. If T is a small tubular neighbourhood
of F in RY, then 8T N f(M?®) = §(61) U S(¢2).

We are going to show that
Claim 1: S = S({;) U S(¢z) is “linked” with F in R*.
Claim 2: S and F are not “linked” with F in RY.

Then the contradiction between these two claims will prove the theorem. Of
course the expression “linked” in R* should be defined since S and F are not
linked in R* in the usual sense, they do not have the right dimension for that.
(dim S = dim F = 2).

Definition: Let ¢ be any 3 dimensional singular chain in 124 such that o = §.
One can suppose that each simplex of ¢ intersects F transversally. (Especially
the simplices of ¢ of dimension 0 and 1 do not intersect F at all.) Then e N F
is a 1-cycle in F' and its homology class in H1(F; Z3) will be called the linking
class of S and F and will be denoted by £(S, F). We say that S and F are
linked if £(S, F) # 0.

Lemma: £(S, F) is well defined.

Proof: Let & be another singular chain in R* such that 37 = S. Then o %J& is
a 3-cycle in R?* and therefore there is a 4-chain 7 in R* such that 0r = o Lg G.
We can suppose that each simplex of 7 intersects F' transversally. Then 7N F
is a 2-chain with bundary (r N F) =(c N F)U (6 N F). |

Proof of Claim 2: f(M3)\ T forms a 3 chain ¢ such that ¢ = S and s N F
= @. Hence ¢(S,F)=0. n
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Proof of Claim 1: Let D(¢;) and D({;) be the disc bundles of ¢; and ¢,
with boundaries S(¢;) and S({2). Then o = D(¢;) U D(£;) is also a 3-chain
such that o = S. By small perturbation can be achieved that D({;) intersect
transversally the surface F' in a cycle having homology class dual to W;(¢;).
Similarly, perturbing D(€;) we can have that the homology class of D(¢;) N F
is dual to W;(¢y).

Hence the homomology class of o N F is dual to W;(£;) 4 Wi(€2) = Wi(F) £ 0.
]

3. Cases when n~k >4
In this last section we consider two cases when 6,(f) has higher dimension.

Theorem 3: Let f: M® — R!'? be a selftransverse immersion without triple
points. Then M3 is cobordant either to zero or to P, x Ps. The double point set
62(f) (C R'?) is a 4-manifold, which is cobordant either to zero or to P, x P;.

Proof: The eight dimensional cobordism group is Z; ® Z2 @ Z; ® Z2 @ 2,.
The generators are the classes of the following manifolds: Py, Ps X Py, Py X Py,
P, x Py x Py, (P;)*. Computing the normal Stiefel-Whitney numbers of these
manifolds we get the following;:

Ps | PoxPy | PoxPy | PPLxPax Py | PoxPyxPyxPy
WW, 1 0 0 0 0
W.W, 1 0 1 0 0
WiWs 1 ] 0 1 0
w: 1 0 0 1 1

Since for our manifold M? all these characteristic numbers must vanish M?®
must be either null-cobordant or cobordant to Ps x P;. Note that Pg is cobor-
dant to such a manifold V%, which embeds in R!® and the normal bundle has
three independent sections. (See [8].) Therefore V® x P, embeds in R'?.

Now we finish the proof using the arguments of [8] in Claim 1. Let W?® be a
manifold such that either

i) W9 =M® or i) dW®=M3UV; x P,

There exists a generic map h : W9 — R!? x [0,1] such that h(M?) goes into
R'? x 0 and h restricted to M is f. In the case (ii) we require also that
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h(V® x P;) C R x 1 and h restricted to V® is an embedding. The map h
has only 10 singularities (i.e. Whitney umbrellas). The normal bundle of the
singular manifold £(h) has the form: ¢ & v®, where € is the trivial line bundle
and v® admits as structure group the following group of matrices:

{(g‘ 3) and (3 ’3)|A60(4)}.

Hence L(h) is an orientable 4-manifold. The double points of & form a 5-
manifold 8,(h) with boundary consisting of the double points of f and L(h).
Therefore the double point set 62(f) of f is cobordant to an orientable 4-
manifold (to £(h)). Therefore its cobordism class is zero or [Py X P,]. |

I do not know the answer to the following questions:
Question 1: Can the double point set be cobordant to P, x Pp?

Question 2: What can be the cobordism class of the double point set if f has
triple points?

The following theorem can be proven in the same way as the previous one.

Theorem 4: Let f: M" — R™*¥ be a selftransverse immersion of the closed
n-manifold M", where k is even and n < 2k. Let [62(f)] € Nn—i denote the
cobordism class of the double point set 82(f). Then the image of [f2(f)] in the
quotient group M, /image Q,..x depends only on the cobordism class [M™]

€ N,

Especially if M™ is O-cobordant or a(n) > n — k& then 6;(f) is cobordant to
an orientable manifold. (a(n) denotes the number of digits 1 in the binary

decomposition of n.)

Proof: In the case a(n) > n — k we use R. Brown'’s theorem saying that M"
is cobordant to a manifold, which embeds in Rn—aln)+l |

For example if k = n — 6 then we get a homomorphism into Ng = Z, @ Z; B Z;
(since 26 = 0.) defined on those elements of Ny, which contain a manifold that
embeds in R?*"6,

Question 3: What is the image of this homomorpism? | |
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