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N O T E  O N  D O U B L E  P O I N T S  O F  I M M E R S I O N S  

ANDR~,S SZlJCS 

ABSTRACT. We show that not any smooth manifold can be double point man- 
ifold of a smooth self-transverse immersion of a closed n-manifold into the eu- 
clidean space R n+k. We investigate also the double covers which can (or can 
not) occur in this situation. 

0. N o t a t i o n  

In this note M "  will denote a closed smooth n-manifold and f : M "  ~ R "+k 
shall be  its selftransverse immersion. (n and k will be sometimes specified). 
02(f) will denote the ( n -  k) dimensional closed manifold formed by the double 
points in R "+ k. If f has no triple points then 02 ( f )  is an embedded submanifold 
of R "+k. Its preimage f-l(O2(f)) C M" will be dcnoted by D2(f). (The 
manifolds D2(f) and 02(f) can be defined in a s tandard way even if f has 
multiple points, al though in this case they are not embedded in M "  and R "+k 
but  immersed there.) 

1. I m m e r s i o n s  Mn --* R 2n-1 

Let k be n - 1, i.e. we consider immersions M" ~ R 2"-1. Then tim double 
point  set 02(f) is a 1-manifold. Call a component C of O~(f) nontrivial if the 
double cover f -1  (C) --, C is nontrivial, i.e. f - 1  (C) is connected. Let 6(f) e Z2 
be the par i ty  of nontrivial components of the curve 02(f). 

Question (M. Rost): Given M "  what are the possible values of 6( f )?  
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T h e o r e m  1: 
a) If  n is odd then for any n-manifold M "  there are immersions fo, f~ : M"  

R ~"-~ with different values of & ~(f0) = 0 and $(fl ) = 1. 
b) If n is even then for any immersion f : M "  4-4 R 2--1 the following holds: 

6(f)  = (W~W,_~(M),  [M]). 

P r o o f i  (This proof  uses ideas of Uwe Kaiser and Li Bang He [6]). 
a) For n odd any immersion g : M "  --* R 2" has a nonzero vectorfield and 

so by a theorem of Hirsch it is regularly homotopic to an immersion ~ : 
M n --* R 2"-1. By Whitney 's  theorem there are immersions M "  ~ R ~" 
with a rb i t ra ry  number  of double points. Let go : M "  --* R 2" and gl : M "  --* 
R 2" be immersions with 0 and 1 double point respectively. Now it follows 
f rom the l emma below that  the corresponding maps  ~0 : M "  --* R ~ ' -1  and 
~1 : M "  --* R 2"-1 have 6 invariants 0 and 1 respectively. (Compare  with 

[7D. 

L e m m a :  Let 9 : M" ~ R 2"-1 be a generic immersion and let h : M ~ R 1 
be a function such tha t  the map  g = (~, h) : M -4 R 2" = R 2"-1 x R 1, g(z) = 
(9(x), h(x)) is a generic immersion. Then the number  of double points of g _~ 

rood 2. (,) 

Proof." Let r be the free involution on the double point set D(.~) such that  
O(x) = O(rx). Denote by g~ the line bundle over 0(9) = D(fl) /r  for which the 
sphere bundle is D(9). 

Then  both  sides of (*) coincide mod 2 with (W1 (er), [0(.~)]). For the right side 
(i.e. for 8(if)) this is so by definition. For the left side (for the double points of 
g) it is also easy. Namely let ~(x)  be h(x) - h(rx). Then ~ :  D(.~) ---* R '  is an 
ant i symmetr ic  function (i.e. ~(rz )  = - ~ ( x ) )  and so ist defines a section s of 
the line bundle ~r. 
The  double points of  g correspond to the pairs (x, rx)  such that  x E D(~) and 
h(x) = h(rx).  These pairs are precisely the zeros of ~ and the lat ters are in 
1 - 1-correspondence with the zeros of 8, and the pairity of the zeros of s is 
(W1(s [0(~)]). The  l emma and thus par t  a) of Theorem 1 are proven. 

b) Let v denote the normal  bundle of D2(f)  in M and let E 1 be the trivial line 
bundle. Then  v @ ~1 = TMID,(.r). Hence Wl(v)  = W~(M)ID,(/). Then 

(W~(v), [D2(f)]) = ( w 1 W , - , ( M ) ,  [M]) 

because the homology class in HI(M; g~) represented by D2(f)  is dual to 
W , - I ( M )  (see [3]). On the other hand if n is even then 6(f) = (Wl(v),  
[D2(f)]). Indeed, both  sides coincide mod 2 with the number  of those 
components  of the double point set D~(f )which  have nonorientable normal  
bundles in M. �9 
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2. I m m e r s i o n s  M s ~ R 4 

In the next theorem we deal with immersions of closed 3-manifolds in R 4 having 
no triple points. The double point surface O2(f) can be any surface of even Euler 
characteristic (see [8]). What  sort of double covers can arise over 02(f) as the 
double cover D2(f)  --, 02(f)? 

T h e o r e m  2: Let f : M s --* R 4 be a selftransverse immersion having no triple 
points mad let F be a nonorientable component of the double point surface 
O2(f) (C R4). Then the double cover f - l ( F )  ~ F can not be trivial. 

P r o o f i  Suppose that  the cover f - ' ( F )  ~ F is trivial. Then f - l ( F )  = F1UF~, 
where FI and F2 are disjoint and both homeomorphic to F.  

Let us denote by gl and g2 the normal line bundles of the embeddings F1 C 
M 3 and F2 C M s. Identifying F with F1 and F2 we can say that  the normal  
bundle of F in R 4 is the sum gl (9 g2. Let S(g~) and S(g2) be the S~ 
bundles over F associated to gl and g2. If T is a small tubular neighbourhood 
of F in R 4, then OT f3 f (  M s) = S(gl) O S(g2). 

We are going to show that  

C l a i m  1: S = S(gl) I,.J S ( t 2 )  is "linked" with F in R 4. 

C l a i m  2: S and F are not "linked" with F in/-/4. 

Then the contradiction between these two claims will prove the theorem. Of 
course the expression "linked" in R 4 should be defined since S and F are not 
linked in R 4 in the usual sensc, they do not have the right dimension for that.  
(dim S = dim F = 2). 

D e f i n i t i o n :  Let a be any 3 dimensional singular chain in R 4 such that  0 a  = S. 
One can suppose that  each simplex of a intersects F transversally. (Especially 
the simplices of a of dimension 0 and 1 do not intersect F at all.) Then a N F 
is a 1-cycle in F and its homology class in H i ( F ;  Z2) will be called the linking 
class of S and F and will be denotcd by g(S, F).  We say that  S and F are 
linked if g(S, F)  # O. 

L e m m a :  g(S, F )  is well defined. 

P r o o f i  Let 6" be another  singular chain in R 4 such that  0K = S. Then a O # is 
s 

a 3-cycle in R 4 and therefore there is a 4-chain r in R 4 such that  Or = a U ~. 
s 

We can suppose that  each simplex of r intersects F transversally. Then r (3 F 
is a 2-chain with bundaxy O(r t3 F) = (a (3 F)  U (8 N F). �9 

P r o o f  o f  C l a i m  2: f ( M  a) \ T forms a 3 chain d such that  Oa = S and a N F 
= 0 .  Hence g(S, F) = O. �9 
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P r o o f  o f  C l a i m  1: Let D(gl)  and D(g2) be the disc bundles of gl and g2 
with boundaries S(gl)  and S(g2). Then a = D(ta) U D(~2) is also a 3-chain 
such that  Oa = S. By small perturbat ion can be achieved that D(g~) intersect 
transversMly the surface F in a cycle having homology class dual to WI (g2). 
Similarly, perturbing D(g~) we can have that the homology class of D(t2)  (-I F 
is dual to Wl (el). 
Hence the homomology class of a Fl F is dual to W 1 (e I )-'1-W 1 (e 2 ) = ~r 1 (F)  r 0, 

3. Cases  w h e n  n -  k > 4 

In this last section we consider two cases when 02(f) has higher dimension. 

T h e o r e m  3: Let f : M s --o R 12 be a selftransverse immersion without triple 
points. Then M 8 is cobordant either to zero or to P2 • P~. The double point set 
O2(f) (C R a2) is a 4-manifold, which is cobordant either to zero or to P2 • P2. 

P r o o f i  The eight dimensional cobordism group is Z~ @ Z2 @ Z~ @ Z~ ~ Z2. 
The generators are the classes of the following manifolds: Ps, P6 x P2, P4 • P4, 
P~ • Pz • P4, (p~)4. Computing the normal Stiefel-Whitney numbers of these 
manifolds we get the following: 

1"8 

WIWT 1 

W3W5 1 

P6xP2 P4xP4 P2 x P2 x P4 P~ x P~ x/'~ x P~ 

0 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 1 I 

Since for our manifold M 8 all these characteristic numbers must vanish M s 
must be either null-cobordant or cobordant to P6 • P2. Note that Pe is cobor- 
dant  to such a manifold V 6, which embeds in R 1~ and the normal bundle has 
three independent sections. (See [8].) Therefore V 6 x P~ embeds in R 1~. 
Now we finish the proof using the arguments of [8] in Claim 1. Let W 9 be a 
manifold such that  either 

i) OW 9 = M s or ii) 0W 9 = M 8 U V6 x P~. 

There  exists a generic map h : W 9 ~ R 1~ x [0,1] such that  h (M 8) goes into 
R 12 • 0 and h restricted to M is jr. In the case (ii) we require also that  
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h(V s x P~) C R 12 X 1 and h restricted to V s is an embedding. The map h 
has only El,0 singularities (i.e. Whitney umbrellas). The normal bundle of the 
singular manifold E(h) has the form: e @ v s, where s is the trivial line bundle 
and v 8 admits as s tructure group the following group of matrices: 

0 O) and (A E 

Hence Y],(h) is an orientable 4-manifold. The double points of h form a 5- 
manifold 02(h) with boundary consisting of the double points of f and Y1,(h). 
Therefore the double point set 02(f) of f is cobordant to an oricntable 4- 
manifold (to E(h)).  Therefore its cobordism class is zero or [P~ x P~]. �9 

I do not know the mlswer to the following questions: 

Q u e s t i o n  1: Can the double point set be cobordant to P2 x P2? 

Q u e s t i o n  2: What  can be the cobordism class of the double point set if f has 
triple points? 

The  following theorem can be proven in the same way as the previous one. 

T h e o r e m  4: Let f : M" --4 R "+k be a selftransverse immersion of the closed 
n-manifold M",  where k is even and n _< 2k. Let [02(f)] E 91,-k denote the 
cobordism class of the double point set 02(f). Then the image of [02(f)] in the 
quotient group 9In_k/image f/,,_~ depends only on the cobordism class [M n] 
E 9l , .  

Especially if M "  is 0-cobordant or a(n)  > n - k then 02(f) is cobordant to 
an orientable manifold. (c~(n) denotes the number of digits 1 in the binary 
decomposition of n.) 

P r o o f i  In the case a(n)  > n - k we use R. Brown's theorem saying that M n 
is cobordant  to a manifold, which embeds in R 2'*-~ �9 

For example if k = n - 6 then we get a honlonlorphisnl into ~6 = Z2 $ Z2 (t) Z~ 
(since fl~ = 0.) defined on those elements of 91,,, which contain a manifold that  
embeds in R 2"-6. 

Q u e s t i o n  3: What  is the image of this homomorpism? 
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