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TWO THEOREMS OF ROKHLIN

ABSTRACT. Two theorems due to V. A. Rokhlin are proved: on the third
stable homotopy group of spheres: 7,43 (S™) & Z24 for n > 5; and on
the divisibility by 16 of the signature of a spin 4-manifold. The proofs
use immersion theory.

Here, we prove two theorems of V. A. Rokhlin. Our proofs rely mainly
on immersion theory due to Smale and Hirsch. This theory, when it was
born, was considered as mysterious, giving the ununderstandable result
of turning the 2-sphere inside out. But now, 40 years later the basic
results of the theory have very simple proofs: see the book by Gromov
[2], Thurston’s corrugations [10], and finally the simplest and most recent
proof given by Rourke and Sanderson [14]. So, our aim here is to show
that the positive changes in understanding immersion theory give also
a profit in understanding some famous theorems of Rokhlin, which were
also considered as very hard 50 years ago.

§1. THE THEOREMS
Here are the two theorems we would like to prove.
Theorem 1.1 (Rokhlin). m,43(S™) & Zaq if n > 5.

Theorem 1.2 (Rokhlin). The signature of any spin 4-manifold is divis-
ible by 16.

We prove Theorem 1.1 and obtain Theorem 1.2 as a byproduct.

Lemma 1.3 (Hirsch lemma). If £ > 0, then an immersion f: M" —
R7+E+1 with a nonzero normal vector field is regularly homotopic to an
immersion with vertical normal field. As a result, this immersion can be
projected down to the horizontal hyperplane, remaining an immersion.

Proof. See [5], cf. [14]. o
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Lemma 1.4. The cobordism group of immersions of n-manifolds into
R”** with normal bundle induced from a k-dimensional vector bundle ¢
is isomorphic to the cobordism group of immersions of n-manifolds into
R7+E+1 with normal bundle induced from € @ &', where ¢! denotes the
trivial line bundle.

Proof. This is proved by Wells with the help of the Hirsch theory, see
[17]. e

Lemma 1.5. The cobordism group ITmm(2, 1) of immersed surfaces in
R3 is isomorphic to Zs.

Proof. First this was announced by Wells. For a simple proof see
Pinkhall [13]. If the surfaces and the cobordisms are oriented, then the
corresponding group — denoted by ImmSO(Q, 1) — is Zs, as follows from
Pontryagin’s work on the second stable homotopy group of spheres com-
bined with Lemma 1.4. The isomorphism ImmSO(Q, 1) = Zs is given
by the Arf invariant associated to an immersed surface. The well-known
Brown invariant (see [11], §4 or [13]) extends the Arf invariant to the un-
oriented case and establishes the isomorphism stated in Lemma 1.5. e

Lemma 1.6. The third stable homotopy group of spheres w*(3) is iso-
morphic to the cobordism group Imm50(3, 1) of immersions of oriented
3-manifolds into R*,

Proof. This immediately follows from Lemma 1.4 and the usual Pon-
tryagin construction. e

Lemma 1.7. (a) There is an epimorphism 7°(3) — Zs.
(b) There is an epimorphism 7*(3) — Zs.

Proof. (a) Let f: M3 — R* be any oriented immersion. Since f has a
normal vector field, the double-point surface (which is also immersed in
R?%) also admits a normal vector field — namely the sum of the two normal
vector fields to the two branches of f meeting at the given double point.
It is not hard to see that this normal vector field can also be defined at
the multiple points of the immersed double-point surface. By Lemma 1.4
this surface with normal field in R* defines an element of Imm(2, 1) ~ Zs.
This gives a well-defined homomorphism Ay: 7°(3) — Zs.

We must show that A, is an epimorphism. This follows from
Koschorke’s “figure-8 construction,” which we recall now. Let g: F? 4= R3
be an immersion. We fix x € F'? and denote by {(z) the line in R? going
through the point ¢(z) and orthogonal to dg, (7T, F?). Let e4 be the fourth
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coordinate vector in R* orthogonal to R3. Let e(x) be the line through
g(z) in R* parallel to e4. In the plane N(z) generated by the lines e(x)
and {(x), we consider a figure 8 symmetric with respect to these lines and
standing “vertically” (i.e., thrice intersecting e(z)). If we choose such a
figure 8 of the same size in each plane N(z) as  runs over F'2| then these
figures sweep the image of the immersion of an oriented 3-manifold in R*.
This immersion may not be self-transverse. We make it self-transverse by
a small perturbation and denote the resulting immersion by f

If the immersion ¢: F'? 9 R3 of the original surface can be made an
embedding by a small perturbation in R* then ¢ is the double-point
surface of f If the immersion ¢ composed with the inclusion R® C R*
(and made self-transverse) has double points, then around each double
point the surface of double points of f has some extra components, which
are immersed tori. Thus, starting from an immersion g: F? ¢ R3 and
applying the figure-8 construction, we obtain an immersion f: M3 9 R?
with double-point surface equal to ¢ plus some immersed tori. Therefore,
it is sufficient to show that any framed immersed surface in IR* belongs
to the image of the “double-point map”

Azi 75(3) — Zg.

The cobordism group of framed immersed surfaces in R* is isomorphic
to 7°(2) = Zs. Here, the generator can be represented by an embedded
framed torus in R*. Applying to it the figure 8 construction, we see that
its class belongs to the image of the map Az, hence (a) is proved.

Part (b): This part is not necessary for the proof. The epimorphism
7 (3) — Zs3 was constructed by T. Ekholm [1] as follows. Represent an
element of 7°(3) by a framed immersion of a 3-manifold in R®. Along the
double curves, we have at each point x four normal vectors. Their order
may change (when z runs along a closed double curve and returns), but
the sum of these vectors is a well-defined element in the normal 4-space
of the double curve, and hence it can be considered as an element in a
tubular neighborhood of this curve. We denote this point in R® by u(z).
As x runs over the double points, the points u(#) form an oriented curve 4.
(The orientation of this curve comes from that of the manifold of double
points, which is oriented because the codimension of the immersion is
even, and so a possible interchanging of the normal fibers does not change
the orientation.) Hence, the linking number of the image of the immersion
with the curve @ is a well-defined integer. But this number 1s not invariant
under cobordism of the original immersion. If the cobordism — which is
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a map of a 4-manifold into the 6-space — has a triple point, then this
number jumps by £3. Otherwise, it is unchanged. Hence, taking it mod
3, we obtain a well-defined map 73(3) — Zs. Ekholm constructed an
example showing that this map is onto. e

Part (a) of Lemma 1.7 implies that the order of the group 7°(3) is
either infinite or finite of order 8¢, where ¢ > 1.! Let Imm(S3 R®) denote
the group of regular homotopy classes of immersions S & R® (The
group operation is given by the connected sum of immersions.) Note
that any such immersion has a normal framing, which is unique up to
homotopy. Hence, a natural map

J: Tmm(S3, R?) — 7%(3)

arises, which actually can be identified with the classical J-homomorp-
hism.

Lemma 1.8. The J-homomorphism is an epimorphism.

Proof. This follows from the fact that Qgpm = 0, i.e., that each spin
3-manifold bounds a spin 4-manifold. (See [16].) Let o € 7*(3) and let
f: M2 C BN be a framed embedding representing «. The trivialization
of the normal bundle defines a stable trivialization of the tangent bundle
of M3. In particular, a spin structure arises on M3.

Let W* be a compact, oriented spin 4-manifold with boundary M3
such that its spin structure restricted to the boundary gives a spin struc-
ture on M?3. So W* has a stable parallelization over its 2-skeleton, extend-
ing that given on M3. Since m5(SO) = 0, this extends to the 3-skeleton.
So there is a stable parallelization of the tangent bundle of the manifold
W obtained from W by deleting finitely many disjoint balls. Using the
fact that there is a 1-1 correspondence between stable tangent and stable
normal framings, and the latter correspond to regular homotopy classes
of immersions of S® to R® we see that the element « can be represented
by an immersed sphere. Since « was arbitrary, the map J is onto. e

Lemma 1.9. Let Emb = Emb(53,R%) denote the set of regular homo-
topy classes of embeddings. Then J(Emb(S3 R%)) = 0.

Proof. This immediately follows from the existence of the Seifert sur-

faces. (See [8].) e

INotice that using part (b) we see that 7°(3) is actually either infinite or finite of
order 24t — in what follows, we tactically avoid the usage of part (b).
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Hence, a map J: Imm(S3 R%)/ Emb(S3,R5) — 7%(3) arises on the
factor group.

Lemma 1.10. 73(S0(n)) ~ Z for n > 5.
Proof. See [7], Proposition 1.12.11. e

Lemma 1.11. There is an isomorphism Sm : Imm(53, R%) — 75(S0O(5))=
7.

Proof. Thisis a special case of Smale’s theorem. Here, we deduce it from
Lemma 1.4. There is map Imm(S3, R%) — 73(50). (Lift the immersion
to RV, N >> 1, with framing. Deform it into the standard embedding
and compare the given framing with the standard one.) An inverse map
can be defined with the help of the Hirsch lemma 1.3. A given framing of
the standard embedding S® C RY gives an immersion into IR°. Its regular
homotopy class is well defined. Indeed, Lemma 1.3 can be applied to the
immersion of the cylinder, which gives a regular homotopy. As a result,
if £ > 2, two regularly homotopic framed immersions in R?T*+! can be
pushed down and remain regularly homotopic in R?+* o

Remark 1.12. If the codimension & in the previous proof is equal to 1,
then the framed immersions of n-manifolds in R”?*? can still be pushed
down to R™*! but they may fail to be regularly homotopic in R?*!.
Therefore, the map Imm(S™, R"+1) — Imm(S™, R"*+?) is not monomor-
phic in general, but 1t is epimorphic. For & > 2, the regular homotopy
classes of framed immersions of S” into R"** are in a 1-to-1 correspon-
dence with those into R7?HE+1,

The integer corresponding to the regular homotopy class of an immer-
sion f is called its Smale invariant, and denoted — with a slight abuse of
notation — by Sm(f). Next, we meet the following problem: how to find
the Smale invariant Sm(f) for a given immersion f. The following lemma,
which is due to Hughes and Melvin (and it has also been independently
found by Ekholm) answers this problem in the case of embeddings.

Lemma 1.13 (Hughes—Melvin [6]; cf. [1]). Let i: S C R® be an embed-
ding. Let S; be a Seifert surface in R® spanning i(S®). Let o(S;) be the
signature of the 4-manifold S;. Then Sm(i) = %O'(SZ').

We give a modification of this lemma.

Lemma 1.14. Let f: S® — R be an immersion bounding a framed
immersion g: M* 9 RS. Then Sm(f) = %O'(M4).
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Proof. As is well known, 73(S0) = Vect(S*) = {stable bundles on 5*}.
We denote by &; the stable bundle corresponding to the immersion f.

Denote by p; the map Vect(S*) — Z, & — (p1(€),[S?]). First of all, we
show that this map takes only even values. If £ is a complex bundle, then
p1(€) = —2¢5(€), and so p1(€) is even. In general, a stable vector bundle
over S* can be assumed to have SO(4) as its structure group, hence the
bundle is determined by the homotopy class of a map S — SO(4). This
map can be lifted to Spin(4), which is isomorphic to SU(2) x SU(2).
Hence, & admits a complex structure and so py(€) is even.

If ¢ = [y}] (= the stable class of the quaternionic projective line
bundle), then (p1(€),[S*]) = —2. Hence, the image of p; is 2Z. Composing
the above maps, we obtain a map Imm(5% R?) — Z that maps Z onto
27. Therefore,

+28m(f) = (p1(&5), [5°]).

Let f (with its framing in RY) bound a framed 4-manifold (in RJ_I\_TH).
Consider the closed manifold M = MUD?, and let v be its stable normal
bundle. Then (pi(v), [MD = (p1(&5),[S]). Indeed, it is easy to define a
degree-1 map M — S* inducing v from &r. Note that pl(M) = —p1(v).
Hence, <p1(M),[M]> = £2 - Sm(f), i.e., Sm(f) = :E%O’(M). (Here, we
use the signature formula pl(M) = 3U(M), which is proved in the next
paper.) e

Remark 1.15. Note that because of the existence of a Seifert surface,
any embedding S® — R® is null-cobordant as a framed manifold. So
our formulation (Lemma 1.14) is more general than Hughes—Melvins one
(Lemma 1.13). Actually, the opposite implication also holds true: a null-
cobordant framed immersion is regularly homotopic to an embedding —
but this is a nontrivial fact. (We obtain this equivalence as a byprod-
uct of the proof of Theorem 1.1.) By proving Lemma 1.14 (instead of
Lemma 1.13) we can avoid the usage of part (b) of Lemma 1.7.

§2. PROOFS OF THE THEOREMS

Proof of Theorem. Now let us consider all Seifert surfaces in R°, i.e.,
all embedded compact, oriented 4-manifolds with boundary diffeomorphic
to S3. Then % times the signatures of these manifolds form a subgroup of
Z (since these are the Smale invariants of embeddings). We will see below
that this group is not trivial. Hence, it has the form 2oq - Z, where o

9
1s the smallest possible positive value for a signature of a Siefert surface.
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Then the quotient group Imm(S3,R%)/ Emb(5 R?) is isomorphic to the
cyclic group of order %0’0. On the other hand, we have seen that there is
an epimorphic map Imm(S® R%)/ Emb(S3, R®) — Zs, whence %0’0 > 24.
Lemma 2.1. The signature of the K3 surface is 16. If a ball is deleted
from it, then it has the homotopy type of a 2-complex.

Proof. See [4], p. 22, for the proof that we sketch here. We recall that
a K3 surface is given by a generic degree 4 homogeneous polynomial in
CP3. It is a simple exercise to compute the Chern classes of such an
algebraic manifold, and to obtain its Pontryagin class. Now, using the
formula o = %pl, we obtain the signature. The simple connectedness of
such an algebraic manifold follows from the Lefschetz hyperplane section
theorem (which can be proved by elementary Morse theory, see [12]). Now
a simply connected, punctured 4-manifold has the homotopy type of a
2-complex. (For another proof of Lemma 2.1, see [4], pp. 70-72.) e

Therefore, the K3 surface with a ball deleted from it embeds in R®, and
so it is a Seifert surface. Hence, og < o(K3) = 16. If follows that all the
inequalities above are equalities. In particular, ¢ = 16 and Imm / Emb =
Z:94. Therefore, both epimorhisms

Imm(S?,R%)/ Emb(S? R%) — 7°(3) — Zoa = Z3 x Zs

are isomorphisms, whence #*(3) & Za4. We have also proved that the
signature of any Seifert surface is divisible by 16.

Proof of Theorem 1.2. To prove Theorem 1.2, it remains to note that
if w; = ws = 0 for a manifold, then it is spin, i.e., its tangent bundle over
the 2-skeleton is trivial and trivialized. Further, any spin 4-manifold is
spin cobordant to a simply connected one, and a simply connected spin
4-manifold with a ball deleted has the homotopy type of a 2-complex,
hence embeds in R®. (Indeed by Hirsch theory it admits an immersion
in R® and since it has the homotopy type of a 2-complex, any map of
it in R® can be approximated by a topological embedding. A sufficiently
close approximation of an immersion remains immersion, so there is an
embedding of it in R® in the sense of differential topology.)

So this 4-manifold with a ball deleted 1s a Seifert surface, hence its
signature is divisible by 16. e
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