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8-manifolds admitting no differentiable structure

By Itiro TAMURA

(Received May 23, 1961)

J. Milnor [5],[6] and R. Thom [14] have given examples of compact un-
bounded triangulated topological 8-manifolds admitting no differentiable struc-
ture compatible with the given triangulations. In this paper we shall prove
that some of these examples do not admit any differentiable structure, com-
patible or not with the given triangulations, as in the case of Kervaire’s 10-
manifold [4]. The well-known result of Milnor [5] on the existence of non-
canonical differentiable structures on the 7-sphere is responsible for this situa-
tion. An analogous result holds also for the 15-sphere (Shimada [9], Tamura
[137]), whence follows the existence of 16-manifolds admitting no differentiable
structure. This will be shown at the same time.

1. 3-sphere bundles over the 4-sphere.

We recall here some results about 3-sphere bundles over the 4-sphere (resp.
7-pshere bundles over the 8-sphere). For the proofs of them, see Milnor [5],
Shimada [97], Tamura [127,[13].

Let p, 0:S%— S0O(4) (resp. p’, ¢’: S7—SO(8)) be maps defined by

o)y =uvu™!, o) =uv,
(resp. o'Wy =xyx~", o' (Xy =2y,

where # and v denote quaternions with norm 1 (resp. x and y denote Cayley
numbers with norm 1). Then the homotopy classes {p}, {c} (resp. {0}, {0'})
are generators of n,(SO4)) = Z+Z (resp. n(SO®)) = Z+Z). Let

Em,n = (B'Zn,,n, S4’ SS; T, n)
(resp. &, =(Biin, S% ST, Tn,n))

be the S?® bundle over S* (resp. S bundle over S®) with the characteristic
map m{o}+n{c} (resp. m{o’'}+n{c’}). Moreover let

";Em,n - (E?n,n, S4, D4’ ﬁm,n)
(rESP- é;n,n = (grlr?,n, 5*8, Dg: 7.f;n,n))

be the 4-cell bundle over S* (resp. 8-cell bundle over S*) associated with &,,,
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(resp. &,.,).- B, and Bt , (resp. Bi:, and B ) have (C*) differentiable struc-
tures naturally defined by bundle structures. Thus B7, , (resp. B} ,) is a com-
pact unbounded differentiable 7-(resp. 15-) manifold and B%,, (resp. BY,) is a
compact differentiable 8-(resp. 16-) manifold with the boundary 95%, ,= B, ,
(resp. 6E},‘j,,, = Bj: ). The homology groups of B}, , (resp. BE ,) are as follows:

H()(B;In,n;Z>zH7(BZn,n;Z)zZ) HI(BZVL,’VL;Z):O Z¢0’3:417:

0 n+0
HBhn: 2)=Z,, H(B}.; Z)=
Z n=0
(resp. H(Bin; Z)= H\(BR.;Z)=Z, H{(BR.;Z)=0 i+#0,7,815,
0 n+0
H(BRn;: 2)= Zy Hy(BRa: Z)=
Z n=0

Hy(B%,»; Z) (resp. H(B} ,; Z)) is generated by a cycle z;l.(x,) (x,€ SY) (resp.
Tr(%o) (4, € S¥). Bl (resp. BjP,) is homeomorphic to S7 (resp. S*%) and Bj,
(resp. BY,) is diffeomorphic to the standard S (resp. S¥¥). B3, , (resp. B ,)
has the homotopy type of S* (resp. S®).
The first (resp. the second) Pontrjagin class of B% , (resp. B ,) is given
by
2(Bn) =+2Cm—+n)eg  (resp. p(BY)==+6@m+n)as),

where a, is a generator of H(B%, ,; Z) =~ Z (resp. a, is a generator of H*(BL ,; Z)
= 7).
As is well-known, we have
(S = Z+Zy, (resp. m,5(S®) = Z-+Z1z0) -
The homotopy class {v,} (resp. {vg}) represented by the Hopf map v,=J(0):
S7— St (resp. vy =J(0") : S*®*— S?¥) generates the infinite cyclic direct summand
Z of m,(S*) (resp. 7,;,(S¥)) and the homotopy class {r,} (resp. {rs}) represented
by r.=J(p) : S7— S* (resp. rs=J(0’) : S¥*— S?) generates the finite cyclic direct
summand Z,, of 7,(S*) (resp. Zy,, of n,,(S%), where J: z,(SO®))— m,..(S7) is the
J-homomorphism. Then, choosing the orientation of B}, (resp. BY ) properly,
the homotopy class of the map =x,,,: B}, — S* (resp. a},,;: By — S%) is given
as follows:
{”m,x}:{V4}+m{7’4} (resp. {ﬁvln,l}:{Vs}‘f'm{Ts})-

2. 3-connected compact unbounded differentiable 8-manifold with the 4 th
Betti number 1.

In this section we consider a 3-connected compact unbounded differentiable
8-manifold M?® such that H,(M?;Z)~=Z The notation D" will be used for the
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closed disk in Euclidean space R™ bounded by the unit sphere S*~.

Let i: D®— M?® be a differentiable imbedding. Then the compact differen-
tiable 8-manifold V?®=M?®—i(Int D®) with the boundary (0D?) is a handle-
body, an element of 4((8,1,4) by Smale [10, Theorem FJ, [117]. That is to
say, we have

Ve=D:\U,;D*X D,
where f: 0D'XD*—0D? is a differentiable imbedding and D*\J, D! x D* denotes
the differentiable 8-manifold-with-boundary obtained from the disjoint union
of D® and D*xD* by identifying each point of dD*X D* with its image under
f, making use of the device of straightening the angle. 9V?® is diffeomor-
phic to S7 with the natural differentiable structure. Clearly V¢ has the
homotopy type of S
Let j,: D*— D? be a continuous map such that
7i(Int DYy Int D8, 71x)=S(x,0) (x=dD?),
and let j,: D*— D*XD* be the map defined by
7)) =(x,0 e D*xX0 (xDY).
Define a continuous map j: S*— V* by j, (resp. j,) on the upper (lower) hemi-
sphere of S Then j(S*) represents a generator of 7,(V®) =~ H(V?; Z)=Z. We
can assume without loss of generality that j is a differentiable imbedding
(Milnor [8; Theorem 5.97).

Now we shall show that V¢ is diffeomorphic to B, ;. Let N be a closed
tubular neighborhood of j(S*). N is a differentiable 8-manifold with the bound-
ary ON. Let (ON,j(S%), S?, =) be a S? bundle over S* associated with the normal
bundle (&,5(S*, D', @). N has the homotopy type of S* Consider the Mayer-
Vietoris homology sequence of a triad (V&; N, V&—Int N):

o> Hy(V8; Z) > H(ON; Z)— H(N; Z)+H(VE—Int N; Z)—> H(V?; Z)
—Hys(ON; Z)—> Hyo(N; Z2)+Hye (VE—Int N; Z)— Hy (V5 Z)— - .
The exactness of this sequence yields
5! H(ON;Z)=H (V3 Int N; Z) ¢=0,1,2,4,5,6,7,8,
where y: ON— V88— Int N is the inclusion map. Moreover we have
HyON;Z)=0.

In fact V. (Hy(ON; Z))=0 holds, because a 3-cycle ¥(z'(0,0)) ((0,0)D*x0C
7(S%) is homotopic to 0x8D*C 9V ?#=S". Therefore the normal bundle (N, j(S%),
D4, %) is &,,, and N is homeomorphic to S? (Section 1). (More exactly (I, j(S%),

1) I am indebted to Prof. S. Smale for his kindness of sending me a copy of the
manuscript of his paper before publication.
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DY, 7) is &,,, or &, .. But &, _, isequivalent to &, ;) As is easily verified,
V&—Int N is simply connected. It follows now that + is a homotopy equiva-
lence and that dN is a deformation retract of V®—Int N. V&—Int N has the
same homotopy type as S".

On the other hand, let ¢’ : 0V%— Vé—Int N be the inclusion map. Both
0V?® and V?®—Int N have the homotopy type of S™ and /(8V®) is homologous
to Y»(ON) which represents a generator of H,(Ve—Int N;Z). Therefore ¥’ is
a homotopy equivalence and 918 is a deformation retract of V&—Int N. Hence
V8—Int N defines the J-equivalence relation between 8V® and 0N (Milnor [87,
Thom [147).

Since a recent result of Smale [107, [11] implies that 0V?® and ON are
diffeomorphic and that V#—Int N is diffeomorphic to dVxXI=0NX, it follows
that V¢ is diffeomorphic to N= B%,,. Thus we have

M?®= B}, ,\U;D?,
where i: D*—8B%, = B, is an onto diffeomorphism.
Pontrjagin classes of M?8 satisfy the following two relations (A), (B). ((M™]

denotes the fundamental homology class of M™) Firstly, the index theorem
(Hirzebruch [3]) implies

(A) 45(ct, J a )LM* 1= (Tp (M) —p(M*)LM*] .

Secondly, the integrality of A-genus A(MS):-727.1715—(—4p2(M8)—|—7p12(M8))[M3]
(Atiyah and Hirzebruch [17, Borel and Hirzebruch [2]) implies
(B) Up(ME=TpMHNM®]=0  mod 27-45.
Since the first Pontrjagin class of M®= B8 ,\J,D* is given by (Section 1)
DM = py(Bh, ) = £2Cm+ Dy,

(A), (B) yield
TP (MHLM?] = (2°(2m+1)*+45)(a, J a)LM*], ()

Do(MBHCME] =TCm+1)%(a,\J a )LM*] mod 25-45.
Therefore we have
7°2m—+1)? = 22(2m—+1)*+45 mod 2°-45,
hence
m(im+1)=0 mod 8. (x%)
Moreover (x) implies
m(im+1)=0 mod 7. (esxx)

Thus we have the following theorem.

THEOREM 1. Let M?® be a 3-connected compact unbounded differentiable 8-
manifold such that H(M?®; Z)=Z. Then M? is diffeomorphic to B-,Bn,IUiDB with
m satisfying m(m-+-1)=0 mod 56, where i: D*—0BE, = Bh, is an onto dif-
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feomorphism.

The following theorem is an immediate consequence of the above theorem
and the fact that {z,,} = {v,}+m{7,} (Section 1).

THEOREM 2. Let M8 be a 3-connected compact unbounded diffeventiable 8-
manifold such that H(M?®; Z)=Z. Then M® has the homotopy type of S*\Jg e,
wheve g: S"— S* is @ map such that {g} = {v,} +m{r.} € n,(S%) with m satisfying
m(m-+1)=0 mod 4.

For a 7-connected compact unbounded differentiable 16-manifold M!S, by a
similar argument, making use of two relations (A’), (B’):

(A" 3452 T(atg \J ag) L M*] = (38Lp,(M**)—19p,2(M* )L M*],
(B") (27 3p,(M16)—25. 13p2(M'N[M'1=0  mod 26.34.52.7

we obtain the following theorems.

THEOREM 1’. Let M'® be a T-connected compact unbounded differentiable
16-manifold such that Hi(M'®;Z)= Z. Then M*'¢ is diffeomorphic to B},‘i,lUiD“‘
with m satisfying m@m-+1)= 0 mod 16256, where i: dD'*— 0B, = BY | is an onto
diffeomorphism.

THEOREM 2/. Let M*' be a T-commnected compact unbounded diffeventiable
16-manifold such that H{(M©;Z)=Z. Then M'® has the homotopy Ilype of
S8\ e, where g: S*—S® is a map such that {g} = {vg}+m{rs} € m,(S¥) with
m satisfying m(m-+1)=0 mod 8.

It is known that an (z—1)-connected compact unbounded differentiable 2n-
manifold with the 7 th Betti number 1 exists only for »=2,4,8 (Milnor [77).
The quaternion (resp. Cayley) projective plane is homeomorphic to Bg,,UiDS
(resp. B, \J, D).

Now let B% ;\JD?® denote the space obtained from the disjoint union of
B:, . and D by identifying 8 B3,,, = Bl,, with 8D® topologically. Then B%,,\J D
is a compact unbounded triangulable topological 8-manifoid (Milnor [6], Thom
[14]). B:,.\JD® has the homotopy type of S*\U,e%, where h: S7—S* is a map
such that {4} = {v,}-+m{r.} € 7,(S*) (Section 1). Thus the following theorem
is an immediate consequence of Theorem 2.

THEOREM 3. If m(m~+1)% 0 mod 4, E?n,lUDS does not admit any differen-
tiable structure.

REMARK. Choose a C* triangulation of B% ; and extend it to a triangula-
tion of B% ;\J D* naturally. Then B%,\JD® and B3, ,\J D® are combinatorially
distinct if s’ == m, —m—1 (Thom [14]).

Furthermore by Theorem 2’ we have

THEOREM 3’. Let E,‘,‘f,l U D'¢ denote the compact unbounded triangulable topo-
logical 16-manifold obtained from the disjoint union of B, and D'® by identifving
8B = BY | with 0D topologically. Then if m(m-+1)% 0 mod 8, Bjs,\J D' does

m,l
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not admit any differentiable stvuctuve.
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