Remarks on differentiable structures on spheres

By Itiro TAMURA

(Received June 23, 1961)

J. Milnor [2] defined the invariant λ' for compact unbounded oriented differentiable (4k-1)-manifolds which are homotopy spheres and boundaries of π manifolds at the same time, and proved that the invariant λ' characterizes the *J*-equivalence classes of these (4k-1)-manifolds for k > 1. Recently S. Smale [3] has shown that a compact unbounded (oriented) differentiable *n*-manifold $(n \ge 5)$ having the homotopy type of S^n is homeomorphic to S^n and that two such manifolds belonging to the same *J*-equivalence class are diffeomorphic to each other if $n \ne 6$. Hence it turns out that the invariant λ' characterizes differentiable structures on S^{4k-1} which bound π -manifolds for k > 1.

In this note we shall compute the invariant λ' of $B_{m,1}^{\tau}$ (S³ bundles over S⁴, see [4]) and show that every differentiable structure on S⁷ can be expressed as a connected sum of $B_{m,1}^{\tau}$. We shall obtain also a similar result on S¹⁵. Furthermore we shall show that $\bar{B}_{m,1}^{s} \cup_{i} D^{s}$ such that $m(m+1) \equiv 0 \mod 56$ are 3-connected compact unbounded differentiable 8-manifolds with the 4 th Betti number 1 and differentiable 8-manifolds of this type are exhausted by them, where $B_{m,1}^{s}$ are 4-cell bundles over S⁴ ([4]). This will reveal that Pontrjagin numbers are not homotopy type invariants.

Notations and terminologies of this note are the same as in the previous paper [4]. We shall use them without a special reference.

1. The invariant λ' of $B_{m,1}^{\gamma}$.

In the following $M_1^{n-1} \# M_2^{n-1}$ will denote the connected sum of two compact connected unbounded oriented differentiable (n-1)-manifolds M_1^{n-1} and M_2^{n-1} (Milnor [2]). Let W_1^n and W_2^n be two compact connected oriented differentiable *n*-manifolds with non-vacuous boundaries; let $f_1: D^{n-1} \rightarrow \partial W_1^n$ be an orientation-preserving differentiable imbedding and $f_2: D^{n-1} \rightarrow \partial W_2^n$ be an orientation-reversing differentiable imbedding. Then $W_1^n + W_2^n$ denotes the compact connected oriented differentiable *n*-manifold with boundary obtained from the disjoint union of W_1^n and W_2^n by identifying $f_1(x)$ with $f_2(x)$ $(x \in D^{n-1})$, making use of the device of "straightening the angle".

We choose an orientation of $B_{m,1}^7$ (resp. $B_{m,1}^{15}$) and that of $\overline{B}_{m,1}^8$ (resp. $\overline{B}_{m,1}^{16}$)

I. TAMURA

in such a way that they are consistent and

$$(\alpha_4 \cup \alpha_4) [\bar{B}_{m,1}^8, B_{m,1}^7] = 1$$

(resp. $(\alpha_8 \cup \alpha_8) [\bar{B}_{m,1}^{16}, B_{m,1}^{15}] = 1$).

It is known that any differentiable structure on S^{τ} is the boundary of a π -manifold (Milnor [2, §6]). Let M_0^{τ} be the compact connected unbounded oriented differentiable 7-manifold which is homeomorphic to S^{τ} such that $\lambda'(M_0^{\tau}) = 1$, and let W_0^{s} be the compact connected parallelizable oriented differentiable 8-manifold with the boundary $\partial W_0^{s} = M_0^{\tau}$ such that $I(W_0^{s}) = 8$ (Milnor [2, §4]).

Suppose that $B_{m,1}^{7}$ is diffeomorphic to $M_{0}^{7} \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ (s-fold connected sum of M_{0}^{7}). Let $M^{8} = \bar{B}_{m,1}^{8} \cup ((-W_{0}^{8}) + (-W_{0}^{8}) + \cdots + (-W_{0}^{8}))$ (s-fold sum of $-W_{0}^{8}$) be the compact connected unbounded oriented differentiable 8-manifold obtained from the disjoint union of $\bar{B}_{m,1}^{8}$ and $(-W_{0}^{8}) + (-W_{0}^{8}) + \cdots + (-W_{0}^{8})$ identifying $\partial \bar{B}_{m,1}^{8} = B_{m,1}^{7}$ with $-\partial((-W_{0}^{8}) + (-W_{0}^{8}) + \cdots + (-W_{0}^{8})) = M_{0}^{7} \# M_{0}^{7} \# \cdots \# M_{0}^{7}$ by the diffeomorphism.

Index theorem $I(M^8) = \frac{1}{45} (7p_2(M^8) - p_1^2(M^8))[M^8]$ yields

$$7p_2(M^s)[M^s] = 45(1-8s) + 4(2m+1)^2.$$
 (*)

Integrality of \hat{A} -genus $\hat{A}(M^s) = \frac{1}{2^7 \cdot 45} (-4p_2(M^s) + 7p_1^2(M^s))[M^s]$ implies

$$p_2(M^8)[M^8] \equiv 7(2m+1)^2 \mod 2^5 \cdot 45.$$
 (**)

By (*) and (**), we have

$$m(m+1) \equiv -2s \mod 8.$$

Furthermore (*) implies

$$m(m+1) \equiv -2s \mod 7.$$

Since there exist precisely 28 distinct differentiable structures on S^{τ} which form an abelian group under the connected sum (Smale [3]), we obtain therefore the following theorem.

THEOREM 1. The invariant λ' of $B_{m,1}^{\tau}$ is equal to $-\frac{m(m+1)}{2}$. For example M_0^{τ} is diffeomorphic to $B_{10,1}^{\tau}$.

The following theorem is an immediate consequence of Theorem 1. THEOREM 2 P_{i}^{T} and P_{i}^{T} are differentiation if and order if

THEOREM 2. $B_{m,1}^{\tau}$ and $B_{m',1}^{\tau}$ are diffeomorphic if and only if

 $m(m+1) \equiv m'(m'+1) \qquad \text{mod } 56.$

In particular $B_{m,1}^{7}$ is diffeomorphic to the standard S⁷ if and only if

 $m(m+1) \equiv 0 \qquad \text{mod } 56.$

Theorem 1 also implies

384

THEOREM 3. Every differentiable structures on S^{γ} can be expressed by means of connected sums of $B_{m,1}^{\gamma}$.

The following theorem follows from Theorem 3.

THEOREM 4. For any C^{∞} differentiable structure on S^{τ} , there exists a nondegenerate C^{∞} function having one maximum, one minimum, and no other critical point.

Now we consider differentiable structures on S^{15} . Since $\pi_{15+q}(S^q) \approx Z_2 + Z_{480}$ for large q, the order of the image of J-homomorphism $J_{15}: \pi_{15}(SO(q)) \rightarrow \pi_{15+q}(S^q)$ is equal to 480 and the greatest common divisor I_4 of I(M) where M ranges over all almost parallelizable compact unbounded differentiable 16-manifolds is equal to 8×8128 (Milnor [2; Lemma 3.5]). Hence there exist precisely 8128 distinct differentiable structures on S^{15} which bound π -manifolds. Therefore by a similar argument as in the case of differentiable structures on S^7 , we obtain the following theorems.

THEOREM 5. If $B_{m,1}^{15}$ bounds a π -manifold, the invariant λ' of $B_{m,1}^{15}$ is equal to $-\frac{m(m+1)}{2}$.

THEOREM 6. Suppose that both $B_{m,1}^{15}$ and $B_{m',1}^{15}$ bound π -manifolds. Then they are diffeomorphic if and only if

 $m(m+1) \equiv m'(m'+1) \mod 16256.$

In particular $B_{m,1}^{15}$ is diffeomorphic to the standard S^{15} if and only if it bounds a π -manifold and

 $m(m+1) \equiv 0 \qquad \text{mod } 16256.$

Since cokernel of J_{15} is Z_2 , $B_{m,1}^{15} \# B_{m,1}^{15}$ bounds a π -manifold (Milnor [2; Theorem 6.7]), and its invariant λ' is definable. We have

THEOREM 7. The invariant λ' of $B_{m,1}^{15} \# B_{m,1}^{15}$ is equal to -m(m+1).

The proof is similar to that of Theorem 5.

For example $M_0^{15} \# M_0^{15}$ is diffeomorphic to $B_{1882,1}^{15} \# B_{1882,1}^{15}$.

Theorem 7 implies

THEOREM 8. Every differentiable structure on S^{15} bounding a π -manifold for which the invariant λ' takes on even value can be expressed by a connected sum of $B_{m,1}^{15}$.

2. 3-connected compact unbounded differentiable 8-manifolds with the 4 th Betti number 1.

Combining Theorem 2 and a result of the previous paper [4; Theorem 1], we have the following theorem.

THEOREM 9. If $m(m+1) \equiv 0 \mod 56$, then $\overline{B}_{m,1}^{\mathfrak{s}} \cup_i D^{\mathfrak{s}}$ is a 3-connected compact unbounded differentiable 8-manifold with the 4 th Betti number 1, and every

such differentiable 8-manifold is diffeomorphic to $\bar{B}^{8}_{m,1} \cup_{i} D^{8}$ with m satisfying $m(m+1) \equiv 0 \mod 56$.

Since the Euler-Poincaré characteristic of $\bar{B}_{m,1}^{s} \cup_{i} D^{s}$ is 3, these manifolds cannot carry any (weak) almost complex structure (Hirzebruch [1]).

Theorem 9 yields

THEOREM 10. Pontrjagin numbers are not homotopy type invariants.

In fact, for example, $\bar{B}_{0,1}^{s} \cup_{i} D^{s}$ and $\bar{B}_{48,1}^{s} \cup_{i} D^{s}$ have the same homotopy type and their Pontrjagin numbers are given as follows ([4; Section 1]):

 $p_1^2(\bar{B}_{0,1}^{*} \cup_i D^{*}) [\bar{B}_{0,1}^{*} \cup_i D^{*}] = 4 ,$ $p_2(\bar{B}_{0,1}^{*} \cup_i D^{*}) [\bar{B}_{0,1}^{*} \cup_i D^{*}] = 7 ,$ $p_1^2(\bar{B}_{48,1}^{*} \cup_i D^{*}) [\bar{B}_{48,1}^{*} \cup_i D^{*}] = 37636 ,$ $p_2(\bar{B}_{48,1}^{*} \cup_i D^{*}) [\bar{B}_{48,1}^{*} \cup_i D^{*}] = 5383 .$

This shows that *L*-genus (index theorem) is essentially the unique linear combination of Pontrjagin numbers which has the homotopy type invariance property. For example \hat{A} -genus is not homotopy type invariant.

Since $\bar{B}^{s}_{0,1} \cup_i D$ is homeomorphic to the quaternion projective plane, also the following follows from Theorem 9.

THEOREM 11. There exist infinitely many compact unbounded differentiable 8-manifolds having the same homotopy type as the quaternion projective plane which are not diffeomorphic to each other.

Making use of this result we can construct compact unbounded differentiable 12-manifolds having the homotopy type of the quaternion projective space whose Pontrjagin numbers are different each other (Tamura [5]).

University of Tokyo

References

- F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. of Int. Congress of Math., Edinburgh, 1958.
- [2] J. Milnor, Differentiable manifolds which are homotopy spheres, (mimeographed), Princeton University, 1959.
- [3] S. Smale, The generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc., 66 (1960), 373-375.
- [4] I. Tamura, 8-manifolds admitting no differentiable structure, J. Math. Soc. Japan, 13 (1961), 377-382.
- [5] I. Tamura, On certain 12-manifolds, to appear.

386