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                        (Received March 15, 1957) 

   1. Introduction. 

   In the present paper we shall obtain manifolds of the same 
homotopy type with different Pontrjagin classes, belonging therefore 
to different classes in the sense of diffeomorphism (i. e. differentiable 
homeomorphism). 
   This reveals the Pontrjagin classes as no homotopy invariants 
and the problem of "topological invariance of Pontrjagin classes," 
except for mod 2 and mod 3, as not provable by means of homo-
topy invariants, such as (co)homology groups, homotopy groups, 
Steenrod operators etc. 

   In section 2 of this paper we define some sphere bundles over 
spheres and determine the homotopy types of them by method of A. 
Dold. In section 4, Pontrjagin classes of these bundles are calculated 
from the Chern classes of associated bundles by the obstruction theory 
prepared in section 3. Section 5 is devoted to the description of the 
cohomology groups of total spaces of bundles. The principal tool 
here is the Gysin exact sequence. 

   In section 6, C'-manifolds are defined from the bundles and their 
Pontrjagin classes are computed. Our final results are exposed in 
section 7. 

   We use in this paper the results on the homotopy groups of 
spheres and classical groups which can be found, for example, in 
Steenrod [11], Borel et Serre [1], Serre [10]. 
   The author wishes to express his hearty thanks to his friends T. 

Nakamura, A. Hattori for their kind discussions and valuable sug-
gestions, and also to Professor S. Iyanaga for his constant encourage-
ment.
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   2. Fibre bundles over the q-sphere. 

   Let 8 _ {B, p, Sr, SO(r+ 1)} be fibre bundles over q-sphere S~ 
with total space B, r-sphere SY as fibre and the rotation group 
SO(r -;-1) as structural group. 
   Let S 1 be a great (q -1)-sphere on S( and let E1, E2 be the 

closed hemispheres of S( determined by S~-1. Let V7 (i=1, 2) be an 
open q-cell on S~ containing E1 and bounded by an (q --1)-sphere 

parallel to S~'1, and xo be a reference point on S~-1. 
   Bundle 8 is strictly equivalent to a bundle with coordinate neigh-

bourhoods V1(i =1, 2) and coordinate functions q1: Vi x Sj -~ 81(i =1, 2), 
where 31 is the portion of 8 over T/., and with coordinate transfor-
mations g12 such that g, 2(x0) = e. 
   The map T =g12 (S~-1 which maps S~-1 into SO(r+ 1) is charac-

teristic map of 8. The equivalence classes of bundles are in 1-1 
correspondence with homotopy classes of maps T. 
   For q = 4, 8, we shall describle the homotopy classes of maps T 
explicitly. 

    As is well-known, we have 

    i3(SO(3)) Z, n3(SO(4)) Z+ Z, 7r3(SO(r)) Z (r ~ 5), 

    n7(SO(7)) Z, 7r7(SO(8)) Z+Z, 7r7(SO(r)) Z (r~9). 

(Z means as usual the additive group of integers, Zn the group Z 
mod n.) 
   Let i,, : SO(r) -~SO(r+ 1) be natural injection. Then the generators 

        {p3}, {p4, 64}, {6r} (r> 5), {p7}, {P8, ~8}, {Ur} (r ~ 9) 

of n3(SO(3)), ir3(SO(4)), 7r3(SO(r)), n7(SO(7)), 7r7(SO(8)), 2r7(SO(r)) respectively 
are given as follows ; 

              p3(u)v=uvu~1) p4 = (i3)p3, Q4(u)v=uv                                               ~ , 

where u, v denote quaternions as usual. And 

        Qr- (Zr-1)* °(Zr-2)* 0... o(i4)a4 (r ~ 5) . 

             tp7(x)y=xyx 1, /5=(i7)p, iF7a8(x)y=xy, (2.1) 

where x, y denote Cayley numbers as usual and t is a odd integer.1 

Furthermore 

    C9=(i8)~E(18-[t/2]p8),2) 'r-(Zr-])*0(Zr-2)*°...0(Z9)* , (r~10) 

Between these generators hold the following relations,
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              (i4)*p4 = 2Q5 , (i8) p8 = 2a9 , (i8)~Fa8 = tU9 . (2.2) 

   Now we define the bundles 3(q,r) by : 

            Um4~n-={Bml,3i, p, S4, S3, SO(4)}, 

             S (4,r) {Br) , p, S4, Sr, SO(r+ 1)} (r>__ 4), 

               "mg,7n - {Bmg, n, p, Sgt S7, SO(8)}, 

m 

            3(8r) = {Br), p, S8, Sr, SO(r+ 1)} (r> 8), 

where i n, 3(4r) ', U(88~7)) , S 3(8r) have characteristic maps mp4 + n64, nor, 
mpg + flag, nor respectively. 
   Let us consider the commutative diagram ; 

                    (ir)e 
                 Trq_1(SO(r))--->7rq-1(SO(r+1)) 

                 (~o). i (9 ) (2.3) 
                   nq-i(Gi _. 

where 3r is the space of all continuous mappings from Sr into Sr 
with the compact open topology, Gr is the subspace of (Y consisting 
of mappings which leave invariant one fixed point of Sr and jo, j, i 
are natural injections. 

   We owe Dold [2] the following theorem on the homotopy equiva-
lence between sphere bundles over spheres. 
   THEOREM 2.1. Let Ti be the characteristic map of i = {B11 p, Sq, 

Sr, SO(r+ 1)} (i= 1, 2). Let (j) . be the map of 2q_1(SO(r+ 1)) into 7_1(W) 
as given by (1.3). I f (j) T1= (5) T2, then T1 and T~ define homotopically 
equivalent bundles. 

    As is well known, we have c : 7rq_1(Gr) 7q_1(r) and J= c o(Jo) : 
7cq_1(SO(r))-*irr+q_1(Sr) is the so-called J homomorphism (G. W. White-
head [14]). And

Therefore,

we have

2r6(S3) ^ Z12, ir7(S4) : Z+Z12, ~3+r(Sr).': Z24 

7r14(S7) Z120, 7Z15(S8) Z+ 1207 77+r(Sr) :Z240 

in the following commutative diagram, 

                (23)~ 
        v3(SO(3)) >ir3(SO(4)) 

        212''i TG3(G3) -*7r3()

(r_>5); 

(r~9).
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        (J)(124) p-(J) °(i3) (12p3)=(2)3Fo(J0)~E(12p3)=0 . 

Similarly we have following commutative diagram, 

                     (i3)~F (Z4)* 
               c3(SO(3))-- c3(SO(4))---~;(SQ(5)) 

                          ;(G4) -7r3()                                                                 4) 

                E ` 
              Z12'''i ?t6(S3) - *~ (S4) w Z+Z12 

where E is the suspension homomorphism. Therefore 

      (j) (24Q5) = (J). °(24) (12p4) = (i) ° (J0)a~(12p4) 
               =(z) °(J0)*°(Z3)~F(12p3)=(i)*°c_1°E°J(12p3)=0' 

For r ~ 5, we have the following commutative diagram, 

                      (ir)* 
                  rc3(SO(r)) -~7r3(SO(r + 1)) 

                 (Jo)* (2) (~) 
                    Z24 "~ ~3(Or) 

and 

        (?)*(246r+1) _ (9 )* ° (ir)*(24(1r) _ (i)* ° (Jo)*(246r) = 0 . 

By Theorem 2.1 and the above results, we obtain easily the following 
Theorem using weak, equivalence of bundles. 
    THEOREM 2.2. (i) If mm' (mod 12), n=n'; or m= -m', n= -n', 
then B, Bm4;;~, have the same homotopy type. 

   (ii) Let r ~ 4. I f n = + n' (mod 24), then Bn4'r), Bn4.r) have the 
same homotopy type. 
   Similarly we obtain for8; n and Sns,r). 
   THEOREM 2.3. (i) If m=m' (mod 120), n=n'; or m- -m', n= 
- n'; then Bmg''7n , Bmg; n, have the same homotopy type. 

   (ii) Let r>8, If n= +n' (mod 240), then Bng'r), Bng,r~ have the 
same homotopy type. 
   REMARK 2.4. James and J. H. C. Whitehead [7] have given a 
necessary and sufficient condition for sphere bundles over spheres 
with cross sections to have the same homotopy type. We see by their 
result that the conditions of Theorem 2,2 are also necessary in case 
of Bm4;0 , B(4.q),
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    3. Obstructions of bundles over q-sphere. 

   Let 3' = {B', p', S~, Y, SO(r+ 1)} be a bundle (weakly) associated 
to 3, and we now assume that v1(Y)=0 (0Si<q-1), nq_1(Y),: Z. We 
denote with e a generator of 7Cq_1(Y). 

   By our assumptions obstruction cocycle c( 8') H(S) is defined 

(Steenrod [11] § 32). Let us compute c(3') from the characteristic 
map T of B. 
   Let El, E2 be hemispheres of Seas in section 2. They constitute 

a cell subdivision of S~. Orient El, E2 concordantly with Sq and orient 
   so as to be positively incident with E1. 

   We construct a cross section of 3' over E2 by ~2(E2 xyo), where 
y0 is a fixed point of fibre Y. This cross section is defined over S~-1 
and obstruction to extend it over E~ is given by ~; 'g52(S"-1 x y0) -_ 
T(x)(yo), xE Sri'. Define now [T(x)] by 

                 T(x)(yo)E[T(x)]E. (3.1) 

Then we have c( 8')(E1) = [T(x)] and c( 3')(E9)=0. Hence we obtain 
the following theorem: 
   THEOREM 3.1. Under above hypothesis, the primary obstruction 

cocycle c(8') of ?3' is given by ± [T(x)]a, where a is a generator of 

   4. Pontrjagin classes of fibre bundles. 

   Pontragin classes of a fibre bundle 8 with structural group SO(r) 
are defined as follows (Hirzebruch [5] § 4). 
Let fr : SO(r) -- SU(r) be natural injection of the rotation group into 
the special unitary group. We can regard bundle 8 provided with 
structural group SU(r). 

   We construct associate bundles ! (i= 1, 2,..., r) with fibre 
SU(r)/SU(i-1). Then Pontrjagin classes p1(i=1, 2,..., [r/2]) of 8 are 
defined by 

                pi(g) = ( 1)1 c(lB ) . 

Let us calculate pl of 3(4r) (r ~ 3) and p2 of ^ 3(8r) (r ~ 7). We denote 
3f(4r) 4(8,r) simply by 3'(4,r), S3f(8r) 

   (I) The first Pontrjagin class of ^ 3(1r) (r> 3). 
   Since natural projection p : SU(r)-~SU(r)/SU(1) induces the isomor-

phism of homotopy groups
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         P . n 3(SU(r)) n3(SU(r)f SU(1)) (r > 3) 
we may consider 7r3(SU(r)), instead of n3(SU(r)JSU(1)). 
   Let us consider the following (not commutative) diagram, 
i'r kr, jy are natural injections and d: SO(r)-~SO(r) xSO(r) is 
by a -+ (a, a).

where 

defined
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We have n3(SU(r)) Z (r >_ 2). Let ,ur be a generator of rc3(SU(r)) such 
that 

                     (ZY)*/1r` /2r+i f ( 2)4Eii2 _ ci4 . 
Then we have 

         (k4) ° (j4)~F(mp4 + n64) = (d 4)# ° (u)#(mp4 + ncr4) 

                            2(i7)# °(z6)*° (i5)* °(24)*(mp4+n64) 

Since (ir)* is isomorphism onto for r ~ 5 and 

                       (i4)4Ecr4=65f (24)4Fp4=2Q5 
we have 

              (k4) ° (f4)* (mp4 + no4) = 2(2m + n)ar8. 

On the other hand 

          /14=(23) °(i) tt2 f C8-(i7)~F°(i6),F°(25)#°(i4) °(k2) i2 f 

              (k4)* °(23)* °(Z2)* - (~71* °(261* °(z5)* °' 41* °(k2)* 
Therefore 

1 

                                          a8 

and 

                (i4)4F(mp4 + n64) = 2(2m + n),t4. 

Hence, if a4 is a generator of H4(S4), we obtain from Theorem 3.1 

           p1(3) = `e(3') ni4= ±2(2m+n)a4 . 

For r ~ 5, in the same way 

          (kr)*°(jr) (nar)=(iy) °(d)>E(nar)=2n62r=(kr)*(2fItr) 

therefore from Theorem 3.1 
                         r)1= _ ~ (Y (4, r)) = ± 2na 4 . 

    Thus we have 
    THEOREM 4.1. (i) The first Pontrjagin class pi of m4,3n is 
 ±2(2m+n)a4. 

    (ii) For r >_ 4, the first Pontrjagin class pi o f 8,r) is +2na4, 
where a4 is a generator o f H4 (S4 ). 

    REMARK 4.2. In the case of l8, Milnor obtained the same 
result using Pontrjagin class of quaternion projective plane calculated 
by Hirzebruch (Milnor [8]).
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   (II) The second Pontrjagin class of s c8,r) (r> 7). 
   For r> 4, we have v7(SU(r)) Z. Let Pr be a generator of 
ir7(SU(r)) such that 

                     ' ri*Pr-PrF1 T (k5)*1' 5=2U10.3) 

   LEMMA 4.3. Let r >_ 7 and p : SU(r) -~SU(r)/SU(3) be natural pro-
jection, then 
                      P*Pr =±6A, 

where A is a generator o f r7(SU(r)/SU(3)) N Z. 
   PROOF. We consider exact sequence of homotopy groups of the 

principal bundle (SU(r), p, SU(r)/SU(3), SU(3)). 
  ...~,r7(SU(3)) -+ ir7(SU(r)) -* 7r7(SU(r)/SU(3)) -a r6(SU(3)) ̂--* 7r6(SU(r)) •--~... 

   Now we have 

        2r7(SU(3)) = 0, ~v7(SU(r)) Z, 7r7(SU(r)/SU(3)) x 

               v6(SU(3)) Z6, n6(SU(r)) =0 

whence our lemma is easily proved. 
   Now from the diagram (4.1) follows 

     (k8) o (j8) (mp8 + n J8) = (j~) o (d)*(mp8 + no'8) 
                       =2(i15) o(i14)4F o... o(i8)(mp8+no8) . 

Since (ir)* is isomorphism onto for r > 9, and 

                  (i8)(P8)=2o'9 , (i8)o8=to'9, 
we have 

              (k8) o(j8)a~(mp8+no8)=2(2m+tn)Q16 . (4.2) 

On the other hand, we have 

             (iI)iFo...0(i)~Ep4, 2 16 (i15)~F'(i14)~E0...0(i8)~Eo(k5)*1i5 

             (k8) o(Z7) 0.., o(Z5) = (i15)~F o(i14)~F 0... 0(Z10)~E o(k5) 

therefore 

              (j8)(mP8+no8)=(2m±tn)/c8 

For r ~ q, we obtain in the same way 

         (kr) o(j r)*(no'r)_(ir) o(d)*(fUr)=2fU2r-(kr)*(nlur)' 

Hence from the Lemma 4.3 and Theorem 3.1 follows
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         p2( m,7n) =C(8fn8; )) = ±6(2m+ tn)a$ 

         p2(8)=c(3)- ±6na8 (r~8) 

where a8 denotes a generator of H8(S8). 
   So we obtain the following theorem : 
   THEOREM 4.4. (i) The second Pontrjagin class p2 ofm8,7n is 
+6(2m+tn)a8, where t is odd integer determined by (2.1) and a$ is a 

generator of H8(S8). 
   (ii) For r>8, the second Pontrjagin class p2 of n8'r) is ±6na8. 

   REMARK 4.5. Pontrjagin classes defined here are different from 
classical ones which are defined by Grassmann manifolds. But since 
the difference between them is 2-torsion, both definitions coincide in 
our cases (Wu [16]). 
   REMARK 4.6. By Theorem 4.4 (i) and the fact that the homo-
geneous part Q15 of the 15th degree of Thom algebra 9 is a finite 
group (Thom [13]), we obtain the manifolds which are homeomorphic, 
but not diffeomorphic with 15-sphere S15, making use of the invariant 
2 constructed in the same way as Milnor [8]. 

   5. Cohomology groups of total spaces. 

   We shall first prove the following lemmas. 
   LEMMA 5.1. The primary obstruction ofis ±na4. 
   PROOF. Take quaternion unit 1 for yo of section 3. Then we 
have T(x)(1) = no4(1) by definitions of p4, a, and this defines n multiple 
of a generator of n3(S3). So lemma is proved by Theorem 3.1. 
   LEMMA 5.2. The primary obstruction of (m',7n is ±nag. 
   PROOF. This is proved similarly as in the preceeding lemma 5.1. 

We may only replace p4, c4 by pg, 0$7 quaternion unit 1 by Cayley unit 1. 
   REMARK 5.3. Obviously the primary obstruction is trivial in 
S3(4,r) (r>4) , 93(8r) (r ~ 8). 

   We now consider the Gysin exact sequence (Serre [9] Prop. 6) 

        ...~Hi(S~, Z).--~Hi(B(q>r), Z),__ Z)-~~ z+1(Sq, Z)_~... 

where h(x)=x. c(3(~r)). 
   This enables us to compute the cohomology groups of total spaces 

from Lemma 4.1, 4.2. We obtain : 
   THEOREM 5.4. (i) Non-trivial cohomology groups of B(4,r) are
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   H4(B) ^ Zn 

    H4(Bn4'4)) Z+ Z 

    H4(Bn4,r)) Hr(Bn4,r)} Z (r ~ 5) . 

Non-trivial eohomology groups of B(8r) are 

   H8(Bm8'7n) Zn 

    H8(Bn8'8)) Z+ Z 

    H8(B(n8,r)} Hr(B B,r)} Z (r ~ 9).
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   6. Pontrjagin classes of manifolds. 

   In the following sections, all manifolds and differentiable struc-
tures considered are always C°°-differentiable. 
   Sq and SO(r+ 1) have natural differentiable structures and p4, o , 
tp8, a8, tar defined in section 2 are differentiable mappings. 
   Therefore we can define differentiable coordinate transformations 

in Vl V2 from the characteristic map T (Steenrod [11] § 18). Then 
open covering V1 x Sr (i =1,2) with natural differentiable structure 
determines a differentiable structure on 
   Let My" be manifolds thus obtained from Br). 

Now, Pontrjagin classes of a manifold M mean, as usual, Pontrjagin 
classes of its tangential bundle (M). 

  Let /94, Q$ be the generators of H4(M(1'r)), H8(Mr) respectively 
given by /94=p*(a4), $8=p*(a8), where p is the projection. 
   THEOREM 6.1. (i) The first Pontrjagin class p, of M(m; n is ±4m/94 

(mod n). 
   (ii) For r >_ 4, the first Pontrjagin class p2 o f Mn4'r) is ± 2nQ4. 

   THEOREM 6.2. (i) The second Pontrjagin class p2 of Mtm7n is 
± 12tmj9g (mod n). 

   (ii) For r ~ 8, the second Pontrjagin class p2 of Mtn'r) is ±6tnQ8. 
   PRooF. Let ar+1 be (r+ 1)-cell of closed interior of Sr. We as-

sociate to bundle 3(q'r), the bundle 3(q'r) with fibre Qr+l: 

                s3(q,r) = (B(q,r)~ ~, Sq, Qr+1' SO(r+ 1)} . 

Natural differentiable structure is defined on B(q'r) as B(q'r) above and 
obtain (q + r + 1)-dimensional manifold V (" with boundary. Obviously
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1V1(qr) is boundary manifold of V"). 
    V (q, ') is of the same homotopy type as S~ and p*aq is a generator 

of Hf(V (~'r)), where aq is a generator of H(S), 
   Let (V (r)) be the tangential bundle of V (~r). Then (V (Q'r)) is the 

Whitney sum of the bundle of vectors tangent to the fibre 1(V() 
and the bundle of vectors normal to the fibre 2(V(~'r)). 1(V(~,r)) is 
the induced bundle induced by J3(q,r) and p, and 2(V (r)) is the one 
induced by tangent bundle of S~ and p. Since S4, S8 are boundary 
manifolds, we have p1(S) = 0, p2(S8) = 0. Therefore, for q = 4,8 

       p.( (V(q,r)))= p1(ti1(Vc~,r)))=15*pi(3(~,r)) (i=q/4) (6.1) 

    Now let i : V (~" ) be injection. Over M(q'r), i*'(V (q,r)) is 
the Whitney sum of (M('1')) and the 1-vector bundle (M(r)) normal 
to (M(r)) in V (~,r). Obviously J(M(~r)) is trivial, therefore 

        pi((M(q,r)))=i*pi((V (~,r))) (i=q/4) (6.2) 
Since i is a bundle map 

              i*p*aq = p*aq _ 19q• (6.3) 

We obtain from (6.1), (6.2), (6.3) 

         pi(M )-p pi( ) q=4, 8, i=q/4 

Hence our theorems follow from Theorem 4.1, Theorem 4.4, Theorem 
5.4. 

    7. Pontrjagin classes and homotopy types of manifolds. 

    From Theorem 2.3, Theorem 2.4, Theorem 6.1, Theorem 6,2, we 
obtain 

    THEOREM 7.1. (i) M(4,3) M(4,3) (i> i'=0, ±1, 1, ±2,...) 2,'..) are o f                                               yyt+l2t,n ~ -m+12i ,-n 

the same homotopy type and their first Pontrjagin classes p1 are 

            p1(M2i,n) _ ± (4m± 48i)Q4 mod n. 

   (ii) For r>_ 4, M'224 (i=0, ±1, ±2,•..) are of the same homotopy 
type and their first Pontrjagin classes p, are 

               p1(Mn4+21i)_ ±(2n±48i)p4 . 

    THEOREM 7.2. (1) M~m7+{12o,t}i,~z, M~Btm+{12o,t}i~,-~a (Z, i'=O, ±1, ±2,...) 
are of the same homotopy type and their second Pontrjagin classes p2 are 

         p2(Mtyj27+{120,t}i,n)= ±(12tm+12{120, t})j98 mod n.
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   (ii) For r _> 8, Mtg1 ~. { 240,j } i (i = 0, ± 1, ± 2,...) are o f the same homo-
topy type and their second Pontrjagin classes p2 are 

            p2(Mtn+~{ 240, j } i) = ± (6tn + 6{240, t}i)Q8 . 

Where t is odd integer determined by (2.1) and { , } means 1. c. m. 
   In particular, MT), Moqy) are S~ x S', and so we have 

   COROLLARY 7.3. For r ~ 3, there are infinitely many (4 + r)-dimen-
sional manifolds of the same homot opy type as S4 x S', whose first 
Pontrjagin classes p1 are divisible by 48, and between which there exists 
no diffeomorphism (i. e. differentiable homeomorphism). 
   COROLLARY 7.4. For r ~ 7, there are infinitely many (8 + r)-dimen-

sional manifolds o f the same homot opy type as S$ x S' whose second 
Pontrjagin classes p2 are divisible by 12{120, t}, and between which there 
exists no diffeomorphism. 
   REMARK 7.5. Thom proved topological (homotopy) invariance of 
p1 mod 2 (Thom [12]). Wu and Hirzebruch proved topological (homo-
topy) invariance of p1 mod 3 (Wu [15], [16], Hirzebruch [3]). 
   The results obtained above would disprove the topological invari-
ance of Pontrjagin classes, if the conjecture of Hurewicz Two closed 
manifolds of the same homotopy type is homeomorphic" (Hurewicz 
[6]) is true, or if, what would be easier to prove, one of M+12m,o (m= 
1, 2,...) is homeomorphic to S4 x S3 (Hirzebruch [4] Problem 1). 
   Conversely if topological invariance of p1 for mod p, p being a 

prime other than 2, 3, or topological invariance of p2 for mod p, p 
being a prime other than 2, 3, 5 and factors of t, could be proved, 
then the conjecture of Hurewicz would be denied. 

                                    University of Tokyo 

                          Notes 

1) The author does not know whether t=1 or not, and also whether p7 has G -
    differentiable representative or not. 
2) Notice that the kernel of (i8),~ is generated by 2i8-t,i8. 
3) The coefficient of hz0 must be ±1 or ±2 by (4.2). On the other hand, we can 
    show that it is even, by using relations (2.2) and the exact sequence of homo-

   topy groups of the principal bundle (SU(4), S7, SU(3)).
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