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Bordism theory and the Kervaire semi-characteristic
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Abstract By using the bordism group, this paper provides an alternative proof of Weiping Zhangs’ theorem
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1 Introduction

Let M be a closed connected smooth manifold. The classical Hopf index theorem asserts
that the vanishing of the Euler characteristic of the manifold M is the necessary and sufficient
condition for the existence of a nowhere vanishing vector field on M . Let V be a vector field with
isolated zeros on M , then the Hopf index theorem takes on the more precise form: the sum of the
indices of the vector field V on M is equal to the Euler characteristic of M . It is natural to be
concerned with the problems of existence of r > 1 linearly independent vector fields instead of a
single vector field. However the situation is much more complicated. For background information
see refs. [1—3], and especially ref. [4].

Let M be a closed connected oriented manifold of dimension 4q + 1(q � 1) . The (real)
Kervaire semi-characteristic k(M) of M is a mod 2 integer defined by

k(M) =
( ∑

b2i

)
mod 2,

where bi denotes the i-th betti number of M . Using the mod 2 index of a real skew-adjoint elliptic
operator, Atiyah[2] showed that the Kervaire semi-characteristic has an analytical interpretation.

We consider 2 vector fields V1, V2 on the closed oriented (4q +1) -manifold M and we assume
that they are linearly independent except at a finite set of points (the singularities). The index
of such a 2-field is an element of the homotopy group π4q(V4q+1,2) ∼= Z2 of the Stiefel manifold
V4q+1,2 of orthogonal 2-frames in the Euclidean space R4q+1. Atiyah (ref. [2], Theorem (5.1))
proved the following formula

Ind(V1, V2) = k(M),

as mod 2 integers. It has led to an analogue of the Hopf index theorem mentioned before. However
it is worth noticing that Atiyah’s formula exists only when the 4q-th Stiefel-Whitney characteristic
class of M vanishes, since M admits a 2-field with finite singularities if and only if w4q(M) = 0
(cf. [1]).
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In the quite recent paper[5], Zhang adopted a different approach. His new formula for the
Kervaire semi-characteristic is generic, without the assumption that w4q(M) = 0 which Atiyah[2]

based on. Following ref. [5], let V be a smooth nowhere vanishing vector field on M , a closed
oriented manifold of dimension 4q+1. The existence of V is guaranteed by the Hopf index theorem.
Choose a Riemannian metric gTM on M whose associated Levi-Civita connection will be denoted
by �TM . For each e ∈ TM , let e∗ ∈ T ∗M correspond to e via the metric gTM and let c(e), ĉ(e)
be the Clifford operators acting on the exterior algebra bundle ∧∗(T ∗M) defined by

c(e) = e∗ ∧ −ie, ĉ(e) = e∗ ∧ +ie,

where e∗∧ and ie are the standard notation for exterior and inner multiplications, respectively.
Without loss of generality, we will assume that V is a unit vector field.

Denoting by 1V the oriented line bundle spanned by V , we have an oriented codimension one
sub-bundle E of TM . Without loss of generality, we may take E to be the orthogonal complement
to 1V in TM .

We next choose a transversal section X of E. Then the set of zeros of X, saying F , consists
of a union of disjoint circles F1, · · · , Fp. Let i : F ↪→ M be the natural embedding. As explained
in ref. [5], we may assume that 1V |F is tangent to F and that i∗E is the normal bundle to F in
M .

For any x ∈ F , let e0 = V, e1, · · · , e4q be an oriented orthonormal basis near x, and let
y0, · · · , y4q be the normal coordinate system near x associated to e0(x), · · ·, e4q(x). Then near x,
the map X can be expressed as

X =
4q∑

i=1

fi(y)ei.

By the transversality of X, it follows that the following endomorphism of Ex is invertible:

C(x) = {cij(x)}1�i,j�4q with cij(x) =
∂fi

∂yj
(0),

where the matrix is with respect to the basis e1(x), · · · , e4q(x).

Let |C(x)| =
√

C∗(x)C(x), where C∗(x) is the adjoint of C(x) with respect to gE , the induced
metric on E from gTM . We finally define an endomorphism K(x) of ∧∗(E∗

x) by the formula

K(x) = Tr [|C(x)|] +
4q∑

i,j=1

cij(x)c(ej(x))ĉ(ei(x)).

It is easily seen that K(x) is independent of the choice of the basis e1(x), · · · , e4q(x) (see refs.
[5,6]). Thus it induces an endomorphism K of the exterior algebra bundle ∧∗(E∗)|F over F .

Zhang[5] asserted that Ker K forms a real line bundle L over F , and the orientability of L is
independent of the choice of the Riemannian metric on M .

For any connected component Fj of F , denote by Lj the restriction of L on Fj . The main
result of ref. [5] is the following elegant formula.

Theorem (ref. [5], Theorem 1.3). The Kervaire semi-characteristic k(M) is equal to

#{j|Lj is orientable over Fj} mod 2.
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While the formula above is purely topological, Zhang’s proof is analytic. He first constructed
a real skew-adjoint elliptic operator whose mod 2 index provides an alternative analytic interpre-
tation of k(M)[7], which is different from that of Atiyah[2]. Then he deformed this operator in a
way similar to what Witten[8] used in the analytic proof of the Hopf index theorem. By applying
the localization techniques of Bismut and Lebeau[9] to these deformed operators, he finally got his
proof.

The main purpose of the present paper is to give a topological proof of Zhang’s theorem by
the normal framed bordism theory (see refs. [10, 3], for example).

It should be remarked that in fact, Zhang has gotten similar formulas for the manifolds of
arbitrary dimensions (see res. [5] Theorem 3.3 for details). Fortunately, our methods still work in
every case.

The author wishes to express his sincere thanks to Prof. Zhang Weiping for useful discussions
and comments, to Prof. S. S. Chern for encouragement, as well as to Profs. R. Miyaoka and Y.
Ohnita for their invitation to visit Sophia University and TMU in Tokyo.

2 Normal framed manifolds

We begin by recalling what Pontrjagin[10] used when he calculated πs
1, the first stable homo-

topy group. By using the Pontrjagin-Thom construction, one associates each smooth map from an
(n + k)-dimensional sphere into an n-dimensional sphere with a smooth normal framed subman-
ifold Nk of the Euclidean space Rn+k. By a normal framed manifold Nk we mean that at every
point x of Nk, there is a given system U(x) = {u1(x), · · · , un(x)} of linearly independent vectors
orthogonal to Nk, where ui(x) continuously depends on x ∈ Nk. The manifold Nk together with
its frame U is called a normal framed manifold and is denoted by (Nk, U). One has also the
concept of normal framed bordism ( Pontrjagin called it homology ) between two normal framed
manifolds embedded in the same Euclidean space Rn+k. It turns out that every smooth normal
framed manifold (Nk, U) corresponds to some map from Sn+k into Sn, moreover two maps from
Sn+k into Sn are homotopic if and only if their corresponding smooth normal framed manifolds
are normal framed bordant. Thus the problem of classification of the maps from a sphere into a
sphere reduces to the problem of classification of smooth normal framed manifolds.

We want now to consider the special case when k = 1. Let (N1, U) be a normal framed
manifold in the Euclidean space Rn+1(n � 3). Let U(x) = {u1(x), · · · , un(x)} be an orthonormal
frame of N1, and let u0(x) be the unit vector tangent to N1 at x ∈ N1. The system U ′(x) =
{u0(x), u1(x), · · · , un(x)} is derived from a fixed orthonormal basis of Rn+1 by means of a rotation
h(x). Thus, one gets a continuous map h from N1 into the manifold SO(n + 1) of rotations of
Rn+1. For a one-component curve N1, the invariant δ is taken equal to zero if h is not homotopic
to zero, and equal to unity otherwise ( It is well known that π1SO(n + 1) ∼= Z2 if n > 1 ). For
a multicomponent curve, δ is defined to be the sum modulo 2 of the values of the invariants for
the components. Thus one gets a normal framed bordism invariant δ(N1, U) of a normal framed
manifold in the Euclidean space. Pontrjagin established the following

Theorem (ref. [10] Theorem 21). For n � 3 the homomorphism δ from the group πs
1
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into the group of residues modulo two is an isomorphism.
We pass next to normal bordism groups[3,11].
Let Y be a topological space, ϕ be a virtual real vector bundle over Y , i.e. an ordered pair

(ϕ1, ϕ2) of vector bundles written ϕ = ϕ1 − ϕ2. Now consider triples of the form (S, g, ḡ)
(i) S is an r-manifold without boundary;
(ii) g : S → Y is a continuous map;
(iii) ḡ : Rs ⊕ TS ⊕ g∗(ϕ1) → Rt ⊕ g∗(ϕ2) is a vector bundle isomorphism for suitable integers

r and s. Here Rs and Rt stand for trivial bundles of dimensions s and t, respectively.
The set of bordism classes [S, g, ḡ] of triples (S, g, ḡ), with the group structure given by

disjoint union, is called the r-th normal bordism group of Y with coefficients in ϕ, and is denoted
by Ωr(Y, ϕ).

If Y is a point and ϕ is trivial, then Ωr(Y, ϕ) is canonically isomorphic to the r-th sta-
ble homotopy group πs

r . In particular Ω1 (point, trivial) is isomorphic to Z2, and the genera-
tor of Ω1(point, trivial) is represented by the invariant framed circle S1. In fact, an element of
Ω1(point, trivial) is presented by a circle S1 equipped with an isomorphism

ḡ : TS1 ⊕ Rn → Rn+1.

This will give rise to a map h : S1 → SO(n + 1). According to the classification theory of
Pontrjagin, it follows that [S1, ḡ] generates Ω1(point, trivial) if and only if the homotopy class of
h is zero.

Returning to our closed oriented (4q+1)-manifold M we recall that one can choose a nowhere
vanishing vector field V on M by the Hopf index theorem. Then the tangent bundle TM of M is
splitted into TM = 1V ⊕ E, where E → M is a 4q-dimensional oriented vector bundle. As usual
M is embedded into the total space E as zero section. Then the map X : M → E is transversal
to the subset M in E by the assumption. Denote by F the set of zeros of X. It is well known
that the normal bundle V (F,M) of F in M is isomorphic to the restriction of E on F via the
differential dX. Hence we have a bundle isomorphism:

ḡ : TF ⊕ E|F → TF ⊕ V (F,M) → TM |F → 1 ⊕ E|F .

These data give rise to the well defined invariant ( cf. ref. [3], (12.5) )

χ′′(M,V ) = [F, ḡ] ∈ Ω1(point, trivial) ∼= Z2.

Note that the closed manifold F is of dimension one, thus

F = F1 ∪ · · · ∪ Fp,

where the union is disjoint and every Fj(j = 1, 2, · · · , p) is a circle S1.
For any x ∈ F , let e0 = V, e1, · · · , e4q be again the oriented orthonormal basis near x as

before. By the transversality of X, for every point x in F , one has a matrix C = (cij)4q×4q in
GL(4q;R) given by

dX(e1, · · · , e4q) = (e1, · · · , e4q)(cij).

Note that this cannot define a map from F to GL(4q;R) since C = (cij) depends on the choice of
the basis e0 = V, e1, · · · , e4q. However we can get a well-defined element of [F,GL(4q;R)] which is
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the set of homotopy classes of the mappings. By a homotopy equivalence GL(4q;R) 	 O(4q) and
a construction C̃ = diag(det(C), C) we get finally an element C̃ in [F, SO(4q+1)]. Put C̃j = C̃|Fj

and observe that π1SO(4q + 1) ∼= Z2 since q � 1. The arguments above have established the
following

Lemma 2.1. χ′′(M,V ) = #{j|C̃j = 0 in π1SO(4q + 1)} mod 2.
On the other hand, it turns out that the invariant χ′′(M,V ) is independent of the choice of

V and is equal to the Kervaire semi-characteristic of the manifold.
Lemma 2.2 (ref. [3], (15.16)). χ′′(M,V ) ≡ k(M) mod 2 if dimM ≡ 1 mod 4.
In order to complete a topological proof of Zhang’s formula, it suffices to show the following

criterion.
Lemma 2.3. C̃j is zero if and only if the line bundle Lj over S1 is orientable or trivial.
Proof. The line bundle Lj over S1 is constructed by means of the element C̃j in [Fj , SO(4q+

1)]. Thus it remains to check a special example. Define C : S1 = {eiθ} → SO(2) by

C(θ) =

(
cos θ sin θ

− sin θ cos θ

)
.

Composing by an inclusion SO(2) → SO(4q) → SO(4q + 1), we have a map S1 → SO(4q + 1)
which will be denoted by C̃ . Clearly the homotopy class [C̃] is a generator of the homotopy
group π1SO(4q + 1) ∼= Z2. It is straightforward to verify that the associated line bundle L over
S1 has no nowhere vanishing section, hence being the Hopf line bundle which is nonorientable. It
completes the proof.

Now, the combination of Lemmas 2.1, 2.2, with 2.3 will provide a topological proof of Zhang’s
formula.

We conclude with one remark. It is interesting to note that the line bundle Lj constructed
by Zhang[5] is in fact isomorphic to the pull back of the associated line bundle of the 2-fold cov-
ering Spin(4q) → SO(4q) by the map Cj : S1 → O(4q), where a homeomorphism between two
components of O(4q) is used if necessary.
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