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Abstract
In this paper we define a distance on knots in terms of surfaces in S3. This
distance is related to the genera of knots, unknotting numbers and surfaces in
4-space spanning the knots.

1. Introduction

Throughout this paper we work in the piecewise linear category. We consider
oriented knots in S3 up to ambient isotopy.

Let ¢ be a non-negative integer. Two knots k; and k2 are said to be g-
cobordant if there is a genus ¢ compact connected oriented surface F in S® such
that 8F has two components, one is ambient isotopic to ky and the other is
ambient isotopic to —k; where —k3 denotes the knot k, with reversed orientation.
Then F is called a g-cobordism between ki and ka. The C-distance of k) and &,
is defined by

dc(ky1,k2) = min{g | k; is g-cobordant to k,}.
In other words, dc(k;, k2) is the minimum among the genera of 2-component

links whose components are ambient isotopic to k; and —ky respectively.
An SH(3)-move is a local change defined in [2] as illustrated in Figure 1.1.

SH(3)-move
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Fig. 1.1
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It is known in [2] that all knots are transformed into each other by a finite
sequence of SH(3)-moves. Let da(ki,k2) be the minimum number of SH(3)-
moves that is needed to transform k; into kp.
A properly and locally flatly embedded compact connected oriented surface
E in S% x [0,1] is called a g-concordance between k; and k: if the genus of E is
g and
OF = ky x {0} U(—4k2) x {1}.

Then we say that k; is g-concordant to k3. Let
dq(ky, k2) = min{g | k; is g-concordant to k»}.

We call dy(ky, k2) the 4-distance of k; and k;. A concordance E'is called reguler
if the restriction of the natural projection

3 x[0,1] = {0,1]

is a Morse function on E. Then the restriction |g has only finitely many maximal
points, minimal points and saddle points. Let ¢(E) be the number of these critical
points. Then ¢(E) is an even number. Let

c(ky, kg) = %mm{c(E) | E is a regular concordance between k; and kz}.
The following result is central in this paper.

THEOREM 1.1. For any knots k; and ka,

de(ky, k2) = da(ky, k2) = c(ky, ka).

Thus C-distance is in fact a distance on knots because d3 clearly satisfies the
axioms of the distance. The Gordian distance dg(k, k2) is the minimum number
of crossing changes that is needed to transform k, into k2 [4]. Let o(k) be the
signature of k. Let (k) be the minimum number of generators of H, (X)asa
Z[t,t~']-module where X is the infinite cyclic covering space of S® — k. Then we
have the following theorem.

THEOREM 1.2. For any knots k; and k2,

ky) — o(k
1. w < dy(ky, k) < de(kr, k2) < dg(k, k2).

2. 'i("—‘);—e("z—)' < de(ky, ko).
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We denote the trivial knot by o. The C-genus gc(k) is defined by ge(k) =
dc(k,0). Then it is clear that gc(k) < g(k) where g(k) is the genus of k. In [2]
an integer sh(k) is defined for a knot k. It is not explicitly mentioned in [2] but
follows by the arguments in (2] and this paper that sh(k) = 2sug(k) + 1 where
sug(k) = d3(k,0) = dc(k,0) = gc(k) in our notation. Therefore C-genus gives a
geometric interpretation of sh(k).

We will observe the behavior of C-distance and C-genus under the connected
sum and band sum in Section 4. An unoriented version of C-distance is defined
and argued in Section 5. Various examples of knots are shown in each section.

2. Proofs of Theorem 1.1 and Theorem 1.2

In order to prove Theorem 1.1 it is sufficient to prove the following three
assertions

(1) M dc(ki,k2) < n, then ds(k1, k2) < n.

(2) If ds(ky,k2) < n, then c(ky, k2) < n.

(8) If c(ky, k2) < n, then dg(ky, k2) < n.

ProoF oF (1). Let F be an n-cobordism between k; and k. Since F is a
twice punctured genus n connected oriented surface, F is abstractly homeomor-
phic to a surface obtained from a disk by attaching 2n+ 1 bands as illustrated in
Figure 2.1. Therefore by an ambient isotopy of S3, we can deform F as illustrated
in Figure 2.2. By an SH(3)-move we can cut a pair of bands as illustrated in
Figure 2.3. Thus after n-time SH(3)-moves k, is transformed into a knot that
bounds an annulus with —kz. Therefore the knot is ambient isotopic to k,. a
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ProoF OF (2). An SH(3)-move is realized by twice hyperbolic transforma-
tion as illustrated in Figure 2.4. This shows the conclusion. 0

Proor oF (3). Let E be a regular concordance between k; and ki with
¢(E) = n. By the surgery as illustrated in Figure 2.5, we may suppose that all
critical points of E are saddle points. We regard each saddle point as a saddle
band in the sence of [3). We can deform E so that each saddle band lies in
53 x {1/2} (cf. [3]). Then we have that k; is obtained from k, by adding 2n
coherent bands. Let k| be a parallel of k; and A an annulus bounded by k; and
—k}. If we attach the 2n bands to t} then the union of A and the 2n bands yields
a required n-cobordism between k; and k. (m]
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Fig. 2.4

k:

Fig. 2.5

ProrosiTION 2.1. A local change as illustrated in Figure 2.6 is achieved by
an SH(3)-move.

A

Y
\

Fig. 2.6

Proor. The proof is indicated in Figure 2.7. a
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ProoF of THEOREM 1.2. 1. The first inequality is known in [6]. By pushing
the cobordism in S2 into the concordance in S x [0,1] we have the second
inequality. The final inequality follows the fact that a crossing change is realized

by an SH(3)-move [2). See also Figure 2.8 and Proposition 2.1. O

isotopy

Fig. 2.8
2. We note that |e(k1)—e(k2)|/2 < c(k1, k2) is known in [8]. Since c(k;, ky) =
dc(k1,k2) we have the conclusion. O
3. C-genus

We recall that the C-genus gc(k) is defined by dc(k, o) where o is the trivial
knot. Similarly let g4(k) = ds(k,0) be the 4-genus of k. The unknotting number
u(k) is equal to dg(k,0). Then by Theorem 1.2 we have the following theorem.
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THEOREM 3.1. For any knot k.

L. '”(")' < 04(k) < go (k) < g(k).
2. —‘2"—’ < ge(k) < u(k).

ExXaMpPLE 3.2. (1) Let k be a nontrivial ribbon knot with 1-fusion. Then

gc(k) = c(k,0) = 1.
In particular if k is a 2-bridge knot with e(k) = 1, then

1= G o e (-a),

where —k! is the reflected inverse of k and # means the connected sum of knots.
(2) Let k be the (2,2n + 1)-torus knot with n > 1. Then

N = gt = ot = gy = w®) =, and e(k) = 1.

(3) Let k = #,(31#(—31!)) where 3, is the right handed trefoil knot. Then
k is a slice knot, i.e., g4(k) = 0. It is easy to see that

c(k) = gc(k) = n.

Since the genus is additive under the connected sum we have g(k) = 2n. Since
e(k) < u(k) (see [7]) and e(k) = 2n we have u(k) = 2n.

The above examples show that the inequalities in Theorem 3.1 are both best
possible and possibly have arbitrarily large gaps.

4. Behavior of C-distance and C-genus under the connected sum and
band sum )

ProPOSITION 4.1. For any knots ky ko, ks and k4,

do(k1#tka, kaftks) < de(ky, k3) + de(ka, ke).

PRoOOF. Since the C-distance is a distance on knots we have

do(ky ks, katks) < do(ki#tke, kadtka) + do(ks#tka, ks#tks).
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It is easy to see that

do(kitks, kagtks) < do(ki,k3) and  do(ksgtks, ks#tks) < deo(ks, ks).
Therefore we have the conclusion. O

CoROLLARY 4.2. For any knots ky and ks,

gc(kr#tkz) < ge (k1) + gc(k2).

The following example implies that the above mequa.hty is best possible and
has an arbitrarily large gap.

ExampLE 4.3. (1) Let k; and &k, be the (2,2n + 1)-torus knot. Then
gc(kr#ke) = gc (k1) + gc(k2) = 2n.
(2) Let k; be the (2,2n + 1)-torus knot and k, = —k,!. Then
1 = ge(ki1#k2) < go(k1) + ge(k2) = 2n.
Let k;#pk; denote a band sum of k; and k,.
PRoPOSITION 4.4. For any knots ky, ko, k3 and k4,

dc(ky#ske, ksftoks) < do(kr, ks) + do(kz, ks) + 1.

Proor. We recall that
de(ki#tske, ka#sks) = c(kr# ok, ks#tskq).

Let E; (i = 1,2) be a regular concordance of k; and k42 realizing c(k;, kis2).
Attach two bands b, and b; to E) and E; so that

O(E1 U E2U by U ba) = (krdtakz) x {0} U (—(ka#skq)) x {1}.
Thus we have
c(kr#tokz, ka#toka) < c(ky, ks) + c(ka, k) + 1.

This completes the proof. O
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CoROLLARY 4.5. For any knots k; and ki,

ge(kr#ake) < gc(k1) + go(ka) + 1.

5. Unoriented version

In this section we consider unoriented knots in S3. Two knots k; and k;
are said to be g-bordant if there is a compact connected (possibly nonorientable)
surface F in S® with the first Betti number 8,(F) = g+ 1 such that 8F has two
components, one is ambient isotopic to k; and the other is ambient isotopic to
kg. Let : .

dc(ky, k2) = min{g | k; is g-bordant to k2}.

It follows the definitions that
de(ky, k) < 2de(ky,k2).

An H(2)-move is local change defined in [2] as illustrated in Figure 5.1.

H(2)-move

A

Fig. 5.1

Let dy(ky, k2) be the minimum number of H(2)-moves that is needed to trans-
form k, into k; where we allow H(2)-moves to change the number of components.
We remark here that only H(2)-moves that preserve the number of components
were considered in [2]. Let 2(k), k2) be the minimum number of critical points of
a locally flat (possibly nonorientable) surface in S* x [0, 1] bounded by ki x {0}
and k; x {1}. Then we have the following result.

THEOREM 5.1. For any knots k) and k3,

de(ky, ka) = da(ky, k2) = E(ky, k2).

The proof is similar to that of Theorem 1.1 and we omit it.
Let ep(k) be the minimum number of generators of H;(X,) where X, is the

p-fold eyclic branched covering space of (53, k).
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ProPosSITION 5.2. For any knots k; and ko and an integer p > 2.

lep(h;:; L < dc(ky, k).

ProoF. By the argument similar to [2, Proof of Theorem 4] we have

E}’(Icll)):—;?(k?)l < da(ky, k2).

Since zc(lcl, k) = da(k1, k2) we have the desired result. a

Let Go(k) = do(k, 0). In [2] an integer h(k) is defined for a knot k. As in the
oriented case we can see easily that h(k) = 2g.(k)+1, so go (k) gives a geometric
interpretation of h(k). Let g(k) be the crosscap number of k defined in (1], [5].
Note that §o(k) < g(k). Let cr(k) be the minimum crossing number of k. Then
we have

ProposITION 5.3. For any knot k,

where [z] is the mazimum integer that is not greater than z.

ProoF. The first inequality is induced by Proposition 5.2. The final in-
equality is known in [5). ]
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Note added in proof. We note that for any two knots k; and k» with kyNk; =
@, there is a properly embedded twice punctured torus F in a 4-disk such that
one of the components of 3F is ky and the other is —k;.
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