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Preface

Rational homotopy theory originated with the work of D. Quillen and
D. Sullivan in the late 1960s. In particular, Sullivan defined tools and mod-
els for rational homotopy inspired by already existing geometrical objects.
Moreover, he gave an explicit dictionary between his minimal models and
spaces, and this facility of transition between algebra and topology has cre-
ated many new topological and geometrical theorems in the last 30 years.
An introduction to rational homotopy whose main applications were in
algebraic topology was written some years ago. Because of recent develop-
ments, it is clear that now is the time for a global presentation of some of
the more representative geometrical applications of minimal models. That
is the theme of this book.

Before giving an overview of its content, we present the basic philosophy
behind the theory of minimal models. As Sullivan wrote in the introduction
of Infinitesimal Computations in Topology:

We have suggested here that one might therefore recall the older methods of
differential forms, which are evidently quite powerful.

When de Rham proved that H∗(ADR(M)) ∼= H∗(M;R) for the differen-
tial algebra of differential forms ADR(M) on a manifoldM, it immediately
provided a link between the analysis on and the topology of the manifold.
Sullivan is suggesting in his remark that even within the world of topology,
there is more topological information in ADR(M) (henceforth called the de
Rham algebra ofM) than simply the real cohomology.
For a compact connected Lie groupG, there exists a subdifferential alge-

bra of bi-invariant forms,�I(G), inside the de Rham algebra ADR(G), such
that the canonical inclusion �I(G) ↪→ ADR(G) induces an isomorphism
in cohomology. This is the prototype of the process for models: namely,
we look for a simplification MM of the de Rham algebra with an explicit
differential morphism MM → ADR(M) inducing an isomorphism in coho-
mology, exactly as bi-invariant forms do in the case of a compact connected
Lie group.
In order to implement this strategy, we first have to make precise what a

“simplification” means. In the de Rham algebra, we might suspect that
some information is contained in two different entities: the product of
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forms, which tells us how two forms can be combined together to give
a third one and the exterior derivative of a form. In a model, we kill the
information coming from the product structure by considering free alge-
bras ∧V (in the commutative graded sense) where V is an R-vector space.
This pushes the corresponding information into the differential and into V
where it is easier to detect. More precisely, we look for a cdga (for com-
mutative differential graded algebra) free as a commutative graded algebra
(∧V ,d) and a morphism ϕ : (∧V ,d) → ADR(M) inducing an isomorphism
in cohomology.
The first question is, can one build such a model for any manifold? The

answer is yes for connected manifolds and in fact, there are many ways to
do this. So, we have to define a standard way, which we callminimal. With
this in mind, we again look to Sullivan’s introduction:

One proceeds degree by degree to construct a smallest possible sub-differential
algebra of forms with the same cohomology. Forms are chosen in each degree
to add cohomology not already achieved or to create necessary relations among
cohomology classes.

Once we have this minimal model, we may ask what geometrical invari-
ants can be detected in it. In fact, there is a functor from algebra to geometry
that, together with forms, creates a dictionary between the algebraic and
the geometrical worlds. But for this we have to work over the rationals
and not over the reals. As a consequence, we have to replace the de Rham
algebra by other types of forms. At first glance, this seems to be a disadvan-
tage because we are switching from a well-known object to an unfamiliar
one. But this new construction is very similar to the de Rham algebra and
will allow the extension of the usual theory from manifolds to topological
spaces, which is a great advantage. Denote by APL(X) this analogue of the
de Rham algebra for a topological space X. Since the minimal model con-
struction also works perfectly well overQ, we have the notion of a minimal
model MX → APL(X) of a path connected space X.
Conversely, from a cdga (A,d) we have a topological realization 〈(A,d)〉

which is the return to Topology we hinted at above. If we apply this real-
ization to a minimal modelMX of a space X (which is nilpotent with finite
Betti numbers), thenwe get a continuousmapX → 〈MX〉which induces an
isomorphism in rational cohomology. The space 〈MX〉 is what, in homo-
topy theory, is called a rationalization of X. What must be emphasized in
this process is the ability to create topological realizations of any algebraic
constructions.

Such a theory begs for applications and examples and we describe
models for spheres, homogeneous spaces, biquotients, connected sums,
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nilmanifolds, mapping spaces, configuration spaces and subspace arrange-
ments. We give geometrical applications in several directions: to complex
and symplecticmanifolds, the closed geodesic problem, curvature problems,
actions of tori, complements of submanifolds, symplectic blow-ups, and the
Chas–Sullivan product, for instance.
Roughly, this book is composed of three parts. The first part, consisting

of Chapters 1–3, contains the classical theory and the main geometrical
examples. These chapters are self-contained except for certain proofs for
which we provide references.
Chapters 4–8 are the second part. Each of them is devoted to a particular

topic in differential topology or geometry and they are mostly independent.
The third part is the florilège of Chapter 9 where we give short presenta-

tions of particular subjects, chosen to illustrate the evolution of applications
of minimal models from the theory’s inception to the present day. Evidently
we have been obliged to make choices in these applications and, therefore,
many other interesting applications of algebraic models are not covered.
The following brief description of the material in each of the chapters

makes the outline above more precise.

• Chapter 1. Throughout this book, Lie groups and homogeneous spaces
are used to give foundational examples and to show that some of the
basic ideas of Sullivan’s rational homotopy theory were already present
in this particular case years earlier. As well as describing certain basic
structure results about Lie groups, this chapter gives a complete treatment
of the computation of the cohomology algebra of a compact connected
Lie group and recalls the basic facts about homogeneous spaces. We also
look at the Cartan–Weil model and see it as the prototype for models of
fibrations.

• Chapter 2 is concerned with the basic definitions and properties of our
algebraic tools: cdga’s, models, minimal models, homotopy betweenmor-
phisms of cdga’s and the link between topological spaces and cdga’s.
When we construct a minimal model for a cdga (A,d), it is possible that
we do not have to consider the whole algebra of forms, but rather only
the cohomology H(A,d). Although this is not true in general, it is true
for spheres and Lie groups. This leads us to distinguish special types of
spaces, called formal spaces, whose minimal models are determined by
cohomology alone. This notionwill be of great importance in applications
and we delineate its properties.

• Chapter 3. Since the main theme of this book is the geometrical aspect of
algebraic models, a first question is, how special is a minimal model of
a compact simply connected manifold? At the very least, its cohomology
must satisfy Poincaré duality. In fact, it was proved recently that there is a
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model for X (and not just its cohomology) that satisfies Poincaré duality.
What about the converse? How can we detect that the realization of a
model contains a manifold in its rational homotopy type? Surprisingly,
the conditions that are necessary for this also prove to be sufficient.
Formality in the case of manifolds entails certain properties. We prove

here the theorems of Miller and Stasheff giving particular instances when
manifolds are formal. Notably, we show, as Stasheff did using another
method, that a compact simply connected manifold M is formal if and
only ifM\{∗} is formal.
We also extend the construction of models to the case of cdga’s

equipped with the action of a finite group and apply it to the explicit
construction of models of homogeneous spaces and biquotients.

• In Chapter 4, we study the link between the Dolbeault and de Rham
algebras of a complex manifoldM as well as the relationship between the
respective models. We carefully consider the topological consequences of
the existence of a Kähler metric on M, and, in particular, we prove the
formality of compact Kähler manifolds. We also consider the Dolbeault
model of a complex manifold in detail and compute it in many particular
cases, including the case of Calabi-Eckmann manifolds. For that, we use
a perturbation theorem which allows the construction of a model of a
filtered cdga starting from a model of any stage of the associated spectral
sequence. Applications to the Frölicher spectral sequence of a complex
manifold are given.
In the last part of this chapter, we describe some of the implications of

models for symplectic topology. For a compact symplectic manifold, we
compare the hard Lefschetz property with other properties that appear
in the complex situation. In particular, we recall results of Mathieu and
Merkulov concerning the relation of the hard Lefschetz property to the
existence of symplectically harmonic forms, as defined by Brylinski, in
each cohomology class.

• Chapter 5. For a smooth Riemannianmanifold, the Riemannian structure
of the manifold is reflected in its geodesics. The geodesics on a manifold
may be viewed as the motion of a physical system, so in some sense, the
study of geodesics exemplifies the paradigm expressing the relationship
between mathematics and physics. Of course, the motions that are most
important in physics are the periodic ones, so we begin by studying the
geometric counterpart, closed geodesics.
The main problem in this area is then: does every compact Riemannian

manifoldM of dimension at least two admit infinitely many geometrically
distinct geodesics? The solution to this problem involves an essential anal-
ysis of the rational homotopy type of the free loop space of the manifold.
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We give a minimal model of the free loop space and then prove the Vigué–
Poirrier–Sullivan theorem, which solves most cases of the closed geodesic
problem.
We also present several other connections between the structure ofmod-

els and properties of a manifold’s geodesics. Information about geodesics
can often be codified by the dynamical system known as the geodesic flow
and we shall see that the flow also holds rational homotopy information
within it.

• Chapter 6. In the last decade, algebraic models have proven to be useful
tools in the study of various differential geometric questions involving
curvature. A basic problem is whether curvature and diameter constraints
limit to a finite number the possible rational homotopy types of manifolds
satisfying those constraints. We describe the use of models in the con-
struction of counterexamples to this question. We also show how models
can be used to give a general analysis of the failure of the converse of the
Soul theorem of Cheeger and Gromoll.

• Chapter 7. The topological qualities of a space are often reflected in its
intrinsic symmetries. These symmetries, in turn, may be formalized as the
actions of groups on the space. Intuitively, most manifolds are asymmet-
ric, so the existence of a nontrivial group action on a manifold implies
that the manifold is special topologically. The properties of a manifold
with group action may be gleaned from various topological constructions
and their algebraic reflections. Indeed, this chapter focuses on what can
be said about group actions from the viewpoint of algebraic models. For
instance, there is a longstanding conjecture called the toral rank conjec-
ture which is usually attributed to S. Halperin. The conjecture says, in
particular, that if there is a free action of a torus Tr on a space X, then
the dimension of the rational cohomology of X must be at least as large
as the dimension of the rational cohomology of the torus. We give proofs
for homogeneous spaces and Kähler manifolds.
We also discuss the Borel localization theorem and apply it to the study

of the rational homotopy and the rational cohomology of fixed point
sets. Finally, we discuss the notion of Hamiltonian action in symplectic
geometry and use models to prove a special case of the Lalonde–McDuff
question about Hamiltonian bundles.

• Chapter 8. The process of taking a blow-up has proven to be extremely
useful in complex and symplectic geometry. In order to consider various
questions on the interface between geometry and algebraic topology, it
is necessary to understand algebraic models of blow-ups. This entails a
panoply of related questions which all serve as testaments to the efficacy
of rational homotopy theory in geometry. In this chapter we consider two
types of questions.
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First of all, let f : N ↪→ M be a closed submanifold of a compact ori-
entable manifold and denote by C its complement. The natural problem
is to know if the rational homotopy type ofC is completely determined by
the rational homotopy type of the embedding, and in that case to describe
a model for the injection C ↪→ M from a model of the initial embedding.
We use it to describe nonformal simply connected symplectic manifolds
that are blow-ups.
Our second question concerns the geometric intersection theory of

cycles in a compact manifold. M. Chas and D. Sullivan have extended
the standard intersection theory to an intersection theory of cycles in the
free loop spaceLN for any compact orientedmanifoldN. More precisely,
they define a product on H∗(LN) that combines the intersection product
on the chains on N and the Pontryagin composition of loops in �N. We
present a more homological re-interpretation of the Chas–Sullivan prod-
uct and, as a corollary, obtain the well-known theorem of Cohen and
Jones.

• In Chapter 9, we consider various types of geometric situations where
algebraic models are useful. Models make their presence felt in the
study of configuration spaces, arrangements, smooth algebraic varieties,
mapping spaces, Gelfand–Fuchs cohomology, and iterated integrals. Of
course, it is impossible to prove everything about such an array of topics,
so this chapter is simply a survey of these applications of models. We
endeavor to describe and explain the relevant models and then refer to
the appropriate literature for details.

• Finally, there are three appendices that recall basic facts about de Rham
forms, spectral sequences and homotopy theory.

It is our hope (and we believe) that this book will prove enlightening to
both geometers and topologists. It should be useful to geometers because of
concrete examples showing how algebraic techniques can be used to help
solve geometric problems. For topologists, on the other hand, it is important
to see what kind of concrete geometrical questions can be studied from a
topological point of view.

A project such as this requires a great deal of support and we would
like to acknowledge this here. First, this book would never have seen the
light of day without Research in Pairs grants from the Mathematisches
Forschungsinstitut Oberwolfach in 2003 and 2006. These stays at theMFO
were essential to our collaboration and it is a pleasure to acknowledge
the generosity of this mathematical haven. Various portions of the book
were read by Agusti Roig and he provided many insightful comments and
suggestions. We also thank P. Lambrechts and G. Paternain for discussions



Preface xiii

on several topics. Finally, the support of the University of Louvain-La-
Neuve and of the CNRS for the Summer School on Algebraic Models, held
at Louvain-La-Neuve in June 2007, was essential to the completion of this
work.
Let’s now begin.



This page intentionally left blank 



Contents

Preface vii

1 Lie groups and homogeneous spaces 1

1.1 Lie groups 2
1.2 Lie algebras 3
1.3 Lie groups and Lie algebras 5
1.4 Abelian Lie groups 8
1.5 Classical examples of Lie groups 8

1.5.1 Subgroups of the real linear group 9
1.5.2 Subgroups of the complex linear group 10
1.5.3 Subgroups of the quaternionic linear group 10

1.6 Invariant forms 11
1.7 Cohomology of Lie groups 16
1.8 Simple and semisimple compact connected

Lie groups 21
1.9 Homogeneous spaces 26
1.10 Principal bundles 32
1.11 Classifying spaces of Lie groups 38
1.12 Stiefel and Grassmann manifolds 42
1.13 The Cartan–Weil model 47

2 Minimal models 56

2.1 Commutative differential graded algebras 57
2.2 Homotopy between morphisms of cdga’s 61
2.3 Models in algebra 64

2.3.1 Minimal models of cdga’s and morphisms 64
2.3.2 Relative minimal models 66

2.4 Models of spaces 67
2.4.1 Real and rational minimal models 67
2.4.2 Construction of APL(X) 69



xvi Contents

2.4.3 Examples of minimal models of spaces 71
2.4.4 Other models for spaces 74

2.5 Minimal models and homotopy theory 75
2.5.1 Minimal models and homotopy groups 75
2.5.2 Relative minimal model of a fibration 78
2.5.3 The dichotomy theorem 84
2.5.4 Minimal models and some homotopy constructions 87

2.6 Realizing minimal cdga’s as spaces 90
2.6.1 Topological realization of a minimal cdga 90
2.6.2 The cochains on a graded Lie algebra 91

2.7 Formality 92
2.7.1 Bigraded model 95
2.7.2 Obstructions to formality 96

2.8 Semifree models 100

3 Manifolds 104

3.1 Minimal models and manifolds 105
3.1.1 Sullivan–Barge classification 105
3.1.2 The rational homotopy groups of a manifold 106
3.1.3 Poincaré duality models 109
3.1.4 Formality of manifolds 110

3.2 Nilmanifolds 116
3.2.1 Relations with Lie algebras 117
3.2.2 Relations with principal bundles 121

3.3 Finite group actions 123
3.3.1 An equivariant model for �-spaces 123
3.3.2 Weyl group and cohomology of BG 127

3.4 Biquotients 133
3.4.1 Definitions and properties 133
3.4.2 Models of biquotients 137

3.5 The canonical model of a Riemannian manifold 139

4 Complex and symplectic manifolds 145

4.1 Complex and almost complex manifolds 148
4.1.1 Complex manifolds 148
4.1.2 Almost complex manifolds 150
4.1.3 Differential forms on an almost

complex manifold 152
4.1.4 Integrability of almost complex manifolds 154



Contents xvii

4.2 Kähler manifolds 156
4.2.1 Definitions and properties 156
4.2.2 Examples: Calabi–Eckmann manifolds 159
4.2.3 Topology of compact Kähler manifolds 162

4.3 The Dolbeault model of a complex manifold 168
4.3.1 Definition and existence 169
4.3.2 The Dolbeault model of a Kähler manifold 172
4.3.3 The Borel spectral sequence 173
4.3.4 The Dolbeault model of Calabi–Eckmann

manifolds 175
4.4 The Frölicher spectral sequence 178

4.4.1 Definition and properties 178
4.4.2 Pittie’s examples 179

4.5 Symplectic manifolds 182
4.5.1 Definition of symplectic manifold 182
4.5.2 Examples of symplectic manifolds 183
4.5.3 Symplectic manifolds and the hard

Lefschetz property 184
4.5.4 Symplectic and complex manifolds 187

4.6 Cohomologically symplectic manifolds 187
4.6.1 C-symplectic manifolds 187
4.6.2 Symplectic homogeneous spaces and

biquotients 188
4.6.3 Symplectic fibrations 189
4.6.4 Symplectic nilmanifolds 191
4.6.5 Homotopy of nilpotent symplectic manifolds 194

4.7 Appendix: Complex and symplectic linear algebra 196
4.7.1 Complex structure on a real vector space 196
4.7.2 Complexification of a complex structure 197
4.7.3 Hermitian products 198
4.7.4 Symplectic linear algebra 200
4.7.5 Symplectic and complex linear algebra 201
4.7.6 Generalized complex structure 202

5 Geodesics 205

5.1 The closed geodesic problem 207
5.2 A model for the free loop space 210
5.3 A solution to the closed geodesic problem 213
5.4 A-invariant closed geodesics 215
5.5 Existence of infinitely many A-invariant geodesics 222



xviii Contents

5.6 Gromov’s estimate and the growth of
closed geodesics 223

5.7 The topological entropy 227
5.8 Manifolds whose geodesics are closed 232
5.9 Bar construction, Hochschild homology and cohomology 234

6 Curvature 239

6.1 Introduction: Recollections on curvature 239
6.2 Grove’s question 243

6.2.1 The Fang–Rong approach 243
6.2.2 Totaro’s approach 249

6.3 Vampiric vector bundles 252
6.3.1 The examples of Özaydin and Walschap 253
6.3.2 The method of Belegradek and Kapovitch 259

6.4 Final thoughts 265
6.5 Appendix 266

7 G-spaces 271

7.1 Basic definitions and results 273
7.2 The Borel fibration 275
7.3 The toral rank 276

7.3.1 Toral rank for rationally elliptic spaces 278
7.3.2 Computation of rk0(M)with minimal models 280
7.3.3 The toral rank conjecture 283
7.3.4 Toral rank and center of π∗(�M) ⊗ Q 287
7.3.5 The TRC for Lie algebras 289

7.4 The localization theorem 291
7.4.1 Relations betweenG-manifold and fixed set 292
7.4.2 Some examples 295

7.5 The rational homotopy of a fixed point set component 298
7.5.1 The rational homotopy groups of a component 298
7.5.2 Presentation of the Lie algebra LF = π∗(�F) ⊗ Q 303
7.5.3 Z/2Z-Sullivan models 305

7.6 Hamiltonian actions and bundles 306
7.6.1 Basic definitions and properties 306
7.6.2 Hamiltonian and cohomologically free actions 308
7.6.3 The symplectic toral rank theorem 312
7.6.4 Some properties of Hamiltonian actions 312
7.6.5 Hamiltonian bundles 314



Contents xix

8 Blow-ups and Intersection Products 317

8.1 The model of the complement of a submanifold 318
8.1.1 Shriek maps 319
8.1.2 Algebraic mapping cones 321
8.1.3 The model for the complement C 324
8.1.4 Properties of Poincaré duality models 328
8.1.5 The configuration space of two points in

a manifold 329
8.2 Symplectic blow-ups 330

8.2.1 Complex blow-ups 331
8.2.2 Blowing up along a submanifold 332

8.3 A model for a symplectic blow-up 334
8.3.1 The basic pullback diagram of PL-forms 334
8.3.2 An illustrative example 334
8.3.3 The model for the blow-up 335
8.3.4 McDuff’s example 337
8.3.5 Effect of the symplectic form on the blow-up 339
8.3.6 Vanishing of Chern classes for KT 339

8.4 The Chas-Sullivan loop product on loop space
homology 341
8.4.1 The classical intersection product 341
8.4.2 The Chas–Sullivan loop product 342
8.4.3 A rational model for the loop product 344
8.4.4 Hochschild cohomology and Cohen–Jones

theorem 346
8.4.5 The Chas-Sullivan loop product and

closed geodesics 348

9 A Florilège of geometric applications 350

9.1 Configuration spaces 351
9.1.1 The Fadell–Neuwirth fibrations 352
9.1.2 The rational homotopy of configuration spaces 353
9.1.3 The configuration spaces F(Rn,k) 354
9.1.4 The configuration spaces of a projective manifold 355

9.2 Arrangements 358
9.2.1 Formality of the complement of a geometric

lattice 361
9.2.2 Rational hyperbolicity of the spaceM(A) 362



xx Contents

9.3 Toric topology 363
9.4 Complex smooth algebraic varieties 364
9.5 Spaces of sections and Gelfand–Fuchs cohomology 367

9.5.1 The Haefliger model for spaces of sections 367
9.5.2 The Bousfield–Peterson–Smith model 371
9.5.3 Configuration spaces and spaces of sections 373
9.5.4 Gelfand–Fuchs cohomology 375

9.6 Iterated integrals 376
9.6.1 Definition of iterated integrals 376
9.6.2 The cdga of iterated integrals 379
9.6.3 Iterated integrals and the double bar

construction 381
9.6.4 Iterated integrals, the Hochschild complex and

the free loop space 384
9.6.5 Formal homology connection and holonomy 385
9.6.6 A topological application 387

9.7 Cohomological conjectures 388
9.7.1 The toral rank conjecture 388
9.7.2 The Halperin conjecture 388
9.7.3 The Bott conjecture 389
9.7.4 The Gromov conjecture on LM 390
9.7.5 The Lalonde–McDuff question 390

A De Rham forms 392

A.1 Differential forms 392
A.2 Operators on forms 398
A.3 The de Rham theorem 402
A.4 The Hodge decomposition 404

B Spectral sequences 409

B.1 What is a spectral sequence? 409
B.2 Spectral sequences in cohomology 411
B.3 Spectral sequences and filtrations 412
B.4 Serre spectral sequence 413
B.5 Zeeman–Moore theorem 416
B.6 An algebraic example: The odd spectral

sequence 419
B.7 A particular case: A double complex 420



Contents xxi

C Basic homotopy recollections 423

C.1 n-equivalences and homotopy sets 423
C.2 Homotopy pushouts and pullbacks 424
C.3 Cofibrations and fibrations 428

References 433

Index 451



This page intentionally left blank 



1
Lie groups and
homogeneous spaces

Lie groups and homogeneous spaces form an important family of examples
of manifolds. We will use them systematically in many different parts of
this book, to give an illustration for a specific method or, as well, to show
that new viewpoints can be obtained by using algebraic models. Therefore,
it is important for us to understand basic ideas and results about Lie groups
in order to appreciate the development and application of algebraic models
to geometry in general.
Whatwe alsowant to articulate in the next several chapters is that some of

the basic ideas of Sullivan’s rational homotopy theory were already present
in this particular case. Of course, the (rational or real) cohomology algebra
is a fundamental example of an algebraic model, but it was understood from
the start that only certain informationwas reflected in it. Nevertheless, com-
puting cohomology for such geometric building blocks as Lie groups became
an important goal in the early years of algebraic topology. An algebraic
model that proved to be effective in reaching this goal was the Cartan–Weil
model. Nowadays, we look at this model and see it as the direct ancestor
of Sullivan’s minimal models. Indeed, the Cartan–Weil model is the pro-
totype for models of fibrations (see Chapter 2) and, thus holds within it
homotopical, rather than just cohomological, information.
A complete treatment of Lie group theory covers several books, so we

need to make precise the philosophy of this chapter. Basic properties and
definitions on Lie groups and Lie algebras are recalled without proofs in
Sections 1.1–1.4. The classical examples of groups of matrices are described
in Section 1.5. From that point on, we wish to be complete, with proofs,
when we discuss the things that form the main focus of the book: here, that
means in particular, the de Rham cohomology of Lie groups and homo-
geneous spaces. Moreover, and we will discover the importance of this in
Chapter 2, we wish to have a “computable” cochain complex � linked
to the de Rham complex by an algebraic map, � → ADR, which induces
an isomorphism in cohomology. For instance, in the case of Lie groups, we
prove in Section 1.6 that the inclusion�I(G) ↪→ ADR(G) of the bi-invariant
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forms induces an isomorphism in cohomology. We continue in Section 1.7
by providing two structure theorems for the cohomology of Lie groups,
including the Hopf theorem which expresses the cohomology algebra as an
exterior algebra on generators of odd degrees. We will use this result in
Section 1.8 for the computation of the second and third Betti numbers for
simple Lie groups.
Since fibrations are the basic ingredients in the theory of minimal mod-

els, we develop the notions of principal bundles and classifying spaces.
Sections 1.9–1.10 contain definitions of bundles, principal bundles and
homogeneous spaces. In Section 1.11, we define and characterize the notion
of classifying space for Lie groups. The classical Stiefel andGrassmannman-
ifolds provide us with classifying spaces for the various orthogonal groups
and they are studied in Section 1.12. Finally, in Section 1.13,we give the pro-
totype for the theory of minimal models (see Chapter 2), the Cartan–Weil
model for equivariant cohomology.
We assume that the reader possesses a good knowledge of the basic con-

cepts about manifolds, as in [28], [104], [226], or (for surface theory) [215]
for instance.We also assume the reader has had a classical homology course.
Appendices A, B and C supply the basic recollections on some crucial parts
of these subjects.
In this chapter,manifold means a Hausdorff space with a countable basis

of open sets (i.e. a separable space), endowed with a differentiable structure
of class C∞ over the reals.

1.1 Lie groups

In this section, we give the definitions and basic properties of Lie groups.
General references are [2], [136] and [199] for instance.

Definition 1.1 A Lie group is a set G which is both a manifold and a
group and for which the multiplication, (g, g′) 
→ gg′, and the inverse map,
g 
→ g−1, are smooth. The dimension of a Lie group is its dimension as a
manifold.
A homomorphism of Lie groups is a homomorphism of groups which

is also a smooth map. An isomorphism of Lie groups is a homomor-
phism f which admits an inverse f−1 as maps and such that f−1 is also
a homomorphism of Lie groups.

For instance,R and S1 are Lie groups for the usual structures of manifolds
and groups. One can observe directly from the definition that a product of
two Lie groups is a Lie group for the two canonical structures, product of
groups and product of manifolds. So Rn and (S1)n are Lie groups. The tori
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Tn = (S1)n are studied in Section 1.4, and Section 1.5 is devoted to classical
examples of Lie groups, such as the different groups of matrices. Observe
now that, if V is a real vector space, the set Gl(V) of linear isomorphisms
is a Lie group.

Remark 1.2 Some properties required in Definition 1.1 are in fact auto-
matic:

• if the multiplication is a smooth map, then the inverse is also a smooth
map (use the implicit function theorem);

• a bijective homomorphism of Lie groups is an isomorphism of Lie groups
(see [214, page 18]);

• a map f : G → H between Lie groups which is a homomorphism of
groups and a continuous map is a homomorphism of Lie groups (see
[199, page 44]).

A Lie subgroup of a Lie group G is a subgroup which is a submanifold
of G. Lie subgroups can be determined easily by the following theorem of
Elie Cartan.

Theorem 1.3 ([2, page 17], [214, page 47]) A subgroup H of a Lie group
G is a Lie subgroup of G if and only if H is a closed subgroup of G.

In this book, we will be especially interested in the homotopy types of
Lie groups and, for that, we can reduce the study to compact connected Lie
groups as shown by the following result called the polar decomposition or
Iwasawa decomposition.

Theorem 1.4 ([147]) Any connected Lie group G admits a maximal com-
pact subgroup H (unique up to conjugacy) such that G is isomorphic to
the product H × Rm. In particular G and H have the same homotopy
type.

Compact connected Lie groups will be classified in Theorem 1.52.

1.2 Lie algebras

We introduce here the notion of Lie algebras and the example of main
interest for us, the tangent space Te(G) of a Lie group G at the identity.

Definition 1.5 A Lie algebra over R is a vector space l together with a
bilinear homomorphism, called the bracket,

[−,−] : l × l → l
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such that, for any l1 ∈ l, l2 ∈ l, l3 ∈ l, one has:

• [l1, l2] = −[l2, l1] (skew symmetry),
• [l1, [l2, l3]] + [l2, [l3, l1]] + [l3, [l1, l2]] = 0 (Jacobi identity).

A homomorphism of Lie algebras is a linear map, ϕ : l → l′, preserving the
bracket. This means that ϕ[l1, l2] = [ϕ(l1),ϕ(l2)] for any (l1, l2) ∈ l × l.

A Lie subalgebra of a Lie algebra l is a sub-vector space n such that
[n, n] ⊆ n. An ideal of l is a Lie subalgebra n such that [n, l] ⊆ n.
Any structure of associative algebra on a vector space A gives a canonical

structure of Lie algebra lA on the same vector space by [a1, a2] = a1a2−a2a1.
Our most interesting example comes from the structure of a Lie group G.
Observe that, because of the group structure, any phenomenon at a par-

ticular point ofG can be translated everywhere inG by composing with the
elements of the group. For instance, a connected Lie group is generated, as
a topological space, by any neighborhood of the identity e. We formalize
this remark by introducing the notion of left and right translations.

Definition 1.6 A fixed element g ∈ G gives the left translation Lg : G → G
with Lg(h) = g · h for all h ∈ G. Similarly, we define right translations Rg
by Rg(h) = h · g.
Recall first that, if p : T(G) → G is the tangent bundle of the manifold

G, a vector field X on G is a smooth section of p (see Appendix A).

Definition 1.7 Denote by DLg : T(G) → T(G) the map induced by the left
translation Lg. A vector field X on G is called left invariant if DLg(X) = X,
for any g ∈ G.
Remark 1.8 Left invariance of objects other than vector fields also turns
out to be very important in understanding Lie groups. In particular, if we
define a function f on a Lie group G to be left invariant when f (gh) = f (h)
for all g, h ∈ G, then clearly we see that f is a constant function. Later (see
Definition 1.25), we will phrase this by saying that any left invariant 0-form
is a constant.

IfG is a Lie group, we denote by g the vector space of left invariant vector
fields on G. If X and Y are vector fields, then their bracket is defined to be
the vector field [X,Y]f = X(Yf )−Y(Xf ) for all functions f . The bracket is
anti-commutative and satisfies a Jacobi identity (see Section A.2). If X and
Y are left invariant vector fields, their bracket [X,Y] is also left invariant.
Therefore, the vector space g has the structure of a Lie algebra, called the
Lie algebra associated to the Lie group G.
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If X is a vector field on a Lie groupG, we see directly from the definition
that X is left invariant if and only if

Xg = (DLg)(Xe).

Therefore the vector space g is isomorphic to the tangent space, Te(G), at
the identity e of G. We will not make any distinction between these two
characterizations of the Lie algebra g.
From this observation, we deduce that the left invariant vector fields

provide n linearly independent sections of the tangent bundle TG for
an n-dimensional Lie group G. Therefore, any Lie group G is paralleliz-
able; that is, TG ∼= G × Te(G) = G × g. As a consequence, the real
Lie algebra of vector fields on G (see Section A.2) is the tensor product
C∞(G) ⊗ g where C∞(G) is the algebra of smooth real valued functions
on G.

Proposition 1.9 There is a morphism of Lie groups Ad: G → Gl(g) given
by Ad(g)(X) = ((DRg)−1 ◦ (DLg))(X), where Gl(g) is the group of linear
isomorphisms of the Lie algebra g.

Definition 1.10 The map Ad: G → Gl(g) is called the adjoint represent-
ation of the Lie group G.

Proposition 1.11 Denote by gl(g) the Lie algebra of the Lie group Gl(g).
Then, the derivative of Ad: G → Gl(g) is the morphism of Lie algebras,
ad : g → gl(g), defined by ad(X)(Y) = [X,Y], where [−,−] is the bracket
of g.

1.3 Lie groups and Lie algebras

It is now time tomake various relations between Lie groups andLie algebras
precise. A basic reference is [214, Section I-&2].
First, by definition of the Lie algebra associated to a Lie group, if

f : G → H is a homomorphism of Lie groups, its differential Dfe : g → h

is a homomorphism of Lie algebras. We would like to know if Dfe gives
us information about the homomorphism f . For that, we need a better cor-
respondence between Lie algebras and Lie groups which comes from the
notion of one-parameter subgroup.

Definition 1.12 For any Lie group G, a homomorphism of Lie groups,
θ : R → G, is called a one-parameter subgroup of G.

Observe that, by definition, such a θ satisfies θ(s+ t) = θ(s) ·θ(t), for any
s and t inR. It can be shown that any one-parameter subgroup is the integral
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curve of a left invariant vector field and, reciprocally, that any left invariant
vector field admits a one-parameter subgroup as a maximal integral curve.
So, we get a new characterization of the Lie algebra associated to a Lie
group.

Theorem 1.13 There is an isomorphism between the Lie algebra g

associated to a Lie group G and the set of one-parameter subgroups
of G.

With this isomorphism, one can construct a map from g to G.

Definition 1.14 If X ∈ g, we denote by θX the one-parameter subgroup
associated to X as in Theorem 1.13. The exponential from g = Te(G) to G
is defined by

exp(tX) = θX(t).

Observe that, by uniqueness of the integral curve, one has θλX(t) = θX(λt)
and the exponential is well defined. In fact, the exponential is a smooth
map which induces the identity on the tangent space at e ∈ G; that
is, Dexp = id : g → g. It can also be shown that the exponential is
an epimorphism if the group G is compact and connected. Moreover, if
f : G → G′ is a homomorphism of Lie groups, then one has f ◦ expG =
expG′ ◦Df .
This process of integration is the key for the two next results. The first one

concerns the link between a homomorphism of Lie groups and its induced
differential.

Theorem 1.15 Let G and H be two Lie groups with G connected. Then
a homomorphism from G to H is uniquely determined by its differential
Dfe : g → h.

The second result concerns the realization of morphisms between Lie
algebras.

Theorem 1.16 Let G and H be two Lie groups with G simply connected.
Then, for every homomorphism of Lie algebras ψ : g → h, there exists a
homomorphism of Lie groups f : G → H such that Dfe = ψ .

The theory is very powerful. For instance, the third Lie theorem gives a
converse to the construction of the Lie algebra of a Lie group (see [229,
Leçon 6]).

Theorem 1.17 Every finite dimensional Lie algebra is the tangent space
algebra of some Lie group.
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This association can be made more precise:

• every finite dimensional Lie algebra is the tangent space algebra of a
unique simply connected Lie group;

• if a homomorphism of Lie groups, f : G → G′, withG simply connected,
induces an isomorphism between the associated Lie algebras, then f is a
universal cover.

These results imply a correspondence between sub-Lie groups and sub-
Lie algebras which can be made explicit for some objects of interest. For
the rest of this section, let G be a connected Lie group with associated Lie
algebra g and letH be a Lie subgroup ofG. Then the Lie algebra h associated
to H is a Lie subalgebra of g and the subgroup H is normal if and only if
the subalgebra h is an ideal. Now let’s recall some classical definitions (see
[113, page 69]) which will be useful in the rest of this section.

Definition 1.18 The centralizer of a subset A of G is the subgroup

Z(A) = {
x ∈ G | xa = ax for any a ∈ A} .

The centralizer of G is called the center of G. The centralizer of a subset m
in g is the Lie subalgebra

Z(m) = {
l ∈ g | [l,m] = 0 for any m ∈ m

}
.

The centralizer of g is called the center of g.

It can be shown that the centralizer of H in G is a Lie group with
associated Lie algebra the centralizer of h in g.

Definition 1.19 The normalizer of a subset A of G is the subgroup of G
given by

N(A) = {x ∈ G | xA = Ax} .

The normalizer of a subset m of g is the Lie subalgebra

n(m) = {
x ∈ g | [x, y] ∈ m for any y ∈ m

}
.

It can be shown that the normalizer ofH inG is a Lie group with associ-
ated Lie algebra the normalizer of h in g. Observe that, for any x ∈ N(H)

and any h ∈ H, we have xhx−1 ∈ H. We deduce that there is an action
(see Definition 1.23) of the Lie group N(H) on the manifold H, called the
conjugation action.
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1.4 Abelian Lie groups

It turns out that it is essential to first study the abelian Lie groups and the
abelian Lie subgroups of a compact connected Lie group. A reference for this
section is [113, Chapters 1 and 2]. A basic example of an abelian compact
Lie group is the circle S1 endowed with the commutative multiplication of
complex numbers. More generally, we have the

Definition 1.20 An abelian Lie group is a Lie group G satisfying gg′ = g′g
for any (g, g′) ∈ G×G. An abelian Lie algebra is a Lie algebra l such that
[l, l′] = 0 for any (l, l′) ∈ l × l.

One can prove that a Lie group G is abelian if and only if its Lie algebra
g is abelian. A product of n circles is an abelian Lie group, called an n-torus
(or simply a torus) and denoted by Tn. Tori are the prototypes of abelian
Lie groups.

Theorem 1.21 Any connected abelian Lie group G is isomorphic to the
direct product of Lie groups Tp × Rq.

As a consequence, any connected abelian Lie subgroup of a compact
connected Lie group G is a torus T. Call a subtorus T ⊂ G a maximal
torus in G if it is not properly contained in another torus. One can then
prove the following.

Theorem 1.22 Every element of a compact connected Lie group is con-
tained in a maximal torus. Two maximal tori are conjugate.

The dimension of a maximal torus is called the rank of the Lie group.
The normalizer of a maximal torus T of G is a compact Lie group denoted
N(T). The quotientW(G) = N(T)/T is called the Weyl group of G. Up to
isomorphism, this group does not depend on the choice of a maximal torus
in G. In fact, W(G) is a finite group. Observe that, since T is abelian, the
restriction of the conjugation action ofN(T) to T is trivial on T, so it gives
an action ofW(G) on T. We will come back to the study of maximal tori
in Subsection 3.3.2.

1.5 Classical examples of Lie groups

We now describe the classical examples of Lie groups which come from
groups of matrices. A reference for this section is [199, Chapter I].
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1.5.1 Subgroups of the real linear group

Start with the set of real numbers R and denote by Gl(n,R) the group of
invertible n × n-matrices with entries in R. Endowed with the canonical
structure of a manifold (as an open subset of Rn2), the group Gl(n,R) is
a Lie group, called the real linear Lie group. The associated Lie algebra,
gln(R) = M(n,R), is the vector space of all n× n matrices with the bracket
being the commutator of matrices. The dimension of Gl(n,R) is n2.
Any closed subgroup of Gl(n,R) is a Lie group. In particular, we have the

orthogonal groupO(n) consisting of the orthogonal linear transformations
u of the euclidian space Rn. Recall that, in the canonical basis, this is equiv-
alent to the fact that the matrix A of u satisfies tAA = In. The associated Lie
algebra o(n) of O(n) is the vector space of alternating (or skew-symmetric)

matrices, tA = −A. The dimension of O(n) is
n(n− 1)

2
=

(
n
2

)
and O(n)

is a maximal compact subgroup of Gl(n,R).
Since the continuous map det : O(n) → {−1,+1} is surjective, one

sees that the space O(n) is not connected. We denote by SO(n) the sub-
group of O(n), consisting of linear transformations of determinant 1
and call it the special orthogonal group. Since it is a connected com-
ponent of O(n), the group SO(n) has the same tangent space at the
neutral element e, therefore the same Lie algebra, by definition. As
we will see, the group SO(n) is not simply connected if n ≥ 2. The
universal cover of SO(n) is called the nth-spinor group and denoted
by Spin(n).
The orthogonal group O(n) is the prototype of Lie groups. Indeed, it can

be proved that any compact Lie groupG is isomorphic to a closed subgroup
of O(n) (see [199, Theorem 2.14, Chapter V]).
If θ is a real number, we denote by

R(θ) =
(
cos θ − sin θ

sin θ cos θ

)
the rotation matrix corresponding to the rotation in R2 by angle θ . Let
(θ1, . . . , θr) be r real numbers. Denote by (R(θ1), . . . ,R(θr), 1) the matrix
having the R(θi) and 1 along the diagonal and 0 entries otherwise. The
group of matrices of the form (R(θ1), . . . ,R(θr), 1) is the maximal torus of
SO(2r+ 1) and the rank of SO(2r+ 1) is r. TheWeyl group of SO(2r+ 1)
has 2rr! elements and acts on the maximal torus by a permutation of the
coordinates composed with the substitutions (θ1, . . . , θr) 
→ (±θ1, . . . ,±θr).
As for the Lie group SO(2r), its maximal torus consists of matrices

(R(θ1), . . . ,R(θr)) and the rank of SO(2r) is r. Its Weyl group has 2r−1r!
elements acting on the maximal torus by a permutation of the coordinates
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composed with the substitutions (θ1, . . . , θr) 
→ (ε1θ1, . . . , εrθr), with εi =
±1 and ε1 · · · εr = 1.

1.5.2 Subgroups of the complex linear group

Denote by Gl(n,C) the group of invertible n×n-matrices with entries in the
complex numbers C. Endowed with the canonical structure of a manifold
(as an open subset of R2n2), the group Gl(n,C) is a Lie group, called the
complex linear Lie group. The associated Lie algebra, gln(C) = M(n,C), is
the vector space of all n×n-matrices with the bracket being the commutator
of matrices. The (real) dimension of Gl(n,C) is 2n2.
We now introduce the analogue of the orthogonal group. Recall that, if

we write a complex number as z = x + iy, with x ∈ R and y ∈ R, the
conjugate of z is the complex number z = x− iy. This induces a norm with
‖z‖ = √

zz. The unitary group U(n) consists of the linear transformations u
of R2n that respect this norm; that is, ‖u(z)‖ = ‖z‖. In the canonical basis,
this is equivalent to the fact that the matrix A of u satisfies tAA = In. The
associated Lie algebra u(n) of U(n) is the vector space of alternating (or
skew) hermitian matrices, tA = −A. The dimension of U(n) is n2. It can
be proved that U(n) is a maximal compact subgroup of Gl(n,C) and that
U(n) = SO(2n) ∩Gl(n,C).
The subgroup of U(n) consisting of linear transformations of determinant

1 is called the special unitary group and denoted by SU(n). The associated
Lie algebra, su(n), consists of matrices of trace 0 such that tA = −A. The
dimension of SU(n) is n2 − 1. The group SU(n) is simply connected. The
group U(n) is not, but its universal cover does not constitute something new
because, as a space, U(n) is diffeomorphic to the product S1 × SU(n).
The maximal torus of U(n) consists of the set of diagonal matrices hav-

ing (eiλ1 , . . . , eiλn) on the diagonal. The Lie group U(n) has rank n. Its
Weyl group is the symmetric group 
n acting on the maximal torus by
a permutation of the coordinates.
Themaximal torus of SU(n) consists of the set of diagonalmatrices having

(eiλ1 , . . . , eiλn) on the diagonal such that
∑n

i=1 λi = 0. The Lie group SU(n)
has rank n− 1. The Weyl group and its action are the same as for U(n).

1.5.3 Subgroups of the quaternionic linear group

Now consider the field of quaternions H and denote by Gl(n,H) the group
of invertible n× n-matrices with entries in H. Endowed with the canonical
structure of a manifold (as an open subset of R4n2), the group Gl(n,H) is
a Lie group, called the quaternionic linear Lie group. The associated Lie
algebra, gln(H) = M(n,H), is the vector space of all n×nmatrices with the
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bracket being the commutator of matrices. The (real) dimension of Gl(n,H)

is 4n2.
For the associated orthogonal group, we have to define a quaternionic

conjugation. Let z = t + ix + jy + kz be a quaternion, with x ∈ R, y ∈ R,
z ∈ R, t ∈ R and i, j, k obeying the usual relations: i2 = j2 = k2 = −1,
ij = k, ji = −k, jk = i, kj = −i, ki = j and ik = −j. The conjugate of
z is the quaternion z = t − ix − jy − kz. This induces a norm with ‖z‖ =√
zz. The symplectic group Sp(n) consists of the linear transformations u

of R4n that respect this norm, ‖u(z)‖ = ‖z‖. In the canonical basis, this
is equivalent to the fact that the matrix A of u satisfies tAA = In. The
associated Lie algebra sp(n) of Sp(n) is the vector space of alternating (or
skew) quaternionic matrices, tA = −A. The dimension of Sp(n) is n(2n+1).
One can show that Sp(n) is a maximal compact subgroup of Gl(n,H) and
that Sp(n) = SO(4n) ∩Gl(n,H).
Viewed as a subgroup of U(2n) (see Exercise 1.3), the Lie group Sp(n)

has for a maximal torus the diagonal matrices (eiλ1 , . . . , eiλ2n) such that
λi = λi+n for any 1 ≤ i ≤ n. The Lie group Sp(n) has rank n. Its Weyl
group has 2nn! elements acting on the maximal torus as in SO(2n+ 1).
In any of these groups of matrices, the exponential map, exp: g → G, is

the traditional exponential of a matrix:

exp(A) = 1+ A+ · · · + An

n! + · · · .

1.6 Invariant forms

In this section, we define the complex of invariant forms on a left G-
manifoldM, and prove that the cohomology of this complex is isomorphic
to the cohomology of M if the manifold M is compact and the Lie group
G compact and connected. As we will see in several places, Lie groups are
designed as groups of symmetries of manifolds. With this in mind, we define
invariant forms in the general setting of G-manifolds.

Definition 1.23 A Lie group G acts on a manifold M, on the left, if there
is a smooth map G × M → M, (g,x) 
→ gx, such that (g · g′)x = g(g′x)
and ex = x for any x ∈ M, g ∈ G, g′ ∈ G. Such data endows M with the
appellation of a left G-manifold. A left action is called
• effective if gx = x for all x ∈ M implies g = e;
• free if gx = x for any x ∈ M implies g = e.

For right actions and right G-manifolds, we ask for a smooth map M ×
G → M, (x, g) 
→ xg, such that x(g ·g′) = (xg)g′ and xe = x for any x ∈ M,
g ∈ G, g′ ∈ G.
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Example 1.24 Let G be a Lie group. The Lie multiplication gives to G the
structure of a

• left G-manifold, with L : G×G → G, L(g, g′) = Lg(g′) = g · g′;
• right G-manifold, with R : G×G → G, R(g′, g) = Rg(g′) = g′ · g.
Let G be a Lie group. If M is a left G-manifold, we denote by

g∗ : ADR(M) → ADR(M) the “pullback” map induced on differential forms
by the action of g ∈ G. More specifically, for vector fields X1, . . . ,Xk and
a k-form ω, we define at m ∈ M,

g∗ω(X1, . . . ,Xk)(m) = ωg·m(DgmX1(m), . . . ,DgmXk(m)).

We sometimes write ωx(X1, . . . ,Xk) = ω(X1, . . . ,Xk)(x), L∗
gω = g∗ω and

Dg = DLg.

Definition 1.25 An invariant form on a left G-manifoldM is a differential
form ω ∈ ADR(M) such that g∗ω = ω for any g ∈ G. We denote the set of
invariant forms by �L(M).
In the case of a Lie group G, we note that the left invariant forms (right

invariant forms) correspond to the left (right) translation action. We denote
these sets by �L(G) and �R(G) respectively. A form on G that is left and
right invariant is called bi-invariant (or invariant if there is no confusion).
The corresponding set is denoted by �I(G).

The aim of this section is to prove that these different sets of invariant
forms allow the determination of the cohomology of G-manifolds and Lie
groups. First, using the operators i(X) and L(X) on forms discussed in
Appendix A (more specifically in Section A.2), we observe the following.

Proposition 1.26 Let G be a Lie group and M be a left (or a right)
G-manifold. Then the set of invariant forms of M is stable under d.
Moreover, the sets of left invariant forms and of right invariant forms
on G are invariant under i(X) and L(X), for X a left invariant vector
field.

Proof Suppose ω is a left invariant form on G and X is a left invariant
vector field on G. We have, using the left invariance of X and ω,

Lg∗i(X)ω(Y1, . . . ,Yk)(x) = Lg∗ω(X,Y1, . . . ,Yk)(x)

= ωgx(DLg(X)x,DLg(Y1)x, . . . ,DLg(Yk)x)

= i(DLgX)ω(DLg(Y1), . . . ,DLg(Yk))(gx)

= i(X)ω(Y1, . . . ,Yk)(x).
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Hence, i(X)ω is left invariant. The verification of the other statements is
similar. �

The previous result justifies the following definition.

Definition 1.27 Let G be a Lie group and M be a left G-manifold. The
invariant cohomology of M is the homology of the cochain complex
(�L(M),d). We denote it by H∗

L(M).

The main result is the following theorem.

Theorem 1.28 Let G be a compact connected Lie group and M be a
compact left G-manifold. Then

H∗
L(M) ∼= H∗(M;R).

Wewill prove that the injectionmap�L(M) → ADR(M) induces an isomor-
phism in cohomology. For that, we need some results concerning integration
on a compact connected Lie group.

Proposition 1.29 On a compact connected Lie group, there exists a bi-
invariant volume form.

Proof Recall from Section 1.2 that the tangent bundle of G trivializes as
T(G) ∼= G × g. If g∗ is the dual vector space of g, we therefore have a
trivialization of the cotangent bundle T∗(G) ∼= G× g∗ and of the differen-
tial forms bundle. Exactly as for vector fields, we observe that left (right)
invariant forms are totally determined by their value at the unit e and that
we have isomorphisms

�L(G) ∼= �R(G) ∼= ∧g
∗,

where ∧g∗ is the exterior algebra on the vector space g∗. To make this space
precise, recall that the elements of g∗ are left invariant 1-forms dual to left
invariant vector fields. If we choose a basis {ω1, . . . ,ωn} dual to a basis of
left invariant vector fields, an element of ∧g∗ may be written

α =
∑

ai1···ip ωi1 · · ·ωip
where the ai1···ip ’s are constant. Choose such an α of degree n equal to the
dimension ofG. We associate to α a unique left invariant form αL such that
(αL)e = α and a unique right invariant form αR such that (αR)e = α. More
precisely, we set:

(αL)g(X1, . . . ,Xn) = α((DLg)−1X1, . . . , (DLg)−1Xn),

(αR)g(X1, . . . ,Xn) = α((DRg)−1X1, . . . , (DRg)−1Xn).
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Recall, from Definition 1.10, the homomorphism of Lie groups Ad: G →
Gl(g). As direct consequences of the definitions, we have

(L∗
gαR)h(X1, . . . ,Xn) = (αR)gh(DLg(X1), . . . ,DLg(Xn))

= α((DRgh)
−1 ◦ (DLg)(X1), . . .)

= α((DRh)
−1 ◦ (DRg)−1 ◦DLg(X1), . . .)

= (αR)h((DRg)
−1 ◦DLg(X1), . . .)

= (det(Ad(g))(αR)h(X1, . . . ,Xn).

The composition det ◦Ad: G → R has for image a compact subgroup
of R; that is, {1} or {−1, 1}. Since the group G is connected, we get
det(Ad(g)) = 1, for any g ∈ G, and αR is a bi-invariant volume form. �

The previous result can be obtained in a more general context. As the
proof shows, it is sufficient to have (det ◦Ad)(g) = 1 for any g ∈ G. This is
the definition of a unimodular group.

Proof of Theorem 1.28 Denote by ι : �L(M) ↪→ ADR(M) the canonical
injection of the set of left invariant forms. We choose the bi-invariant vol-
ume form on G such that the total volume of G is 1,

∫
G dg = 1. This

volume form allows the definition of
∫
G f dg ∈ Rk for any smooth function

f : G → Rk.
Let ω ∈ AkDR(M) and x ∈ M be fixed. As a function f , we take G →

∧Tx(M)∗, g 
→ g∗ω(x). We get a differential form ρ(ω) onM defined by:

ρ(ω)(X1, . . . ,Xk)(x) =
∫
G
g∗ω(X1, . . . ,Xk)(x)dg

=
∫
G
(Lg)∗ω(X1, . . . ,Xk)(x)dg.

We have thus built a map ρ : ADR(M) → ADR(M) and we now analyze its
properties.

Fact 1: ρ(ω) ∈ �L(M).

Let g′ ∈ G be fixed. The map
(
DLg′

)
: Tx(M) → Tg′x(M) induces a map

∧ (
DLg′

)∗ : ∧ Tg′x(M)∗ → ∧Tx(M)∗. Therefore, one has (in convenient
shorthand): (

DLg′
)∗

ρ(ω)(x) = ∧ (
DLg′

)∗ ∫
G
(Lg)∗ω(x)dg

=
∫
G

(
Lg′·g

)∗
ω(x)dg
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=
∫
G

(
Lg

)∗
ω(x)dg

= ρ(ω)(x).

Fact 2: If ω ∈ �L(M) then ρ(ω) = ω.

If
(
Lg

)∗
ω(x) = ω(x), then ρ(ω)(x) = ∫

G(Lg)∗ω(x)dg = ω(x)
∫
G dg =

ω(x).

Fact 3: ρ ◦ d = d ◦ ρ.

This is an easy verification from the definitions of d and ρ.

From Facts 1–3, we deduce that H(ρ) ◦H(ι) = id and H(ι) is injective.

Fact 4: The integration can be reduced to a neighborhood of e.

Let U be a neighborhood of e. We choose a smooth function ϕ : G → R,
with compact support included in U, such that

∫
G ϕ dg = 1. Now we

denote the bi-invariant volume form dg by ωvol. By classical differential
calculus on manifolds, the replacement of ωvol by ϕ ωvol leaves the integral
unchanged. The fact that ϕ ωvol has its support inU allows the reduction of
the domain of integration to U. Our construction process can now be seen
in the following light.
Let L : G ×M → M be the action of G on M. Denote by π∗

G(ϕωvol) the
pullback of ϕωvol to ADR(U ×M) by the projection πG : G×M → G and
by L∗ : ADR(M) → ADR(U × M) the map induced by L. If α is a form
on U × M, we denote by I(α) the integration of α ∧ π∗

G(ϕωvol) over the
U-variables, considering the variables inM as parameters. We then have a
map I : ADR(U×M) → ADR(M)which is compatible with the coboundary
d and which induces H(I) in cohomology.
To any ω ∈ ADR(M) we associate the form L∗(ω)∧π∗

G(ϕωvol) on U×M
and check easily (see [113, page 150]):

ρ(ω) = I(L∗(ω)).

In other words, the following diagram is commutative

ADR(M)
L∗

��

ρ �����
����

����
����

�
ADR(U ×M)

I �� ADR(M)

�L(M)

ι

������������������

For U, we now choose a contractible neighborhood of e. The
identity map on U × M is therefore homotopic to the composition

U × M
π ��M

j
��U ×M , where π is the projection and j sends
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x to (e,x). By using I ◦ π∗ = id and the compatibility of de Rham
cohomology with homotopic maps, we get:

H(I) ◦H(L∗) = H(I) ◦ idH(M×U) ◦H(L∗)
= H(I) ◦H(π∗) ◦H( j∗) ◦H(L∗)
= H( j∗) ◦H(L∗) = H((L ◦ j)∗) = id .

This implies id = H(ι) ◦H(ρ) and H(ι) is surjective. �

1.7 Cohomology of Lie groups

In this section, we give two structure theorems for the cohomology of a Lie
group. The first one comes from the existence of left and right G-manifold
structures onG and follows from the results of Section 1.6. The second one,
calledHopf’s theorem, gives a precise algebra structure for the cohomology.
Recall that�L(G) (�R(G),�I(G)) is the set of left invariant (right invari-

ant, bi-invariant) forms onG. Denote by �L(G)L=0 the set of left invariant
forms whose Lie derivative (see Section A.2) by any left invariant vector
field is zero.

Theorem 1.30 Let G be a compact connected Lie group with Lie algebra
g. Then we have two series of isomorphisms:

(1) �L(G) ∼= �R(G) ∼= ∧g∗;

(2) HL(G) ∼= HR(G) ∼= H∗(G;R) ∼= �I(G) ∼= �L(G)L=0.

Remark 1.31 There is one point of view that we do not develop here: the
translation of the second line in terms of Lie algebras using the isomorphism
�L(G) ∼= ∧g∗. For that, one needs to know the image of the cobound-
ary d and the Lie derivative L through this isomorphism. This theory is
well developed in [114]; we give a glimpse of it in Exercise 1.7. Also see
Subsection 3.2.1 for the noncompact case of nilpotent Lie groups.

We mention also that the existence of an isomorphism betweenH∗(G;R)

and �I(G) can be extended to the more general situation of symmetric
spaces (see Exercise 1.6). In order to prove the theorem, we first need to
determine the derivative of the multiplication and the inverse maps.

Lemma 1.32 Let G be a Lie group. Denote by µ : G × G → G the
multiplication map and by ν : G → G the inverse map. Then we have:

Dµ(g,g′) = DLg +DRg′ and Dνg = − (
DLg

)−1 ◦DRg−1 .
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Proof With the identification T(G×G) ∼= T(G)⊕T(G), we write a vector
field on G×G as:

((g, g′), (X,X′))= (g, (g′,X′))+ ((g,X), g′)
∈ {

g
}×Tg′(G)⊕Tg(G)×{

g′} .
Therefore, we have:

Dµ(g,g′)(X,X′) = DLg(X′) +DRg′(X).

From this formula and the equality µ(g, ν(g)) = e, we deduce:

0 = Dµ(g,g−1)(X,Dνg(X)) = DLg ◦Dνg(X) +DRg−1(X)

and

Dνg = − (
DLg

)−1 ◦DRg−1 .

�

Proof of Theorem 1.30 The first series of isomorphisms is clear. It comes
from the triviality of the bundle of left (or right) invariant forms on a Lie
group G and the identification between Te(G) and g.
The first part of (2), HL(G) ∼= HR(G) ∼= H∗(G;R), is a consequence of

Theorem 1.28. Observe now that �I(G) is the set of left invariant forms
for the left action of the group G × G on G defined by (g1, g2)g′ = g1 ·
g′ · g−1

2 . Therefore, Theorem 1.28 implies H∗(G;R) = HI(G). The next
isomorphism, H∗(G;R) ∼= �I(G), will follow immediately from the fact
that each bi-invariant form on G is closed, implying HI(G) = �I(G).
To prove this property, let α be a bi-invariant form on G. We compute,

using the left and right invariance of α, the inverse image of α by ν:

ν∗α(X1, . . . ,Xk)(g) = α(− (
DLg

)−1 ◦DRg−1(X1), . . .)(g−1),

= (−1)kα(X1, . . . ,Xk)(g).
We then have ν∗α = (−1)kα. We now use the fact that �I(G) = �L(G) ∩
�R(G) is stable under the coboundary:

ν∗(dα) = (−1)k+1dα
d(ν∗α) = d((−1)kα) = (−1)kdα,

which implies dα = 0. The last isomorphism is established in the next
proposition. �

Now recall from Section A.2 that a form α such that L(X)α = 0 for a
vector field X is said to be L(X)-invariant.
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Proposition 1.33 Let G be a compact connected Lie group. The
L-invariance of a form with respect to left invariant vector fields cor-
responds precisely to invariance of the form under right translations. In
particular, we have:

�I(G) = {
ω ∈ �L(G) | L(X)ω = 0 for any left invariant vector field X

}
.

Proof Let X be a left invariant vector field. We know that X is determined
by its value Xe ∈ Te(G) and that (see Definition 1.14) the exponential map
exp: Te(G) → G is defined by θt(e) = exp(tXe), where θ is the 1-parameter
subgroup associated to X. There is also an exponential map at any g ∈ G
obtained by requiring exp(tXg) = Lg(exp(tXe)), where Lg denotes left
translation by g. Using the left invariance of X (i.e. DLh(Xe) = Xh for
all h ∈ G) we have θt(g) = exp(tXg) = Lg(exp(tXe)) = g · exp(tX). In
conclusion, the flow acts on g by right translation.
On the other hand, if θ is the 1-parameter subgroup associated to X, the

Lie derivative satisfies the formula θ∗
t ω−ω = ∫ t

0 θ∗
s L(X)ω ds (see SectionA.2

and Exercise A.2). Therefore, the form ω is right invariant for the action of
elements in the image of the exponential if and only if L(X)ω = 0 for any
left invariant vector field X, see [113, Proposition VI, page 126]. Since, in
a connected compact group, the exponential is an epimorphism, we get the
result. �

Theorem 1.34 (Hopf’s theorem) If G is a compact connected Lie group,
then there exist elements of odd degree, x2pi+1 ∈ H2pi+1(G;Q), such that,
as an algebra,

H∗(G;Q) = ∧ (
x2p1+1, . . . ,x2pr+1

)
.

In fact the number of generators is the rank of the group (see Theorem 3.33).

Remark 1.35 One can determine the elements x2pi+1 from the structure law
ofG as follows. Denote byµ∗ : H∗(G;Q) → H∗(G;Q)⊗H∗(G;Q) the map
induced by the multiplication µ : G×G → G. An element h ∈ H∗(G;Q) is
called primitive if µ∗(h) = 1⊗ h+ h⊗ 1. The set PG of primitive elements
is a vector space and we have H∗(G;Q) ∼= ∧PG. We will not use this in
the sequel and we do not give a proof, instead referring to [113, Theorem
IV, page 167], for instance, for an argument with coefficients in R. This
approach relies on the general result that a commutativeHopf algebra over a
field of characteristic zero is generated, as algebra, by the primitive elements
(see [197]).

Proof of Theorem 1.34 Let us denoteH∗(G;Q) byH and considerQ(H) =
H+/

(
H+ ·H+), the space of indecomposables of the augmentation ideal

H+ = ∑
j>0H

j of the algebraH. We choose a homogeneous basis (xj)1≤j≤r
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of the Q-vector space Q(H). By fixing a section to the canonical surjection
H+ → Q(H), we consider the elements xj as elements of H.

Fact 1: The elements xj are of odd degree. Suppose that some xk is of even
degree and let Hk be the quotient algebra of H by the ideal generated by
the elements xj for j �= k. The canonical map qk : H → Hk is a morphism
of algebras.
Denote by µ∗ : H → H ⊗H the map induced by the multiplication of G

and by µ : H → Hk ⊗Hk the composition of µ with qk ⊗ qk : H ⊗H →
Hk ⊗ Hk. Since the algebra H is finite, we know that an integer l exists
such that xlk �= 0 and xl+1k = 0. Let ρ : G → G × G denote either of the
inclusions g 
→ (g, e) or g 
→ (e, g), where e is the identity element of G.
Then clearly the composition obeys µρ = idG. Therefore, we have, for any
y ∈ H,

µ∗(y) = 1⊗ y+ y⊗ 1+ y′

with y′ ∈ H+ ⊗ H+. This implies µ(xk) = xk ⊗ 1 + 1 ⊗ xk. The map µ,
being a morphism of algebras, gives

µ(xk)
l+1 = (xk ⊗ 1+ 1⊗ xk)

l+1 =
l∑
i=1

(
l + 1
i

)
xik ⊗ xl+1−ik .

On one side, we have µ(xk)
l+1 = µ((xk)

l+1) = 0 and, on the other side,

thanks to the lack of cross-relations inHk⊗Hk, we get
∑l

i=1
(
l + 1
i

)
xik⊗

xl+1−ik �= 0. This contradiction implies Fact 1.

By sending the xj to the chosen elements of the basis and extending this
correspondence multiplicatively, we define a morphism of algebras φ : ∧
(x1, . . . ,xr) → H.

Fact 2: The morphism φ is an isomorphism. By construction, φ is surjective
so we are reduced to establishing its injectivity. Observe that the restriction
of φ to ∧ (x1) is injective. We argue by induction and suppose that its
restriction to ∧ (

x1, . . . ,xk−1
)
is injective. Let a ∈ ∧ (x1, . . . ,xk) be such

that φ(a) = 0. We decompose a into

a = a1 + xk a2,

with a1 and a2 in ∧ (
x1, . . . ,xk−1

)
. We denote by φk the following

composition

∧ (x1, . . . ,xk)
φ

��H
µ∗

��H ⊗H
qk⊗id ��Hk ⊗H.
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From φk(xk) = 1⊗ xk + xk ⊗ 1 and φk(ai) = 1⊗ ai for i = 1, 2, we deduce

0 = φk(a) = 1⊗ a1 + (xk ⊗ 1+ 1⊗ xk)(1⊗ a2).

This implies xk ⊗ a2 = 0 and a2 = 0. From the induction hypothesis, we
now get a = a1 = 0 and the restriction of φ to ∧ (x1, . . . ,xk) is injective as
expected. �

The method used in the previous proof consists essentially in killing
elements by taking quotients of algebras by ideals. This is an important
technical argument in the theory of minimal models as we will see in the
next chapters.
As an illustration, we use Theorem 1.30 to compute the first cohomology

group of a compact Lie group.

Proposition 1.36 Let G be a compact Lie group with associated Lie algebra
g. Then

H1(G;R) ∼= Hom(Z(g),R),

where Z(g) is the center of the Lie algebra g.

Proof Let ω ∈ g∗ be a left invariant 1-form. By definition (see Section A.2)
we have:

dω(X,Y) = Xω(Y) − Yω(X) − ω([X,Y]).
Since the form ω is left invariant, this is also true for the functions ω(Y)

and ω(X). Since left invariant functions are constant, the previous formula
reduces to dω(X,Y) = −ω([X,Y]). Therefore, the form ω is closed if and
only if ω takes the value 0 on [g, g] (i.e. ω ∈ [g, g]⊥).
Now recall the definition of the center of g:

Z(g) = {
X ∈ g | [X,Y] = 0 for any Y ∈ g

}
.

Let F be a positive definite invariant symmetric bilinear form on g (which
exists by Lemma1.38). From F(X, [Y,Z]) = F([X,Y],Z), we see thatX is in
the F-orthogonal complement [g, g]⊥ of [g, g] if and only ifX ∈ Z(g). Thus,
closed left invariant 1-forms are dual to elements of Z(g). Since HL(G) ∼=
H∗(G;R) and left invariant functions are constant, we have the result. �

Remark 1.37 Observe that, in the previous proof, we have established that
[g, g] = g if the center Z(g) of the Lie algebra g is zero.

Lemma 1.38 On any Lie algebra g of a compact Lie group G,
there is a positive definite symmetric bilinear form F : g × g → R
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such that:

1. F(Ad(g)(X), Ad(g)(Z)) = F(X,Z);
2. F([X,Y],Z) = F(X, [Y,Z]) for any triple (X,Y,Z) of elements of g.

Such an F is said to be invariant.

Proof Let F be any positive definite bilinear form on g and set

F(X,Z) =
∫
G
F(Ad(g)(X), Ad(g)(Z))dg,

where Ad(g)(X) = ((DRg)−1 ◦ (DLg))(X). This bilinear form satisfies

F(Ad(g−1)(X),Z) = F(X, Ad(g)(Z))

for any g in G. The result follows now from the fact that the derivative of
Ad(g) is the bracket in g (see Proposition 1.11). �

1.8 Simple and semisimple compact connected
Lie groups

We now come to our first concrete application: the vanishing of the second
Betti number of a compact semisimple Lie group and the determination of
the third Betti number of a simple Lie group. As we note in Remark 1.50,
one can, in fact, do better and prove that the second homotopy group is
zero and the third homotopy group of a simple Lie group is Z. We will
come back to this point in Section 1.11.

Definition 1.39 A connected compact Lie group is simple if it does not
contain any nontrivial connected normal subgroups. A Lie algebra is simple
if it has no proper ideal.

For instance, SU(n) is simple (see Theorem1.53)while U(n) is not because
it contains SU(n) as a normal subgroup.

Remark 1.40 Let G be a Lie group with a simple Lie algebra g. From the
correspondence between normal Lie subgroups of G and Lie ideals of g,
we see that a normal Lie subgroup H �= G of G has dimension zero, so it
is discrete (remembering that it is closed). With a similar argument for the
converse, we have proved that a Lie group is simple if and only if its Lie
algebra is simple.

There exist several equivalent definitions of semisimple Lie group. Since
we are concerned with real cohomology, we use the following.

Definition 1.41 A compact connected Lie group is semisimple if its first
Betti number is zero. That is, H1(G;R) = 0.
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Proposition 1.42 For a connected compact Lie group G, the following
conditions are equivalent:

1. G is semisimple;
2. the fundamental group π1(G) ∼= H1(G;Z) is finite;
3. the center of G is finite;
4. the universal covering group G̃ of G is compact.

Proof The equivalence of (1) and (2) is a direct consequence of the univer-
sal coefficient theorem which implies H1(G;R) = Hom(H1(G;Z),R). As
for the equivalence between (2) and (4), observe that a covering space is
compact if and only if the fiber is finite. The equivalence of (1) and (3) is a
consequence of Proposition 1.36. �

Remark 1.43 Because the Lie algebra associated to the center of G is the
center Z(g) of the Lie algebra g, we observe that the center Z(g) is zero if
g is the Lie algebra of a connected compact semisimple Lie group.

Proposition 1.44 Each simple Lie group is semisimple.

Proof Since the group is simple, its center must be finite and the result
follows from Proposition 1.42. �

A product of two simple Lie groups is an example of a semisimple Lie group
that is not simple.

Theorem 1.45 If G is a compact semisimple Lie group, then the second
Betti number b2(G) is zero. That is, H2(G;R) = 0.

Corollary 1.46 IfG is a compact semisimple Lie group, thenπ2(G)⊗Q = 0.

Theorem 1.45 is a direct consequence of the definition of semisimple Lie
group and of Hopf’s theorem (Theorem 1.34). To emphasize the interrela-
tionship between geometry and homotopy theory, we will give two other
proofs of the theorem, one using the material we have just discussed on
invariant forms and a second one in Section 1.11, using the existence of a
universal bundle for a Lie group (see page 40).

Proof 2 of Theorem 1.45 Suppose α ∈ �2
I (G). By Theorem 1.30, if we

can show that α = 0, then this will imply H2(G;R) = 0. Expressing the
L-invariance of α for a left invariant vector field X gives:

0 = L(X)α = (i(X)d + di(X))α = i(X)dα + di(X)α = di(X)α,

since α is closed. Hence, i(X)α is a closed 1-form. Since G is semisimple,
we have H1(G;R) = 0, so i(X)α is an exact 1-form. That is, there exists
a smooth function f : G → R such that i(X)α = df . By Proposition 1.26,
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we know that i(X)α is left invariant. By Theorem 1.28, left invariant coh-
omology is isomorphic to ordinary cohomology, so i(X)α must be exact by
a left invariant function as well. Therefore (see Remark 1.8), f is constant
and i(X)α = df = 0 for any left invariant vector field X. We show now
that this implies α = 0. For this, let g ∈ G and choose any two vectors
vg, wg ∈ Tg(G). We can find left invariant vector fields V and W with
Vg = vg and Wg = wg simply by left translating vg, wg around G. But
because V is left invariant, we then have

αg(vg,wg) = αg(Vg,Wg) = α(V ,W)(g) = i(V)α(W)(g) = 0

since i(X)α = 0 for all left invariant X. Since g, vg and wg were arbitrary,
we have α = 0. Therefore, no nonzero invariant 2-forms exist on G and
H2(G;R) = 0. �

Proof of Corollary 1.46 Since a compact semisimple Lie group is finitely
covered by a compact simply connected semisimple Lie group, it suffices to
prove the result in the simply connected case. The Hurewicz theorem then
implies that π2(G) ∼= H2(G), so from H2(G;R) = Hom(H2(G),R) = 0,
we deduce that π2(G) is finite. �

Theorem 1.47 If G is a compact semisimple Lie group, then the third Betti
number b3(G) is greater than or equal to one. In the simple case, we have
H3(G;R) = R.

Observe that, as a direct consequence, we have the following.

Corollary 1.48 The only spheres which have a Lie group structure are S0,
S1, S3.

With the same argument as in the proof of Corollary 1.46, we also have
the following.

Corollary 1.49 IfG is a compact semisimple Lie group, thenπ3(G)⊗Q �= 0.
In the simple case, we have π3(G) ⊗ Q = Q.

Remark 1.50 Since we are interested only in the rational or real world, we
are satisfied with the results of Corollaries 1.46 and 1.49. In fact, however,
it is possible to prove that π2(G) = 0, in the semisimple compact case, and
π3(G) = Z in the simple case. The proofs need material that we do not
introduce here:

• for π2(G) = 0, see [32] or [50];
• for π3(G) = Z in the simple compact case, see [36] or [199, Theorem
4.17, page 335].
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We will come back to the case of π2(G) = 0 in Remark 1.82 with a more
homotopical argument.

Proof of Theorem 1.47 Recall first, from Theorem 1.30, that H3(G;R)

is isomorphic to the vector space of invariant 3-forms on G. We follow
the proofs of [107, Problem IV-B] and [41, Section V-12]. The idea is to
transform the problem of finding an invariant 3-form onG into the problem
of finding an invariant symmetric bilinear form on g. Because such a form
exists by Lemma 1.38, we will get the first part of the statement.
Let B(g) be the set of symmetric bilinear forms on g such that

F([Z,X],Y) = F(X, [Z,Y]) for any triple (X,Y,Z) of elements of g. For
such an F, we define ωF by ωF(X,Y,Z) = F([X,Y],Z). We check easily
that ωF ∈ ∧3g∗ ∼= �3

L(G). We prove now that ωF ∈ �3
I (G).

Let g ∈ G. We have, by invariance of F and the definition of ωF:

ωF(Ad(g)(X), Ad(g)(Y), Ad(g)(Z)) = F([Ad(g)(X), Ad(g)(Y)], Ad(g)(Z))

= F(Ad(g)([X,Y]), Ad(g)(Z))

= ωF(X,Y,Z).

Therefore, we have constructed a linear map χ from B(g) to �3
I (G) ∼=

H3(G;R). Since the groupG is semisimple, we know (see Remark 1.37 and
Remark 1.43) that [g, g] = g, which gives the injectivity of χ .
We now have to prove that χ is onto. For that, let ω ∈ �3

I (G) and let
X ∈ g. From L(X) = di(X) + i(X)d, L(X)ω = 0 and dω = 0, we deduce
di(X)ω = 0 with i(X)ω ∈ A2DR(G). By Theorem 1.45, this implies the
existence of a 1-form αX such that i(X)ω = dαX. We define F : g × g → R

by F(X,Y) = αX(Y). From the definition of the coboundary d and the
construction of F, we deduce:

F(X, [Y,Z]) = αX([Y,Z]) = dαX(Y,Z) = i(X)ω(Y,Z) = ω(X,Y,Z).

The invariance of ω and the fact that [g, g] = g implies the invariance of F;
that is,

F(Ad(g)(X), Ad(g)(Y)) = F(X,Y).

We are reduced to proving the symmetry of F. For that, observe that F can
be uniquely decomposed in F1+F2 with F1 symmetric and F2 skew. The F2
gives an invariant 2-form on G which must be zero by Theorem 1.45 and
therefore F is symmetric.
From this first part, we deduce an isomorphism B(g) ∼= �3

I (G). Since
B(g) contains a nontrivial element, we have b3(G) ≥ 1.
We suppose now that G is simple and we prove b3(G) = 1. Let F be

a positive definite invariant bilinear form on g and let F′ ∈ B(g). We
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consider the least value λ of the F′(X,X) when X is such that F(X,X) = 1.
Set F′′(X,X) = λF(X,X) − F′(X,X). The kernel of F′′ is a subspace of
g, invariant under the bracket (since F′′ is invariant). This kernel is not
equal to 0 because λ is reached by F′, so it must be equal to all of g since g

has no proper ideal. We get F′ = λF, which means that the dimension of
B(g) is 1. �

Remark 1.51 Finally, observe that, in the case of a semisimple Lie group
G, the negative of the Killing form

(X,Y) 
→ −trace (ad(X) ◦ ad(Y))

is a nondegenerate bilinear symmetric form on the Lie algebra g. If G is
compact, then it can be shown that this symmetric bilinear form is positive
definite as well. Since G is parallelizable, this then defines a metric on the
tangent bundle. With respect to this metric we can define a Hodge star oper-
ator and obtain a Hodge decomposition of forms on G (see Section A.4).
From [112] and [107], we can see that if G is a compact semisimple Lie
group, then the harmonic forms are the invariant forms.
So, together with Proposition 1.33, the harmonic forms are the left invari-

ant forms which are also L-invariant. Because, L(X) is a derivation, this
implies that, on a compact semisimple Lie group, the wedge product of har-
monic forms is harmonic. This is an unusual property that can be extended
to symmetric spaces (and, in the language of Chapter 2, imbues them with
the property of formality) (see Exercise 3.8). We do not go further in this
direction, instead referring the reader to [107, Propositions 4.4.2 and 4.4.3]
for more details in the semisimple Lie group case.

We end this section with Cartan’s theorem on the classification of simple
Lie groups. Since this lies outside the main subject of this book, we do
not give proofs, and, rather, refer the reader to [2], [112], [199], [214],
[229] and [262] for presentations of this theory. Cartan’s theorem gives a
decomposition of compact connected Lie groups into a product of particular
Lie groups and gives a complete classification of these factors. For this,
semisimple Lie algebras are the key notion because semisimple Lie algebras
allow a global Jordan decomposition for any representation (see [103, page
129]). Since the Lie algebra g of a Lie group G can be decomposed into

g = Z ⊕
k∑
i=1

gi,

where Z is the center of g and gi are simple ideals, the following can be
shown (see [199, page 282]).
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Theorem 1.52 For an arbitrary compact connected Lie group G, there
exists a torus T, compact simple simply connected Lie groups G1, . . ., Gk
and a finite group K contained in the center of T ×G1 × · · ·×Gk such that
the quotient (T ×G1 × · · · ×Gk) /K is isomorphic to G.

In other words, any compact connected Lie group admits a finite sheeted
covering group which is the product of a torus and of simple Lie groups. For
instance, any connected compact Lie group with a trivial center is isomor-
phic to a product of simple compact Lie groups. This is the beginning of the
root system construction. The second part is the classification of compact
connected simple Lie groups.

Theorem 1.53 The following groups are simple:

1. the special unitary groups SU(n1);
2. the special orthogonal groups SO(n2);
3. the symplectic groups Sp(n3);
4. the exceptional Lie groups G2, E6, E7, E8, F4;

and any compact connected simple Lie group is isomorphic to one group of
this list. If we insist that n1 ≥ 2, n2 ≥ 5, n3 ≥ 2, there are no isomorphisms
between two elements of this list.

1.9 Homogeneous spaces

We present the definition of locally trivial fiber bundles here and an impor-
tant tool for their construction, the pullback along a map with values in the
base. Homogeneous spaces are then introduced and studied as examples of
bundles. General references are [112], [145] and [242].

Definition 1.54 A locally trivial fiber bundle of fiber F is a continuous map
p : E → B together with a space F such that B admits a numerable open
cover (Ui) with homeomorphisms ϕi making commutative the following
diagram

Ui × F

p1 ���
��

��
��

��

ϕi

∼=
�� p−1(Ui)

p����
��
��
��
�

Ui

Here p1 is the canonical projection. The space B is called the base and E is
called the total space. The collection (Ui) is called a trivializing open cover
of the base and the homeomorphisms ϕi the local trivializations. If all spaces
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are manifolds and all maps are smooth maps, we say that we have a smooth
locally trivial fiber bundle.
Let p : E → B and p′ : E′ → B′ be two locally trivial fiber bundles.

A morphism between p and p′ is a pair of maps, (ψ ,�), such that the
following diagram commutes

E′ � ��

p′
��

E

p
��

B′
ψ

�� B

If ψ is the identity on B and � a homeomorphism, we say that p and p′ are
in the same isomorphism class of bundles.

Example 1.55

• For any pair of topological spaces, the canonical projection B × F → B
is a locally trivial fiber bundle. We call it the trivial bundle.

• If the base B of the bundle E → B is paracompact Hausdorff, then any
open cover of B is numerable, so the restriction in the definition is really
not important for us throughout the book.

Example 1.56 (Pullback of a locally trivial fiber bundle) If p′ : E′ → B′ is
a locally trivial fiber bundle and ψ : B → B′ is a continuous map, then we
define a topological space

ψ∗E′ = {
(b,x′) ∈ B× E′ | ψ(b) = p′(x′)

} =
⋃
b∈B

({
b
} × p′−1(ψ(b))

)

as a subspace of the product B × E′. The two projections ψ∗E′ j
��E′ ,

(b,x′) 
→ x′, and ψ∗E′ p
��B , (b,x′) 
→ b, are obviously continuous. By

construction, for any commutative diagram

Ê
� ��

p̂
��

E′

p′
��

B
ψ

�� B′

there exists a unique continuous map � : Ê → ψ∗E such that j ◦ � = �

and p ◦ � = p̂. This map � is defined by �(y) = ( p̂(y),�(y)). Therefore,
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our construction ψ∗E′ satisfies a universal property. Moreover, if the map
p′ : E′ → B′ is the canonical projection B′ × F → B′, then we have ψ∗E =
B× F and the map p : ψ∗E′ → B is the trivial bundle on B. We show now
that p : ψ∗E′ → B is a locally trivial fiber bundle with fiber F.
Since p′ is locally trivial, we may choose a trivializing open cover (U′

i)

of B′ together with homeomorphisms ϕ′
i such that the following triangle

commutes

U′
i × F

���
��

��
��

��

ϕ′
i

∼=
�� p′−1(U′

i)

p′����
��
��
��
�

U′
i

Set Ui = ψ−1(U′
i) and consider the diagram,

ψ∗E′ ��

��

E′

p′

��

Ei

		��������
��

��

U′
i × F

��

ϕ′
i



���������

B
ψ

�� B′

Ui

		���������
�� U′

i



���������

where Ei is the pullback construction applied to the trivial fibration U′
i ×

F → U′
i and the map Ui → U′

i induced by ψ . We know, from the remark
above, that the map Ei → Ui can be identified with the canonical projection
Ui × F → Ui. We deduce that the (Ui) define a trivializing open cover of B
and that p : ψ∗E′ → B is a locally trivial fiber bundle, called the pullback
of p′ : E′ → B′ by the map ψ .
In the case of a smooth locally trivial fiber bundle, one has to define a

manifold structure on ψ∗E′ such that the various maps are smooth. This is
a standard procedure (see [112, Proposition VII, page 29]).

Below, we look at certain geometrically important examples of locally
trivial fiber bundles. We shall freely use various properties of bundles such
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as the homotopy lifting property and the existence of the long exact
homotopy sequence. See Exercises 1.9 and 1.10.
In the context of Lie groups, the main examples of locally trivial fiber

bundles come from the notion of homogeneous spaces that we introduce
now. Let H be a closed subgroup of a Lie group G. We denote by G/H the
set of left cosets of H; that is, G/H is the quotient of G by the equivalence
relation

x ∼ y if and only if x−1y ∈ H.
The elements of G/H are denoted by xH for x ∈ G. In particular, H is
the class of the neutral element e of G. We denote by q : G → G/H the
canonical projection.

Definition 1.57 The space G/H constructed above is called a homogeneous
space.

Definition 1.58 Let H be a closed subgroup of G. A local section of H in
G is a continuous map σ : U → G, defined on an open neighborhood U of
H ∈ G/H such that q ◦ σ = idU.

Proposition 1.59 If H is a closed subgroup of G admitting a local section,
then, for any closed subgroup K of H, the canonical projection p : G/K →
G/H, gK 
→ gH is a locally trivial bundle of fiber H/K.

Remark 1.60 The canonical map O(n) → O(n)
O(n− k)

has a local section.

Consider (e1, . . . , en) ∈ O(n); we define an open set U of the quotient as

U =
{
(v1, . . . , vk) ∈ O(n)

O(n− k)

∣∣∣∣ (e1, . . . , en−k, v1, . . . , vk) is a basis of Rn
}
.

From the Gram–Schmidt orthonormalization procedure, if (u1, . . . ,un) is a
basis, an orthonormal basis is constructed byGS(u1, . . . ,un) = (u′

1, . . . ,u
′
n)

with

u′
n = un

‖un‖ , u′
n−1 = un−1 − 〈un−1,u′

n〉u′
n

‖un−1 − 〈un−1,u′
n〉u′

n‖
, . . . .

Therefore, we obtain a section σ : U → O(n) of the canonical projec-
tion defined by σ(v1, . . . , vk) = GS(e1, . . . , en−k, v1, . . . , vk) = (e′1, . . . ,
e′n−k, v1, . . . , vk).
More generally, in the case of a closed subgroup of a Lie group, there

always exists a local section (see [60, 12, Proposition 1]). We do not give
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the proof here. In every concrete example, a local section can be easily
constructed as above.

Proof of Proposition 1.59 Observe first that any local section σ : U → G,
defined on a neighborhood U ofH inG/H, gives a local section σg : gU →
G, σ(g′H) = g.σ(g−1g′H), with domain the neighborhood gU of gH.
Let x ∈ G/H with a local section (U, σ). To satisfy the requirements of

the definition of a locally trivial bundle, one needs maps ϕ and ψ such
that ϕ ◦ ψ = idp−1(U), ψ ◦ ϕ = idU×G/K and the following diagram
commutes

U × (G/K)
ϕ

��

��		
			

			
			

p−1(U) ⊂ G/K

p��

















ψ



U ⊂ G/H

We define ϕ(y,hK) = σ(y)hK, ψ(gK) = (gH, (σ (gH))−1gK) and check
easily that

ϕ(ψ(gK)) = ϕ(gH, (σ (gH))−1gK) = σ(gH).(σ (gH))−1gK = gK,

ψ(ϕ(y,hK)) = ψ(σ(y)hK) = (σ (y)hH, (σ (σ (y)H))−1σ(y)hK),

= (pσ(y), (σ (p(σ (y)))−1σ(y)hK) = (y,hK),

pϕ(y,hK) = p(σ (y)hK) = σ(y)hH = σ(y)H = pσ(y) = y.

�

Our goal later will be to create algebraic models for manifolds and Lie
groups and homogeneous spaces in particular. But the algebraic models we
will consider work best in the simply connected world – or at least in the
nilpotent world (see Definition 2.32 and the discussion that follows). For
Lie groups and homogeneous spaces, this will not present a problem, for
we prove at the end of this section that Lie groups and homogeneous spaces
are simple, and therefore nilpotent, spaces.

Definition 1.61 A space X is said to be simple if its fundamental group is
abelian and acts trivially on the higher homotopy groups of X.

For completeness, we recall the definition of the action of the fundamental
group on the other homotopy groups. Let α ∈ π1(X), ξ ∈ πn(X). The
inclusion of the basepoint s0 ↪→ Sn is a cofibration (see [265] or [240]), so
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there exists a commutative diagram as follows

s0 × 0 ��

��

s0 × I

α

��

��
Sn × 0

ξ ��

�� Sn × I
F

���
������

X

Now, the action of α on ξ , denoted α · ξ is defined to be α · ξ = F(−, 1),
and its homotopy class does not depend on the choice of F.

Proposition 1.62 Suppose H is a connected closed subgroup of a compact
connected Lie group G. Then the homogeneous space G/H is a simple
space. In particular, G itself is a simple space.

In fact, this result holds for any topological group or, more generally, for
any so-called H-space.

Proof Denote the quotient map by q : G → G/H. We use the trivial class
H as base point for G/H. Let α ∈ π1(G/H), ξ ∈ πn(G/H). Since H is
connected, there is a surjection q# : π1(G) → π1(G/H), so choose some
α̃ : I → G with α̃(0) = α̃(1) = e and q(̃α(t)) = α(t). (The equality can be
achieved since q satisfies the homotopy lifting property, see Exercise 1.9.)
Now, by using the left action of G on G/H, we define a map F making the
diagram commute: F(x, t) = α̃(t) ξ(x). Observe F(x, 0) = ξ(x), F(x, 1) =
ξ(x) and

F(s0, t) = α̃(t) ξ(s0) = α̃(t)H = α(t).

The last equality shows that F makes the diagram commute. Moreover, we
see that F(−, 1) = ξ . Hence, α · ξ = ξ and the action is trivial. �

Example 1.63 Consider the following examples:

1. Tori Tn have π1(Tn) = Zn, but are simple spaces.
2. The special orthogonal groups SO(n) have π1(SO(n)) = Z/2, but are

simple spaces.
3. The projective spaceRP(2n) is known not to be simple (i.e. the antipodal

map on the universal covering S2n has degree−1), but we haveRP(2n) =
O(2n+1)/(O(2n)×O(2)). Note that the subgroupH is not connected.
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Remark 1.64 The special case H = T, where T is a maximal torus of G, is
easier to handle because there is a Bruhat decomposition of G/T showing
that a CW-structure for G/T has cells only in even dimensions. Hence,
the homogeneous space G/T is simply connected. A proof using regular
elements can be found in [199, page 277]. Also, compare Exercise 1.5.

1.10 Principal bundles

In this section, we define principal bundles with structure group a Lie group
G (also called principal G-bundles). Since the pullback of a principal G-
bundle is a principal G-bundle, we look for a principal G-bundle p : E →
B which is universal in the following sense: any principal G-bundle over
a space B′ can be obtained as a pullback of p along a map B′ → B. A
characterization of such bundles is proved by using the notion of CW-
complexes. Other examples will be developed in Section 1.12.

Definition 1.65 Let G be a Lie group. A principal bundle with structure
group G (or principal G-bundle) is a locally trivial bundle p : E → B with
fiber the Lie group G, together with a right action E×G → E, (x, g) 
→ xg,
of G on E and a trivializing open cover of B, (Ui,ϕi), such that ϕi(x, g ·g′) =
ϕi(x, g)g′, for any x ∈ E, g, g′ ∈ G.
If all spaces are manifolds and all maps are smooth maps, we call the

principal bundle a smooth principal bundle with structure group G (or
smooth principal G-bundle).

Observe that the previous definition makes sense for a topological group
instead of a Lie group G.

Remark 1.66 As the reader can easily check, if p : E → B is a principal
G-bundle then the right action of G on E is free. Reciprocally, if G is a
Lie group that acts freely and properly on a manifold M, the canonical
projection M → M/G is a principal G-bundle, see [113, pages 193 and
229].

Example 1.67 (1) For any space B, the canonical projection B×G → B is
a principal G-bundle, called the trivial principal G-bundle.
(2) If H is a closed subgroup of a Lie group G, the canonical map G →

G/H is a principal H-bundle.

Definition 1.68 A morphism between two principal G-bundles is a pair of
maps, (ψ ,�), such that � is compatible with the G-action (i.e. �(xg) =
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�(x)g) and the following diagram commutes

E′ � ��

p′
��

E

p
��

B′
ψ

�� B

Definition 1.69 A principal G-bundle p : E → B is trivial if there exists a
morphism of principal bundles

B×G
f

��

p′
��

E

p
��

B B

where B×G → B is the canonical projection.

Observe that, together with Exercise 1.11, if a principalG-bundle is trivial,
the map f of Definition 1.69 is a homeomorphism.

Proposition 1.70 Let G be a Lie group and let p : E → B be a principal
G-bundle. If p admits a section, then p is trivial.

Proof Denote by σ the section of p and let B × G → B be the canonical
projection. We construct a morphism of principal G-bundles

B×G
� ��

��

E

p
��

B B

by �(x, g) = σ(x) · g. The triviality follows by definition. �

Example 1.71 (Pullback of a principalG-bundle) LetG be a Lie group and
p : E → B be a principal G-bundle. Let ψ : B′ → B be a continuous map.
Recall from Example 1.56 the construction of the pullback of p, denoted
p′ : ψ∗E → B′. This is a locally trivial fiber bundle with fiber G. We define
a free right action of G on ψ∗E by (x, g)h = (x, g · h). This gives ψ∗E the
structure of principal G-bundle and we call p′ : ψ∗E → B′ the pullback
principal G-bundle of p : E → B along the map ψ . The same construction
gives a smooth principalG-bundle if p : E → B and ψ : B′ → B are smooth.
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Observe, from Exercise 1.11, that for any morphism of principal G-
bundles,

E′ � ��

p′
��

E

p
��

B′
ψ

�� B

the domain E′ is in the isomorphism class of ψ∗E.
Let p : E → B be a fixed principalG-bundle. Using Example 1.71, to any

map f : X → B we can associate a principalG-bundle over X. In fact, if we
consider the isomorphism classes of principal G-bundles, this association
depends only on the homotopy classes of maps (see Exercise 1.8). Denote
by kG(X) the set of isomorphism classes of principal G-bundles over X.
What we have described above is a correspondence

[X,B] → kG(X), [f ] 
→ f ∗E.

We can ask whether there exist principal G-bundles p : E → B for which
this association is an isomorphism (compare with [145], [74, Classification
Theorem], [242]). This will elicit the notion of classifying space BG of
G developed in Section 1.11. Because classifying spaces are not naturally
manifolds (although, by [77], they can be viewed as manifolds of infinite
dimension), we must leave the framework of manifolds and enter that of
CW-complexes. This is still convenient for our study because any compact
manifold is a CW-complex, as classical Morse theory shows (see [195]),
and also because two simply connected compact Lie groups are isomorphic
if they are homotopy equivalent (see [231]).

Definition 1.72 Let G be a Lie group. A principal G-bundle p : E →
B is an n-universal G-bundle if the association given above, [X,B] →
kG(X), is an isomorphism for any CW-complex X of dimension ≤ n.
A universal principal G-bundle is an n-universal principal G-bundle for
every n.

Universal principalG-bundles can be characterized by the following result.

Theorem 1.73 A principal G-bundle p0 : E0 → B0 is n-universal if and
only if the space E0 is (n− 1)-connected.

This criterion will give us the existence of universal G-bundles for the
classical examples of Lie groups (see Section 1.12). For instance, in the
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case of G = S1 or G = S3 we can explicitly find universal bundles as
follows.

Example 1.74 Consider the classical action of the circle S1 on S2n+1 ⊂ Cn+1
given by the complex multiplication (z1, . . . , zn+1)z = (z1 · z, . . . , zn+1 · z).
The quotient is the complex projective space and we have a principal S1-
bundle, S2n+1 → CP(n), which is (2n + 1)-universal by Theorem 1.73.
The canonical inclusions CP(1) ⊂ CP(2) ⊂ · · · ⊂ CP(n) ⊂ · · · and S1 ⊂
S2 ⊂ · · · ⊂ Sn ⊂ · · · define spaces CP(∞) = ∪nCP(n) and S∞ = ∪nSn.
The principal S1-bundle S∞ → CP(∞) is a universal S1-bundle since S∞ is
contractible.
By using the quaternionic multiplication on S3, we get a (4n+3)-universal

principal S3-bundle, S4n+3 → HP(n), and a universal principal S3-bundle,
S∞ → HP(∞).

Proof of Theorem 1.73 Part 1. Suppose that p0 : E0 → B0 is n-universal
and let f : Sk → E0 be a representative of a homotopy class in πk(E0),
k ≤ n − 1. We consider the following morphism of principal G-bundles
(which is therefore a pullback),

Sk ×G
� ��

��

E0

p0
��

Sk
ψ

�� B0

defined by ψ = p0 ◦ f and �(x, g) = f (x)g. The pullback of p0 along ψ

being trivial, the map ψ must be homotopically trivial by the injectivity part
of the hypothesis and there is an extension ψ : Dk+1 → B0 of ψ . From the
surjectivity part of the hypothesis, we now get the following morphism of
principal G-bundles

Dk+1 ×G
� ��

��

E0

p0
��

Dk+1
ψ

�� B0

Using the injectivity part again gives the following sequence of morphisms
of principalG-bundles where the maps Sk → Dk+1 and Sk×G → Dk+1×G



36 1 : Lie groups and homogeneous spaces

are the canonical injections:

Sk ×G ��

��

Dk+1 ×G
� ��

��

E0

p0
��

Sk �� Dk+1
ψ

�� B0

The restriction of � to Dk+1 × {e} is an extension of f : Sk → E which
implies that f is nullhomotopic.
Part 2. Suppose now that p0 : E0 → B0 is a principal G-bundle such that
πk(E0) = 0 for k ≤ n−1. We proceed by induction on the dimension of the
CW-complex X, the statement obviously being true if X is of dimension 0.
We suppose the result to be true for any CW-complex L of dimension less
than or equal to k− 1 with k ≤ n. We attach a k-cell to L by a map χ :

Sk−1
χ

��L
j

��X = L ∪Dk.

For proving the surjectivity part of the statement, we consider a principalG-
bundle p : E → X. The pullback ( j◦χ)∗E being trivial, we have a morphism
(χ ,χ) from the trivial bundle to j∗E. The induction hypothesis (surjective
part) applied to j∗E → L gives a morphism (ψL,�L) of principalG-bundles
as in the following diagram

Sk−1 ×G

����
���

���
��

χ
��

��

j∗E

��







��

�L �� E0

p0

��

Dk ×G

��

�� E

p

��

�
��

Sk−1

����
���

���
���

χ
�� L

ψL ��

j ��






B0

Dk �� X

ψ

��

Since the map�L◦χ(−, e) : Sk−1 → E0 is trivial by assumption, there exists
an extension � : Dk → E0 of it. We now extend � to a map �̃ : Dk×G →
E0 using the action of G (i.e. �̃(x, g) = �(x)g). Since the total space E is
the pushout of j∗E and Dk ×G over Sk−1 ×G, we construct a morphism
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(�,ψ)from p to p0 as follows.

• if x ∈ p−1(y), y ∈ L, then �(x) = �L(x), ψ(y) = ψL(y);
• if x ∈ p−1(y), y ∈ Dk, then �(x) = �̃(χ−1(x)), ψ(y) = p0(�(y)).

Now, Exercise 1.11 implies that ψ∗E0 and E are in the same isomorphism
class.
For proving the injectivity part of the statement we consider two maps

ψ1, ψ2 : X → B0 giving two isomorphic bundlesψ∗
1E0,ψ

∗
2E0. By induction,

the maps ψ1 ◦ j and ψ2 ◦ j are homotopic. The homotopy lifting property
gives a map FL : L×[0, 1] → E0 such that p0 ◦FL is the previous homotopy
between ψ1 ◦ j and ψ2 ◦ j.

Sk−1 × [0, 1]
χ×id

��

��

L× [0, 1]
FL

����
���

���
���

���
�

��
X × [0, 1] F �� E0

p0
��

Dk × [0, 1]

���������������� F′

��

B0

From πk−1(E0) = 0, we deduce the homotopy triviality of the composition
FL ◦ (χ × id) and, therefore, the existence of an extension F′ : Dk×[0, 1] →
E0. By the construction ofX as a pushout, we get a map F : X×[0, 1] → E0
making the previous diagram commutative. The composition p0 ◦ F is a
homotopy between ψ1 and ψ2. �

Remark 1.75 John Milnor constructed a universal bundle for any topolog-
ical group. In short, the construction goes like this:

• the total space EG is the infinite join, EG = G ∗G ∗G ∗ · · · ;
• G acts onEG diagonally by (g1, g2, . . .)g = (g1 ·g, g2 ·g, . . .). By definition,
the space BG is the quotient EG/G.

Milnor proves that EG → BG is a universalG-bundle. For more details, see
[145, Chapter 4, Section 11] or [193]. Here, we do not need this generality.
In Section 1.12, we explicitly construct the classifying spaces forG = O(n),
G = U(n) and G = Sp(n). Since any compact Lie group is isomorphic to a
subgroup of the orthogonal group, the existence of a classifying space for
O(n) implies the existence of a classifying space for any compact Lie group.

Remark 1.76 In terms of G-spaces and in the case n = ∞, Theorem 1.73
can also be proved by establishing the following property (see [74, 7.7]): If
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E is a freeG-space and E′ a contractibleG-space, then there exists aG-map
E → E′ and any two such maps are G-homotopic.

1.11 Classifying spaces of Lie groups

Here we give the definition of the classifying space of a compact Lie group
and determine its cohomology algebra with rational coefficients. We use
this classifying space to give a new, more homotopical, proof of the fact
that the second Betti number of a semisimple Lie group is always equal
to 0 (see Theorem 1.45).

Definition 1.77 If G → EG → BG is a universal principal G-bundle, the
space BG is called the classifying space of the Lie group G.

Note that, because EG is contractible, the long exact homotopy sequence
of the bundle gives πi(G) ∼= πi+1(BG). In fact, �(BG) � G, where �(BG)

here denotes the loop space of BG.

Remark 1.78 From Remark 1.75, one knows that such spaces exist. The
uniqueness of their homotopy type is guaranteed by the following result.
Two compact Lie groupsG andH are isomorphic if and only if the classify-
ing spacesBG andBH are homotopy equivalent (see [204], [210, Section 6],
[211], [218]).

For concrete constructions of classifying spaces, the following observation
will be of use.

Example 1.79 Let G be a compact connected Lie group and H be a closed
subgroup ofG. Denote byG → EG → BG a universal principalG-bundle.
The subgroup H acts freely on EG and gives a principal H-bundle H →
EG → EG/H. Since the homotopy groups of EG are trivial, this fibration
is a universal principal H-bundle. That means we can take EG/H to be the
classifying space BH.

Proposition 1.80 G/H → BH → BG is a fibration.

Proof As in Proposition 1.59, we have a fibration G/H → EG/H →
EG/G. The result follows now with BH = EG/H and BG = EG/G. �

Theorem 1.81 Let G be a compact connected Lie group with cohomol-
ogy algebra an exterior algebra, H∗(G;Q) = ∧(u1, . . . ,ur), where ui ∈
H2ni−1(G;Q). Then the classifying space for G has for cohomology algebra
a polynomial algebra, H∗(BG;Q) = Q[v1, . . . , vr] with vi ∈ H2ni(BG;Q).

Recall from Hopf’s theorem (Theorem 1.34) that the cohomology alge-
bra H∗(G;Q) is always an exterior algebra on odd degree generators for
any compact connected Lie group G. We present two different proofs for
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Theorem 1.81. The first one, due to Borel [33], consists of a careful analy-
sis of a spectral sequence. In the second one, we keep track of spaces more
carefully. As the reader will see, this process simplifies the technical part
of the argument. A third approach, using the construction of the minimal
model of a loop space �X from the minimal model of X, will be presented
in Example 2.67.

Proof 1 of Theorem 1.81 Consider the Serre spectral sequence, with coef-
ficients in Q, of the principal bundle G → EG → BG. Note that the
hypotheses of the theorem guarantee that BG is simply connected. There-
fore, the Serre spectral sequence has simple coefficients and the second page
has the formEp,q2 = Ep,02 ⊗E0,q2 = (∧(u1, . . . ,ur))p⊗Hq(BG;Q)which satis-
fies the hypothesis of the Zeeman–Moore theorem (see Theorem B.15). We
know from Theorem 1.73 that the page E∞ is reduced to Q in degree 0.
Suppose, for a moment, that the ui satisfy the following property:

(T ) djui = 0 for j ≤ 2ni − 1 and d2ni(ui) = vi �= 0,

where the dj are the differentials in the spectral sequence.
Now define a cochain algebra∧(u1, . . . ,ur)⊗Q[v1, . . . , vr]with dui = vi,

|ui| = 2ni − 1, |vi| = 2ni. Observe that the sub-differential algebras
(∧(ui)⊗Q[vi],d) are acyclic. Therefore the cohomology of ∧(u1, . . . ,ur)⊗
Q[v1, . . . , vr] is reduced to Q in degree 0. We filter by the degree in
the vi’s and get a spectral sequence E

p,q
r whose second page is E

p,q
2 =

(∧(u1, . . . ,ur))p ⊗ (Q[v1, . . . , vr])q.
The canonical map sending ui to ui and vi to vi gives a morphism of spec-

tral sequences (E
p,q
n ,dn) → (Ep,qn ,dn). This morphism satisfies conditions

(1) and (3) of Theorem B.15. Therefore, condition (2) is satisfied also and
H∗(BG;Q) ∼= Q[v1, . . . , vr].
Elements which satisfy property T are called transgressive and the proof

of the fact that the ui’s are transgressive is one important point in the proof
of Borel [33]. We do not go further in this direction. �

In the second proof we deal with spaces and do not work only at the level of
spectral sequences. Recall that each spaceX has an associated path fibration

�X → PX
p→ X, where PX consists of all continuous paths γ : I → X

having γ (0) = x0, for a fixed basepoint x0 ∈ X, and p(γ ) = γ (1). Then
the fiber p−1(x0) consists of all paths with γ (0) = x0 = γ (1). This is
the loop space of X, �X. It is easy to see that PX is contractible, so the
long exact homotopy sequence of the fibrations (see Exercise 1.10) gives
πi(�X) ∼= πi+1(X). The following proof applies the Serre spectral sequence
to the path fibration.

Proof 2 of Theorem 1.81 We prove the next property by induction on
r: Let X be a connected simple space whose loop space �X has rational
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cohomology algebra an exterior algebra H∗(�X;Q) = ∧(u1, . . . ,ur) with
ui of odd degree 2ni − 1. Then H∗(X;Q) = Q[v1, . . . , vr] is a polynomial
algebra with |vi| = |ui| + 1.
Since the space X is simple (see Proposition 1.62), it admits a ratio-

nalization (see Subsection 2.6.1) and, since we are interested only in
rational cohomology, we may replace X by its rationalization. However,
for convenience, we still denote the rationalization by X in this proof.
If r = 1, we take the argument of the first proof above. Obviously the

element u1 must satisfy the property T and we get the result. Suppose now
that the result is true for r− 1 generators and let X be as in the statement.
If u1 is an element of lowest positive degree among the ui’s, it must be a
transgressive element, and we denote by v1 ∈ H2n1(X;Q) the image of u1
by d2n1 . This class v1 corresponds to a map ϕ(v1) : X → K(Q, 2n1). Denote
by Y the homotopy fiber of ϕ(v1) and take the following Puppe fibration
sequence (see [137] or [265], for instance)

�Y ���X
�ϕ(v1) ��K(Q, 2n1 − 1) ��Y ��X

ϕ(v1) ��K(Q, 2n1).

Now, the fibration �Y ���X ��K(Q, 2n1 − 1) is trivial because the
map �ϕ(v1) admits a section (see Exercise 1.12).
We thus get H∗(�X;Q) = ∧(u1) ⊗ H∗(�Y;Q). By quotienting out the

ideal generated by ∧(u1), we deduce that H∗(�Y;Q) = ∧(u2, . . . ,ur).
We apply the induction hypothesis to Y and obtain H∗(Y;Q) =

Q[v2, . . . , vr]. Consider the Serre spectral sequence of the fibration
Y ��X ��K(Q, 2n1) . Its second page is E2 = Q[v1] ⊗ Q[v2, . . . , vr].
Being totally concentrated in even degrees, all the differentials must be zero
and we see that H∗(X;Q) = Q[v1] ⊗ Q[v2, . . . , vr] = Q[v1, v2, . . . , vr]. �

We now use the existence of the classifying space of a Lie group for a
third proof of Theorem 1.45. Let G be a compact semisimple Lie group.
Recall that, in Corollary 1.46, we proved π2(G)⊗ Q = 0. As we will see in
Remark 1.82, this third proof, which is more homotopical in spirit, in fact
points the way toward the more general result that π2(G) = 0.

Proof 3 of Theorem 1.45 Since a compact semisimple Lie group is finitely
covered by a compact simply connected Lie group, it suffices to prove the
result in the simply connected case. TheHurewicz theorem then implies that
π2(G) ∼= H2(G), so in order to showH2(G;R) = Hom(H2(G),R) = 0, we
need only to show that π2(G) is finite.
Now, π2(G) ∼= π3(BG), where BG is the classifying space of G. Because

π2(G) = H2(G) is finitely generated, we have a splitting π2(G) = F ⊕ T,
where F is free abelian and T is the torsion subgroup. Let f ∈ F be a
generator of the free abelian part of π2(G) considered as an element in
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π3(BG) and use f : S3 → BG to induce a principal G-bundle P → S3 by
pulling back the universal one. There is an associated Puppe sequence

. . . → �S3
∂→ G → P → S3

f→ BG

which is exact on homotopy groups. Furthermore, the connecting map ∂ is
simply the loop of the classifying map f up to homotopy: �f � ∂. We have
the following commutative diagram:

Z = π3(S3)
f# ��

∼=
��

π3(BG)

∼=
��

Z = π2(�S3)
∂# �� π2(G)

from which it follows that ∂#(x) = f , where x generates Z = π2(�S3) =
H2(�S3). Because f represents a generator of F in π2(G) = H2(G), we can
define a homomorphism φ : H2(G) → Z as follows: Write the generators
of F as {f = f1, f2, . . . , fk} and take

φ(f ) = 1, φ(fj) = 0 for j �= 1, φ(T) = 0.

Now,H2(G;Z) ∼= Hom(H2(G),Z), so φ is an element of degree 2 cohomol-
ogy. Moreover, the induced homomorphism ∂∗ : H2(G;Z) → H2(�S3;Z)

has the following effect on the generator x ∈ H2(�S3;Z) ∼= π2(�S3) = Z:

∂∗(φ)(x) = φ(∂∗(x)) = φ(f ) = 1,

which implies that ∂∗(φ) = x̄, where x̄ ∈ H2(�S3;Z) = Hom(H2(�S3),Z)

is defined by x̄(x) = 1. But, from Example B.11, we see that the cup product
powers x̄m are nonzero for all m ≥ 1. Thus

0 �= x̄m = (∂∗(φ))m = ∂∗(φm)

which implies that φm �= 0 for all m in the finite dimensional manifold G.
This contradiction then shows that f = 0. Hence H2(G) = T, the torsion
part, and H2(G;R) = 0. �

Remark 1.82 In fact, a theorem due to S. Weingram allows us to show
the stronger result π2(G) = 0. Weingram’s theorem (see [263]) says that
a map f : �S2n+1 → K(A, 2n) which has 0 �= f∗ : H2n(�S2n+1;Z) →
H2n(K(A, 2n);Z) is incompressible; that is, f does not factor through
a finite complex. In Proof 3 of Theorem 1.45, if the classifying map
τ : S3 → BG represents a torsion element of π2(G) = H2(G), then
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for some pr, where p is a prime, there is a dual cohomology class τ̂ ∈
Hom(H2(G),Z/pr) ⊆ H2(G;Z/pr). Because, in general, Hk(X;A) ∼=
[X,K(A,k)] (where [X,K(A,k)] denotes the set of homotopy classes
of maps), we obtain the following homotopy commutative diagram by
focusing on the connecting map in the Puppe sequence

�S3
φ

��

∂ ���
��

��
��

�
K(Z/pr, 2)

G
τ̂

������������

Here, with ι ∈ H2(K(Z/pr, 2);Z/pr) the fundamental class, we have φ∗(ι) =
∂∗τ̂ ∗(ι) = ∂∗τ̂ , so ∂∗ pulls back τ̂ ∈ H2(G;Z/pr) into H2(�S3;Z/pr). By
the same argument as before, this class in H2(�S3;Z/pr) is nontrivial. By
Weingram’s theorem, this is impossible because G is a compact manifold.
Therefore, no such class τ can exist and π2(G) = 0.

1.12 Stiefel and Grassmann manifolds

We will now define Stiefel and Grassmann manifolds and compute their
cohomology. We deduce from this determination the universal fibrations
associated to O(n), U(n), Sp(n). In Proposition 1.87, a particular case of
a “model of a fibration” is also given. This is a prototype of the relative
models developed in Chapter 2.

Example 1.83 (Stiefel manifolds) We denote the Stiefel manifolds by, for
1 ≤ k < n,

Vn,k(R) = O(n)
O(n− k)

= SO(n)
SO(n− k)

,

Vn,k(C) = U(n)
U(n− k)

= SU(n)
SU(n− k)

,

Vn,k(H) = Sp(n)
Sp(n− k)

,

and Vn,n(R) = O(n), Vn,n(C) = U(n), Vn,n(H) = Sp(n). As particular
cases, we get Vn,1(R) = Sn−1, Vn,1(C) = S2n−1, Vn,1(H) = S4n−1. Stiefel
manifolds Vn,k(−) are isomorphic to the spaces of orthonormal k-frames
in the respective Rn, Cn, Hn.
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Example 1.84 (Grassmann manifolds) We denote the Grassmann mani-
folds by, for 1 ≤ k < n:

Gn,k(R) = O(n)
O(k) ×O(n− k)

,

Gn,k(C) = U(n)
U(k) × U(n− k)

,

Gn,k(H) = Sp(n)
Sp(k) × Sp(n− k)

.

As particular cases, we get Gn,1(R) = RP(n− 1), Gn,1(C) = CP(2n− 1),
Gn,1(H) = HP(4n− 1). Grassmann manifolds Gn,k(−) are isomorphic to
the spaces of k-dimensional subspaces in the respective Rn, Cn, Hn.

Before the statement, we recall that ∧(V) (Q[V]) denotes the exterior
(polynomial) algebra generated by the Q-vector space V . Such a vector
space is sometimes represented by a basis, V = (x1, . . . ,xk).

Proposition 1.85 The cohomology algebras of complex and quaternionic
Stiefel manifolds are described by:

H∗(Vn,k(C);Q) = ∧ (
x2(n−k)+1, . . . ,x2n−1

)
with x2i−1 ∈ H2i−1(Vn,k(C);Q);

H∗(Vn,k(H);Q) = ∧ (
y4(n−k)+3, . . . , y4n−1

)
with y4i−1 ∈ H4i−1(Vn,k(H);Q).

By using the particular cases Vn,n(C) = U(n), Vn,n(H) = Sp(n) and
Theorem 1.81, one gets the following result immediately.

Corollary 1.86 The unitary and symplectic groups and their classifying
spaces have for cohomology algebras:

H∗(U(n);Q) = ∧ (x1,x3, . . . ,x2n−1) with x2i−1 ∈ H2i−1(U(n);Q);

H∗(SU(n);Q) = ∧ (x3, . . . ,x2n−1) with x2i−1 ∈ H2i−1(SU(n);Q);

H∗(Sp(n);Q) = ∧ (y3, y7, . . . , y4n−1) with y4i−1 ∈ H4i−1(Sp(n);Q);

H∗(BU(n);Q) = Q [c1, c2, . . . , cn] with ci ∈ H2i(BU(n);Q);

H∗(BSU(n);Q) = Q [c2, . . . , cn] with ci ∈ H2i(BSU(n);Q);

H∗(BSp(n);Q) = Q [q1,q2, . . . ,qn] with qi ∈ H4i(BSp(n);Q).

A locally trivial fiber bundle, with a numerable trivializing open cover of
the base (see [74]), is a fibration, so the bundle satisfies the homotopy lifting
property (see Section 2.5.2 and Exercise 1.9). For the total space of a fibra-
tion, Sullivan theory supplies a nice algebraic model which contains models
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of the base and of the fiber. As an aperitif, we now present a particular case,
sufficient for our study of Stiefel and Grassmann manifolds.

Recall first, from Corollary B.13, that a bundle Sk ��E
p

��B induces
an exact sequence, called the Gysin sequence,

Hj(B;Q)
δ �� Hj+k+1(B;Q)

p∗
�� Hj+k+1(E;Q) �� Hj+1(B;Q) . . .

where δ(x) = x ∪ e for some e ∈ Hk+1(B;Q).

Proposition 1.87 Let S2n+1 ��E
p

��B be a fibration such that the class
e ∈ H2n+2(B;Q) appearing in the Gysin sequence is zero. Then we have an
isomorphism of algebras

H∗(B;Q) ⊗ ∧y
∼= ��H∗(E;Q),

where y is of degree 2n+ 1.

Proof The Gysin exact sequence splits into short exact sequences:

0 ��Hj(B;Q)
p∗

��Hj(E;Q)
σ ∗

��Hj−2n−1(B;Q) ��0.

We choose a class y ∈ H2n+1(E;Q) such that σ ∗(y) = 1 and define a cochain
map

� : H∗(B) ⊗ ∧y → H∗(E)

by �(ω) = p∗(ω) if ω ∈ H∗(B) and �(y) = y. Because y is of odd degree,
the map � is an isomorphism of algebras. �

Remark 1.88 In [112, page 320], the class e is defined as the Euler class
of the bundle. In the case of a sphere bundle, this class coincides with the
pullback of the Thom class along the zero section (see [41, Theorem 13.2,
page 390]). A third equivalent definition of Euler class will be given in
Example 1.96.

Proof of Proposition 1.85 Let n ≥ 1 be an integer. For k = 1, we have
Vn,1(C) = S2n−1 and the statement is true. We now use induction on k by
supposing that the formula is true for k− 1. We consider the fibration

S2(n−k)+1 ��Vn,k(C) ��Vn,k−1(C) .

By the induction hypothesis, the Euler class in H2(n−k)+2(Vn,k−1(C);Q) is
zero. The result follows directly from Proposition 1.87. The argument is
similar for the symplectic Stiefel manifolds. �
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In the real case, the proof works also by induction on k, using the fibration

Sn → SO(n+ k)/SO(n) → SO(n+ k)/SO(n+ 1),

but one needs to determine the Euler class of this fibration. We do not give
the proof here, referring the reader to [199, page 121].

Proposition 1.89 The real Stiefel manifolds have for cohomology algebras:

H∗(Vn+k,k(R);Q) = ∧ (
z2n+1, z2n+5, . . . , z2n+2k−3

)
, n odd,k even,

= ∧ (
z2n+1, z2n+5, . . . , z2n+2k−5, zn+k−1

)
, n odd,k odd,

= ∧ (
zn, z2n+3, z2n+7, . . . , z2n+2k−3

)
, n even,k odd,

= ∧ (
zn, z2n+3, z2n+7, . . . , z2n+2k−5, zn+k−1

)
,

n odd,k even,

with zi ∈ Hi(Vn+k,k(R);Q).

Noting the particular cases Vn,n(R) = O(n) and using Theorem 1.81, we
deduce the following.

Corollary 1.90 The orthogonal groups and their classifying spaces have for
cohomology algebras:

H∗(SO(2m);Q) = ∧ (z3, z7, . . . , z4m−5, z2m−1) ,
H∗(SO(2m+ 1);Q) = ∧ (z3, z7, . . . , z4m−1) ,
H∗(BSO(2m);Q) = Q [p1,p2, . . . ,pm−1,χ ] ,

H∗(BSO(2m+ 1);Q) = Q [p1,p2, . . . ,pm] ,

with zi ∈ Hi(SO(−);Q), pi ∈ H4i(BSO(−);Q), χ ∈ H2m(BSO(2m);Q).

Remark 1.91 The results of Proposition 1.85 and Corollary 1.86 are true
for cohomology with coefficients in Z, since these cohomology groups have
no torsion (see [199, page 119]). This is not the case for the real Stiefel
manifolds; their cohomology has 2-torsion. Being concerned here only with
coefficients in a field of characteristic zero, we refer the reader to [199, page
121] for an explicit description of the cohomology with coefficients in Z2.

As a direct consequence of the previous computations and Theorem 1.73,
we obtain the following.

Proposition 1.92

1. The principal O(k)-bundle, Vn+k,k(R) → Gn+k,k(R), is n-universal.
2. The principal U(k)-bundle, Vn+k,k(C) → Gn+k,k(C), is (2n + 1)-
universal.
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3. The principal Sp(k)-bundle, Vn+k,k(H) → Gn+k,k(H), is (4n + 3)-
universal.

Corollary 1.93 Set V∞,k = ∪nVn+k,k and G∞,k = ∪nGn+k,k for the fields
R, C and H. Then the three following principal fibrations are universal:

V∞,k(R) → G∞,k(R), for G = O(k);

V∞,k(C) → G∞,k(C), for G = U(k);

V∞,k(H) → G∞,k(H), for G = Sp(k).

Remark 1.94 For the universal fibrations associated to SO(n) and SU(n),
it is necessary to introduce the spaces of oriented vector subspaces:

SGn,k(R) = O(n)/SO(k) ×O(n− k) and SGn,k(C) = U(n)/SU(k)

× U(n− k).

See [145, Theorem 6.1 of Chapter 4].

Definition 1.95 Let p : E → B be a principal G-bundle with classifying map
ψ : B → BG. A characteristic class of p is an element of ψ∗H∗(BG;R) ⊆
H∗(B;R), for a commutative ring R. Since we work with coefficients in Q,
we consider only rational characteristic classes.

Example 1.96 We list here the characteristic classes corresponding to the
different Lie groups of matrices.

• For a U(n)-bundle, the characteristic classes are generated by the image
of the classes ci ∈ H∗(BU(n);Q) = Q[c1, . . . , cn]. These are called Chern
classes.

• For a SO(2m+ 1)-bundle, the characteristic classes are generated by the
image of the classes pi ∈ H∗(BSO(2m + 1);Q) = Q[p1, . . . ,pm]. These
are called Pontryagin classes.

• For a SO(2m)-bundle, the characteristic classes are generated by the image
of the Pontryagin classes just defined, and the universal Euler class χ ∈
H2m(BSO(2m);Q).

• For Sp(n), the characteristic classes are generated by the image of the
classes qi ∈ H4i(BSp(n);Q). These are called symplectic Pontryagin
classes.

When the bundle Sr → E → B has SO(r + 1) as structural group, the
notion of Euler class introduced in Remark 1.88 from the Gysin sequence
may be identified with the definition of this section (see [145, Proof of
Theorem 6.5, page 103]). In the case of S1 = SO(2), one has BS1 = CP∞ =
K(Z, 2) and the Euler classwith coefficients inZ is the image of the generator



1.13 The Cartan–Weil model 47

of H2(K(Z, 2);Z) (see Section 6.5 for a description of the relation between
the Euler class and the flatness of the associated vector bundle).
One can also observe some relations between characteristic classes com-

ing from different inclusions between Lie groups (see [198, page 176]
for a description of them). For instance, the canonical inclusion U(m) ⊂
SO(2m + 1) gives a map ψ : BU(m) → BSO(2m + 1) which induces in
cohomology ψ∗(pj) = ∑

r+s=j(−1)rcrcs ∈ H4j(BU(m) [199, page 144].

1.13 The Cartan–Weil model

Once the rational cohomology of Lie groups was determined, calculating
the cohomology of general homogeneous spaces became an important goal.
The combined work of Cartan, Chevalley and Weil after World War II
provided an algebraic model whose cohomology was the cohomology of the
homogeneous space under consideration. This is the genesis of the theory of
minimal models which is the subject of Chapter 2. Indeed, we shall give the
minimal model version of the Cartan–Weil model in Theorem 2.71. Here
we want to both generalize and particularize the Cartan–Weil model for
homogeneous spaces. We generalize the model by describing an algebraic
model for an action of a Lie group on a space.We particularize by taking the
simplest example: the action of a circle on a manifold. The advantage of the
original Cartan–Weil model over newerminimalmodels is that we can often
see more geometry in the Cartan–Weil model because it is constructed from
forms. (In particular, there are models based on harmonic forms and the
Hodge decomposition which often are more computable; see, for instance,
[11].) Our treatment is essentially that of [15].
In Theorem 1.28, we saw that, if a compact connected Lie group G acts

on a closed manifold M, then H∗(M;R) = H∗
L(M), where H∗

L(M) is the
cohomology of the complex of left invariant forms. While this is an inter-
esting result, there is a more important cohomology associated to a group
action. This is the equivariant cohomology defined as follows. As we saw
above, there is a universal principal bundle G → EG → BG with a free
right action of G on EG and BG = EG/G. If G also acts onM, then there
is a free right action of G on EG ×M given by g(e,m) = (eg−1, gm). The
quotient is then

MG
def= EG×G M = (EG×M)/G,

and there is a fibration (called the Borel fibration),

M → MG
p→ BG

where p([e,m]) = [e].
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Definition 1.97 The equivariant cohomology ofMwith respect to an action
of G on M is defined to be

H∗
G(M) = H∗(MG).

Any coefficients may be used in the definition. For instance, we will be
interested in either H∗

G(M;Q) or H∗
G(M;R). The equivariant cohomology

is important because it gives information not only about M, but about the
G-action also. While the Borel fibration will be studied extensively from
topological and algebraic perspectives in Section 7.2, here we want to hint
at how Lie group actions lead to topology and, especially, algebraic models.
Since we are only interested here in motivating the models of Chapter 2,

let’s take a special case of a smooth action of S1 on a closed manifold M.
For a fixedm ∈ M, the orbit map S1 → M given by g 
→ gm induces a linear
map TeS1 → TmM with Xθ 
→ Xm, where Xθ is a basis for TeS1 = R, the
Lie algebra of S1. Doing this for every m ∈ M produces a vector field X on
M called the fundamental vector field of the action. As such, we can form
the operators i(X) and L(X) (see Section A.2).
TheWeil algebra W of the circle is

W = ∧(θ ,u) = Exterior(θ) ⊗ Polynomial(u),

where θ is in degree 1 and u is in degree 2. A differential D is defined on
W by declaring Dθ = u and Du = 0. Notice that the cohomology of this
differential graded algebra is zero (except for H0(W) = R). We mention
here that the Weil algebra can be defined for other Lie groups also using the
structure constants of the associated Lie algebra to describe the differential.
We can extend the action of the operators i(X) and L(X) from the de Rham
algebra ADR(M) to the complexW ⊗ ADR(M) as follows. OnW , define

i(X)θ = 1, i(X)u = 0, L(X)θ = 0, L(X)u = 0.

In fact, the general definition for L(X) is L(X) = i(X)D +Di(X) and the
equations above hold in the S1 case.

Definition 1.98 The basic subcomplex �B(M) ⊂ W ⊗ADR(M) consists of
all elements α with i(X)α = 0 and L(X)α = 0.

Of course, a similar definition holds for general compact connected G.
The fundamental result that we shall not prove in the present framework is
(in its general form, see [15]),
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Theorem 1.99 If there is a smooth action of a connected compact Lie group
G on a closed manifold M, then

H∗(�B(M)) ∼= H∗
G(M;R).

So �B(M) is, in some sense, a model for the total space of the Borel
fibration, MG. Clearly, however, it is not a particularly tractable model.
Below, we shall find a better and more intuitive model.
Let’s specialize to an S1-action for simplicity. Any element ofW⊗ADR(M)

has the form ω = ∑
k u

kak + ∑
j θu

jbj where k and j are non-negative
integers and ak, bj ∈ ADR(M). The next result identifies the basic elements.

Proposition 1.100 Using the notation above, an element ω ∈ W⊗ADR(M)

is basic if and only if L(X)ak = 0 and i(X)ak = −bk for each k.
Proof First, recall that we extended i(X) and L(X) toW⊗ADR(M) above.
Now, since i(X) and L(X) are graded derivations, we have

i(X)ω =
∑
k

uk(i(X)ak) +
∑
j

(ujbj − θuji(X)bj) = 0,

L(X)ω =
∑
k

uk(L(X)ak) +
∑
j

θuj(L(X)bj) = 0.

Now note that the uk and ukθ are algebraically independent over ADR(M).
Hence (using the standard facts that i(X)2 = 0 and i(X)L(X) = L(X)i(X)),
the equations above are seen to be equivalent to those of the statement of
the proposition. �

Now we can begin to simplify our model for equivariant cohomology.
While the basic forms tell us what we need to know, they are unwieldy
because of the condition i(X)α = 0. We might reasonably ask what this
has to do with the action. The forms that should be important are the
forms that are invariant under the flow along orbits. These are, of course,
identified with the forms that are annihilated by L(X). Therefore, let �X =
{α ∈ ADR(M) |L(X)α = 0}. As we have said, these are the forms that
are invariant under the circle action. Adjoin a degree 2 generator u to �X
to obtain an algebra �X[u] = �X ⊗ R[u] and an algebra homomorphism
φ : �X[u] → W ⊗ ADR(M) defined by φ(α) = α − θ i(X)α and φ(u) = u.

Lemma 1.101 The image of φ lies in the basic subalgebra �B(M).

Proof We must show that L(X)φ(α) = 0 and i(X)φ(α) = 0, for α ∈ �X.
We compute (again using the extensions of i(X) and L(X) toW ⊗ADR(M)
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and the relations i(X)2 = 0, L(X)i(X) = i(X)L(X)).

L(X)φ(α) = L(X)(α − θ i(X)α)

= L(X)α − (L(X)θ)i(X)α − θL(X)i(X)α

= 0− 0− θ i(X)L(X)α = 0,

where we have used the fact that L(X)α = 0 since �X consists of invariant
forms. Similarly, since i(X)θ = 1, we have

i(X)φ(α) = i(X)(α − θ i(X)α)

= i(X)α − (i(X)θ)i(X)α + θ i(X)i(X)α

= i(X)α − i(X)α + 0 = 0.

�

It is not difficult to see that, in fact, the equations of Proposition 1.100
imply that φ is an algebra isomorphism onto its image,

φ : �X[u] ∼=→ �B(M).

Therefore, we obtain a differential dX on �X[u] by transporting the differ-
ential on W ⊗ ADR(M) back via φ−1. By definition, we have φdX = Dφ,
where D is a differential defined as follows. On the Weil algebra, D is the
differential we defined above: Dθ = u and Du = 0. On ADR(M), D is
simply the exterior derivative d.
Now let’s compute to see what dX has to be. Suppose α ∈ �X. Using

L(X)α = di(X)α + i(X)dα = 0, we obtain the following.

Dφ(α) = D(α − θ(i(X)α))

= dα − u(i(X)α) + θd(i(X)α)

= dα − ui(X)α − θ i(X)dα

= φ(dα − ui(X)α),

since φ(dα) = dα − θ i(X)dα and

φ(ui(X)α) = φ(u)φ(i(X)α) = u(i(X)α − θ i(X)i(X)α) = ui(X)α.

Therefore, in order for Dφ = φdX to hold, we should define dX(u) = 0
and, for α ∈ �X,

dXα = dα − ui(X)α.

Thus we see that φ : (�X[u],dX) → (�B(M),D) is an isomorphism of
differential graded algebras. Hence, we have the following result.
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Theorem 1.102 Suppose G = S1 acts smoothly on a closed manifold
M. The Cartan–Weil model is the complex (�X[u],dX), where �X is the
subcomplex of ADR(M) consisting of G-invariant forms, u is a degree
2 generator and the differential is defined by dXu = 0 and dXα =
dα − ui(X)α, for α ∈ �X. The Cartan–Weil model is isomorphic to the
basic complex (�B(M),D) ofW⊗ADR(M) and this isomorphism induces an
isomorphism

H∗(�X[u],dX) ∼= H∗(�B(M),D) ∼= H∗(MS1).

Thus, the Cartan–Weil model calculates the equivariant cohomology
associated to the action of G onM.

Remark 1.103 The equation dXα = dα − ui(X)α says something inter-
esting. Although α is an invariant form, even if it is closed, this does not
mean that α is equivariantly closed (i.e. dX-closed). For that, we also require
i(X)α = 0 – and this is exactly a basic form in the model �B(M).

Remark 1.104 The models can be directly related to the geometry of the
Borel fibration. The homomorphism �X[u] → ADR(M) obtained by eval-
uating u = 0 is a model for the fiber inclusion M → MS1 . Integration over
the fiber is expressed on �X[u] by akuk 
→ (

∫
ak)u

k.

Remark 1.105 The whole discussion above extends to the action of a
torus Tn on a closed manifold M. In this case the model for MTn is
�∗
X1,...,Xn

[u1, . . . ,un], where the Xi are fundamental vector fields corre-
sponding to a basis for the Lie algebra Rn of Tn and the ui are all in degree
2. The differential dX is given by dXα = dα − ∑

k uki(Xk)α.

The differential graded algebra (�X[u],dX) is a “model” for the minimal
models we shall describe in Chapter 2. Indeed, we shall see a distinct resem-
blance to the relative minimal models that describe the rational homotopy
structure of fibrations. Namely, the algebra (�X,d) comes from the man-
ifold M (while also including information about the action), the degree 2
generator u comes from BS1 since H∗(BS1;R) = R[u] and the differential
dX on �X[u] is a perturbation of the differential d by a term involving the
action. This is a way to construct a model of the total space of the Borel
fibration M → MS1 → BS1 starting from the base and fiber; indeed, these
are the types of ingredients found in the theory of minimal models that
we will present in the next chapter and that will occupy and intrigue us
throughout this book.
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Exercises for Chapter 1

Exercise 1.1 (1) Prove the existence of the following isomorphisms of Lie groups:

Spin(3) ∼= S3, Spin(4) ∼= S3 × S3, Spin(5) ∼= Sp(2), Spin(6) ∼= SU(4),

SO(2) ∼= S1, SU(2) ∼= Sp(1).

Hint: [199, page 82–84].
(2) Prove the existence of homeomorphisms of topological spaces:

SO(3) ∼= RP(3), SO(4) ∼= S3 × SO(3).

Exercise 1.2 The special linear group, SL(n,R), is the subgroup of Gl(n,R) formed
by the isomorphisms of determinant 1.
(1) Show that SL(n,R) is a Lie group of dimension n2−1 and has for Lie algebra

the set, sl(n,R), of n× n matrices of trace 0.
(2) Prove that SO(n,R) is the maximal compact subgroup of SL(n,R). In fact,

show

SO(n,R) × R
n(n−1)
2 +n−1 ∼= SL(n,R).

(3) Define the group SL(n,C) and prove:

• SL(n,C) is a Lie group of dimension 2n2 − 2;

• SU(n) × Rn
2−1 ∼= SL(n,C).

Hint: see [113, Chapter 2] and [199, page 34].

Exercise 1.3 The real symplectic group is defined as

Sp(n;R) = {
A ∈ Gl(2n,R) | tAJnA = Jn

}
,

where Jn =
(

0 −In
In 0

)
.

(1) Show that Sp(n,R) is a Lie group of dimension n(2n + 1) and has for Lie
algebra the set, sp(n,R), of 2n× 2n real matrices A such that JnAJ−1n = − tA.
(2) Prove that U(n) is the maximal compact subgroup of Sp(n,R);

U(n) × Rn(n+1) ∼= Sp(n,R).

(3) Define the group Sp(n,C) and prove:

• Sp(n,C) is a Lie group of dimension 2n(n+ 1);

• Sp(n) × Rn(2n+1) ∼= Sp(n,C);

• Sp(n) ∼= Sp(n,C) ∩U(2n).

Hint: see [113, Chapter 2] and [199, page 34].

Comment: What we call the symplectic group, denoted by Sp(n), is the orthogonal
group of the quaternions. The real and complex symplectic groups, Sp(n,R) and
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Sp(n,C), are the groups of isomorphisms which respect a symplectic form. Since
we are mainly interested in compact Lie groups, these last two will not appear in
the rest of the book and there will be no confusion in terminology.

Exercise 1.4 Determine themaximal torus and theWeyl group of the spinor groups,
Spin(n). Hint: see [145, 14-8].

Exercise 1.5 Let G be a compact connected Lie group. Denote by Z(g)e the
connected component of the centralizer of g ∈ G containing the neutral element.
(1) Show that Z(g)e is the union of the maximal tori containing g.
(2) An element g ∈ G is called regular if g belongs to just one maximal torus.

Otherwise, it is called singular. Show that g is regular if and only if the dimension
of Z(g) is equal to the rank of G. Hint: see [199, page 267].

Comment: From the existence of a smooth map f : M → G such that dim M =
dim G− 3 and such that f (M) is the set of singular elements of G (this set is not a
manifold!), one can deduce that π2(G) = 0; see [135, Theorem 4.7, page 260] or
[113, Problem 34-35, page 108].

Exercise 1.6 Let G be a compact connected Lie group and let K be a closed con-
nected subgroup of G. Let σ be a smooth automorphism of G such that σ 2 = id.
Denote by (Gσ )e the connected component of the fixed point setGσ of σ containing
the unit e. The pair (G,K) is called a symmetric pair if (Gσ )e ⊂ K ⊂ Gσ . In this
case, the quotient G/K is called a symmetric space.
(1) Show that (U(p+q),U(p)×U(q)) is a symmetric pair. Give other examples.

(See [199, page 147].)
(2) Show that a symmetric space is parallelizable.
(3) Let (G,K) be a symmetric pair. The groupG acts on the left onG/K. Denote

by g and k the Lie algebras of G and K respectively and by k⊥ the orthogonal
complement of k in g∗.
Show that the cohomology H∗(G/K;R) is isomorphic, as an algebra, to the

invariant set of ∧k⊥. Hint: in the proof for a semisimple Lie group, replace the
inverse map by the automorphism σ .

Exercise 1.7 Let G be a compact connected Lie group with Lie algebra g. Recall
the existence of an isomorphism χ : �L(G) ∼= ∧g∗ defined by χ(ω) = ωe. If X is a
left invariant vector field, we also know that �L(G) is stable by the coboundary d,
the interior multiplication i(X) and the Lie derivative L(X). Let � ∈ ∧pg∗ and let
(X,X0,X1, . . . ,Xp) be elements of g. We set:

(i(X)�)(X1, . . . ,Xp−1) = �(X,X1, . . . ,Xp−1).

(θ(X)�)(X1, . . . ,Xp) = −
p∑
i=1

�(X1, . . . , [X,Xi], . . . ,Xp).

(δ�)(X0, . . . ,Xp) =
∑
i<j

(−1)i+j�([Xi,Xj],X0, . . . , X̂i, . . . , X̂j, . . . ,Xp).

Prove that these operators are the respective images of d, i(X) and L(X) by the
isomorphism χ . Hint: [113, page 156].
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As a consequence, we haveH∗(G;R) ∼= H∗(∧g∗, δ) ∼= ∧(g∗)θ=0. The cohomology
H∗(∧g∗, δ) is called the cohomology algebra of the Lie algebra g.

Exercise 1.8 Suppose B is paracompact.
(1) If p′ : E′ → X × [0, 1] is a locally trivial fiber bundle and it : X → X × [0, 1],

x 
→ (x, t) the canonical injections, show that i∗0E
′ ∼= i∗1E

′. Hint: [145, Chapter 4].
(2) Let p : E → B be a locally trivial fiber bundle and f0, f1 : X → B two

continuous maps. If f0 is homotopic to f1 show that f ∗
0E

∼= f ∗
1E.

Exercise 1.9 Let p : E → B be a locally trivial fiber bundle over a paracompact base
B. Suppose we have the following commutative diagram of continuous maps:

Y × {0}
f

��

j
��

E

p

��
Y × [0, 1]

H
��

K

����������
B.

Then prove that there exists a continuousmapK : Y×[0, 1] → E such that p◦K = H
and K|Y×{0} = f . This property is called the homotopy lifting property. Hint: Use
Exercise 1.8.

Exercise 1.10 Let p : E → B be a locally trivial fiber bundle of fiber F.
(1) Show that the induced map πi(E,F) → πi(B) is an isomorphism.
(2) Prove the existence of a long exact sequence

. . . ��πj(F) ��πj(E)
p∗

��πj(B)
δ ��πj−1(F) �� . . .

Hint: Use Exercise 1.9 and the long homotopy exact sequence of a pair.

Exercise 1.11 Let G be a Lie group. Consider a morphism between principal G-
bundles:

E′
f

��

p′
��

E

p

��
B B

Then show that the map f is a homeomorphism. Hint: [145, Theorem 3.2, page 43].

Exercise 1.12 Let �F �� �E
�p

�� �B be the loop space fibration on a

fibration F → E → B. If�p admits a section, show that�E has the homotopy type
of �B × �F (simply as spaces). Hint: Use the section to construct a morphism of
bundles �B× �F → �E.
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Exercise 1.13 Show thatH-spaces are simple (see Example 2.46 for the definition).
Hint: Proposition 1.62.

Exercise 1.14 If H is a maximal rank connected subgroup of a compact connected
Lie group G, show that the homogeneous space G/H is simply connected. Hint:
Consider the commutative diagram of fibrations,

T ��

=
��

H ��

��

H/T

��
T �� G �� G/T ,

and use the fact that H/T and G/T are simply connected.



2
Minimal models

A minimal model is a particularly tractable kind of commutative differen-
tial graded algebra (cdga) that can be associated to any nice cdga or to any
nice space. The word “minimal” emphasizes that, at least in many cases
of interest, the model is calculable. The amazing feature of minimal mod-
els of spaces is their ability to algebraically encode all rational homotopy
information about a space. This is, of course, why minimal models are
important.
This chapter includes definitions and the main properties of algebraic

notions related to minimal models. In particular, the link between Algebra
and Topology is explained as it is presented in the Preface. As an illustration,
we list some correspondences between a space X (simply connected, for the
sake of simplicity, and with finite Betti numbers) and its minimal model
MX = (∧V ,d):
• the rationalized homotopy groups, πi(X) ⊗ Q, are dual to the graded
vector spaces Vi;

• the algebraic construction of MX mirrors a well-known topological
construction called the Postnikov decomposition of a space;

• the Ganea fibrations which appear in Lusternik–Schnirelmann category
correspond to the filtration of ∧V by the wedge length ∧≥nV .

Another crucial definition is given in this chapter: the notion of a for-
mal space. Formal spaces are those spaces whose minimal models can be
constructed directly from their cohomology algebras. In Chapter 4, we will
prove that Kähler manifolds are always formal. In this way, we get an
obstruction to the existence of a Kähler metric on a complex manifoldM at
the level of the rational homotopy type ofM. As another geometric exam-
ple, we will see in Chapter 3 that, among nilmanifolds, only the tori are
formal.
Sections 2.1 and 2.2 are concerned with the basic definitions and proper-

ties of our algebraic tools: cdga’s, models, minimal models and homotopy
between morphisms of cdga’s. This technical notion of homotopy cannot
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be avoided. First, we need it to prove the uniqueness up to isomorphism of a
minimal model. Secondly, while a rational homotopy type is detected by an
isomorphism class of aminimalmodel, it is not the same formaps. The ratio-
nal homotopy type of a map corresponds to a homotopy class of algebraic
morphisms (and not a class of algebraic morphisms up to isomorphism).
Section 2.3 includes the construction of aminimalmodel of a cdga and the

important notion of relative minimal model. In Section 2.4, we provide the
link between topological spaces and cdga’s beginning with the R-minimal
model of a manifold and giving the analogue of the de Rham algebra for
topological spaces, the APL(−) construction. Subsection 2.4.3 contains a
list of concrete examples of minimal models of spaces.
Section 2.5 is devoted to some particular relations between homotopy

invariants and minimal models. This includes the tensoring with Q of the
homotopy groups, the Postnikov tower, and the statement of theDichotomy
theorem. Further, we relate the material of Chapter 1 to that of the present
chapter by showing how to calculate models of locally trivial bundles,
principal bundles and homogeneous spaces in Subsection 2.5.2.
The notion of formality is defined and studied in Section 2.7. We give

there the construction of the bigraded model and of the obstructions to
formality. These results and techniques will be used several times in the
following chapters, particularly in Chapters 3 and 4.
In this chapter, we do not give the full proofs of all results, but, rather,

concentrate on the main ideas, concrete examples and applications. For
details of these proofs, the reader is referred to the original paper of Sullivan
[246], or to expository books on the subject such as [38], [87], [116], [170]
and [248].

2.1 Commutative differential graded algebras

We begin with a series of definitions that form the foundation for everything
that we will do concerning algebraic models.

Definition 2.1 Let lk be a field of characteristic zero. A graded lk-vector
space is a family of vector spaces A = {An}n≥0 indexed by the non-negative
integers. The elements belonging to An are called homogeneous elements of
degree n and we write |x| = n if x ∈ An. We say that A is of finite type if
each An is finite dimensional.

Definition 2.2 The suspension sV of the graded vector space V is the graded
vector space defined by (sV)n = Vn+1 for all n. More generally, for any
r ∈ Z, srV = s(sr−1V) satisfies (srV)n = Vn+r.
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Definition 2.3 A differential graded lk-algebra (a lk-dga or a dga for short),
(A,d), is a graded lk-vector space A = {An}n≥0 together with a multiplica-
tion Ap ⊗ Aq

·−→ Ap+q that is associative with a unit 1 in A0, and a linear
differential d : An → An+1 that is a derivation:

d(a · b) = d(a) · b+ (−1)|a|a · d(b) .
A morphism of dga’s f : (A,d) → (B,d) consists of a family of linear

maps f : An → Bn that satisfy df = fd and f (a · b) = f (a) · f (b).
Definition 2.4 A commutative graded algebra (a cga for short) is a graded
algebra A whose multiplication is commutative in the graded sense; that is,
for homogeneous elements a and b,

a · b = (−1)|a|·|b| b · a.

Definition 2.5 A commutative differential graded algebra (a cdga for short)
is a differential graded algebra (A,d) whose multiplication is commutative.

For instance the de Rham algebra of differential forms on a mani-
fold M, ADR(M), is an R-cdga. Any smooth map between manifolds
f : M → N induces at the level of differential forms a morphism of cdga’s:
ADR(f ) : ADR(N) → ADR(M). An example of a Q-cdga is given by the
rational cohomology of a space X equipped with the zero differential,
(H∗(X;Q), 0). A third example is given by the cochain algebra ∧g∗ on
a Lie algebra g (Definition 1.5, Exercise 1.7).

Definition 2.6 The commutative graded algebra A is called free commuta-
tive if A is the quotient of TV, the tensor algebra on the graded vector space
V, by the bilateral ideal generated by the elements a⊗ b− (−1)|a|·|b|b⊗ a,
where a and b are homogeneous elements of A.

As an algebra, A is the tensor product of the symmetric algebra on Veven

with the exterior algebra on Vodd:

A = Symmetric(Veven) ⊗ Exterior(Vodd) .

We denote the free commutative graded algebra on the graded vector space
V by ∧V . Note that this notation refers to a free commutative graded alge-
bra and not necessarily to an exterior algebra alone. For instance, when G
is a compact connected Lie group, its rational cohomology is a free com-
mutative graded algebra, H∗(G;Q) ∼= ∧(x1, . . . ,xn) (Theorem 1.34) and
the cohomology of its classifying space is also a free commutative graded
algebra H∗(BG;Q) ∼= ∧(v1, . . . , vn) = Q[v1, . . . , vn] (Theorem 1.81).
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Note that, in the case of cohomology, or when we want to emphasize that
the cga is polynomial, we may write Q[V] as well as ∧V .
We usually write ∧V = ∧(xi), where xi is a homogeneous basis of V . We

denote by ∧rV the vector space generated by the products x1 · · ·xr with the
xi in V . We also write ∧+V = ⊕n≥1 ∧n V and ∧≥qV = ⊕n≥q ∧n V . The
elements of ∧≥2V are referred to as decomposable elements.
Clearly the cohomology of a dga is a graded algebra, and the cohomology

of a cdga is a commutative graded algebra. A morphism of dga’s inducing
an isomorphism in cohomology will be called a quasi-isomorphism. For
instance if G is a compact connected Lie group and M is a compact left
G-manifold, then by Theorem 1.28, the injection of left invariant forms,
�L(M) ↪→ ADR(M), is a quasi-isomorphism.
Among the cdga’s, some have more interesting properties than others.

This is the case for the so-called Sullivan cdga’s and minimal cdga’s.

Definition 2.7 A Sullivan cdga is a cdga (∧V ,d) whose underlying algebra
is free commutative, with V = {Vn }, n ≥ 1, and such that V admits a basis
xα indexed by a well-ordered set such that d(xα) ∈ ∧(xβ)β<α.

Definition 2.8 A (Sullivan) minimal cdga is a Sullivan cdga (∧V ,d)
satisfying the additional property that d(V) ⊂ ∧≥2V.

Note that, if (∧V ,d) is a cdga such that V = V≥2, then it is a Sullivan
cdga.
It is quite easy to construct minimal cdga’s. If (∧V ,d) is a minimal cdga

and a ∈ (∧V)n is a cocycle and a decomposable element, then we construct
a new minimal cdga by introducing a new generator x in degree n− 1 and
putting dx = a. This gives the minimal cdga

(∧(V ⊕ lkx),d) .

By iterating this process, we can easily construct a lot of minimal cdga’s.
For instance, (∧(x, y, z),d) with |x| = |y| = 2, |z| = 3, dx = dy = 0 and
dz = x2 − y2 is automatically a Sullivan minimal model.

Remark 2.9 Let (∧V ,d) be a Sullivan cdga. Denote by d0 the linear part
of the differential d, d0 : V → V , and note that d0 is a differential. If
x is a generator with d0x �= 0, then the ideal I generated by x and dx
is acyclic and the quotient (∧V/I, d̄) is also a Sullivan cdga of the form
(∧W ,d). Therefore, in this way we can construct, by induction, a sequence
of quasi-isomorphisms between a Sullivan cdga and a minimal one. Taking
this into account, non-minimal Sullivan cdga’s often are sufficient to answer
whatever homotopy questions we have in mind.
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The prototype of a Sullivan cdga is the tensor product of a minimal cdga
with a tensor product of cdga’s of the form (∧(xi, yi),d) where dxi = 0 and
dyi = xi. In fact, each Sullivan cdga has that form.

Proposition 2.10 ([87, Theorem 14.9]) Each Sullivan cdga is isomorphic
to the tensor product of a minimal cdga and a tensor product of acyclic
Sullivan cdga’s of the form (∧(xi, yi),d) with dxi = 0 and dyi = xi.

Definition 2.11 An augmented cdga is a cdga (A,dA) together with
a morphism ε : (A,dA) → (lk, 0) that induces an isomorphism
H0(ε; lk) : H0(A,dA) → lk. The morphism ε is called the augmentation.

For instance, the choice of a point x in a connected manifold M defines,
by evaluation at x, an augmentation

εx : ADR(M) → (R, 0) .

When (A,dA) is a cdga with an augmentation ε, then the kernel of ε,
denoted Ā, is a differential ideal. The indecomposables of an augmented
cdga (A,dA) is the quotient complex Q(A) = Ā/(Ā · Ā) with the induced
differential Q(dA).
WhenA0 = lk, then (A,dA) admits a unique and canonical augmentation,

and Q(A) = A+/(A+ · A+). When (A,dA) = (∧V ,d) is a Sullivan cdga,
we always consider the evaluation ε defined by ε(V) = 0. We then have
an isomorphism (Q(∧V),Q(d)) ∼= (V ,d0), where d0 is the linear part of
the differential (see Remark 2.9). Each morphism f : (∧V ,d) → (∧W ,d)
between Sullivan cdga’s induces a morphism of complexes

Q(f ) : (Q(∧V),Q(d)) → (Q(∧W),Q(d)) .

We then have the very useful

Proposition 2.12 ([87, Proposition 14.13]) Let f : (∧V ,d) → (∧W ,d) be
a morphism between Sullivan cdga’s. Then f is a quasi-isomorphism if and
only if Q(f ) is a quasi-isomorphism.

Corollary 2.13 If f : (∧V ,d) → (∧Z,d) is a quasi-isomorphism between
minimal cdga’s, then f is an isomorphism.

Proof Since f is a quasi-isomorphism, Q(f ) is a quasi-isomorphism. Since
the cdga’s are minimal, Q(d) = 0. This means that the restriction of f to
the indecomposable elements is an isomorphism. This implies directly that
f is an isomorphism. �
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2.2 Homotopy between morphisms of cdga’s

We denote by (∧(t,dt),d) the cdga generated by two elements t and dt
in respective degrees 0 and 1 with differential d(t) = dt and d(dt) = 0.
This cdga is acyclic; that is, H0(∧(t,dt),d) = lk and Hp(∧(t,dt),d) =
0 for p > 0. Let pi : (∧(t,dt),d) → (lk, 0), i = 0, 1, denote the quasi-
isomorphisms defined by pi(t) = i and pi(dt) = 0. The cdga (∧(t,dt),d)
has to be understood as an algebraic analogue of the algebra of de Rham
forms on the interval [0, 1]. This analogy is the basis for the following
definition.

Definition 2.14 Two morphisms of cdga’s, f , g : (A,d) → (B,d), are
homotopic (i.e. f � g), if there is a map of cdga’s

H : (A,d) → (B,d) ⊗ (∧(t,dt),d)

such that p0 ◦H = f and p1 ◦H = g.

When (A,d) = (∧V ,d) is a Sullivan cdga, the homotopy relation � is
an equivalence relation on the space of maps from (∧V ,d) to (B,d) ([87,
Proposition 12.7]). The set of homotopy classes of maps between the cdga’s
(∧V ,d) and (B,d) is denoted by [(∧V ,d) , (B,d)].
Lemma 2.15 (Lifting lemma) Let (∧V ,d) be a Sullivan cdga, f : (A,d) →
(B,d) be a quasi-isomorphism of cdga’s, and ϕ : (∧V ,d) → (B,d) be a
morphism of cdga’s. Then there is a morphism of cdga’s ψ : (∧V ,d) →
(A,d) such that f ◦ ψ is homotopic to ϕ.

(A,d)

f
��

(∧V ,d)

ψ
�����������

ϕ
�� (B,d)

Lemma 2.16 Let (∧V ,d) be a Sullivan cdga, f , g : (∧V ,d) → (A,d) two
morphisms of cdga’s, and h : (A,d) → (B,d) be a quasi-isomorphism. If
hf � hg, then f � g.

Lemma 2.15 and Lemma 2.16 can be rephrased as the following global
statement.

Theorem 2.17 (see [87, Proposition 12.9]) Let (∧V ,d) be a Sullivan
cdga and suppose f : (A,d) → (B,d) is a quasi-isomorphism. Then the
composition with f induces a bijection on the set of homotopy classes
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of maps

[∧V , f ] : [(∧V ,d) , (A,d)] → [(∧V ,d) , (B,d)] .
There is another way to define an homotopy relation between morphisms

of cdga’s. Let (∧V ,d) be a Sullivan cdga. Define the vector spaces V̄ and V̂
by (V̄)n = Vn+1 and (V̂)n = Vn.We then form the Sullivan cdga (∧(V⊕V̄⊕
V̂),D)withD(v) = dv,D(v̂) = 0 andD(v̄) = v̂. The injection i : (∧V ,d) →
(∧(V ⊕ V̄ ⊕ V̂),D) is then a quasi-isomorphism.
We define a derivation s of degree -1 of the algebra ∧(V ⊕ V̄ ⊕ V̂) by

putting s(v) = v̄, s(v̄) = s(v̂) = 0. The derivation θ = sD+Ds is a derivation
of degree 0 such that for each element u there is some p with θp(u) = 0.
Therefore we can consider the automorphism eθ of ∧(V ⊕ V̄ ⊕ V̂),

eθ = Id+ θ + θ2/2+ θ3/6+ · · · =
∑
n

θn

n! .

Observe that eθ (z) is always a finite sum for any z. Since θ(v̂) = 0, the
formula simplifies to

eθ (v) = v + v̂ +
∑
n≥1

(sd)n(v)
n! .

Definition 2.18 Two morphisms of cdga’s, f , g : (∧V ,d) → (B,d), are left
homotopic, if there is a map of cdga’s H : (∧(V⊕ V̄⊕ V̂),D) → (B,d) such
that f = H ◦ i and g = H ◦ eθ .
The main advantage of left homotopy is the facility of construction of

homotopies. If f : (∧V ,d) → (B,d) is a morphism of cdga’s, and if g : V̄ →
B is a linear map, then we obtain a morphism of cdga’s F : (∧(V ⊕ V̄ ⊕
V̂),D) → (B,d) defined by F(v) = f (v), F(v̄) = g(v̄) and F(v̂) = d(g(v̄)).
The map F is a left homotopy between f and F ◦ eθ . Moreover the two
definitions of homotopy are the same when the source is a Sullivan cdga.

Proposition 2.19 Two morphisms of cdga’s, f , g : (∧V ,d) → (B,d), are
left homotopic if and only if they are homotopic.

Proof We first consider the projection π : (∧(V ⊕ V̄ ⊕ V̂),D) → (∧V ,d)
defined by π(v) = v, π(v̄) = 0, and π(v̂) = 0. Then by Lemma 2.16, the
morphisms eθ and i : (∧V) → (∧(V⊕V̄⊕V̂),D) are homotopic because π ◦
eθ = π ◦ i and π is a quasi-isomorphism. It follows that two left homotopic
maps are homotopic.
Conversely suppose that f , g : (∧V ,d) → (B,d) are homotopicmapswith

homotopy given by

H : (∧V ,d) → (B,d) ⊗ (∧(t,dt),d) .
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Wedenote by F the composition of f with the canonical injection (B,d) →
(B,d) ⊗ (∧(t,dt),d),

F : (∧V ,d) → (B,d) ⊗ (∧(t,dt),d) .

We note that the ideal I = B⊗∧+(t,dt) is an acyclic ideal and that Im(H−
F) ⊂ I. Therefore, by Lemma 2.20, F and H are left homotopic. The same
is true for f = p1 ◦ F and g = p1 ◦H. �

Lemma 2.20 Let f and g be two morphisms from a Sullivan cdga (∧V ,d)
into a cdga (B,d). Suppose I is an acyclic ideal in B such that for each v ∈ V,
f (v) − g(v) ∈ I. Then f and g are left homotopic.
Proof Suppose V1 = 0 for the sake of simplicity. We construct a left homo-
topy between f and g by induction on the degree of a homogeneous basis
of V . We suppose we have defined H(v) and H(v̄) for v ∈ V≤n with
H(v) = f (v), H(v̄) ∈ I and g(v) = H(eθ (v)). Let x ∈ Vn+1. The ele-
ment g(x)− f (x)−H

(∑
n≥1

(sd)n(x)
n!

)
is a well defined cocycle in I. There is

therefore an element u ∈ I such that d(u) = g(x)− f (x)−H(
∑

n≥1
(sd)n(x)

n! ).
We then extend H linearly to Vn+1 ⊕ (V̄)n by putting H(x) = f (x) and
H(x̄) = u. This extension has the required properties. �

We end this section with some particular properties of homotopy that
will be used later in the book.

Proposition 2.21 (Lifting of homotopies) Let f : (∧V ,d) → (A,d),
h : (A,d) → (B,d) and g : (∧V) → (B,d) be morphisms of cdga’s with
h ◦ f � g.

(∧V ,d)
f

��

g ���
��

��
��

��
(A,d)

h
��

(B,d)

If h is surjective, then there exists a morphism f ′ : (∧V ,d) → (A,d) such
that f � f ′ and h ◦ f ′ = g.

Proof Let H : (∧V ⊗ ∧V̄ ⊗ ∧V̂ ,D) → (B,d) be the homotopy between hf
and g. For each element v̄ of a basis of V̄ we choose an element uv ∈ A such
that h(uv) = H(v̄). We then define the homotopyK : (∧V⊗∧V̄⊗∧V̂ ,D) →
(A,d) by K(v) = f (v) and K(v̄) = uv. The morphism K is a homotopy
between f and another morphism f ′ such that h ◦ f ′ = g. More precisely, f ′
is defined by f ′(v) = K ◦ eθ (v). �
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Proposition 2.22 (Extension of homotopies) Let (∧V ⊗ ∧W ,D) be a Sulli-
van cdga with D(V) ⊂ ∧V, let f : (∧V ⊗ ∧W ,D) → (A,d) be a morphism
of cdga’s, and let g : (∧V ,D) → (A,d) be a morphism of cdga’s homo-
topic to the restriction of f to (∧V ,D). Then g extends to a morphism
ĝ : (∧V ⊗ ∧W ,D) → (A,d) homotopic to f .

(∧V ,D)
� � ��

g ����
���

���
���

�
(∧V ⊗ ∧W ,D)

f
��

(A,d)

Proof Denote by H the homotopy between the restriction of f and g,
H(v) = f (v) and H ◦ eθ = g. We extend H by putting H(w̄) = 0 for
w ∈ W . This gives a new morphism ĝ = H ◦ eθ : (∧V ⊗ ∧W ,D) → (A,d)
that is homotopic to f and extends g. �

Example 2.23 Suppose that the injection i : (∧V ,d) → (∧V ⊗ ∧W ,D) has
a homotopy section σ . Then the identity on (∧V ,d) is homotopic to σ ◦i and
can be lifted into a map of cdga’s σ ′ : (∧V⊗∧W ,D) → (∧V ,d) homotopic
to σ . We can therefore suppose that σ(v) = v for v ∈ V .

2.3 Models in algebra

2.3.1 Minimal models of cdga’s and morphisms

For the following, see [87, Section 12].

Theorem 2.24 (Existence and uniqueness of the minimal model) Let (A,d)
be a lk-cdga satisfying H0(A,d) = lk. Then,

1. There is a minimal cdga (∧V ,d) and a quasi-isomorphism ϕ : (∧V ,d) →
(A,d).

2. The minimal cdga (∧V ,d) is unique in the following sense: If (∧W ,d) is
a minimal cdga and ψ : (∧W ,d) → (A,d) is also a quasi-isomorphism,
then there is an isomorphism f : (∧V ,d) → (∧W ,d) such that ψ ◦ f is
homotopic to ϕ.
The cdga (∧V ,d) is then called the minimal model of (A,d). Further-
more,

3. If H1(A,d) = 0 and H∗(A,d) is of finite type, then V is also of finite
type.

More generally, a Sullivan model of a cdga (A,d) is a Sullivan cdga
(∧V ,d) that is quasi-isomorphic to (A,d).
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In order to construct the minimal model of a cdga, we define inductively
Vn and ϕn = ϕ|V≤n such that ϕn : (∧V≤n,d) → (A,d) induces isomorphisms
in cohomology in degrees ≤ n and induces an injection on Hn+1. Suppose
H1(A,d) = 0 for simplicity, and suppose that ϕn has been defined. Write
Vn+1
1 = CokerHn+1(ϕn) and W = KerHn+2(ϕn). Choose cocycles ai ∈

An+1 such that their classes xi = [ai] form a basis of Vn+1
1 . Also choose

cocycles bj, for j ∈ J in (∧V≤n)n+2 whose classes constitute a basis of W .
There are then elements cj ∈ An+1 such that ϕn(bj) = dcj. Consider now
the vector space Vn+1

2 generated by the variables yj, j ∈ J of degree n+ 1.
If we set Vn+1 = Vn+1

1 ⊕Vn+1
2 , then we can extend ϕn to a morphism of

cdga’s, ϕn+1 : (∧V≤n+1,d) → (A,d), by dxi = 0, dyj = bj, ϕn+1(xi) = ai
and ϕn+1(yj) = cj. Then H≤n+1(ϕn+1) is an isomorphism and Hn+2(ϕn+1)
is injective. The construction will be done again in the case of an equivariant
model, see Subsection 3.3.1.

Example 2.25 Let (A,d) be the cdga (Q[x]/xn, 0), with |x| = 2r. Following
the general process described above, we first introduce a generator y in
degree 2r, with dy = 0 and ϕ(y) = x and we have a map ϕ2r : (∧y, 0) →
(A,d). In cohomology, ϕ2r induces the surjection

Q[y] → Q[x]/xn , y 
→ x .

In order to make this map injective, we introduce a new generator z in
degree 2rn − 1, with differential dz = yn, and we define ϕ(z) = 0. This
gives a new map

ϕ2rn : (∧(y, z),d) → (A,d) .

As a vector space, ∧(y, z) = Q[y] ⊕ Q[y] · z. Since d(ykz) = yk+n, the ideal
generated by yn and z is acyclic, andH∗(∧(y, z),d) = Q[y]/yn. In particular,
the morphism ϕ2rn is a quasi-isomorphism, and the minimal model of (A,d)
is the cdga (∧(y, z),dy = 0,dz = yn).

We deduce the existence of minimal models for maps as a corollary of the
lifting lemma (Lemma 2.15).

Proposition 2.26 Let f : (A,d) → (B,d) be a morphism of cdga’s, and
let ϕ : (∧V ,d) → (A,d) and ψ : (∧W ,d) → (B,d) be Sullivan models.
Then there exists a morphism of cdga’s that is unique up to homotopy,
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g : (∧V ,d) → (∧W ,d) such that ψ ◦ g � f ◦ ϕ.

(A,d)
f

�� (B,d)

(∧V ,d)
ϕ

��

g
�� (∧W ,d)

ψ

��

Proof The existence of g follows from Lemma 2.15 because ψ is a
quasi-isomorphism. The uniqueness up to homotopy follows directly from
Lemma 2.16. �

If (∧V ,d) and (∧W ,d) are minimal algebras, then the map g : (∧V ,d) →
(∧W ,d) is called a minimal model of f . Note that this model is only defined
up to homotopy. We will often abuse language and call it the minimal
model of f .

2.3.2 Relative minimal models

Definition 2.27 A relative minimal cdga is a morphism of cdga’s of the form

i : (A,dA) → (A⊗ ∧V ,d) ,

where i(a) = a, d|A = dA, d(V) ⊂ (A+ ⊗ ∧V) ⊕ ∧≥2V, and such that
V admits a basis (xα) indexed by a well-ordered set such that d(xα) ∈
A⊗ (∧(xβ))β<α.

When (A,dA) is a Sullivan cdga, we have (A,dA) = (∧Z,d). Clearly, a
relative minimal cdga (A⊗ ∧V ,d) = (∧(Z⊕V),d) is also a Sullivan cdga,
but the cdga (∧(Z⊕V),d) is not necessarily a minimal cdga, even if (∧Z,d)
is a minimal cdga.
Relative Sullivan cdga’s are in some sense the generic models for mor-

phisms of cdga’s. We make the role of relative minimal models precise in
the following theorem (see [87, Section 14]).

Theorem 2.28 (Relative version of Theorem 2.24) Let f : (A,d) → (B,d)
be a morphism of cdga’s. We then have a commutative diagram

A
f

��

i ����
��

��
��

�� B

(A⊗ ∧V ,d)
g

��
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where i is a relative minimal cdga and g is a quasi-isomorphism. This
property characterizes (A⊗ ∧V ,d) up to isomorphism.
Under the conditions of Theorem 2.28, the map i is called the relative

minimal model of f .

2.4 Models of spaces

2.4.1 Real and rational minimal models

To apply minimal models to spaces or manifolds, we need a link between
topology and algebra that puts us in the framework of commutative
differential graded algebras. Let’s begin with manifolds and the field R.

Definition 2.29 Let M be a connected manifold. The R-minimal model,
(∧V ,d), of the de Rham algebra of forms ADR(M) is called the R-minimal
model (or real minimal model) of M.
If f : M → N is a smoothmap between connectedmanifolds, the minimal

model of ADR(f ) is called the R-minimal model of f .

There is, however, a more general construction due to Sullivan that
works over the rational numbers. To each space X, Sullivan associated
a cdga of forms with rational coefficients, APL(X) (which we shall discuss
in Section 2.4.2), whose cohomology is isomorphic to the cohomology of
X with rational coefficients:

H∗(APL(X)) ∼= H∗(X;Q) .

Definition 2.30 Let X be a path connected space. The Q-minimal model,
(∧V ,d), of the Sullivan cdga of polynomial forms APL(X) is called the Q-
minimal model (or the rational minimal model) of X.
If f : X → Y is a map between path connected spaces, the minimal model

of APL(f ) is called the Q-minimal model of f .

In the second part of the definition, we have used the fact that the con-
struction of APL is natural. Each continuous map f : X → Y between
path connected spaces induces a morphism of cdga’s APL(f ) : APL(Y) →
APL(X) and therefore has a unique (up to homotopy) minimal model
Mf : (∧V ,d) → (∧W ,d). The construction preserves homotopies as
follows.

Proposition 2.31 Two homotopic maps f , g : X → Y between path con-
nected spaces induce two homotopic morphisms: Mf � Mg. In other
words, ifMX andMY denote the rational minimal models of X and Y, we
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have a well defined map

[X,Y] → [MY ,MX] .
When M is a manifold, the R-minimal model may be obtained directly

from the de Rham algebra or from the Q-minimal model by extension of
coefficients. That is, if (∧V ,d) is the Q-minimal model, then (∧V ⊗Q R,d)
is the R-minimal model.
In the future, except when explicitly indicated otherwise, “minimal

model” will always refer to “rational minimal model.” Also, each time
we speak about the minimal model of a space, the space will be supposed
path connected.

Definition 2.32 A path connected space X is nilpotent if its fundamen-
tal group, π1(X), is a nilpotent group that acts nilpotently on the higher
homotopy groups πn(X), n ≥ 2 (where the action has been described after
Definition 1.61).

Simply connected spaces and connected Lie groups are prime examples of
nilpotent spaces. For instance a simple space (see Definition 1.61) is nilpo-
tent. Therefore homogeneous spaces are nilpotent (see Proposition 1.62).
Other examples are given by Eilenberg–Mac Lane spaces K(G, 1), whereG
is a nilpotent group.

Proposition 2.33 Let X be a nilpotent space with finite Betti numbers
and let (∧V ,d) be its minimal model. Then V is a graded vector space of
finite type.

Definition 2.34 The spaces X and Y have the same rational homotopy type
if there is a finite chain of maps X → Y1 ← Y2 → · · · → Y such that the
induced maps in rational cohomology are isomorphisms.

In fact, for a nilpotent space X, the rational homotopy type is mani-
fested as a space X0, called the rationalization of X (see Subsection 2.6.1).
The minimal model of X then characterizes the homotopy type X0. The
importance of Definition 2.32 is apparent from the following result.

Proposition 2.35 Two nilpotent spaces with finite Betti numbers have the
same rational homotopy type if and only if they admit isomorphic rational
minimal models.

Remark 2.36 To be clear, let us emphasize two points. First, while minimal
models exist for all path connected spacesX of finite type, Proposition 2.35
does not hold in general for non-nilpotent spaces. Second, for a path
connected X admitting a minimal model (∧V ,d), the Sullivan condition
(see Definition 2.7) on the existence of a particular basis of V can look
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strange, but it is necessary. Consider, for instance, the case where X is a
wedge of infinitely many copies of the sphere S2. Since the dimension of
H2(X;Q) = HomQ(H2(X;Q),Q) is not countable, V2 does not admit a
basis indexed by the natural numbers. We can however find a basis indexed
by a well-ordered set satisfying Sullivan’s condition. This also shows the
importance of the finite type hypothesis in Proposition 2.33 and in future
applications.

For manifolds, we often consider minimal models coming directly from
the de Rham algebra. With this in mind, we make the

Definition 2.37 Two cdga’s (or spaces) have the same real homotopy type
if they have isomorphic R-minimal models.

Example 2.38 Consider the family of Sullivan minimal cdga’s

Aa = (∧(e2,x4, y7, z9),Da) , a ∈ Q+ ,

where subscripts denote degrees, with the differential Da given by

Da(e) = 0 , Da(x) = 0 , Da(y) = x2 + ae4 , Da(z) = e5 .

We prove thatAa andAa′ have the same rational homotopy type if and only
if a/a′ is a square in Q.
Suppose first that Aa and Aa′ are quasi-isomorphic. There then exists by

Corollary 2.13 an isomorphism ϕ : Aa → Aa′ . For degree reasons we have

ϕ(e) = λe ,ϕ(x) = µx+ αe2 ,ϕ(y) = βy ,ϕ(z) = γ z + δye ,

with α,β, γ , δ,µ, λ ∈ Q, λ �= 0, µ �= 0, β �= 0, γ �= 0. From the equations
Da′ϕ = ϕDa, we deduce

βx2 + βa′e4 = µ2x2 + α2e4 + 2µαxe2 + aλ4e4 .

Therefore β = µ2,α = 0 and a/a′ = (λ2/µ)2 .
Conversely if a/a′ is the square of τ , then we define an isomorphism

ϕ : Aa → Aa′ by putting ϕ(e) = e, ϕ(x) = τx, ϕ(y) = τ2y, ϕ(z) = z.
However, since square roots exist in R, we see that there is always an

isomorphism over R between the cdga’s Aa and Aa′ . Hence, Aa and Aa′
always have the same real homotopy type. We will return to this example
in Chapter 6 (Example 6.15).

2.4.2 Construction of APL(X)

Let’s briefly outline the construction of APL(X). In fact, the details of the
construction are essential for the derivation of certain basic properties of
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models, but in what follows (i.e. the construction of minimal models and
relative minimal models), we will only use the existence of the cdga APL(X)

and properties of minimal models without making explicit the construction
of APL(X).
Recall first that the standard n-simplex �n is the convex hull of the

standard basis e0, e1, . . . , en in Rn+1:

�n =
{
(t0, t1, . . . , tn) ∈ Rn+1

∣∣∣∣ n∑
i=0

ti = 1, tj ≥ 0, j = 0, . . . ,n

}
.

Denote the set of singular n-simplices on X (i.e. continuous maps from
�n → X) by Sn(X). The sets Sn(X) constitute a simplicial set whose
boundary operators ∂i and degeneracy operators sj are defined by:

∂i : Sn(X) → Sn−1(X)

∂i(σ )(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn−1)
sj : Sn(X) → Sn+1(X)

sj(σ )(t0, . . . , tn+1) = σ(t0, . . . , tj + tj+1, . . . , tn+1) .

The simplicial cdga APL is defined by:

(APL)n = ∧(t0, . . . , tn,dt0, . . . ,dtn)
(
∑
ti − 1,

∑
dti)

,

where the elements ti are in degree 0, the dti are in degree 1, and the dif-
ferential d is defined by d(ti) = dti . This is an acyclic cdga that can be
viewed as an algebra of polynomial Q-forms on �n. The face and degen-
eracy operators of the simplicial cdga APL are the morphisms of cdga’s
defined by

∂i : (APL)n → (APL)n−1 , ∂i(tk) =

⎧⎪⎪⎨⎪⎪⎩
tk , k < i

0 , k = i

tk−1 , k > i

sj : (APL)n → (APL)n+1 , sj(tk) =

⎧⎪⎪⎨⎪⎪⎩
tk , k < j

tj + tj+1 , k = j

tk+1 , k > j.

The cdga APL(X) is then defined as a set of simplicial maps

APL(X) = HomSimplicial(S∗(X) , A∗) .
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More precisely, a q-form ω is a correspondence that assigns to each singular
n-simplex σ an elementωσ ∈ (APL)

q
n, such thatω∂iσ = ∂iωσ andωsjσ = sjωσ .

2.4.3 Examples of minimal models of spaces

Example 2.39 (Lie groups) Let G be a compact connected Lie group. By
Hopf’s theorem (Theorem 1.34),H∗(G;R) is an exterior algebra on a finite
set of variables x1, . . . ,xn in odd degrees. Therefore by choosing closed
forms ωi ∈ ADR(G) representing the xi, we define a quasi-isomorphism of
cdga’s

ϕ : (∧(xi), 0) → ADR(G) , ϕ(xi) = ωi .

This shows that (∧(xi), 0) is the R-minimal model of G. Notice that bi-
invariant forms are a natural choice for the forms ωi (see Theorem 1.30).
The computation of the rational minimal model is very similar. In fact,

we have not used the fact that ADR(G) is the algebra of de Rham forms on
G, but rather, only that H(ADR(G),d) ∼= H∗(G;R).
We proceed in the same way for the rational minimal model and we keep

the same notation for the generators xi. We choose cocycles ωi in APL(G)

representing the xi, and we obtain a quasi-isomorphism of cdga’s

ϕ : (∧(xi), 0) → APL(G) , ϕ(xi) = ωi .

This shows that (∧(xi), 0) is the minimal model of G. In particular, by
Corollary 1.86, the minimal models of U(n) and Sp(n) are respectively

(∧(x1,x3, . . . ,x2n−1), 0) and (∧(y3, y7, . . . , y4n−1), 0) .

In the same way, by Corollary 1.90, the minimal model of SO(n) is{
(∧(z3, . . . z2n−3), 0) , if n is odd,
(∧(z3, . . . , z2n−5, zn−1), 0) , when n is even .

Here the subscripts indicate the degrees.

Example 2.40 (Stiefel manifolds) If X is a simply connected space whose
cohomology H∗(X;Q) is free commutative (i.e. H∗(X;Q) = ∧(xi)), then
the same procedure as above shows that (∧(xi), 0) is the minimal model of
X. In particular, by Proposition 1.85, the minimal model of the complex
Stiefel manifold Vn,k(C) is

(∧(x2(n−k)+1, . . . ,x2n−1), 0) ,

and the minimal model of the quaternionic Stiefel manifold Vn,k(H) is

(∧(y4(n−k)+3, . . . , y4n−1), 0) .
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Here again the degrees of the elements are given by the subscripts.

Example 2.41 (The torus Tn) The minimal model of the torus Tn is the
cdga (∧(x1, · · · ,xn), 0) where all the xi have degree 1.
Example 2.42 (Classifying spaces) LetG be a compact simply connected Lie
group. Then by Theorem 1.81, the rational cohomology of the classifying
space BG is a polynomial algebra on a finite number of generators vi in
even degree. Therefore, the choice of cocycles defines a quasi-isomorphism

(∧(vi), 0) → APL(BG) .

This shows that (∧(vi), 0) is the minimal model for BG. We will prove this
directly in Example 2.67, thus giving a third proof of Theorem 1.81.

Example 2.43 (The spheres Sn) The rational cohomology of the sphere Sn

is an exterior algebra on one generator in degree n. Denote by ω a cocycle
in degree n in APL(Sn) representing the fundamental class. Then we get a
morphism of cdga’s

ϕ : (∧(x), 0) → APL(Sn)

defined by ϕ(x) = ω. When n is odd, ∧(x) is an exterior algebra on one
generator and ϕ is clearly a quasi-isomorphism.
When n is even, ∧(x) is the polynomial algebraQ[x] andH∗(ϕ) : Q[x] →

Q[x]/x2 is not an isomorphism. For degree reasonsω2 is then a coboundary,
ω2 = dα. We then add a new generator y to ∧x of degree 2n − 1 with
dy = x2, and define

ϕ : (∧(x, y),d) → APL(Sn)

by putting ϕ(x) = ω and ϕ(y) = α. Since H∗(∧(x, y),d) ∼= Q[x]/x2, the
new map ϕ is a quasi-isomorphism. In conclusion, the minimal model
of Sn is{

(∧x, 0) with |x| = n, when n is odd
(∧(x, y),d), dx = 0, dy = x2, |x| = n, |y| = 2n− 1, when n is even.

Example 2.44 (The complex projective space CP(n)) Since the rational
cohomology, H∗(CP(n);Q), of the complex projective space of dimension
n is isomorphic to Q[x]/xn+1, with |x| = 2, we can choose, in APL(CP(n)),
elements α and β of respective degrees 2 and 2n + 1 such that the class of
α is x and dβ = αn+1. We then construct a morphism of cdga’s

ϕ : (∧(x, y),d) → APL(CP(n))
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defined by |x| = 2, |y| = 2n+1, dx = 0, dy = xn+1, ϕ(x) = α and ϕ(y) = β.
This morphism is clearly a quasi-isomorphism. Therefore (∧(x, y),d) is the
minimal model of CP(n).

Example 2.45 (Product of manifolds) If M and N are connected mani-
folds, then the multiplication map ADR(M)⊗ADR(N) → ADR(M×N) is a
quasi-isomorphism. Therefore the R-minimal model ofM×N is the tensor
product of the R-minimal models ofM and N.
In the same way, if X and Y are path connected spaces, then there is a

quasi-isomorphism between APL(X×Y) and APL(X)⊗APL(Y). Therefore
the minimal model of X × Y is the tensor product of the minimal models
of X and Y.

Example 2.46 (H-spaces) An H-space X is a space with a multiplication
µ : X × X → X that is associative up to homotopy and admits a unit
up to homotopy. Examples are given by Lie groups and loop spaces. The
Hopf theorem (Theorem 1.34) can be generalized toH-spaces: The minimal
model of an H-space X has the form (∧V , 0) and its rational cohomology
is a free graded algebra.

Example 2.47 (Wedge of two spaces) Let X and Y be spaces with minimal
models (∧V ,d) and (∧W ,d). We denote their wedge by X ∨ Y and the
minimal model of the wedge by (∧Z,d). Then the injections i1 : X ↪→ X∨Y
and i2 : Y ↪→ X ∨ Y induce a map

ϕ : (∧Z,d) → (∧V ,d) ⊕Q (∧W ,d) ,

where the cdga (∧V ,d) ⊕Q (∧W ,d) is obtained from the direct sum
(∧V ,d) ⊕ (∧W ,d) by identifying the units, and requiring the multiplica-
tion to obey a · a′ = 0 if a ∈ ∧V and a′ ∈ ∧W . Since the injections ij
admit retractions, H∗(ϕ) is a surjection. Note now that H∗((∧V ,d) ⊕Q

(∧W ,d)) = H∗(X;Q) ⊕Q H∗(Y;Q) ∼= H∗(X ∨ Y;Q). Therefore ϕ is a
quasi-isomorphism, and a minimal model for X ∨ Y is obtained by taking
a minimal model of (∧V ,d) ⊕Q (∧W ,d).

Example 2.48 (The diagonal map � : X → X × X) Let X be a nilpotent
space with finite Betti numbers and MX its minimal model. We note that
the composition of the diagonal map � : X → X × X with the projection
onto one component is the identity. It follows that a minimal model for �
is the multiplication

µ : MX ⊗ MX → MX , µ(a⊗ b) = a · b .
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A relative model for the diagonal � is thus provided by a relative model
for the multiplication µ. We prove that this model has the form

(∧V ,d) ⊗ (∧V ,d) µ
��

������
�����

�����
�����

(∧V ,d)

(∧V ⊗ ∧V ⊗ ∧(sV),D)

ϕ

��

where (sV)n = Vn+1, ϕ(sx) = 0 and D(sx) = (x ⊗ 1 ⊗ 1) − (1 ⊗ x ⊗
1) + αx where αx is a decomposable element, with x ∈ V . We construct
the differential D and the morphism ϕ by induction on the degree of the
generators. Suppose that D and ϕ have been defined on (sV)<n. Then the
restriction of ϕ,

ϕn : (∧V≤n ⊗ ∧V≤n ⊗ ∧(sV)<n,D) → (∧V≤n,d)

is a quasi-isomorphism because Q(ϕn) is a quasi-isomorphism. We now
take x ∈ Vn+1. The element y = (dx ⊗ 1 ⊗ 1) − (1 ⊗ dx ⊗ 1) is a cocycle
that is sent to zero by ϕn. There is therefore a decomposable element z ∈
(∧V≤n⊗∧V≤n⊗∧(sV)<n)n+1 such thatD(z) = y. The element ϕn(z) is then
a cocycle, and since ϕn is a quasi-isomorphism, there is a cocycle u ∈ ∧V≤n⊗
∧V≤n ⊗ ∧(sV)<n and an element a ∈ ∧V such that ϕn(z) = ϕn(u) + da.
Since ϕn is surjective, we now choose an element a′ with ϕn(a′) = a and we
put z′ = z− u−D(a′). We also set D(sx) = (x⊗ 1⊗ 1) − (1⊗ x⊗ 1) − z′.
Since ϕn(z′) = 0, the inductive step has been realized.
This computation illustrates the fact that minimal models for spaces and

maps are generally built by induction, generator by generator.

2.4.4 Other models for spaces

The minimal model of a space is unique up to isomorphism. This is part of
its power. In fact, however, certain other models are also very useful as we
will see later. We begin by giving a

Definition 2.49 Amodel for a space X is a cdga (A,d) quasi-isomorphic to
the minimal model (∧V ,d) of X,

(A,d)
�← (∧V ,d) �→ APL(X) .

A model for a continuous map f : X → Y is a morphism of cdga’s
ϕ : (B,d) → (A,d) such that there is a diagram, commutative up to



2.5 Minimal models and homotopy theory 75

homotopy, where the vertical arrows are quasi-isomorphisms, of the form

APL(Y)
APL(f ) �� APL(X)

(∧W ,d) ��

�
��

�
��

(∧V ,d)
�
��

�
��

(B,d)
ϕ

�� (A,d)

To give an example, let (∧V ,d) be the minimal model of an m-
dimensional compact connected manifold M. Take a decomposition of
(∧V)m as a direct sum (∧V)m = (Ker d)m⊕S. Then the ideal I = S⊕(∧V)>m

is acyclic, the quotient map (∧V ,d) → (∧V/I, d̄) is a quasi-isomorphism
and (∧V/I, d̄) is a model ofM.

2.5 Minimal models and homotopy theory

2.5.1 Minimal models and homotopy groups

Let X be a simply connected (or more generally, a nilpotent) space and let
(∧V ,d) be its minimal model. Then, in a natural way, from (∧V ,d) we can
obtain the rational cohomology of X, the vector space π∗(X) ⊗ Q and the
homotopy Lie algebra π∗(�X) ⊗ Q. We now explain this in detail.
First, by construction, H∗(∧V ,d) ∼= H∗(X;Q). Recall as well that the

homotopy groups of a nilpotent space with finite Betti numbers are all
finitely generated. For n ≥ 2, we have πn(X) = Zαn ⊕ Tn where Tn is
a finite group and αn a finite integer. The integer αn is called the rank
of πn(X).

Theorem 2.50 (see [87, Theorem 15.11]) Let X be a nilpotent space with
finite Betti numbers, and let (∧V ,d) be its minimal model. Then, for n ≥ 2,
we have a natural isomorphism

Vn ∼=→ Hom(πn(X) ⊗ Q,Q) = Hom(πn(X),Q) .

In particular, for n ≥ 2,

dim Vn = rankπn(X) .

Here, “naturality” means that if we have a continuous map f : X → Y
with minimal model ϕ : (∧V ,d) → (∧W ,d) then we have a commutative
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diagram

Hom(πn(Y),Q)
f ∗

�� Hom(πn(X),Q)

Vn

∼=
��

Q(ϕ)
�� Wn

∼=
��

For recall, Q(ϕ) denotes the map induced by ϕ on the indecomposable
elements Q(∧V) → Q(∧W). Modulo the isomorphisms Q(∧V) ∼= V
and Q(∧W) ∼= W , the map Q(ϕ) can be described as the composition
V

ϕ→ ∧+W → ∧+W/ ∧≥2W ∼= W .

Example 2.51 (Lie groups) LetG be a compact connected Lie group. Then,
by Example 2.39, the generators of the minimal model are only in odd
degrees. Therefore, dimπeven(G) ⊗ Q = 0.

Example 2.52 (Nilpotent groups) Let G be a nilpotent group and let G(r)
be the lower central series

G(1) = G , G(2) = [G,G] , and G(r) = [G,G(r−1)] , for r ≥ 2 .

The first rational invariant associated to G is the rank of G defined by

rank G =
∑
p

G(p)/G(p+1) .

The rank of the fundamental group of a nilpotent space can be deduced
from its minimal model as follows.

Proposition 2.53 If X is a nilpotent space whose minimal model is (∧V ,d),
then

rank π1(X) = dim V1 .

We will now describe the rational homotopy Lie algebra of a space X.
Denote by �X the space of based loops on X. As we will see in Subsec-
tion 2.5.2, the homotopy groups of �X are the homotopy groups of X
shifted in degree by one; that is, there is an isomorphism s,

s : πn(�X)
∼=→ πn+1(X) .

When X is simply connected, the graded vector space π∗(�X) ⊗ Q inherits
a natural graded Lie algebra structure, called the rational homotopy Lie
algebra of X. The Lie algebra structure arises as follows. Let f : Sp → �X
and g : Sq → �X be continuous maps. We then consider the map

h : Sp × Sq → �X
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defined by

h(x, y) = f (x) · g(y) · f (x)−1 · g(y)−1 .
It is clear that the restriction of h to the wedge Sp ∨ Sq is homotopically
trivial, so h induces a quotient map

h̄ : Sp+q ∼= Sp × Sq

Sp ∨ Sq
→ �X .

The class of h̄ in πp+q(�X) is denoted by [f , g] and is called the Lie bracket
of f and g.

Proposition 2.54 This bracket defines a graded Lie algebra structure,
denoted by (LX)∗ = π∗(�X) ⊗ Q.

A graded Lie algebra is a graded generalization of a Lie algebra (Defini-
tion 1.5) since a Lie algebra can always be viewed as a graded Lie algebra
concentrated in degree 0.

Definition 2.55 A graded Lie algebra L over Q is a graded vector space
together with a linear map

[− , −] : Lp ⊗ Lq → Lp+q

such that ⎧⎨⎩ [a,b] = −(−1)|a|·|b|[b, a]
[a, [b, c]] = [[a,b], c] + (−1)|a|·|b|[b, [a, c]] .

Denote by (∧V ,d) the minimal model of the simply connected space X.
The differential d decomposes into the sum

d = d1 + d2 + · · ·
where dk is the component of the differential that increases the length by k:
dk : V → ∧k+1V . It is easy to see that d1 is a derivation with d21 = 0, and
we have the following fundamental result.

Theorem 2.56 ([87, Proposition 13.16]) Let X be a simply connected space
with finite Betti numbers which has minimal model (∧V ,d) and ratio-
nal homotopy Lie algebra L∗ = (LX)∗ = π∗(�X) ⊗ Q. Then Vp+1 ∼=
Hom(Lp,Q) and the bracket can be read off from d1 by the formula

〈x, s[f , g]〉 = (−1)|g|〈d1x, sf ∧ sg〉 , x ∈ V , f , g ∈ L ,
where s is the isomorphism πq(�X) ⊗ Q → πq+1(X) ⊗ Q.
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Example 2.57 Let X = S2n be a 2n-dimensional sphere. Since the minimal
model of X is (∧(x, y),d), dx = 0, dy = x2, |x| = 2n (Example 2.43), the
Lie algebra LX has two generators, a, and [a, a], with a in degree 2n − 1.
This graded Lie algebra is the free graded Lie algebra on one generator a of
odd degree:

LS2n ∼= L(a) .

Example 2.58 The rational homotopy Lie algebra of a wedge of spaces is
the sum in the category of graded Lie algebras. This sum is called the free
product of Lie algebras. We then write LX∨Y = LX

∐
LY . An important

property is that if LX → LZ and LY → LW are surjective, then LX∨Y →
LZ∨W is surjective. We shall use this in Corollary 3.4.

Example 2.59 The minimal model of the projective space CP(n) is given
by (∧(x, y),d) with dx = 0 and dy = xn+1, |x| = 2, |y| = 2n + 1 (Exam-
ple 2.44). When n ≥ 2, the quadratic part of the differential, d1, is zero,
and therefore the Lie algebra is abelian, which means that all the brackets
are zero.

Denote by Z(LX) the center of the Lie algebra LX. We deduce from
Theorem 2.56 the following proposition

Proposition 2.60 Let (∧V ,d) be the minimal model of a simply connected
space X with finite Betti numbers.

1. Suppose V = W⊕S with d1V ⊂ ∧2W.Define the subspace E of π∗(X)⊗
Q by

E = {x ∈ π∗(X) ⊗ Q | [w,x] = 0, ∀ w ∈ W } .

Then s−1E is contained in Z(LX) and dim Z(LX) ≥ dim S.
2. If W ⊂ V = Hom (π∗(X),Q) denotes the sub-vector space generated by
the linear forms that vanish on sZ(LX), then d1V ⊂ ∧2W.

2.5.2 Relative minimal model of a fibration

In Chapter 1, we recalled the definition of locally trivial fiber bundles
and principal G-bundles. We now introduce a more general concept. A
(Hurewicz) fibration is a map p : E → B which has the property that, for
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each space X, and for each commutative diagram

X × {0} g
��

i0
��

E

p
��

X × [0, 1] f
�� B,

there is a continuous map h : X × [0, 1] → E satisfying p ◦ h = f and
h ◦ i0 = g.
What is important for geometers is that a locally trivial fiber bundle with

a paracompact base (for instance a manifold, a CW complex or a compact
space) is a Hurewicz fibration [240, Chapter 2, Section 7].
When B is path connected, all the fibers p−1(x), x ∈ B, have the same

homotopy type. The fiber, F, of p is by definition any particular one of these

p−1(x). We usually write the fibration in the form F → E
p→ B. Perhaps the

most important feature of a fibration is that the homotopy groups of the
spaces in the fibration fit into a long exact sequence (see also Exercise 1.10),

. . . → πn(F) → πn(E) → πn(B)
∂→ πn−1(F) → πn−1(E) → . . . .

An important example of a fibration is the path space fibration on a
pointed space X, written

�X → PX
p→ X ,

where PX is the set of continuous maps c : [0, 1] → X with c(0) = x0, the
base point of X, and p(c) = c(1). It is easy to see that PX is contractible,
so the long exact homotopy sequence gives πn(X) ∼= πn−1(�X) for all n.
Notice that we have already used this isomorphism in the preceding section.
Just as nilpotent spaces have algebraic models that reflect their homo-

topical qualities and are (in principle) calculable, certain types of fibrations
have analogous algebraic models.

Definition 2.61 A fibration F → E → B is called quasi-nilpotent if B and
F are path connected and the natural action of π1(B) on the homology
groups of F is nilpotent. (This is always the case when the base B is simply
connected.)

Remark 2.62 The reason we do not call the fibrations of Definition 2.61
nilpotent is because there is already a notion of nilpotent fibration that we
will need only peripherally. A fibration F → E → B is nilpotent if, in the
standard fashion, π1(E) acts nilpotently on πk(F) for all k ≥ 1. This implies
that F is a nilpotent space. Furthermore, it can be shown that the nilpotency
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of the spacesE andB implies the nilpotency of the fibration. For more about
nilpotent fibrations, see [138, page 67].
A quasi-nilpotent fibration not only provides the right hypothesis for

Theorem 2.64 below, but also jibes with the notion of nilpotent space. To
see this, for a spaceX, consider the fibration X̃ → X → K(π1(X), 1), where
X̃ is the universal cover of X. It is a standard result that X is a nilpotent
space if and only if π1(X) is nilpotent and π1(X) acts nilpotently onH∗(X̃),
where X̃ is the universal cover. Therefore, it is clear thatX is nilpotent if and
only if π1(X) is nilpotent and X̃ → X → K(π1(X), 1) is quasi-nilpotent.

Now consider the lifting homotopy property of the fibration p : E → B
in the case X = �B× F where �B is the space of based loops at the point
b0 and F = p−1(b0). The commutativity of the diagram

�B× F × {0} ι′ ��

i0
��

E

p

��
�B× F × [0, 1] f

�� B

where ι′(ω,x, 0) = x and f (ω,x, t) = ω(t), gives a map h : �B×F×[0, 1] →
E with ph = f and hi0 = ι′.

Definition 2.63 The holonomy representation of the fibration is the restric-
tion, ν, of h to �B× F × {1}. The image of ν is contained in F:

ν : �B× F → F .

The connecting map of the fibration is the restriction of ν,

δ = ν| : �B× {x0} → F

where x0 is a point in F and, in the fibration’s long exact homotopy sequence

. . . → πn(E) → πn(B)
∂→ πn−1(F) → . . . ,

the morphism ∂ is the composition πn(B)
∼=→ πn−1(�B)

π∗(δ)−→ πn−1(F).

Now let’s come back to models. Let F → E
p→ B be a quasi-nilpotent

fibration. We form the following commutative diagram

APL(B)
p

�� APL(E) �� APL(F)

(∧V ,d)

ϕ

��

i �� (∧V ⊗ ∧W ,d)

ψ

��

ρ
�� (∧W , d̄)

ψ̄

��
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Here the morphism ϕ : (∧V ,d) → APL(B) is the minimal model of B, ψ is
a quasi-isomorphism and (∧V ,d) → (∧V ⊗ ∧W ,d) is a relative minimal
cdga. The cdga (∧W , d̄) is the quotient cdga (∧V ⊗ ∧W ,d)/(∧+(V) ⊗
∧W) and the map ρ is the quotient map. The map ψ̄ is induced by the
commutativity of the left-hand square of the diagram.

Theorem 2.64 ([87, Theorem 15.3]) Suppose F → E
p→ B is a quasi-

nilpotent fibration. If B and F have finite Betti numbers and H1(p) is
injective, then the map ψ̄ is a quasi-isomorphism, and the cdga (∧W , d̄)
is the minimal model of the fiber F.

Proposition 2.65 (Long exact homotopy sequence of a fibration) With the
above notation, we have a commutative diagram of long exact sequences

Vn

��

∼= �� Hom(πn(B),Q)

��
Hn(V ⊕W ,Q(d))

��

∼= �� Hom(πn(E),Q)

��
Wn

d0
��

∼= �� Hom(πn(F),Q)

Hom(∂,Q)

��

Vn+1
∼= �� Hom(πn+1(B),Q)

where ∂ : πn+1(B) → πn(F) denotes the connecting map of the fibration
and d0 is the linear part of the differential d given by the composition

W
d �� ∧+ (V ⊕W) �� ∧+ (V ⊕W)/(∧+W ,∧≥2V) ∼= V .

Example 2.66 (The path space fibration) Let (∧V ,d) be the minimal model
of a simply connected space X. Then a model for the path space fibration
�X → PX → X is given by the relative model

(∧V ,d) → (∧V ⊗ ∧sV ,d) → (∧sV , d̄) ,
where |sv| = |v| − 1. Since PX is a contractible space, the linear part d0 of
the differential d in (∧V ⊗ ∧sV ,d) gives an isomorphism d0 : sV → V .
By Theorem 2.64 the cdga (∧sV , d̄) is the minimal model of the loop

space�X. Since�X is anH-space, its cohomology is a free graded algebra.
Therefore d̄ = 0 and (∧sV , 0) is the minimal model of �X.
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Example 2.67 (The universal bundle) LetG → EG → BG be the universal
principal bundle associated to the Lie group G. The total space EG is con-
tractible, so as we saw above, πn−1(G) ∼= πn(BG) ∼= πn−1(�BG). Indeed,
there is a mapping �BG → G inducing these isomorphisms, so G has the
homotopy type of �BG. Now, we have seen that the minimal model for
G is an exterior algebra on odd degree generators with trivial differential.
We shall denote this by (∧sV , 0) using the notation of Example 2.66. By
what we saw in Example 2.66, the minimal model for BG must have only
even degree generators. But then the differential of this model must be trivial
also since there are no elements in odd degrees. Thus, the minimal model for
BG is (∧V , 0) with an isomorphism sV ∼= V . Note that we have obtained
another proof of Theorem 1.81, for H∗(∧V , 0) is a polynomial algebra on
V . A relative minimal model for the universal principal bundle is given by

(∧V , 0) → (∧V ⊗ ∧sV ,d) → (∧sV , 0) ,
with d(sv) = v.

Example 2.68 (The Hopf fibration) Let S3 → S7
H→ S4 be the Hopf

fibration coming from the action of H on H2 by multiplication in each
component. A relative model for H has the form

(∧(x, y),d) → (∧(x, y) ⊗ ∧V ,d) → (∧V , d̄) ,

with |x| = 4, |y| = 7, dx = 0 and dy = x2. Since (∧V , d̄) is the mini-
mal model for the fiber S3, ∧V = ∧u, with |u| = 3, d̄u = 0. Now since
H4(∧(x, y,u),d) = 0, we must have du = x, and we have a complete
description of the relative minimal model.

Example 2.69 (Model of a sphere bundle) Let S2n+1 → E
p→ B be a sphere

bundle. Denote by (∧V ,d) a model of B. Since the model of S2n+1 is (∧u, 0),
|u| = 2n+ 1, a relative minimal model for the sphere bundle is given by

(∧V ,d) → (∧V ⊗ ∧u,d) → (∧u, 0) .

Here du is a cocycle a ∈ (∧V)2n+2, and KerH2n+2(p) = Q·[a]. The class [a]
is the Euler class of the sphere bundle, and the model of the sphere bundle
is completely determined by its Euler class.

Let F → E
p→ B be a quasi-nilpotent fibration, f : X → B a continuous

map, and

F → E′ p′
→ X
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the pullback fibration of p along f , defined as in Example 1.56 for locally
trivial bundles. We denote by (∧V ,d) → (∧V ⊗ ∧W ,d) → (∧W , d̄) a
relative minimal model for p and by ϕ : (∧V ,d) → (∧Z,d) a minimal
model for f . Note that the naturality of the action of the fundamental group
of the base on the homology of the fiber implies that the pullback of a
quasi-nilpotent fibration is quasi-nilpotent. Then we have the following.

Theorem 2.70 With the above notation, the relative minimal cdga

(∧Z,d) → (∧Z⊗ ∧W ,D)
def= (∧Z,d) ⊗∧V (∧V ⊗ ∧W ,D) → (∧W , D̄)

is the relative minimal model of the fibration p′. The differential D is defined
by D(w) = (ϕ ⊗ 1)d(w), where ϕ ⊗ 1 is the natural multiplicative map
ϕ ⊗ 1: ∧ V ⊗ ∧W → ∧Z⊗ ∧W.

We deduce the following result.

Theorem 2.71 Let H be a closed connected subgroup of a compact con-
nected Lie group G. We denote by ι : H → G the canonical inclusion
and by Bι : BH → BG the induced map. Let H∗(BG;Q) = ∧V and
H∗(BH;Q) = ∧W the respective cohomology algebras of BG and BH.
We denote by sV a copy of the vector space V shifted by one degree,
|sv| = |v| − 1 if v ∈ V and define a differential d on ∧W ⊗ ∧(sV) by
dw = 0 if w ∈ W and d(sv) = H∗(Bι)(v) if sv ∈ sV. Then the cdga
(∧W ⊗ ∧(sV),d) is a Sullivan model for the homogeneous space G/H. In
particular H∗(G/H;Q) = H(∧W ⊗ ∧(sV),d).

These are the relative minimal model versions of the Cartan–Weil models
of the homogeneous spaces G/H.

Proof FromExample 2.67, the relative minimal model of the fibrationG →
EG

p→ BG is

(∧V , 0) → (∧V ⊗ ∧sV ,d) → (∧sV , 0) , d(sv) = v ,

and the model of Bι is H∗(Bι;Q) : (∧V , 0) → (∧W , 0). The pullback fibra-

tion of p along Bι has the form G → E
q→ BH. Since EG is contractible, q

has the homotopy type of the inclusion of the fiber of Bι. Now by Propo-
sition 1.80, this pullback fibration is the fibration G → G/H → BH.
Therefore the relative minimal model of the fibration G → G/H → BH is
given by

(∧W , 0) → (∧W , 0) ⊗∧V (∧V ⊗ ∧sV ,d) → (∧sV , 0) .
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Now (∧W , 0) ⊗∧V (∧V ⊗ ∧sV ,d) is a Sullivan model for G/H. We can
describe this model: (∧W , 0) ⊗∧V (∧V ⊗ ∧sV ,d) = (∧W ⊗ ∧sV ,d) with
dw = 0 and d(sv) = H∗(Bι)(v). �

Example 2.72 (Model of a principal G-bundle) A principal G-bundle
X → B is the pullback of the universal bundle EG → BG along a
continuous map f : B → BG, so its model has the form

(∧W ,d) → (∧W ⊗ ∧sV ,d) → (∧sV , 0) ,

where (∧W ,d) is the minimal model ofB and (∧sV , 0) is the minimal model
ofG. Moreover, by Theorem 2.70, we can understand the differential d(sv)
in terms of the classifying map f . Namely, d(sv) is a cocycle in (∧W ,d)
representing f ∗(v), where v ∈ ∧V ∼= H∗(BG;Q).

There are thus two ways for computing a Sullivan model for the fiber of
a locally trivial bundle, or more generally the fiber of a fibration, p : E → B.
The first way constructs a relative minimal model of p, (∧V ,d) → (∧V ⊗
∧W ,d) → (∧W , d̄), and a minimal model for the fiber F is then (∧W , d̄).
The second way constructs the relative minimal model of the path fibra-

tion on B, (∧V ,d) → (∧V ⊗ ∧sV ,d) → (∧sV , 0), a minimal model of p,
(∧V ,d) → (∧Z,d), and forms the tensor product

(∧Z⊗ ∧sV ,D)
def= (∧Z,d) ⊗∧V (∧V ⊗ ∧sV ,d) .

2.5.3 The dichotomy theorem

Rational homotopy theory provides a surprising way to “classify” simply
connected manifolds which has often proved useful in geometry (e.g. see
Chapter 6 and Section 5.7). The criterion for classification applies equally to
all nilpotent spaces, so we will formulate it in this more general framework.
We first divide the family of nilpotent spaces with finite dimensional rational
cohomology (i.e.

∑
q dim Hq(X;Q) < ∞) into two classes as follows.

Definition 2.73 Let  X be a nilpotent space with finite dimensional
rational cohomology. Then X is called a rationally elliptic space if∑

p≥2 dim πp(X) ⊗ Q < ∞. Otherwise X is called a rationally hyperbolic
space.

The properties of the two classes are very different, so let’s begin to cata-
logue these differences. Let n be themaximal integer such thatHn(X;Q) �= 0
and say that n is the dimension ofX. For a closedmanifold, this is, of course,
the usual dimension of the manifold.
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Theorem 2.74 (The dichotomy theorem: Hyperbolic case [87]) Let X be a
rationally hyperbolic space of dimension n. Then:

1. The sequence
∑

p≤m dimπp(X) ⊗ Q has exponential growth: There are
constants A > 1 and C > 0 such that, for m large enough,

∑
p≤m

dimπp(X) ⊗ Q ≥ C · Am .

In particular, for each integer q, there is an odd integer m such that
dimπm(X) ⊗ Q ≥ q.

2. The sequence of Betti numbers of the loop space �X on X has expo-
nential growth. This means that there is an integer A > 1 such that∑k

i=0 bi(�X) ≥ Ak for k large enough.
3. There is no large gap in the sequence of homotopy groups. More specif-
ically, for each integer q there is some integer p in the interval (q,q+ n)
such that dimπp(X) ⊗ Q �= 0.

4. There are infinitely many nonzero brackets in the rational homotopy
Lie algebra LX. More specifically, there is an integer N such that, for
each α in LX with |α| > N, there is another element β ∈ LX such that
[α, [α, . . . , [α,β] . . .] �= 0.

For the elliptic case, denote the homotopy Euler characteristic of the
space X by

χπ(X) =
∑
q≥0

(rank π2q(X) ⊗ Q − rank π2q+1(X) ⊗ Q) .

Theorem 2.75 (The dichotomy theorem: Elliptic case [129],[87])
Let X be a rationally elliptic space of dimension n. Then:

1. The homotopy groups πq(X) are finite groups for q ≥ 2n.
2. χπ(X) ≤ 0 (so dimπeven(X) ⊗ Q ≤ dimπodd(X) ⊗ Q), and χ(X) ≥ 0.
3. The rational cohomology of X satisfies Poincaré duality.
4. dim H∗(X;Q) ≤ 2n.
5. The three following properties are equivalent:

• χ(X) > 0.
• The rational cohomology is concentrated in even degrees;
Hq(X;Q) = 0 if q is odd.

• χπ(X) = 0.
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6. The dimension of X depends only on the ranks of the rational
homotopy groups.

n =
⎛⎝∑

q

(−1)q+1q · dimπq(X) ⊗ Q

⎞⎠ + dimπeven(X) ⊗ Q

=
∑
q

(2q− 1)dimπ2q−1(X) ⊗ Q −
∑
q

(2q− 1)dimπ2q(X) ⊗ Q.

7.
∑

q 2qdimπ2q(X) ⊗ Q ≤ n. In particular, there is no even homotopy
in degrees greater than the dimension.

8.
∑

q(2q− 1)dimπ2q−1(X) ⊗ Q ≤ 2n− 1; in particular, there can only
be at most one nontrivial π2q−1(X)⊗Q with n ≤ 2q−1 ≤ 2n−1 and,
necessarily, dimπ2q−1(X) ⊗ Q = 1.

9. dimπ∗(X) ⊗ Q ≤ n.
10. The sequence of Betti numbers of �X has polynomial growth. This

means that there is an integer m such that
∑k

i=0 bi(�X) ≤ km for all k.

A useful criterion for rational ellipticity is given in Exercise 2.4. We can
also characterize a rationally elliptic space in terms of its minimal model.
A finite dimensional space X, with minimal model (∧V ,d) is rationally
elliptic if and only if V is finite dimensional. For instance, tori Tn, spheres
Sn, complex projective spacesCP(n), Lie groupsG and homogeneous spaces
G/H are rationally elliptic spaces. On the other hand, a connected sum X
(see Example 3.6) of q copies of S3 × S3 is rationally hyperbolic for q ≥ 2,
because χ(X) < 0 and this violates Theorem 2.75 (2).
Of course, one distinct advantage of having an algebraic model at our

disposal is that we can put algebraic constraints on the model and see the
geometric reflection of the algebra. One important instance of this is the
following.

Definition 2.76 A Sullivan cdga is said to be a pure model if it has
the form (∧Q ⊗ ∧P,d) with Q concentrated in even degrees, P in odd
degrees and

d(Q) = 0, d(P) ⊂ ∧Q.
By Proposition 2.10, the minimal model of a pure Sullivan cdga is a pure

model. Hence, the minimal model of a homogeneous space is a pure model
by Theorem 2.71. The elliptic spaces having puremodels constitute a special
family of elliptic spaces. Part (5) of Theorem 2.75 is proved for that family
of spaces in Theorem B.18. There is also a general structure theorem for
pure models.



2.5 Minimal models and homotopy theory 87

Theorem 2.77 Let (∧Q⊗ ∧P,d) be a pure cdga and suppose that P0 ⊂ P
has d(P0) = 0. Then

(∧Q⊗ ∧P,d) ∼= (∧Q⊗ ∧P1,d) ⊗ (∧P0, 0),
where P0 ⊕ P1 = P.

The idea of the proof is simple. Since d(P) ⊂ ∧Q and d(Q) = 0, it is clear
that the elements of P0 never appear in any differentials. Therefore, (∧P0, 0)
splits off from (∧Q⊗ ∧P,d). A geometric consequence is the following.
Corollary 2.78 Let X be a space whose minimal model is pure and sup-
pose that α ∈ H2k+1(X;Q) is in the image of the rational Hurewicz map
h : π2k+1(X) ⊗ Q → H2k+1(X;Q). Then X �Q Y × S2k+1, where Y also
has a pure model.

Proof The hypotheses imply that α corresponds to an odd degree generator
of X’s minimal model which is also a cocycle. By Theorem 2.77, the model
splits off (∧α, 0) and this corresponds to X splitting off a sphere factor
S2k+1. �

Pure models provide a very interesting family of elliptic spaces:

Theorem 2.79 ([87, Proposition 32.16]) A rationally elliptic space X with
χ(X) > 0 admits a pure model. Moreover we have the following formula
connecting the Betti numbers to the rank of the homotopy groups, rq =
rank πq(X): ∑

q

dim Hq(X;Q)tq =
∏
i

(1− t2i)r2i−1−r2i .

2.5.4 Minimal models and some homotopy constructions

LetX be a nilpotent space with minimal modelMX = (∧V ,d). We already
knowhow to derive the rational cohomology and the rational homotopy Lie
algebra of X from (∧V ,d). In this section we explain the relations between
the minimal model of X and its Postnikov tower. We then explain how to
derive from the minimal model a good approximation for the Lusternik–
Schnirelmann category of X. We also show how to obtain the minimal
model of the homotopy cofiber of a map f from the minimal model of f .
First of all, let G be an abelian group, and let n ≥ 2. The Eilenberg–Mac

Lane space K(G,n) is a CW complex such that πn(K(G,n)) = G, and such
that the other homotopy groups are zero. Denote by (∧W ,d) the minimal
model of K(G,n). SinceW∗ ∼= Hom(π∗(K(G,n)),Q), d = 0,W = Wn and
dim W = rank G.
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To a simply connected spaceX, we can associate a sequence of fibrations

K(πn(X),n) → Xn
pn−→ Xn−1 ,

and maps fn : X → Xn with pn ◦ fn = fn−1,

X
fn

��

fn−1 ����
���

���
���

�� Xn

pn
��

Xn−1

satisfying the following properties:

• πq(Xn) = 0, q > n;
• πq(fn) is an isomorphism for q ≤ n;
• pn : Xn → Xn−1 is a principal fibration obtained as a pullback of the
path fibrationK(πn(X),n) = �(K(πn(X),n+1)) → PK(πn(X),n+1) →
K(πn(X),n+ 1) along a map kn : Xn−1 → K(πn(X),n+ 1).

The sequence of fibrations is called the Postnikov tower of X and the maps
kn are called the associated k-invariants ([240]).
Let (∧V ,d) be the minimal model of X. We then have the following

properties.

• The minimal model of Xn is given by the sub-cdga (∧V≤n,d).
• The minimal models of fn and pn are, respectively, given by the injections

(∧V≤n,d) ↪→ (∧V ,d) , (∧V≤n−1,d) ↪→ (∧V≤n,d) .
• The minimal model of the nth k-invariant kn : Xn−1 → K(πn(X),
n + 1) is given by the map k̃n : (∧(s−1Vn), 0) → (∧V≤n−1,d), where
(s−1Vn)n+1 = Vn, (s−1Vn)q = 0, q �= n+ 1, k̃n(s−1v) = dv.

The Lusternik–Schnirelmann category of a space X, catX, is the least
integer n such thatX can be covered by n+1 open sets, each contractible in
X. For instance the category of a point is zero, and the category of a sphere is
one. The properties of the Lusternik–Schnirelmann category, its description
in terms ofminimalmodels and its role in algebraic and differential topology
are described in [66] and [87]. Here we only recall the main points.
A lower bound for catX is given by the rational cup length

cup0(X) = max {n | ∃α1, . . . ,αn ∈ H+(X;Q) such that α1 · · ·αn �= 0 } ,
and an upper bound is given by the dimension of X.

cup0(X) ≤ catX ≤ dim X .
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Suppose now that X is simply connected. By a result of Toomer ([253]),
the category of the rationalization X0 (see Subsection 2.6.1) is less than or
equal to the category of X,

catX0 ≤ catX .

The integer catX0 is called the rational category of X, and is denoted
cat0(X). Because the rational homotopy type of X is encoded in its mini-
mal model, it is no surprise that this invariant can be calculated from the
minimal model (∧V ,d) of X.
Theorem 2.80 ([86]) The integer cat0(X) is the least integer m such that the
minimal model of the projection qm : (∧V ,d) → (∧V/(∧>mV), d̄) admits
a homotopy retraction.

Denote by ρm : (∧V ,d) → (∧Wm,d) the minimal model of qm.

(∧V ,d) ρm ��

qm �����
����

����
����

(∧Wm,d)

�
��

(∧V/ ∧>m V , d̄)

The rational category of X is the least integer m such that there is a mor-
phism r : (∧Wm,d) → (∧V ,d) with r ◦ ρm = id∧V . One of the main results
concerning rational category is the so-called mapping theorem.

Theorem 2.81 (The mapping theorem [87, Theorem 28.6]) Let f : X → Y
be a continuous map between nilpotent spaces. If π∗(f ) ⊗ Q is injective,
then cat0(X) ≤ cat0(Y).

The rational homotopy Lie algebra of a space of finite rational category
satisfies properties that are similar to the properties of finite dimensional
spaces.

Theorem 2.82 ([87, Theorem 33.6 and 36.8]) Let X be a simply con-
nected space with finite Betti numbers and finite rational category. When
dim π∗(X)⊗Q < ∞, then dim H∗(X;Q) < ∞ and X is a rationally elliptic
space. When dim π∗(X) ⊗ Q = ∞, then

1. There is B > 1 such that
∑k

i=1 rank πi(X) > Bk for k enough large.
2. dim πodd(X) ⊗ Q = ∞.
3. There is an integer N such that for all α ∈ πq(�X) ⊗ Q with q > N,
there is β ∈ π∗(X) ⊗ Q such that ad(α)n(β) �= 0 for all n.
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Minimal models are also a very good tool for describing the ratio-
nal homotopy type of the homotopy cofiber of a map. If f : X → Y
is a continuous map, its homotopy cofiber Cf is the space Y ∪ CX/ ∼,
where CX = X × [0, 1]/X × {1} and where ∼ identifies (x, 0) ∈ CX to
f (x) ∈ Y. Recall that if f denotes the inclusion of a sub-CW complex or the
inclusion of a submanifold, then Cf is homotopy equivalent to the usual
quotient Y/X.
Denote by Mf the minimal model of f and suppose the following

diagram is commutative up to homotopy, where the vertical arrows are
quasi-isomorphisms.

MY

Mf
��

�
��

MX

�
��

(A,d)
g

�� (B,d).

Then we have,

Theorem 2.83 ([87, Proposition 13.6]) If g is surjective, then the minimal
model of Q ⊕ Ker g is the minimal model of Cf .

In particular the geometric realization of the minimal model ofQ⊕Ker g
is the rationalization of Cf .

2.6 Realizing minimal cdga’s as spaces

In order to apply the algebra of minimal cdga’s to geometry, we have to
understand how algebraic data can be realized geometrically. We begin by
considering how a minimal cdga may be realized topologically.

2.6.1 Topological realization of a minimal cdga

Consider on one side the category of nilpotent spaces with finite Betti num-
bers TopN and, on the other side, the category AN composed of the cdga’s
(A,d) with H0(A,d) = Q, and which admit a finite type minimal model.
There is a realization functor 〈 〉 going from AN to TopN (see [38] and
[246]) that has the following properties:

• The realization of a minimal cdga (∧V ,d), 〈(∧V ,d)〉, is a rational space;
that is, its homotopy groups are rational vector spaces.

• The correspondences X 
→ MX and (∧V ,d) 
→ 〈(∧V ,d)〉 are inverse to
each other up to rational homotopy equivalence. The minimal model of
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〈(∧V ,d)〉 is (∧V ,d); moreover, there is a map X → 〈MX〉 that induces
an isomorphism in rational cohomology.

The space 〈MX〉 is called the rationalization of X, and is denoted by X0.
This space is characterized by the following properties:

1. X0 is a rational space.
2. There is a map f : X → X0 inducing an isomorphism in rational

cohomology.
3. If Y is a rational space and g : X → Y is a continuous map, then there

is a map, unique up to homotopy, h : X0 → Y such that g � h ◦ f .
The correspondence between AN and TopN extends to maps.

• If X,Y ∈ TopN , then rationalization induces a bijection
[X,Y] → [X0,Y0] ∼= [MY ,MX] .

• The realization of a relative minimal cdga (∧V ,d) → (∧V ⊗ ∧W ,D) is
a fibration p : E → B.

The rationalization of a nilpotent finite type CW complex is not a finite
type CW complex because the homotopy groups of the rationalization are
Q-vector spaces, while the homotopy groups of a finite type CW complex
are finitely generated. However, the realization described above can, in
general, be improved, in a nonfunctorial way, to give a finite type CW
complex whose minimal model is the original one.

• Each finite type minimal cdga (∧V ,d) is the minimal model of a nilpotent
spaceX with finite Betti numbers. IfH∗(∧V ,d) is finite dimensional, then
we can choose X to be a finite CW complex.

• Each map between finite type minimal cdga’s is the minimal model of a
continuous map between finite type CW complexes.

• Each finite type relative minimal cdga (∧V ⊗ ∧W ,D) is the relative min-
imal model of a fibration p : E → B where E and B are finite type CW
complexes.

2.6.2 The cochains on a graded Lie algebra

Let L be a graded Lie algebra. We can associate to L its cochain alge-
bra C∗(L) = (∧V ,d) with Vp+1 ∼= Hom(Lp,Q) and differential d = d1
defined by

〈x, s[f , g]〉 = (−1)|g|〈d1x, sf ∧ sg〉 , x ∈ V , f , g ∈ L .
The next proposition follows directly.
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Proposition 2.84 Every finite type graded Lie algebra L such that L0 =
L1 = 0 can be realized as the rational homotopy Lie algebra of a simply
connected space.

The cochain algebra (∧V ,d) admits a bigradation defined by (∧V)p,q =
(∧pV)q−p. Since d(∧V)p,q ⊂ (∧V)p+1,q, this bigradation induces a bigra-
dation on the cohomology. The qth rational cohomology vector space of
a graded Lie algebra L, Hq(L;Q), is by definition the graded vector space
Hq,∗(C∗(L)).
Every short exact sequence of Lie algebras 0 → L1 → L2 → L3 → 0

induces a relative minimal cdga

C∗(L3) → C∗(L2) → C∗(L1) ,

and is therefore realized by a fibration.
A minimal presentation of a graded Lie algebra is a short exact sequence

0 → L(W)
f→ L(S) → L → 0

where L( ) denotes the free graded Lie algebra functor and where f (W) ⊂
L≥2(S). By [171] and [248], we then have isomorphisms of graded vector
spaces

S ∼= H1(C∗(L)) , W ∼= H2(C∗(L)) .

When L is a finite dimensional nilpotent Lie algebra concentrated in degree
0, the cochain algebra C∗(L) is finite dimensional. Its realization is a nil-
manifold. The theory of nilmanifolds will be described in Section 3.2.

2.7 Formality

Definition 2.85 A nilpotent space X, with minimal model (∧V ,d), is called
formal if there is a quasi-isomorphism

ϕ : (∧V ,d) → (H∗(X;Q), 0) .

Remark 2.86

• We can also define a cdga (A,d) to be formal if there is a chain of quasi-
isomorphisms

(A,d) ← (B1,d1) → · · · (Bk,dk) → (H∗(A), 0) .
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We can take the minimal models of (A,d), the minimal models of the
(Bi,di) and the minimal models of the morphisms by Theorem 2.26.
By applying Corollary 2.13, we then see that the condition above is
equivalent to Definition 2.85.

• By a result of Sullivan (see Proposition 2.101, [206] and [246]), the
definition of formality given above is equivalent to the existence of a
quasi-isomorphism over the reals,

ϕ : (∧V ,d) ⊗Q R → (H∗(X;R), 0) .

For a manifoldM, this is also equivalent to the existence of a sequence of
quasi-isomorphisms of R-cdga’s connecting ADR(M) and (H∗(M;R), 0).
We will come back to this point in Proposition 2.101. For a classical
criterion guaranteeing formality, see Exercise 2.3.

It follows directly from the definition that Lie groups, complex and
quaternionic Stiefel manifolds and loop spaces are formal spaces because
their respective cohomologies are isomorphic to their minimal models.

Example 2.87 (Product of formal spaces) Let X and Y be formal spaces
with respective minimal models (∧V ,d) and (∧W ,d). By the formality of
X and Y, we have quasi-isomorphisms

ϕ : (∧V ,d) → (H∗(X;Q), 0) and ψ : (∧W ,d) → (H∗(Y;Q), 0) .

The minimal model of X × Y is the tensor product (∧V ,d) ⊗ (∧W ,d) and
we have a quasi-isomorphism

ϕ ⊗ ψ : (∧V ,d) ⊗ (∧W ,d) → (H∗(X;Q) ⊗H∗(Y;Q), 0)
∼= (H∗(X × Y;Q), 0) .

This shows that X × Y is formal.

Example 2.88 (Retract of a formal space) If X is a formal space and Y is
a retract of X, then Y is a formal space. Denote i the injection and r the
retraction

Y
i→ X

r→ Y, r ◦ i � idY .

By the formality of X, we have a quasi-isomorphism ϕ : MX →
(H∗(X;Q), 0). Then the following composition of morphisms is a quasi-
isomorphism

MY
Mr �� MX

ϕ
�� (H∗(X;Q), 0)

H∗(i;Q)
�� (H∗(Y;Q), 0) .
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This shows that Y is a formal space. In particular, if a product X × Y is
formal, the spaces X and Y are formal.

An important property of formal spaces is the vanishing of all their
Massey products. Let’s recall the definition.

Definition 2.89 Let (A,d) be a cdga with cohomology H∗. Let a,b, c be
cohomology classes whose products ab and bc are zero. Choose cocycles (or
closed forms if we work with the de Rham complex) x, y and z representing
a, b and c. By definition, there are elements v and w such that dv = xy and
dw = yz. The element

vz − (−1)|x|xw
is then a cocycle whose cohomology class depends on the choice of v and w.
The set 〈a,b, c〉 formed by the cohomology classes constructed using all the
possible choices of v and w is called the triple Massey product of a, b and
c. The triple Massey product is said to be trivial if the element 0 belongs to
the set 〈a,b, c〉.
Denote by I the ideal of H∗ generated by the classes of a and c. The set

〈a,b, c〉 projects to a single element in H∗/I. Moreover, this element is 0 if
and only if the triple Massey product is trivial.

Proposition 2.90 Let X be a formal space. Then all triple Massey products
vanish.

Proof Denote by (∧V ,d) the minimal model of X. By definition we have a
quasi-isomorphism

ϕ : (∧V ,d) → (H∗(X;Q), 0) .

Now take three cohomology classes a, b and c represented by the cocycles
x, y and z in (∧V ,d), and suppose that there are elements v and w such
that dv = xy and dw = yz. The cocycle vz − (−1)|x|xw is mapped by ϕ

to a cocycle in the ideal generated by the elements ϕ(x) = a and ϕ(z) = c.
Since ϕ is a quasi-isomorphism, this implies that the triple Massey product
set 〈a,b, c〉 belongs to the ideal generated by a and c. This Massey product
is thus zero. �

Example 2.91 (A nonformal manifold) Denote by q : S2×S2 → S4 the map
obtained by collapsing the wedge S2 ∨ S2 to a point, and take the pullback
of the Hopf fibration S3 → S7 → S4 along q (see Example 2.68). We obtain
in this way a principal bundle S3 → M → S2 × S2, whose relative minimal
model is given by

(∧(a,b,u, v),d) → (∧(a,b,u, v, t),d)
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with |a| = 2, |b| = 2, |u| = 3, |v| = 3, |t| = 3, da = 0, du = a2, db = 0,
dv = b2, dt = ab. We can compute the cohomology in low degrees. A basis
of H2(M;Q) is given by the classes a and b; H3(M;Q) = H4(M;Q) = 0.
The cohomology in degree 5 has dimension two, and a basis is given by the
two nontrivial Massey products

〈a, a,b〉 = [ub− at] , and 〈a,b,b〉 = [tb− av] .
Because theseMassey products do not vanish, the manifoldM is not formal.

Definition 2.92 (Higher order Massey products) Let u1, . . . ,up be coho-
mology classes. A defining system for the Massey product 〈u1, . . . ,up〉 is a
collection of cochains mij, 1 ≤ i ≤ j ≤ p, (i, j) �= (1,p), with mii a cocycle
representative for ui, i = 1, . . . ,p and

d(mij) =
j−1∑
k=i

(−1)|mik|mik ·mk+1,j .

We then form the cocycle

α{mij} =
p−1∑
k=1

(−1)|m1k|m1k ·mk+1,p .

The Massey product is trivial if there is a system mij for which the
cohomology class of α{mij} is zero.

2.7.1 Bigraded model

The main tools for the study of formality of spaces and manifolds are
bigraded and filtered models (see [132]).

Theorem 2.93 (Bigraded model of a graded commutative algebra) Let
A be a finitely generated graded commutative algebra. We suppose that
A0 = lk. Then the cdga (A, 0) admits a minimal model ϕ : (∧V ,d) → (A, 0)
where V is equipped with a lower gradation V = ⊕p≥0Vp extended in a
multiplicative way to ∧V and where the following properties hold.

1. d(Vp) ⊂ (∧V)p−1. In particular, d(V0) = 0. Therefore the cohomology
is a bigraded algebra H∗(∧V ,d) = ⊕p≥0Hp(∧V ,d).

2. Hq(∧V ,d) = 0 for q > 0, and H0(∧V ,d) ∼= A.
3. ϕ(Vp) = 0 for p > 0.

The cdga (∧V ,d) is called the bigraded model of the graded algebra A.
The construction of the bigraded model begins with the generators (or

indecomposables) of A, V0 = A+/(A+ · A+). We define d|V0 = 0 and
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ϕ : ∧ V0 → A by extending a vector space splitting V0 → A. Thus, at the
very first stage, we obtain a surjection from ∧V0 to A. We form ∧(V0⊕V1)
and define the differential on V1 to kill the kernel of ∧V0 → A. Note that
d(V1) ⊂ ∧V0. The addition of V1 may introduce yet another kernel in
cohomology and this must be killed by adding in V2 with d(V2) ⊂ (∧(V0⊕
V1))1. The process goes on, eventually resulting in the bigraded model.
When X is a formal space, the minimal model of X is the minimal model

of the cdga (H∗(X;Q), 0), so we can therefore choose the bigraded model
of the algebra H∗(X;Q) as a minimal model for X.

Proposition 2.94 LetM be a formal nilpotentmanifold. Then all theMassey
products 〈u1, . . . ,up〉 ,p ≥ 3, are trivial in the de Rham complex ADR(M).

Proof Consider the Massey product 〈u1, · · · ,up〉 with p ≥ 3. In the
bigraded model (∧V ,d) we can choose a defining system mij with mij ∈
(∧V)j−i. This shows that the element α{mij} is a cocycle in (∧V)p−2 and there-
fore is a coboundary because of Theorem 2.93 (3). Now, since (∧V ,d) is the
minimal model ofM, we have a quasi-isomorphismψ : (∧V ,d) → ADR(M)

and the family ψ(mij) is a trivial defining system for the Massey product in
ADR(M). This shows that all Massey products are zero. �

2.7.2 Obstructions to formality

Let (A,dA) be a cdga. We suppose that H0(A,dA) = Q and that each
Hp(A,dA) is finite dimensional. We denote by

µ : (∧V ,d) → (H∗(A,dA), 0)

a bigraded model of the cohomology. There then exists a perturbation of
(∧V ,d) that is a (not necessarily minimal) Sullivan model of (A,dA). More
precisely, we have the following.

Theorem 2.95 ([132]) With the previous notation, there is a differential D
on ∧V such that

1. (D−d)(Vp) ⊂ (∧V)≤p−2 (In other words the differential can be written
D = d + d2 + d3 + · · · where dq(Vp) ⊂ (∧V)p−q).

2. (∧V ,D) is a Sullivan model for (A,dA).
3. (A,d) is formal if and only if there is an isomorphism ϕ : (∧V ,D) →

(∧V ,d) of the form ϕ = id+ ϕ1 + ϕ2 + · · · with ϕq(Vp) ⊂ (∧V)p−q.

Definition 2.96 The Sullivan model (∧V ,D) is called the filtered model of
the cdga (A,dA).

We want to use Theorem 2.95 (3) to develop an obstruction theory for
formality, so we note that it follows from a more general uniqueness result
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for filtered models (see [132, Theorem 4.4]) and the fact that, if (A,dA)
is formal, then the bigraded model is a minimal model and a filtered model
for (A,dA).
Now let’s see what necessary condition Theorem 2.95 (3) leads to.

Suppose ϕ : (∧V ,D) → (∧V ,d) is an isomorphism with ϕ of the form
ϕ = id+ ϕ1 + ϕ2 + · · · . From the relations D2 = 0, ϕ(ab) = ϕ(a)ϕ(b) and
dϕ = ϕD we obtain ⎧⎨⎩

d22 = 0 ,
ϕ1(ab) = ϕ1(a)b+ aϕ1(b) ,
dϕ1 = d2 + ϕ1d .

In particular, d2 and ϕ1 are derivations that satisfy ϕ1(Vp) ⊂ (∧V)p−1 and
d2(Vp) ⊂ (∧V)p−2.
We are therefore motivated to define the graded Lie algebra of derivations

Derq,s as the set of derivations θ of ∧V that decrease the lower degree by q
and increase the usual degree by s:⎧⎨⎩ θ(Vr

p) ⊂ (∧V)r+sp−q ,
θ(ab) = θ(a) · b+ (−1)s·|a|a · θ(b) .

The commutator with d and the commutator bracket give Der∗,∗ the struc-
ture of a differential graded Lie algebra (Der∗,∗,D). The differential D is
given by

D(θ) = d ◦ θ − (−1)sθ ◦ d ,
so that (recalling d(Vp) ⊂ (∧V)p−1) we have

D : Derq,s−→Derq+1,s+1 .

Note that, for each θ ∈ Derq,s, q > 0, it is certainly true that θq+1(x) = 0
for x ∈ Vq. Therefore the formula

eθ =
∑
n≥0

θn

n! = id+ θ + θ2

2
+ · · ·

gives a well defined automorphism of ∧V .
Now we can construct a sequence of obstructions to the formality of a

cdga (A,dA). Let (∧V ,D) be a filtered model of (A,dA). Since D2 = 0,
we have dd2 + d2d = 0 since it is the only part of D2 that decreases the
lower degree by 3. The derivation d2 is thus a cycle in Der2,1. If there is an
isomorphism ϕ : (∧V ,D) → (∧V ,d) of the form ϕ = id+ ϕ1 + · · · , then

d2 = dϕ1 − ϕ1d = D(ϕ1).
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Therefore the first obstruction to formality is the class of d2,

[d2] ∈ H2,1(Der∗,∗) .

On the other hand, if the class of d2 is zero, then there is a derivation
ϕ1 such that d2 = dϕ1 − ϕ1d. We then can form the automorphism e−ϕ1

and consider the new Sullivan model (∧V ,D′) with D′ = eϕ1De−ϕ1 . By
construction, we have an isomorphism

e−ϕ1 : (∧V ,D′) → (∧V ,D),

but the main advantage of D′ is that D′ − d decreases the lower gradation
by at least three. We can see this by writing

D′ = (id+ ϕ1 + . . .)(d + d2 + . . .)(id− ϕ1 + . . .)

= d + (ϕ1 d − d ϕ1 + d2) + terms decreasing lower degree by at least 3

= d + terms decreasing lower degree by at least 3

since ϕ1 d − d ϕ1 + d2 = 0 by assumption. We can therefore write D′ =
d + d3 + d4 + · · · with dq(Vp) ⊂ (∧V)p−q. We then see that the second
obstruction is the class of d3 in H3,1(Der∗,∗). Of course, this process leads
to an inductive construction.
Therefore, suppose by induction that (A,dA) admits a filtered model of

the form (∧V ,Dr)withDr = d+dr+dr+1+· · · with r ≥ 3. The element dr
is a cycle in Derr,1, and defines the (r−1)st obstruction [dr] ∈ Hr,1(Der∗,∗).
Suppose we have an isomorphism ϕ(r) : (∧V ,Dr) → (∧V ,d) of the form
ϕ(r) = id + ϕ1 + ϕ2 + · · · . Then ϕ1d = dϕ1 since d2 = 0. Thus, e−ϕ1 is
an automorphism of (∧V ,d) and we obtain the composition e−ϕ1 ◦ ϕ(r) =
id+ϕ2+. . .. Hence, we can suppose that ϕ1 = 0. By the same process, we can
suppose that ϕ2 = ϕ3 = . . . = ϕr−2 = 0; that is, ϕ(r) = id+ ϕ

(r)
r−1 + · · · , and

dr = dϕ(r)
r−1 − ϕ

(r)
r−1d. Hence, [dr] must be equal to zero in H∗(Der∗,∗,D).

Conversely, if we suppose that [dr] = 0, we can then replace (∧V ,Dr)

by (∧V ,Dr+1) with Dr+1 = eϕ
(r)
r−1Dre

−ϕ
(r)
r−1 . As above, we also obtain an

isomorphism e−ϕ
(r)
r−1 : (∧V ,Dr+1) → (∧V ,Dr).

If all the obstructions [di] vanish, then we have a sequence of isomor-
phisms

· · · �� (∧V ,Dr+1)
e
−ϕ

(r)
r−1

�� (∧V ,Dr) �� · · · �� (∧V ,D),

where Dr − d decreases the lower gradation by at least r, and where

e−ϕ
(r)
r−1 − id decreases the gradation by at least r − 1. In other words, each
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stage of the construction creates a cdga which is closer to (∧V ,d) than the
previous stage. Therefore, the composition

· · · ◦ e−ϕ
(r)
r−1 ◦ e−ϕ

(r−1)
r−2 ◦ · · · ◦ e−ϕ1

is a well-defined isomorphism between (∧V ,d) and (∧V ,D). We therefore
have the

Theorem 2.97 Starting from the filtered model (∧V ,D) for (A,dA), there
is a sequence of obstructions in H∗(Der∗,∗,D), [d2], [d3], . . . , [dr], . . . such
that the following conditions are equivalent:

• [d2] = [d3] = . . . = [dr] = 0;
• (∧V ,D) ∼= (∧V ,D′) with (D′ − d)(Vq) ⊂ (∧V)q−r.

In particular, all the obstructions vanish if and only if the cdga (A,dA) is
formal.

The following proposition will significantly simplify future computations
of the obstructions [dr].
Proposition 2.98 Let (∧V ,D) be the filtered model of a simply connected
space X with finite Betti numbers such that H>n(X;Q) = 0. Suppose D =
d + dq + dq+1 + · · · and suppose there exists a derivation θ defined on
∧V<n≤q such that θ(Vs

r ) ⊂ (∧V)sr−q+1 and dq = dθ − θd on V<n
q . Then the

obstruction [dq] is zero.
Proof First, define θ = 0 on V≥n

<q . We clearly have dq = d θ − θ d = 0
on V<q. Now, by induction on r, for r ≥ n we extend θ on Vr

q such that
dq = dθ − θd. By hypothesis, this has been done for r < n. Suppose this
has also been done for degrees ≤ r and let x be an element of a basis of
Vr+1
q . Then dq(x) + θd(x) is a cocycle in (∧V)r+20 . By hypothesis, we have

H>n(X;Q) = 0, so there is some element y such that d(y) = dq(x)+ θd(x).
We define a linear map θ : Vr+1

q → (∧V)r+10 by putting θ(x) = y. This
proves that θ can be defined on Vq with dq = d θ − θ d.
Suppose now that we have defined θ on V<s and on V<r

s such that dq =
d θ − θ d and θ decreases the lower gradation by exactly q − 1. Then, for
each element x of a basis of Vr

s , the element dq(x) + θ d(x) is a d-cocycle
of positive lower degree in ∧V . By Theorem 2.93 (2), there is an element y
such that dy = dq(x) + θ d(x). We extend θ linearly by putting θ(x) = y.
In this way, we can define θ on V with dq = d θ − θ d. This shows that

the obstruction [dq] is zero. �

Proposition 2.99 Let X be a (p− 1)-connected space, p ≥ 2, of dimension
≤ 3p− 2. Then X is formal.
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Proof Let (∧V ,d) denote the bigraded model of H∗(X;Q). By the connec-
tivity hypothesis, Vq

0 = 0 for q < p. By the minimality property of the
model, Vq

1 = 0 for q < 2p − 1 and Vq
2 = 0 for q < 3p − 2. We show that

all the obstructions are zero. For the first one, [d2], we define θ to be zero
on V1. The hypotheses of Proposition 2.98 are satisfied, and so [d2] = 0.
By Proposition 2.98, the other obstructions are zero because V<3p−2

q = 0
for q ≥ 3. �

For a cdga (A,dA), we can extend scalars to obtain a cdga (A⊗lk,dA⊗1lk)
over any field lk of characteristic zero. We can also find a minimal model
(∧Vlk,d) → (A⊗lk,dA⊗1lk) over lk. Then, formality over the field lk simply
means the following.

Definition 2.100 We say that a space X is lk-formal if its lk-minimal model
is quasi-isomorphic to (H∗(X; lk), 0).

The first question that comes to mind now is whether descent phenomena
occur. That is, could a space “become” formal under a field extension. The
following application of the framework of obstruction theory answers this
question and will be very useful in Chapter 4. (Note that we have already
discussed this result in Remark 2.86.)

Proposition 2.101 A space X is lk-formal if and only if X is formal.

Proof The obstruction theory enunciated in Theorem 2.97 can be defined
over the field lk. The associated complex of derivations Der(lk)∗,∗ is obtained
by extension of the scalars from Q to lk of the complex Der∗,∗ described
above. Since the obstructions are linear, the obstructions [dq] are zero over
the field lk if and only if they are zero over Q. �

2.8 Semifree models

Semifree models for differential modules are introduced in this section
because they will be very useful tools in Chapters 7 and 8.

Definition 2.102 Let (A,d) be a differential graded algebra. A differential
A-module (M,d) is a complex equipped with a structure of A-module such
that d(a ·m) = da ·m+ (−1)|a|a · dm.
Definition 2.103 Let (A,d) be a differential graded algebra. A differential
A-module (M,d) is called semifree if M is equipped with a filtration

0 = M(−1) ⊂ M(0) ⊂ · · · ⊂ M = ∪p≥0M(p)
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such that d(M(p)) ⊂ M(p−1) and such that as anA-module,M(p)/M(p−1)
is isomorphic to (A,d) ⊗ (V(p), 0). We write M = A⊗ V.

Proposition 2.104 ([87]) Let (A,d) be a differential graded algebra and
(N,d) be a differential A-module. There then exists a semifree A-module
(M,d) and a quasi-isomorphism of A-modules ϕ : (M,d) → (N,d).

Definition 2.105 The differential A-module (M,d) is called a semifree
model of (N,d).

Definition 2.106 Let (A,d) be a differential graded algebra and suppose
(M,d) is a semifree A-module. Two morphisms of differential A-modules,
f , g : (M,d) → (N,d) are homotopic, f � g, if there is a morphism of A-
modules H : M → N of degree−1 such that f−g = dH+Hd.We denote by
[(M,d), (N,d)] the vector space of homotopy classes from (M,d) to (N,d).

Semifree modules enjoy properties very similar to those of minimal mod-
els. The next proposition contains some of these that will be useful in later
chapters.

Proposition 2.107 ([87])

1. Let ϕ : (B,d) → (A,d) be a quasi-isomorphism of differential graded
algebras and let (M,d) be a semifree A-module, (M,d) = (A ⊗ V ,d).
Then there is a semifree B-module (N,d) = (B ⊗ V ,d) and a quasi-
isomorphismψ : (B⊗V ,d) → (A⊗V ,d) such thatψ(b⊗v)−ϕ(b)⊗v ∈
A>n ⊗ V, for b ∈ Bn.

2. Let ϕ : (B,d) → (A,d) be a quasi-isomorphism of differential graded
algebras and (M,d) be a semifree B-module. Then A⊗B M is a semifree
A-module and the map ϕ ⊗ id : M = B ⊗B M → A ⊗B M is a quasi-
isomorphism.

3. (Lifting property) Given a commutative diagram of differential A-
modules

M1

ϕ

��
M

ψ
�� M2

whereM is semifree and ϕ is a quasi-isomorphism, then there is a unique,
up to homotopy, morphism of differential A-modules θ : M → M1 such
that ψ � ϕ ◦ θ .

Part (3) of Proposition 2.107 can be rephrased in the form
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Proposition 2.108 If (M,d) is a semifree A-module and f : (N,d) → (N′,d)
is a quasi-isomorphismof differential A-modules, then the compositionwith
f induces an isomorphism [(M,d), (N,d)] → [(M,d), (N′,d)].
We denote by Homp

A(M,N) the vector space of A-morphisms of degree

p from M into N. The differential D : Homp
A(M,N) → Homp+1

A (M,N)

defined by D(f ) = df − (−1)|f |fd makes HomA(M,N) = ⊕qHom
q
A(M,N)

into a cochain complex. By construction, H0(HomA(M,N)) =
[(M,d), (N,d)].
Let (M,d) and (N,d) be two differential A-modules, and let (P,d) →

(M,d) be a semifreemodel for (M,d). Then, by Proposition 2.108, the coho-
mology Hq(HomA(P,N)) is independent of the choice of semifree model
(P,d) and is denoted by ExtqA(M,N).
Semifree modules are very useful for the study of fibrations. Let F →

E
p−→ B be a fibration and denote by C∗(−) the singular cochains functor

with coefficients inQ. Then the morphismC∗(p)makes the cochain algebra
C∗(E;Q) a module over the cochain algebra C∗(B;Q). We then have:

Proposition 2.109 ([87]) With the above structure, C∗(E;Q) admits a
semifree model of the form (C∗(B;Q) ⊗ H∗(F;Q),D). In the same way,
when B is simply connected, a semifree model for the minimal model of E
is given by (∧V ⊗H∗(F;Q),D), where (∧V ,D) is the minimal model of B.

Exercises for Chapter 2

Exercise 2.1 Show that the correspondence f 
→ H∗(f ) induces a bijection

[(∧V , 0)(A,d)] ∼=−→ Hom(V ,H∗(A,d)) .

Exercise 2.2 Let (∧V ,d) be a minimal model. Show that the correspondence f 
→
Q(f ) induces a bijection

[(∧V ,d),MSn ]
∼=−→ Hom(Vn,Q) .

Exercise 2.3 In [70, Theorem 4.1], a criterion for formality was given that
sometimes makes it easy to say that a minimal cdga is not formal.

Proposition A minimal cdga (�V ,d) is formal if and only if V decomposes as a
direct sum V = C ⊕N with d(C) = 0 and d injective on N such that every closed
element in the ideal generated by N is exact.
Prove this result. Hints: Suppose that the property holds. This says that all coho-

mology of (�V ,d) comes from the subalgebra �C where C = ⊕Ci consists of all
generators which are cocycles. Define a linear map ψ : ⊕i Vi → H∗(�V ,d) by{

ψ(c) = [c] for c ∈ ⊕iCi

ψ(n) = 0 for n ∈ ⊕iNi.
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Extend ψ multiplicatively to ∧V and show that the extension is a cdga homomor-
phism. Then show that, since the cohomology is generated by C, ψ induces the
identity on cohomology.
For the other direction, suppose that (�V ,d) is formal. Let ψ : (�V ,d) →

H∗(�V ,d) be such that ψ∗ is the identity. Let C be the kernel of ψ restricted
to V . See [257], for example, for a proof.

Exercise 2.4 Let X be a simply connected CW complex of finite type. Suppose that
there is an integer n > 0 so that πr(X) ⊗ Q = 0 for r > n and Hp(X;Q) = 0 for
n < p ≤ 2n. Show thatHp(X;Q) = 0 for p > n. In particular, X must be rationally
elliptic of dimension n. Hint: if Hq(X;Q) �= 0 for some q > 2n, add generators to
the minimal model (in degrees greater than or equal to 2n) to kill all cohomology
above degree 2n. Show by Theorem 2.74 (3) that this is a contradiction.

Exercise 2.5 Suppose X is a finite CW complex that is (r − 1)-connected with
dim X ≤ 4r−4 andH2q+1(X;Q) = 0 for q ≥ 0. Show that X is formal. (Note that
X is not assumed to be a manifold.)

Exercise 2.6 Characterize the compact homogeneous spaces that are formal in
terms of their minimal models. (Hint: see Theorem 2.77).

Exercise 2.7 Let f : M1 → M2 be a quasi-isomorphism of semifree A-modules.
Show that there is a morphism of differential A-modules g : M2 → M1 such that
g ◦ f and f ◦ g are homotopic to the identity.



3
Manifolds

A smooth compact manifold has many properties that make it distinct
from an ordinary topological space. From the topological viewpoint, the
existence of Poincaré duality in (co)homology is crucial to almost any
result about the manifold. From the geometric viewpoint, the existence
of a Riemannian metric allows the manifold to be studied using analytic
techniques. In subsequent chapters, we shall see how these two points of
view mix together to yield interesting results in both directions: topology
applied to geometry and geometry applied to topology.
In this chapter, we show how minimal models of manifolds reflect the

special properties of manifolds. In particular, we see how Poincaré duality
plays a huge role in almost all aspects of the rational homotopy of man-
ifolds, but especially in the geometric realization of algebraic data and in
the problem of determining whether a manifold is formal. Also, restricting
manifolds to satisfy certain properties constrains their minimal models as
well, and we will see this clearly in the case of nilmanifolds and biquotients.
Now let’s describe exactly what is in the chapter.
In Section 3.1, we study how manifolds are linked to minimal models

through Poincaré duality. In particular, we state the Barge–Sullivan realiz-
ation criteria which tell us which minimal models contain manifolds inside
their rational homotopy types. We also describe a model for connected
sums, understand their rational homotopy groups and show which simply
connected 4-manifolds are rationally elliptic. We end this section by giving
proofs of the theorems of Miller and Stasheff, which state two important
criteria for formality, using the obstruction theory of Subsection 2.7.2.
In Section 3.2, we consider a particular class of manifolds (which we will

meet throughout the book) called nilmanifolds. The minimal model of a
nilmanifold is very special indeed and this means that we can understand
many general properties of nilmanifolds.
The construction of models can easily be extended to the case of cdga’s

equippedwith the action of a finite group andwe develop this in Section 3.3.
This then leads to an understanding of the cohomology of the classifying
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space of a compact connected Lie group. For instance, we prove the
well-known isomorphism H∗(BG;Q) ∼= H∗(BT;Q)W(G) between the coh-
omology of BG and the invariant subalgebra of the cohomology of the clas-
sifying space of a maximal torus T ofG under the action of the Weyl group
W(G) of G.
Section 3.4 prepares the way for one of the main objects of Chapter 6,

the biquotients G//H of a compact connected Lie group G by a closed
connected subgroup H. We define biquotients here and give their principal
properties. We also show how Sullivan’s theory allows the study of biquo-
tients through a special minimalmodel obtained from a description ofG//H
as a certain type of pullback.
Finally, in Section 3.5, we describe the canonical model for a Rieman-

nian manifold in terms of Hodge theory. While this type of model is not
well-known, its potential for application in geometry is apparent from
Theorem 3.54, which says that the real homotopy theory of an isometry
of a closed simply connected Riemannian manifold is determined by the
induced homomorphism on real cohomology.

3.1 Minimal models and manifolds

In order to apply the algebra of minimal models to geometry, we have
to understand how algebraic data can be realized geometrically. We have
already seen in Subsection 2.6.1 that a minimal model may be realized by a
space. While it is useful to have spatial realizations of models, for geometry
it is essential to have realizations as closed manifolds. This, of course, leads
to many restrictions on the original algebra. Let’s consider this now.

3.1.1 Sullivan–Barge classification

Themost fundamental algebraic aspect of compact manifolds is the fact that
their cohomology satisfies Poincaré duality. We want to be able to realize
minimal models by manifolds, so we need to build in the Poincaré duality
requirement.

Definition 3.1 A cga H is a lk-Poincaré duality algebra of dimension n if
eachHq is of finite lk-dimension, Hn = lkω, H>n = 0 and the multiplication
induces a nondegenerate bilinear pairing Hq ⊗ Hn−q → Hn ∼= lk for 0 ≤
q ≤ n.

Let (∧V ,d) be a minimal model, with H1(∧V ,d) = 0 and such that
H∗(∧V ,d) is a Poincaré duality algebra of dimension n. Also suppose that
cohomology classes pi in degree 4i for 4i < n have been chosen. Let p
denote the collection {pi}. A realization of the pair ((∧V ,d),p) is a manifold
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whose minimal model is (∧V ,d) and whose Pontryagin classes are the pi.
The theorem of Sullivan and Barge (see [21], [246]) gives necessary and
sufficient conditions for the realization of this data. Note first that in case
the dimension is 4k, we have a quadratic form on H2k whose signature is
related to the Pontryagin numbers by the Hirzebruch signature formula (see
[141]).

Theorem 3.2 ([246]) Let (∧V ,d) be a Sullivan model whose cohomology
satisfies Poincaré duality with a fundamental class in dimension n and V1 =
0. We also choose cohomology classes p = {pi} ∈ H4∗(∧V ,d).
1. If n is not of the form 4k, then there is a compact simply connected

manifold that realizes the pair ((∧V ,d),p).
2. If n = 4k, and the signature is zero, there is a compact simply connected

manifold that realizes the pair ((∧V ,d),p) if and only if the quadratic
form on H2k is equivalent over Q to a quadratic form

∑±x2i .
3. If n = 4k and the signature is nonzero, then there exists a compact sim-
ply connected manifold realizing the pair ((∧V ,d),p) if and only if the
quadratic form on H2k is equivalent over Q to a quadratic form

∑±x2i
and the Pontryagin numbers are numbers satisfying the congruence of a
cobordism [244].

In other words, the conditions that are necessary for the realization of
algebraic data by a closed manifold are also sufficient. To see if a quadratic
form has the form

∑±x2i over Q is not easy in general. Let’s look at an
elementary example to illustrate this point. First, the rational quadratic form
2x2 + 2y2 can be written (x + y)2 + (x − y)2, and therefore has the form
desired. On the other hand, the quadratic form x2 + 2y2 cannot be written
in the form ±z2 ± t2 by a standard computation. So we have, in particular,
that the graded algebra ∧(x, y)/(2x2 − y2,xy), with |x| = |y| = 2, is not
the cohomology of a manifold. The beginning reader will check that the
quadratic form associated to this algebra is x2 + 2y2.

3.1.2 The rational homotopy groups of a manifold

LetM be a simply connected n-dimensional compact manifold, p a point in
M, andD an n-dimensional disk centered at p inM. The spacesM′ = M\{p}
and M′′ = M\ intD have the same homotopy type. Denote by ϕ : Sn−1 →
M′′ the inclusion of the boundary of D. Then M is homeomorphic to the
space obtained by attaching an n-dimensional cell toM′′ along the map ϕ.

Theorem 3.3 ([87, Section 37]) Let M be a simply connected manifold such
that the cohomology algebra requires at least two generators. Then,
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1. the inclusion i : M′ ↪→ M induces a surjective map

i# : π∗(�M′) ⊗ Q → π∗(�M) ⊗ Q ;

2. the kernel of i# is a free graded Lie algebra;
3. if we filter the Lie algebra π∗(�M′) ⊗ Q by the powers of the ideal gen-

erated by [ϕ], we obtain a filtered Lie algebra whose graded associated
Lie algebra is the free product of Lie algebras

L([ϕ])
∐

(π∗(�M) ⊗ Q) ;

4. if ϕ is an indecomposable element in the Lie algebra π∗(�M′)⊗ Q, then
we have an isomorphism of graded Lie algebras

π∗(�M′) ⊗ Q ∼= L([ϕ])
∐

(π∗(�M) ⊗ Q) .

Corollary 3.4 (The rational homotopy of a connected sum) SupposeM and
N are n-dimensional manifolds whose cohomologies require at least two
generators. Then there is a filtration on π∗(�(M#N)) ⊗ Q such that the
associated graded Lie algebra is isomorphic to (π∗(�M)⊗Q)

∐
(π∗(�N)⊗

Q)
∐

L(x) for some element x in degree n − 1. In particular, we have an
isomorphism of graded vector spaces

π∗(�(M#N)) ⊗ Q ∼= (π∗(�M) ⊗ Q)
∐

(π∗(�N) ⊗ Q)
∐

L(x) .

Proof Denote by ψ1 and ψ2 the attaching maps of the top cells in M and
N. By Theorem 3.3, the inclusion i : M′ ∨N′ → M∨N induces a surjective
map on the rational homotopy groups (see Example 2.58). The connected
sum M#N is obtained from M′ ∨ N′ by attaching a cell along ψ1 + ψ2.
Therefore we have a factorization of i as

M′ ∨N′ j→ M#N
q→ M ∨N ,

where j is the canonical injection and q pinches the tube Sn−1 × [0, 1]
connecting the two components to a point. This shows that the pinching
map q induces a surjective map on the rational homotopy groups. Filtering
π∗(�(M′∨N′))⊗Q by the ideal generated by [ψ1] and [ψ2], we get a filtered
Lie algebra whose associated graded Lie algebra is

(π∗(�M) ⊗ Q)
∐

(π∗(�N) ⊗ Q)
∐

L([ψ1])
∐

L([ψ2]) .
Therefore filtering π∗(�(M#N))⊗Q by the ideal generated by [ψ1], we get
a graded Lie algebra isomorphic to (π∗(�M)⊗Q)

∐
(π∗(�N)⊗Q)

∐
L(x),

with x = [ψ1]. �
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Remark 3.5 Note that, under the hypothesis of Corollary 3.4, the connected
sumM#N is a rational hyperbolic space.

Example 3.6 (Model of a connected sum) Let Mn and Nn be simply con-
nected compact n-manifolds. Denote by q the pinchingmapM#N → M∨N
and by ϕ : MM∨N → MM#N the minimal model of q. Denote also by
ωM ∈ MM∨N and ωN ∈ MM∨N cocycles representing the fundamental
classes ofM and N. Since [ϕ∗(ωM)] = [ϕ∗(ωN)] is the fundamental class of
M#N, we can introduce a new generator x and define an extension of ϕ,

ϕ : (MM∨N ⊗ ∧x,d) → MM#N ,

by putting dx = ωM − ωN . Since H≤n(ϕ) is an isomorphism and we
know that H>n(M#N;Q) = 0, to obtain a quasi-isomorphism, we have
only to inductively introduce new generators xi in degrees ≥ n so that
H>n(MM∨N ⊗ ∧(x,xi),d) = 0.
Recall that in Example 2.47we have given a process to construct themini-

mal model ofM∨N. That computation combined with the present process
gives a procedure to derive a Sullivan model of M#N from the minimal
models of M and N. When the algebras H∗(M;Q) and H∗(N;Q) are not
generated by only one element, then the map π∗(q)⊗Q is surjective, which
implies that ϕ is injective. The relative minimal model we have constructed
above is then the minimal model ofM#N.

Example 3.7 The minimal model of a connected sumM#N depends on the
choice of the fundamental classes ωN and ωM ofN andM. If we reverse the
orientation of N the fundamental class becomes −ωN , and we have dx =
ωM + ωN . This change of orientation can change the rational homotopy
type. This is the case whenM = N = CP(2).
WriteH∗(M;Q) = Q[x]/x3 andH∗(N;Q) = Q[y]/y3. If the fundamental

classes are x2 and y2, the minimal model for M#N = CP(2)#CP(2) is
(∧(x, y, z, t),d), dx = dy = 0, dt = xy, dz = x2 − y2. By Exercise 2.4,
we can see that no other generators are required. Hence, CP(2)#CP(2) is
rationally elliptic.
If we reverse the orientation in N, we get (∧(x, y, z′, t′),d), dx = dy = 0,

dt′ = xy, dz′ = x2+y2 and this is a model of CP(2)#CP(2), the blow-up of
CP(2) at a point (see Subsection 8.2.1). It is quite easy to see that there is
no isomorphism between the two cdga’s (see Exercise 3.2). Therefore, the
two manifolds do not have the same rational homotopy type.

Example 3.8 (Rationally elliptic 4-manifolds) Rational homotopy condi-
tions imposed on manifolds often restrict possibilities greatly. For instance,
which rational homotopy types of closed simply connected 4-manifolds are
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rationally elliptic? Of course, the key properties that we shall use are con-
tained in Theorem 2.75. In particular, there is the dimension formula (6) as
well as the refinements (7) and (8) of Theorem 2.75. In what follows, for
each i, we shall refer to the i-th rational homotopy group simply by πi.
The first thing to notice is that, by (8), 0 ≤ dim π5 ≤ 1 and 0 ≤ dim π7 ≤

1 and they cannot be non-zero simultaneously. Moreover, again by (8), if
dim π7 = 1 or dim π5 = 1, then π3 = 0. Similarly, by (7), if π4 �= 0, then
π2 = 0 and, if π4 = 0, then dim π2 ≤ 2. Finally, by (7), dim π4 = 0 or
dim π4 = 1. This means we can work with each case separately.
So suppose π4 = Q. Then the dimension formula (6) restricts the possi-

bilities for homotopy. For instance, if π5 = Q, then the formula becomes
4 = 5 − 4 + 1 = 2, which is not true. Thus, in this case we cannot have
a degree five generator. The other two cases are when π7 = Q and when
π5 = 0 = π7. The respective dimension formulas are 4 = 7 − 4+ 1, which
is true, and 4 = 3dim π3 − 4+ 1 = 3dim π3 − 3, which is false since 4 is
not divisible by 3. The true case gives a model with a degree 4 generator
and a degree 7 generator. The differential is then forced since we need finite
cohomology. The model is therefore (∧(x4, y7),dy = x2) and we recognize
this as a model for S4.
Now suppose π4 = 0. Then, since dim π2 ≤ 2, the reader can show

that the only dimension formula possibilities are 4 = 5 − dim π2 and
4 = 3dim π3 − dim π2. The first, with dim π2 = 1, gives a model
(∧(x2, y5),dy = x3) and this is a model for CP(2). The other can only
hold when dim π3 = 2 and dim π2 = 2. The possible models are:

• (∧(x1,x2, y1, y2),dy1 = x21,dy2 = x22); a model for S
2 × S2.

• (∧(x1,x2, y1, y2),dy1 = x1 x2,dy2 = x21−x22); a model forCP(2)#CP(2).
• (∧(x1,x2, y1, y2),dy1 = x1 x2,dy2 = x21+x22); a model forCP(2)#CP(2).

Therefore, the rational homotopy types of simply connected rationally
elliptic 4-manifolds are given by S4, S2 × S2, CP(2), CP(2)#CP(2) and
CP(2)#CP(2). See Exercise 3.1 for the case of elliptic 5-manifolds.

3.1.3 Poincaré duality models

A Poincaré duality model for a compact simply connected n-dimensional
manifoldM is a cdga (A,d) that satisfies the following properties.

1. There are quasi-isomorphisms (A,d)
�←− MM

�−→ APL(M).
2. Ap = 0 for p > n, A0 = Q, A1 = 0, each Aq is finite dimensional and
An = Qω, for ω ∈ An.

3. The map ϕ : Ap → Hom(An−p,Q) given by ϕ(a)(b) = λ if ab = λω, is
an isomorphism.
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When (A,d) is a Poincaré duality model, then its dual Hom((A,d),Q)

is a free (A,d)-module of rank one generated by the homomorphism that
takes the value 1 on ω.
When dim V < ∞ and V = Vodd, then (∧V ,d) is a Poincaré dual-

ity algebra. A result of Lambrechts and Stanley generalizes this fact
(see [169]).

Theorem 3.9 Every compact simply connected manifold admits a Poincaré
duality model.

3.1.4 Formality of manifolds

Since we wish to study aspects of the geometry of manifolds using alge-
braic models, our first step might be to see if the particular manifold of
interest is formal (see Section 2.7). Of course, there are some important
classes of manifolds that are formal. For instance, spheres, Lie groups
and Kähler manifolds (see Theorem 4.43) are formal spaces. The first
important result on the formality of manifolds is due to Miller [192]. We
give here a proof that is inspired by Miller’s, but which uses differential
graded algebra models instead of Lie models. Our proof makes use of
the obstruction theory for formality presented in Subsection 2.7.2. A very
different and interesting proof can also be found in [97]. After Miller’s
theorem, we give a powerful theorem of Stasheff [241] that says that an
n-dimensional manifold M is formal if its (n− 1)-skeleton is. The original
complicated proof of this result also used Lie models (which are gener-
ally good for situations where cell-attaching occurs), but here we stay
within the world of differential graded algebras. Let’s begin now with
Miller.

Proposition 3.10 ([192]) Let M be a (p− 1)-connected compact manifold,
p ≥ 2, of dimension m ≤ 4p− 2. Then M is formal.

Proof To prove the theoremwewill use the obstruction theory developed in
Proposition 2.98. Let (∧V ,d) denote the bigradedmodel ofH = H∗(M;Q).
By the connectivity hypothesis, Vq

0 = 0 for q < p, and this implies Vq
r = 0

for q < (r+1)p−r. By Poincaré duality, we haveHq = 0 form−p < q < m
and Hm = Q · ω ∼= Q.
Before we look at the obstructions we make two observations. First

of all, we notice that ∧+V≥1 does not contain any non-zero cocycle. To
see this, suppose that ∧+V≥1 has nonzero cocycles. We denote by (xr)
an ordered basis of V≥1 such that d(xr) ∈ ∧V0 ⊗ ∧(x1, . . . ,xr−1), and
we denote by a a nonzero cocycle in ∧(x1, . . . ,xr), where r is the small-
est possible for a cocycle. We write a = an xnr + . . . a1 xr + a0 with
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an �= 0 and ai ∈ ∧(x1, . . . ,xr−1). Then d(an) = 0 and, by our min-
imality condition, an is a constant. From da = 0, we then deduce that
n and(xr)+d(an−1) = 0. This shows that by making a change of generators
we can suppose dxr = 0, which is impossible. Therefore, no cocycles exist
in ∧+V≥1.
Poincaré duality is crucial in the proof. We will explicitly use

the following property of Poincaré duality algebras: every linear map
f : W ⊗Hm−r → Hm factors as a composition

W ⊗Hm−r ϕ⊗1−→ Hr ⊗Hm−r mult−→ Hm .

Given f , for every element w ∈ W , we obtain by adjunction a linear map
fw : Hm−r → Hm defined by fw(x) = f (w ⊗ x). By Poincaré duality, there
is then an element xw ∈ Hr such that fw(y) = xw · y for any y. We define
ϕ(w) = xw linearly and obtain a map ϕ : W → Hr such that f (w ⊗ x) =
ϕ(w) · x.
Now we can consider the obstructions to the formality. By Propo-

sition 2.98, the only obstructions are [d2 : Vm−1
2 → (∧V0)m] and

[d3 : Vm−1
3 → (∧V0)m] . The other obstructions are zero because V<m

q = 0
for q ≥ 4. Denote by p : ∧ V0 → H the natural projection. For degree
reasons, the composition

d̃ : Vm−1
2

d→ V1 ⊗ (∧V0) 1⊗p→ V1 ⊗H

is injective. More precisely, in degreem = 4p−2 we must have d(Vm−1
2 ) ⊆

V1 ·V0 and p : V0 → H is injective. There is thus a linear map θ : V1⊗H →
Hm defined by θ |Im d̃ = p ◦ d2 and θ |C = 0 for any complement C to Im d̃.

By definition, we have θ ◦ d̃ = p ◦ d2. This is expressed in the following
diagram

Vm−1
2

d2 ��

d̃
��

(∧V0)m

p

��
V1 ⊗H

θ �� Hm

By the property of Poincaré duality algebras given above, there is then a
linear map ϕ : V1 → H such that θ(x ⊗ h) = ϕ(x) · h. We now choose a
linear map ϕ̃1 : V1 → ∧V0 such that p ◦ ϕ̃1 = ϕ. We define ϕ̃1 to be zero
on V0 and extend it as a derivation ϕ1 on ∧V1 ⊗ ∧V0. Note that we have
a commutative diagram (with the top row being ϕ1 and where µ and µ̄ are
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the multiplications)

V1 ⊗ ∧V0
ϕ̃1⊗1 �� ∧V0 ⊗ ∧V0

µ̄
��

p⊗p
��

∧V0
p
��

H ⊗H
µ

�� H

Hence, pϕ1 = pµ̄(ϕ̃1 ⊗ 1) = µ(p⊗ p)(ϕ̃1 ⊗ 1).
The equality θ(x⊗h) = ϕ(x)·h = µ(ϕ(x)⊗h) also provides a commutative

diagram

V1 ⊗ ∧V0
ϕ⊗1

��

1⊗p
��

H ⊗ ∧V0
1⊗p

�� H ⊗H
µ

�� H

V1 ⊗H

θ

��������������������������������������

Hence, θ(1⊗ p) = µ(1⊗ p)(ϕ ⊗ 1).
Using the relations expressed by these diagrams, consider, for each elem-

ent z ∈ V2, the element d2(z)−ϕ1(dz). This element is a coboundary as can
be seen from the following calculation.

p(d2(z) − ϕ1(dz)) = pd2(z) − pϕ1(dz)

= θ d̃(z) − µ(p⊗ p)(ϕ̃1 ⊗ 1)(dz)

= θ(1⊗ p)(dz) − µ(pϕ̃1 ⊗ p)(dz)

= µ(1⊗ p)(ϕ ⊗ 1)(dz) − µ(ϕ ⊗ p)(dz)

= µ(ϕ ⊗ p)(dz) − µ(ϕ ⊗ p)(dz)

= 0.

Let dw = d2(z) − ϕ1(dz) and define ϕ1(z) = w. We can thus define ϕ1 on
V2 so that d2 = dϕ1 + ϕ1d and the first obstruction is zero.
For [d3], we have only to consider the casem = 4p−2. The composition

V4p−3
3

d→ (V3p−2
2 ⊗ Vp

0 ) ⊕ (∧2V2p−1
1 )

proj−→ V3p−2
2 ⊗ Vp

0

is injective because there is always a nonzero part in V3p−2
2 ⊗Vp

0 . The same
construction as above gives a map ϕ2 : Vr → (∧V)r−2 such that dϕ2 +
ϕ2d = d3. Thus, the second obstruction vanishes as well and the manifold
is formal. �
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Now let’s turn to Stasheff’s theorem. Before we can prove the result, we
need some preliminaries on the homology of bigraded models (see Theo-
rem 2.93). Let (∧V ,d) be the bigraded model of a commutative graded
algebra H satisfying Poincaré duality in dimension m. We write Rn =
Hm
n (∧V≤n,d) for n ≥ 1. Then denote by π1 : (∧V≤n)n → Vn⊗∧V0 the nat-

ural projectionwith kernel (∧≥2V≥1)⊗∧V0 and by π2 : Vn⊗∧V0 → Vn⊗H
the projection that associates to α⊗β the tensor product α⊗[β]. The com-
position π2 ◦ π1 vanishes on [d(∧V≤n)]n and the restriction to the cocycles
induces a linear map

θ : Rn → Vn ⊗H .

Lemma 3.11 The map θ is injective.

Proof We proceed by induction on n. We suppose the result is true for
q < n, and we write ∧V≤n = ∧(x1, . . . ,x�) with dxi ∈ ∧(x1, . . . ,xi−1).
Now let α be an element of Rn and a ∈ ∧(x1, . . . ,xr) be a cocycle with
[a] = α such that r is minimal among all representatives of α. Then,

a = xpr up + xp−1r up−1 + . . . + xr u1 + u0 ,

with ui ∈ ∧(x1, . . . ,xr−1). Since a is a cocycle, dup = 0. If up = dv, then,
replacing a by a′ = a− (−1)|xr|d(xpr v), we get a new cocycle in the class of
α such that a′ = xp−1r u′

p−1 + . . . + u′
0. We can therefore suppose [up] �= 0.

When p > 1, da = 0 implies that p(dxr)up+dup−1 = 0 as well. The element
pxr up + up−1 is therefore a cocycle in (∧V)q for some q, 0 < q < n, and is
a coboundary in (∧V)≤n:

pxr up + up−1 = dv .

We then replace a by a′′ = a − d
(
1
p x

p−1
r v

)
and we obtain a new

representative of α of the form

a′′ = xp−1r u′′
p−1 + . . . + u′′

0 .

In conclusion, we can always suppose p = 1 and that a representative of α
has the form a = u1 xr + u0, with u1 ∈ ∧V0, [u1] �= 0, and xr ∈ Vn. �

We can now state and prove Stasheff’s theorem.

Theorem 3.12 Let Mm be a simply connected compact manifold. If M\{∗}
is formal, then M is formal.

Proof Let (∧V ,d) be the bigraded model of H = H∗(M;Q) with asso-
ciated filtered model (∧V ,D). Because M\{∗} is formal, we can assume
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that D = d on V<m−1. We will now inductively construct derivations
ϕi : V∗ → (∧V)∗−i, i ≥ 1, such that, denoting D1 = D and Dr =
Dr−1 − (dϕr−1 − ϕr−1d), we have Dr = d on V≤r + V<m−1. This will
imply the result by the obstruction theory of Subsection 2.7.2.
Now suppose ϕ1, . . . ,ϕr−2 have been constructed and write D = Dr−1.

Since D = Dr−1 = d on V<r, we can suppose that (D − d)(Vp) ⊂
(∧V)≤p−r. In particular, (D − d)(Vr) ⊂ ∧V0. Since D = d on (∧V)<r,
we have Rr−1 = Hm

r−1((∧V)<r,d) = Hm
r−1((∧V)<r,D) and the injec-

tion (∧V<r,D) → (∧V ,D) induces in cohomology a map ψ : Rr−1 →
Hm(∧V ,d) = Qω. At this point we use Poincaré duality just as we did
in the proof of Miller’s theorem. Namely, for each graded vector spaceW
and each degree 0 map g : W ⊗ H → Hm = Qω, there is a degree 0 map
f : W → H such that g(w ⊗ h) = f (w) · h. Since θ : Rr−1 → Vr−1 ⊗ H is
an injection (by Lemma 3.11), there is a linear map ϕ̃r−1 : Vr−1 → H such
that ψ = µ(ϕ̃r−1 ⊗1) ◦ θ , where µ : H⊗H → H is the multiplication. This
is expressed by the following diagram

Rr−1
ψ

��

θ

��

H

Vr−1 ⊗H
ϕ̃r−1⊗1

�� H ⊗H

µ

��

We then lift ϕ̃r−1 into a linear map ϕr−1 : Vr−1 → ∧V0 such that [ϕr−1(v)] =
ϕ̃r−1(v) for v ∈ Vr−1. Now we extend ϕr−1 to a derivation on ∧V≤r−1 by
putting ϕr−1(Vq) = 0 if q < r− 1.
Now let u be a d-cocycle in (∧V)r−1. Then we have

[ϕr−1(u)] = µ(ϕ̃r−1 ⊗ 1)θ([u]) = ψ([u]).
To see this, write u = ∑

vi ⊗ ui + u′, with vi ∈ Vr−1, ui ∈ ∧V0 and
u′ ∈ (∧≥2V≥1) ⊗ ∧V0. Then, since ϕ(Vq) = 0 for q < r − 1 and u′ is a
nontrivial product, we have

[ϕr−1(u)] =
[
ϕr−1

(∑
vi ⊗ ui

)]
=

∑
[ϕ̃r−1(vi)] · [ui]

= µ(ϕ̃r−1 ⊗ 1)θ([u]) = ψ([u]).
Now let z ∈ Vm−1

r . By our description of D, we see that Dz = dz + drz.
Hence, with respect toD-cohomology, we have ψ([dz]) = [dz] = −[drz] in
Hm(∧V ,D). Note that dz is a D-cocycle because D = d on ∧Vr−1. By the
calculation [ϕr−1(u)] = ψ([u]) above, we get

[drz + ϕr−1(dz)] = [drz] + [ϕr−1(dz)] = −ψ([dz]) + ψ([dz]) = 0
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and drz + ϕr−1(dz) is a coboundary. Hence, there is a u ∈ (∧V)1 such that
du = drz+ϕr−1(dz). Define ϕr−1 linearly on Vm−1

r by ϕr−1(z) = u to obtain
drz = dϕr−1(z) − ϕr−1(dz) on Vm−1

r .
Now let t be in Vq

r for some q < m − 1. If [ϕr−1dt] �= 0, then there is a
cocycle a such that [ϕr−1dt] · [a] = ω ∈ Hm. But this is impossible because
(recalling that D = d on Vm−1 and ϕr−1 is a derivation)

[ϕr−1dt] · [a] = [ϕr−1d(ta)] = ψ([dt a]) = 0.

Therefore, [ϕr−1dt] = 0 and there is an element u ∈ (∧V)1 such that du =
ϕr−1(dt). We define ϕr−1(t) = u on a basis of V<m−1

r . We can continue and
define ϕr−1 on V<m−1

>r such that dr = dϕr−1−ϕr−1d. Then by puttingDr =
eϕr−1De−ϕr−1 , we obtain a derivation satisfying our inductive hypothesis
Dr = d on V<m−1 + V≤r. �

Now let’s use Stasheff’s theorem to give another proof of Miller’s theo-
rem. While the proof of Miller above showed the power of the obstruction
theory developed earlier, it still lacked a good intuitive interpretation.
Stasheff’s result shows us exactly how the hypotheses of Miller’s theorem
produce a formal (4p− 3)-skeleton.

Proof 2 of Miller’s Theorem 3.10. Let (∧V ,d) denote the bigraded model
of H = H∗(M;Q). By the connectivity hypothesis, Vq

0 = 0 for q < p, and
this implies Vq

r = 0 for q < (r + 1)p − r. By Poincaré duality, we have
Hq(M\{∗};Q) = 0 for q > 3p − 2. Therefore, by Proposition 2.99, M\{∗}
is formal, and by Stasheff’s Theorem 3.12,M is formal. �

The results above are the most fundamental formality results for man-
ifolds. Once we have these basic results, however, we can ask how various
geometric constructions behave with respect to formality. In particular, we
can see that formality is preserved by certain constructions. The following
result exemplifies this fact.

Theorem 3.13 The connected sum of two compact simply connected
formal n-dimensional manifolds is formal.

Proof Let M and N be nilpotent compact n-dimensional manifolds, and
M#N be the connected sum. With the notation of Example 3.6, we have a
quasi-isomorphism

ϕ : (MM∨N ⊗ ∧(x,xi),d) → MM#N ,

where dx = ωM − ωN , and the xi are in degrees ≥ n.
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On the other hand we have a surjective quasi-isomorphism (see
Example 2.47)

σ : MM∨N → MM ⊕Q MN .

We obtain a quasi-isomorphism by tensoring with ∧(x,xi),d:

σ ′ : (MM∨N ⊗ ∧(x,xi),d) → (MM ⊕Q MN ⊗ ∧(x,xi),D) ,

with D(x) = σd(x) and D(xi) = (σ ⊗ 1)d(xi).
By using the formality ofM andN, we finally obtain quasi-isomorphisms

(MM ⊕Q MN ⊗ ∧(x,xi),D)
�→ (H∗(M;Q) ⊕Q H∗(N;Q) ⊗ ∧(x,xi), D̃)

�→ (H∗(M;Q) ⊕Q H∗(N;Q) /(ωM − ωN), 0)

where D̃ = θ ◦D and θ : MM ⊕ MN → H∗(M;Q) ⊕H∗(N;Q) is a quasi-
isomorphism obtained from the formality ofM and N. �

3.2 Nilmanifolds

In [183], Malcev studied nilpotent, simply connected Lie groups N acting
transitively and properly on a compact manifold M. Recall that any con-
nected, nilpotent, locally compact group acting properly on a manifold is a
Lie group. Directly from the definition, we see thatM is isomorphic to the
quotient of N by the co-compact discrete subgroup � stabilizing a point.
We call M = N/� a nilmanifold and sometimes write the pair (N,�) to
denoteM = N/�.
Let (N,�) and (N′,�′) be two nilmanifolds. Malcev observed that any

isomorphism between � and �′ can be extended to a homeomorphism
between N and N′. Thus, a nilmanifold is determined by its fundamental
group. We therefore arrive at

Question 3.14 What are the conditions for an abstract group � to be the
fundamental group of a nilmanifold? Note that this is equivalent to asking
when a group � is a uniform, co-compact discrete subgroup of a Lie group.

Malcev provided the answer by giving a necessary and sufficient condi-
tion:� is the fundamental group of a nilmanifold if and only if� is nilpotent,
finitely generated and torsion-free.
A simply connected nilpotent Lie group is diffeomorphic to a Euclidean

space, so a nilmanifold has a fundamental group that is a finitely generated
torsionfree nilpotent group and has higher order homotopy groups which
are trivial. Nilmanifolds then provide prime examples ofK(π , 1)-manifolds;
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that is, compact manifolds with the fundamental group as the only non-
trivial homotopy group. Clearly, any nilmanifold is orientable. Examples
are given by any torus Tn = Rn/Zn and the Heisenberg manifold formed
by the quotient of the Lie group of matrices of the form⎛⎝ 1 a b

0 1 c
0 0 1

⎞⎠ ,

with a,b and c real numbers, by the subgroup of the corresponding matrices
with integer entries.

3.2.1 Relations with Lie algebras

Instead of starting with the discrete group �, we may start with the Lie
group N and ask:

Question 3.15 What are the conditions on a connected, simply connected,
nilpotent Lie group N that ensure the existence of a uniform, co-compact
subgroup?

This was also answered by Malcev. A necessary and sufficient condition
is that the Lie algebra of N has rational structure constants relative to some
chosen basis. To any nilmanifold, we can associate a rational nilpotent Lie
algebra n which naturally elicits the following

Question 3.16 What is the topological invariant corresponding to this
rational Lie algebra?

To answer this question, Malcev gave the following necessary and suffi-
cient condition: (N,�1) and (N,�2) have isomorphic rational Lie algebras
if and only if N/(�1 ∩ �2) finitely covers N/�1 and N/�2. We also note
that, in [183], Malcev gives an interesting example of two nonisomorphic
rational Lie algebras which become isomorphic over the reals. An example
of this type of descent phenomena for the rational and real homotopy type
of manifolds is given in Example 6.15.
With all of this in mind, let n be a nilpotent Lie algebra with the property

that there exists a basis in n, e1, e2, . . . , en, such that the structure constants
ckij arising in brackets

[ei, ej] =
∑
k

ckijek

are rational numbers for all i, j,k. In fact, Malcev showed that, correspond-
ing to n, there is a simply connected nilpotent Lie group N which admits
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a lattice (i.e. a discrete co-compact subgroup) � so that N/� is a compact
nilmanifold.

Example 3.17 Consider the nilpotent Lie group of upper triangular matri-
ces having 1’s along the diagonal, Un(R).

Un(R) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1 x12 x13 . . . x1n
0 1 x23 . . . x2n
. . . . . . . . . . . . . . .

0 . . . . . . 0 1

⎞⎟⎟⎠ | xij ∈ R

⎫⎪⎪⎬⎪⎪⎭ .

LetUn(Z) ⊂ Un(R) denote the set of matrices having integral entries. Then,
Un(Z) is a lattice and the quotient

M = Un(R)/Un(Z)

is a nilmanifold. The group U3(R) is called the Heisenberg group and
the resulting nilmanifold is called the Heisenberg (nil)manifold. For other
examples, see [257, Chapter 2].

Let g denote a Lie algebra with basis {X1, . . . ,Xs}. Then the dual of g,
g∗, has basis {x1, . . . ,xs} and there is a differential δ on the exterior algebra
∧g∗ given by defining it to be dual to the bracket on degree 1 elements,

δxk(Xi,Xj) = −xk([Xi,Xj]),
and then extending δ to be a graded derivation. Now, [Xi,Xj] = ∑

clijXl,

where clij are the structure constants of g, so duality then gives

δxk(Xi,Xj) = −ckij
and the differential has the form (on generators)

δxk = −
∑
i<j

ckijxi ∧ xj.

We note that the Jacobi identity in the Lie algebra is equivalent to the
condition δ2 = 0. Therefore, we obtain a cdga (∧g∗, δ) associated to the
Lie algebra g. The cdga (∧g∗, δ) is the cochain algebra on the Lie algebra
L = g (see Subsection 2.6.2), and the differential δ is a particular case of the
differential defined in Subsection 2.6.2 because g∗ is concentrated in degree
one.

Theorem 3.18 (Model of a nilmanifold I) If N/� is a nilmanifold, then the
complex (∧n∗, δ) associated to n, is isomorphic to the minimal model of
N/�.
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Proof The proof follows from Nomizu’s theorem (see [209]) which says
that the natural inclusion of invariant de Rham forms on the nilpotent Lie
group into de Rham forms on the nilmanifold

AinvDR(N) → ADR(N/�)

is a quasi-isomorphism.Here, observe that the Lie group is not compact as in
Theorem 1.30. (Also, note that the notation�L(N) for invariant forms was
used in Definition 1.25.) From the definition of the Lie algebra associated
to a Lie group, we have

(∧n
∗, δ) ∼= (AinvDR(N),d).

Hence, the composition

(∧n
∗, δ) → AinvDR(N) → ADR(N/�)

displays (∧n∗, δ) as a Sullivan model for N/�. It remains to prove that
the complex of n is a minimal cdga. This follows from the general dual rel-
ationship between nilpotent Lie algebras and cdga’s. Consider the dual basis
x1, . . . ,xn to the basis X1, . . . ,Xn of n (ordered by central series extensions
of n). Then, as above, the differential δ is defined on generators by

δxk =
∑

−ckijxi ∧ xj

where [Xi,Xj] = ∑
ckijXk. Since theXi are ordered according to the way the

nilpotent Lie algebra n is built from central series extensions, the differential
must be decomposable in terms of earlier generators. �

Example 3.19
Consider the Lie algebra n of dimension 2m+ 2 having basis

{X1, . . . ,Xm,Y1, . . . ,Ym,Z,W}
with bracket structure given by

[Xi,Yi] = −Z for all i = 1, . . . ,m

and all other brackets zero. The associated minimal model is given by

(∧(x1, . . . ,xm, y1, . . . , ym, z,w),d)

with dxi = dyi = dw = 0 and

dz =
m∑
i=1

xi ∧ yi.
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For instance, if m = 1, then n = 〈U,V ,Y,T〉 with only nonzero bracket
[U,Y] = −V . The associated minimal model is ∧(u, v, y, t) with only
nonzero differential dv = uy. Note that, in this case, the elementω = ut+vy
has ω2 = 2utvy �= 0. We will see in Subsection 4.6.4 that this implies that
the corresponding nilmanifold, called the Kodaira–Thurston manifold, is a
symplectic manifold.

Perhaps the most important rational homotopy property of nilmanifolds
is that they are rarely formal spaces.

Proposition 3.20 Any formal nilmanifold Mn has the rational homotopy
type of a torus Tn.

Proof Suppose that M is formal. Let (∧V ,d) = (∧(x1, . . . ,xn),d) be the
minimal model of M and suppose ϕ : (∧V ,d) → (H∗(M;Q), 0) is a for-
mality quasi-isomorphism. Now, each generator xi has degree 1, so ∧V
is an exterior algebra with dim (∧V)n = 1. A basis element for this
top dimension is the product of all generators µ = x1 · · ·xn. Since ϕ∗ is
an isomorphism, ϕ∗(µ) �= 0. Therefore ϕ(µ) �= 0 and this implies that
ϕ(xi) �= 0 for each i = 1, . . . ,n. In fact, ϕ must be injective. For, suppose
that y = c · xi1 · · ·xij + . . . with |y| = j and ϕ(y) = 0. Then there is a
complementary set of generators xij+1 , . . . ,xin−j such that

xij+1 · · ·xin−j · y = K · µ
for some K ∈ Q with K �= 0, and we have

ϕ(µ) = 1
K

· ϕ(xij+1 · · ·xin−j) · ϕ(y) = 0,

and this is a contradiction.
Now, ϕ is an injective cdga morphism to a cdga with differential equal

to zero, so the differential d in (∧V ,d) must be zero as well. Therefore,M
has the rational homotopy type of a torus. �

Remark 3.21

1. It is also instructive to see how Proposition 3.20 fits with our approach
to formality via the bigraded model. Of course, the key feature is again
the fact that the top cohomology class is represented by the product
of all generators of the model. Let ϕ : (∧V ,d) → (H∗(M;Q), 0) be the
bigraded model of the cohomology of M. Because we assume that M
is formal, this bigraded model is, in fact, the minimal model of M.
By hypothesis, V = V1 is finite dimensional. Denote by x1, . . . ,xr a
bigraded basis of V1. The element obtained by multiplying all gener-
ators, µ = x1 · x2 · · ·xr, is a cocycle in (∧V)r and a basis of (∧V)r.
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Indeed, since the model is an exterior algebra and since the nilmanifold
is orientable, the element µ is a nontrivial top class and we must have
r = n. Also, since ϕ(Vp) = 0 if p > 0, we must have µ ∈ (∧V)0. Because
the lower grading is multiplicative, this implies that all the elements xi
belong to V0. Hence, the differential d is zero and (∧V , 0) is the minimal
model of a torus Tn.

2. Another way to say this is that, unless each generator is a cocycle (in
which case, the nilmanifold is a torus), then the top degree element is a
cocycle, representing a nontrivial cohomology class, in the ideal gener-
ated by the noncocycle generators of theminimal model. By Exercise 2.3,
we again obtain the fact that nontoral nilmanifolds are never formal.

3. In fact, a formal nilmanifold M = K(π , 1) must be diffeomorphic to a
torus by the following argument. SupposeM has the rational homotopy
type of an m-torus. Then, since π1(M) = π is finitely generated nilpo-
tent, it rationalizes to (⊕mZ)Q = (⊕mQ) and, since it is torsion-free,
the rationalization π → ⊕Q is injective. Hence π is finitely generated,
torsion-free and abelian, so we have π = ⊕Z. ByMostow’s classification
of solvmanifolds,M is diffeomorphic to a torus.

3.2.2 Relations with principal bundles

Let M = N/� be the quotient of the nilpotent Lie group N by the dis-
crete co-compact subgroup �. It is well known that the exponential map
exp: n = TeN → N is a global diffeomorphism, and this in fact gives a
diffeomorphism from Nn to Rn. Since N → M is a covering because � acts
onN by translations,M is a K(�, 1) with � a finitely generated torsion-free
nilpotent group. On the algebraic side, there is a refinement of the upper
central series of �,

� ⊇ �2 ⊇ �3 ⊇ · · · ⊇ �n ⊇ 1,

with each �i/�i+1 ∼= Z. The length of this series is invariant and is called
the rank of �. So, for � above, rank (�) = n. This description implies that
any u ∈ � has a decomposition u = ux11 · · ·uxnn , where 〈un〉 = �n, · · · 〈ui〉 =
�i/�i+1. The set {u1, · · ·un} is called a Malcev basis for � and, using this
basis, the multiplication in � takes the form

ux11 · · ·uxnn uy11 · · ·uynn = uρ1(x,y)1 · · ·uρn(x,y)n

where

ρi(x, y) = xi + yi + τi(x1, . . .xi−1, y1, . . . yi−1).

For instance, for the group N = Un(R) with � = Un(Z), a Malcev basis is
given by {uij | 1 ≤ i < j ≤ n} where uij = I + eij and eij denotes the matrix
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with all zeros except for a 1 in the ij-th position. We then have

ρij(x, y) = xij + yij +
∑
i<k<j

xikykj.

Now, consider the central extension �n → � → �. The cocycle for the
extension is τn : �×� → Z. Of course� is also finitely generated torsion-free
with refined upper central series,

� = �

�n
⊇ �2

�n
⊇ · · · ⊇ �n−1

�n
⊇ �n

�n
= 1.

Hence, rank (�) = n− 1 and

ρi(x, y) = ρi((x, 0), (y, 0)) = xi + yi + τi(x1, . . .xi−1, y1, . . . yi−1)

for i < n. The cocycle τn gives an extension cohomology class [τn] ∈
H2(�;Z) ∼= H2(K(�, 1);Z) ∼= [K(�, 1),K(Z, 2)] = [K(�, 1),BS1], so we
obtain a principal circle bundle over K(�, 1): S1 → K(�, 1) → K(�, 1)

τn→
CP(∞). We iterate this procedure modeled on the algebraic decomposition
of � to obtain an iterated sequence of principal S1-bundles classified by
extension classes [τi] ∈ H2(�i;Z) (where the coefficients are untwisted since
the extension is central and �i arises at the ith stage of the construction).
This sequence of bundles produces a nilmanifold because the sequence

of extensions gives a torsion-free nilpotent group. On the other hand,
the decomposition of M = K(�, 1) into a tower of principal S1-bundles
classified by the τi is precisely the right information allowing us to con-
struct the minimal model of M from relative Sullivan cdga’s with the
twisting of the differential corresponding to the τi. Alternatively, for the
more homotopically-minded reader, we can see that the sequence of prin-
cipal S1-bundles is precisely the (refined) Postnikov tower for M (see
Subsection 2.5.4) with the τi being the k-invariants. Therefore, we have

Theorem 3.22 (Model of a nilmanifold II) The minimal model of a
nilmanifold M = N/� of dimension n has the form

MM = (∧(x1, . . .xn),d) with |xi| = 1,

and dxi = τi, the extension cocycle for the ith stage of the upper central
series of �.

Example 3.23 Take generators u and y for H1(T2;Z) corresponding to
the torus’s circle factors and note that the fundamental class of T2 is the
cup product uy. Since a map T2 → BS1 = K(Z, 2) is characterized by its
effect on cohomology, we can use uy to classify a principal circle bundle
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S1 → H → T2. In fact, the total space is just the Heisenberg manifold
H = U3(R)/U3(Z) from Example 3.17. Now let KT = H × S1 and note
that we now have a principal T2 bundle, T2 → KT → T2 with classifying
map T2 → BT2 = K(Z⊕Z, 2) given by the map (uy, ∗). In this way we get
one factor of the the total space being trivial. The relative minimal model
is then given by the relative cdga

(∧(u, y), 0) → (∧(u, y, v, t),D) → (∧(v, t), 0)

with D(u) = 0, D(y) = 0, D(v) = uy and D(t) = 0. Here the differential
is determined by the classifying map. Indeed, principal bundles are always
easy to model because the classifying map defines the differential.

Remark 3.24 We have given two descriptions above for the minimal model
of a nilmanifold. The connection between them rests on the fact that the
duals of the lower central series quotients of a Lie algebra together with the
dual to the Lie bracket define a cdga (see Exercise 1.7 or [246] for instance).
This duality is reflected by the relative models associated to the tower of
principal fibrations above.

3.3 Finite group actions

In geometry, we often have occasion to view a manifold through the sym-
metries it admits. In order to use algebraic models in this context, we need to
know how to transport the action of a symmetry group to the model. Here
we will consider the case of finite transformation groups and in Chapter 7
we will consider connected groups.

3.3.1 An equivariant model for �-spaces

Let � be a finite group. A �-cdga is a cdga on which the group � acts by a
homomorphism � → autcdga(A,dA).

Definition 3.25 A �-cdga (A,dA) is called minimal if (A,dA) = (∧V ,d)
with

1. d(V) ⊂ ∧≥2(V).
2. Each Vn is a �-module (i.e. this gives a �-structure to ∧V).
3. d is �-equivariant: d(ga) = gd(a).
4. V admits a filtration by sub �-spaces

0 ⊂ V(0) ⊂ V(1) ⊂ · · · ⊂ V(n) ⊂ · · ·V = ∪nV(v) ,

with d(V(n)) ⊂ (∧V(n− 1)).

Generalizing the nonequivariant case, we have
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Theorem 3.26 (see [111], [215], [163], and [258])
Let (A,dA) be a �-cdga. Suppose that H0(A,dA) = Q and H1(A,dA) = 0.
Then there exists a �-minimal algebra (∧V ,d) and a �-equivariant quasi-
isomorphism ϕ : (∧V ,d) → (A,dA). The �-minimal algebra (∧V ,d) is
called the �-minimal model of the �-cdga (A,dA), and it is unique up to
�-isomorphism.

We give here the main lines of the proof. First recall that if V is a �-
module andW is a sub �-module, thenW admits a �-complement S in V .
To construct S, we first choose a complement T of W and we denote by
π : V → W the projection with kernel T. We can now make π equivariant
by putting

π ′(x) =
∑
g∈�

g−1π(gx) .

The kernel S of π ′ is a �-complement ofW in V .
This is very useful. Suppose that p : E → E′ is a surjective �-module

morphism.We denote by T a �-complement of Kerp in E, and we note that
p : T → E′ is a �-equivariant isomorphism. Hence, p admits an equivariant
section.
Finally suppose that W ⊂ V is a sub-�-module with �-complement S.

The projection V → V/S is a �-equivariant projection V → W .
We now construct the minimal model ϕ : (∧V ,d) → (A,dA) by induction

on the degree ofV .We putV1 = 0,V2 = H2(A,dA) andwe let π denote the
canonical projection from the cocycles to the cohomology, π : Z2(A,dA) →
H2(A,dA).We also denote by ρ a�-equivariant section ofπ . Thenwe define
d(V2) = 0 and ϕ2 = ϕ|V2 = ρ.
Consider the inductive step now. Suppose we have constructed a �-

minimal algebra (∧V<k,d) and a �-equivariant morphism of cdga’s

ϕk−1 : (∧V<k,d) → (A,dA)

such that Hr(ϕk−1) is an isomorphism for r ≤ k − 1 and an injection for
r = k. We define Vk = W ⊕ Z where W = CokerHk(ϕk−1) and sZ =
KerHk+1(ϕk−1). We then define the extension

ϕk : (∧V≤k,d) → (A,dA) ,

in the following way. First of all, d(W) = 0, and (ϕk)|W = σ , where
σ is an equivariant section of the projection Zk(A,dA) → Hk(A,dA) →
CokerHk(ϕk−1).
We now choose an equivariant projection, π : Hk+1(∧V) →

KerHk+1(ϕk−1) and we denote by σ ′ an equivariant section of the compo-
sition Zk+1(∧V) → Hk+1(∧V)

π→ KerHk+1(ϕk−1). We put d(z) = σ ′(sz).
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Note that B = σ ′s(Z) is a �-module, and ϕk−1(B) ⊂ ImdA. We denote by
π ′ an equivariant projection ImdA → ϕk−1(B) and by τ : ϕk−1(B) → Ak an

equivariant section of the projection Ak
dA−→ ImdA

π ′→ ϕk−1(B). We finally
define the restriction of ϕ to Z by ϕ(z) = τϕk−1σ ′(sz).
In [40], Bredon proves the following result about the projection π : X →

X/�.

Theorem 3.27 ([40, Theorem 2.4]) If � is a finite group acting on a space
X that is a manifold or a CW complex, then the projection π induces an
isomorphism

π∗ : H∗(X/�;Q) → H∗(X;Q)� ,

where H∗(X;Q)� denotes the cohomology invariant under the induced
action of �.

What is very interesting about the invariant cohomology H∗(X;Q)� is
that each equivariant quasi-isomorphism induces an isomorphismon invari-
ant cohomology. Moreover, the invariant part of the cohomology of a
�-complex is the cohomology of the invariant part of the complex. This
is the content of the following theorem.

Theorem 3.28 The following properties hold:

1. If (A,dA) is a �-cdga, then A� is a subcomplex, and the injection of A�

into A induces an isomorphism H∗(A�) ∼= (H∗(A))�.
2. If f : (A,dA) → (B,dB) is an equivariant quasi-isomorphism, then the
induced map (A�,dA) → (B�,dB) is also a quasi-isomorphism.

Proof (1) Note first that the injection A� ↪→ A induces an injection in
cohomology. If a ∈ A� such that a = dA(b), then

a =
⎛⎝ 1

|�|
∑
g∈�

ga

⎞⎠ =
⎛⎝ 1

|�|
∑
g∈�

gdA(b)

⎞⎠ = dA

⎛⎝ 1
|�|

∑
g∈�

gb

⎞⎠ .

Therefore, a is exact by an invariant element.
Now, if [a] ∈ H∗(A)�, then

[a] =
⎡⎣ 1

|�|
∑
g∈�

ga

⎤⎦ .

Since 1
|�|

∑
g∈� ga ∈ A�, [a] ∈ H∗(A�).
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(2) Suppose f : (A,dA) → (B,dB) is an equivariant quasi-isomorphism.
We then have the following commutative diagram.

H(A)�
f ′

��

��

H(B)�

��
H(A)

H∗(f )

∼=
�� H(B)

Since the vertical arrows are monomorphisms, f ′ is injective. Let x ∈
H(B�) = H(B)�. By surjectivity ofH∗(f ), there is some element y ∈ H∗(A)

such that H∗(f )(y) = x. Since H∗(f ) is an equivariant isomorphism,
H∗(f )(ȳ) = x where ȳ = 1/|�|
ggy ∈ H∗(A)�. This proves the surjectivity
of f ′. �

Corollary 3.29 Let � be a finite group acting on a CW complex X, and let
(∧V ,d) be its �-minimal model. Then H∗(X/�;Q) ∼= H∗((∧V)�,d).

Proof We have

H∗((∧V)�,d) ∼= (H∗(∧V ,d))� ∼= H∗(X;Q)� ∼= H∗(X/�;Q).

�

Note that the computation of the integer cohomology of X/� is more
difficult because a homotopy equivalence, f : X → Y, which is equiv-
ariant does not necessary give a homotopy equivalence X/� → Y/�.
Consider, for instance, the Z/2-equivariant map S∞ → {∗}. This is a homo-
topy equivalence, but the quotient map RP(∞) → {∗} is not a homotopy
equivalence.

Remark 3.30
(1) In fact, ifX/� is simply connected, then itsminimalmodel is theminimal
model of (∧V ,d)�. By [40, Corollary II.6.3], if the action has a connected
orbit, then π1(X) → π1(X/�) is a surjection. If X is simply connected and,
for instance, there is a fixed point, then certainly the orbit of the fixed point
is connected, so π1(X/�) = 0 as well. This is then a case when the minimal
model of X/� can be identified as the minimal model of (∧V ,d)�.
(2) Suppose a finite group � acts on the spaceX. If the �-equivariant min-

imal model of X, (∧V ,d), is equivariantly isomorphic to the �-equivariant
minimal model of H∗(X;Q), then we say that (X,�) is �-formal. Using
the results of [215], it can be shown that a formal �-space is �-formal.
That is, if X is a formal space with an action of a finite group �, then
the equivariant minimal model can be constructed from the action of �
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on H∗(X;Q). Moreover, in this situation, we can show that the minimal
model of X/� is the minimal model of H∗(X/�;Q), so that X/� is
formal. To see this, let φ : (∧W ,d) → (∧V ,d)� be the minimal model
of (∧V ,d)�. By Corollary 3.29, we know that (∧W ,d) is the minimal
model of X/�. Now consider the commutative diagram below, where the
right square comes from the inclusion of invariant elements and the for-
mality quasi-isomorphism θ , and the left square comes from lifting the

composition (∧W ,d)
φ→ (∧V ,d)� θ�→ H∗(X;Q)� via the isomorphism

H∗(X/�;Q) ∼= H∗(X;Q)�.

(∧W ,d)
φ

��

��

(∧V ,d)� ��

θ�

��

(∧V ,d)
θ

��
H∗(X/�;Q)

∼= �� H∗(X;Q)� �� H∗(X;Q)

By Theorem 3.28, since θ is a quasi-isomorphism, so is θ�. But then the
lift (∧W ,d) → H∗(X/�;Q) is also a quasi-isomorphism. Hence, X/� is
formal if X is.
(3) There is a more complicated notion of equivariant model that is

also truer to the spirit of modern equivariant homotopy theory (see [98],
[258] for example). There are various types of formality which pertain
to these models, even in the case of toral actions. In particular, symplec-
tic geometers now refer to an action whose Borel fibration has collapsing
spectral sequence as equivariantly formal or TNCZ formal. An interesting
comparison of these varying notions of formality is given in [235].

3.3.2 Weyl group and cohomology of BG

Let G be a compact connected Lie group. We prove that the cohomology
of the classifying space BG can be recovered from the action of the Weyl
group on the cohomology of a maximal torus. We begin by considering the
Euler characteristic of the quotient of the group by a maximal torus.

Proposition 3.31 Let T be a maximal torus of a compact Lie group G.
Then the Euler characteristic of G/T is strictly positive, χ(G/T) > 0. In
fact, this Euler characteristic is equal to the number of elements of the Weyl
group, χ(G/T) = |W(G)|.
Proof Consider the action of the torus T on G/T. The fixed points set is
determined by

(G/T)T =
{
g ∈ G | g−1Tg ⊆ T

}
/T,



128 3 : Manifolds

which means (G/T)T = N(T)/T = W(G) by definition. The result follows
now from χ((G/T)T) = χ(G/T) (see Proposition 3.32 below). �

In the proof of the proposition we have used the following standard
proposition whose proof will be given in Chapter 7 (see Theorem 7.33).

Proposition 3.32 Let T be a torus acting smoothly on a compact manifold
M with fixed point set MT. Then MT has the same Euler characteristic as
M:

χ(MT) = χ(M) .

Now, as an application of the previous results, we obtain a characteriza-
tion theorem for maximal tori.

Theorem 3.33 Let T be a torus contained in a compact Lie group G. Then
the following conditions are equivalent.

1. T is a maximal torus.
2. The Euler characteristic of G/T is positive: χ(G/T) > 0.
3. The cohomology of G/T is concentrated in even degrees.
4. The rank of T is equal to the number of generators of the algebra

H∗(G;Q).

Proof By Proposition 3.31, if T is maximal, then χ(G/T) > 0. When T is
not a maximal torus, T injects into a maximal one T ′ and we have a fiber
bundle

T ′/T → G/T → G/T ′ .

Since χ(T ′/T) = 0 and since the Euler characteristic of the total space of a
fibration is the product of the Euler characteristics of the base and the fiber,
we have χ(G/T) = 0.
The conditions (1) and (2) are therefore equivalent. Recall now that, by

Theorem 2.71, a minimal model of G/T has the form

(∧Q⊗ ∧P,d) ,

where Q = Q2, P = Podd, d(Q) = 0, and d(P) ⊂ ∧Q. Moreover dim Q =
rank T, and dim P = rank G. The equivalence of the properties (2), (3) and
(4) is then a particular case of Theorem2.75 (5) (also see TheoremB.18). �

In [75], in order to study homotopy-theoretic analogues of Lie groups,
Dwyer and Wilkerson observed that the result above can be used to give
a definition of maximal tori: namely, a torus T included in a compact Lie
group is maximal if the Euler characteristic of G/T is strictly positive.
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Recall, from Example 1.79, that if G → EG → BG is the universal
bundle for G, we can choose T → EG → BT = EG/T as the universal
bundle for T. More precisely, BT is the set of orbits of EG under the right
action of T induced by the action of G. We define a right action ofW(G)

on EG/T by [x] · [n] = [xn], if x ∈ EG and [n] ∈ W(G) = N(T)/T.
On BG = EG/G this action becomes trivial: [x] · [n] = [xn] = [x]. In
summary, we have an action of the Weyl group and the map Bι : BT → BG
is equivariant. Now we can give the main result of this section.

Theorem 3.34 Let T be a maximal torus of a compact connected Lie group
G. Then the canonical morphism H∗(BG;Q) → H∗(BT;Q) is injective and
H∗(BG;Q) can be identified with the invariant set of H∗(BT;Q) under the
action of the Weyl group:

H∗(BG;Q) ∼= H∗(BT;Q)W(G).

Proof Consider the Serre spectral sequence of the fibration G/T → BT →
BG. The second page of it, Ep,q2 = Hp(BG;Q) ⊗ Hq(G/T;Q), is entirely
concentrated in even degrees by Theorems 1.81 and 3.33. Therefore, the
spectral sequence collapses and H∗(BT;Q) ∼= H∗(G/T;Q) ⊗ H∗(BG;Q).
Thus H∗(BG;Q) → H∗(BT;Q) is an injection.

For the second part, we observe that if F
j

��E
p

��B is a fibration with
an action of a group � such that the maps j and p are �-equivariant, then
the Serre spectral sequenceEp,qr induces a spectral sequence of the invariants(
Ep,qr

)�

. Let’s apply this to the fibration G/T → BT → BG with the given

actions of the Weyl groupW(G). We then get an isomorphism

H∗(BT;Q)W(G) ∼= H∗(BG;Q)W(G) ⊗H∗(G/T;Q)W(G).

As we saw above, the action of W(G) on H∗(BG;Q) is trivial, so
H∗(BG;Q) = H∗(BG;Q)W(G). From Lemma 3.35 below, we deduce that
H∗(BG;Q) = H∗(BT;Q)W(G). �

Lemma 3.35

H∗(G/T;Q)W(G) = H0(G/T;Q)W(G) ∼= Q.

Proof From the covering

W(G) = N(T)/T �� G/T �� G/N(T),

we get:

χ(G/T) = χ(N(T)/T) · χ(G/N(T))

= |W(G)| · χ(G/N(T)).
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Since χ(G/T) = |W(G)| by Proposition 3.31, we obtain χ(G/N(T)) = 1.
On the other hand, we know that H∗(G/N(T);Q) = H∗(G/T;Q)W(G)

by Theorem 3.27. Therefore, the vector space H∗(G/N(T);Q) is evenly
graded with an Euler characteristic equal to 1. This can only happen if
H+(G/N(T);Q) = 0. �

Remark 3.36 The Serre spectral sequence of G/T → BT → BG gives an
isomorphismH∗(BT) ∼= H∗(G/T)⊗H∗(BG)which is not an isomorphism
of algebras even in elementary cases. For instance, if G = SU(2) ∼= S3, then
we have T = S1 and G/T = SU(2)/S1 = S2 so that we obtain the Hopf
fibration. The spectral sequence isomorphism above is then

H∗(S2;Q) ⊗H∗(BSO(3);Q) = Q[x2]/(x22) ⊗ Q[x4] ∼= Q[y2]
= H∗(BT;Q)

where the indices on generators denote the degrees of the generators. This
is clearly not an isomorphism of algebras.

Example 3.37 Let T be a maximal torus of Sp(n). Here, we determine the
canonical homomorphism H∗(BSp(n);Q) → H∗(BT,Q) that is described
in Theorem 3.34. First recall from Corollary 1.86 and Section 1.5 that:

• the rational cohomology of BSp(n) is given by H∗(BSp(n);Q) =
Q [q1,q2, . . . ,qn] with qi ∈ H4i(BSp(n);Q);

• the maximal torus T of Sp(n) is the product of n circles, correspond-
ing to the set of diagonal matrices, and its classifying space has rational
cohomology H∗(BT;Q) = Q[t1, . . . , tn];

• the Weyl group of Sp(n) has 2nn! elements acting by permutation of
coordinates possibly composed with reverses of orientations. This implies
that the set of invariants H∗(BT;Q)W(G) is generated by the symmetric
polynomials in the square of the ti’s.

Therefore, the canonical isomorphism H∗(BSp(n);Q) ∼= H∗(BT;Q)W(G)

is obtained by sending qk onto the kth symmetric polynomial in the t
2
i ,

i = 1, . . . ,n. For instance, the canonical inclusion j : H∗(BSp(3);Q) =
Q[q1,q2,q3] ↪→ H∗(BT;Q) = Q[t1, t2, t3] is defined by j(q1) = t21 + t22 + t23,
j(q2) = t21t

2
2 + t21t

2
2 + t22t

2
3, j(q3) = t21t

2
2t
2
3.

The minimal model of the injection of BT into BSp(3) is given by

j : (∧(q1,q2,q3), 0) → (∧(t1, t2, t3), 0) ,

|q1| = 4 , |q2| = 8 , |q3| = 12 ,

with

j(q1) = t21 + t22 + t23 , j(q2) = t21t
2
2 + t21t

2
3 + t22t

2
3 , j(q3) = t21t

2
2t
2
3 .
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Therefore a Sullivan model of Sp(3)/T is given by

(∧(t1, t2, t3, y3, y7, y11),d)

with |yi| = i and

d(y3) = t21 + t22 + t23 , d(y7) = t21t
2
2 + t21t

2
3 + t22t

2
3 , d(y11) = t21t

2
2t
2
3 .

This model is minimal and is therefore the minimal model of Sp(3)/T.

Example 3.38 Let j : H = Sp(1)× Sp(1) ↪→ G = Sp(3), where H is viewed
as a subgroup of G through the inclusion Sp(1) × Sp(1) × 1 ⊂ Sp(3). A
description of H∗(Bj;Q) can be derived in a similar way to that of the
maximal torus inclusion of Example 3.37, and this leads to a calculation of
the model of Bj:

j∗ : (∧(q1,q2,q3), 0) → (∧(y4, z4), 0)

with

|q1| = 4 , |q2| = 8 , |q3| = 12 , |y4| = |z4| = 4 ,

and

j∗(q1) = y4 + z4 , j∗(q2) = y4z4 , j∗(q3) = 0 .

We deduce from Theorem 2.71 the following model of Sp(3)/(Sp(1) ×
Sp(1)):

(∧(y4, z4, y3, y7, y11),d)

with |yi| = i, d(y4) = d(z4) = 0, d(y3) = y4+z4, d(y7) = y4z4, d(y11) = 0.
The cancellation of the acyclic ideal generated by y3 and y4 + z4 gives a
minimal model

(∧(v4, y7, y11),d) ,

with d(v4) = 0, d(y7) = v24, d(y11) = 0. As a consequence, the homo-
geneous space Sp(3)/(Sp(1) × Sp(1)) has the rational homotopy type of
S4 × S11.

Example 3.39 We considerK = Sp(1) as a subgroup ofG = Sp(3), through
the diagonal inclusion

Sp(1)
� ��Sp(1)× Sp(1)× Sp(1) ⊂ Sp(3) c 
→

⎛⎝ c 0 0
0 c 0
0 0 c

⎞⎠ ,

and we are looking for a model of the homogeneous space Sp(3)/Sp(1).
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We first note that the injections ji, i = 1, . . . , 4, of Sp(1) into Sp(3)
given by

c
j1
→

⎛⎝ c 0 0
0 1 0
0 0 1

⎞⎠ , c
j2
→

⎛⎝ 0 c 0
−1 0 0
0 0 1

⎞⎠ , c
j3
→

⎛⎝ 1 0 0
0 c 0
0 0 1

⎞⎠ , c
j4
→

⎛⎝ 1 0 0
0 1 0
0 0 c

⎞⎠
are homotopic, the homotopies between j1 and j2, and between j2 and j3
being given by the following morphisms

t 
→
⎛⎝ c 0 0
0 1 0
0 0 1

⎞⎠ ·
⎛⎝ cos t sin t 0

− sin t cos t 0
0 0 1

⎞⎠ , t ∈ [0,π/2] ,

t 
→
⎛⎝ cos t sin t 0

− sin t cos t 0
0 0 1

⎞⎠ ·
⎛⎝ 0 c 0

−1 0 0
0 0 1

⎞⎠ , t ∈ [0, 3π/2] .

The injection j1 : Sp(1) → Sp(3) is the fiber of the principal fiber bundle
Sp(3) → Sp(3)/Sp(1) = V3,2(H). From the determination of the model of
Sp(n) in Example 2.39, we see that the relative minimal model of this fiber
bundle is

(∧(y7, y11), 0) → (∧(y7, y11, y3), 0)
ρ→ (∧y3, 0) .

For degree reasons, there is no choice for the morphism ρ: namely, we must
have ρ(y3) = y3 and ρ(y7) = ρ(y11) = 0.
The multiplication µ on Sp(3) is associative with unit. For degree reasons

the model of the multiplication is given by

ν : (∧(y3, y7, y11), 0) → (∧(y3, y7, y11), 0) ⊗ (∧(y3, y7, y11), 0) ,

with ν(y3) = y3 ⊗ 1 + 1 ⊗ y3, ν(y7) = y7 ⊗ 1 + 1 ⊗ y7 and ν(y11) =
y11 ⊗ 1+ 1⊗ y11.
We now observe that the morphism � : Sp(1) → Sp(3) can be viewed as

the composition

Sp(1)
σ ��Sp(1)3

j1×j3×j4 ��Sp(3)3
µ

��Sp(3) ,

where σ is the diagonal map. We know the models of each of these maps.
We then deduce that the model of � is

(∧(y3, y7, y11), 0) → (∧y3, 0) , y3 
→ 3y3 .
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In particular, π3(�) ⊗ Q is an isomorphism. It then follows from the

long homotopy exact sequence of the fiber bundle Sp(1)
�→ Sp(3) →

Sp(3)/Sp(1) that the minimal model of Sp(3)/Sp(1) is (∧(y7, y11),d) for
some differential d. For degree reasons the only possibility is d = 0. There-
fore, the homogeneous space Sp(3)/Sp(1) has the rational homotopy type
of S7 × S11.

Example 3.40 Let T be a maximal torus of U(n) and W(U(n)) its Weyl
group (see Section 1.5). With the same method as in Example 3.37, we
prove that the inclusion

H∗(BU(n);Q) = Q[c1, . . . , cn] −→ H∗(BT;Q) = Q[t1, . . . , tn]
sends the class ci onto the ith elementary symmetric polynomial in the ti.
See [198] or [199, Theorem 5.5, page 136].

Example 3.41 LetT be amaximal torus of SO(2m+1) andW(SO(2m+1))
its Weyl group (see Section 1.5). The inclusion

H∗(BSO(2m+ 1);Q) = Q[p1, . . . ,pm] −→ H∗(BT;Q) = Q[t1, . . . , tm]

sends the class pi onto the ith elementary symmetric polynomial in the t2i .
See [198] or [199, Theorem 5.16, page 144].

Example 3.42 Let T be a maximal torus of SO(2m) and W(SO(2m)) its
Weyl group (see Section 1.5). The inclusion

H∗(SO(2m);Q) = Q[p1, . . . ,pm−1,χ ] −→ H∗(BT;Q) = Q[t1, . . . , tm]

sends the class pi onto the ith elementary symmetric polynomial in the t2i
and χ on t1 . . . tm. See [198] or [199, Theorem 5.16, page 144].

3.4 Biquotients

3.4.1 Definitions and properties

Let G be a compact Lie group and H be a closed subgroup of G. We
introduced the homogeneous space G/H as the manifold of left classes,
G/H = {xH | x ∈ G}, obtained as the quotient of G by the right action of
H (i.e. x ∼ y if and only if x−1y ∈ H). If K is a closed subgroup of G, we
could also consider the manifoldK\G of right classes,K\G = {Kx | x ∈ G},
obtained as the quotient ofG by the left action of K (i.e. x ∼ y if and only if
yx−1 ∈ K). When K acts on the quotientG/H, we obtain a new space from
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the data (G,K,H). More precisely, since we are interested in manifolds, we
consider the following situation.

Definition 3.43 Let H and K be closed connected subgroups of a com-
pact connected Lie group G such that K acts freely on G/H. The quotient,
denoted K\G/H, is a closed manifold whose elements are denoted by KxH,
x ∈ G. Any closed manifold diffeomorphic to K\G/H is called a biquotient
of G.

As we will see in Chapter 6, biquotients are important examples of Rie-
mannian manifolds with non-negative sectional curvature. In fact, they are
the only known examples of manifolds with positive sectional curvature. In
Subsection 3.4.2, we will present the construction of a Sullivan model of a
biquotient. In order to do that, we need to consider biquotients as they are
presented in [81] and [238].
First, the definition of biquotient is more symmetric in H and K than it

appears. From

Kx.h = Kx ⇔ h ∈ x−1Kx and k.xH = xH ⇔ k ∈ xHx−1

we see the following.

Proposition 3.44 The following properties are equivalent:

• the group H acts freely on K\G;
• the only pair (k,h) ∈ K ×H where k is conjugate to h is (e, e);
• the group K acts freely on G/H.

Remark 3.45 Let TH and TK be maximal tori of H and K respectively.
Then (G,H,K) satisfies the second property above if and only if (G,TH ,TK)
does. Since the biquotient is unchanged if we replaceH and K by conjugate
subgroups, one can always suppose that TH and TK are contained in a
maximal torus of G.

Proposition 3.44 gives us two principal bundles whose base is the
biquotient:

H → K\G → K\G/H and K → G/H → K\G/H.

In the first bundle, H acts on the right of K\G and, in the second, K acts
on the left of G/H. We are looking now for a third principal bundle with
K\G/H as base. Observe that G acts on the right of K\G by Kx.g = Kxg
and on the left of G/H by g.xH = gxH. We therefore have a right action
of G on the product K\G×G/H, defined by (Kx, yH).g = (Kxg, g−1yH).
It is now easy to see that G acts freely on K\G × G/H if and only if the
properties of Proposition 3.44 are satisfied. In this case, the canonical map
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K\G × G/H → K\G/H, (Kx, yH) 
→ KxyH, induces a diffeomorphism
between K\G×G G/H = (K\G×G/H)/G and K\G/H. Hence,

G → K\G×G/H → K\G/H

is a principal bundle and from the three principal bundles, we can deduce
the following result.

Theorem 3.46 ([238]) Let G be a compact connected Lie group such that
H and K are closed connected subgroups of G satisfying the equivalent
properties of Proposition 3.44. Then we have the following homotopy
pullback

K\G/H ��

��

BH

��
BK �� BG

The maps BK → BG, BH → BG are induced by the canonical inclusions
K ↪→ G, H ↪→ G. The composition K\G/H → BG is a classifying map for
the principal G-bundle K\G×G/H → K\G/H.

Proof Consider the following morphisms of principal bundles defined
above.

H ��

��

G

��

K��

��
K\G ��

��

K\G×G/H

��

G/H��

��
K\G/H K\G/H K\G/H

The classifying maps of these bundles give a commutative diagram

K\G/H

��

K\G/H

��

K\G/H

��
BH �� BG BK��

which is the commutative diagram of the statement. Observe now thatG/H
is the common fiber of K\G/H → BK and BH → BG. Therefore, we have
a homotopy pullback. Finally, the description of maps follows directly from
the construction of the square. �
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Remark 3.47 In [82], Eschenburg defined a biquotient as the base space of a
principal bundle with a homogeneous space as total space. He then reduced
the situation to our Definition 3.43 by considering actions of subgroups of
G ×G on G. For completeness, we now develop this viewpoint following
Totaro’s presentation in [255].
LetG be a compact connected Lie group with center Z(G). We letG×G

act on the left ofG by (x, y).g = xgy−1.We embedZ(G) diagonally inG×G
and denote by �(Z(G)) the subgroup image in G×G. This subgroup acts
trivially onG, so we get an action of (G×G)/�(Z(G)) onG. Observe that
this action is transitive with G/Z(G) as the stabilizer at e.
Now consider a second compact Lie group L with a homomorphism

L → (G ×G)/�(Z(G)). With the action described above, this homomor-
phism makes L act on G and we suppose that this action is free. From the
observations above, we see that the quotient G//L of G by the action of
L can be written as a biquotient of (G×G)/�(Z(G)) by G/Z(G) and the
image of L in (G×G)/�(Z(G)):

G//L ∼= (G/Z(G))\(G×G)/�(Z(G)))/L.

We thus recover our initial presentation of a biquotient.
IfU is a closed subgroup ofG×G, we are in the framework just described.

We may observe that the action of U on G is free if and only if the only
pair consisting of conjugate elements (x, y) ∈ U is (e, e). In this case, the
quotient manifold, denoted by G//U, and called the biquotient of G by U,
is diffeomorphic to U\(G × G)/�(G). Here, G//U is the quotient of the
U-action on G given by (u1,u2)g = u1gu

−1
2 for (u1,u2) ∈ U and g ∈ G.

Note that the case U = K × {1} gives the homogeneous space K\G.
Remark 3.48 Let G be a compact connected Lie group and H and K be
closed connected subgroups of G giving raise to a biquotient K\G/H. If
the rank of G is equal to the sum of the ranks of H and K, then the same
argument as in Exercise 1.14 implies that K\G/H is simply connected.
In this direction, we also quote an observation of Totaro [255, Lemma

3.3]: with the notation above, if a biquotient is simply connected, then it can
be written as a biquotient of a simply connected group G by a connected
group H acting on G by a homomorphism H → (G × G)/�(Z(G)). In
the case of a 2-connected biquotient this homomorphism can be lifted to
H → G×G.

Remark 3.49 Let U be a subgroup of G × G. In [151], Kapovitch and
Ziller studied the biquotients G//U such that the algebra H∗(G//U;Q) is
generated by one element. They obtained a complete classification and, as a
consequence, proved that the only biquotient which can be an exotic sphere
is diffeomorphic to the Gromoll–Meyer sphere Sp(2)//S3.
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This last result is also proved independently by Totaro in [255]. In
[54], Cheeger constructed closed manifolds of non-negative sectional cur-
vature as the connected sum of two rank-one symmetric spaces. The
purpose of [255] is to determine the Cheeger manifolds which are
diffeomorphic to biquotients. Totaro obtains a complete answer and,
among other results, shows that there are only finitely many diffeomor-
phism classes of 2-connected biquotient manifolds of a given dimension.
The proof uses Friedlander’s and Halperin’s result on elliptic spaces
(see [101]).

3.4.2 Models of biquotients

Now that we understand the basic properties of biquotients, let’s give
algebraic models for them. Throughout this section, we suppose that the
biquotients we are considering are simply connected. Themain tool we shall
use is Theorem 3.46.

Theorem 3.50 ([150]) Let H and K be closed connected subgroups of a
compact connected Lie group G defining a biquotient K\G/H. We denote
by ιH : H → G, ιK : K → G the canonical inclusions and by BιH : BH →
BG, BιK : BK → BG the induced maps on classifying spaces. Let ∧V =
H∗(BG;Q), ∧WH = H∗(BH;Q), ∧WK = H∗(BK;Q) be the cohomology
algebras of BG, BH and BK respectively. We denote by sV a copy of the
vector space V shifted by one degree, |sv| = |v| − 1 if v ∈ V, and define a
differential d on ∧WH ⊗ ∧WK ⊗ ∧(sV) by dw = 0 if w ∈ WH ⊕WK and
d(sv) = H∗(BιH)(v) −H∗(BιK)(v) if sv ∈ sV.
Then the cdga (∧(WH ⊕WK) ⊗ ∧(sV),d) is a model for the biquotient

K\G/H. In particular, H∗(K\G/H;Q) = H(∧(WH ⊕WK) ⊗ ∧(sV),d).

Proof Using Theorem 3.46, we construct a biquotient as a homotopy pull-
back. A model of the homomorphisms between the classifying spaces is
given by

(∧WH , 0) (∧V , 0)ϕH��
ϕK ��(∧WK, 0)

where ϕH = H∗(BιH) and ϕK = H∗(BιK). We first have to transform one
of these two maps into a relative model, such as

(∧WH , 0) (∧V , 0)ϕH��
ϕK ��(∧WK ⊗ ∧V ⊗ ∧(sV),D)

where ϕK is the canonical inclusion and D|WK = D|V = 0 and Dsv =
v − ϕK(v) if sv ∈ sV . From Theorem 2.70, we know that a model of the
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homotopy pullback is given by

(∧WH , 0) ⊗(∧V ,0) (∧WK ⊗ ∧V ⊗ ∧(sV),D)

∼= (∧WH ⊗ ∧WK ⊗ ∧(sV),d)

with d|WH = d|WK = 0 and dsv = ϕH(v) − ϕK(v) if sv ∈ sV . �

Corollary 3.51 The minimal model of a simply connected biquotient is
pure.

Example 3.52 Consider the biquotient Sp(1)\Sp(3)/Sp(1) × Sp(1) intro-
duced by Eschenburg (see [82, page 164]). This space is obtained from
the canonical inclusion of K = Sp(1) in Sp(3) through the diagonal map
(see Example 3.39) and the inclusion H = Sp(1) × Sp(1) × 1 ⊂ Sp(3) (see
Example 3.38). We have already determined the following canonical homo-
morphisms ϕH : H∗(BG;Q) = ∧(q1,q2,q3) → H∗(BH;Q) = ∧(q1,q

′
1)

and ϕK : H∗(BG;Q) → H∗(BK;Q) = ∧(q̃1). Theorem 3.50 gives as a
model of the biquotient,(∧(q1,q

′
1, q̃1) ⊗ ∧(y3, y7, y11),d

)
with

dq1 = dq′
1 = dq̃1 = 0,

dy3 = ϕH(q1) − ϕK(q1) = q1 + q′
1 − 3q̃1,

dy7 = ϕH(q2) − ϕK(q2) = q1 q
′
1 − 3q̃21,

dy11 = ϕH(q3) − ϕK(q3) = −q̃31.
Since the differential dy3 is linear, wemay simplify thismodel by quotienting
out a contractible ideal generated by y3 and dy3.We then obtain theminimal
model of Sp(1)\Sp(3)/Sp(1) × Sp(1):(∧(q′

1, q̃1) ⊗ �(y7, y11),d
)

with

dq1 = dq̃1 = 0,

dy7 = q1(3q̃1 − q1) − 3q̃21 = −q21 + 3q1 q̃1 − 3q̃21,

dy11 = −q̃31.
This cdga is pure and Theorem B.18 implies:

H∗(Sp(1)\Sp(3)/Sp(1) × Sp(1);Q) = ∧(q1, q̃1)/I,
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where I is the ideal generated by dy7 and dy11. Changing the generators by
a = −q̃1 and b = q1 − q̃1 gives:

H∗(Sp(1)\Sp(3)/Sp(1) × Sp(1);Q) = ∧(a,b)/(a3,b2 + ab+ a2).

This algebra is isomorphic to H∗(Sp(3)/Sp(1) × Sp(1) × Sp(1);Q) (see
Exercise 3.3). Since these spaces are formal, they have the same ratio-
nal homotopy type. But, by considering their Pontryagin classes, Singhof
proved that they do not have the same homotopy type (see [238, Theorem
4.2 and Example 4.4]).

Example 3.53 Consider the biquotient Sp(2)//S3, obtained from the canon-
ical inclusion S3 × 1 ⊂ Sp(2) and the diagonal inclusion S3 → Sp(2),
g 
→ (g, g). With the same technique as above, it is easy to see that Sp(2)//S3

has the rational homotopy type of S7. In fact, it is homeomorphic to S7 (as
Gromoll andMeyer proved in [118]) and has non-negative curvature since it
is a biquotient. Since any homogeneous space homeomorphic to a sphere is
diffeomorphic to a sphere (as Borel observed), Sp(2)//S3 cannot be obtained
as a homogeneous space. This proves that the class of biquotients is larger
than the class of homogeneous spaces.

3.5 The canonical model of a Riemannian manifold

In Section A.4, it is shown that the de Rham p-forms on a closed smooth
manifoldM have a direct sum Hodge decomposition for each p,

ApDR(M) = Hp ⊕ Im(�) = Hp ⊕ Im(d) ⊕ Im(δ),

which, in fact, is an orthogonal decomposition with respect to the inner
product on forms arising from a metric on the manifold and defined by

(α,β) =
∫
M

α ∧ ∗β.

Here, δ : Ap+1DR (M) → ApDR(M) is adjoint to the exterior derivative d with
respect to the inner product and � = δ d + d δ. The subspace Hp denotes
the harmonic p-forms; namely, the forms α such that δα = 0 and dα = 0.
Furthermore, each α has a unique decomposition

α = H(α) + αd + αδ,

where H(α) ∈ Hp, αd ∈ Im(d) and αδ ∈ Im(δ). Moreover, Hp and Im(d)
give all closed forms in ApDR(M) and, from the discussion following Corol-
lary A.11, we see that α is exact precisely when H(α) = 0, αδ = 0 and
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α = dβδ for a unique element βδ ∈ Im(δ). In particular, we see that, for each
k,Hk(M) ∼= Hk canonically (once a metric is fixed). This rigid metric struc-
ture on a closed manifold gives an indication that our standard minimal
models can be improved in this case. In particular, recall that Proposi-
tion 2.26 gives a homotopy commutative diagram lifting a morphism of
cdga’s to minimal models. The lack of exact commutativity presents vari-
ous problems when translating from geometry to algebra and back again,
so a remedy for this deficiency is highly desired. A model built on harmonic
forms using the Hodge decomposition provides this remedy, so we will now
describe this canonical model (see [245]).
To begin, we note that we can introduce an inner product to any cga of

the form∧(V1⊕V2⊕. . .). Suppose each vector spaceVk (whereVi is the set
of homogeneous elements of degree i) has an inner product which we denote
by 〈−,−〉k. Then, for λ = λ1 ∧ . . . ∧ λp, β = β1 ∧ . . . ∧ βp ∈ ∧p(V2k+1),
we define

(λ,β) = det(〈λi,βj〉2k+1).
Monomials of different lengths are declared orthogonal. By extending
bilinearly, this defines an inner product on the exterior algebra ∧(V2k+1).
Note that this definition only works because both exterior multiplication
and the determinant are alternating. So what can be done for V2k since
∧(V2k) is a symmetric algebra? Well, the determinant must be replaced
by a non-alternating version called the permanent of a matrix. For an
n× n-matrix A, the permanent is defined to be

perm(A) =
∑
σ∈Sn

a1σ(1) · · · anσ(n).

Note that this differs from the definition of the determinant only in the
missing sign factor (−1)sgn σ . The key property of the permanent is that
switching columns has no effect. Therefore, for λ = λ1 ∧ . . . ∧ λp, β =
β1 ∧ . . . ∧ βp ∈ ∧p(V2k), we define

(λ,β) = perm(〈λi,βj〉2k).
By extending bilinearly, this defines an inner product on the symmetric alge-
bra ∧(V2k). Putting the two definitions together provides an inner product
on all of ∧(V1 ⊕ . . .).
Now let’s construct the canonical model with inner product for a closed

simply connected Riemannian manifoldM. Let (ADR(M),d) denote the de
Rham algebra of M with a Hodge decomposition associated to a given
Riemannian metric. Begin constructing the model by taking the symmetric
algebra freely generated by degree 2 harmonic forms, (∧(H2),d = 0), and
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mapping the harmonic forms identically to ADR(M). Clearly, this induces
an isomorphism in degree 2 cohomology and, sinceH3(∧(H2),d = 0) = 0,
an injection in degree 3 cohomology.
Inductively assume that ∧(n−1) = ∧(V≤n−1) has been constructed with

inner product and canonical morphism ρn−1 : ∧ (n − 1) → ADR(M) with
ρ∗
n−1 an isomorphism in degrees through n−1 and an injection in degree n.
The injection ρ∗

n−1 : H
n(∧(n−1)) → Hn(M) ∼= Hn induces an orthogonal

decomposition

Hn = Im ρ∗
n−1 ⊕Un,

where the Hodge inner product onHn provides the orthogonal complement
Un. Now let L = ∧(n − 1) ⊗ ∧(Un) with inner product defined as above
and ρn : L → ADR(M) preliminarily defined by

ρn|∧(n−1) = ρn−1, and ρn|Un = Un ↪→ Hn.

By the definition of Un, we see that ρ∗
n is an isomorphism through degree

n. However, to carry out the inductive step, we must also define ρ∗
n so as

to be injective in degree n+ 1. With this in mind, suppose ρ∗
n([α]) = 0 for

α ∈ Ln+1. Then there is some β ∈ AnDR(M) with dβ = ρn(α). Now, using
the Hodge decomposition,

ρn(α) = hρn(α) + dxρn(α) + δyρn(α) = dβ,

and the discussion above, we see that hρn(α) = 0, yρn(α) = 0 and a canonical
choice for β is β = xρn(α) ∈ Im(δ). Thus, if we take a basis α1, . . . ,αr for
Ker(ρ∗

n)
n+1, there are canonical choices xρn(α1), . . . ,xρn(αr) ∈ Im(δ) with

dxρn(αi) = ρn(αi). LetWn ∼= Ker(ρ∗
n)
n+1 with basis {α1, . . . ,αr}, each αi in

degree n. Form

∧(n) = L⊗ ∧(Wn) with d|L = d, d|W = idKer(ρ∗
n)
n+1 .

Also, using the basis {α1, . . . ,αr}, define ρn|W by ρn(αi) = xρn(αi). Then ρn is
defined on all of∧(n) and, clearly now, ρ∗

n is an isomorphism through degree
n and an injection in degree n + 1. Also, the inner product extends since
Hn+1(L) has an inner product inherited from the orthogonal decomposition
of cocyclesZn+1(L) = Bn+1(L)⊕Hn+1(L) and so therefore does Ker(ρ∗

n)
n+1

from Hn+1(L) = Ker(ρ∗
n)
n+1 ⊕ Im(ρ∗

n)
n+1. Finally, note that ρn(U) ⊆ H

and ρn(W) ⊆ Im(δ) by uniqueness of the Hodge decomposition.
Hence, (∧(n),d) is the nth stage of a (canonical) minimal model for M.

If we continue in this way, we obtain the canonical model (CMM,d)
ρ→

(ADR(M),d). Note first that this canonical model is an R-minimal model
and that it requires a Riemannian metric to produce the Hodge decom-
position. Secondly, note that the construction produces the following
geometrically important result (compare Proposition 2.26).
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Theorem 3.54 Let f : M → M be an isometry of a closed simply connected
Riemannian manifold M. Then:

1. The induced morphism ADR(f ) : ADR(M) → ADR(M) has a lift to the
canonical model, f C : CMM → CMM, and this makes the following
diagram strictly commutative

CMM

ρ

��

f C
�� CMM

ρ

��
ADR(M)

ADR(f )�� ADR(M)

2. The real homotopy theory of f is determined by f ∗, the induced
homomorphism on cohomology.

Proof Because f is an isometry, ADR(f ) preserves the Hodge decomposi-
tion. In particular, ADR(f )(H2) = H2 and this defines f C| : ∧ (H2) →
∧(H2)which obviouslymakes the restricted diagram commute. Inductively,
assume f C : ∧ (n− 1) → ∧(n− 1) exists with ρ f C = ADR(f ) ρ and which
preserves the inner product on ∧(n − 1). Now using the notation above,
∧(n) = ∧(n− 1) ⊗ ∧(Un) ⊗ ∧(Wn), so if we can define f C correctly on U
andW , we shall be done. Of course, we have an orthogonal decomposition
Hn(M) = Hn = Im ρ∗ ⊕ U, so because f ∗ = ADR(f )|H is an isometry, we
have f C|U = f ∗|U = ADR(f )|U . Clearly, even with this extended definition
of f C, we have ρ f C = ADR(f ) ρ and the inner product is preserved. Now,
we know that

dADR(f )(ρ(αi)) = dADR(f )(xρ(αi))

= ADR(f )(dxρ(αi))

= ADR(f )(ρ(αi))

= ρ(f C(αi)),

since αi ∈ ∧(n − 1) ⊗ ∧(Un). Also, because ρ(W) ⊆ Im(δ) and ADR(f )
preserves theHodge decomposition, we see thatADR(f )(ρ(αi)) is the unique
element in Im(δ) with dADR(f )(ρ(αi)) = ρ(f C(αi)). By definition of Wn,
there is a unique element wi ∈ Wn with dwi = f C(αi). Define f C(αi)) =
wi and do this for each i to obtain f C|Wn . Hence, f C : ∧ (n) → ∧(n) is
defined with ρ f C = ADR(f ) ρ. By induction, we have therefore defined the
required f C.
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The construction of f C shows that it is completely determined by
ADR(f )|H and this is precisely f ∗ since H = H∗(M). Hence, the real homo-
topy type of f , represented by the morphism of models f C, is determined
by the induced homomorphism on cohomology. �

Exercises for Chapter 3

Exercise 3.1 Show that the only rational homotopy types of simply connected
closed rationally elliptic 5-manifolds are S5 and S2 × S3.

Exercise 3.2 Show that CP(2)#CP(2) and CP(2)#CP(2) have different rational
homotopy types. Hint: suppose φ : H∗(CP(2)#CP(2);Q) → H∗(CP(2)#CP(2);Q) is
a rational equivalence. It must have the form: φ(x1) = ax1+bx2, φ(x2) = cx1+dx2.
Now use φ(x1 x2) = 0, φ(x21) = φ(x22) to derive a contradiction.

Exercise 3.3 Prove that H∗(Sp(3)/Sp(1) × Sp(1) × Sp(1);Q) = Q[a,b]/(a3,b2 +
ab + a2), with |a| = |b| = 2. Hint: Use the techniques developed in Example 3.39
and Example 3.38.

Exercise 3.4 Show that a model for the biquotient S1\Sp(n)/SU(n) is given by:

∧(t, σ2, . . . , σn, y3, . . . , y4n−1),d),

where |t| = 2, |σi| = 2i, |yi| = i, dt = dσi = 0, dy3 = 2σ2 − t2 and dy4i−1
= 2σ2i + ∑

r+s=2i(−1)sσrσs. Hint: [150, Example 6].

Exercise 3.5 (1) Show that the minimal model of Sp(5)/SU(5) is(∧(α6, α10, α11, α15, α19), d
)
,

with |αi| = i, dα6 = dα10 = 0, dα11 = α26, dα15 = α6α10, dα19 = α210.
(2) From this model compute the cohomology algebra of Sp(5)/SU(5) and prove

H∗(Sp(5)/SU(5);Q) = ∧ (
c6, c10, a, b

)
/I,

where I is the ideal generated by
(
α26,α

2
10,α6α10,α6a,α10a+ α6b,α10b, ab

)
,

where c6, c10, a and b denote the classes associated respectively to α6, α10,
α6α15 − α11α10, α6α19 − α10α15.
(3) Show that the space Sp(5)/SU(5) is not formal.
(4) Construct the bigradedmodel and the filteredmodel of Sp(5)/SU(5) in degrees

≤ 32.

Exercise 3.6 LetX = S3×S3×S3×S3. We define a Z4-action onX by the shift map
T(u1,u2,u3,u4) = (u2,u3,u4,u1), for ui ∈ S3. Prove that the orbit space X/Z4 has
the rational homotopy type of S3× S6. Hint: Use Corollary 3.29 and Remark 3.30.
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Exercise 3.7 Show that a formal rationally elliptic space with πeven⊗ Q = 0 must
be a product of odd spheres. Hint: imitate the proof of Proposition 3.20.

Exercise 3.8 Prove the following result.
Theorem. Any compact Riemannian symmetric space is formal.
Hints: Consider the linear map

ρ : H∗(M) → ADR(M), ρ([u]) = hu,

where hu is a unique harmonic representative (see Theorem A.10). It is well known
that, for a Riemannian symmetric space (see Exercise 1.6), harmonic forms are
identified with left-invariant forms under the action of the isometry group of the
manifold (also see Remark 1.51). But the product in the de Rham algebra of invari-
ant forms is again an invariant form inADR(M) and therefore ρ is a cdga-morphism
inducing an isomorphism in cohomology.



4
Complex and symplectic
manifolds

Just as a complex analytic function has special properties compared to
an ordinary smooth function, so does the de Rham algebra of a complex
manifold display additional structure to that derived from the manifold’s
smooth structure alone. In particular, the splitting of the de Rham algebra
into (p,q)-parts endows a complex manifold with two differentials whose
interactions are extremely powerful in many regards, but especially in
discovering rational homotopy properties of the manifold.
In this chapter, we study models of the de Rham and Dolbeault algebras

of a complex manifoldM. We present the particular topological properties
of Kähler manifolds M, and, in particular, we prove that they are formal.
The main tool for the link between Dolbeault and de Rham algebras is a
perturbation theorem which allows the construction of a model of a filtered
cdga and starts from amodel of any stage of the spectral sequence associated
to the filtration. Examples of this are given which come from the Borel
spectral sequence of a principal holomorphic bundle or from the Frölicher
spectral sequence of a complex manifold. The use of models is particularly
well-suited to the study of these spectral sequences and, in this context, we
revisit some examples, due to Pittie, in which the Frölicher spectral sequence
collapses at level 3. We relate these examples to the notion of Dolbeault
formality of a complex manifold.
Properties of symplectic manifolds have also been discovered using alge-

braic models (e.g. see [165], [178], [257]). In the last part of this chapter,
we describe some of the implications of models for symplectic topology.
For a compact symplectic manifold, it has been shown by Mathieu [185]
and Merkulov [190] that the hard Lefschetz property is related to the exis-
tence of symplectically harmonic forms in each cohomology class and with
a more technical property called the dδ-lemma. Since this last property
is revealed as the key to the proof of formality of Kähler manifolds, we
may wonder if it has the same effect in the symplectic case. This ques-
tion is answered negatively by Cavalcanti [52] and we will take it up in
Chapter 8.
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Section 4.1 contains definitions and examples of complex and almost
complex manifolds. Recall that a complex structure on a real vector space
gives a bigradation on the complexification, Vc, of V which extends to the
exterior algebra ∧Vc. We first describe the bigradation of the algebra Ac of
complex-valued smooth differential forms on an almost complex manifold.
In the case of a complex manifold, the de Rham differential on Ac can be
decomposed as d = ∂ + ∂, with ∂ of bidegree (1, 0) and ∂ of bidegree (0, 1).
This property is a necessary and sufficient condition for an almost complex
manifold to be a complex manifold. The almost complex manifold is then
called integrable and, in this case, the derivations ∂ and ∂ are differentials
(∂2 = ∂

2 = 0) which also commute (∂∂ + ∂∂ = 0). The complex (Ac, ∂)
is called the Dolbeault complex or the Dolbeault algebra of the complex
manifoldM.
In Section 4.2, we recall the definition of Kähler manifolds. The

Kähler form of a Kähler manifold is the skew-symmetric part of a her-
mitian product. It has bidegree (1, 1) if we consider it as a form on each
complexified tangent vector space. One purpose of this section is simply
to describe certain properties of the de Rham and Dolbeault algebras of
compact Kähler manifolds. For instance, the fact that the differentials d, ∂
and ∂ induce the same Laplacian is a necessary and sufficient condition for
the existence of a Kähler metric. This also entails a technical result, called
the ∂∂-lemma (see Lemma 4.24), that, in turn, implies the formality of the
rational homotopy type of a Kähler manifold. This is stated and proved
in Theorem 4.43. We present other topological properties of Kähler mani-
folds as well involving the vector space of homology (see Proposition 4.33)
or the algebra of cohomology (see Theorem 4.35). In this section, we also
show how we can put a complex manifold structure on the total space of
a principal bundle with base a Kähler manifold and with structure group
an even dimensional torus, see Subsection 4.2.2. These manifolds are called
Calabi–Eckmann manifolds. The complex structures of the Hopf surface,
or the Kodaira–Thurston manifold or of any even dimensional compact
connected Lie group are particular cases of this situation. A theorem of
Blanchard [29] implies the non-Kählerness of these manifolds.
Section 4.3 is dedicated to understanding the Dolbeault model of a com-

plex manifold. We define this model, prove its existence and introduce the
notion of Dolbeault formality. In the case of a Kähler manifold, the de
Rham and the Dolbeault complexes coincide. Thus, the Dolbeault model
of a Kähler manifold comes about from the usual methods. In a more gen-
eral situation however, the Dolbeault model is not so easy to construct. In
order to do this, we introduce the notion of deformation; namely, to any
filtered cdga (A,d,F) (see Definition 4.55), we associate a spectral sequence
(Er,dr), each of whose stages is a commutative differential bigraded
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algebra (cdba). In [133], it is proved that a model of (A,d,F) can be recov-
ered from amodel of the cdba (Er,dr) for any r ≥ 0 (see Theorem4.56). This
is used here for the Dolbeault model of the total space of a holomorphic
principal bundle by way of the Borel spectral sequence. A more geomet-
rical computation involving Chern–Weil theory is also presented for the
Calabi–Eckmann manifolds, T2n ��E ��B . As examples, we exam-
ine the product of two odd spheres and of the total space of a principal
fibration having base the product of two complex Grassmann manifolds of
2-planes in C4.
Indeed, Theorem 4.56 provides a general point of view for many different

circumstances. For instance, it gives the filtered model of Chapter 2 from
the bigraded model and it also comes into play in Section 4.4 as follows.
The complex valued de Rham algebra of a complex manifold is a bicomplex
and it can be filtered by the first degree. From this filtration, we obtain a
spectral sequence, called the Frölicher spectral sequence, such that (Ep,q0 ,d0)
is the Dolbeault complex (Ap,q, ∂). From Theorem 4.56 and this spectral
sequence, we see that a de Rhammodel can be constructed as a perturbation
of the Dolbeault model. This perturbation is the right object for the study of
the degeneracy of the Frölicher spectral sequence. First, we observe that we
always have E1 ∼= E∞ in the case of a Kähler manifold. At first glance, since
this spectral sequence is built from a bigraded model, it appears to degen-
erate at level 2. It is now well-known that this does not, in general, happen
and we end this section with an example where E2 �∼= E3 and E3 ∼= E∞. The
context, due to Pittie [228], is that of an even dimensional Lie group viewed
as the total space of the holomorphic principal bundle T ��G ��G/T
built from the inclusion of a maximal torus T. More particularly, Pittie
proves the non-degeneracy of the Frölicher spectral sequence at stage 2 for
G = SO(9). In fact, if G is an even dimensional Lie group, with a complex
structure coming from the holomorphic principal bundle, we can prove that
the associated Frölicher spectral sequence collapses at stage 2 if and only
if G is Dolbeault formal (see [249] and Theorem 4.74). We illustrate this
situation in the case G = SO(9).
Section 4.5 is devoted to properties of symplectic manifolds. We recall

the definition and the most basic examples: R2n, the cotangent bundle
and Kähler manifolds. In Subsection 4.5.3, we study what kind of prop-
erties and tools of complex manifolds carry over to the symplectic world.
We consider the hard Lefschetz property, the dδ-lemma and Brylinski’s
symplectically harmonic forms (see [44], or also Libermann [173]). In
particular, we present Mathieu’s result disproving a well-known conjec-
ture of Brylinski and Merkulov’s result linking several of these different
notions. The relations among all these notions magnify the need for a
more general viewpoint that includes the symplectic and complex settings.
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This is the generalized complex geometry of Hitchin that we mention
briefly.
When the properties we are looking for are purely homological, symplec-

tic manifolds may be replaced by c-symplectic manifolds; that is, manifolds
which mimic symplectic manifolds cohomologically. We consider these
types of manifolds in Section 4.6 and study several examples. In particular,
we demonstrate that (c-)symplectic homogeneous spaces and (c-)symplectic
biquotients must havemaximal rank. For the important test class of nilman-
ifolds, the two notions, symplectic and c-symplectic, coincide. Moreover,
we show that the only symplectic nilmanifolds of Lefschetz type are tori (up
to diffeomorphism). This property, combinedwithMathieu’s theorem, then
provides counterexamples to the Brylinski conjecture. In Subsection 4.6.5,
we pose and discuss a question on the boundary of symplectic geometry
and homotopy theory; namely, which symplectic manifolds are nilpotent
spaces?
In an Appendix (Section 4.7), we recall the basics of complex (and sym-

plectic) linear algebra: in particular, how the structure of a complex vector
space can be expressed in terms of real objects. We end with a discussion of
hermitian products which provides background for the discussion of Kähler
metrics in Section 4.2.

4.1 Complex and almost complex manifolds

Let’s first recall some well-known definitions and properties concerning
complex manifolds. References for these notions are [155], [264]. Complex
structures in linear algebra are recalled in Section 4.7 and this serves also
as a reference for the notation.

4.1.1 Complex manifolds

Definition 4.1 A complexmanifoldM, of (complex) dimension n, is a mani-
fold which admits an open cover (Uj)j∈I and coordinate maps ϕj : Uj → Cn,
such that ϕj ◦ ϕ−1

k is holomorphic on ϕk(Uj
⋂
Uk) ⊂ Cn, for any j and k.

The open sets Uj are called charts of M.

Let f : U ⊂ Cn → Cn be defined on an open set U of Cn. We set x =
(x1, . . . ,xn), y = (y1, . . . , yn) with z = x+ i y and we recall that f (x+ iy) =
(P1(x, y),+iQ1(x, y), . . .) is a holomorphic map if the real components of
f , Pk and Qk, are differentiable as functions R2n → R and satisfy the
Cauchy–Riemann equations:

∂Pk
∂xj

= ∂Qk

∂yj
,
∂Pk
∂yj

= −∂Qk

∂xj
.
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The first obvious example of a complex manifold is given by Cn or any
open set of Cn. Complex projective space is an example of a compact
complex manifold as we see next.

Example 4.2 Recall that CPn can be defined as the quotient of Cn+1 − {0}
by the equivalence relation

(z1, . . . , zn+1) ∼ (λz1, . . . , λzn+1) ,

where λ ∈ C − {0}. Denote by [z1, . . . , zn] the equivalence class
of (z1, . . . , zn) ∈ Cn+1. We cover CPn by the open sets Uj ={
[z1, . . . , zn+1] | zj �= 0

}
with coordinate maps

ϕj : Uj → Cn ; ϕj([z1, . . . , zn+1]) =
(
z1
zj
, . . . , ẑj, . . . ,

zn+1
zj

)
,

where the hat over a coordinate indicates that it has been deleted. On
ϕk(Uj

⋂
Uk), we have the holomorphic map

ϕj ◦ ϕ−1
k (z1, . . . , zn)=ϕj[z1, . . . , zk−1, 1, . . . , zn]=

(
z1
zj
, . . . ,

zk−1
zj

,
1
zj
, . . . ,

zn
zj

)
.

Thus, CP(n) is a complex manifold of complex dimension n.

Example 4.3 Let f : M → N be a covering space. If the baseN is a complex
manifold, then the map f induces a complex manifold structure on M.
Indeed, if ϕj : Uj → Cn is a chart in N, then ϕj ◦ f is a chart on each
component of f−1(Uj).
If we suppose now thatM is a complex manifold and also that the cover-

ing group acts holomorphically, then we have a complex manifold structure
on N. For instance, if Z2n is a discrete lattice of Cn, we obtain a complex
manifold structure on the quotient Cn/Z2n. We call it a complex torus.

A complexmanifoldM of complex dimension n is also a smoothmanifold
of dimension 2n. We denote by TR(M), (or T(M) if there is no confusion),
the tangent bundle of M. The tangent space at one point, x, is denoted
by Tx(M). For instance, if M = Cn, then the tangent space T(Cn) ∼= R2n

is generated by
{

∂

∂xj
;

∂

∂yj

}
. The real vector space T(Cn) has a complex

structure given by J
(

∂

∂xj

)
= ∂

∂yj
and J

(
∂

∂yj

)
= − ∂

∂xj
.

Proposition 4.4 Let f : U ⊂ Cn → Cn be smooth on the open set U as a
map from R2n to R2n. The map f is holomorphic if and only if the induced
map f∗ : T

(
R2n) → T

(
R2n) is compatible with the complex structures in

the sense that f∗ ◦ J = J ◦ f∗.
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Proof As done above, denote by (Pk,Qk) the real components of f . The
derivation law gives:

f∗
(

∂

∂xj

)
=

∑
k

∂Pk
∂xj

∂

∂xk
+

∑
k

∂Qk

∂xj

∂

∂yk

f∗
(

∂

∂yj

)
=

∑
k

∂Pk
∂yj

∂

∂xk
+

∑
k

∂Qk

∂yj

∂

∂yk
.

It is now easy to see that f is holomorphic if and only if f∗ ◦ J = J ◦ f∗. �

The notions of bundle, principal bundle (see Section 1.10) and vector
bundle carry over from the smooth case to the holomorphic case and give
the definitions of holomorphic bundle, principal holomorphic bundle and
holomorphic vector bundle respectively.
For instance, the tangent vector bundle of a complex manifold M is a

holomorphic vector bundle. Let Uj be a chart of M and x ∈ Uj. The com-
plex structure on T(Cn) ∼= R2n can be transferred to Tx(M) by ϕj ∗, where
ϕj : Uj → Cn is a coordinate map. More precisely, the complex structure
on Tx(M), also denoted by J, is defined locally by J = ϕ−1

j ∗ ◦ J ◦ϕj ∗. Observe
that this structure does not depend on the choice of Uj and ϕj because, on
T(Cn) ∼= R2n, we have ϕ−1

j ∗ ◦ϕk ∗◦J◦ϕ−1
k ∗ ◦ϕj ∗ = J, due to the holomorphicity

of ϕ−1
j ◦ ϕk. Therefore, the next result follows immediately.

Proposition 4.5 Let M be a complex manifold with real tangent bundle
T(M). There exists a bundle map J : T(M) → T(M) such that Jx : Tx(M) →
Tx(M) is a complex structure on Tx(M).

4.1.2 Almost complex manifolds

Almost complex manifolds are exactly those manifolds whose tangent
bundle satisfies the conclusion of Proposition 4.5.

Definition 4.6 Let M be a smooth manifold of dimension 2n. An almost
complex structure on M is a bundle map J : T(M) → T(M), such that each
Jx is a complex structure on Tx(M). The couple (M, J) is called an almost
complex manifold. If (M, J) comes from a complex structure on M, we say
that the almost complex structure is complex.

Remark 4.7 Suppose that an almost complex manifold (M, J) comes from
two complex manifold structures onM. Then, by Proposition 4.4, the iden-
tity map is a holomorphic map between the two complex manifolds. Thus,
if an almost complex structure (M, J) is complex, this complex structure
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on M is unique. The existence of almost complex manifolds that are not
complex will be discussed in Subsection 4.1.4.

Proposition 4.4 leads naturally to the next notion.

Definition 4.8 A map f : (M, J) → (M′, J′) between almost complex man-
ifolds is said to be almost complex if it is a smooth map such that
J′ ◦ f∗ = f∗ ◦ J.
The existence of an almost complex structure on a manifoldM is not very

common. Let’s look first at the case of spheres. Evidently, the dimension of
the manifold must be even and we have only to consider even dimensional
spheres.

Example 4.9 (Even dimensional spheres) Since S2 = CP(1), we already
know that a complex structure exists on S2. Nonetheless, let us now take a
new look at S2, startingwith the canonical inclusion ofR in the quaternionic
field H. The orthogonal subspace E of R in H gives a decomposition H =
R ⊕ E and a unique way of writing q ∈ H as q = a + −→

X with a ∈ R and−→
X ∈ E ∼= R3. In this context, the quaternionic product becomes:

(a+ −→
X )(b+ −→

Y ) = (ab− 〈−→X ,−→Y 〉) + (a
−→
Y + b

−→
X + −→

X ∧ −→
Y ),

where 〈−,−〉 is the scalar product and ∧ the vector (or cross) product in
R3. On E, the subspace of pure quaternionic numbers, the previous law
reduces to:

−→
X

−→
Y = −〈−→X ,−→Y 〉 + −→

X ∧ −→
Y .

This formula shows that the vector product on E ∼= R3 can be directly
deduced from the quaternionic product of H. Let’s recall now the central
role played by this vector product in the construction of the usual almost
complex structure on S2.
The tangent subspace T−→

X
(S2) at

−→
X ∈ S2 is identified with the subspace{−→

Y ∈ R3 | 〈−→X ,−→Y 〉 = 0
}
. We define J−→

X
: T−→

X
(S2) → T−→

X
(S2) by J−→

X
(
−→
Y ) =

−→
X ∧ −→

Y . This is in fact the almost complex structure of S2 coming from its
classical complex structure.
The interest of this viewpoint is that exactly the same procedure works

for the field K of Cayley numbers. The choice of an orthogonal subspace F
of R in K gives a decomposition K = R ⊕ F and the Cayley product on K

induces a vector product ∧ on F ∼= R7 by:

−→
X ∧ −→

Y = −→
X

−→
Y + 〈−→X ,−→Y 〉.
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Since the tangent subspace T−→
X
(S6) at

−→
X ∈ S6 is identified with the

subspace
{−→
Y ∈ R7 | 〈−→X ,−→Y 〉 = 0

}
, we define J−→

X
: T−→

X
(S6) → T−→

X
(S6) by

J−→
X
(
−→
Y ) = −→

X ∧ −→
Y . This gives an almost complex structure on S6. The

previous argument works also for any smooth oriented six-dimensional
manifold embedded in R7, see [49] or [155, Example 2.6]. For instance,
since the map

S4 × S2 ��R7 , (x, y1, y2, y3)
� ��

((
1+ y1

2

)
x, y22 ,

y3
2

)
is an embedding, we see that S4 × S2 is an almost complex manifold.
The constructions of almost complex structures on S2 and S6 above

required some type of product law on an ambient space Rk. If the exis-
tence of such a law is a necessary path to an almost complex structure, then
we should expect that very few even dimensional spheres can have almost
complex structures. In fact, that is the case, for by using reduced Steenrod
powers, Borel and Serre proved [35] that S2 and S6 are the only spheres
that admit almost complex structures. A consequence of this nonexistence
of almost complex structures on spheres is that, in general, a connected sum
of almost complex manifolds does not have an almost complex structure
compatible with the structures on the summands [16]. See Exercise 4.6 for
a stronger statement for 4-manifolds.
We have already mentioned that, for obvious dimensional reasons, there

is no almost complex structure on an odd dimensional sphere. However, if
we take a product of two such spheres this obstruction vanishes. Indeed,
we can put an almost complex structure (and even a complex structure)
on any product S2k+1 × S2l+1 as we will show in Subsection 4.2.2. (The
case S1 × S1 is, of course, the complex torus of Example 4.3.) There-
fore, we may wonder if it is possible to find almost complex structures
on a product of two even dimensional spheres. The answer is more or
less no: in [67], it is proven that the product S2k × S2l, with l ≤ k,
admits an almost complex structure if and only if l = 1 and 1 ≤ k ≤ 3
or k = l = 3.

4.1.3 Differential forms on an almost complex manifold

We now use the algebraic recollections of complex linear algebra in
Section 4.7 to describe differential forms on an almost complex manifold
(M, J) of dimension 2n. By definition, the real tangent space at x ∈ M,

Tx(M) = R

{
∂

∂xj
,

∂

∂yj

}
, has a complex structure Jx. The complex tangent
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space at x is the complexification

Tcx(M) = Tx(M) ⊗R C = C

{
∂

∂xj
,

∂

∂yj

}
,

and this complex vector space has a decomposition into J-eigenspaces,
Tcx(M) = T1,0x ⊕ T0,1x , which defines two smooth sub-bundles T1,0, T0,1

of Tc(M).
By taking duals, the almost complex structure onT(M) induces an almost

complex structure on the real cotangent bundle T(M)∗. This implies a
decomposition of the complexified space asTcx(M)∗ = T∗ 1,0

x ⊕T∗ 0,1
x , where

T∗ 1,0 and T∗ 0,1 are the C-dual bundles of T1,0 and T0,1 respectively. This
decomposition of the cotangent bundle gives a bigradation on the algebra
of differential forms with values in C,

AcDR(M) = ADR(M) ⊗R C = ⊕p,qAp,q(M) .

More precisely, let (ω1, . . . ,ωn) be a local frame for A1,0. Then (ω1, . . . ,ωn)
is a local frame for A0,1 and an element ω of Ap,q(M) can be written
locally as:

ω =
∑
J,K

ϕJ,K ωj1 ∧ . . . ωjp ∧ ωk1 ∧ . . . ωkq ,

where ϕJ,K : Uj → C is a smooth complex function for any multi-indices
J = ( j1, . . . , jp), K = (k1, . . . ,kq).
We now want to decompose the differential d : AcDR(M)r → AcDR(M)r+1

in accordance with this bigradation. In order to do that, observe first that
Ap,q is generated by elements of A0,0, A1,0 and A0,1. Secondly, we know the
behavior of the differential on these subspaces:

dA0,0 ⊂ A0,1+A1,0, dA0,1 ⊂ A2,0+A1,1+A0,2, dA1,0 ⊂ A2,0+A1,1+A0,2.
In short, we have dAp,q ⊂ Ap+2,q−1 + Ap+1,q + Ap,q+1 + Ap−1,q+2. We

single out two components of d which correspond to the bidegrees (1, 0)
and (0, 1). They are respectively denoted by

∂ : Ap,q → Ap+1,q and ∂ : Ap,q → Ap,q+1.

Example 4.10 Let M be a complex manifold with local coordinates
(z1, . . . , zn) and zj = xj + iyj. The complex structure on the real tangent

space Tx(M) is given by J
(

∂

∂xj

)
= ∂

∂yj
and J

(
∂

∂yj

)
= − ∂

∂xj
. The decom-

position Tcx(M) = T1,0x ⊕T0,1x of the complexification Tcx(M) is given locally
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by T1,0|U = C

{
∂

∂zj

}
and T0,1|U = C

{
∂

∂zj

}
, with

∂

∂zj
= 1
2

(
∂

∂xj
− i

∂

∂yj

)
and

∂

∂zj
= 1
2

(
∂

∂xj
+ i

∂

∂yj

)
. The complexified cotangent complex ofM decom-

poses as T∗ 1,0
|U = C

{
dzj

}
and T∗ 0,1

|U = C
{
dzj

}
, where

(
dzj , dzj

)
is the

basis dual to
(

∂

∂zj
,

∂

∂zj

)
. This induces a bigradation on the algebra of

C-differential forms given by:

ω =
∑
J,K

ϕJ,K dzj1 ∧ . . .dzjp ∧ dzk1 ∧ . . .dzkq ∈ Ap,q(M).

The differential of ω can be computed as:

dω =
∑
l

∑
J,K

∂ϕJ,K

∂zl
dzl ∧ dzj1 ∧ . . .dzjp ∧ dzk1 ∧ . . .dzkq

+
∑
l

∑
J,K

∂ϕJ,K

∂zl
dzl ∧ dzj1 ∧ . . .dzjp ∧ dzk1 ∧ . . .dzkq ,

and as a consequence, we see that if an almost complexmanifold is complex,
then d = ∂ + ∂.

4.1.4 Integrability of almost complex manifolds

Of course, the first question to ask about almost complex manifolds is how
to know if they are complex. From Subsection 4.1.3, we know that the
equality between d and the sum ∂ + ∂ is a necessary condition for having
a complex structure which induces (M, J). But is this condition sufficient
to guarantee the existence of an inducing complex structure? This leads to
the next definition and the subsequent fundamental theorem of complex
manifold theory.

Definition 4.11 An almost complex manifold, (M, J), is integrable if
d = ∂ + ∂.

Theorem 4.12 An almost complex manifold is complex if and only if it is
integrable.

We simply mention that the real analytic case is due to Ehresmann [78]
(also see Eckmann and Frölicher [76]), and the smooth case to Newlander
and Nirenberg [208]. Since Ap,q is generated by A0,0, A1,0 and A0,1,
Theorem 4.12 also takes the following form.
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Corollary 4.13 An almost complex manifold (M, J) is complex if and only
if d Ap,q ⊂ Ap+1,q + Ap,q+1. This is equivalent to

d A0,1 ⊂ A1,1 + A0,2 and d A1,0 ⊂ A2,0 + A1,1 .

Note the existence of equivalent criteria (see [155, Theorem 2.8 of
Chapter IX]) such as:

• T1,0 is stable under the Jacobi bracket (or the same requirement for T0,1);
• the vanishing of the Nijenhuis tensor defined by

N(U,V) = 2 ([JU, JV] − [U,V] − J[U, JV] − J[JU,V]) ,
where U and V are any tangent vector fields.

In the case of an integrable manifold, the equalities d = ∂ +∂ and d2 = 0
imply ∂2 = ∂

2 = ∂∂ + ∂∂ = 0. In particular, ∂ is a differential which allows
the definition of cohomology groups.

Definition 4.14 (Definition of Dolbeault Cohomology) If (M, J) is an inte-
grable almost complex manifold (i.e. induced from a complex manifold),
the complex

(
Ap,q(M), ∂

)
is called the Dolbeault complex of (M, J). Its

cohomology is denoted by Hp,q
∂

and called the Dolbeault cohomology
of (M, J).

Definition 4.15 A holomorphic form is a form ω such that ω ∈ Ap,0 and
∂ω = 0. Such a form gives a Dolbeault cohomology class in Hp,0

∂
.

If f : M → N is a holomorphic map between complex manifolds, then the
derivativemap f∗ respects the almost complex structure, see Proposition 4.4.
Dually, on forms we have: f ∗Ap,q(N) ⊂ Ap,q(M) and ∂ ◦ f ∗ = f ∗ ◦ ∂.
Therefore a holomorphic map f induces a homomorphism between the
Dolbeault cohomology groups.

Example 4.16 (Nilmanifolds) An almost complex structure J may be
defined on a nilmanifold by first defining it on the Lie algebra of the associ-
ated nilpotent Lie group (see [134]). For instance, consider the Lie algebra
n of dimension 2m + 2 having basis {X1, . . . ,Xm,Y1, . . . ,Ym,Z,W} with
bracket structure given by [Xi,Yi] = −Z for all i = 1, . . . ,m and all other
brackets zero. Let

J(Xi) = Yi, J(Yi) = −Xi, J(Z) = W , J(W) = −Z.
This defines a left invariant almost complex structure on the nilpotent Lie
group associated to n which then descends to the nilmanifold level. The
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Nijenhuis tensor of the almost complex structure is then

N(U,V) = 2 ([ JU, JV] − [U,V] − J[U, JV] − J[ JU,V])
and this is easily computed to be zero for X,Y,Z,W . Hence, by The-
orem 4.12 and the discussion above, the almost complex structure J is
integrable and the nilmanifold has the structure of a complex manifold.
Note that in case m = 1 we get the Kodaira–Thurston manifold (which is
symplectic as we will see later).

Remark 4.17 Let’s return now to the examples S2 and S6 developed in
Example 4.9. While the Riemann sphere S2 = CP(1) is manifestly a com-
plex manifold, in [79], Ehresmann and Liebermann show that the almost
complex structure on S6 induced by Cayley number multiplication is not
integrable, see also [102] and [34]. More generally, in [49], Calabi proves
the nonintegrability of all the almost complex manifold structures on closed
hypersurfaces of R7 which are obtained from Cayley multiplication. By
contrast, there exist open hypersurfaces of R7 which are integrable, see
[49, Theorem 6]. Finally, we note that it is still unknown whether S6 has a
complex manifold structure.

Remark 4.18 In [78], Ehresmann proves that the Stiefel–Whitney char-
acteristic 3-class is an obstruction to the existence of an almost complex
structure. This can be seen as follows. The existence of an almost com-
plex structure on a manifold M2n gives a lifting of the classifying map of
the tangent bundle (i.e. a reduction of the structure group from O(2n) to
U(n) ⊂ O(2n)),

BU(n)

��
M

�����������
�� BO(2n)

Since the cohomology of BU(n) is evenly graded for all coefficients (see
Corollary 1.86 for the particular case of coefficients in Q), all odd
dimensional Stiefel-Whitney classes ofM must vanish.

4.2 Kähler manifolds

4.2.1 Definitions and properties

Definition 4.19 A hermitian metric on an almost complex manifold (M, J)
is a Riemannian metric, h, invariant with respect to the complex structure;
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that is,

h( JX, JY) = h(X, Y) .

A hermitian metric defines a hermitian inner product on Tx(M) with
respect to the complex structure defined by Jx. As a consequence of
Remark 4.105, hermitian metrics on (M, J) always exist if M is para-
compact.

Definition 4.20 Let (M, J) be an almost complex manifold endowed with
a hermitian metric h. The fundamental 2-form ω on (M, J), associated to h,
is defined by:

ω(X,Y) = h(X, JY) .

The fundamental 2-form ω is a real differential form of degree 2. Consid-
ered as a form with values inC, we have ω ∈ A1,1(M), see Subsection 4.7.3.
From the nondegeneracy of the metric h, we see that ω is of rank 2n and
that ωn is a volume form on M. Therefore, any almost complex manifold
M is orientable as a smooth manifold.

Definition 4.21 The metric h is said to be Kähler if the associated funda-
mental 2-form ω is closed for the de Rham differential, dω = 0. A Kähler
manifold is a complexmanifold admitting aKählermetric. The fundamental
2-form associated to a Kähler metric is called a Kähler form.

Wecan see directly from the definition thatCn is Kähler and that the prod-
uct of two Kähler manifolds is Kähler. Also, ifN is a complex submanifold
of a Kähler manifoldM (i.e. the canonical injection is holomorphic), thenN
is also Kähler. Let’s now give some examples of compact Kähler manifolds,
see [155, pages 159–165] for details.

Example 4.22 (1) A compact Riemann surface M is Kähler since dω is in
A3DR(M) = 0.
(2) Any complex Grassmann manifold is Kähler. In particular, any com-

plex projective space is Kähler. Furthermore, because the Kähler form of
CP(n) pulls back via the inclusion of a smooth projective variety, we see
that any such variety is Kähler.
(3) The complex tori are Kähler.

In Subsection 4.2.3, we will give some necessary conditions for the exis-
tence of a Kähler metric on a compact complexmanifold. As a consequence,
wewill be able to identify certain complexmanifolds as ones without Kähler
structures.
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Suppose now that M is a compact complex manifold. From a hermi-
tian metric h on M, one can define as usual a star operator, ∗, which
gives Laplace operators �d, �∂ , �∂ for the respective differentials d, ∂,
∂. Let’s recall briefly how these Laplace operators are constructed (also see
Section A.4 of Appendix A). The star operator ∗ : Ap,q → An−p,n−q sends
η = ∑

I,J ηI,J ϕI ∧ϕJ to ∗ η = 2p+q−n
∑

I,J εI,JηI,JϕI0 ∧ϕJ0 , where I
0 and J0

are the complements of I and J and εI,J is the sign of the permutation

(1, . . . ,n, 1, . . . ,n) 
→ (i1, . . . , ip, j1, . . . , jq, i01, . . . , i
0
n−p, j01, . . . , j

0
n−q) ,

see [264, page 161] for more details. We now define three operators, d∗,
∂∗ and ∂

∗
by d∗ = ∗d ∗ : Am → Am−1, ∂∗ = ∗ ∂ ∗ : Ap,q → Ap−1,q and

∂
∗ = ∗ ∂ ∗ : Ap,q → Ap,q−1. The associated Laplace operators are �d =
d d∗ + d∗ d, �∂ = ∂ ∂∗ + ∂∗ ∂ and �∂ = ∂ ∂

∗ + ∂
∗
∂.

Let δ be any one of the differentials d, ∂ or ∂. The harmonic forms for the
Laplace operator �δ are Hp,q

δ = (Ker�δ) ∩ Ap,q and there exists a Green’s
operator, Gδ, uniquely determined by Gδ(Hp,q

δ ) = 0, Id = Hδ + �δGδ,
δGδ = Gδ δ and δ∗Gδ = Gδ δ

∗, (see [264, page 147] or [115, page 84] for
more details). These Laplace operators lead to a characterization of Kähler
manifolds.

Theorem 4.23 ([71, Section 5]) Let M be a compact complex manifold.
Then M is Kähler if and only if either of the following equivalent properties
is satisfied:

1. parallel transport preserves the almost complex structure;
2. the different Laplace operators coincide, �d = 2�∂ = 2�∂ .

We do not give the proof here and instead refer the reader to [71].
Recall also that certain commutation relations hold in a Kähler manifold.
For instance, we will often use [∂, ∂∗] = [∂, ∂∗] = 0, (see [71] or [264,
page 193]). The next result is a key tool for the study of compact Kähler
manifolds.

Lemma 4.24 (∂ ∂-lemma) Let M be a compact Kähler manifold and let
α ∈ Ac(M) such that ∂α = ∂α = 0.

1. If α = ∂γ for some γ , then there exists β such that α = ∂ ∂(β).
2. If α = ∂γ for some γ , then there exists β such that α = ∂ ∂(β).

Proof We prove the first assertion, the argument for the second one being
similar. Let α be as in the statement. The relation Id = Hδ + �δGδ implies
α = H∂ (α) + ∂ ∂

∗
G∂ (α) = H∂ (α) + ∂ ∂∗G∂ (α). Since α = ∂γ , the ∂-

cohomology class associated to α is trivial and, therefore, H∂ (α) = 0.
Since the manifold M is Kähler, the equality �∂ = �∂ of the two Laplace
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operators implies H∂ (α) = 0 and α = ∂ ∂
∗
G∂ (α). Therefore, one has

α = ∂ ∂∗G∂ (α)

= ∂ ∂∗G∂ (∂ ∂
∗
G∂ (α))

= ∂ ∂∗ ∂G∂ (∂
∗
G∂ (α))

= −∂ ∂ (∂∗G∂ (∂
∗
G∂ (α))),

by using the relation [∂, ∂∗] = 0. It is then sufficient to set β =
−∂∗G∂ (∂

∗
G∂ (α)). �

4.2.2 Examples: Calabi–Eckmann manifolds

Now let’s enlarge our herbarium of complexmanifolds and then, in the next
sections, test their Kählerness, see Remark 4.73. For instance, the product
S2p+1 × S1 admits a complex manifold structure which is called a Hopf
manifold, see [143] and Example 4.30. As with some other classical con-
structions of complex manifolds, these structures appear as the result of
a general process involving a principal bundle. We describe this general
process in this section and give some examples of this situation. This con-
struction will be explicitly used in Section 4.3.4 for the determination of a
Dolbeault model of these manifolds.

Proposition 4.25 Let G ��E
f

��B be a principal fiber bundle. Suppose
that B is an almost complex manifold and G a Lie group of even real
dimension. Then there exist almost complex structures on E which are
liftings of the structure on B.

Proof Denote by J : T(B) → T(B) the structure map on the tangent
space of B. Since the induced map f∗ : T(E) → T(B) is surjective, we
have a bundle defined by V = Ker f∗ which is called the vertical sub-
bundle. In the case of a principal bundle, this vertical sub-bundle is trivial
[113, page 236]. On the other hand, we can choose a connection in the prin-
cipal fiber bundle that induces a decomposition of the tangent bundle T(E)
asT(E) = HE⊕VE. Themap f∗ : T(E) → T(B) restricts to a bundle isomor-

phism,HE
∼=−→ T(B). We now build the complex structure J on the tangent

bundle T(E) as follows:

• on the horizontal sub-bundle, J comes from a transfer of the structure on

B through the isomorphism HE
∼=→ T(B);

• since the vertical sub-bundle V is trivial, any complex structure on
Te(G) fits. �
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The next result provides an explicit way for obtaining integrable almost
complex structures on the total space of a T2n-principal bundle.

Proposition 4.26 Let T2n be an even dimensional torus and let

T2n ��E
f
��B be a principal bundle endowed with a connection ω̃ ∈

A1DR(E;R
2n). We suppose that B is a complex manifold and that the cur-

vature ω ∈ A2DR(B;R
2n) of the connection form has a complexification of

bidegree (1, 1). Then there exists a complex manifold structure on E and
the principal bundle f is holomorphic.

Proof We write the proof in the case T = S1 × S1, the general case being
similar. On T(x,y)(S1×S1) ∼= Tx(S1)⊕Ty(S1), we define a complex structure
by J(a, 0) = (0, a) and J(0,b) = (−b, 0). With the process described in
Proposition 4.25, we get an almost complex structure on the total space E.
Let

(
Ac(E), d

)
be the complex de Rham algebra of E. Its subspace of

forms of degree one is generated by f ∗ (Ac(B)1), ω̃1 and ω̃2, where ω̃1 and
ω̃2 are the components of ω̃ ∈ AcDR(E;R

2). Note that ω̃2 = Jω̃1. Recall
from Subsection 4.1.3 that this de Rham algebra has a bigradation. On
f ∗ (Ac(B)1), the differential d is of the form ∂ + ∂ because B is complex.
From basic linear algebra (see Section 4.7), we see that the elements ω̃1−i ω̃2
and ω̃1+i ω̃2 are of bidegree (1, 0) and (0, 1) respectively. Since dω̃ = f ∗(ω),
we therefore have d (ω̃1 − i ω̃2) ∈ A1,1(E) and d (ω̃1 + i ω̃2) ∈ A1,1(E).
The integrability of the almost complex structure is now a consequence of
Corollary 4.13. �

Definition 4.27 With the complex structure of Proposition 4.26, the total
space E is called a Calabi–Eckmann manifold.

We now want to create concrete examples of principal bundles as in
Proposition 4.26. Recall (see [264, Chapter VI]) that a Hodge manifold B
is a Kähler manifold such that the cohomology class induced by the Kähler
form ω ∈ A1,1(B) is in the image of H∗(B;Z) → H∗(B;R) → H∗(B;C).
We still denote the class by [ω] ∈ H2(B; Z) or [ω] ∈ H2(B;R). Because
H2(B; Z) ∼= [B,BS1], we thus have a principal bundle

S1 ��E
f

��B

whose Euler class is [ω] ∈ H2(B;R), see Remark 1.88. This implies the

existence of a form ω̃ ∈ A1DR(E) such that d ω̃ = f ∗(ω) and
∮
S1

ω̃ = 1,

where
∮
S1
denotes integration along the fiber. The form ω̃ is a connection

for the principal bundle f and ω is its curvature. The next result, which
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considers a product of two bundles of this type, is a direct consequence of
Proposition 4.26.

Corollary 4.28 Let B andB′ be twoHodgemanifoldswith respectiveKähler
forms ω and ω′. In the product of bundles

S1 × S1 ��E× E′ f×f ′
��B× B′,

the total space E× E′ admits a complex manifold structure.

Observe also that, as in Example 2.72, we can construct a relative model
of the fibration f by

ϕ :
(
ADR(B) ⊗ ∧ω̃, d

)−→ADR(E),

with d(ξ ⊗ 1) = dB(ξ) ⊗ 1, d(1 ⊗ ω̃) = ω ⊗ 1, ϕ(ξ ⊗ 1) = f ∗(ξ) and
ϕ(1⊗ ω̃) = ω̃.

Remark 4.29 Let F → E → B be a holomorphic bundle where π1(B) acts
trivially on H1(F). Blanchard [29] proved that the complex manifold E is
Kähler if and only if

• there exists a Kähler form on F which represents a cohomology class
invariant with respect to the action of π1(B);

• the manifold B is Kähler;
• the transgression H1(F) → H2(B) is zero (i.e. the Betti numbers satisfy
b1(E) = b1(F) + b1(B)).

In the previous construction, the transgression H1(F) → H2(B) is never
zero, so these Calabi–Eckmann manifolds cannot be Kähler. We will come
back to this point when we discuss the Frölicher spectral sequence in
Remark 4.73.

Example 4.30 (Hopf manifold) If we apply the construction above to
complex projective spaces, we obtain a principal bundle

S1 × S1 ��S2n+1 × S2m+1 ��CP(n) × CP(m) ,

whose total space we denote by Mn,m. An application of Corollary 4.28
implies that S2n+1 × S2m+1 has the structure of a complex manifold. In
the case n = 0 and m = 1, this is the Hopf surface, see [143] or
[264, page 200].

Example 4.31 (Kodaira–Thurston manifold) KT is the manifold obtained
as the quotient R4/� of R4 by the discrete affine group generated by unit
translations along the x1, x2, x3 axes together with the transformation
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(x1,x2,x3,x4) 
→ (x1 + x2,x2,x3,x4 + 1). The manifold KT can also be
expressed as a principal bundle

S1 × S1 ��KT ��S1 × S1

and therefore admits the structure of a complex manifold. In fact, KT is
the product of the Heisenberg manifold (see Section 3.2, Example 3.23
and Example 4.92) with a circle. A minimal model of KT is given by
(∧(u, v, y, t),d), with all generators of degree 1 and the differential given
by du = dy = dt = 0, dv = uy. Clearly, we see from this model that
H1(∧(u, v, y, t),d) is of dimension 3. Now see Example 4.34.

Example 4.32 Let T be a maximal torus of a Lie group G. The quotient
G/T is a Kähler manifold, [34] and, if G is an even dimensional, compact
connected Lie group, we have a principal fibration T ��G ��G/T
which fits the requirements of Proposition 4.26. We thus re-discover an
observation of Samelson: any even dimensional, compact connected Lie
group G admits the structure of a complex manifold. Moreover, left (or
right) translations are holomorphic but note that this does not imply that
G is a complex Lie group.

4.2.3 Topology of compact Kähler manifolds

The existence of a Kähler metric on a compact manifoldM imposes strong
constraints on the homotopy type of M. Here we give the most important
oneswith a particular emphasis on rational homotopy constraints.We begin
with the vector space of homology.

Proposition 4.33 Let M be a compact Kähler manifold.

• The even Betti numbers of M are nonzero.
• The odd Betti numbers of M are even.

Proof Because the Kähler form ω gives a volume form ωn representing the
fundamental cohomology class, all wedge products ωj, j ≤ n represent non-
trivial cohomology classes. Hence, any even Betti number must be nonzero.
Recall, from Theorem 4.23, that we have an equality between Laplace

operators: �d = 2�∂ = 2�∂ . Therefore, we have the following
properties.

• �d respects the bidegree. This implies H
r(M;C) ∼= ⊕p+q=rHp,q(M).

• �∂ and�∂ are real operators. This impliesH
p,q(M) ∼= Hq,p(M). (Remem-

ber that complex conjugation gives an isomorphism between the spaces
of (p,q) and (q,p) forms, see Subsection 4.7.2.)
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From these two observations, we obtain

dim H2r+1(M;C) = 2

⎛⎝ r∑
p=0

dim Hp,2r+1−p(M)

⎞⎠ ,

and we see that odd Betti numbers are even. �

Example 4.34 From the first property, we see that the complex manifolds
S2n+1 × S2m+1 constructed in Example 4.30 are not Kähler. Using the sec-
ond property, we see that the Kodaira–Thurston manifold, KT, presented
in Example 4.31 is not Kähler. (Again we note that KT is a symplectic
manifold, so it is symplectic non-Kähler. We will come back to this in
Section 4.5.)

Now consider the algebra of cohomology.

Theorem 4.35 (Hard Lefschetz theorem) Let M be a compact Kähler
manifold of real dimension 2n. Then, the Lefschetz map, defined by

Lk :Hn−k(M;C)−→Hn+k(M;C),
η 
→ ωk ∧ η

is an isomorphism for all k ≥ 0, where ω denotes the Kähler form of M as
well as its associated cohomology class.

An algebraH is said to have the hard Lefschetz property if it satisfies the
condition of Theorem 4.35 for an element ω ∈ H2; namely, multiplication
by ωk induces isomorphismsHn−k → Hn+k for each k. (This entails the fact
thatωn is in the top degree of the algebra.) Theorem 4.35 is a consequence of
properties of representations of sl(2,C) and the proof is beyond the scope
of this book. We refer the reader to [115, page 122], [264, Chapter 5].
This result imposes strict restrictions on the cohomology algebra as shown
by the

Theorem 4.36 (Blanchard [29]) Let M be a compact manifold whose coho-
mology algebra satisfies the hard Lefschetz property. If θ is a derivation of
negative degree on H∗(M;C) such that the restriction of θ to H1(M;C) is
zero, then θ(x) = 0 for any x ∈ H∗(M;C).

Proof Let ω ∈ H2(M;C) be the class for which the hard Lefschetz
property holds and let θ be an algebra derivation of negative degree on
H∗(M;C). Recall thatωn is fundamental cohomology class ofM and denote
H∗(M;C) by H∗.
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We first claim that θ(ω) = 0. If not, we have two possibilities:

• θ is a derivation of degree −2 with θ(ω) = λ ∈ C. From ωn+1 = 0, we
obtain 0 = θ(ωn+1) = (n+ 1)λωn, which implies λ = 0.

• θ is a derivation of degree −1 with θ(ω) = α ∈ H1(M;C). Let (αj)

be a basis of H1(M;C). From αjω
n = 0 and the hypothesis that the

restriction of θ to H1(M;C) is zero, we obtain θ(αjω
n) = nααjωn−1 = 0,

and therefore α has cup-product 0 with any αjω
n−1. Now we know that

(αjω
n−1) is a basis of H2n−1 by the hard Lefschetz property, so Poincaré

duality implies α = 0.

Now let r be the integer such that θ = 0 on H≤r and θ(x) �= 0 for some
x ∈ Hr+1, r < 2n. We claim first that θ is zero on H≥2n−r. If y ∈ H2n−p
with 2n − p ≥ 2n − r, then, by hypothesis, there exists z ∈ Hp such that
y = zωn−p. The claim results from θ(y) = θ(z)ωn−p + zθ(ωn−p) = 0 by the
choice of r and θ(ω) = 0.
Denote by −s the degree of θ , so θ(x) ∈ Hr+1−s. Let z ∈ H2n−r−1+s.

From xz = 0, we deduce θ(xz) = θ(x)z = 0. Since this is true for any z, we
have θ(x) = 0 by Poincaré duality. �

Remark 4.37 The hard Lefschetz property by itself implies that odd degree
Betti numbers are even (see Exercise 4.3), so the results of Proposi-
tion 4.33 hold for the manifolds in Theorem 4.36 as well as for Kähler
manifolds.

Theorem 4.36 is related to the collapsing of spectral sequences. Before
we see this, recall the following.

Definition 4.38 The fibration F ��E
f

��B is called orientable if the
fundamental group π1(B) acts trivially on the cohomology H∗(F;Q).

Definition 4.39 An orientable fibration F
ι ��E

f
��B is called TNCZ

(for totally non-cohomologous to zero) if one of the following equivalent
conditions is satisfied.

1. The Serre spectral sequence of f collapses at level 2. This means there is
an isomorphism of vector spaces:

Hn(E;Q) ∼=
⊕
p+q=n

Ep,q2 =
⊕
p+q=n

Hp(B;Q) ⊗Hq(F;Q).

2. The induced map H∗(ι;Q) : H∗(E;Q) → H∗(F;Q) is surjective.

Observe that
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• there are obviously fibrations which are not TNCZ, such as, for instance,
the Hopf fibration S3 ��S7 ��S4 ;

• by combining Theorem 2.71 and Theorem B.18, we see that the universal
bundle G/H ��BH ��BG is TNCZ if H is a closed subgroup of
maximal rank of a compact connected Lie group G;

• some authors use the term c-split to mean TNCZ.

Proposition 4.40 Let F ��E
f

��B be an orientable fibration satisfying
the following properties:

• the vector space H∗(F;Q) is finite in each dimension;
• any derivation θ of negative degree on the algebra H∗(F;Q) whose
restriction to H1(F;Q) vanishes, is identically zero;

• the transgression H1(F;Q) → H2(B;Q) is zero.

Then the fibration f : E → B is TNCZ.

Proof If the fibration is not TNCZ, there is an integer k ≥ 2 such that
dk : Hs(B;Q)⊗Ht(F;Q) → Hs+k(B;Q)⊗Ht−k+1(F;Q) is the first nonzero
differential in the Serre spectral sequence. The fact that dk is zero on
Hs(B;Q) ⊗ 1 implies the existence of an algebra generator x ∈ Ht(F;Q)

with dk(1 ⊗ x) �= 0. Let (wi) be a basis of Hs+k(B;Q). We decompose
dk(1 ⊗ x) = ∑

j wj ⊗ θj(x) and extend the θj to all of H∗(F;Q) as algebra
derivations. Observe first that the θj are of negative degree by construction.
Now, if x ∈ H1(F;Q), then we can only have θj(x) �= 0 if k = 2. In this
case, d2(1 ⊗ x) is precisely the transgression of x and we have assumed
that it vanishes. Therefore, by hypothesis, the θj are zero and we get a
contradiction. �

Theorem 4.36 and Proposition 4.40 immediately imply the next result
due to Blanchard.

Corollary 4.41 ([29, Théorème II.1.2.]) Let F ��E
f

��B be an
orientable fibration such that the fiber F is a compact connected manifold
whose cohomology satisfies the hardLefschetz property. If the transgression
H1(F;Q) → H2(B;Q) vanishes, then the fibration f : E → B is TNCZ.

Remark 4.42 In [188], D.McDuff constructed a blow-up ofCP(5) along an
embedding of the Kodaira–Thurston manifold KT ↪→ CP(5). This gave the
first known example of a compact simply connected symplectic non-Kähler
manifold. More generally, if CP(n) is blown up along a submanifold M,
then McDuff proved that if the hard Lefschetz property fails forM, it also
fails for the blow-up (see [188, Proposition 2.5] or [257, Chapter 4] for
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details). More recently, G. Cavalcanti [52] has made a systematic study of
the behavior of the hard Lefschetz property under taking blow-ups and, in
particular, has shown that there are compact simply connected symplectic
manifolds (created as blow-ups) which satisfy Hard Lefschetz, but which
are nonformal.

We now turn to the impact on the de Rham algebra ADR(M) of a Kähler
structure onM. First recall that we have a form ω ∈ A2DR(M) whose power
ωn is a volume form. This gives M a symplectic structure and we will dis-
cuss this in Section 4.5. Secondly, we have the following constraint on the
rational homotopy type ofM.

Theorem 4.43 ([71, Section 5]) Any compact Kähler manifold is a formal
space.

Proof Recall that in any complex manifoldM the complex valued de Rham
algebra, (A∗,∗(M),d), is bigraded and that the d, ∂ and ∂ are differentials,
related by d = ∂+∂ such that ∂2 = ∂

2 = ∂∂+∂ = 0. We denote by Z∗,∗
∂ (M)

and H∗,∗
∂ (M) the space of cocycles and the cohomology with respect to the

differential ∂. We put the differential induced by ∂ on Z∗,∗
∂ (M) andH∗,∗

∂ (M)

and consider the following diagram of cdga’s:

(H∗,∗
∂ (M), ∂) (Z∗,∗

∂ (M), ∂)
ρ

��
j

��(A∗,∗(M),d) .

The proof follows from the next steps, each of which uses the ∂∂-lemma
stated in Lemma 4.24.

• H(j) is onto. If [α] ∈ H(A(M),d), we have ∂(∂α) = 0, ∂(∂α) = ∂(dα −
∂α) = −∂

2
(α) = 0. Then there exists β such that ∂α = ∂∂β. Set γ =

α − dβ, one has ∂γ = ∂α − ∂dβ = ∂α − ∂∂β = 0 and ∂γ = ∂α − ∂dβ =
−∂α − ∂∂β = −(∂α − ∂∂β) = 0. Therefore, γ is a ∂-cocycle and induces
a ∂-cohomology class such that H( j)([γ ]) = [α].

• H( j) is injective. Let α ∈ Z∂ (M) such that α = dβ. From ∂(∂β) = 0 and
∂(∂β) = −∂(∂β) = −∂(dβ−∂β) = −∂α = 0, we deduce the existence of γ
such that ∂β = ∂∂γ = −∂∂γ . Thus α = ∂β+∂β = −∂∂γ+∂β = ∂(β−∂γ )

is a ∂-coboundary.
• The induced differential by ∂ onH∂ (M) is zero. Let α be such that ∂α = 0.
From ∂(∂α) = 0 and ∂(∂α) = −∂(∂α) = 0, we deduce the existence of γ
such that ∂α = ∂∂γ = −∂∂γ . Therefore ∂α is in the image of ∂ and this
implies that [∂α] is 0 in H∂ (M).

• H(ρ) is onto. Let α be such that ∂α = 0. From ∂(∂α) = 0 and ∂(∂α) =
−∂(∂α) = 0, we deduce the existence of β such that ∂α = ∂∂β. If we set
γ = α − ∂β, we have ∂γ = ∂γ = 0 and H(ρ)[γ ] = [α].
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• H(ρ) is injective. Let α be such that ∂α = ∂α = 0 and α = ∂β. Then there
exists γ such that α = ∂∂γ = −∂∂γ and [α] is zero in H(Z∂ , ∂).

These steps show that (A∗,∗
DR(M),d) is linked by quasi-isomorphisms to

a cdga with differential zero, (H∗,∗
∂ (M), 0) and this is the definition of

formality; see Definition 2.85 and Remark 2.86. Observe also, from
Proposition 2.101 that formality over C implies formality over Q. �

Corollary 4.44 Except for tori, nilmanifolds are never Kähler manifolds.

Proof This is a immediate consequence of Theorem 4.43 and Proposi-
tion 3.20. �

In [64], [96], Cordero, Fernández and Gray showed the existence of
Massey products in the cohomology of certain nilmanifolds. Hasegawa
[134] proved that non-toral nilmanifolds are not formal directly (see
Proposition 3.20) and discussed almost complex structures on them. In
[25], C. Benson and C. Gordon used the hard Lefschetz theorem to
prove that nontoral nilmanifolds cannot satisfy even that condition (see
Theorem 4.98).

Example 4.45 The space CP4#
(
S3 × S5

)
#
(
S3 × S5

)
has the following

properties:

• it is a formal space;
• its cohomology algebra satisfies Poincaré duality and the odd Betti
numbers are even;

• there exists a closed form of degree 2, ω, such that ω4 induces a
fundamental class;

• it does not satisfy the hard Lefschetz theorem.

Example 4.46 There exist examples of nonformal spaces such that their
cohomology satisfies Poincaré duality and the hard Lefschetz theorem,
[177]. For instance, take spaces with the same cohomology algebra as{{{

CP(2)#(S2 × S2)
}

× S2
}
#(S3 × S3)

}
× S2,

but with a different rational homotopy type.

Remark 4.47 Theorem 4.43 implies the vanishing of Massey products with
coefficients in R. The analogous result is not true with coefficients in Zp, as
shown by an example of T. Ekedahl in [80].

Remark 4.48 If G is a finite group acting holomorphically on a Kähler
manifold (with nonempty, connected and simply connected fixed point
sets), there is a notion of equivariant formality. One can prove that
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a compact G-Kähler manifold is equivariantly formal. This is due to
T. Lambre [163] in the case G = Zp and to B. Fine and G. Triantafillou
[98] in the general case.

The purpose of the next conjecture, due to S.Halperin, is to put conditions
on a space F such that any orientable fibration with fiber F is TNCZ. Before
stating the conjecture, recall from Definition 2.73 that a rationally elliptic
space X is a nilpotent space with finite dimensional rational cohomology
such that

∑
p≥2 rankπp(X) < ∞. Such spaces are known to have non-

negative Euler characteristics and their rational cohomology algebras satisfy
Poincaré duality. Moreover, for such spaces, the following conditions are
equivalent (see Theorem B.18 and [87, Proposition 32.10]).

• The Euler characteristic is positive; that is, χ(X) > 0.
• The rational cohomology is evenly graded; that is, H2p+1(X;Q) = 0.
• The homotopy Euler characteristic is zero; that is,

∑
q>0 rankπ2q(X) =∑

q>0 rankπ2q+1(X).

Conjecture 4.49 (The Halperin conjecture) Let X be a simply connected
rationally elliptic space with positive Euler characteristic. Then, any
orientable fibration whose fiber is X is TNCZ.

From Proposition 4.40, it is easy to see that Conjecture 4.49 is equiva-
lent to the nonexistence of negative derivations on the cohomology of X.
Theorem 4.36 of Blanchard thus implies that the Halperin conjecture is
true ifX is a compact simply connected Kähler manifold. Shiga and Tezuka
have also proved the conjecture for the quotient of a compact connected
Lie group by a closed subgroup of maximal rank by using the action of the
Weyl group on the cohomology as in Subsection 3.3.2 (see [237]).
We will not go further into this topic, but instead refer the reader to [86,

page 516] for a more complete list of references, see also Section 9.7. We
simply mention one tantalizing link to geometry. Let H denote the class of
simply connected, finite CW-complexes whose rational cohomology has no
nonzero derivations of negative degree. In [23] (see Chapter 6, in particular
Theorem 6.40), Belegradek and Kapovitch relate H to concrete proper-
ties of curvature. They also motivate the question of whether an extension
of the Shiga–Tezuka result to the class of biquotients is possible, see
[23, Section 13.2].

4.3 The Dolbeault model of a complex manifold

LetM be a complex manifold. Recall that the de Rham algebra of complex-
valued smooth forms onM admits a bigradation, AcDR(M) = ⊕p,qAp,q(M),
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and that there exist two differentials, ∂ : Ap,q(M) → Ap+1,q(M) and
∂ : Ap,q(M) → Ap,q+1(M). In this section, we study the Dolbeault com-
plex (A∗,∗(M), ∂) and its relation with the de Rham complex (A∗,∗(M),d)
whenM is Kähler.

4.3.1 Definition and existence

If V = ⊕p,qVp,q is a bigraded vector space, the expression degree of an
element v ∈ Vp,q will always mean the total degree p+q. When we consider
the commutative free graded algebra on V , we will refer also to the total
degree of V :

V =
⊕
n

Vn =
⊕
n

⎛⎝ ⊕
p+q=n

Vp,q

⎞⎠ .

The bigradation on V is naturally extended as a bigradation of algebras on
∧V . The homogeneous elements of bidegree (p,q) are the ω = ∑

ωi1 . . . ωir
such that ωij ∈ Vpj ,qj with p = ∑r

j=1 pj and q = ∑r
j=1 qj.

Theorem 4.50 ([207]) Let M be a complex manifold with no nonconstant
holomorphic functions (e.g. a connected compact complex manifold). Then
there exists a model of the Dolbeault complex, provided with a bigradation,

ϕ :
(∧V∗,∗, ∂

) −→ (
A∗,∗, ∂

)
,

such that ϕ(Vp,q) ⊂ Ap,q and ∂ Vp,q ⊂ (∧V)p,q+1.

We will give a proof in a more general setting (see Theorem 4.53), but,
before that, Theorem 4.50 elicits the next notion of formality.

Definition 4.51 A complex manifold M is Dolbeault formal if there exist
two morphisms of differential graded algebras ϕ and ψ ,

(H∗,∗
∂

(M), 0) (∧V∗,∗, ∂)
ψ

��
ϕ

��(A∗,∗(M) , ∂),

such that ϕ and ψ are of bidegree (0, 0) and induce isomorphisms in
cohomology.

The hypothesis on holomorphic functions assumed in Theorem 4.50 cor-
responds to the cohomological connectedness required for the construction
of a minimal model (see Theorem 2.24). This theorem is a particular case
of a model for a bigraded object. We briefly discuss this framework since it
gives a unified point of view for various situations.
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Definition 4.52 Let r ≥ 0 be fixed. An r-bigraded cdga (A,d) is a pair (A,d)
consisting of an algebra A and a differential d satisfying:

• A = ⊕
p,q A

p,q for p ∈ Z, q ∈ Z,
• Ap,q.Ap

′,q′ ⊂ Ap+p′,q+q′
,

• xy = (−1)(p+q)(p′+q′)yx and d(xy) = (dx)y + (−1)p+qx(dy) if x ∈ Ap,q

and y ∈ Ap′,q′
,

• dAp,q ⊂ Ap+r,q−r+1.

A morphism of r-bigraded cdga’s is a morphism of cdga’s of bidegree (0, 0).

Theorem 4.53 Let f : (A,d) → (A′,d′) be a morphism of r-bigraded cdga’s
with H1(f ) injective. Then there exists a factorization of f into r-bigraded
morphisms

(A,d) � � ��(A⊗ ∧Z, δ) ϕ
��(A′,d′)

where ϕ induces an isomorphism in cohomology and the differential δ,
induced by δ on the quotient of A ⊗ ∧Z by the ideal generated by A, is
decomposable.

An absolute version of the result devolves to the particular case where
the domain (A,d) is the field of reference with trivial differential and trivial
bigradation.

Proof The construction of the minimal model in Chapter 2 (see Theo-
rem 2.24) is done in two stages: a cokernel stage which introduces a new
space of generators V1 and a kernel stage introducing V2 as a space of new
generators. To prove Theorem 4.53, we mimic this approach with regard
to the total degree by giving the following bidegree to the generators:

Vp,q
1 =

(
CokerHn+1)p,q and Vp−r,q+r−1

2 =
(
KerHn+1)p,q .

The remainder of the proof is straightforward. �

Definition 4.54 A decomposition as in Theorem 4.53 is called a relative
minimal r-bigraded model of f or an r-bigraded minimal model of (A′,d′)
in the absolute case.

The r-bigraded cdga’s arise naturally.

• The bigraded model (see Theorem 2.93) is a 1-bigraded model of (H, 0)
where the elements of (∧V)np are of bidegree (−p,n+ p).

• The differential of the Dolbeault cdga verifies ∂Ap,q ⊂ Ap,q+1, so this is
a 0-bigraded cdga.
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More generally any r-stage of a spectral sequence of a filtered cdga
is an r-bigraded cdga, see Appendix B. Let’s now recall this notion of
filtered cdga.

Definition 4.55 A filtered cdga (A,d,F) is a cdga (A,d) together with a
filtration FpA on A such that:

• Fp+1A ⊂ FpA; FpA.FqA ⊂ Fp+qA, dFpA ⊂ FpA;
• A = ⋃

p FpA;
• for any integer n, there exists an integer p(n) such that Fp(n)An = {0}.
A morphism of filtered cdga’s is a morphism of cdga’s that respects the
filtrations.

To any r-bigraded cdga (B,d), we associate a filtered cdga (B,d,F) by
FpB = ⊕j≥pBj,∗. Reciprocally, if f : (A,d,F) → (A′,d′,F) is a morphism
of filtered cdga’s, we denote by Er(f ) : (E

p,q
r (A),dr) → (Ep,qr (A′),d′

r) the
induced morphism between the associated spectral sequences. This mor-
phism Er(f ) is a morphism of r-bigraded cdga’s for any r ≥ 0. The surprise
is that we can get a model of the filtered algebra built from a model of its
r-stage as we describe now.

Theorem 4.56 ([133]) Let f : (A,d,F) → (A′,d′,F) be a morphism of
filtered cdga’s and r ≥ 0 be an integer. We consider a relative r-bigraded
model of Er(f ),

(Er(A),dr) ��(Er(A) ⊗ ∧V ,Dr)
ϕ

��(Er(A′),d′
r) .

Then there exists a factorization of f into morphisms of filtered cdga’s

(A,d,F) ��(A⊗ ∧V ,D,F)
ψ

��(A′,d′,F)

such that Er(ψ) = ϕ.

An absolute version of this result also devolves to the particular case
where the domain (A,d,F) is the field of reference with trivial differential
and trivial filtration.

Definition 4.57 A decomposition as in Theorem 4.56 is called a rel-
ative r-filtered model of f or an r-filtered model of (A′,d′,F) in the
absolute case.

Let (A,d) be a cdga and consider the filtration associated to the degree
of A. Then the first stage of the associated spectral sequence is E1(f ) =
H(f ). The relative 1-filtered model of f is exactly the filtered model of
Definition 2.96.
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The proof of Theorem 4.56 consists of a careful study of derivations in
a spectral sequence. We refer the reader to [133] where the framework is
more general than here. We will use Theorem 4.56 in:

• Subsection 4.3.3 for the construction of a Dolbeault model of the total
space of a holomorphic fibration, using the Borel spectral sequence, (see
Proposition 4.62);

• Section 4.4 for the study of the Frölicher spectral sequence (see
Theorem 4.70).

4.3.2 The Dolbeault model of a Kähler manifold

For Kähler manifolds, Dolbeault models are directly related to de Rham
models. To see this, we introduce a notion of formality well-suited to this
situation.

Definition 4.58 ([207]) A complexmanifoldM is strictly formal if, for some
0-bigraded differential algebra (∧Z∗,∗, δ), there exist quasi-isomorphisms of
bidegree (0, 0),

(A∗,∗(M), ∂) (∧Z∗,∗, δ)
��� � ��

�
��

(A∗,∗(M), d)

(H∗,∗
∂

(M), 0),

linking together the de Rham algebra, the Dolbeault algebra and the
Dolbeault cohomology.

Observe that, if M is strictly formal, then M is de Rham formal and
Dolbeault formal. Moreover, we have HDR(M) = H∂ (M).

Theorem 4.59 ([207]) A compact Kähler manifold is strictly formal.

Proof We show the existence of quasi-isomorphisms in the following
diagram.

(A∗,∗(M), ∂) (Z∗,∗
∂ (M), ∂)

ψ
��

j
��

ρ

��

(A∗,∗(M), d)

(H∗,∗
∂ (M), 0)
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Here, Zp,q∂ (M) is the subspace of Ap,q(M), consisting of the ∂-cocycles.
From the proof of Theorem 4.43, we already know that H(j) and H(ρ)

are isomorphisms, so let’s start here with H(ψ) using Lemma 4.24.

• H(ψ) is onto. Let α ∈ Ap,q(M) be such that ∂α = 0. We denote the
associated ∂-cohomology class by [α]. With the ∂∂-lemma applied to ∂α,
we obtain β such that ∂α = ∂∂β. Thus, the ∂-cohomology class [α] in
Ap,q(M) is hit by the ∂-cohomology class associated to the ∂-cocycle α −
∂β; that is, H(ψ)([α − ∂β]) = [α].

• H(ψ) is injective. Let α ∈ Z∗,∗
∂ (M) such that α = ∂(β). We have to

show that α is the coboundary of an element of Z∂ . From the ∂∂-lemma
applied to ∂β, we get γ such that ∂β = ∂∂γ . The element β − ∂γ belongs
to Z∗,∗

∂ (M) and satisfies α = ∂(β − ∂γ ). Therefore the ∂-class of α is zero
in Z∗,∗

∂ (M).

Note that we have shown that H∗,∗
∂

(M) ∼= H∗,∗
∂ (M), so we can replace

H∗,∗
∂ (M) in the diagram by H∗,∗

∂
(M) to achieve strict formality. �

Example 4.60 By Theorem 4.59, since the manifold CP(n) is Kähler, its
Dolbeault model coincides with the de Rham model except for the bigrada-
tion. Recall, from Example 2.44, that the minimal model of CP(n) is given
by

(∧(a,b), ∂
)
, ∂b = an+1, ∂a = 0. The element a, representing the Kähler

form, must be of bidegree (1, 1). The bidegree of b must be chosen so that
∂ is of bidegree (0, 1). So b is of bidegree (n+ 1,n).

4.3.3 The Borel spectral sequence

In this section, we recall the Borel spectral sequence and how Borel used it
to compute the Dolbeault cohomology of the Hopf manifold S1 × S2n+1.

Theorem 4.61 ([141, Appendix]) Let F → E → B be a holomorphic fiber
bundle where E, B, F are connected and F is compact. Suppose that every
connected component of the structure group acts trivially on H∂ (F). Then
there exists a spectral sequence (Er,dr), r ≥ 0, whose terms are trigraded
by type (p,q) and the basic degree s such that:

(
sE
p,q
1 , d1

)
=

(∑
i

Ai,s−i(B) ⊗Hp−i,q−s+i
∂

(F), ∂ ⊗ 1

)

sE
p,q
2 =

∑
i

Hi,s−i
∂

(B) ⊗Hp−i,q−s+i
∂

(F),

which converges to H∗,∗
∂

(E).
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For instance, if F is Kähler, then the spectral sequence exists, see [141,
Remark 2.2 of the Appendix].We now use Theorem 4.61 to get a Dolbeault
model of the total space E of a holomorphic bundle.

Proposition 4.62 Let F ��E
f

��B be a holomorphic bundle between
compact, connected, nilpotent complex manifolds, with fiber F a Kähler
manifold and with a trivial action of the fundamental group of the base on
the cohomology of the fiber. Then there exists a Dolbeault model of the
total space

(∧W ⊗ ∧V , δ) ψ
��(A∗,∗(E), ∂),

such that

• (∧W , δ) is a Dolbeault model of B;
• with respect to the total degree, the quotient (∧V , δ) of (∧W ⊗∧V , δ) by
the ideal generated by ∧W is a model of (H∗(F;C), 0).

Proof Since the fiber F is a Kähler manifold, we have an isomorphism
H∂ (F)

∼= H∗(F;C). Let (∧V , δ) be a 0-bigraded model of (H∂ (F), 0).
Theorem 4.56 gives a Dolbeault model of E by perturbing a model

(∧W , δ) ⊗ (∧V , δ) ∼ ��(sE
p,q
1 ,d1)

of the E1-term of the Borel spectral sequence. This is the desired model. �

In the next section, we will give a more geometric argument, based on
Chern–Weil theory, which is sufficient for most of our examples. Before
that, we consider the Dolbeault model of the Hopf manifold.

Example 4.63 (Dolbeault cohomology of S1 × S2n+1) Recall that there is a
complex manifold structure on the product S1 × S2n+1 (see Example 4.30)
such that

S1 × S1 ��S1 × S2n+1 ��CP(n)

is a principal holomorphic bundle. This complex manifold is called a Hopf
manifold and is denoted by M0,n. We now want to construct a Dolbeault
model of it.
Take a Dolbeault model of CP(n),

(∧(a,b), ∂
)
, ∂b = an+1, ∂a = 0, with

a and b of respective bidegrees (1, 1) and (n+ 1,n), see Example 4.60. We
give the fiber S1 × S1 the structure of a complex torus. Its Dolbeault model
is (∧(α,β), ∂), ∂(α) = ∂(β) = 0, with α and β of respective bidegrees (0, 1)
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and (1, 0). A model of the (E1,d1)-term of the Borel spectral sequence is
given by:

(∧(a,b), ∂) ⊗ (∧(α,β), ∂) = (∧(a, b, α, β), ∂).

From Proposition 4.62, we know that a model of the Dolbeault complex
of the Hopf manifold is a bigraded differential algebra (∧(a, b, α, β), δ).
The differential δ is related to ∂ by δ = ∂ + τ where τ increases the basic
degree and is of bidegree (0, 1); that is, τ : sE

p,q
1 → s′E

p,q+1
1 with s′ > s. The

only possible choice is τ(β) = λ a, where λ ∈ C. By modifying generators,
we have, in fact, only two possibilities: λ = 0 or λ = 1. At this point, only
a deeper analysis of the complex structure allows a choice between these
two possibilities. We shall not do that here, but instead recall that Borel
proves H1,0(M0,n) = 0, see [141, Lemma 9.4]. Therefore we must have
τ(β) = a. Now an easy computation gives H∂ (M0,n) = ∧(b,α), with b and
α of respective bidegrees (n+ 1,n) and (0, 1) (as in [141]).
In Subsection 4.3.4, we will reconsider this example and construct

the Dolbeault model without using Borel’s result on H1,0(M0,n), see
Example 4.67.

4.3.4 The Dolbeault model of Calabi–Eckmann manifolds

Let’s briefly recall some points of Chern–Weil theory for fibrations with

toral fibers. Let T2n ��E
f

��B be a real principal bundle with B simply
connected. Denote by T ∼= R2n the Lie algebra associated to T2n, T ∗ the
dual of T and by V ∼= T ∗ a graded vector space concentrated in degree
1. The relative minimal model of a fibration (see Theorem 2.64) gives a
morphism of real cdga’s

� : (ADR(B) ⊗ ∧V ,D) −→ (ADR(E),d),

inducing an isomorphism in cohomology such that �(α) = f ∗(α) and
D(α) = dB(α) for α ∈ ADR(B). We now want to determine, from geo-
metrical data, the map � and the differential D on V . For that, we choose
a connection ω ∈ A1DR(E;T ) of curvature RB ∈ A2DR(B;T ). Denoting by
〈−,−〉 the duality between T and T ∗, we set

�(v) = 〈v,ω〉 and Dv = 〈v,RB〉,
for v ∈ V . We specify now by the exponent c the fact that we have com-
plexified the objects as � : (Ac(B) ⊗ ∧Vc,D) → (Ac(E),d), the maps �, D
and d being extended by C-linearity.
The complex structure on T2n gives a decomposition Vc ∼= V0,1 ⊕ V1,0

that we extend into an algebra bigradation on ∧Vc as before. The next
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result is contained in [14]. We give here a direct proof of a particular case
sufficient for our purposes.

Lemma 4.64 There exists a connection ω such that the above morphism,
� : (Ac(B) ⊗ ∧Vc,D) → (Ac(E),d), is compatible with the bidegree. Such
a connection is said to be compatible with the complex structures.

Proof Let (ej) be a real basis of T such that J(ej) = ej+n, J(ej+n) = −ej
if j ≤ n and denote by (ej) the dual basis. The space T c decomposes in
T c = T 1,0 ⊕ T 0,1 with basis fj = ej − iej+n (resp. f j = ej + iej+n) for T 1,0

(resp. T 0,1). The complex dual T c,∗ of T c splits into T c,∗ = T ∗0,1 ⊕ T ∗1,0

with bases f j = (ej + iej+n)/2 for T ∗0,1 and f
j = (ej − iej+n)/2 for T ∗1,0.

Let (Uα) be a family of trivializing open sets and let ρU be an associated
partition of unity. Denote by tj the coordinates ofT2n in f−1(U) ∼= U×T2n.
From the choice of the basis (ej), tj + itj+n is a holomorphic coordinate
in T2n. Locally, we choose ω

j
U = dtj, and this gives the connection ω =∑

U ρUω
j
Uej. A computation shows that 〈ajf j,ω〉 = ∑

U ρUajd(tj + itj+n)
is of bidegree (0, 1) and 〈ajf j,ω〉 of bidegree (1, 0). Since the family is
holomorphic, the result is established. �

Theorem 4.65 ([249]) Let T2n → E
f→ B be a holomorphic principal bun-

dle with Chern–Weil homomorphism � : (Ac(B) ⊗ ∧Vc,D) → (Ac(E),d)
associated to a connection compatible with the complex structures. Then a
Dolbeault model of E is given by

� : (Ac(B) ⊗ ∧(V0,1 ⊕ V1,0), δ) −→ (Ac(E), ∂)

where

• Vc = V0,1 ⊕V1,0 is a decomposition associated to the complex structure
of the torus;

• δα = ∂α if α ∈ Ac(B);
• δv = Dv, if v ∈ Vc, where D is the homogeneous part of bidegree (0, 1)
in D.

Proof From Lemma 4.64, we know that the Chern–Weil homomorphism
� is of bidegree (0, 0). The differential D is compatible with the decreasing
filtration associated to the first degree and � induces a morphism of cdga’s
at level 0 of the two associated spectral sequences (i.e. the Frölicher spectral
sequences studied in Section 4.4.):

� : (E0,d0) ∼= (Ac(B) ⊗ ∧(Vc), δ) → (Ac(E), ∂).
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We are reduced to proving that we get an isomorphism in cohomology. For
that, we filter the domain by

Fp =
∑
i≥p

Ac(B)i ⊗ ∧(Vc)

and the target by the classical basic degree. The morphism � induces a
morphism between the associated spectral sequences. On the target, this is
the Borel spectral sequence. Thus � induces an isomorphism at the second
level of the two spectral sequences; E′

2
∼= H∂ (B) ⊗ ∧Vc. �

Corollary 4.66 With the notation of Theorem 4.65, and with B a simply
connected Kähler manifold such that H2(B;C) ∼= H1,1

∂
(B), there exists a

Dolbeault model of E, (∧Y ⊗ ∧(V0,1 ⊕ V1,0), δ), and a de Rham model of
E, (∧Y ⊗ ∧(V0,1 ⊕ V1,0),D), linked by

• (∧Y, δ) ∼= (∧Y,D) is a Dolbeault model of B;
• δv = Dv if v ∈ V1,0;
• δv = 0 if v ∈ V0,1.

Proof In Theorem 4.65, we have to replace Ac(B) by its minimal model
(∧Y, δ). The conclusion comes from the hypothesis on H2(B;C). �

Example 4.67 Recall that a complex manifold structure, denoted byMm,n,
exists on the product S2m+1 × S2n+1 such that

S1 × S1 ��S2m+1 × S2n+1 ��CP(m) × CP(n)

is a principal holomorphic bundle. Suppose 0 < n ≤ m. Directly from
Corollary 4.66 and Example 4.60, we obtain the Dolbeault model ofMm,n
to be

(∧ (
a, b, a′, b′, α, β

)
, ∂

)
, with:

• |a| = (1, 1), |b| = (m+ 1,m), ∂(a) = 0, ∂(b) = am+1;
• |a′| = (1, 1), |b′| = (n+ 1,n), ∂(a′) = 0, ∂(b′) = a′n+1;
• |α| = (1, 0), |β| = (0, 1), ∂(α) = a− i a′, ∂(β) = 0.

A computation gives the Dolbeault cohomology algebra ofMm,n,

H∂ (Mm,n) ∼=
( ∧a′

a′n+1

)
⊗ ∧ (

b, β
)
,

already determined by A. Borel in [141].

Example 4.68 The Grassmannian of 2-planes in C4, G4,2(C)=
U(4)

U(2) ×U(2)
, is a Kähler manifold of dimension 8. As in Corollary 4.28,
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we construct a holomorphic principal bundle

S1 × S1 −→ E −→ U(4)
U(2) ×U(2)

× U(4)
U(2) ×U(2)

and we want to determine a Dolbeault model of the total space E. From
Theorem 2.71, we compute the minimal model of G4,2(C):

(∧V ,d) = (∧ (y2, y4) ⊗ ∧ (x5, x7) , δ)

with |yk| = |xk| = k, δ y2 = δ y4 = 0, δ x5 = y32 − 2 y4 y2 and δ x7 =
y22 y4 − y24. Since G4,2(C) is Kähler, a Dolbeault model is obtained from the
de Rham model by adding a bigradation:

• the element y2 is of bidegree (1, 1) because it corresponds to the Kähler
form;

• y4 is of bidegree (2, 2) because, in a Kähler manifold, one hasHp,q ∼= Hq,p

and therefore there is no other possibility;
• the two other generators are given the right bidegree to obtain a
differential of bidegree (0, 1): |x5| = (3, 2) and |x7| = (4, 3).

Corollary 4.66 now gives a Dolbeault model of the total space E:

(∧(y2, y4, x5, x7) ⊗ ∧(y′
2, y

′
4, x

′
5, x

′
7) ⊗ ∧(α, β), ∂)

with |α| = (1, 0), ∂ (α) = y2 − i y′
2, |β| = (0, 1), ∂ (β) = 0. On the other

generators, the differential has been described before. From this model, a
computation gives the minimal Dolbeault model of the total space E:(∧β ⊗ ∧ (

y′
2, y4, y

′
4, x5, x7, x

′
5, x

′
7
)
, ∂

)
with ∂ (β) = ∂ (y′

2) = ∂ (y4) = ∂ (y′
4) = 0, ∂ (x5) = −i y′3

2 − 2 i y4 y′
2,

∂ (x′
5) = y′3

2 − 2 y′
4 y

′
2, ∂ (x7) = −y′2

2 y4 − y24, ∂ (x′
7) = y′2

2 y
′
4 − y′2

4 .

4.4 The Frölicher spectral sequence

4.4.1 Definition and properties

LetM be a complex manifold with complex de Rham algebra

AcDR(M) =
⎛⎝⊕

p,q

Ap,q(M), ∂ + ∂

⎞⎠ .

We filter this complex by the first degree:

FpAcDR(M) = ⊕j≥pAj, ∗ .
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The filtration Fp is decreasing, Fp ⊃ Fp+1, and stable under the
differential, dFp ⊂ Fp.

Definition 4.69 Let M be a complex manifold. The spectral sequence asso-
ciated to the filtration FpAcDR(M) is called the Frölicher spectral sequence.
It satisfies Ep,q0 = Ap,q(M), d0 = ∂, Ep,q1 = Hp,q

∂
(M) and converges to

HDR(M).

As a direct application of Theorem 4.56, we have the following result.

Theorem 4.70 Let M be a complex manifold and (∧V∗,∗, ∂)
ϕ

��

(A∗,∗(M), ∂) be a Dolbeault model of M. Then there exist perturbations
of the morphism ϕ and of the differential ∂ which give a model of the de
Rham complex,

(∧V∗,∗, ∂ + τ)
ψ

��(A∗,∗,d),

such that: τ
(
Vp,q) ⊂ (∧V)>p, ∗ and ψ (v) − ϕ (v) ∈ A>p, ∗ if v ∈ Vp,∗.

Theorem 4.59 directly characterizes the behavior of the Frölicher spectral
sequence of a compact Kähler manifold.

Corollary 4.71 The Frölicher spectral sequence of a compact Kähler
manifold collapses at the E1-term; that is, E1 ∼= E∞.

Example 4.72 Recall that the Hopf manifold of Example 4.63 has
Dolbeault model (∧(a, b, α, β), ∂). A model of the de Rham complex of
M0,n is obtained by a perturbation of the differential ∂, which increases
the first degree by at least one. But it is easy to see that HDR(M0,n) =
HDR

(
S1 × S2n+1

) ∼= H∂ (M0,n). The complex manifoldM0,n is thus strictly
formal and its de Rham model coincides with its Dolbeault model. Observe
that M0,n is not Kähler because, for instance, there are no cohomology
classes in degree 2.

Remark 4.73 From Corollary 4.66 and using its notation, the element v ∈
V0,1 is a Dolbeault cocycle and not a de Rham cocycle. Therefore, since
the Frölicher spectral sequence has Ep,q1 = Hp,q

∂
(M) and it converges to

HDR(M), we see that it does not collapse at level 1 for any Calabi–Eckmann
manifold built as in Corollary 4.28.

4.4.2 Pittie’s examples

Let’s now follow the approach of [227] and [228] in using even dimensional
compact connected Lie groups G to find examples of compact complex
manifolds whose Frölicher spectral sequence does not collapse at level 2.
(Note that there is another family of examples coming from nilmanifolds
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that is described in [65].) Now let’s give a characterization in terms of
models for the degeneracy at level 2 of the Frölicher spectral sequence
for G.

Theorem 4.74 ([249]) Let G be a compact, connected, even dimensional
Lie group and let T be a maximal torus of G. If T ��G ��G/T is a
principal holomorphic bundle, then the Frölicher spectral sequence of G
degenerates at level 2 if and only if the complex manifold G is Dolbeault
formal.

In the course of the proof, we build a special model of the Dolbeault
algebra of G, using Corollary 4.66. This model is the positive answer to
Conjecture 5.12 of [227].

Proof As we said above, we use Corollary 4.66. First, we need a Dolbeault
model of G/T. A de Rham model is given by (∧P ⊗ ∧U, δ), where P is
the primitive space of G, the vector space U is concentrated in degree 2,
δ(u) = 0 if u ∈ U and δ(v) ∈ ∧U if v ∈ P. For the Dolbeault model, we
need a bigradation of the generators: the elements ofU are in bidegree (1, 1)
and the elements of P are bigraded such that the differential δ is of bidegree
(0, 1).
A de Rham model of G is obtained as a relative model of the fibration

above; that is (∧P⊗∧U⊗∧V ,D), with V concentrated in degree 1,D = δ

on U ⊕ P and D creating an isomorphism from V to U.
From the complex structure on V , we get a decomposition into eigen-

spaces V = V0,1 ⊕ V1,0. The Dolbeault model of G can thus be written as

(∧P⊗ ∧U ⊗ ∧(V0,1 ⊕ V1,0), ∂),

with ∂z = 0 if z ∈ U ⊕ V0,1, ∂z = Dz if z ∈ P⊕ V1,0.
We now want a Dolbeault model of G with a decomposable differential.

For that, we decomposeU asU = D(V1,0)⊕D(V0,1). DenoteW = D(V0,1)

and replace ∧(P⊕U⊕V1,0) by ∧(P⊕W) in the de Rham model of G. We
get a new de Rham model of G:

(∧(P⊕W ⊕ V0,1), δ1 + δ2),

with δ1w = 0 if w ∈ W , δ1x ∈ ∧W if x ∈ P, δ1v = 0 if v ∈ V0,1, δ2x = 0 if
x ∈ P⊕W , and δ2 is an isomorphism from V0,1 toW .
Denote the complex (∧(P ⊕ W), δ1) by (C, δ1). The Frölicher spectral

sequence of G can be written as

• (E0,d0) = (C, δ1) ⊗ (∧V0,1, 0);
• (E1,d1) = (H(C, δ1) ⊗ ∧V0,1, δ�2);
• E2 = H(H(C, δ1) ⊗ ∧V0,1, δ�2);
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where δ
�

2 : V
0,1 → H(C, δ1) is induced by δ2 : V0,1 → C.

First step. Suppose G is Dolbeault formal. Observe that the quasi-

isomorphism (C ⊗ ∧V0,1, δ1)
∼ ��(H(C, δ1) ⊗ ∧V0,1, 0) induces a quasi-

isomorphism

(C ⊗ ∧V0,1, δ1 + δ2)
∼ ��(H(C, δ1) ⊗ ∧V0,1, δ�2),

which implies the collapsing of the spectral sequence at level 2. (For more
details, see [114, Example, page 151].)
Second step. Suppose now that G is not Dolbeault formal and decom-

pose (C, δ1) into (C, δ1) = (∧(P̃ ⊕ W), δ1) ⊗ (∧P̂, 0), where the canonical
surjection ρ : (∧(P̃ ⊕ W), δ1) → (∧P̃, 0) is such that H(ρ) = 0. We fol-
low the argument of [114, Theorem VIII, page 83]: on (∧(P̃ ⊕W), δ1) we
put the gradation by length of words in P̃. The differential δ1 decreases
this bigradation by exactly 1 and therefore induces a gradation (called the
lower gradation) on the cohomology H(∧(P̃ ⊕W), δ1). From [114, Theo-
rem VIII, page 83], we know that (∧(P̃ ⊕ W), δ1) is formal if and only if
H1(∧(P̃⊕W), δ1) = 0. Therefore, by hypothesis, there exists a nonzero ele-
ment ω in the cohomologyH1(∧(P̃⊕W), δ1). We choose such an ωwith the
smallest degree and we show that ω a coboundary for the total differential
that survives to stage 2. This will imply E2 �∼= E∞.
Suppose there exists ω′ such that ω = δ

�

2ω
′. Since the elements of P have

a bidegree of type (k,k − 1) and elements of W have bidegree (1, 1), the
element ω of wedge length 1 in P̃ has bidegree equal to (p,p− 1). Thus ω′
must have bidegree equal to (p−1, p−1).We decomposeω′ along the length
of words in V as ω′ = ω0+∑

i viωi+
∑

i,j vivjωi,j+· · · , with ω0, ωi, ωi,j . . .

in H(∧(P̃⊕W), δ1). From the definition of δ2, we have δ
�

2ω0 = 0. Observe
that the two equalities |vi| = (0, 1) and |viωi| = (p− 1,p− 1) imply that ωi
contains one, and only one, element in P̃; that is, ωi ∈ H1(∧(P̃ ⊕W), δ1).
Since the total degree of ωi is 2p − 3, which is strictly less than the total
degree of ω, 2p− 2, we have ωi = 0 by the choice of ω.
In conclusion, we get ω = δ

�

2(
∑

i,j vivjωi,j + · · · ) in the ideal generated by
V . This implies ω = 0, which is a contradiction to the choice of ω. Therefore
ω gives a non-zero class in E2.
We are now reduced to proving that ω is trivial for the total differential.

Let v be a δ1-cocycle representing ω. We write v = ∑
i aiξi, with ai ∈ ∧W

and ξi ∈ P̃. Because the cdga (∧(W⊗∧V0,1, δ2) is acyclic, there exist bi such
that δ2bi = ai. Since the element

∑
i biδ1ξi is a δ2-cocycle in ∧W ⊗ ∧V0,1,

there exists c ∈ ∧W⊗∧V0,1 such that δ2c = ∑
i biδ1ξi. The conclusion then

follows from (δ1 + δ2)(c + ∑
i biξi) = ∑

i aiξi. �
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Example 4.75 A Dolbeault model of SO(9), viewed as the total space
of the principal holomorphic fibration T ��SO(9) ��SO(9)/T (see
Example 4.32) is given by:

(∧(x3,x7,x11,x15) ⊗ ∧(a1, a2) ⊗ ∧(b1,b2), ∂),

with xi, ai, bi of degree i and ∂a1 = ∂a2 = ∂b1 = ∂b2 = ∂x3 = 0,
∂x7 = (a21 + a22)

2, ∂x11 = (a21 + a22)a
2
1a
2
2, ∂x15 = a41a

4
2.

The cocycle
(
(a21 + a22)x11 − x7a21a

2
2

)
is aMassey product in theDolbeault

model of SO(9). Therefore, by Theorem 4.74, the Frölicher spectral
sequence of SO(9) does not collapse at level 2.

4.5 Symplectic manifolds

A class of smooth manifolds that share some of the properties of complex
manifolds are the symplectic manifolds. In this section, we compare and
contrast these two types of manifolds.

4.5.1 Definition of symplectic manifold

Definition 4.76 A manifold M2n is symplectic if it possesses a nondegener-
ate 2-form ω which is closed (i.e. dω = 0). The symplectic manifold is then
denoted (M2n,ω).

The nondegeneracy condition is equivalent to saying that ωn is a true vol-
ume form (i.e. nonzero at each point) onM (see Section 4.7). Furthermore,
the nondegeneracy of ω sets up an isomorphism between 1-forms and vec-
tor fields onM by assigning to a vector field X the 1-form iXω = ω(X,−).
Observe also that, if M is closed, the symplectic form ω cannot be exact
(since a volume form is a representative of the fundamental cohomology
class). The most important theorem about symplectic manifolds says that
all symplectic manifolds locally look like R2n.

Theorem 4.77 (Darboux’s theorem) Around each point in a symplectic
manifold (M2k,ω) there are local coordinates (x1, . . . ,xk, y1, . . . , yk) such
that

ω =
k∑
j=1

dxj ∧ dyj.

This result says that symplectic manifolds have no local distinguishing
invariants. In other words, all symplectic manifolds look alike locally. In
this sense then, symplectic geometry is a global subject. A general reference
for symplectic geometry and topology is [189].
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4.5.2 Examples of symplectic manifolds

We list our first examples of symplectic manifolds. Other ones appear in
Section 4.6.

Example 4.78 For any manifold Mn, the cotangent bundle T∗M is a sym-
plectic manifold with symplectic form defined as follows. Let p : T∗M → M
be the cotangent projection and take the induced map on tangent bundles
Tp : T(T∗M) → TM. Then, for βm ∈ T∗M and � ∈ Tβm(T

∗M), define a
1-form (the Liouville form) pointwise on T∗M by

θ(m,βm)(�) = βm (Tmp(�))

and then globally by

θ : T∗M → T∗(T∗M) θ(m,βm) = θ(m,βm).

In local coordinates (q1, . . . ,qn,p1, . . . ,pn), where the qj’s come from M
and the pj’s come from T∗M, we have θ = ∑n

j=1 pj dqj with exact 2-form

ω = −dθ =
n∑
j=1

dqj ∧ dpj.

Example 4.79 The first example specializes to the caseR2nwith coordinates
〈x1, . . . ,xn, y1, . . . , yn〉 and symplectic form ω = ∑n

j=1 dxj∧dyj. Then, since
the symplectic form is invariant under translations xj 
→ xj + 2π and yj 
→
yj + 2π , the form induces a symplectic form on the orbit space T2n =
R2n/Z2n.

Let Cn be the complex n-space with the hermitian inner product

〈z,w〉 =
n∑
j=1

zj w̄j

where z = (z1, . . . , zn) and w = (w1, . . . ,wn) are in Cn. If we write zj =
xj + iyj and wj = uj + ivj, then

〈z,w〉 =
n∑
j=1

xjuj + yjvj + i
n∑
j=1

yjuj − xjvj.

The first term is the standard dot product in R2n. The second term is alter-
nating, so is a 2-form onR2n. Define ω = ∑n

j=1 yjuj−xjvj to be this 2-form.
Then ω is closed and nondegenerate and Cn is symplectic.

Example 4.80 Recall fromDefinition 4.21 that a Kähler manifold possesses
a nondegenerate closed 2-form ω. Thus, by definition, any Kähler manifold



184 4 : Complex and symplectic manifolds

is symplectic. Since compact Kähler manifolds constitute an important class
of compact symplectic manifolds, a focus of research has been to under-
standwhich general properties of Kählermanifolds are shared by symplectic
manifolds. In the next section, we will address this question by consider-
ing certain examples and theorems which focus, in particular, on the hard
Lefschetz property. Later in Chapter 8, we will explore the question of the
formality of (1-connected) symplectic manifolds.

4.5.3 Symplectic manifolds and the hard Lefschetz property

In this section, we examine whether certain tools and results about complex
manifolds carry over to symplectic manifolds.
Let (M2n,ω) be a symplectic manifold. Brylinski observed that, since the

2-form ω gives an adjoint, there is a star operator and a new differential on
M (see [44]; also [157], [173] and [174]). (Compare with the usual Hodge
star operator described in Section A.4.)

1. The symplectic star operator, ∗ : AkDR(M) → A2n−kDR (M), is defined by
β ∧ ∗α = ∧k(G)(β,α)vM, where:
• vM = ωn/n! is a volume form onM;
• G is the tensor field dual to ω.

(Locally, that means G =
n∑
j=1

∂

∂qj
∧ ∂

∂pj
if ω = ∑n

j=1 dqj ∧ dpj.)

This operator satisfies ∗ ∗ β = β.
2. The differential δ : AkDR(M) → Ak−1DR (M) is given by δ = (−1)k ∗ d∗.
Naturally, we want to compare the behavior of the symplectic star

operator with that of the star operator coming from Hodge theory, see
Section A.4. At first glance, it appears this behavior will be totally different
because we have the relation dδ + δd = 0 (see [157]) and this affords no
opportunity to define a Laplacian. Nevertheless, we can make the following

Definition 4.81 A form β ∈ ADR(M) is said to be symplectically harmonic
if d(β) = δ(β) = 0.

Of course, we can continue our comparison with Hodge theory and ask
if the symplectically harmonic forms play an analogous role to the usual
harmonic forms. Here also, the answer is no at a first glance: in the Hodge
situation, any de Rham cohomology class can be represented by a unique
harmonic form, and that cannot be the case for symplectically harmonic
forms because any 1-form β with dβ = 0 is symplectically harmonic.
Thus, uniqueness of representation cannot occur in general. Nevertheless,
Brylinski asked if one could find, for any cohomology class in H∗(M;C), a
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symplectically harmonic representative. Indeed, Brylinski proved that this
is true for compact Kähler manifolds. (This comes from the fact that the
symplectic and Hodge star operators coincide up to sign in this case, see
[44, Theorem 2.4.1].) He also conjectured that the result is true for any
compact symplectic manifold. In fact, however, this conjecture was dis-
proved by O. Mathieu in [185] (see also [266]). Moreover, the failure of
Brylinski’s conjecture is (surprisingly!) connected with the hard Lefschetz
property (Theorem 4.35).

Theorem 4.82 ([185]) Let (M2n,ω) be a symplectic manifold. Then the
following two statements are equivalent:

1. Any cohomology class contains at least one symplectically harmonic
form.

2. (M2n,ω) satisfies the hard Lefschetz property.

The proofs of Mathieu [185] and Yan [266] use representation theory.
We refer the reader to the original papers for more details.
In Definition 4.96, we will introduce a weaker version of the hard

Lefschetz property called Lefschetz type and prove that a nilmanifold of
Lefschetz type is diffeomorphic to a torus (Theorem 4.98). Therefore, any
non-toral symplectic nilmanifold is a counterexample to Brylinski’s con-
jecture. As for simply connected examples, we will briefly discuss how the
symplectic blow-up gives counterexamples in Remark 8.30.
Now recall the following three notions that occur in the study of Kähler

manifolds. LetM be Kähler. Then

1. the ∂∂-Lemma holds for ADR(M), see Lemma 4.24;
2. the hard Lefschetz theorem holds for H∗(M), see Theorem 4.35;
3. M is formal, see Theorem 4.43.

Since the property that each cohomology class may be represented by a
symplectically harmonic form is equivalent to the hard Lefschetz property,
we would like to compare the three statements above in the symplectic
setting. A good reference is the nicely written monograph of G. Cavalcanti
[52] on this subject.
In Theorem 4.43, we chose a proof of the formality of Kähler manifolds

that used the differentials ∂ and ∂ and that could also be adapted to the case
of strict formality (see Theorem 4.59). But an alternative presentation with
real objects already existed in [71]. There, the two differentials involved
were the deRhamdifferential d and a differential dc defined by dc = i(∂−∂).
Indeed, a d dc-lemma was given analogous to Lemma 4.24 and that lemma
was able to be cast into different forms (see [71, Lemma 5.15]). Adapted to
the symplectic setting, we have the following.



186 4 : Complex and symplectic manifolds

Definition 4.83 A symplectic manifold (M2n,ω) satisfies the dδ-lemma if

Im d ∩ Ker δ = Im δ ∩ Ker d = Im dδ.

Merkulov established the equivalence of this property with the hard
Lefschetz property.

Theorem 4.84 ([190]) A compact symplectic manifold satisfies the hard
Lefschetz property if and only if it satisfies the dδ-lemma.

For the proof we refer the reader to [190] or to [52, Theorem 5.4]. From
the dδ-lemma, we can prove, exactly as in Theorem 4.43, that we have a
sequence of quasi-isomorphisms

(Hδ(M), 0) (Zδ(M),d)
ρ

��
j

��(ADR(M),d) .

But, as noted by Cavalcanti (see [52, Remark, pages 14 and 83]), this does
not imply the formality of M because the differential δ is not a derivation
of algebras (see [175]), and, therefore, the vector space of cocycles Zδ is
not a graded algebra. So the question of the existence of an equivalence
between the hard Lefschetz property and formality is not answered by the
dδ-lemma. We will come back to this question in Chapter 8.
In Section 4.4, we introduced the Frölicher spectral sequence associated

to any complex manifold. Its degeneracy in the case of a Kähler manifold
gives an obstruction to the existence of a Kähler metric. We can ask if
such a spectral sequence exists in the symplectic setting and the answer is
yes, but it always degenerates at the E1-stage for any symplectic manifold,
see [44].

Remark 4.85 Although the results appear different, this section shows that
symplectic and complex manifolds have some common aspects. In fact,
there is a more general notion that contains the two settings: the general
complex geometry introduced by Hitchin [142] (see also Gualtieri [124]).
The idea is to consider the direct sum of the tangent and cotangent bundles,
T(M) ⊕ T∗(M), endowed with the classical scalar product

〈X + α,Y + β〉 = 1
2
(α(Y) + β(X)).

A general complex manifold is a complex structure on this direct sum,
orthogonal with respect to this scalar product and satisfying an integrability
condition. (See Subsection 4.7.6 for the linear setting.) We refer the reader
to [124] and [142] for more details, emphasizing that most of [52] is written
in this general framework.
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4.5.4 Symplectic and complex manifolds

In the previous section,we looked at properties or tools shared by symplectic
and complex manifolds. Now we wish to study manifolds endowed with
both of these structures. For instance, we already noticed that a Kähler
manifold is always symplectic, but we shall see that more can be said about
this. First, let’s note an important property of symplectic manifolds which
provides the fundamental link to the complex world. The proof follows as
in Subsection 4.7.5 with the Riemannian metric g(−,−) and the symplectic
form ω on the manifold globalizing the scalar product 〈−,−〉 and vector
space symplectic form ω respectively.

Proposition 4.86 A symplectic manifold has an almost complex structure.

Although each symplectic manifold has an almost complex structure,
there are many more almost complex manifolds than symplectic manifolds.
The reason is that the condition that the 2-form ω be closed is very restric-
tive. For instance, as we have seen, the sphere S6 is almost complex but is not
symplectic because there are no nonexact closed 2-forms on S6. The require-
ment that dω = 0 points out once again that being symplectic is a global
condition (compare Theorem 4.77). In Subsection 4.7.5, we see that, given a
scalar product, the properties of having complex and symplectic structures
on a vector space are essentially equivalent. Indeed, some authors refer to
almost symplectic manifolds as manifolds having a nonclosed nondegener-
ate 2-form and it can be shown that these manifolds have almost complex
structures. On the other hand, the hermitian product on an almost com-
plex manifold provides a nondegenerate 2-form as well, so it is not local
properties that distinguish these notions, but rather the global property
dω = 0.

4.6 Cohomologically symplectic manifolds

4.6.1 C-symplectic manifolds

From the point of view of algebraic models, it is often not necessary to
use the full force of the symplectic structure. Because the form ω is closed
and ωn is a volume form in a symplectic manifoldM2n, then there are non-
zero cohomology classes [ωi] ∈ H2i(M;R) for each i = 1, . . . ,n when M is
compact. (We often use the same symbol ω for a form and a cohomology
class, the context making it clear which is intended.) Note that it is not the
case that any manifold having a degree two cohomology class which cups
to a top class is symplectic. For instance, CP(2)#CP(2) has several such
classes, but it cannot be symplectic since it cannot have an almost complex
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structure (see Exercise 4.6 for a characteristic class argument). Sometimes
however, the existence of a cohomology class in degree 2 with the property
that it cups to a top class (over Q or R) is sufficient to give interesting
information. Of course, we can say the same thing about models, and to
formalize this, we make the following

Definition 4.87 A closed manifold (M2n,ω) is cohomologically symplectic
(or c-symplectic) if ω ∈ H2(M;R) has the property that ωn �= 0. Note that
this implies that the manifold is orientable.

A cdga (A,dA) is called cohomologically symplectic or c-symplectic if:

• H∗(A,dA) = ⊕2n
k=0H

k(A,dA) satisfies Poincaré duality with top dimen-
sion 2n;

• there exists an element ω ∈ A2 such that for [ω] ∈ H2(A,dA), [ω]n �= 0.

4.6.2 Symplectic homogeneous spaces and biquotients

In Theorem 2.77, we saw that the algebraic assumption of purity can have
a strong effect on the algebraic structure of a model. Here, we will see that
the same algebraic assumption, in conjunctionwith a c-symplectic structure,
profoundly constrains the rational homotopy types that can arise. Recall
from Definition 2.76 that a pure minimal cdga may be written as

(∧V ,d) = (∧(Q⊕ P),d)

with Q = Veven denoting the subspace of V consisting of even generators,
P = Vodd denoting the subspace of odd generators, d(Q) = 0 and d(P) ⊂
∧≥2Q. A compact manifold M2n is called a pure manifold if it has a pure
minimal model. If the minimal model of M, (∧V ,d) = (∧(Q⊕ P),d), has
P and Q finite dimensional, thenM is rationally elliptic as well.
Now, we can give a second lower grading to elements of (∧(Q ⊕ P),d)

by defining the lower degree of an even generator x ∈ Q to be zero, the
lower degree of an odd degree generator y ∈ P to be one and extending to
products by requiring ∧i · ∧j = ∧i+j (also see Theorem B.18). Note that the
hypothesis of pureness implies d(∧i) ⊆ ∧i−1. Therefore, the lower grading
descends to the level of cohomology.

Theorem 4.88 ([178]) A simply connected c-symplectic pure elliptic cdga
(∧V ,d) = (∧(Q⊕ P),d) has dimQ = dimP. Hence, it is formal.

Proof We shall use the equivalent criteria of Theorem B.18. Namely, we
shall prove that the cohomology of (∧V ,d) is evenly graded.
If ω denotes the symplectic element in (∧(Q⊕ P),d), then ω ∈ Q2

0 since
(∧V ,d) is simply connected. By the multiplicative property of the lower
grading, the top class ωn ∈ (∧V)2n0 .
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Now suppose that η ∈ (∧V)2j+1 is an odd degree cocycle. Then clearly,
η ∈ Ideal(P). By Poincaré duality, there exists a class [τ ] ∈ H2n−2j−1(∧V ,d)
with [η] ∪ [τ ] = [ωn]. But, because η ∈ Ideal(P), its lower grading is greater
than or equal to one. Since multiplication by [τ ] can never decrease the
lower grading, the product [η] ∪ [τ ] must also have lower grading greater
than or equal to one. This contradicts the fact that ωn ∈ (∧V)2n0 .
Hence, [η] = 0 and η is exact. We therefore see that all odd cocycles are

exact and the cohomology of (∧V ,d) is evenly graded. By the equivalence
of the criteria in Theorem B.18, we have dimQ = dimP. Moreover, this
implies that (∧V ,d) is formal as well. �

We have the following immediate implication.

Corollary 4.89 A simply connected, c-symplectic homogeneous space G/H
is a maximal rank homogeneous space. That is, rankH = rankG.
A simply connected c-symplectic biquotient K\G/H has rankG =

rankK + rankH.

Proof Note that, by Theorem 2.71 and Corollary 3.51, homogeneous
spaces and biquotients are pure manifolds. Furthermore, for the homo-
geneous space, the description of the pure model (∧Q ⊕ P,d) shows
that Q may be identified with π∗(BH) ⊗ Q and P may be identified
with π∗(BG) ⊗ Q. From Theorem 1.81 and Theorem 3.33, we see that
rankG = dimπ∗(BG) ⊗ Q and rankH = dimπ∗(BH) ⊗ Q, so the equality
rankH = rankG follows immediately from Theorem 4.88.
For biquotients, by Theorem 3.50, Q may be identified with (π∗(BH) ⊕

π∗(BK))⊗Q and Pmay be identified with π∗(BG)⊗Q. Then Theorem 4.88
gives

rankG = rankH + rankK.

�

4.6.3 Symplectic fibrations

Purity can also be relativized. A fibration F → E → B is said to be a pure
fibration if its relative Sullivan model has the form,

(∧X,dX) → (∧X ⊗ ∧Y,D) → (∧Y,dY)
with D(Yeven) = 0 and D(Yodd) ⊂ ∧X ⊗ ∧Yeven. As shown in [250],
if F = G/H, where G is a compact connected Lie group, H ⊂ G a closed
connected subgroup and the fibration is the bundle associated to a principal
bundle G → P → B via the usual action of G on G/H, then the fibration
is pure.
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Definition 4.90 A bundle F → E → B is symplectic if (F,ωF) is symplectic
and the structure group of the bundle acts by symplectomorphisms (i.e.
diffeomorphisms which preserve the symplectic form) on F.

A fundamental question is whether, for a symplectic bundle, there is
a symplectic structure on E that restricts to the given symplectic struc-
ture on F. The main result in this direction is due to Thurston (see [189,
Theorem 6.3]).

Theorem4.91 Let (F,ωF) → E
p→ (B,ωB) be a symplectic bundlewith base

and fiber compact symplectic manifolds. If there is some cohomology class
α ∈ H2(E;R) which restricts to the class [ωF] ∈ H2(F;R) by i∗(α) = [ωF],
then for sufficiently large K, there exists a symplectic form ωE on E with
cohomology class [ωE] = α + K p∗([ωB]).
Example 4.92 The Kodaira–Thurston manifold KT (see Example 4.31 and
Example 3.23) is a principal torus bundle over a torus classified by the
map T2 → BT2 = BS1 × BS1 defined by (uy, ∗), where u, y ∈ H1(T2;Z)

correspond to the torus’s circle factors and the fundamental class ofT2 is the
cup product uy. Since the torus acts symplectically on itself by translation,
we see that this bundle is a symplectic bundle. The relative model of the

bundle T2 → KT
p→ T2 is

(∧(u, y), 0) → (∧(u, y, v, t),D) → (∧(v, t), 0)

with D(u) = 0, D(y) = 0, D(v) = uy and D(t) = 0. Note that the fiber is a
torus with symplectic cohomology class vt. If we are to apply Theorem 4.91,
then we must find a cohomology class in (∧(u, y, v, t),D) which restricts to
vt. But it is easy to see that no such class exists. Therefore, the principal
bundle structure of KT is not the one compatible with KT’s symplectic
structure.
Instead of the relative model above, consider

(∧(u, t), 0) → (∧(u, y, v, t),D) → (∧(v, y), 0)

withD(u) = 0,D(y) = 0,D(v) = uy andD(t) = 0. This is not the model of
a principal bundle because the differential is not defined by a classifyingmap
on the base. But now we can see that the class vy ∈ (∧(u, y, v, t),D) is both
closed and maps to vy ∈ (∧(v, y), 0) under restriction to the fiber. Thus,
Thurston’s criterion is satisfied and, for some K large enough, vy+K p∗(ut)
is a symplectic form on KT. Now, by Proposition 4.94, we know that
ω = vy+ ut is a symplectic form on KT, so K = 1 is good enough.

Now let’s combine the geometry of Thurston’s result with the algebra
inherent in the definition of pure fibration. Indeed, the simplicity of the
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proof hints at a result with less restrictive algebraic assumptions. Note also
that the second condition in the hypothesis holds for all simply connected
fibers.

Proposition 4.93 ([153]) Let (F,ωF) → E → B be a pure symplectic fibra-
tion with F and B compact and with relative Sullivan model (∧X,dX) →
(∧X ⊗ ∧Y,D) → (∧Y,dY). If there exists α ∈ ∧Y with

• [α] 
→ [ωF] under the induced cohomology homomorphism
H∗(∧Y,dY) → H∗(ADR(F),d);

• α = ∑
j cjyj for cj ∈ R and yj ∈ Y2;

then there exists a compatible symplectic structure on E.

Proof The hypothesis α = ∑
j cjyj implies that Dα = 0 since, by the

assumption of purity, D(Yeven) = 0. Therefore, α ∈ ∧X ⊗ ∧Y is a cocy-
cle restricting to α ∈ ∧Y and Thurston’s result guarantees a compatible
symplectic structure. �

Explicit examples of torus bundles illustrating the proposition may be
found in [153].

4.6.4 Symplectic nilmanifolds

The question of exactly how c-symplectic differs from symplectic is an inter-
esting one. For 4-manifolds, the existence of an almost complex structure
is paramount (see Exercise 4.6). But for higher dimensions, sophisticated
quantities such as Seiberg–Witten invariants have been necessary to address
this problem. For nilmanifolds, the question is much easier because of the
strong relationship between the Lie algebra of the nilpotent Lie group and
the nilmanifold itself. Recall thatNomizu’s theorem says thatH∗(∧n∗, δ)) ∼=
H∗(N/�;Q), where N is a nilpotent Lie group, N/� is the associated
nilmanifold and n is the nilpotent Lie algebra of N.
Suppose now thatN/� is a c-symplectic nilmanifold. Nomizu’s theorem

(see Theorem 3.18 and its proof) guarantees the existence of a cochain
in (∧n∗, δ) representing the cohomology class which cups to a top class.
Since the cohomology product cannot be zero, then the cochain (i.e. wedge)
product of the cochain cannot be zero. This then defines a left invariant
volume form on the nilpotent Lie group. Both the cochain (as a left invariant
form) and the volume form then descend to the nilmanifold to provide a
symplectic form wedging to a volume form. Therefore, we have

Proposition 4.94 Anilmanifold is c-symplectic if and only if it is symplectic.

Now, if a nilmanifold M2k is symplectic, then there must be a degree
2 element of the minimal model which multiplies up to the top element
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ν = x1 · · ·x2k. We can write this degree 2 element as

ω =
∑

aijxi xj.

Since ωk = ν, the sum in the expression for ω must contain all the degree 1
generators. Of course, ω must be closed as well.

Example 4.95 What must a four-dimensional nilmanifold look like ratio-
nally? By what we have said, the minimal model must have four generators
and two of those must be cocycles. Thus, there are three rational homotopy
types to deal with (up to isomorphism).

1. The torus T4. The minimal model is (∧(u, v, y, t),d = 0) and a
symplectic element is given by ω = uv + yt.

2. The Kodaira–Thurston manifold KT. This manifold is obtained by tak-
ing the product of the Heisenberg manifoldM = U3(R)/U3(Z) and the
circle S1. The minimal model is given by

(∧(u, v, y, t),d) with du = 0, dy = 0, dv = uy, dt = 0

where the first three generators come from M and t comes from the
circle. A symplectic element is then given by ω = vy + ut having ω2 =
2vyut �= 0. Note that the degree 1 cohomology of KT is generated by
the classes of u, y and t. Hence, the first Betti number is three and, by
Proposition 4.33, KT cannot be Kähler.

3. Take the minimal model (∧(u, v, y, t),d) with du = 0, dv = 0, dy = uv
and dt = uy. Recall that the corresponding finitely generated torsion-
free nilpotent group may be realized as a nilmanifold. Then a symplectic
element is given by ω = ut + vy.

4. By the above, all four-dimensional nilmanifolds admit symplectic struc-
tures. By contrast, the six-dimensional nilmanifold U4(R)/U4(Z) is not
symplectic because no closed element ω in its minimal model can be
found whose cube does not vanish.

We have seen above that nilmanifolds can be symplectic, but can they be
Kähler? By Section 4.2, we know that Kähler manifolds are formal, but by
Proposition 3.20, the only formal nilmanifolds are tori. So we can ask if
weaker conditions derived from Kählerness can still hold for nilmanifolds.
For instance, we make the

Definition 4.96 A symplectic manifold (M2n,ω) has Lefschetz type if the
multiplication by [ω]n−1,

Lef = [ω]n−1 ∪ : H1(M;R) → H2n−1(M;R),

is an isomorphism.
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Example 4.97 If X is a nonsimply connected Kähler manifold and Y is
a simply connected symplectic manifold with some odd odd-degree Betti
number (and these exist by [187]), then X×Y is not Kähler, but does have
Lefschetz type.
We also observe that the six-dimensional manifold constructed in [95]

does not satisfy the hard Lefschetz property, but is of Lefschetz type.

So what can we say about Lefschetz type nilmanifolds? Surprisingly, we
have the same restriction as for the Kähler hypothesis. Benson and Gordon
([25]) were the first to establish the fact that tori are the only nilmani-
folds satisfying the hard Lefschetz property. Here we present a proof of
this fact that uses properties of the model derived from symplecticness as
well as the existence of a particular derivation reminiscent of Blanchard’s
Theorem 4.36.

Theorem 4.98 ([178]) A symplectic nilmanifold M of Lefschetz type is
diffeomorphic to a torus.

Proof Write theminimalmodel forM as (∧(x1, . . . ,x2n),d)with symplectic
element given by

ω =
∑
i,j<2n

aijxi xj + z x2n

where we have taken out all terms involving the last generator x2n. Also,
from the discussion following Proposition 4.94, we see that all generators
x1, . . . ,x2n appear in the expression for ω. Assume that d �= 0. First note
that, because of the stage-by-stage construction of the minimal model, the
last generator x2n cannot appear in any differential dxi, i = 1, . . . , 2n.
Hence, since dω = 0, the only way to have the term dz ·x2n cancelled is for
z to be a cocycle, dz = 0. Now define a derivation λ of degree −1 by{

λ(xi) = 0 for i < 2n

λ(x2n) = 1.

Extend λ freely to (∧(x1, . . . ,x2n),d) as a derivation of algebras. The effect
of λ on ω follows from the definition and the derivation property:

λ(ω) = z.

The derivation λ obeys the relation λd = −dλ because d is decomposable,
so a derivation of cohomology is induced with λ([ω]) = [z] �= 0 since z is a
nonzero degree 1 cocycle.
Now, a basis for H1(M) consists precisely of the generators x1, . . . ,xs

with dxi = 0, i = 1, . . . , s. By the definition of λ then, λ(H1(M)) = 0. (Note
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that this only holds when dx2n �= 0.) Let [α] be any element of H1(M) and
consider [α] ∪ [ωn]. Since this class is above the top degree, [α] ∪ [ωn] = 0.
Applying λ, we obtain

0 = λ([α] ∪ [ωn]) = λ([α]) ∪ [ωn] − [α] ∪ λ([ωn]) = −[α] ∪ λ([ωn]).
Now [α] ∪ λ([ωn]) = 0 for any [α] ∈ H1(M), where λ([ωn]) ∈ H2n−1(M).
By Poincaré duality (i.e. the nondegeneracy of the bilinear form), this can
only be true if λ([ωn]) = 0. But then

0 = λ([ωn]) = n λ([ω]) ∪ [ωn−1] = nLef(λ([ω]))
and the hypothesis of Lefschetz type implies that this can happen only when
λ([ω]) = 0. This contradicts the fact that λ([ω]) = [z] �= 0. Thus, a Lefschetz
type nilmanifoldmust have d = 0 and therefore have the rational homotopy
type of a torus. Now, the same argument as in Remark 3.21 shows thatM
is diffeomorphic to a torus. �

4.6.5 Homotopy of nilpotent symplectic manifolds

R. Gompf showed in [108] that any finitely presented group can be real-
ized as the fundamental group of certain symplectic 4-manifolds. More
recently, in [146] certain restrictions were found on the groups that can
arise as fundamental groups of symplectic manifolds where the symplectic
cohomology class annihilates the image of the Hurewicz homomorphism.
These are the so-called symplectically aspherical manifolds. A fair amount is
known about the homotopy theory of symplectically aspherical manifolds
(see [179] as well as the references above), but these manifolds are very
special. These are just first steps in understanding the homotopy theory of
symplectic manifolds and certain classes of symplectic manifolds. We have
seen throughout the first three chapters that minimal models best reflect
the homotopy theory of spaces when the spaces are nilpotent. Therefore,
in order for minimal models to be truly applicable in symplectic geometry,
we will need to know the answer to the following

Question 4.99 How can nilpotent symplectic manifolds be recognized? If
a symplectic manifold is a nilpotent space, what special homotopical prop-
erties are apparent? Conversely, what nilpotent spaces have symplectic or
c-symplectic structures.

This is not a question directly related to models, of course, but rather a
question which connects geometry and homotopy theory in a fundamen-
tal way. Although we don’t know of any general results in this direction,
here is a result that gives a slight indication of how the action of the fun-
damental group on higher homotopy may be recognized in the symplectic
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world. While the proposition holds in general, it pays to think of ω as the
symplectic (or c-symplectic) class. Now, for a symplectic manifold (M,ω),
the condition of symplectic asphericity mentioned above is equivalent to
the condition that ω = f ∗(ω̃), where f : M → K(π1M, 1) classifies the uni-
versal cover and ω̃ is some class in H2(K(π1M, 1);R) (see [179]). Hence,
p∗(ω) = 0, where p : M̃ → M is the universal cover. On the other hand, the
result below applies to the generic case of symplectic manifolds that are not
symplectically aspherical. (Also note that the proposition is a special case
of that found in [162].)

Proposition 4.100 ([162]) Suppose that M is a path connected space with
a ∈ H1(M;Q) and ω ∈ H2(M;Q) obeying a∪ ω = 0 and p∗(ω) �= 0, where
p : M̃ → M is the universal cover. Then the action of π1(M) on π2(M) is
nontrivial.

Proof First, we can take multiples of a and ω so that they are integral. We
therefore assume this. Now note that the condition p∗(ω) �= 0 is equivalent
to saying that ω|π2(M) �= 0, where ω ∈ H2(M) → Hom(H2(M;Z),Z) is
considered dual to homology and operating on the image of Hurewicz in
H2(M;Z). The condition ω|π2(M) �= 0 removes the universal cover from
consideration and focuses on M and ω. So now take γ ∈ π2(M) such that
ω(h(γ )) �= 0 and α ∈ π1(M) such that a(h(α)) �= 0. Classically, we know
that the deviation of the action α · γ from being trivial is detected by the
Whitehead product [α, γ ]:

α · γ − γ = [α, γ ] .
Thus, to show that the action of π1(M) on π2(M) is nontrivial, it is sufficient
to show that the Whitehead product [α, γ ] is nonzero.
The cohomology classes a and ω give a map a × ω : M → K(Z, 1) ×

K(Z, 2) which, composed with ι1 ∪ ι2 : K(Z, 1) × K(Z, 2) → K(Z, 3) yields
(a× ω)∗(ι1 ∪ ι2)

∗(ι3) = a ∪ ω = 0. Here, ιj is the fundamental cohomology
class of K(Z, j). The equality a ∪ ω = 0 then shows that there is a lifting φ

in the following diagram (where the right square is a pullback)

E

��

�� PK(Z, 3)

��
M

a×ω
��

φ

����������������
K(Z, 1) × K(Z, 2)

ι1∪ι2 �� K(Z, 3)

Now, theminimalmodel ofE is apparent:ME = (∧(x, y, z),d)with |x| =
1, |y| = 2, |z| = 2 and only nonzero differential dz = xy. By Theorem 2.56,
the quadratic part of the differential, d1, corresponds to the bracket of
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homotopy Lie algebra elements. In fact, the isomorphism s : πq(�X)⊗Q →
πq+1(X)⊗Q also identifies the bracketwith the classicalWhitehead product,
up to sign. Therefore, Whitehead products may be read off from d1. Thus,
we see that the Whitehead product in π2(E) ⊗ Q is nonzero, [ι̂1, ι̂2] ⊗ Q �=
0, where ι̂1 ∈ π1(K(Z, 1) and ι̂2 ∈ π2(K(Z, 2) are the generators of the
respective homotopy groups. But then any integral multiple of [ι̂1, ι̂2] is
also nonzero as well. Now, since a(h(α)) �= 0 and ω(h(γ )) �= 0, the lift φ
can be used to push the Whitehead product [α, γ ] ∈ π2(M) forward to an
integral multiple of [ι̂1, ι̂2]. Since the latter is nontrivial, so is the former and
we are done. �

The preceding discussion illustrates an important point. Minimal models
may be useful even in the non-nilpotent situation. Minimal models exist
for any path connected space and may be used as intermediate steps in a
rational homotopy analysis as long as the analysis never relies on identify-
ing their homotopy properties with their algebraic properties. For other
approaches to viewing the action of the fundamental group on higher
homotopy geometrically, see Exercise 4.7 and Subsection 9.6.6.

4.7 Appendix: Complex and symplectic linear algebra

Almost complex manifolds or symplectic manifolds are globalizations of
complex or symplectic vector spaces. The bigradation on differential forms
in the complex case or Theorem 4.77 in the symplectic setting are expres-
sions of this philosophy. Here we will remind the reader of some basic facts
about symplectic and complex linear algebra.

4.7.1 Complex structure on a real vector space

From the canonical inclusion R ↪→ C, any C-vector space V inherits the
structure of an R-vector space. Moreover, multiplication by the complex
number i induces an R-linear map, J : V → V , such that J2 = −1. In fact,
this data is sufficient for recovering the complex structure of V and allows
the description of a C-vector space structure with real objects.

Definition 4.101 Let V be a real vector space. A complex structure on V
is an R-linear map, J : V → V, such that J2 = −1. The associated complex
vector space is denoted by (V , J).

Observe that a basis (v1, . . . , vn) of theC-vector space (V , J) corresponds
to the basis (v1, . . . , vn, Jv1, . . . , Jvn) of the R-vector space V . Moreover, if
(V , J) and (V , J′) are two complex vector spaces, an R-linear map f : V →
V ′ is C-linear if and only if we have f ◦ J = J′ ◦ f . Finally, if (V , J) is a
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complex vector space, one defines a complex structure on the dual vector
space, V∗ = HomR(V ,R), by 〈Jv∗, v〉 = 〈v∗, Jv〉, where 〈 , 〉 denotes the
duality between V and V∗.

Example 4.102 First, we describe the usual complex structure on V =
R2n ∼= Cn. An element (x1, . . . ,xn, y1, . . . , yn) of R2n is identified with
(z1, . . . , zn) ∈ Cn, by zj = xj+i yj. The correspondingR-linearmap, J : V →
V , is given by J(x1, . . . ,xn, y1, . . . , yn) = (−y1, . . . ,−yn,x1, . . . ,xn). Rela-
tive to the canonical basis, the matrix associated to J is

J0 =
(
0 −In
In 0

)
.

Thus, the complex linear group, Gl(n,C), may be identified with the sub-
group of the real linear group Gl(2n,R) consisting of matrices which
commute with J0:

Gl(n,C) =
{
S ∈ Gl(2n,R) | S J0 S−1 = J0

}
.

Moreover, the complex linear group embeds in the real linear group by

Gl(n,C) → Gl(2n,R)

A+ i B 
→
(
A −B
B A

)
.

Observe that the set of complex structures on R2n can be identified with

the homogeneous space
Gl(2n,R)

Gl(n,C)
. The class associated with S ∈ Gl(2n,R)

corresponds to the complex structure J = S J0 S−1.

4.7.2 Complexification of a complex structure

Let (V , J) be a complex vector space and let Vc = V ⊗R C denote the
complexification of V . We emphasize that two complex structures are at
play here: the letter i denotes the element ofC as usual while J is the complex
structure on V . An element of Vc can be written z = x+ i y, with x ∈ V and
y ∈ V . Therefore a complex conjugation can be defined onVc by z = x−i y.
We now extend the R-linear map J : V → V to a C-linear map J : Vc →

Vc. This C-linear map has two eigenvalues, i and −i, with corresponding
eigenspaces V1,0 and V0,1 characterized by:

V1,0 = {
z ∈ Vc

∣∣ Jz = i z
} = {

v − i Jv | v ∈ V }
,

V0,1 = {
z ∈ Vc

∣∣ Jz = −i z} = {
v + i Jv | v ∈ V }

.

This gives a decomposition Vc = V1,0 ⊕ V0,1 and complex conjugation
induces an isomorphism V1,0 ∼= V0,1.
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Conversely, let V be a real vector space. Any decomposition of the com-
plexification Vc = V⊗R C into Vc = V1⊕V2 such that V1 ∼= V2, provides
a complex structure on V with V1,0 ∼= V1 and V0,1 ∼= V2. Indeed, observe
that a complex basis ofV1, (a1−i b1, . . . , an−i bn), ai ∈ V , bi ∈ V , produces
a C-basis of V , (a1, . . . , an). The complex structure on V is determined by
J(ai) = bi. If we carry out the same constructions for the complex structure
on the dual, V∗ c = Hom (Vc,C), we obtain:

1. V∗ c = V∗1,0 ⊕ V∗0,1;
2. V∗1,0 = {

v∗ ∈ V∗ c ∣∣〈v∗, v〉 = 0,∀v ∈ V0,1 } = (
V0,1)⊥;

3. V∗0,1 = (
V1,0)⊥.

Denote by ∧Vc the (complex) exterior algebra on Vc. We define a
bigradation on ∧Vc by:

∧p,qVc := ∧pV1,0 ⊗ ∧qV0,1 .

Observe directly from the definitions that:

1. ∧Vc = ∧V1,0 ⊗ ∧V0,1 = ∑
p,q ∧p,qVc;

2. complex conjugation induces a real isomorphism ∧p,qVc ∼= ∧q,pVc;
3. if (e1, . . . , en) is a basis of V1,0, then (e1, . . . , en) is a basis of V0,1 and

∧p,qVc admits the vectors ej1 ∧ . . . ejp ∧ ek1 ∧ . . . ekq as a basis.

4.7.3 Hermitian products

The purpose of this section is to recall the notion of hermitian product and
to see how hermitian products are expressed in terms of real structures.
First, recall the classical definition.

Definition 4.103 Let (V , J) be a complex vector space. A hermitian product
on (V , J) is a map h : V × V → C, such that:

1. for any v′ ∈ V, the map V → C, v 
→ h(v, v′), is C-linear;
2. for any (v, v′) ∈ V × V, we have h(v, v′) = h(v′, v).

Let h be a hermitian product on (V , J). We define S : V ⊗ V → V and
A : V ⊗ V → V by h(v, v′) = S(v, v′) + i A(v, v′), with S(v, v′) and A(v, v′)
real. We check easily that:

1. S is R-bilinear and symmetric; A is R-bilinear and skew symmetric;
2. S(v, v′) = −A(v, Jv′); A(v, v′) = S(v, Jv′);
3. S(v, v′) = S(Jv, Jv′); A(v, v′) = A(Jv, Jv′).

Given anR-bilinear form S such that S(v, v′) = S(Jv, Jv′), we define a skew
symmetric form A by A(v, v′) = S(v, Jv′). Using the fact that h = S+ i A is a
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hermitian product, we can define the notion of inner product on a complex
vector space as follows.

Definition 4.104 An inner product on the complex vector space (V , J) is an
R-bilinear map S : V × V → R such that, for any (v, v′) ∈ V × V:

1. S(Jv, Jv′) = S(v, v′) = S(v′, v);
2. S(v, v) ≥ 0;
3. S(v, v) = 0 if and only if v = 0.

Observe that S(v, Jv) is always 0. Thus, in the case of a finite dimensional
vector space V , one can find an orthonormal real basis for S, of the form
(v1, . . . , vn, Jv1, . . . , Jvn).

Remark 4.105 Let (V , J) be a complex vector space with 〈 , 〉 : V×V → R

a scalar product on the underlying real vector space. We define an inner
product, S, on (V , J) by S(v, v′) = 〈v, v′〉 + 〈 Jv, Jv′〉. Therefore, h(v, v′) =
S(v, v′) + i S(v, Jv′) defines a hermitian product on (V , J).

Example 4.106 The usual complex structure J0 on V = R2n ∼= Cn was
described in Example 4.102. Recall first the usual euclidian product S0 :
R2n × R2n → R,

S0
(
(x1, . . . ,xn, y1, . . . , yn) ,

(
x′
1, . . . ,x

′
n, y

′
1, . . . , y

′
n
)) =

n∑
1

xj x′
j +

n∑
1

yj y′
j,

and its associated skew bilinear form A0 : R2n × R2n → R,

A0
(
(x1, . . . ,xn, y1, . . . , yn) ,

(
x′
1, . . . ,x

′
n, y

′
1, . . . , y

′
n
)) =

n∑
1

x′
j yj −

n∑
1

xj y′
j.

Together, they induce the usual hermitian product on Cn, defined by:

h0((z1, . . . , zn), (z′1, . . . , z
′
n))

= (S0 + i A0)
(
(z1, . . . , zn) ,

(
z′1, . . . , z

′
n
)) =

n∑
1

zj z′j ,

where we have used the usual identification z = x+ i y.
Observe that the set of hermitian products on R2n may be identified with

the homogeneous space
Gl(n,C)

U(n)
. The class associated with S ∈ Gl(n,C)

corresponds to the hermitian product h defined by h(v, v′) = h0(Sv, Sv′).

If S is an inner product on the complex vector space (V , J), we extend
S to the complexification Vc as a C-bilinear form, also denoted by S. We
check easily that S(z, z′) = 0, for any z ∈ V1,0 and z′ ∈ V1,0.
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By definition, the skew symmetric form, associated to S and defined by
A(v, v′) = S(v, Jv′), is an element of ∧2V∗. Since ∧2V∗ is a subspace of
∧2V∗ c, one can see A as an element of ∧2V∗ c. The properties of S written
above and the links between (V , J) and (V∗, J) imply:

A ∈ ∧1,1V∗ c .

4.7.4 Symplectic linear algebra

Symplectic linear algebra deals with the consequences of having a nonde-
generate skew-symmetric bilinear form on a vector space. We have already
seen that skew-symmetric bilinear forms arise in complex linear algebra, so
this hints at a connection between these two areas which comes to fruition
when we globalize symplectic linear algebra to symplectic geometry. A
reference with many more details (and that then moves on to symplectic
topology) is [189].

Definition 4.107 A symplectic vector space (V ,ω) consists of a finite dimen-
sional real vector space V and a nondegenerate bilinear formω : V×V → R

which is skew-symmetric.

Skew-symmetric means that ω(v,w) = −ω(w, v) and nondegenerate means
that ω(v,w) = 0 for all w implies v = 0. Such an ω is called a symplectic
form. The key result about symplectic vector spaces is the following local
version of Darboux’s Theorem 4.77.

Proposition 4.108 Let (V ,ω) be a symplectic vector space. Then there exists
a basis e1, . . . , en, f1, . . . , fn with the property that

ω(ej, fk) = δjk ; ω(ej, ek) = 0 ; ω(fj, fk) = 0,

where δjk is the Kronecker delta. In particular, dimV = 2n is even.

We shall not give the proof of this result here since it is standard (see [189]
for example), but we emphasize that it is the nondegeneracy of ω that is
the key point. This property both starts an inductive construction of the
basis (by choosing any e1 �= 0 and being assured of the existence of f1
with ω(e1, f1) = 1) and allows the induction to continue (because then the
subspace perpendicular to e1 and f1 is the complete annihilator in the dual).
Nondegeneracy of ω also allows us to identify the volume form of the vector
space and this property carries over to the manifold setting. Because it is
essential for understanding symplectic manifolds, we provide a short proof.

Proposition 4.109 A skew-symmetric bilinear form ω on a vector space V
of dimension 2n is nondegenerate if and only if ωn = ω ∧ . . . ∧ ω (n-times)
is a volume form on V.
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Proof Suppose ω is not nondegenerate. Then there is some v ∈ V such that
ω(v,u) = 0 for all u ∈ V . Choose a basis for V with v as a member.
Then, to test ωn as a volume form, we apply it to all elements of the
basis. But this means ω(v,−) appears in every monomial and, therefore,
ωn(v, v2, . . . , v2n) = 0. Hence, it is not a volume form.
Now suppose ω is nondegenerate. By Proposition 4.108, there is a

symplectic basis e1, . . . , en, f1, . . . , fn and

ωn(e1, . . . , en, f1, . . . , fn) =
n∏
1

ω(ej, fj) = 1.

Hence, ωn is a volume form. �

4.7.5 Symplectic and complex linear algebra

Wehave looked at complex linear algebra and symplectic linear algebra, but
how are they related? In the presence of a scalar product, they are virtually
the same. Let V be a real, finite dimensional, vector space endowed with a
scalar product 〈 , 〉 : V × V → R.
Let ω be a symplectic form on V . We define an isomorphism A of V by

ω(v, v′) = 〈v,A(v′)〉. Note that the skew-symmetry and nondegeneracy of ω
imply thatAt = −A. As usual, see [199, page 34], the endomorphismAAt is
diagonalizable with positive eigenvalues

{
λj
}
. Thus, we have an orthogonal

matrixB such thatAAt = BD(λj)B−1. From this, we get the so-called polar
decomposition of A, A = U J, where U = BD(

√
λj)B−1 is symmetric, J is

orthogonal and JU = UJ. Now, from

Jt = At
(
U−1)t = −A

(
U−1)t = −AU−1 = −U J U−1 = −J,

we deduce J−1 = Jt = −J and, therefore, J2 = −1. Hence, J is a complex
structure.
Thus, if (V ,ω) is a symplectic vector space, we can define a complex

structure on V . Observe also that the complex structure J depends on the
choice of the scalar product 〈 , 〉 on V .
Conversely, consider a complex structure J on V . We define an inner

product on V by

S(v, v′) = 〈v, v′〉 + 〈Jv, Jv′〉.
This product satisfies S( Jv, Jv′) = S(v, v′) and from S(v, Jv′) = 〈v, Jv′〉 −
〈Jv, v′〉 = −S( Jv, v′), we see that J∗ = −J where the adjoint is relative to S.
We set ω(v, v′) = S( Jv, v′) and check that

ω(v′, v) = S( Jv′, v) = S( J2v′, Jv) = −S( Jv, v′) = −ω(v, v′).
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Since the form ω is nondegenerate, (V ,ω) is a symplectic vector space.

4.7.6 Generalized complex structure

Let’s now unite complex and symplectic linear algebra. First, note that a
symplectic form ω can be viewed as linear map ω : V → V∗ such that
ωt = −ω. On the other hand, a complex structure is a linear map J : V → V
such that J2 = −1. Now consider the direct sum W = V ⊕ V∗ together
with the evaluation scalar product:

〈v + α, v′ + α′〉 = 1
2
(α(v′) + α′(v)).

We define (see [142]) a generalized complex structure on V to be a complex
structure on W , orthogonal with respect to this scalar product. As we did
before, we decomposeW ⊗ C into eigenspaces asW ⊗ C = W0,1 ⊕W1,0.
If (V , J) is a complex vector space, we setW0,1 = V0,1 ⊕ V∗1,0 and this

gives a generalized complex structure on V of associated matrix:(−J 0
0 J∗

)
.

If ω : V → V∗ is a symplectic form on V , we set W0,1 =
{X − iω(X) | X ∈ V} and this gives a generalized complex structure on V
with associated matrix: (

0 −ωt

ω 0

)
.

Thus, complex and symplectic linear algebras are particular cases of this
more general notion.

Exercises for Chapter 4

Exercise 4.1 Generalize Example 4.2 and prove that the complex Grassmann man-
ifold, Gn+k,k(C), of k-plans in Cn+k is a complex manifold. Hint: [155, page
133].

Exercise 4.2 Show that any oriented surface admits a complex structure. Hint:
[107, page 149].

Exercise 4.3 LetH be a commutative graded algebra with an element ω of degree 2,
satisfying the hard Lefschetz property with respect to ω and Poincaré duality with
respect to ωn. Let α ∈ H2k+1 and β ∈ H2k+1.
(1) Show the existence of an integer j such that βωj is in the complementary

degree of α.
(2) Define 〈α,β〉 by αβωj = 〈α,β〉ωn. Show that 〈−,−〉 defines a symplectic

structure on H2k+1.
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(3) Prove that H2k+1 is even dimensional (see Proposition 4.108).

Exercise 4.4 Give the details of the determination of the Dolbeault model of SO(9)
in Example 4.75. Hint: [228].

Exercise 4.5 Let S1 ��E
p

��B be a principal bundle such that B is a compact
irreducible hermitian symmetric space and the Euler class of p represented by the
Kähler form of B.
(1) Let PH be the primitive cohomology of H(B), see [264, Chapter 5] or [115,

page 122]. Prove that if PH is generated, as algebra, by at most one element, then
the space E is formal. Give an example where PH is generated by two elements and
E is still formal.
(2) Let (∧Y ⊗ ∧Z,D) be a cdga such that

• Y is a vector space of dimension n, concentrated in even degree,
• Z is a vector space of dimension n+ 1, concentrated in odd degree,
• D(Z) ⊂ ∧Y, D(Y) = 0,
• the canonical projection ρ : (∧Y ⊗ ∧Z,D) → (Z, 0) induces 0 in cohomology.
Prove that (∧Y ⊗ ∧Z,D) is not formal. (Observe that we have a pure model as

in Theorem 2.77.)
(3) Show that the space E is not formal if and only if

• B = U(p+ q)/U(p) × U(q), with p ≥ 3 and q ≥ 3,
• or B = SO(2n)/U(n) ∼= Sp(n− 1)/U(n− 1), with n > 5,
• or B = E7/E6 × SO(2).
Hint: Find the list of compact irreducible Hermitian symmetric spaces in [136,

page 518], determine the minimal models and use the first questions.

Exercise 4.6 Show that if M4 and N4 are almost complex 4-manifolds, then
M#N cannot have an almost complex structure. Then show that CP(2)#CP(2) is
c-symplectic, but not symplectic.
Hints: (1) First show that, if P is a closed 4-manifold with almost complex

structure, then

1− b1 + b+ = χ + σ

2

is even, where b1 is the first Betti number, b+ is the number of positive diagonal
entries for the signature form, χ is the Euler characteristic of P and σ is the signature
of P. Note that χ = 1− b1 + b2 − b3 + 1 and σ = b+ − b− with b2 = b+ + b−.
Now, Borel and Hirzebruch showed that, if x is any cohomology class with

x ≡ w2 mod 2, where w2 is the Stiefel–Whitney class, then x2 ≡ σ mod 8. The first
Chern class has p2(c1) = w2, so we calculate the Pontryagin class p1(TM) to be
p1(TM) = −c1(TM⊗ C) = 1+ 2c2 − c21. Apply the Hirzebruch signature formula
to get 2(χ + σ) = c21 − σ = 8�.
(2) Now use this fact and compute 1− b1 + b+ for the connected sum (see, for

instance, [257, Theorem 3.6]).

Exercise 4.7 Prove Proposition 4.100 using Steenrod’s functional cup product. The
definition and properties may be found in [265]. Hint: the key property is that, for
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the Whitehead product map [ιp, ιq] : Sp+q−1 → Sp ∨ Sq and up, uq, up+q−1 the
respective generators of Hp(Sp), Hq(Sq) and Hp+q−1(Sp+q−1),

up ∪[ιp,ιq] uq = −up+q−1.
Now let α ∈ πp(X) and β ∈ πq(X) and represent the Whitehead product [α,β] by

F : Sp+q−1
[ιp,ιq]−→ Sp ∨ Sq

h→ X

where h|Sp = α and h|Sq = β. The related functional cup product is

u ∪F v ∈ Hp+q−1(Sp+q−1) .

Also, u ∪F v ⊂ h∗(u) ∪[ιp,ιq] h∗(v).
If u ∈ Hp(X) is dual to an element h(α), α ∈ πp(X), and v ∈ Hq(X) is dual to an

element h(β), β ∈ πq(X), then h∗(u)(ūp) = u(h∗(ūp)) = u(h(α)) = 1 and similarly
h∗(v)(ūq) = 1 for the dual homology generators ūp and ūq. Thus, h∗(u) = up,
h∗(v) = uq and u ∪F v = h∗(u) ∪[ιp,ιq] h∗(v) = up ∪[ιp,ιq] uq = −up+q−1. Since
up+q−1 �= 0, F = [α,β] �= 0 as well.
Now modify the situation above to treat the case of Proposition 4.100.



5
Geodesics

LetM be a smooth Riemannian manifold. The Riemannian structure of the
manifold is reflected in the form its geodesics take. For instance, we see the
symmetry of the sphere S2 (with the Riemannian structure induced fromR3)
in the great circles that are its geodesics. Moreover, while the differential
geometric structure of a physical system is detected by geodesics (e.g. in
general relativity), the actual physical nature of such a system is seen in its
motions. A beautiful result of Jacobi (see [216, Chapter 8] for instance) says
that the Riemannian metric on the manifold of interest may be modified in a
simple way so that the geometric and physical viewpoints agree; namely, the
motions of the system are along geodesics with respect to the new metric.
Therefore, in some sense, the study of geodesics exemplifies the paradigm
expressing the relationship between mathematics and physics. Of course,
the motions that are most important in physics are the periodic ones, so we
begin by studying the geometric counterpart, closed geodesics.
A geodesic c(t) is closed if there is a real numberT such that c(t+T) = c(t)

and ċ(t + T) = ċ(t) for all t ∈ R. When you have a closed geodesic, then
rotation along the geodesic re-parametrizes the geodesic to produce other
ones. Therefore it is natural to consider only the closed geodesics c(t) and
c′(t) with distinct images. They are then said to be geometrically distinct.
The first natural question about closed geodesics concerns their very

existence on any particular compact Riemannian manifold M. In 1898,
Hadamard proved that each nontrivial conjugacy class of π1(M) contains
a closed geodesic that is the shortest closed curve representing an element
in the conjugacy class. In 1929, Lusternik and Schnirelmann proved that,
on a surface homeomorphic to S2, but with any metric, there exist at least
three simple closed geodesics. Finally, in 1951, Lusternik and Fet [181]
proved that each compact Riemannianmanifold contains at least one closed
geodesic.
The second question is then: How many geometrically distinct closed

geodesics canwe find on a compact manifold?Over the years, computations
suggested the following question.
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Question 5.1 (The closed geodesic problem) Does every compact
Riemannian manifold M of dimension at least two admit infinitely many
geometrically distinct geodesics?

The existence theory of geodesics and closed geodesics on a compact
Riemannian manifold M is based on the calculus of variations for the
energy function on path spaces. Using Morse theory in an infinite dimen-
sional setting, Gromoll and Meyer reduced the closed geodesic problem to
the computation of the cohomology of the free loop space LM = MS1 .
Indeed Gromoll and Meyer proved that the manifold M admits infinitely
many geometrically distinct closed geodesics if the Betti numbers of LM are
unbounded. Now it should be clear how rational homotopy enters the pic-
ture; namely, because it gives a process for computing the minimal model of
LM, and as a consequence, the Betti numbers of LM. Using this approach,
D. Sullivan and M. Vigué-Poirrier proved that, if the cohomology algebra
H∗(M;Q) is not singly generated, thenM admits infinitely many geometri-
cally closed geodesics. We explain all this in detail in the first three sections
of this chapter. Note that the Sullivan and Vigué-Poirrier theorem misses
the fundamental case of the 2-sphere S2. It was not until the early 1990s
that this case was settled affirmatively by the combined work of V. Bangert
[19], J. Franks [99] and N. Hingston [140].
When we know that there exist infinitely many geometrically distinct

closed geodesics, the natural second question is the following.

Question 5.2 (Asymptotic behavior problem) What is the asymptotic
behavior (with respect to T) of the sequence nT consisting of the number
of geometrically distinct closed geodesics of length ≤ T?

Once again, the sequence of Betti numbers of LM provides a solution.
Indeed,M.Gromov proved that for a family of genericmetrics called bumpy
metrics, there are integers a > 0 and b > 0 such that

nT ≥ a · max
p≤bT

dimHp(LM;Q) .

Moreover, Gromov conjectured that

Conjecture 5.3 For rationally hyperbolic manifolds, the sequence nT has
exponential growth.

This conjecture remains essentially open. It has been proved only for some
families of manifolds such as connected sums of manifolds with nonsingly
generated cohomology (see Theorem 5.34). These results will be described
in more detail in Section 5.6.
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In Section 5.7, we briefly describe an important generalization of Gro-
mov’s work. Instead of looking at closed geodesics and the function nT , we
consider geodesics of length ≤ T connecting a point x to a point y. The
behavior of the function analogous to nT is related to the entropy of the
geodesic flow and to the cohomology of certain path spaces. Here, rational
homotopy appears as an important tool for formulating results properly.
In the 1970s, K. Grove initiated a series of works on A-invariant

geodesics. Here we fix an isometry A, and a geodesic γ (t) is called A-
invariant if for some T, γ (t+T) = A(γ (t)) for all t ∈ R. The main question
is then

Question 5.4 (A-invariant geodesic problem) What conditions must be
imposed on a manifold M and on an isometry A to guarantee the existence
of a nontrivial A-invariant geodesic?

Here, “nontrivial” means a geodesic that is not a constant map at a
fixed point of the isometry A. Sections 5.4 and 5.5 are devoted to a study
of A-invariant geodesics. These sections contain the classical results of
Grove, Grove–Halperin and Grove–Halperin–Vigué. We show, in partic-
ular, the existence of infinitely many nontrivial A-invariant geodesics on a
rationally hyperbolic manifold, and the existence of at least one nontrivial
A-invariant geodesic on a rationally elliptic manifold M when the rank of
some homotopy group πk(M) is odd.
Finally, it is an inescapable fact that the cohomology of the free loop

space is related to (and computed by) Hochschild cohomology. Since we
need this relationship in certain proofs, we have recalled the definitions and
basic properties on the bar construction and Hochschild homology and
cohomology in Section 5.9.

5.1 The closed geodesic problem

Let’s now begin our discussion of the closed geodesic problem. We first
formulate it as a conjecture.

Conjecture 5.5 Each compact Riemannian manifold of dimension at least
two admits infinitely many geometrically distinct closed geodesics.

The conjecture above is true when π1(M) has infinitely many conjugacy
classes by the result of Hadamard. Using a different approach, Bangert and
Hingston [20] proved that the conjecture is also true when Z is a subgroup
of finite index in π1(M). In later work, the combined work of V. Bangert
[19], J. Franks [99] and N. Hingston [140] proved that the conjecture is
true for the sphere S2 with any metric.
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Example 5.6 LetM andN be n-dimensional compactmanifoldswith n > 2,
and letM#N be their connected sum. Suppose π1(M) �= 0 and |π1(N)| ≥ 4.
Let x ∈ π1(M), x �= 1, and let y1, y2, z �= 1 ∈ π1(N) be distinct nontriv-
ial elements. Then the elements (xyixyj)nxz belong to different conjugacy
classes in π1(M)∗π1(N). This shows that π1(M#N) = π1(M)∗π1(N) con-
tains infinitely many conjugacy classes. It follows from Hadamard’s result
thatM#N admits infinitely many geometrically distinct closed geodesics.

Let us denote by LM = MS1 the space of continuous maps from S1

to M with the compact open topology and by H1(S1,M) the Hilbert
manifold consisting of absolutely continuous maps from S1 into M with
square integrable derivative. By a result of Klingenberg [154] the inclusion
i : H1(S1,M) ↪→ LM is a homotopy equivalence (see [120]). Because of this
equivalence, we shall abandon the notation H1(S1,M) and simply use LM
even in situations where we obviously are referring to H1(S1,M).
We can therefore consider the energy of a closed curve, E : LM → R,

defined by

E(c(t)) = 1
2

∫ 1

0
〈c′(t), c′(t)〉dt .

Recall now that if W is a Hilbert manifold, and f : W → R is a smooth
map, then m ∈ W is a critical point if ∇(f )(m) = 0. In this case, ∇(E) = 0
produces the Euler–Lagrange equations for the energy functional E. Of
course, these Euler–Lagrange equations are simply the geodesic equations
(see [216, page 441]), so we have the

Theorem5.7 ([154]) The critical points of the energy function of amanifold
are the constant maps and the closed geodesics.

In order to appreciate the significance of this result, let’s see why every
compact manifold must have at least one closed geodesic. The approach we
describe is due to the combined efforts of many mathematicians including
Birkhoff, Morse and Bott. Define

Pn(M) = {(x1, . . . ,xn) ∈ Mn |d(x1,x2)2 + · · · + d(xn,x1)2 ≤ ε }
where d(x, y) denotes the distance from x to y on M and 0 ≤ ε ≤ ε(M).
Here, ε(M) is the particular number (called the injectivity radius) associated
to M such that, for any x and y in M with d(x, y) ≤ ε(M), there exists
a unique minimal geodesic joining x and y. Such an ε(M) always exists
for a compact manifold. Clearly, Pn(M) is compact and every point of
Pn(M) represents a closed geodesic n-gon with corners at the xi. We have an
inclusion j : Pn(M) ↪→ LM (after parametrizing the n-gons with respect to
arclength). Moreover, a theorem of Bott says that, for fixed r and all k ≤ r,
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there exists nr such that, for n ≥ nr,

j# : πk(Pn(M))
∼=→ πk(LM).

From the point of view of homotopy theory then, the Pn(M) approxi-
mate LM better and better as n goes to infinity. Therefore, for homotopy
questions, we have an effective finite dimensional reduction.
Now let’s look at the situation from the viewpoint of critical point theory.

We can define a type of energy function E : Pn(M) → R by

E(x1, . . . ,xn) =
n∑
i=1

d(xi,xi+1)2

where xn+1 = x1. This discretizes the energy functional E described above.
It can be shown that a critical point of E gives rise to a polygon without
corners with sides of equal length; that is, a closed geodesic. Note that the
section s : M → Pn(M) ⊂ LM embeds M as the “trivial” critical points
which are absolute minima for the energy functional E having E = 0. Of
course, we want to find critical points besides these trivial ones and this is
the content of the theorem of Lusternik and Fet.

Theorem 5.8 ([181]) On any compact simply connected smooth manifold,
there exists a nontrivial closed geodesic.

Proof Suppose no critical point of E exists with E > 0. By [66, Theorem
1.17], there is a deformation of Pn(M) into an open neighborhood of M
whichmay be taken as close toM as we desire. In particular, Pn(M) deforms
into a tubular neighborhood of M, which itself deformation retracts onto
M. If H is the total deformation of Pn(M) into M and h = H1, then we
have s ◦ h � idPn(M), where s is the inclusion M ↪→ Pn(M). In particular,
this implies that h# : π∗(Pn(M)) → π∗(M) is injective.
Now suppose the first nonzero homotopy group of M occurs in degree

r. Because πk(�M) = πk+1(M), the splitting πk(LM) ∼= πk(�M) ⊕ πk(M)

says that the first nonzero homotopy group of LM occurs in degree r−1. If
we choose n large enough, then this will also be true for Pn(M). Thus, we
may assume that πt(Pn(M)) = 0 for t < r − 1 and πr−1(Pn(M)) �= 0. The
injectivity of h# then implies that πr−1(M) �= 0 and this is a contradiction
to the assumption that the first nonzero homotopy group occurs in degree
r. Hence, our original supposition is incorrect and a non-trivial critical
point of E exists in Pn(M). Thus, there exists a nonconstant closed geodesic
onM. �

Of course, it is a long way from proving the existence of a single closed
geodesic to showing that a manifold admits an infinite number of closed
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geodesics. The crucial step was taken by Gromoll and Meyer in 1969, so
let’s turn to that now.
The circle acts on LM by rotation along the curves

A : S1 × LM → LM A(t, c)(s) = c(t + s modZ) .

The orbit of a curve, S1(c), is a submanifold of LM. Clearly, two geodesics
c and c′ are geometrically distinct if c′ �∈ S1(c). Note that if c is a critical
point of E, then the same is true for all the points in S1(c).
Relations between critical points of the energy function and the homology

of LM can then be established by adapting Morse theory to the infinite
dimensional case. This gives the following theorem due to Gromoll and
Meyer.

Theorem 5.9 ([117]) LetM be a compact simply connected manifold. If the
sequence of Betti numbers of LM is not bounded, then M admits infinitely
many geometrically distinct closed geodesics.

And this then leads to the main question in the area for which algebraic
models are relevant.

Question 5.10 When is the sequence of Betti numbers of the free loop space
an unbounded sequence?

This question will be answered in Proposition 5.14.

5.2 A model for the free loop space

The Gromoll–Meyer theorem reduces the closed geodesic problem to the
problem of the computation of the cohomology of the free loop space. In
this section we give a procedure to compute the minimal model for the
free loop space LX of a simply connected space X from its minimal model
(∧V ,d).

Theorem 5.11 Let X be a simply connected space with minimal model
(∧V ,d). Then a model for the free loop space, LX, is given by

(∧V ⊗ ∧sV , δ)

with δ(v) = dv and δ(sv) = −sd(v) where s is the derivation defined by
s(v) = sv.
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Proof The space LX is the pullback in the following diagram of fibrations

LX ��

p0
��

X[0,1]

(p0,p1)
��

X
� �� X ×X

where pj(c) = c(j). Denote by i : X → X[0,1] the map that associates to a
point x the constant path at x. The map i is a homotopy equivalence making
the following diagram commutative

X
i ��

� ���
��

��
��

��
X[0,1]

(p0,p1)
��

X ×X

This implies that (p0,p1) and � have the same relative minimal model.
Denote by (∧V1,d) and (∧V2,d) two copies of (∧V ,d). By Example 2.48,

a minimal model of � is given by the multiplication

µ : (∧V1,d) ⊗ (∧V2,d) → (∧V ,d) .
By Example 2.48 again, a relative minimal model of µ is given by the
following commutative diagram

(∧V1,d) ⊗ (∧V2,d)
µ

��

�����
����

����
����

�
(∧V ,d)

(∧V1 ⊗ ∧V2 ⊗ ∧sV ,D)

ϕ

��

where ϕ is a quasi-isomorphism with ϕ(sv) = 0, and whereD(sv)− v2+ v1
is a decomposable element in ∧V1 ⊗ ∧V2 ⊗ ∧sV (for, recall that a
decomposable element in ∧T is an element in ∧≥2T).
By Theorem 2.70 together with the standard pullback description of LX,

we see that a model for LX is given by the tensor product

(∧V ,d) ⊗(∧V1⊗∧V2) (∧V1 ⊗ ∧V2 ⊗ ∧sV ,D) .

The proof of the theorem will follow from the construction of an isomorp-
hism

(∧V ,d) ⊗(∧V1⊗∧V2) (∧V1 ⊗ ∧V2 ⊗ ∧sV ,D) → (∧V ⊗ ∧sV , δ) .
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For this purpose, we give amore explicit construction of the cochain algebra
(∧V1⊗∧V2⊗∧sV ,D). Consider the model (∧V⊗∧V̄⊗∧V̂ ,D) constructed
in Chapter 2 for the definition of left homotopies (Definition 2.18) with
differential

D(v) = dv ,D(v̂) = 0 ,D(v̄) = v̂ ,

and V̄ = sV . This model is equipped with a derivation s satisfying

s(v) = v̄ , s(v̄) = 0 , s(v̂) = 0 .

The commutator θ = sD+Ds is a derivation of degree 0 and the morphism
eθ : (∧V ,d) → (∧V ⊗ ∧V̄ ⊗ ∧V̂ ,D)

is a well-defined morphism of cdga’s. By definition,

eθ (v) = v + v̂ + decomposable .

We then consider the isomorphism of algebras

ψ : ∧ V1 ⊗ ∧V2 ⊗ ∧sV −→ ∧V ⊗ ∧V̄ ⊗ ∧V̂ ,
defined by ψ(v1) = v, ψ(v2) = eθ (v), and ψ(sv) = v̄. We make ψ an
isomorphism of cdga’s by defining D on ∧V1 ⊗ ∧V2 ⊗ ∧sV by the formula

D = ψ−1Dψ .

This differential D then inherits the good properties of D on ∧V1 ⊗ ∧V2 ⊗
∧sV ; that is,D = d on V1 and on V2 andD(sv)−v2+v1 is a decomposable
element.
We now define a morphism of cdga’s

q : (∧V ⊗ ∧V̄ ⊗ ∧V̂ ,D) → (∧V ⊗ ∧sV , δ)
by q(v) = v, q(v̄) = sv and q(v̂) = −sd(v). A simple computation shows
that q(sD+Ds) = 0. We then form the composition q ◦ψ : (∧V1 ⊗ ∧V2 ⊗
∧sV ,D) → (∧V ⊗ ∧sV , δ). By the observation that q(sD + Ds) = 0, we
have q ◦ ψ(v1) = v, q ◦ ψ(v2) = v and q ◦ ψ(sv) = sv. This induces the
promised isomorphism

(∧V ,d) ⊗(∧V1⊗∧V2) (∧V1 ⊗ ∧V2 ⊗ ∧sV ,D)
1⊗(q◦ψ)−−−−−−−→(∧V ⊗ ∧sV , δ).

�

For the sake of simplicity, in the minimal model of the free loop space,
(∧V ⊗ ∧sV , δ), we will write x̄ instead of sx for an element of sV .
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Example 5.12 LetM be the sphere S2. A minimal model for S2 has the form
(∧(x, y),d) with |x| = 2, |y| = 3, dx = 0 and dy = x2. A minimal model
for LM is thus given by the cochain algebra (∧(x, y, x̄, ȳ), δ), with |x̄| = 1,
|ȳ| = 2,

δx = 0, δy = x2, δ(x̄) = 0, δ(ȳ) = −2xx̄.
We can compute the cohomology to be

H∗(LM;Q) = 〈x̄,x, x̄ȳ,xȳ− 2x̄y, x̄ȳ2, . . .〉.
Note that dimHi(LM;Q) = 1 for all i and that all cup products are zero.
Nevertheless, the free loop space of S2 is not formal because there are many
Massey products such as xȳ− 2x̄y.

5.3 A solution to the closed geodesic problem

In the historical development of rational homotopy theory, one of the first
major applications of the theory was the theorem of Vigué-Poirrier and
Sullivan on closed geodesics [261].

Theorem 5.13 If M is a compact simply connected Riemannian manifold
whose rational cohomology algebra requires at least two generators, then
M has infinitely many geometrically distinct closed geodesics.

This theorem is in fact a direct consequence of Theorem 5.14 below
combined with Theorem 5.9.

Proposition 5.14 ([261]) Let M be a simply connected space whose
rational cohomology is finite dimensional. The following conditions are
equivalent.

1. The sequence of rational Betti numbers of LM is unbounded.
2. The cohomology algebra H∗(M;Q) requires at least two generators.
3. The dimension of πodd(M) ⊗ Q is at least two.

Proof If the cohomology H∗(M) is singly generated, then either H∗(M) =
∧x, with x in odd degree, or else H∗(M) = Q[y]/yn. In the first case, the
minimal models ofM and LM are (∧x, 0) and (∧(x, x̄), 0). The Betti num-
bers of LM are either 0 or 1, so they are bounded. In the second case, the
minimal model of M is (∧(y, z),d) with dy = 0 and dz = yn. The minimal
model for LM is thus (∧(y, z, ȳ, z̄), δ)with ȳ in odd degree, z̄ in even degree,
δ(ȳ) = 0 and δ(z̄) = −nyn−1ȳ. Since the ideal generated by z and yn is
acyclic, the complex is quasi-isomorphic to the quotient complex(∧(y, ȳ)/yn ⊗ ∧z̄, δ̄) , δ̄(z̄) = −nyn−1ȳ .
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A standard computation shows that the reduced cohomology of LM is
therefore

∧+(y, ȳ)/(yn, ȳyn−1) ⊗ ∧z̄ .
Once again the Betti numbers are bounded. Observe also that in both cases,
the dimension of πodd(M)⊗Q is one. This shows (1) ⇒ (2) and (3) ⇒ (2).
Suppose now that the cohomology requires at least two generators. We

first prove that the dimension of πodd(M)⊗Q is at least two, i.e. (2) ⇒ (3).
If there is no odd generator, the differential is zero for degree reasons, and
the cohomology is infinite, which is impossible. Suppose there is only one
odd generator y. If dy = 0, then the first even generator is a cocycle, and no
power of it is a coboundary because there is no other odd generator, and
so the cohomology is infinite, which is impossible. Therefore dy is nonzero.
We now order the generators by degree and we obtain

(∧(x1, . . . ,xn, y,xn+1, . . .),d) ,

with |xi| even. Since dy is not a zero divisor in ∧(x1, . . . ,xn), the cohomol-
ogy of (∧(x1, . . . ,xn, y),d) is ∧(x1, . . . ,xn)/(dy) and therefore, the global
cohomology is

∧(x1, . . . ,xn)/(dy) ⊗ ∧(xn+1, . . .) .
If n ≥ 2 the dimension of ∧(x1, . . . ,xn)/(dy) is infinite and the cohomology
is generated by the xi. If n = 1, we must have another generator x2 of
even degree because the cohomology requires at least two generators. Now
d(x2) = 0 because there is no cocycle in Qy · ∧(x1). It follows that the
cohomology is infinite. This proves that we have at least two odd generators.
We finish by proving (2) ⇒ (1). By our discussion above, we can assume

that the model for M contains at least two odd generators. Therefore, let
y1 and y2 be the first two odd generators and denote the generators by
increasing degrees: x1, . . . ,xn, y1,xn+1, . . . ,xr, y2, . . . The differential d is
given on the first generators by polynomials P1, Qi and P2:

dx1 = 0, dx2 = 0, . . . , dxn = 0 ,

dy1 = P1(x1, . . .xn) ,

dxn+1 = y1Q1(x1, . . . ,xn), . . . , dxr = y1Qr(x1, . . . ,xr−1),
dy2 = P2(x1, . . . ,xr)

The ideal J generated by x1, . . .xr is then a differential ideal in theminimal
model of the free loop space (∧V ⊗ ∧sV , δ). The quotient (A, δ) = (∧V ⊗
∧sV , δ)/J is the minimal cdga (A, δ) = (∧(y1, y2, . . .) ⊗ ∧V̄ , δ), where V̄ =
sV as usual. In this quotient, the elements

x1 · · ·xr y1p y2q , p,q ≥ 1
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are cocycles that induce linearly independent classes in cohomology. It fol-
lows that the Betti numbers of the cohomology of (A, δ) are unbounded (see
the loop space analogue in Exercise 5.5). We now apply Lemma 5.16 induc-
tively (beginning with xr) to deduce that the Betti numbers of (∧V⊗∧sV , δ)
are also unbounded. �

Lemma 5.15 Let (A,d) be a connected cdga, y an odd dimensional gener-
ator, and (A,d) → (A ⊗ ∧y,d) a relative minimal model. If the Betti
numbers of (A⊗ ∧y,d) are unbounded, then the same is true for (A,d).
Proof We filter the cdga A⊗∧y by the ideals A≥p⊗∧y. The E2-term of the
associated spectral sequence is H∗(A,d) ⊗ ∧y. Since the spectral sequence
converges to the cohomology of (A⊗ ∧y,d), we deduce that

dimHq(A⊗ ∧y,d) ≤ dimHq(A,d) + dimHq−m(A,d) ,

where m denotes the degree of y. �

Lemma 5.16 Let (∧V ,d) be a minimal model and x be a closed even
dimensional generator of ∧V. If the Betti numbers of the quotient cdga
(∧V/(x), d̄) are unbounded, then the Betti numbers of (∧V ,d) are also
unbounded.

Proof The quotient is quasi-isomorphic to the Sullivan model (∧V⊗∧y,d)
where dy = x. The result follows then directly from Lemma 5.15. �

Example 5.17 Note also that S2 does not fall under the hypotheses of
Proposition 5.14. However, as we mentioned in the introduction, the com-
bined work of V. Bangert [19], J. Franks [99] and N. Hingston [140] led to
a proof of the closed geodesic problem for S2 with any metric.

5.4 A-invariant closed geodesics

The symmetry of a Riemannian manifold is reflected by its isometry group.
Therefore, we can try to mix together the geometric content engendered by
knowledge of the geodesics on a manifold and the symmetry information
underlying the existence of an isometry. To see how to accomplish this, letA
denote an isometry of a compact simply connectedRiemannianmanifoldM.

Definition 5.18 A geodesic γ (t) is called A-invariant if there exists some
T ∈ R such that γ (t + T) = A(γ (t)) for all t ∈ R.

Example 5.19 Let M be the sphere S2 with the usual metric. Denote by A
the antipodal map; then the great circles are A-invariant geodesics. When
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M is a flat torus andA is the involutionA(x, y) = (y,x) then theA-invariant
geodesics are the lines in the square [0, 1]2 that are parallel to the ascending
diagonal.

Let’s denote the interval [0, 1] by I. The natural space to consider for the
study of A-invariant geodesics is the spaceMI

A of paths c : I → M satisfying
c(1) = A(c(0)). Observe thatMI

A is the pullback

MI
A

��

�� MI

(p0,p1)
��

M
(id,A)

�� M ×M

and note that, if A = id, we recover the free loop space LM.
Just as for loop spaces, the space of paths MI has the same homotopy

type as the Hilbert manifold H1(I,M) consisting of absolutely continuous
curves σ : I → M with square integrable derivative. We can then take the
pullback of the diagram

H1
A(I,M) ��

p
��

H1(I,M)

p
��

G(A) �� M ×M

where p(c) = (c(0), c(1)) and G(A) ⊂ M ×M is the graph of the isometry
A. Observe that G(A) is homeomorphic toM. Since p is a submersion, the
Hilbert submanifold H1

A(I,M) has the homotopy type ofMI
A.

In [120], K. Grove extended the classical theory of closed geodesics to
the A-equivariant situation and proved the following.

Theorem 5.20 ([120]) The critical points of the energy function
H1
A(I,M) → R are the closed A-invariant geodesics and the constant maps

at fixed points.

Note that the set of fixed points for A, FixA, is a disjoint union of totally
geodesic submanifolds because, when A(x) = x, A∗ is the identity when
restricted to the tangent space of the submanifold, and expx◦A∗x = A◦expx.
The starting point of the study ofA-invariant geodesics is the strong relation
between FixA andMI

A:

Theorem 5.21 ([120]) If FixA = ∅, then M has an A-invariant geodesic. If
FixA �= ∅, and M has no nontrivial A-invariant geodesic, then the natural
injection FixA → MI

A is a homotopy equivalence.
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We use Theorem 5.21 to obtain a link between the existence of A-
invariant geodesics on M and algebraic invariants of M such as homotopy
groups or the Euler characteristic. In order to obtain explicit criteria for the
existence of A-invariant geodesics, we must study certain properties of the
fibration

�M → MI
A → G(A) .

If we replaceA by an isometry that is homotopic to it, then the homotopy
type of the fibration does not change. This is interesting because the isome-
tries form a compact Lie group whose elements of finite order are dense
[205]. Therefore, A is homotopic to an element of finite order.We can thus
suppose without loss of generality that A has finite order, say Ak = 1, for
some integer k.

Let’s first recall the isomorphism θ : πq(M)
∼=→ πq+1(�M). Denote by

x0 the base point of M, x̄0 the constant loop at the base point and PM
the subspace of MI consisting of paths c starting at x0. Each continu-
ous map c : (Iq, ∂Iq) → (M,x0) lifts into a map c̃ : Iq → PM defined
by c̃(t1, · · · , tq)(t) = c(t1, · · · , tq−1, ttq). By restriction to Iq−1 × {1}, this
gives the isomorphism θ : πq(M) → πq−1(�M). The inverse map θ−1 is
defined by

θ−1(c)(t1, · · · , tq) = c(t1, · · · , tq−1)(tq) .
Now, in the fibration �M → MI p→ M × M, p(c) = (c(0), c(1)), each

continuous map c = (c1, c2) : (Iq, ∂Iq) → (M × M, (x0,x0)) lifts into the
map

c̃1 · c̃2 : Iq → MI ,

where · denotes composition of paths and c̄1 the path inverse to c1. Let δM
denote the connecting map in the homotopy long exact sequence for the
fibration p, δM(c) = c̃1 · c̃2 restricted to Iq−1 × {1}. This implies that the
composition

πq(M) ⊕ πq(M)
δM−→ πq−1(�M)

θ−1−→ πq(M)

maps (a,b) to b− a when q > 1 and to b · a−1 when q = 1.
Now denote by ϕ : M → G(A) the homeomorphism defined by ϕ(m) =

(m,A(m)). We then have:

Lemma 5.22 Let δ : πq(G(A)) → πq−1(�M) be the connecting map of the
fibration �M → MI

A → G(A). Then the composition

ρ : πq(M)
πq(ϕ)−→ πq(G(A))

δ−→ πq−1(�M)
θ−1−→ πq(M)
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satisfies ρ(x) = π1(A)(x) · x−1 for q = 1 and ρ(x) = πq(A)(x) − x when
q ≥ 2.

Proof The proof follows directly from the above computations and the
commutativity of the following pullback diagram (where G(A) → M ×M
is the natural inclusion)

�M
= ��

��

�M

��
MI
A

��

��

PM

p

��
G(A) �� M ×M

�

Theorem 5.23 ([121]) Let M be a compact connected Riemannian mani-
fold. Then M has a nontrivial A-invariant geodesic if one of the following
is satisfied.

1. πq(MI
A) �= 0 for some q ≥ 1.

2. πq(A) − id is not an isomorphism for some q ≥ 2.
3. π1(A)(x) = x for some x ∈ π1(M).
4. rankπk(M) is odd for some k ≥ 2.
5. π1(M) is finite and Ap

m
is homotopic to the identity for some prime p

and some integer m.
6. FixA is not a connected set and M is simply connected.

Proof Suppose there is no nontrivial A-invariant geodesic. Then, by
Theorem 5.21, FixA �= ∅. Furthermore, FixA has no component of dimen-
sion at least one because, otherwise, this component would contain a
nontrivial closed geodesic – that is, an A-invariant geodesic. Therefore,
sinceM is compact, FixA is a finite set that has the homotopy type ofMI

A.
In particular, the homotopy groups πq(MI

A) = 0 for q ≥ 1 and the connect-
ing map is an isomorphism for q ≥ 1. By the description of the connecting
map in Lemma 5.22, this proves the assertions (1), (2) and (3).
(4) follows from the fact that, if B is an automorphism of finite order

of some Zm, with m odd, then id − B is not an isomorphism. In fact, B
is represented by a matrix with integer coefficients, which means that the
roots of the characteristic polynomial are algebraic integers. On the other
hand, since a power of B, say k, is the identity, the eigenvalues are kth
roots of unity. Moreover, since the matrix has integer coefficients, if eiθj is
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an eigenvalue, then its conjugate e−iθj is too. Since m is odd, at least one
eigenvalue is a real number. If 1 is an eigenvalue, then clearly id − B is
not an automorphism. So suppose that −1 is an eigenvalue and id − B is
an isomorphism. The product

∏
(1− eiθj)(1− e−iθj) is an algebraic integer

since it is a product of algebraic integers. On the other hand, this product
is equal to det(id−B)/2 and, therefore, ±1/2 must be an algebraic integer.
But this is impossible because a rational number that is an algebraic integer
must be an integer.
(5) The universal covering is a compact manifold and therefore for some

q ≥ 2 the rank of πq(M) is nonzero. Consider the morphism id − πq(A)

on πq(M)/torsion. Recall that, over the field Fp with p elements, we have
(x−y)p = xp−yp. Therefore since πq(M) is abelian and p is a prime number,
we have

(id− πq(A))p
m = id− (πq(A))p

m + pB

for some B. Since (πq(A))p
m = id, we see that id− πq(A) is not an isomor-

phism on πq(M)/torsion. Therefore, id − πq(A) is not an isomorphism at
all and we now use (2).
(6) SinceM is simply connected, the spaceMI

A is connected and, therefore,
cannot have the homotopy type of FixA. �

Grove and Halperin used this result to obtain an existence theorem for
A-invariant geodesics on a compact rationally elliptic manifold.

Theorem 5.24 ([122]) Let M be a compact simply connected rationally
elliptic Riemannian manifold. If M has no nontrivial A-invariant geodesic,
then

1. The dimension n is even, and, if χ(M) �= 0, n is congruent to 0modulo 4.
2. The Euler–Poincaré characteristic is the square of another integer.

Proof (1) Let ri = rank πi(M). Recall that the dimension n of the man-
ifold is a formal consequence of the ranks of the homotopy groups (see
Theorem 2.75):

n =
∑
q

(2q− 1) · (r2q−1 − r2q) .

Since, by (4) of Theorem 5.23, all the ranks are even, we see that n is also
even. Moreover when χ(M) �= 0, then χπ(M) = 0, so

∑
q r2q−1(M) =∑

q r2q(M) and therefore n is congruent to 0 modulo 4.
(2) When χ(M) = 0, then χ(M) is a square. We can thus suppose that

χ(M) > 0, so that χπ(M) = 0 (Theorem 2.75). Recall from Theorem 2.79
that the Poincaré series of M and the ranks of its homotopy groups are
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related by ∑
q

dim Hq(M;Q) tq =
∏
i

(1− t2i)r(2i−1)−r2i .

Decompose 1− t2i in the form 1− t2i = (1+ t)(1− t + t2 − · · ·  − t2i−1).
Then, since

∑
i r2i−1 − r2i = 0, we have

∏
i(1− t2i)r2i−1−r2i = ∏

i(1+ t)r2i−1−r2i
∏
i(1− t + · · · − t2i−1)r2i−1−r2i

= ∏
i(1− t + · · ·  − t2i−1)r2i−1−r2i .

Therefore taking the value at −1, we obtain

χ(M) =
∏
i

(2i)r2i−1−r2i .

Since the ranks rj are even, we deduce that χ(M) is a square. �

Corollary 5.25 Let A be an isometry of a compact simply connected ratio-
nally elliptic Riemannian manifold M. If either the dimension n is odd or
the Euler–Poincaré characteristic is not a square, thenM admits a nontrivial
A-invariant geodesic.

There are othermanifolds that have the property that for any Riemannian
metric, every isometry admits a nontrivial invariant geodesic. For instance
Papadima has proved that this is the case for the homogeneous space G/K
when K is a maximal torus (see [221, Theorem 1.4(i)]), or G is simple (see
[222, Corollary 1.4(i)]).
It is quite easy to compute a minimal model for the space MI

A because
MI
A is the pullback of the following diagram of fibrations

MI
A

��

�� MI

(p0,p1)
��

M
(1,A)

�� M ×M

Example 5.26 WhenM is the sphere S2 and A the antipodal isometry, then
A induces multiplication by −1 on π2(S2), so a model for (1,A) is given by

ϕ : (∧(x, y,x′, y′),d) → (∧(x, y),d)

with d(x) = d(x′) = 0, d(y) = x2, d(y′) = x′2, ϕ(x) = x, ϕ(x′) = −x and
ϕ(y) = ϕ(y′) = y. A model for MI

A is thus obtained by taking the pushout
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in the following diagram (see Theorem 2.70)

(∧(x, y,x′, y′, x̄, ȳ),d)

(∧(x, y),d) (∧(x, y,x′, y′),d)
ϕ

��

j

��

In this diagram j is the inclusion and d(x̄) = x−x′, d(ȳ) = y−y′−xx̄−x′x̄.
It follows that a model (not minimal) forMI

A is given by

(∧(x, y, x̄, ȳ),D) , D(x̄) = 2x ,D(ȳ) = 0 .

This space has the rational homotopy type of S3×�S3, and is very different
from LS2. For instance, H1(LS2;Q) is non-zero, but H1((S2)IA;Q) = 0.

Since we can take the isometry A to be of finite order, the cyclic group
G generated by A acts on M. Therefore, Theorem 3.26 implies that the
manifold M admits a G-equivariant minimal model (∧V ,d). This means
that A acts on V and that the action is extended in a multiplicative way
to ∧V . In particular, V decomposes as VA ⊕ J where VA is the subvector
space generated by the vectors that are invariant underA, and J is the sum of
the eigenspaces corresponding to the eigenvalues different from 1. Since the
model is equivariant, we also have d(J) ⊂ ∧VA⊗∧+J. Let (∧VA, d̄) denote
the quotient of (∧V ,d) by the differential ideal generated by J. Therefore the
ideal I generated by J and sJ in themodel of the free loop space (∧V⊗∧sV , δ)
is a differential ideal, and we can form the quotient cdga (∧VA⊗∧s(VA), δ̄),
where δ̄(sx) = −sd̄(x).
Lemma 5.27 The cdga (∧VA ⊗ ∧s(VA), δ̄), where δ̄(sx) = −sd̄(x) is the
minimal model for MI

A.

Proof Following the steps in the construction of the minimal model for
the free loop space given in Section 5.2, we give a natural G structure to
(∧V ⊗ ∧V̄ ⊗ ∧V̂ ,D), by g · v̄ = g · v and g · v̂ = ĝ · v. The isomorphism of
algebras ψ : ∧V1 ⊗ ∧V2 ⊗ ∧sV → ∧V ⊗ ∧V̄ ⊗ ∧V̂ induces a G-structure
on (∧V1 ⊗ ∧V2 ⊗ ∧sV ,D). As in the nonequivariant case, a relative model
for (p0,p1) is given by the inclusion

(∧V1 ⊗ ∧V2,D) ↪→ (∧V1 ⊗ ∧V2 ⊗ ∧sV ,D) .

A Sullivan model forMI
A is then given by the tensor product

(∧V ⊗ ∧sV , δA) = (∧V ,d) ⊗(∧V1⊗∧V2,D) (∧V1 ⊗ ∧V2 ⊗ ∧sV ,D) ,

where the structure of (∧V1 ⊗ ∧V2)-module on (∧V ,d) comes from the
morphism (1,A) : (∧V1,d) ⊗ (∧V2,d) → (∧V ,d).
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We extend the coefficient field to C and we take a basis of J formed
by eigenvectors x with eigenvalue λx �= 1. In this case δA(sx) − (λxx − x)
is a decomposable element, which shows that the ideal I is acyclic. The
commutative differential graded algebra (∧V⊗∧sV , δA) is therefore quasi-
isomorphic to the quotient

(∧VA ⊗ ∧s(VA), δ̄A) = (∧VA, d̄) ⊗(∧VA1 ⊗∧VA2 ) (∧VA
1 ⊗ ∧VA

2 ⊗ ∧s(VA), D̄) .

This cdga is the minimal model of the free loop space on a space whose
minimal model is (∧VA, d̄). This proves the lemma. �

Corollary 5.28 LetMbe a compact simply connectedRiemannianmanifold
and A an isometry. If for some q, (πq(M) ⊗ Q)A �= 0, then M admits a
nontrivial A-invariant geodesic.

Proof The spaceMI
A has model (∧VA ⊗ ∧s(VA), δ̄) by Lemma 5.27. Since

(πq(M)⊗Q)A is dual to (Vq)A, we have πq(MI
A) �= 0 and the result follows

from Theorem 5.23. �

5.5 Existence of infinitely many A-invariant geodesics

A result of Tanaka extends the Gromoll–Meyer Theorem and defines a
bridge between the existence of infinitely manyA-invariant closed geodesics
and the homology ofMI

A.

Theorem 5.29 ([247]) Let M be a compact simply connected Rieman-
nian manifold. If the Betti numbers of MI

A are unbounded, then M admits
infinitely many geometrically distinct A-invariant geodesics.

We now can use the minimal model described in Lemma 5.27 to give a
criterion for the Betti numbers ofMI

A to be unbounded.

Theorem 5.30 ([123]) Let M be a simply connected compact Riemannian
manifold, let A be an isometry, and let (π∗(M)⊗Q)A denote the A-invariant
part of rational homotopy. If dim (πodd(M) ⊗ Q)A ≥ 2, then the Betti
numbers of MI

A are unbounded, and M admits infinitely many nontrivial
geometrically distinct A-invariant geodesics.

Proof It follows from the description of the minimal model of MI
A in

Lemma 5.27 thatMI
A has the rational homotopy type of the free loop space

on a space whose rational homotopy is (π∗(M)⊗Q)A. We then see from the
Sullivan–Vigué theorem (Proposition 5.14) that the Betti numbers ofMI

A are
unbounded. We then apply Tanaka’s Theorem 5.29 to infer the existence
of infinitely many geometrically distinct A-invariant geodesics. �
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Theorem 5.31 ([122]) Let M be a simply connected compact Riemannian
manifold, and let A be an isometry. If M is rationally hyperbolic, then
the Betti numbers of MI

A are unbounded, and M admits infinitely many
geometrically distinct A-invariant geodesics.

Proof Let (∧V ,d) be the model of a space of finite rational category (Def-
inition 2.34) and suppose A is an automorphism of (∧V ,d) of finite order
k. Then we will prove that VA is infinite dimensional and (∧VA, d̄) also has
finite category.
Since (∧VA, d̄) is a quotient of (∧V ,d), the second assertion follows

from Theorem 2.81. By Theorem 2.82 this will imply that (VA)odd is also
infinite dimensional. This means that πodd(M)⊗Q contains infinitely many
invariant elements. We then apply Theorem 5.30 to infer the existence of
infinitely many geometrically distinct A-invariant geodesics.
We extend the coefficient field to C. We suppose Ak = 1 and we first

give the proof when k is a prime number p. Then we will only have to

write k = k′p where p is a prime number. We deduce that VAk
′
is infinite

dimensional and by induction that VA is infinite dimensional.
Therefore, consider the case k = p. Since the category of (∧V ,d) is finite,

by Theorem2.82, there is some integerN such that for each α ∈ π∗(�M)⊗Q

in degree > N, there is β with

adm(α)(β) = [α, [α, . . . , [α,β] . . .]] �= 0 for all m .

We can suppose that α and β are eigenvectors of A having respective eigen-

values λq and λr with λ = e
2π i
p . When mq+ r ≡ 0 (mod p), then adm(α)(β)

is an eigenvector with eigenvalue 1. Since we can do this for all α andM is
hyperbolic, this proves that VA is infinite dimensional. �

5.6 Gromov’s estimate and the growth of
closed geodesics

Once we know that manifolds have many closed geodesics, we can start
to study the exact nature of the geodesics. A first thing to ask is whether
the growth rate of the number of geodesics is understandable in terms of
length, say. With this in mind, letM be a Riemannian manifold and denote
by nT the number of geometrically distinct closed geodesics of length less
than or equal to T. The behavior of the sequence nT is once again related
to the Betti numbers of the free loop space, bi(LM). An important result
on nT was obtained by Gromov for bumpy metrics, so let’s review this
notion now.
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First, recall fromMorse theory that, for a smooth function f : W → R on
a manifoldW , a submanifold N is called a nondegenerate critical subman-
ifold ifN is composed of critical points and if the Hessian is nondegenerate
at each point in the direction normal to N. We are interested in certain
submanifolds of LM; namely, recall that, for a closed geodesic c : S1 → M
and an element of the circle t ∈ S1, we obtain a new (but not geometrically
distinct) closed geodesic c̃ defined by c̃(s) = c(s+ t). The circle S1 therefore
acts on any such c to give a submanifold of LM, S1(c).

Definition 5.32 A metric is called bumpy if for each critical point c of the
energy function, the manifold S1(c) is a nondegenerate critical submanifold
of LM.

In fact, this is a generic condition. Indeed, as shown in [12], for each mani-
fold, the set of bumpymetrics is dense in the Frechet space of all the possible
metrics onM. The theorem of Gromov, improved by Ballmann and Ziller,
can now be stated.

Theorem 5.33 ([18], [119]) Let M be a simply connected compact man-
ifold. Then for any bumpy metric and any field lk, there exists a > 0 and
c > 0 such that

nT ≥ a ·max
p≤cT

dim Hp(LM; lk) .

Proof sketch The idea ofGromov’s proof is the following.Denote by (LM)T
the subspace of LM consisting of curves of length less than or equal to T.
Let d(T) be the maximal integer d such that, for i = 0 . . . ,d, the inclusion
(LM)T ↪→ LM induces a surjective map in lk-homology in degree i. Gromov
then proved that there are constants c and C depending only on the mani-
fold such that cT ≤ d(T) ≤ CT. Now, when the metric is bumpy, Morse
theory shows that (LM)T has the homotopy type of a CW complex with
the number of cells in degree p equal to the number of closed geodesics
of length less than or equal to T and with (Morse) index p. Therefore
the number of closed geodesics of length ≤ T, nT , satisfies the following
inequalities.

nT ≥
d(T)∑
i=1

bi(YT) ≥
d(T)∑
i=1

bi(LM) ≥
cT∑
i=1

bi(LM).

�

Moreover, Gromov conjectured that, for almost all manifolds M, the
sequence nT has exponential growth. One important result in this direction
is due to P. Lambrechts.
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Theorem 5.34 ([164]) Let M and N be simply connected compact mani-
folds of the same dimension n and let P be their connected sum, P = M#N.
Suppose that, for some field lk, H∗(M; lk) is not singly generated as an alge-
bra and H∗(N; lk) is not the cohomology of a sphere. Then the sequence nT
(for P) has exponential growth.

Remark 5.35 When π1(M) and π1(N) are not finite, then by Example 5.6,
M#N admits infinitely many geometrically distinct closed geodesics. Theo-
rem 5.34 is a generalization of that result to the case when the manifolds
are simply connected.

Although the result of Lambrechts is true for any field, we will restrict
ourselves to a proof in the rational setting. First, let’s briefly recall the con-
struction of the model of the connected sum AM#N (also see Example 3.6).
Let (∧V ,d) and (∧W ,d) be the minimal models for manifoldsM and N of
the same dimension n. Denote by S a complement of the cocycles in degree
n in ∧V and by I the acyclic differential ideal I = S ⊕ (∧V)>n. We denote
by AM = (∧V)/I the quotient of ∧V by the acyclic ideal. Since I is acyclic,
the quotient homomorphism is a quasi-isomorphism (∧V ,d) → AM . We
do the same for N to obtain a (nonminimal) model AN for N. Denote by
uM and uN cocycles in degree n representing the fundamental cohomology
classes in AM and AN . We deduce from Example 3.6 that a model for the
connected sumM#N is given by

AM#N = ((AM ⊕Q AN) ⊕ Q · z,d) with d(z) = uM − uN .

We will compute the cohomology of the free loop space on M#N by
usingHochschild homology.Hochschild homology is defined in Section 5.9,
where we recall the fundamental isomorphism

H∗(L(M#N);Q) ∼= HH∗(APL(M#N)) .

Since Hochschild homology transforms quasi-isomorphisms of differential
graded algebras into isomorphisms, we deduce the isomorphism

H∗(L(M#N);Q) ∼= HH∗(AM#N) .

The proof of Lambrechts’s theorem is nowa direct corollary of the following
proposition.

Proposition 5.36 The sequence dimHHq(AM#N) in Hochschild homology
has exponential growth.

Proof Let x and x′ be two indecomposable elements in A<n
M that are cocy-

cles whose cohomology classes are linearly independent, and let y be an
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indecomposable element in A<n
N that is a cocycle whose cohomology class

is nontrivial. Take r ≥ 1, z = (z1, . . . , zr) with zi = x or x′, and

az = [z1|y|x|y|z2|y|x|y| · · · |zi|y|x|y| · · · |zr|y|x|y|x′|y|x′|y] ∈ Bq(AM#N) ,

with q = 4r+4.Consider the action of the cyclic groupZq on theHochschild
complex Bq(AM#N) defined by τ • a[a1| · · · |aq] = a[a2| · · · |aq|a1].
Lemma 5.37 For each z = (z1, . . . , zr), there are integers ε1, . . . , εq such
that

〈az〉 =
q−1∑
i=0

(−1)εiτ i • az

is a cocycle in B∗(AM#N).

Proof Suppose that a1, . . . , aq are elements of positive degree such that
aiai+1 = 0 for i = 1, . . . ,q − 1 and aqa1 = 0. Put a = [a1| · · · |aq]. Define
θi = |ai| + (|ai| + 1)(

∑
j �=i |aj|), ε0 = 1 and εi = 1 + εi−1 + θi. Then a

straightforward computation shows that

q−1∑
i=0

(−1)εiτ i • a

is a cocycle. The argument applies in particular to az. �

Now, returning to the proof of Proposition 5.36, since (AM#N)0 = Q,
the augmentation ideal I is isomorphic to (AM#N)+. We denote by S a
sub-vector space of I containing the decomposable elements which is a
complement to the subspace L generated by x,x′ and y. Then the space

J = I ⊗ T(sI) +
∞∑
k=0

k∑
i=1

AM#N ⊗ ((sI)⊗i ⊗ (sS) ⊗ (sI)k−i−1)

is a sub-complex of B∗(AM#N) and the quotient complex is (T(sL), 0).
Denote by q : L → Qx′ the projection with kernel the subspace gener-
ated by x and y. The map 1⊗ . . . ⊗ 1⊗ sq⊗ 1⊗ sq⊗ 1 then projects each
component (sL)⊗q to (sL)q−4 ⊗ sx′ ⊗ sL⊗ sx′ ⊗ sL.
Now, the 2r classes 〈az〉 project in (sL)q−4⊗sx′ ⊗sL⊗sx′ ⊗sL to linearly

independent classes (because the projections are linearly independent and
the differential is zero). Since the degree of 〈az〉 is less than or equal to
(4r + 4)n, where n is the dimension of the manifolds, we have obtained a
sequence of classes that grows exponentially. �
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5.7 The topological entropy

So far in this chapter, we have used models to elucidate the nature of
geodesics on manifolds. Here we want to describe a kind of converse
approach due to G. Paternain (see [223] and [224] for all the results of
this section). More explicitly, Paternain shows that certain constraints on
the geodesic flowof amanifoldM entail consequent constraints on the ratio-
nal homotopy type of M. We then see that the information flow between
geometry and topology is two-way.
LetMn be a closed (i.e. compact without boundary) smooth n-manifold.

Define a flow φ : SM× R → SM on the sphere bundle SM associated to the
tangent bundle TM by

φt(x, v)
def= φ(x, v, t) = (γv(t), γ̇v(t))

where v is a unit tangent vector at x ∈ M and γv is the unique unit speed
geodesic on M starting at x in the direction v. This is the geodesic flow on
M. For each T > 0, x̂, ŷ ∈ SM, define a distance function,

dT(x̂, ŷ) = max
0≤t≤T

d(φt(x̂),φt(ŷ)),

where d(−,−) is the distance function onM given by the Riemannian met-
ric. Because M is compact, it makes sense to ask, what is the minimum
number of balls of size ε with respect to dT that are needed to cover SM?
If this number is denoted by NT

ε , then we can measure the relative growth
of this quantity by defining

h(φ, ε) = lim sup
T→∞

1
T
log(NT

ε ).

The function ε → h(φ, ε) is monotone decreasing so the following definition
makes sense.

Definition 5.38 The topological entropy of the flow φ is defined to be

htop(φ) = lim
ε→0

h(φ, ε).

Because the geodesic flow depends only on the Riemannian metric g, the
topological entropy htop(φ) of the geodesic flow φ associated to g is denoted
by htop(g).

Topological entropy, as its name indicates, is a measure of the dynamical
complexity of the flow. When htop(φ) > 0, we see chaos in the orbit struc-
ture of φ. Of course, the definition of topological entropy applies to any
flow, but it is the geodesic flow which seems to hold within it homotopical
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information. A result of A. Manning (see the discussion in [224, Chapter
5] and Section 6.1 for the definition of sectional curvature secM) says that,
for −κ ≤ secM ≤ κ with respect to a metric g,

htop(g) ≤ (dim (M) − 1)
√
κ.

In particular, flat manifolds have htop(g) = 0.
It is perhaps not surprising that the entropy of the geodesic flow is related

to the growth in the number of geodesics joining two points when length
is increased. Indeed, a result of Mañé characterizes htop(g) in this way,
showing that entropy is truly a manifestation of the underlying Rieman-
nian structure alone. With this in mind, let nT(x, y) denote the number of
geodesic segments from x ∈ M to y ∈ M of length ≤ T with respect to the
metric g. More precisely, for fixed x ∈ M, let DTM = {(x, v) ∈ TxM | |v| ≤
T} and define

nT(x, y) = #{exp−1(y) ∩DTM},
where expx : TxM → M is the exponential map. (Note that the definition
of nT(x, y) just says that you count the number of vectors v of length ≤ T
such that expx(v) = y. Two vectors can be collinear and counted as distinct
if they have different lengths.1) Then we have (see [224, Corollary 3.22],
for instance)

Theorem5.39 The topological entropy htop(g) obeys the following inequal-
ity: for fixed x ∈ M,

htop(g) ≥ lim sup
T→∞

1
T
log

(∫
M
nT(x, y)dy

)
.

This result is proved by using a theorem of Yomdin which shows that the
relative growth rate of volume under the geodesic flow is majorized by
topological entropy. The inequality in Theorem 5.39 allows us to relate the
algebraic topology of M to topological entropy via the following result of
M. Gromov (generalizing his result for closed geodesics).

Theorem 5.40 There exists a constant C > 0 such that, for fixed x, y ∈ M,

nT(x, y) ≥
[C(T−1)]∑
i=1

bi(�M),

where bi denotes the ith Betti number and [−] denotes the greatest integer
function.

1 Thanks to Gabriel Paternain for making this point clear to us.
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The ideas behind this result are very similar to what we did leading up
to Theorem 5.7. The energy functional E may be defined on the space of
paths inM from x to y, �M(x, y) by

E(c(t)) = 1
2

∫ 1

0
〈c′(t), c′(t)〉dt . for c ∈ �M(x, y),

and it can be shown that the critical points of E are geodesics joining x and
y. Furthermore, these critical points are nondegenerate, so Morse theory
can be applied. In fact, as usual, Morse theory is applied to “finite pieces”
of loop spaces by defining, for example, �T−

M (x, y) = E−1(−∞,T2/2) and
proving that critical points of E correspond to geodesic segments of length
less thanT. TheMorse inequalities say that the sumof the Betti numbers to a
given degree are majorized by the number of critical points up to that index.
Furthermore, Morse theory tells us that, for a closed Riemannian manifold
M and nonconjugate points x, y ∈ M (see Exercise 5.4), �M(x, y) has the
homotopy type of a countable CW-complex with one cell of dimension k
for each geodesic from x to y of index k.
Recall that y is conjugate to x along a geodesic α with α(0) = x if the

exponential map expx : TxM → M has expx(tA) = α(t) and y is a critical
value for expx(tA). Of course, α is a critical point for the energy E, so we
can also consider the Hessian of E (in a suitable sense) at α. The dimension
of the nullspace of this Hessian is called the multiplicity of the conjugate
point y. Now, the index of a geodesic from x is the index of the Hessian of
the energy (i.e. the maximum dimension of a subspace on which the Hessian
is negative definite) and this is the number of conjugate points to x along the
geodesic (counted with multiplicities). All of these concepts may be found
in [195].
The final thing to notice is that �M(x, y) has the homotopy type of the

ordinary loop space �M. To see this, observe that both �M and �M(x, y)
are fibers of the “smooth” path space (Serre) fibration p : P(M) → M,
where

P(M) = {α : I → M α(0) = x, and α is smooth}, p(α) = α(1).

Namely, �M = p−1(x) and �M(x, y) = p−1(y). Therefore, since fibers
of a fibration have the same homotopy type, we have �M � �M(x, y).
Alternatively, if γ is a path from x to y, then composition with γ and
with the inverse path γ̄ gives inverse homotopy equivalences between
�M and �M(x, y). In particular, the Betti numbers of �M(x, y) are the
same as those of �M. These identifications then give the inequality of
Theorem 5.40. Note the following immediate application (due to Serre;
see [236]).
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Theorem 5.41 If Mn is a closed simply connected Riemannian manifold
and x, y ∈ M are nonconjugate points, then

lim
T→∞

nT(x, y) = ∞.

Proof Suppose limT→∞ nT(x, y) is finite. Then, by Theorem 5.40,�M(x, y)
has the homotopy type of a finite complex. Now, since Hn(M;Q) �= 0,
the minimal model (∧V ,d) is nontrivial and contains a generator of odd
degree because, otherwise, the dimension ofH∗(M;Q) is infinite. Therefore,
πk−1(�M)⊗Q = πk(M)⊗Q �= 0 for some odd integer k. Then the minimal
model of �M has an even degree generator u. Since the differential of the
model of �M is zero, we see that us is a nontrivial cocycle for all s ≥ 0, and
this contradicts the finiteness of �M(x, y) � �M. �

Now, let’s return to entropy and combine the estimates of Theorems 5.39
and 5.40 to see how properties of the geodesic flow on a manifold serve to
constrain its homotopy type.

Theorem 5.42 ([223, Theorem 3.2]) If (M, g) is a simply connected closed
Riemannian manifold with htop(g) = 0, then M is rationally elliptic.

Proof By Theorem 5.40, we have nT(x, y) ≥ ∑[C(T−1)]
i=1 bi(�M). If we

integrate overM, take lim sup 1
T log and apply Theorem 5.39, we obtain

htop(g) ≥ lim sup
T→∞

1
T
log

(∫
M
nT(x, y)dy

)

≥ lim sup
T→∞

1
T
log

⎛⎝vol(M)

[C(T−1)]∑
i=1

bi(�M)

⎞⎠ .

By hypothesis, htop(g) = 0, so we must have

lim sup
m→∞

1
m
log

(
m∑
i=1

bi(�M)

)
= 0.

But this means that the sum of the Betti numbers of the loop space grows
sub-exponentially. By Theorem 2.74 and Theorem 2.75, this is equivalent
toM being rationally elliptic. �

Example 5.43 In [223], Paternain provided an important example of a
situation where the geodesic flow has htop(g) = 0. Let (Mn, g) be a closed
manifold with metric g. Although the cotangent bundle T∗(M) has a canon-
ical symplectic structure, the tangent bundle obtains one only through the
duality provided by the metric. The geodesic flow is then the Hamiltonian
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flow (with respect to the symplectic structure associated to g) correspond-
ing to the Hamiltonian provided by the g-norm, H = ‖ − ‖ : T(M) → R.
The geodesic flow is completely integrable as a Hamiltonian system if there
are n smooth functions on T(M), f1 = H, f2, f3, . . . , fn such that {fi, fj} = 0,
where {−,−} is the Poisson bracket on functions given by the symplectic
structure. Completely integrable Hamiltonian systems have a very particu-
lar structure which allows the flow to be analyzed by restricting to invariant
tori in T(M). To each fj, we may associate a vector field Xj by using the
nondegeneracy of the symplectic form ω:

iXjω = dfj,

where iXj is interior multiplication by Xj. Of course, the vector field Xj
has an associated flow φtj . If, for each j = 1, . . . ,n, the flow φtj actually is
the orbit flow given by a circle action, then we say that the geodesic flow
is completely integrable with periodic integrals. Essentially, we are saying
that the Hamiltonian system has Tn as a symmetry group, thus reducing
the system to solution by integration (i.e. quadrature). We then have the
following.

Theorem 5.44 ([223]) Let (M, g) be a simply connected closed Rieman-
nian manifold whose geodesic flow is completely integrable with periodic
integrals. Then htop(g) = 0 and M is rationally elliptic.

Now let M be a compact simply connected Riemannian manifold and
let N be a compact simply connected submanifold. Fix p ∈ M and T > 0.
Paternain and Paternain (see [225]) define nT(p,N) to be the number of
geodesics leaving orthogonally from N and ending at p with length ≤ T. If
p is not a focal point of N, nT(p,N) is finite. We can therefore define

IN(T) =
∫
M
nT(p,N)dµ ,

where µ is the measure induced by the Riemannian structure. Then
extending the method of Gromov, Paternain and Paternain prove

Theorem 5.45 ([225]) There exists a constant C > 0 depending only on
the geometry of M and N such that if�(p,N) denotes the Hilbert manifold
of paths from N to p, then for k ≥ 1,

k∑
i=1

bi(�(p,N)) ≤ 1
VolM

IN(Ck) .

Corollary 5.46 Suppose that M is rationally hyperbolic and N is rationally
elliptic, then the sequence IN(T) has exponential growth.
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Proof We have a fibration �M → �(N,p) → N × {p} from which we
deduce the homotopy fibration

�N → �M → �(N,p) .

Since the homology of �M has exponential growth and the homology of
�N polynomial growth, the homology of �(N,p) must have exponential
growth. �

5.8 Manifolds whose geodesics are closed

The topological entropy of a smooth diffeomorphism is essentially a mea-
sure of the volume growth induced by its iterates. In [100], various types
of volume growth invariants are defined and related to the rational elliptic-
ity or hyperbolicity of the manifold of definition. Here, in the spirit of this
chapter, we want to discuss a fact that is implicit in [27], but seemingly not
observed until its appearance in [100], concerning manifolds with the prop-
erty that all geodesics are periodic. The basic reference for these manifolds
is [27].

Definition 5.47 Let Mn be closed Riemannian manifold and x ∈ M.
1. A geodesic (always parametrized by arclength) issuing from x,

α : [0,T] → M is periodic with period T if α(0) = x = α(T) and
α̇(0) = α̇(T).

2. M is a PxT-manifold if all geodesics issuing from x are periodic with
common period T. (Note that some geodesics are allowed to come back
to x before length T.)

3. If M is a PxT manifold for all x ∈ M, then M is said to be a P-manifold.
(It is a fact that if all the geodesics of a manifold are periodic, then they
admit a common period. See [27, Lemma 7.11].)

4. The index of the geodesic α : [0,T] → M is the number of t ∈ (0,T)

such that α(t) is conjugate to α(0) = x along α. (Note that α(T) is not
counted here. This is explained by Proposition 5.48.)

Proposition 5.48 ([27, 7.25]) If Mn is a PxT-manifold, then x is conjugate
to itself with multiplicity n − 1 along any geodesic from x to x of any
length. Furthermore, along any geodesic from x to x of length T, there are
k conjugate points for some fixed integer k.

Now here are the facts about PxT -manifolds culled from [27, Chapter 7].
First, note that there always exists some point y ∈ M that is not conjugate
to x along any geodesic. This is a simple consequence of Sard’s theorem
since conjugate points are critical values of the exponential map expx (see



5.8 Manifolds whose geodesics are closed 233

Exercise 5.4). Then, it can be shown that there are only a finite number of
geodesics, α1, . . . ,αN from x to y of length strictly less than T. To see this,
suppose αi, i = 1, . . . ,∞ is an infinite set of geodesics from x to y with
lengths ti smaller than T and restrict to the compact set S(TxM) × [0,T]
(where S(TxM) denotes the unit sphere in TxM) so that there is a conver-
gent subsequence of the sequence (α′

i(0), ti) which converges to the limit
(α′(0), t). Then lim αi(ti) = α(t) = y is conjugate to x along the geodesic α

with initial tangent vector α′(0) (see Exercise 5.4). This is a contradiction,
so only a finite number of geodesics exist.
So now, let k1, . . . ,kN be the indices of the geodesics α1, . . . ,αN from x

to y of length strictly less than T. Without loss of generality, let k1 ≤ k2 ≤
· · · ≤ kN . There is some minimizing geodesic of length d(x, y), so the energy
Hessian is positive semidefinite along it and, thus, k0 = 0. Now, sinceM is
a PxT -manifold and the lengths of the αi are all less than T, we know there
is an opposite geodesic α̃i : [0,T −d(x, y)] → M given by α̃i(t) = αi(T − t).
(Think of the sphere. A minimal geodesic is the shorter part of a great circle,
while the longer part of the geodesic is the opposite geodesic.) Then, since
the indices are the numbers of conjugate points and all loops have index k,
we see that the opposite geodesic is one of the αj and that its index is k−ki.
In particular, the opposite geodesic to the minimizer then has largest index
kN = k (by Proposition 5.48).
The crucial fact is that every geodesic from x to y is the union of p

geodesics from x to x of length T (for arbitrary p) and one of the αi’s. Of
course, each geodesic from x to y has k + n − 1 conjugate points counted
withmultiplicity. Therefore, for each integer p, there are exactlyN geodesics
from x to y whose lengths are between pT and (p+1)T and whose indices
are ki + p (k + n − 1). Note that, since k is the largest index, different p
produce a completely different set of indices.
If we now consider �M(x, y), we see that, for each integerm, the number

of critical points (i.e. geodesics) with fixed index m is bounded by N. Since
each critical point gives a cell in a CW-decomposition of �M(x, y), the
number of cells, and hence the Betti number, in each dimension is also
bounded by N. Because �M(x, y) � �M, we have the following.

Theorem 5.49 If M is a PxT-manifold, then dim Hq(�M;Q) ≤ N for some
fixed integer N and all q. This holds in particular for P-manifolds.

Now, an argument similar to that in the proof of Proposition 5.14
shows that the Betti numbers of the loop space of a simply connected finite
complex are bounded if and only if the rational cohomology ring of the
complex is singly generated (see Exercise 5.5). Therefore, in particular, we
have
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Corollary 5.50 If M is a PxT-manifold, then H
∗(M;Q) is singly generated.

Hence, M is rationally elliptic. This holds in particular for P-manifolds.

Therefore, we see how the nature of the geodesics on a manifold can have
powerful consequences for its homotopy structure.

5.9 Bar construction, Hochschild homology and
cohomology

The bar construction and Hochschild homology play important roles in
geometric applications of algebraic models. One reason for this is that
Hochschild homology is inextricably linked to the cohomology of the free
loop space. Furthermore, it will be an important tool for the proof of
Lambrechts’s result on the cohomology of the free loop space of a con-
nected sum of varieties, as well as for the definition of iterated integrals (see
Section 9.6) and for the computation of the Chas–Sullivan loop product (see
Section 8.4). Indeed, in Subsection 8.4.5, we shall see some implications that
the Chas–Sullivan loop product has for closed geodesics.
Let (A,d) be a differential graded algebra over a field lk, A = ⊕∞

k=0A
k,

with an augmentation ε : A → lk, and augmentation ideal Ā = Ker ε. We
denote by sĀ the suspension of Ā, (sĀ)q = (Ā)q+1.

Definition 5.51 The double bar construction on (A,d) is the complex

(B(A,A,A),D) = (⊕nBn(A,A,A),D)

with Bn(A,A,A) = A⊗ (sĀ⊗ · · · ⊗ sĀ) ⊗A, (n copies of sĀ). The element
a ⊗ (sa1 ⊗ · · · ⊗ san) ⊗ a′ is denoted by a[a1| · · · |an]a′. The differential D
decomposes into two terms D = b+ d.

b(a[a1| . . . |an]a′) = −âa1[a2| . . . |an]a′

−
n−1∑
i=1

(−1)iâ[â1| . . . |âiai+1| . . . |an]a′

+ (−1)n−1â[â1| . . . |ân−1]ana′ ,
d(a[a1| . . . |an]a′) =d(a)[a1| . . . |an]a′

+
n∑
i=1

(−1)iâ[â1| . . . |âi−1|d(ai)|ai+1| . . . |an]a′

+ (−1)nâ[â1| . . . |ân]d(a′) .

Here â = (−1)|a|a.
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The complex B(A,A,A) is a right and a left differential A-module, quasi-
isomorphic to A as an A-bimodule. Therefore for each right A-module M,
and each left A-module N, we can form the complex

B(M,A,N) = M⊗A B(A,A,A) ⊗A N .

When M = N = Q, then B̄(A) = B(Q,A,Q) is a coalgebra. The
comultiplication is defined by

∇ : T(sĀ) → T(sĀ) ⊗ T(sĀ) ,

∇[a1|a2| . . . |an] =
n∑
i=0

[a1| . . . |ai] ⊗ [ai+1| . . . |an] .

We have

Theorem 5.52 ([1]) If A = C∗(X;Q), then H∗(B̄(A)) = H∗(B(Q,A,Q)) is
isomorphic to H∗(�X;Q) as a coalgebra.

When M = A and N = Q the complex B(A,A,Q) is contractible and is
therefore a good model for the path space PX. Our last example is related
to the free loop space. The multiplication A ⊗ A → A also makes (A,d)
into a left and a right A-module.

Definition 5.53 The Hochschild complex B∗(A) is the tensor product

B∗(A) := A⊗ T(sĀ) = (A,d) ⊗A⊗A B(A,A,A)

where T(V) denotes the tensor algebra on V. Its homology is denoted by
HH∗(A). The induced differential D on A⊗T(sĀ) is the sum of an internal
differential d and an external one b defined by

d(a[a1| . . . |an]) = d(a)[a1| . . . |an]

+
n∑
i=1

(−1)iâ[â1| . . . |âi−1|d(ai)|ai+1| . . . |an] ,

b(a[a1| . . . |an]) = −âa1[a2| . . . |an] −
n−1∑
i=1

(−1)iâ[â1| . . . |âiai+1| . . . |an]

− (−1)n+|an|(|a|+|a1|+...+|an−1|+n−1)anâ[â1| . . . |ân−1] .
The relation between the homology of the free loop space and the

Hochschild homology has been proved by different authors and can be
found in [47], [109] and [149].
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Theorem 5.54 If X is a finite simply connected space with finite Betti
numbers, then

H∗(LX; lk) ∼= HH∗(C∗(X; lk)) ,
where C∗(X; lk) denotes the usual singular cochain algebra of X with
coefficients in the field lk.

It is a classical result that the Hochschild homology is invariant along
quasi-isomorphisms of differential graded algebras (see [109]), so we have

Corollary 5.55 If X is a simply connected space with minimal model
(∧V ,d), then

H∗(LX;Q) ∼= HH∗(APL(X)) ∼= HH∗(∧V ,d) .
WhenM is a manifold, we then have

Corollary 5.56 If M is a simply connected compact manifold with de Rham
algebra of forms ADR(M) and rational minimal model (∧V ,d), then

H∗(LM;R) ∼= HH∗(ADR(M)) , H∗(LM;Q) ∼= HH∗(∧V ,d) .
In the rational case, the isomorphism between the Hochschild homol-

ogy of the minimal model (∧V ,d) of M and the cohomology of the
free loop space is quite easy to understand. Indeed, the bar construc-
tion B((∧V ,d), (∧V ,d), (∧V ,d)) and the differential algebra (∧V ⊗ ∧V ⊗
∧sV ,D) constructed in the proof of Theorem 5.11 are quasi-isomorphic
semifree (∧V ⊗ ∧V)-modules. If we take the tensor product with (∧V ,d)
over (∧V ⊗ ∧V), we also obtain quasi-isomorphic complexes (see Exer-
cise 2.7). The first tensor product gives the Hochschild homology and the
second one is the model of the free loop space (Theorem 5.11).
As we saw, when A = C∗(M; lk), the double bar construction leads

to complexes that give the homology of the various usual path spaces.
Table 5.1 is a summary of the connections.
In Section 8.4 we will also need the Hochschild cohomology algebra of

a differential graded algebra. We recall the definition here.

Table 5.1 Bar constructions and spaces.

Bar constructions Spaces

B(A,A,A) M[0,1]

B(A,A, lk) P(M)

B̄(A) = B(lk,A, lk) �(M)

B(A) LM
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Definition 5.57 The Hochschild cohomology of a graded differential alge-
bra (A,d), HH∗(A,A), is the cohomology of the complex HomA(B(A),A).
This cohomology is a graded algebra. The product " of two elements
f , g ∈ Hom(T(sĀ),A) = HomA(B(A),A) is defined by

f " g : T(sĀ)
∇−→ T(sĀ) ⊗ T(sĀ)

f⊗g−→ A⊗ A
m−→ A .

Exercises for Chapter 5

Exercise 5.1 Construct the model for the free loop space on the manifolds S3 × S3

and CP(n) and deduce the cohomology algebra of the corresponding free loop
spaces.

Exercise 5.2 LetM be the usual torus and A be an isometry inducing in homotopy
the morphism (

0 −1
1 0

)
Show thatM admits at least one nontrivial A-invariant geodesic.

Exercise 5.3 Let G/K be a simply connected homogeneous space. Suppose that
rankG− rankK is odd. Show that for every isometry A, there exists a nontrivial
A-invariant geodesic.

Exercise 5.4 For a smooth manifold M, the exponential map at a point p ∈ M,
expp : TpM → M is given by expp(tv) = γ (t), where γ : [0,L] → M is the unique
unit-speed geodesic with γ (0) = p and γ ′(0) = v. A point q = γ (s) is conjugate to
p if dexpp : TsvTpM = TpM → TqM is singular (i.e. has a kernel) at sv = sγ ′(0).
The significance of conjugate points is mainly due to the fact that geodesics cannot
minimize arclength beyond the first conjugate point. Classically, a conjugate point
was said to be the intersection of infinitesimally close geodesics. The point of this
exercise is to explain what this means in the context of the discussion following
Proposition 5.48.
Suppose αi : [0, ti] → M is a sequence of unit-speed geodesics with length less

thanT, αi(0) = p and αi(ti) = q. Because S(TpM)×[0,T] is compact (where S(TpM)

is the unit sphere in TpM), the sequence (α′
i(0), ti) has a convergent subsequence

converging to (α′(0), t). This initial data gives a geodesic α with α(0) = p and
α(t) = q. The claim now is that q must be conjugate to p along α. Show this using
(and verifying) the following hints.

(1) Suppose that q is not a conjugate point. Therefore, there is an open set
U ⊂ TpM with tα′(0) ∈ U such that expp|U is a diffeomorphism onto an open
neighborhood of q.

(2) If K is large enough, then, for all i > K, tiα′
i(0) ∈ U. This is what is meant by

infinitesimally close.
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(3) Show from the definition of the exponential map above that expp(tiα
′
i(0)) =

expp(tα
′(0)).

(4) Why is this a contradiction?

Exercise 5.5 Here is a warm-up for Proposition 5.14. Show that the Betti
numbers of the loop space of a simply connected finite complex X are
bounded if and only if its rational cohomology ring is singly generated.
Hint: suppose H∗(X;Q) is not singly generated and note that (as in Propo-
sition 5.14) there are always at least two odd degree generators in the min-
imal model for X. Then, since the differential in the model of the loop
space is zero, there are two even generators u and v that are cocycles. If
the respective degrees are 2k and 2s with L = lcm(2k, 2s), L = 2kp, L = 2sq, then
show that dim HmL(�X;Q) ≥ m+ 1 since up i vq j ∈ HmL(�X;Q) for i, j ≥ 0 with
i + j = m.



6
Curvature

Recently algebraic models have found a place in differential geometry,
especially in questions revolving around types of curvature restrictions. In
particular, F. Fang and X. Rong [84] and B. Totaro [256] have approached
certain questions of Karsten Grove in this spirit and the work of Belegradek
and Kapovitch [23] on the existence of non-negative curvature metrics
on vector bundles has also relied on models. Of course, when we speak
of algebraic models here, we are speaking of models ranging from sim-
ple cohomology all the way to minimal models and relative models. In
this chapter, we want to examine these applications of models to curva-
ture questions as well as other relevant connections between Riemannian
geometry and algebraic models. A good general reference for Riemannian
geometry and, especially, various finiteness theorems for diffeomorphism
or homotopy type and topics surroundingGromov–Hausdorff convergence,
is [226].

6.1 Introduction: Recollections on curvature

A smooth n-manifold Mn is Riemannian if each tangent space Tp(M) has
a Euclidean metric 〈−,−〉 and these vary smoothly on M. Associated to
the Riemannian metric is a covariant derivative ∇ called the Riemannian
connection.

Proposition 6.1 Let V, Z and W be tangent vector fields on M and
f : M → R be a function onM. The following are properties of the covariant
derivative of M:

(i) ∇V (Z +W) = ∇VZ + ∇VW;

(ii) ∇fVZ = f ∇VZ;
(iii) ∇VfZ = V[f ]Z + f ∇VZ;



240 6 : Curvature

(iv) ∇VZ − ∇ZV = [V ,Z], where [−,−] is the usual bracket of vector
fields;

(v) V(〈Z,W〉) = 〈∇VZ,W〉 + 〈Z,∇VW〉, where the vector field V acts
on the function 〈Z,W〉 in the standard “directional derivative”
way and 〈−,−〉 denotes the metric on M.

In fact, property (v) may be used to define the covariant derivative and we
can also then see that the Riemannian connection is unique. We can use the
connection to make the following.

Definition 6.2 Let X, Y and Z be vector fields on the manifold M. The
Riemann curvature is defined to be

R(X,Y)Z = ∇[X,Y]Z + ∇Y∇XZ − ∇X∇YZ.
A more intuitive version of curvature that still holds within it all of the

information provided by R is the sectional curvature,

sec(X,Y) = R(X,Y,X,Y)

〈X,X〉〈Y,Y〉 − 〈X,Y〉2 ,

where we use the notation

R(X,Y,Z,W)
def= 〈R(X,Y)Z,W〉.

The sectional curvature may be interpreted as follows. Suppose X and Y
span a tangent plane inside the tangent space Tp(M). The exponential map
carries the plane to a surface inside the manifold, so the ordinary Gauss cur-
vature (see, for instance, [216, page 115, Chapter 3]) of the surface may be
computed. This Gauss curvature is then the sectional curvature sec(X,Y).
A more technical approach to sectional curvature is to consider it as a func-
tion on the Grassmannian bundle associated to the tangent bundle. More
specifically, at x ∈ Mn, sectional curvature is a function sec : G2(Tx(M)) →
R, where G2(Tx(M)) denotes the Grassmann manifold of 2-planes in
Tx(M). We can construct a bundle with fiber G2,n = G2(R

n) by noting
thatG2,n = O(n)/(O(2)×O(n−2)) and then using the natural O(n) action
on G2,n to form an associated bundle, G2,n(M) = F(M) ×O(n) G2,n to the
principal (frame) bundle O(n) → F(M) → M underlying the tangent bun-
dle ofM. Then sectional curvature becomes a function sec : G2,n(M) → R.
Furthermore (see, for instance, [28, pages 166–167]), the function sec is
smooth and, therefore, continuous. IfM is a closed manifold, thenG2,n(M)

is compact, so its image under sec is also compact and we obtain the
following.
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Proposition 6.3 If M is a compact manifold, then there exist λ, κ ∈ R such
that for any plane P ⊂ Tx(M) and for any x ∈ M, κ ≤ secP ≤ λ.

Now, if we scale the metric by multiplying by a constant (i.e. 〈−,−〉 
→
c〈−,−〉, c > 0), then sectional curvature is divided by that constant. In this
way, for compact manifolds, we can always consider Im(sec) ⊂ (−1, 1)
if we desire. The price we pay for this scaling is that the diameter of the
manifold increases. So, there must always be a sort of tension between
sectional curvature and diameter. In fact, we shall see this reflected in the
hypotheses of the main results below.
Once an invariant such as sec is defined, it is standard procedure to

restrict the invariant in some way and try to classify the manifolds obeying
the restriction. This classification is often a topological one. For example,
Hadamard’s famous theorem implies that a manifoldM with sec(X,Y) ≤ 0
for all pairsX, Y must be an Eilenberg–Mac Lane space,M = K(π , 1). Sim-
ilarly, the famous pinching theorem says that bounding sectional curvature
as 1/4 < sec ≤ 1 implies that the manifold is a sphere – a very strong
constraint indeed!

Example 6.4 A manifold Mn with constant sectional curvature equal to
zero is said to be flat; it is also called a Bieberbach manifold since it was
L. Bieberbach who characterized such a manifold as one covered by
Euclidean space Rn such that the integral translations Zn are a normal
subgroup of finite index in π1(M). In other words, there is a short exact
sequence of groups,

Zn → π1(M) → F

where F is finite. Such a group is called a Bieberbach group. It is a fact that
flat manifolds are classified up to diffeomorphism by their fundamental
groups, so in this case group theory determines topology.

Example 6.5 If G is a compact Lie group (see Chapter 1), then G has
a bi-invariant metric 〈−,−〉 so that geodesics with respect to this metric
are the one-parameter subgroups arising from integration of left invariant
vector fields. Therefore, for any Y ∈ g (where g is the Lie algebra of G),
∇YY = 0, where ∇ is the associated Riemannian connection. Now, by
expanding∇X−Y(X−Y) = 0, we obtain∇XY = −∇YX. Then, since∇ is the
Riemannian connection, we have [X,Y] = ∇XY − ∇YX = 2∇XY. Putting
this inDefinition 6.2,we easily calculate (with the help of the Jacobi identity)
R(X,Y)Z = 1

4 [[X,Y],Z]. Substituting this result into the definition of sec
gives

sec(X,Y) = 1
4

|[X,Y]|2,
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where | − | is the norm associated to the metric and X, Y are orthonormal.
See Exercise 6.2 for details. Thus, compact Lie groups have non-negative
sectional curvature. Once we know this, we can create more manifolds with
non-negative sectional curvature by using the following result.

Proposition 6.6 (O’Neill’s formula: [213]) Letπ : M → N be aRiemannian
submersion and suppose that X and Y are orthonormal horizontal vector
fields on M. Then

sec(π∗X,π∗Y) = sec(X,Y) + 3
4

|[X,Y]v|2

where [−,−]v denotes the vertical projection. (If X and Y are not orthonor-

mal, then the second term on the right must be divided by |X ∧ Y| def=
〈X,X〉 〈Y,Y〉 − 〈X,Y〉2.)
Therefore, a Riemannian submersion can only increase sectional curva-

ture, never decrease it. Using this, we can see that, for instance, homoge-
neous spaces G/H and biquotients G//H (where H is closed) also have
non-negative sectional curvature metrics.

Various other upper and lower bounds on sectional curvature may be
combined with restrictions on, for instance, diameter and volume, to cre-
ate new classes of manifolds. As an example, let M≤D

≥κ (n) denote the class
of closed n-manifolds with sectional curvature bounded below by κ and
diameter bounded above by D. Gromov proved that there are constants
b(n, κ,D), depending on dimension, sectional curvature and diameter, such
that the sum of the Betti numbers of any M ∈ M≤D

≥κ (n) is bounded above
by b(n, κ,D). This puts a strong topological constraint on manifolds in
M≤D

≥κ (n). If we also include a volume restriction, volume ≥ V with asso-

ciated class M≤D,≥V
≥κ (n), then, for n ≥ 5, there are only finitely many

diffeomorphism types depending on n, κ, D and V .
Because of this result and various pinching theorems, the class

M≤D
κ≤sec≤λ(n) of closed n-manifolds with sectional curvature and diame-

ter obeying κ ≤ sec ≤ λ and diam ≤ D has proven to be of some interest.
In particular, K. Grove asked the following question.

Question 6.7 (Grove’s question) Does the sub-class ofM≤D
κ≤sec≤λ(n) consist-

ing of simply connected manifolds contain finitely many rational homotopy
types?

Let’s now consider this question and see how algebraic models play a
key role.
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6.2 Grove’s question

In this section we consider the work of Fang and Rong [84] and of
B. Totaro [256] onGrove’s conjecture. The Fang–Rong approach essentially
creates the right algebra to contradict the conjecture and then realizes the
algebra using minimal models. Totaro, on the other hand, uses biquotients
to construct manifolds with the right curvature properties and then shows
that a sufficient number of these also have the right algebra to contradict
the conjecture. Since the methods are so different, we present both.
Both approaches use a fundamental result due to J.-H. Eschenburg that

relates qualities of horizontal projections associated to a certain sequence
of submersions to the qualities of the resulting sectional curvatures. More
specifically, suppose G,M andMi (i = 1, 2, . . .) are Riemannian manifolds
with submersions π : G → M and πi : G → Mi. For each g ∈ G, there
are projections h(g) : Tg(G) → H(Tg(G)) ⊆ Tg(G) and hi(g) : Tg(G) →
Hi(Tg(G)) ⊆ Tg(G) to the horizontal subspaces determined by the bun-
dle structure of the respective submersions. We may then consider h and
hi as elements of �(End(T(G))), the space of sections of the endomor-
phism bundle associated to the tangent bundle of G. As such, we can
consider the convergence properties of the sequence hi in the C1-topology
on �(End(T(G))). Then Eschenburg proved

Theorem 6.8 ([81, Proposition 22]) If hi → h in the C1-topology on
�(End(T(G))), then for any g ∈ G and any horizontal 2-plane P ⊂ Tg(G),

secMi(πi∗P) → secM(π∗P)

and the convergence is uniform in P.

Proof idea Let X and Y be π -horizontal vector fields which span P. Then
hi(X) → X and hi(Y) → Y in the C1-topology. Then Proposition 6.6 and
some simplification of the covariant derivative give

secMi(πi∗(X),πi∗(Y)) = secG(hi(X),hi(Y)) + 3|(I − hi)(∇hi(X)hi(Y))|2
|hi(X) ∧ hi(Y)|2 .

Then it is plain that secMi(πi∗(X),πi∗(Y)) converges to secM(X,Y)

uniformly. �

6.2.1 The Fang–Rong approach

In [84], Fang and Rong answered Grove’s question as follows. (Note that
the formulation of the result provides an upper bound for diameter in order
for the examples of the theorem to have sectional curvature scaled between
−1 and 1.)
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Theorem 6.9 For any n ≥ 22, there exists D > 0 such that the subclass of
M≤D

−1≤sec≤1(n) consisting of simply connected manifolds contains infinitely
many rational homotopy types.

In order to prove this result, let’s first consider the algebra required. For
any integer α > 0, let

∧α = (∧(x1,x2, y, zα),d)

be the freely generated commutative differential graded algebra with
deg(x1) = deg(x2) = 2, deg(y) = 5, deg(zα) = 7 and differential defined by

d(x1) = d(x2) = 0, d(y) = x21x2, d(zα) = x41 + x42 + (αx1 + x2)4.

Lemma 6.10 If α �= β ∈ Z, then H∗(∧α) �∼= H∗(∧β).

Proof The argument here is standard. Let’s suppose that there is an isomor-
phism f : H∗(∧α) → H∗(∧β), where α �= β. We shall denote cohomology
classes by their representatives: x1 instead of [x1] etc. Also, the generators
of∧β will be denoted by x̃1, x̃2, ỹ and z̃β . Now, degree 2 cohomology is gen-
erated by the x’s, so we must have f (x1) = ax̃1+bx̃2 and f (x2) = cx̃1+ex̃2,
where a, b, c and e are rational numbers. Note that, because f is an iso-
morphism, coefficients a and b cannot both be zero and coefficients c and
e cannot both be zero.
Now, because of the y-differentials, in cohomology we have x21x2 = 0 =

x̃21x̃2 and these relations are the only ones in the respective degree 6 coho-
mologies. Thus, x̃31, x̃

3
2 and x̃1x̃

2
2 are linearly independent in H

∗(∧β). We
then have

f (x21x2) = 0

(ax̃1 + bx̃2)2(cx̃1 + ex̃2) = 0

a2cx̃31 + a2ex̃21x̃2 + 2abcx̃21x̃2 + 2abex̃1x̃22 + b2cx̃1x̃22 + b2ex̃32 = 0

a2cx̃31 + 2abex̃1x̃22 + b2cx̃1x̃22 + b2ex̃32 = 0,

using x̃21x̃2 = 0. By linear independence, we obtain a2c = 0, 2abe+b2c = 0
and b2e = 0. We must consider various cases.
If a = c = 0, then the third condition says that either b = 0 or e = 0,

contradicting the fact that f is an isomorphism.
If a = 0 and c �= 0, then the second condition says that b = 0, again

contradicting the fact that f is an isomorphism.
Therefore, we must have a �= 0. The first condition then implies that

c = 0. Hence e �= 0 since f is an isomorphism and so b = 0 by the third
condition. We then have f (x1) = ax̃1 and f (x2) = ex̃2.



6.2 Grove’s question 245

Now, the z-differentials provide relations in degree 8 cohomology as
follows.

x41 + x42 + (αx1 + x2)4 = 0

(α4 + 1)x41 + 4αx1x32 + 2x42 = 0

using x21x2 = 0. (Of course, the relation (β4 + 1)x̃41 + 4βx̃1x̃32 + 2x̃42 = 0
also holds in H∗(∧β).) If we apply f to the relation, using f (x1) = ax̃1 and
f (x2) = ex̃2, we get

(α4 + 1)a4x̃41 + 4αae3x̃1x̃32 + 2e4x̃42 = 0.

We want to use the fact that x̃41 and x̃1x̃
3
2 are linearly independent elements

with the dependence of x̃42 on them given by the relation. So let’s simplify
this dependence by writing the relation above as

(α4 + 1)
(a
e

)4
x̃41 + 4α

(a
e

)
x̃1x̃32 + 2x̃42 = 0.

We then have two representations of 2x̃42:

2x̃42 = −((α4 + 1)
(a
e

)4
x̃41 + 4α

(a
e

)
x̃1x̃32)

2x̃42 = −((β4 + 1)x̃41 + 4βx̃1x̃32).

By uniqueness of representations, we obtain

(α4 + 1)
(a
e

)4 = (β4 + 1) and α
(a
e

)
= β.

(Note that, since α and β are both positive, we must have a/e > 0 as well.)
If we replace β in the first equation by its expression in terms of α given in
the second equation, we obtain

α4
(a
e

)4 +
(a
e

)4 = α4
(a
e

)4 + 1.

Hence, we have (a/e)4 = 1. Since a and e are rational and a/e > 0, it
must be the case that a = e. Putting this into the equation α(a/e) = β then
gives α = β, contradicting our initial assumption that α �= β. Hence, no
isomorphism f can exist. �

So, if we can find simply connected manifolds in M≤D
−1≤sec≤1(n) with the

cohomology algebras above, then Theorem 6.9 will be proved. It will come
as no surprise then that the algebras ∧α that appear above arise as (part of)
algebraic models for these manifolds. Let’s now see how this comes about.
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Let M8 = (∧(x1,x2,x3, y, z),d) with deg(xi)=2, i=1, 2, 3, deg(y)=5,
deg(z) = 7 and differential defined by

d(xi) = 0, d(y) = x21x2, d(z) = x41 + x42 + x43.

We can explicitly find a Z-form for this algebra; that is, we can find a
CW-complex whose homotopy groups are finitely generated (over Z) for
whichM8 is an algebraic model. The first step is to takeCP(∞)×CP(∞)×
CP(∞) = K(Z, 2)×K(Z, 2)×K(Z, 2) = K. This models the xi generators as
integral cohomology classes. The second step is to take the principal fibra-
tion induced by the classifying map representing the integral cohomology
class x21x2 ∈ H6(K;Z) = [K,K(Z, 6)]. The pullback of the universal fibra-
tion K(Z, 5) = �K(Z, 6) → PK(Z, 6) → K(Z, 6) via the classifying map
gives a fibration K(Z, 5) → X → K and X is an integral model for the xi
generators and the y generator of M8. Finally, use the cohomology class
x41 + x42 + x43 ∈ H8(X;Z) = [X,K(Z, 8)] to induce a principal fibration
K(Z, 7) → E → X with the generator of π7(K(Z, 7)) integrally represent-
ing z ∈ M8. The space E is then a Z-form forM8. For the following result,
recall from Subsection 2.5.4 the notion of a Postnikov tower for a space
and its relation to minimal models.

Lemma6.11 For each n ≥ 21, there is a closed simply connected n-manifold
B with H2(B;Z) = Z3 whose minimal model MB has degree 8 Postnikov
piece MB(8) = M8.

Proof Let E[10] denote the 10-skeleton of M8’s Z-form E. Because the
10-skeleton carries E’s homotopy type through dimension 9, we also have
ME[10](8) = M8. But E[10] is a finite CW-complex of dimension 10, so
we can embed E[10] in Rn+1 with n ≥ 21 and take a thickening or regular
neighborhood N; that is, a compact (n + 1)-manifold with boundary of
the same homotopy type as E[10]: N � E[10]. Let B = ∂N be the closed
n-manifold boundary of N and note that the 10-skeleton of B is E[10] by
properties of thickenings (see [159, Section II]). Thus MB(8) = M8. �

Now that we have the n-manifold B (n ≥ 21), we construct a closed
(n + 1)-manifold Mα as a principal circle bundle over B classified by the
Euler class eα = αx1 + x2 − x3, where α ∈ Z+ and the xi are the integral
generators of H2(B;Z). We then have the following result.

Proposition 6.12 Let Mα denote the minimal model of Mα. Then

Mα(8) = ∧α,

where Mα(8) is the degree 8 Postnikov piece of Mα.
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Proof The principal S1-bundle S1 → Mα → B is modeled in a standard
way by a relative model of the form

(MB ⊗ ∧(t),D), D|MB = dMB , D(t) = αx1 + x2 − x3.

This model is, of course, non-minimal, but we can prove the proposition
by giving a map

ρ : ∧α → (MB ⊗ ∧(t),D)

that induces an isomorphism on cohomology through degree 8 and an
injection on degree 9 cohomology. With this in mind, define ρ by:

ρ(x1) = x1, ρ(x2) = x2, ρ(y) = y,

ρ(zα) = z + t (x33 + (αx1 + x2)x23 + (αx1 + x2)2x3 + (αx1 + x2)3).

Direct calculation then shows that ρ satisfies the required properties. �

Since there were an infinite number of distinct algebras ∧α, we have now
obtained an infinite number of manifolds Mα with distinct rational homo-
topy types. To complete the proof of Theorem 6.9, we must show that these
manifolds have metrics with the right curvature (and diameter) properties.
This is wherewe shall use Theorem 6.8. In order to apply this result, we need
to write theMα as image spaces of submersions. With this in mind, defineM
to be the total space of a principalT3-bundle overB classified by x1+x2+x3
using the isomorphismsH2(B;Z) ∼= [B,K(Z3, 2)] ∼= [B,BT3]. Call this map
f and note that f induces an isomorphism f# : π2(B)

∼=→ π2(BT3).
Now let T3 = {(z1, z2, z3) ∈ C | |zi| = 1} and write T2α for the subgroup

generated by all (1, z, z) and (z, 1, zα). The projection T3 → T3/T2α induces
pα : BT3 → B(T3/T2α) = BS1. We then obtain the circle bundle

S1 = T3/T2α → M/T2α → B

with classifying map fα = pα ◦ f .
Proposition 6.13 As circle bundles, Mα

∼= M/T2α .

Proof The Euler class of the bundleM/T2α → B is determined onH2, so we
consider the dual map (fα)∗ : H2(B;Z) → H2(B(T3/T2α);Z) = H2(BS1;Z).
Because the elements (1, z, z) and (z, 1, zα) are killed inT3, on the homology
level, we have

(fα)∗(0, 1, 1) = 0 and (fα)∗(1, 0,α) = 0.

Then, writing (fα)∗(a,b, c) = pa+qb+rc (with (a,b, c) a coordinate expres-
sion with respect to the basis consisting of the homology duals of x1, x2
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and x3 respectively), the equations above give q + r = 0 and p + αr = 0.
Therefore,

(fα)∗(a,b, c) = −αra− rb+ rc = −r(αa+ b− c).

Since (fα)∗ is surjective, we must have r = ±1. Let ῑ be the generator of
H2(BS1;Z) with ι the dual generator of H2(BS1;Z). The dual map (fα)∗
gives the Euler class eα by eα = (fα)∗(ι) = Ax1 + Bx2 + Cx3. We can
compute as follows.

A = (Ax1 + Bx2 + Cx3)(1, 0, 0) = (fα)∗(ι)(1, 0, 0) = ι(fα)∗(1, 0, 0)
= ι(αῑ) = α.

Similarly, we find that B = 1 and C = −1. Hence, eα = (fα)∗(ι) = αx1 +
x2−x3. BecauseMα andM/T2α have the same Euler classes, we haveMα

∼=
M/T2α . �

Now note that Mα = M/T2α = N/S1α, where N = M/S10 and S
1
0 ⊂ T3 is

the circle generated by (1, z, z). Let’s also use the following notation. Let

S1 denote the subgroup generated by (1, 1, z), S1α = T2α/S
1
0, S

1 = q(S1) and

S
1
α = q(S1α), where q : T

3 → T2 = T3/S10 is the projection. Finally, denote

by sα : N → Mα and s : N → N/S
1
the obvious projections. Since T3 acts

freely onM, note that T2 acts freely onN. The final step in the construction
of the examples of Fang and Rong is the following.

Proposition 6.14 The Mα have metrics with a uniform bound on the
absolute value of sectional curvature and diameter.

Proof First note that, given a T2-invariant metric on N, we can choose
metrics onMα andN/S

1
so that sα and s are submersions. Then the diameter

condition will be fulfilled since diam(Mα) ≤ diam(N).
Now, by the definitions above, we can see that a small segment of the

S
1
α-orbit through an x ∈ N converges locally to a small segment of the S

1
-

orbit through x. But then we see that r-balls in the horizontal space of sα
converge (uniformly in Tx(N)) to the r-ball in the horizontal space of s. This
implies that we have convergence of the respective horizontal projections,
hα → h, as in the hypothesis of Theorem 6.8. Therefore, we obtain uniform
convergence

secMα
((sα)∗(hα(P))) → sec

N/S
1(s∗(h(P))).

This then provides the desired uniform bound on (absolute value of)
sectional curvature (using Proposition 6.3). �
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Proof of Theorem 6.9 By Lemma 6.10, Lemma 6.11, Proposition 6.12 and
Proposition 6.14, theMα (for all α large enough) provide an infinite number
of mutually nonrationally homotopic manifolds in M≤D

−1≤sec≤1(n) once we
recognize that the metric onN may be scaled to have −1 < secN < 1 while
only increasing the diameter to some value D. �

Example 6.15 As we saw in Example 2.72 (also see the proof of
Proposition 7.17), a relative extension of the form (where subscripts denote
degrees)

(∧(e2),d = 0) → (∧(e2,x4, y7, z9),D) → (∧(x4, y7, z9),d)

with differential given by choosing a ∈ Z+ (say),

D(e2) = 0, D(x4) = 0, D(y7) = x24 + ae42, D(z9) = e52

has a topological realization as a principal circle bundle M → Na → BS1

(where BS1 is modeled by (∧(e2),d = 0)) withM having the rational homo-
topy type of S4×S9 andN being a smooth 12-manifold (see Theorem 3.2).
It can easily be seen from the rational cohomology algebra that, for choices

a1 and a2, Na1 has the same rational homotopy type as Na2 only if
a1
a2

is a

rational square (see Example 2.38). Therefore, if we choose ai, i = 1, . . . ,∞
so that no

ai
aj
is a square (e.g. ai is the ith prime), then theNai give an infinite

number of rational homotopy types. Note, however, that the real minimal
models of all of these Nai are isomorphic since real square roots always
exist for positive numbers. This brings up the following.

Question 6.16 Can the Na be given metrics with secNa ≥ 0?

Now, M �Q S4 × S9 and S4 × S9 has non-negative sectional curvature, so
if it were true that this condition propagates across rational equivalences,
thenM would have secM ≥ 0 too.

Question 6.17 If two closed manifolds have the same (rational) homotopy
type and one manifold has a metric of non-negative sectional curvature,
does the other?

On the other hand, we may ask whether Eschenburg’s method can
produce the Na, thereby providing non-negative curvature.

6.2.2 Totaro’s approach

Now let’s consider the approach of B. Totaro [256]. Note that this approach
allows the construction of counterexamples in the lowest possible dimen-
sion where they can exist, dimension 7 (see [259]). This is achieved at the
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cost of using more complex algebra than that presented in Section 6.2.1.
(Indeed, in [256], Totaro uses techniques from algebraic geometry to ver-
ify that he has an infinite number of mutually nonrationally equivalent
six-dimensional biquotients with non-negative sectional curvature.)

Theorem 6.18 ([256]) There exist real numbers C and D such that the sub-
class of M≤D

−1≤sec≤C(7) consisting of simply connected manifolds contains
infinitely many rational homotopy types.

Proof First we define a commutative graded algebra by

H = ∧(x0,x1, . . . ,x4)/R

where xi, i = 0, . . . , 4, are of degree 2 and R is the ideal generated by
x20 = x1x2, x21 = x2x3, x22 = x3x4, x23 = x4x0, x24 = x0x1 and all the
other products xixj. One can easily see by direct computation that H2 =
Q[x0, . . . ,x4], H4 = Q[x20, . . . ,x24] and H6 = Q[x20x1 = x21x2 = x22x3 =
x23x4 = x24x5]. Notice that H is of finite total dimension and it satisfies
Poincaré duality. Therefore, it can be realized by amanifoldM of dimension
6 (see Theorem 3.2).
We now construct a principal bundle (S1)5 ��E ��M determined

from the classifying map M → (BS1)5 defined by the cohomology classes
x0, . . . ,x4. Note that E is a manifold of dimension 11 endowed with a free
action of (S1)5. We choose a Riemannian metric, invariant by the action of
(S1)5, and we scale the metric to have curvature greater than −1. Denote
by D the diameter of E.
We now consider quotients of E by tori (S1)4; these are simply connected

manifolds Y of dimension 7 satisfying the following properties:

• equipped with the induced metric, they are of diameter ≤ D;
• by Proposition 6.6, we know that a submersion increases the sectional
curvature; therefore Y is of curvature ≥ −1;

• from Theorem 6.8, we know that, for the set of tori (S1)4 ⊂ (S1)5, the
curvatures of the corresponding Y are uniformily bounded. This means
that there exists a real number C such that the curvatures of all these
manifolds Y are ≤ C.

Let’s now study some of the spaces Y. We determine their rational homo-
topy type from a Sullivan model. Denote by MM a minimal model of M.
Since p : Y → M is a S1-principal bundle with base M, Y has a model of
the following type:

MY = (MM ⊗ ∧x,d),
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where the differential d on MM coincides with the differential of the min-

imal model MM and dx ∈ M2
M. We choose dx = a0x0 − a1x1 +

(
a31
a20

)
x3

where a0, a1 are rational numbers. From direct computations, we can check
that the multiplication by dx, fromH2(M) toH4(M) has a kernel of dimen-

sion 1 generated by z = a0x0 + a1x1 +
(
a20
a1

)
x2. From the Gysin exact

sequence

Hr(M) ��Hr(Y) ��Hr−1(M)
∪dx ��Hr+1(M)

and the fact that dimH2(M) = dimH4(M) = 5, we see that Coker(∪dx)
also has dimension 1. Now, H3(M) = 0, so the Gysin sequence then says
that H4(Y) has dimension 1. Clearly, we have that H2(Y) ∼= H2(M)/(dx)
has dimension equal to 4. Now, we have a commutative diagram

H2(M) ⊗H2(M)
p∗⊗p∗

��

ϕ

��

H2(Y) ⊗H2(Y)

ψ  ���
���

���
���

�

H6(M) ∼= Q

where the top arrow is clearly surjective (since p∗ : H2(M) → H2(Y) is
surjective) and the homomorphism ϕ is the cup-product with the class z,
ϕ(α ⊗ β) = α ∪ β ∪ z. Since dx ∪ z = 0, ϕ induces a quadratic form ψ on
H2(Y). From the definition of ϕ as a cup-product, we deduce its matrix on
the five-dimensional space H2(M),⎛⎜⎜⎜⎜⎝

a1 a0 0 0 0
a0 a2 a1 0 0
0 a1 0 a2 0
0 0 a2 0 0
0 0 0 0 a0

⎞⎟⎟⎟⎟⎠
where a2 = a20/a1. The 4× 4 matrix in the right bottom corner is a matrix

for ψ ; its determinant is −a
7
0

a31
. Note that we are looking for isomorphism

types so we have to admit a multiplication of the quadratic form ψ by a
scalar. Since dimH2(Y) = 4, which is even, the determinant in Q/(Q∗)2 of
the quadratic form is unchanged. Therefore, the determinant is an invariant
of isomorphism classes only as an element in Q/(Q∗)2. The determinant of
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ψ gives us an element

−a0
a1

∈ Q/(Q∗)2.

Finally, note that all values of Q/(Q∗)2 are reached for appropriate choice
of (a0, a1) ∈ Q×Q. Therefore we get an infinite number of different rational
homotopy types corresponding to the spaces Y. �

Remark 6.19 Totaro’s examples above are biquotients and this is no acci-
dent. In fact, almost all known closed manifolds having non-negative
sectional curvature are biquotients. The only such manifolds which are
not defined as biquotients are the Cheeger manifolds obtained as the
connected sums of two spaces from the list: RP(n), CP(n), HP(n) and
CayP (where the last is the Cayley plane) and an example of Grove
and Ziller. This is discussed in [255], where Totaro also determines the
overlap; that is, he classifies which Cheeger manifolds are diffeomor-
phic to biquotients and which are not. For instance, CP(4)#HP(2) is not
even homotopy equivalent to any biquotient. Furthermore, in contrast
to Theorems 6.18 and 6.9, Totaro proves in [255] that there are only
finitely many diffeomorphism classes of 2-connected biquotients of a given
dimension.

6.3 Vampiric vector bundles

In [56], the following theorem was proved.

Theorem 6.20 (The soul theorem) Let M be a complete noncompact
Riemannian manifold with non-negative sectional curvature. Then there

exists a totally geodesic and totally convex compact submanifold S
i

↪→ M
such that M is diffeomorphic to the normal bundle of the embedding i.

Remark 6.21 (Cheeger–Gromoll splitting) In [55], it was shown that aman-
ifoldMwith non-negative Ricci curvature has a universal cover M̃ that splits
isometrically as M̃ = M0 × Rn, with Rn flat and M0 compact. See Exer-
cise 6.1 for the definition and properties of Ricci curvature. We shall only
use this result peripherally, so we simply mention it in this remark. We do
note, however, that the splitting comes from peeling off “lines” from M̃.
Recall that a line is a geodesic that minimizes distance between each pair of
points on it.

The submanifold S is called the soul ofM. Recall that S is totally geodesic
inM if every geodesic inM starting from a point of S in a direction tangent
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to S is in fact a geodesic in S. The submanifold S is totally convex if, for
any two points of S, any geodesic inM joining them (which exists sinceM
is complete) lies in S.

Remark 6.22 Right away, note some immediate consequences of the soul
theorems 6.20.

1. Because S is totally geodesic, S also has non-negative sectional curvature.
2. The inclusion i : S → M is a homotopy equivalence. Therefore, if M is

contractible (e.g.M = Rn), then S = ∗.
3. If Mn = K(π , 1) is a closed manifold, then M̃ is contractible and also

has non-negative sectional curvature. By Cheeger–Gromoll splitting, we
have M̃ = M0 × Rn. But M̃ � ∗, so M0 = ∗ as well and, thus, M̃ = Rn

isometrically. Since covering transformations act as isometries, we then
see thatM = Rn/π is flat (see Example 6.4).

4. Given any closed manifold S with non-negative sectional curvature, it is
a soul; namely, S is the soul of S × Rn. Note that we may consider the
product S × Rn as the trivial Rn-vector bundle over S.

The last item elicits the following question.

Question 6.23 Given a vector bundle Rn → E → M, where M is a closed
manifold with non-negative sectional curvature, does E admit a metric with
non-negative sectional curvature?

Recently, algebraic models have been used to give obstructions to the
existence of such a metric on the total space of a vector bundle (see [22]
and [23]). This will be the focus of this section, but in order to understand
the whole situation better, we will first give the original negative examples
for Question 6.23 obtained in [219]. Since these examples don’t have souls,
we refer to them as vampiric vector bundles.

6.3.1 The examples of Özaydin and Walschap

The basis of the Özaydin–Walschap approach to constructing the examples
mentioned above is the following result.

Theorem 6.24 Let ξ : Rk → E → Mn be a vector bundle over a compact,
flat manifold M. The following are equivalent:

1. E admits a complete metric with secE ≥ 0.
2. E admits a complete metric with secE = 0.
3. E is diffeomorphic to the total space of a rank k vector bundle over M
that admits a flat Riemannian connection.
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4. E ∼=diffeo Rn ×π1MRk, where π1(M) acts on Rn by covering transforma-
tions (as in Example 6.4) and on Rk by some orthogonal representation.

We can generalize the notion of flat manifold to bundles as follows.

Definition 6.25 A principal G-bundle ξ : G → P → X is flat if the
classifying map X → BG factors up to homotopy as

X ��

���
�

�
� BG

BGd

i


��������

where Gd is the Lie group G taken with the discrete topology and i : Gd →
G is the canonical continuous identification of Gd and G as sets.

See Remark 6.27 for an explanation of the use of the term “flat” and
its relation with flat manifolds. The following result gives an equivalent
criterion for flatness that leads to better interpretations.

Proposition 6.26 The principal G-bundle ξ : G → P → X is flat if and only
if there is a factorization up to homotopy

X ��

ρ

���
��

��
��

� BG

Bπ1X

���
�

�
�

where Bπ1X → BG is induced by a homomorphism π1X → G and
ρ : X → Bπ1X = K(π1X, 1) is the “canonical” inclusion obtained by
attaching cells of dimension 3 and greater to kill all homotopy groups above
degree 1.

Proof Suppose the homomorphism π1X → G exists which provides
the factorization above. Since π1X is a discrete group, there is then a
factorization

π1X ��

���
�

�
�

G

Gd

!!��������
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which induces the desired homotopy factorization

X ��

ρ

��

BG

Bπ1X

�����������
�� BGd

i

��

Now assume that X → BG factors through BGd. The induced map
of fundamental groups is then π1X → Gd and this, in turn, induces
Bπ1X → BGd. Now, the homotopy class of a map X → K(Gd, 1) = BGd
is determined by the induced homomorphism on fundamental groups. Thus
we obtain a homotopy commutative diagram

X ��

ρ

�� ""�
��

��
��

��
BG

Bπ1X �� BGd

i

��

�

Remark 6.27 The principal bundle induced from the canonical map X →
Bπ1X is simply the universal covering fibration π1X → X̃ → X. The effect
of Proposition 6.26 is to reduce the group of the principal bundle ξ to
the fundamental group π1X; hence, P ∼= X̃ ×π1X G, where π1X acts on
X̃ by covering transformations and on G via the homomorphism of the
proposition and multiplication in G.
A vector bundle Rk → E → X is flat if the associated principal

O(k)-bundle O(k) → P → X is flat and the consequent homomorphism
ρ : π1X → O(k) gives

E = P×O(k) Rk = X̃ ×π1X Rk.

Of course, the bundle is called flat because it has a flat Riemannian connec-
tion (see [194] and [198, Appendix C]). A Riemannian connection ∇ for a
vector bundle is the analogue of the covariant derivative on vector fields.
The analogue of a vector field is a section of the bundle and the connec-
tion “differentiates” the section subject to properties analogous to those in
Proposition 6.1. The connection ∇ is flat if, in the neighborhood of each
point of the base X, there is a basis of sections s1, . . . , sk with ∇(si) = 0
for i = 1, . . . ,k. This is actually a convenient equivalent condition to the
vanishing of the bundle’s curvature (see [28, Section 5.3, Theorem 5]). But
now consider the change of basis ti = ∑

j ajisj when moving to a new chart
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with local basis t1, . . . , tk. The properties of ∇ (including the hypothesized
flatness) give

0 = ∇(ti) =
∑
j

(dajisj + aji∇(sj)) =
∑
j

dajisj.

Hence, daji = 0 for all the aji. These transition functions are therefore locally
constant and factor through the structure group made discrete. Since the
transition functions are the same for the associated principal bundle, we see
that this notion of flatness corresponds to the principal bundle notion. If
the flat vector bundle is the tangent bundle Rn → TX → Xn, then the flat
Riemannian connection is precisely the connection on X associated to the
metric. Hence, X is a flat manifold. This is the “connection” between flat
manifolds and flat vector bundles. Now, in the situation of (3) and (4) of
Theorem 6.24, since X is a flat manifold, the Bieberbach theorem tells us
that X̃ = Rn. Hence, the total space E of the flat vector bundle is

E = P×O(k) Rk = X̃ ×π1X Rk = Rn ×π1X Rk.

Proof of Theorem 6.24 The discussion above shows the equivalence of
(3) and (4). Also, (2) clearly implies (1) while (4) implies (2) because π1M
acts on Rn×Rk = Rn+k by isometries (and so the zero curvature of Rn+k is
preserved under the quotient operation E = (Rn×Rk)/π1M). Now assume
(1) and let S be a soul of E. Then secS ≥ 0 and S � E � M = K(π , 1);
therefore, S is flat by Remark 6.22 (3). Now, (see Example 6.4) flat mani-
folds are classified up to diffeomorphism by their fundamental groups, so
S is, in fact, diffeomorphic to M. Now let p : Ẽ → E denote the universal
(Riemannian) covering of E and let S̃ = p−1(S) ⊂ Ẽ be the restriction to the
soul. The pullback diagram

S̃
� � ��

��

Ẽ

p
��

S
� � �� E

shows that S̃ → S is a fibration. Moreover, because S ↪→ E is a homotopy
equivalence, it induces an isomorphism of fundamental groups and this
means that the map S̃ → S is the universal (Riemannian) covering. Since S =
K(π , 1), S̃ is contractible; furthermore, by the Cheeger–Gromoll splitting
theorem (Remark 6.21), we see that S̃ ∼=isom Rn. Now observe that S̃ is
totally convex in Ẽ. This follows because the geodesic in Ẽ joining two
points in S̃ pushes down via p to a geodesic in E joining two points in S.
Then, since S is totally geodesic in E, the whole geodesic must lie in S. Thus,
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the original geodesic lies in p−1(S) = S̃. This has the effect that a line (see
Remark 6.21) in S̃ is a line in Ẽ. Hence, the Cheeger–Gromoll splitting of
Ẽ has the form

Ẽ ∼=isom E0 × Rn = E0 × S̃.

Thenwe see thatE splits locally isometrically as a product over S. Therefore,
the Riemannian connection on the normal bundle of the inclusion S ↪→ E
(induced from the Riemannian connection on E) is flat. Since E is diffeo-
morphic to the total space of this normal bundle (by the Soul theorem), we
have proven (3). �

With these preliminaries out of the way, we can now state the main result
of [219].

Theorem 6.28 Let ξ : R2 → E → Mn be an oriented vector bundle, where
Mn is a compact flat manifold. Then E admits a complete metric of non-
negative curvature if and only if the rational Euler class e(ξ)Q is zero.

In order to prove the theorem, we need a lemma.

Lemma 6.29 Let ξ : Rk → E → M be an oriented vector bundle over a
compact oriented manifold M. If E ∼=homeo F × R, then eZ(ξ) = 0, where
eZ(ξ) is the integral Euler class of ξ .

Proof Let h : E
∼=→ F × R be the given homeomorphism. Consider the

composition

M
s→ E

h→ F × R
pr→ F

it→ F × {t} ↪→ F × R
h−1→ E,

which we denote by φ. Here, s is the zero section and t is larger than any t′
such that (f , t′) ∈ Im(h ◦ s). This can be done sinceM is compact. Now, the

composition F × R
pr→ F

it→ F × R is homotopic to idF×R by H(f , r,u) =
(f , r(1− u) + ut). Thus, φ � h−1 ◦ idF×R ◦ h ◦ s � s.
Now, the (integral) Euler class is defined by s∗(�) = e(ξ), where � ∈

Hk(E,E/s(M)) is the Thom class and � is its restriction in Hk(E). But,
since φ � s, we have φ∗(�) = e(ξ). However, φ(M) ∩ s(M) = ∅ because of
the map it. Hence, φ factors as

M
φ

��

φ̄ "" 
  

  
  

  
E

E/s(M)

� �

�����������
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We then have the commutative diagram

Hk(E,E/s(M)) �� Hk(E) ��

φ∗
��

Hk(E/s(M))

φ̄∗##!!!
!!!

!!!
!

Hk(M)

with the Euler class computed two ways: once with the definition and
secondly using the factorization of φ given above.

�
� �� �

� ��
"

φ∗
��

0#

φ̄∗$$$$
$$
$$
$$

e(ξ)

Hence e(ξ) = 0 since the composition Hk(E,E/s(M)) → Hk(E) →
Hk(E/s(M)) is zero by exactness. �

Proof of Theorem 6.28 First, let e(ξ)Q = 0. By Corollary 6.48, the associ-
ated principal S1-bundle is flat. Therefore, the vector bundle is flat and from
the equivalence of (3) and (1) in Theorem 6.24, we obtain a non-negatively
curved metric on E.
Now suppose secE ≥ 0. Because Mn is flat, there exists a finite cover

f : Tn → Mn. Take the pullback bundle

E(f ∗ξ) ��

��

E

��
Tn

f
�� Mn

and a pullback metric on E(f ∗ξ) with sec ≥ 0. Now, a finite cover induces
an injection in rational cohomology, f ∗ : H∗(M;Q) → H∗(Tn;Q). (There-
fore, if e(ξ)Q were nonzero, then e(f ∗(ξ))Q would also be non-zero.) By
the equivalence of (3) and (1) in Theorem 6.24, E(f ∗ξ) is diffeomorphic
to the total space of a flat R2-bundle η over Tn. But then we know that
e(η)Q = 0 and, since H2(Tn;Z) is torsion-free, in fact e(η)Z = 0 as well.
Of course, the associated principal S1-bundle is classified by e(η)Z, so η is
trivial: E(η) = Tn × R2. But then we have

E(f ∗ξ) ∼=diffeo E(η) = Tn × R2 ∼= (Tn × R) × R.

By Lemma 6.29, we have e(f ∗ξ) = 0 and, therefore, e(ξ)Q = 0. �



6.3 Vampiric vector bundles 259

Example 6.30 We can now apply Theorem 6.28 to give explicit examples of
vector bundles over compact non-negatively curved manifolds whose total
spaces have nometrics of non-negative curvature. OrientedR2-bundles over
T2 are classified by homotopy classes of maps,

[T2,BSO(2)] = [T2,BS1] = [T2,K(Z, 2)] = H2(T2;Z) = Z.

Explicitly, each k ∈ Z corresponds to an Euler class e(ξk). Thus, since the
rational Euler class must vanish in order for the total space of the bundle
to have non-negative curvature, we have the following.

Theorem 6.31 Only the total space of the trivial R2-bundle over T2

possesses a metric with non-negative curvature.2

6.3.2 The method of Belegradek and Kapovitch

Now that we have seen the particular examples of Özaydin and Walschap,
we can explore more general (necessary) conditions for the existence of total
spaces of bundles with metrics of non-negative curvature. In the following,
we shall mainly follow [23], but also see [22] and [220]. We shall see that
a main tool in the understanding of this problem is the most fundamental
algebraic model of all, rational cohomology.
First, the following result of [22] generalizes Theorem 6.20 and

Remark 6.21 and, since we are attempting to imitate the normal bundle
situation, focusses our attention on bundles over products C × Tk.

Theorem 6.32 Let M be a complete manifold with secM ≥ 0. There exists a
finite coverM → M such thatM ∼=diffeo N×T whereN is a complete simply
connected open manifold with secN ≥ 0 and T is a torus. Furthermore, if
S is a soul of M, then the diffeomorphism carries S to C × T where C is a
soul of N.

Remark 6.33 Note that, since C is a soul of N (i.e. N is diffeomorphic to
the normal bundle of the inclusion C ↪→ N), the theorem is saying that M
is, in fact, a bundle η over C × T of the form η = ξC × T, where ξC is a
bundle over C.

With this theorem in mind, let’s make the following.

Definition 6.34 Suppose C is a closed simply connected manifold, T is a
torus and k ∈ Z. The triple (C,T,k) is said to be splitting rigid if, given a
rank k vector bundle ξ : E(ξ) → C × T with secE(ξ) ≥ 0, then there exists

2 So the other bundle total spaces do not have non-negative curvature and, hence, have no souls.
That is, they are vampires!
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a finite covering map p : T → T such that (idC × p)∗(ξ) ∼= ξC × T, where
ξC is a rank k bundle over C.

This definition can be used to obtain an obstruction (i.e. a necessary
condition) for the existence of a metric of non-negative sectional curvature
on the total space of a bundle. Namely, since most bundles over C × T do
not split after passing to a finite cover, the following result says that any
such non-splitting bundle over the product of a biquotient and a torus has
a total space which does not have sec ≥ 0.

Theorem 6.35 ([23]) Let G//H be a simply connected biquotient, where G
is compact connected and H is semisimple and connected. Then, for any
torus T and k ≤ 4, (G//H,T,k) is splitting rigid.

Let’s begin to understand this result (with the proof following later).
Denote by Char(C,k) the following characteristic algebra insideH∗(C;Q).

Char(C,k) =

⎧⎪⎨⎪⎩
⊕[m/2]

i=1 H4i(C;Q) if k = 2m+ 1

⊕[m/2]
i=1 H4i(C;Q) ⊕H2m(C;Q) if k = 2m.

Here, [−] denotes the greatest integer function. The important point is that,
for a rank k bundle overC, Char(C,k) contains the Pontryagin classes when
k is odd and the Pontryagin classes and Euler class when k is even. (We
refer to these classes as the rational characteristic classes of a bundle.) This
is important because of the following result.

Theorem 6.36 ([22]) Let ξ and η be vector bundles over C×T of the same
rank. If ξ and η have the same rational characteristic classes and ξ |C ∼= η|C,
then there exists a finite covering f : C × T → C × T such that f ∗ξ ∼= f ∗η.

Now, given a bundle ξ over C × T whose rational characteristic classes
lie in Char(C,k), clearly the rational characteristic classes of ξ and ξ |C ×T
are the same and, by definition ξ |C = ξ |C. Therefore, Theorem 6.36 implies
that there is a finite covering f : C × T → C × T with f ∗ξ ∼= f ∗(ξ |C × T).
But since C is simply connected, the finite covering has the form idC × f̃ ;
thus, f ∗(ξ |C ×T) = ξ |C ×T. This means that we have the following result.

Lemma 6.37 A bundle ξ over C × T (as above) splits if and only if the
rational characteristic classes lie in Char(C,k).

We will now use this result to obtain a criterion for splitting rigidity.
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Proposition 6.38 ([23]) If every self-homotopy equivalence of C × T pre-
serves the characteristic algebra Char(C,k) in H∗(C×T;Q) ∼= H∗(C;Q)⊗
H∗(T;Q), then (C,T,k) is splitting rigid.

Proof Suppose ξ is a vector bundle over C × T with secE(ξ) ≥ 0. By
Remark 6.33, there is a finite cover E′ → E(ξ)with E′ ∼= N×T ′, whereN is
simply connected and secN ≥ 0. SinceN is simply connected, we see in fact
that T ′ = T. Also, for S′ the soul of E′, we have S′ ∼= CN ×T where CN is a
soul of N, so N ∼= E(ζ ), where ζ is the normal bundle of CN ↪→ N. There-
fore, without loss of generality, we take E(ξ) ∼= E(η) = E(ζ )×T, where ζ is
a vector bundle over a simply connected manifoldC′. Thus, ξ and η are two
different vector bundle structures on the same manifold X = E(ξ) = E(η).
The respective zero sections C × T → E(ξ) = X, C′ × T → E(η) = X
identify C × T, C′ × T as submanifolds of X and we consider the bundles
ξ and η as the normal bundles of these respective inclusions. Note that the
composition of the first zero section map with the projection of the bundle
η gives a homotopy equivalence g : C×T → C′ ×T which can be taken to
have degree one by orienting X properly. Furthermore, the obvious maps
gC : C → C′, gT : T → T are homotopy equivalences, so we may form the
self-homotopy equivalence h = (g−1

C × g−1
T ) ◦ g : C × T → C × T. The

inclusions and projections give maps

hC : C ↪→ C × T
h→ C × T → C

hT : T ↪→ C × T
h→ C × T → T.

These are, in fact, homotopic to the respective identity maps. For instance,
if the inclusions and projections for C, C′ are denoted by iC, pC, iC′ , pC′
respectively, then we have

hC = pChiC = pC(g
−1
C × g−1

T )giC � g−1
C pC′giC � g−1

C gc � idC

since pC ◦ (g−1
C × g−1

T ) � g−1
C ◦ pC′ and pC′ ◦ g ◦ iC = gC. By assumption

h∗ maps Char(C,k) to itself, so it is plain that g∗ maps Char(C′,k) to
Char(C,k).
Since ξ and η are normal bundles to the respective inclusions of the zero

sections, we know by Poincaré duality that the Euler classes obey e(ξ) =
[C × T], e(η) = [C′ × T]. Therefore, since deg(g) = 1, for any class y ∈
H∗(C × T), we obtain

〈g∗(e(η)), y〉 = 〈e(η), g∗(y)〉 = 〈[C′ × T], g∗(y)〉
= 〈g∗([C′ × T]), y〉 = 〈[C × T], y〉 = 〈e(ξ), y〉.

So we see that g∗(e(η)) = e(ξ). Now, e(η) ∈ Char(C′,k) since η ∼= ζ × T
and g∗ maps Char(C′,k) to Char(C,k), so e(ξ) ∈ Char(C,k).
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Now let’s consider Pontryagin classes. Since g : C × T → C′ × T is
defined by

C × T
zero−→ X

πη→ C′ × T

and πη is a homotopy inverse to the η-zero section C′ × T → X, we see
that g, thought of as a map g : C×T → X is homotopic to the zero section
inclusion C × T → X. Then we obtain g∗(TX|C′×T) = TX|C×T . Now,
because we view ξ as the normal bundle to the inclusion C × T → X, and
we may apply the Whitney sum formula for the total Pontryagin class p to
the bundle TX|C×T = T(C × T) ⊕ ξ to obtain

p(T(C × T))p(ξ) = p(T(C × T) ⊕ ξ)

= p(TX|C×T)
= p(g∗(TX|C′×T))
= g∗(p(TX|C′×T))
= g∗(p(T(C′ × T) ⊕ η))

= g∗(p(T(C′ × T))g∗(p(η)).

Now,T is parallelizable, so p(T(C×T)) = p(TC) ∈ H∗(C) and p(T(C′×
T)) = p(TC′) ∈ H∗(C′). Also, p(T(C × T)) is a unit in H∗(C), so we can
write

p(ξ) = p(T(C × T))−1g∗(p(T(C′ × T))g∗(p(η)).

Now p(η) ∈ H∗(C′) since η ∼= ζ × T and g∗(Char(C′,k)) ⊆ Char(C,k), so
each factor of p(ξ) lies in H∗(C). Hence, p(ξ) ∈ Char(C,k) as well.
Because the rational characteristic classes are in Char(C,k), by the

discussion following Theorem 6.36, we see that (C,T,k) is splitting
rigid. �

Remark 6.39 Note that the proof shows that, without loss of generality, we
can always assume that the restriction toC of the self-homotopy equivalence
is homotopic to idC.

The link between self-homotopy equivalences ofC×T and algebraic oper-
ations on cohomology is provided by the the structure of H∗(T) (where we
will understand coefficients to be Q from this point forward). The torus
cohomology H∗(T) is an exterior algebra ∧(e1, . . . , es) with vector space
basis t0 = 1, t1 = e1, . . . , ts = es, ts+1 = e1e2 etc. (in some chosen, perhaps
lexicographic, ordering). Now, H∗(C × T) ∼= H∗(C) ⊗H∗(T), so a homo-
topy equivalence (with h|C =� idC by Remark 6.39) h : C × T → C × T
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induces an automorphism h∗ : H∗(C × T) → H∗(C × T) such that, for
c ∈ H∗(C) ⊂ H∗(C × T),

h∗(c) = c +
∑
i

δi(c)ti

where we have not written the⊗ in the freeH∗(C)-moduleH∗(C×T). It can
be shown that δ1 is a derivation and, further, the fact that t21 = 0 shows that
the mapping φ1 : H∗(C×T) → H∗(C×T) defined by φ1(ct) = ct−δ1(c)t1t
is a graded algebra isomorphism (with inverse φ−1

1 (ct) = ct+δ1(c)t1t). Then

φ1(h∗(c)) = φ1(c +
∑
i≥1

δi(c)ti)

= c − δ1(c)t1 + δ1(c)t1 +
∑
i≥2

φi1(c)ti

= c +
∑
i≥2

φi1(c)ti.

So we see that φ1(h∗(c)) resembles the identity with error terms involving
only the ti with i ≥ 2. The idea is now to continue this process until the
error terms are zero. We then shall have written h∗ in a very precise way
that will permit a connection with derivations of H∗(C).
Now consider the formula for φ1(h∗(c)). As usual, the first perturbation

term φ21 is a derivation, so φ2(ct) = ct − φ21(c)t2t is an automorphism of
H∗(C × T) with

φ2(φ1(h∗(c))) = c +
∑
i≥3

φi2(c)ti.

We continue in this fashion to obtain automorphisms φk for k = 1, . . . ,
N = (s

k

)
with φk(c) = c − φkk−1(c)tk and such that

(φN ◦ . . . ◦ φ1 ◦ h∗)(c) = c.

Then the isomorphism h∗ evaluated on c ∈ H∗(C) may be written as

h∗(c) = (φ−1
N ◦ . . . ◦ φ−1

1 )(c)

where φ−1
k (c) = c + φkk−1(c)tk.

Theorem 6.40 If every negative degree derivation of H∗(C) vanishes on the
characteristic algebraChar(C,k), then (C,T,k) is splitting rigid for each T.

Proof By Proposition 6.38, we must show that every self-homotopy equiv-
alence of C × T preserves Char(C,k). As noted in Remark 6.39, we may
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assume the restriction of the equivalence to C is idC. With this in mind, the
discussion above pertains and the induced isomorphism on cohomology has
the form

h∗(c) = (φ−1
N ◦ . . . ◦ φ−1

1 )(c)

where φ−1
k (c) = c + φkk−1(c)tk. But each φkk−1(c) = 0 by the hypothesis

of the theorem since c ∈ Char(C,k). Thus, h∗(c) = c, so h∗ preserves the
characteristic algebra Char(C,k). �

Corollary 6.41 (also see [220]) If H∗(C) has no nonzero negative degree
derivations, then (C,T,k) is splitting rigid for each T and k.

In particular, by Theorem4.36 and [237], we know that simply connected
Kählermanifolds andmaximal rank homogeneous spaces have cohomology
algebras admitting no negative degree derivations. Therefore, such mani-
folds are prime candidates for C’s. As we have seen, splitting rigidity is an
obstruction to the total space of a bundle over C × T having non-negative
sectional curvature; so now we see further that the question of the exis-
tence of metrics with non-negative curvature is intimately involved with
the algebraic structure of H∗(C). Finally, let’s use Theorem 6.40 to prove
Theorem 6.35.

Proof of Theorem 6.35 The group H is semisimple, so the fibration G →
G//H → BH shows that G is also semisimple and, since π2(G) = 0 and
π2(BH) = π1(H) is finite, π2(G//H) is finite. Therefore, over the rationals,
G//H is 2-connected. Therefore, the minimal model MG//H = (∧V ,d) of
G//H has V1 = V2 = 0. In Corollary 3.51, we saw that G//H has a pure
minimal model, so the generators in V3 appear in no differential. Hence,
by Theorem 2.77, MG//H = (∧V3,d = 0) ⊗ (∧V̂ ,d), where V̂3 = 0.
Now, because H2(G//H) = 0, by Theorem 6.40 we need only con-

sider rank 3 and rank 4 bundles over G//H × T. Now, by definition,
Char(G//H, 3) = Char(G//H, 4) = H4(G//H) = H4(∧V̂ ,d), so we only
have to consider derivations of degree −1 and degree −4.
Suppose θ is a derivation of degree−4 and let c ∈ H4(G//H). SinceG//H

is finite dimensional, there is somem ∈ Z+, such that cm �= 0 and cm+1 = 0.
Then

0 = θ(cm+1) = (m+ 1)θ(c)cm

and, since θ(c) ∈ Q and cm �= 0, it must be true that θ(c) = 0. Thus θ

vanishes on H4(G//H).
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Now suppose that θ is a derivation of degree −1 and let c ∈ H4(G//H).
Then θ(c) = x ∈ V3. Again find m so that cm �= 0 and cm+1 = 0. Then

0 = θ(cm+1) = (m+ 1)θ(c)cm = (m+ 1)xcm.

Note that, if dim (G//H) = n and dim (V3) = k, then Hj(∧V̂ ,d)) = 0 for
j > n−3k. Since cm �= 0, we have 4m ≤ n−3k. Also, x ∈ V3, so 4m+3 ≤
n−3k+3 = n−3(k−1) and, since k ≥ 1, 4m+3 < n. Therefore xcm is below
the top dimension in cohomology. Because H∗(∧V ,d) ∼= H∗(∧V3,d = 0)
⊗H∗(∧V̂ ,d), for x ∈ H∗(∧V3,d = 0) and cm ∈ H∗((∧V̂ ,d)), we can only
have xcm = 0 if x = 0 or cm = 0. Since cm �= 0, we must have θ(c) = x = 0.
Thus, θ vanishes on H4(G//H).
Therefore, we see that all negative degree derivations vanish on

Char(G//H,k) for k = 3, 4 and by Theorem 6.40, this means that, for
k = 3, 4, (G//H,T,k) is splitting rigid for any T. �

Finally, we mention a result of [23] showing that not all spaces give split-
ting rigid triples. The proof of the result relies essentially on the properties
of the minimal model of SU(6)/(SU(3) × SU(3)) (which is an example of a
nonformal homogeneous space).

Theorem 6.42 Let C = SU(6)/(SU(3)× SU(3)) and take dim T ≥ 2. Then
there exists a rank 6 vector bundle which does not split, but whose total
space has non-negative sectional curvature.

6.4 Final thoughts

Manifolds with sec ≥ 0 enjoy many special properties and are conjectured
to have manymore. For instance, Synge’s famous theorem says that a closed
manifoldMwith secM > 0 is orientable if dim (M) is odd and is simply con-
nected if dim (M) is even and M is orientable. Of course RP(2n+ 1) is a
prime example of the first case, while RP(2n) shows that the orientability
hypothesis is necessary for the second case. Many years ago, Hopf conjec-
tured that a closed manifoldM with dim (M) even and secM ≥ 0 must have
χ(M) ≥ 0.More recently, Gromov askedwhether a closedmanifoldMwith
secM ≥ 0 must have

∑
i bi(M) ≤ 2dim (M), where bi(M) is the ith Betti num-

ber of M. Recall from Theorem 2.75 that these assertions are indeed true
for rationally elliptic manifolds (i.e. those with dim (π∗(M)⊗Q) < ∞). This
then presents a tantalizing possibility which is enunciated in a far-reaching
conjecture generally attributed to Raoul Bott.

Conjecture 6.43 If M is a closed manifold with secM ≥ 0, then M is
rationally elliptic.
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The idea that a geometric constraint imposes conditions on the under-
lying algebraic topology of a manifold is not a new one, of course. We
have already mentioned Hadamard’s theorem that a manifold with non-
positive sectional curvature must be a K(π , 1) and Bieberbach’s theorem
characterizing flat manifolds. There is also Bochner’s famous result that a
closed manifold of non-negative Ricci curvature must have first Betti num-
ber bounded above by themanifold’s dimension. The same hypothesis yields
a similar restriction on the growth of the fundamental group (see [196]).
In a different direction, we have seen in Section 5.7 that qualities associ-
ated with geometric entities such as the geodesic flow can radically limit
possibilities for homotopy type as well.
In this chapter, we have seen how algebraic models can be associated to

geometric objects and how they can be used to construct geometric entities.
Algebraic models are important ingredients in the solutions of geometric
problems, so they have proven to be part of the tradition of obtaining
geometric information homotopically. Henri Poincaré had a criterion for
significance that he claimed for the mathematics that leads to a mathe-
matical law. The beautiful symbiosis between homotopical algebra and
geometry exemplifies this criterion and in Poincaré’s words, “Ce sont ceux
qui nous révèlent des parentés insoupçonnées entre d’autres faits, connus
depuis longtemps, mais qu’on croyait à tort étrangers les uns aux autres.”
[“They reveal the kinship between other facts, long known, but wrongly
believed to be strangers to one another.”]

6.5 Appendix

In this appendix, we will show that the rational Euler class for a principal
circle bundle vanishes exactly when the bundle is flat (see [217]). Let Gd
denote the Lie group G with the discrete topology and similarly for the
universal covering group G̃ and G̃d.

Proposition 6.44 Let G be a connected Lie group and let π : G̃ → G
denote the universal covering. Then G̃d is a pullback of π along the map
i : Gd → G.

Proof Note first that making G̃ discrete unravels all of the topology linking
the fibers of the universal covering of G. Now, for discrete spaces, only
cardinality matters, so we have G̃d = Gd × π1(G).
Let P denote the pullback of π along the map i : Gd → G. Now,

π : G̃ → G is a principal π1(G)-bundle, so its pullback along i is one
also. Because π : G̃ → G is surjective, there is a set map s : G → G̃ with
π ◦ s = idG. But Gd has the discrete topology, so s considered as a map
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s : Gd → G̃ is continuous. A principal bundle with section is trivial, so we
obtain P = Gd × π1(G) = G̃d. �

Now let G = S1 with universal cover R and note that BS1 = K(Z, 2),
BS1d = K(S1d, 1) and BRd = K(Rd, 1). Consider the following pullback
diagram.

Rd
î ��

��

R

π

��
S1d

i �� S1

Of course the homomorphisms of groups shown are the usual ones making
the sequence Z → R → S1 exact. Note that the pullback property guar-
antees that the fiber of Rd → S1d is Z included in Rd in the standard way
and that the restriction of î to fibers is the identity. But now we notice an
amazing fact. Because R → S1 is a fibration with R contractible, Rd is the
homotopy fiber of S1d → S1. Therefore, i : S1d → S1 classifies Rd → S1d and
BS1d → BS1 classifies BRd → BS1d in the sequence of classifying spaces

BZ ��

�
��

BRd
��

�
��

BS1d
��

�
��

BS1

�
��

K(Z, 1) �� K(Rd, 1) �� K(S1d, 1)
�� K(Z, 2)

(6.1)

Remark 6.45 Note that the first two maps are determined by the cor-
responding homomorphisms of groups. The last map also comes from
the sequence of discrete groups; it is the class in Ext(S1d,Z) ⊆ H2(S1d;Z)

classifying the central extension Z → Rd → S1d (see [137]).

Proposition 6.46 There exists a map φ : K(Z, 2) → K(Rd, 2) so that the
sequence of fibrations (6.1) may be extended to a sequence of fibrations

K(Z, 1) → K(Rd, 1) → K(S1d, 1) → K(Z, 2)
φ→ K(Rd, 2).

Proof This is, in fact, a standard result in topology (see [139, Theo-
rem 7.1]).
Let φ correspond to the usual inclusion of the integers into the reals,

Z → Rd. Of course, this is the induced homomorphism at the beginning
of the sequence K(Z, 1) → K(Rd, 1) as well. To see that we get a fibration
on the right end, let F denote the homotopy fiber of φ. We must show
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that F → K(Z, 2) is precisely the map K(S1d, 1) → K(Z, 2) in the original
fibration sequence corresponding to the group extension Z → Rd → S1d as
discussed in Remark 6.45.
The long exact sequence in homotopy associated to the fibration shows

immediately that F � K(S1d, 1) since (because Z → Rd is injective) the only
nontrivial homotopy group appears in degree one and is a quotient of the
standard inclusion Z → Rd (which defines φ). We now extend to a Puppe
sequence (leaving off the K(Rd, 2) on the right),

K(Z, 1) → K(Rd, 1) → F = K(S1d, 1) → K(Z, 2),

where we can see that the homomorphisms corresponding to the first two
maps are the usual ones. The first is just a loop of φ, so that is clear. The
second map is just a spatial realization of the connecting homomorphism
in the homotopy sequence by K(Rd, 1) = �K(Rd, 2) → K(S1d, 1). Since
the connecting homomorphism was the usual group projection onto the
quotient, the second map is the usual one too. The last map F → K(Z, 2)
is a classifying map for the fibration K(Z, 1) → K(Rd, 1) → F = K(S1d, 1)
since the Puppe sequence is constructed by taking consecutive homotopy
fibers. But the fibration is determined by the group extension Z → Rd →
S1d since the spaces are Eilenberg–Mac Lane spaces in degree one. Indeed,
the classifying map corresponds to an element in Ext(S1d,Z) ⊆ H2(S1d;Z)

classifying the group extension. But the group extension is the usual one,
so the element, and hence the classifying map F → K(Z, 2) are the usual
ones as well. �

A principal S1-bundle ξ : S1 → P → X is classified by a map κ : X →
BS1 = K(Z, 2). This map corresponds to a degree 2 cohomology class by the
standard identification of homotopy classes [X,K(Z,n)] with cohomology
Hn(X;Z). In fact, H2(K(Z, 2);Z) ∼= Hom(Z,Z), so there is an element ι ∈
H2(K(Z, 2);Z) corresponding to the identity homomorphism id: Z → Z.
The Euler class e(ξ) ∈ H2(X;Z) is then defined to be κ∗(ι). Since e(ξ)
characterizes the homotopy class of κ, it serves to classify principal S1-
bundles over X. A real Euler class e(ξ)Rd is obtained by simply extending
coefficients to H2(X;Rd). This is equivalent to composing with the map
φ : K(Z, 2) → K(Rd, 2) corresponding to the usual inclusion Z → Rd.
Again, we have [X,K(Rd, 2)] ∼= H2(X;Rd) obtained by pulling back a class
ι̂ corresponding to id : Rd → Rd. (Note that pulling ι̂ back to K(Z, 2) gives
the class inH2(K(Z, 2);Rd) corresponding to the usual inclusion Z → Rd.)
We can now prove the main result using only the standard fibration and
pullback theory presented above.

Theorem 6.47 The real Euler class e(ξ)Rd is zero if and only if ξ is flat.
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Proof With the notation above, consider the following fibration diagram,
which we shall use for both parts of the proof. (Here we write BS1 for
K(Z, 2) and BS1d for K(S1d, 1) to relate back to the definition of flat bundle.)

BS1d
Bi �� BS1

φ
�� K(Rd, 2)

X
κ̂

%%�
�
�
�

κ

��

Suppose ξ is flat. Then κ̂ exists by definition andwe have φ κ � φ Bi κ̂ � ∗
since φ Bi � ∗. But φ κ represents the real Euler class, so we obtain
e(ξ)Rd = 0.
On the other hand, suppose e(ξ)Rd = 0. Then φ κ � ∗. But then the homo-

topy lifting property of a fibration allows us to factor κ through the fiber as
shown in the diagram: Bi κ̃ � κ. By definition, this means that the bundle
is flat. �

Of course, when X has finite type, for an integral cohomology class e, we
can identify the conditions that e vanishes when coefficients are extended
to the reals and that e is torsion. This holds, in particular, when M is a
compact manifold. Therefore, we have

Corollary 6.48 If X has finite type, then the Euler class e(ξ) is torsion if
and only if ξ is flat. Hence, ξ is flat if and only if e(ξ)Q = 0.

Exercises for Chapter 6

Exercise 6.1 There are many kinds of curvatures for manifolds that are derived
from the Riemann curvature. The two most important of these are as follows.

Definition 6.49 The Ricci curvature is defined to be

Ric(X,Y) =
k∑
i=1

〈R(X, Ei)Y, Ei〉

where X and Y are tangent vector fields on Mk and {Ej} is a frame. Recall that a
frame {Ej} consists of an orthonormal basis of vector fields in some neighborhood
of a point in M. The scalar curvature is defined to be

κ =
k∑
j=1

Ric(Ej, Ej) =
k∑

i,j=1
〈R(Ej, Ei)Ej, Ei〉.

While a manifoldMk is said to have non-negative sectional curvature if sec(X,Y) ≥
0 for allX and Y, the Ricci curvature is said to be non-negative when Ric(X,X) ≥ 0
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for all X. Show that non-negative sectional curvature on M implies non-negative
Ricci curvature onM and, in turn, this implies non-negative scalar curvature onM.
Hint: First prove the formula

Ric(X,X) = 〈X,X〉
k−1∑
j=1

sec(X, Ej)

for a frame {Ej} spanning X⊥, the space of vector fields orthogonal to X.

Exercise 6.2 LetG be a compact (connected) Lie group with bi-invariant metric. It
is known that ∇XX = 0 for X any left invariant vector field. Thus, curves whose
tangent vectors belong to left invariant vector fields are geodesics. Also, the follow-
ing identity is known to hold: 〈[X,Y],Z〉 = −〈Y, [X,Z]〉 for left invariant vector
fields X, Y and Z. Here, 〈·, ·〉 is a the bi-invariant metric and [−,−] is the bracket
of vector fields (see Exercise A.1).
Now, for a compact, connected Lie group G with left invariant vector fields X,

Y and Z, show that

1. ∇XY = 1
2

[X,Y]. (Consider ∇X−Y (X − Y) and use Proposition 6.1 (v).)

2. R(X,Y)Z = 1
4
[[X,Y],Z].

(Start with the definition of R, then use (1) to express R completely in terms of
brackets. Finally, use the Jacobi identity for the bracket (Exercise A.1 (3)).)

3. If X and Y are orthonormal, then sec(X,Y) = 1
4

∣∣[X,Y]∣∣2.
Thus, sectional curvature, and hence, Ricci and scalar curvatures are non-negative
for a compact, connected Lie group with its natural bi-invariant metric. (Use the
definition of sec, (1), Proposition 6.1 (iv) and the identity 〈[X,Y],Z〉 = −〈Y, [X,Z]〉
with Z = Y.)

TheKilling form of a Lie groupG is defined to be b(X,Y) = trace(AdXAdY ), where
AdZ(W) = [Z,W] is a linear transformation of the vector space of left invariant
vector fields. It can be shown that −b is symmetric, bilinear and invariant under all
automorphisms of G. If −b is also nondegenerate, in the sense that b(V ,W) = 0
for all W implies V = 0, then −b is actually the bi-invariant metric 〈·, ·〉 on G.
That is, 〈X,Y〉 = −b(X,Y). A Lie group with nondegenerate Killing form is said
to be semisimple and this coincides with Definition 1.41. Using (2) above and the
definition of AdZ, show that a semisimple Lie group with metric −b has Ricci
curvature

Ric(X,Y) = −1
4
b(X,Y).

Exercise 6.3 Show that (S2n+1,T,k) is splitting rigid for all T and k.



7
G-spaces

The history of group actions is intimately tied up with the development of
both algebraic topology and Lie group theory. In this chapter, we show
how minimal models can be used to study compact Lie group actions on
manifolds. We focus on certain aspects of group actions that are especially
amenable to model techniques. Throughout the chapter, G will generally
denote a Lie group acting on a compact manifoldM.
Certain properties of M will be apparent. For instance, when the action

is free (i.e. no point in M is left fixed by any g ∈ G), we have a principal
G-bundle M → M/G with the particular consequence that χ(M) = 0.
For a general action, we will see that M fits inside the Borel fibration,
M → MG → BG, and this will be the central tool in our later study of
transformation groups via models. The construction of the Borel fibration
will be given in Section 7.2.
The efficacy of the general theory is best represented in the case where G

is a torus Tr = (S1)r. For G = Tr, we essentially focus on issues related to
the following two questions:

• When doesM admit a free or an almost free G-action?
• What are the homological and the homotopical properties of the fixed
point setMG of a G-action onM?

For instance, here is a conjecture (generally attributed to S. Halperin [129])
that relates the rank of an almost freely acting torus with the dimension of
the manifold’s cohomology.

Toral rank conjecture (TRC). IfM is a nilpotent compact manifold, then

dimH∗(M;Q) ≥ 2rk0(M),

where rk0(M) is the rational toral rank ofM.

The rational toral rank rk0(M) is defined as follows. The action of Tr on
M is said to be almost free if, for any point in the manifold, the subgroup
of G fixing that point is a finite group. The largest integer r for which M
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admits an almost free Tr-action is called the toral rank ofM, and is denoted
rk(M). If M does not admit any almost free torus action, then rk(M) = 0.
Unfortunately the invariant rk(M) is not a homotopy invariant and is quite
difficult to compute. To obtain a homotopy invariant, we introduce the
rational toral rank, rk0(M); that is, the maximum of rk(Y) among all finite
CW complexes Y in the same rational homotopy type asM. An important
advantage of using rk0(M) is that it can be explicitly computed from the
minimal model of M. For instance, in the case of a Lie group G, we have
rk0(G) = rank G, and in the case of a homogeneous space G/H, we have
rk0(G/H) = rank G− rank H.
In Section 7.3.3, we will prove the toral rank conjecture for certain

families of spaces including homogeneous spaces and compact manifolds
whose cohomology satisfies the hard Lefschetz property. The TRC can be
reformulated as a conjecture on an upper bound for the toral rank:

rk0(M) ≤ log2 dimH∗(M;Q) .

We will derive other upper bounds for rk0(M). First, we have

rk0(M) ≤ 1
2
dimH∗(M;Q) .

Secondly, denoting byZ(L) the center of a graded Lie algebraL, then, when
πeven(M) ⊗ Q = 0, we have

rk0(M) ≤ dimZ (π∗(�M) ⊗ Q) .

For a nilmanifold, the inequality becomes an equality, and so the rational
toral rank of a nilmanifoldMwith associated Lie algebra L is the dimension
of the center of L.
The second part of this chapter begins in Section 7.4 and concerns the

topology of the fixed point set MG when G is a torus Tr. From the Borel
fibration M → MG → BG, we see that the algebra H∗(MG;Q) becomes a
module overH∗(BG;Q). We have seen in Theorem 1.81 thatH∗(BG;Q) is
a polynomial algebra H∗(BG;Q) = Q[x1, . . . ,xr] where, since G = Tr, the
xi are in degree 2. Let K denote the corresponding field of fractions; that is,
the field of rational fractions in the variables x1, . . . ,xr, K = Q(x1, . . . ,xr).
The Borel localization theorem then says that we have an isomorphism of
K-vector spaces

K ⊗H∗(BG;Q) H∗(MG;Q) ∼= K ⊗H∗(MG;Q) .

We use rational homotopy theory in conjunction with the Borel local-
ization theorem to obtain results concerning the cohomology and the
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homotopy ofMG. Concerning cohomology, we prove the equality χ(M) =
χ(MG), and, for each integer n, the inequality∑

p≥n
dim Hp(MG;Q) ≤

∑
p≥n

dim Hp(M;Q) .

From the first equality we deduce, in particular, that each G-action has a
fixed point when χ(M) �= 0.
To obtain properties of the homotopy groups of the fixed set, we form

the Z/2Z-graded vector space V (where (∧V ,d) is a Sullivan model forM),
with V0 = πeven(M) ⊗ Q and V1 = πodd(M) ⊗ Q. Then, for each simply
connected component F of MG, we prove that there is a differential D on
V , D : V0 → V1, and D : V1 → V0 such that H0(V ,D) = πeven(F) ⊗ Q

and H1(V ,D) = πodd(F) ⊗ Q. In particular, ifM is rationally elliptic, then
each simply connected component F of MG is also rationally elliptic and,
moreover, χπ(F) = χπ(M).
Beginning in Section 7.6, we consider certain types of actions which are

particularly relevant to geometers, the symplectic and Hamiltonian actions
on symplectic manifolds. We show how a weakened Lefschetz condition is
enough to prove the TRC in the symplectic context. Then we consider the
notion of Hamiltonian bundle in both geometric and algebraic formulations
and give a proof of a result of Stepien [243] that says Hamiltonian bundles
are TNCZ when the fiber is a nilmanifold.
Although we are mainly interested in smoothG-manifolds, torus actions

can be defined on more general spaces with important results. In particular,
this is the case when we consider toral rank and, in Section 7.3, we discuss
toral rank in the more general context of finite CW complexes. However,
from Section 7.4 onwards, we only consider smooth actions on manifolds.
This chapter is essentially an expository chapter. The book of Kawakubo

[152] is a good reference for basic topological aspects of group actions. The
books of Hsiang [144], Bredon [40] and tom Dieck [252] are the classical
references for algebraic topological aspects. Finally, the book of Allday and
Puppe [10] is the main reference for the use of rational homotopy theory
in the study of transformation groups and the present chapter is, in some
sense, preparation for studying that work.

7.1 Basic definitions and results

A topological group G acts on a space X if there is a continuous map
ϕ : G × X → X satisfying ex = x and g1(g2x) = (g1g2)x. Here we have
adopted the usual notational convention that gx = ϕ(g,x). WhenG is a Lie
group (which we shall take to be compact unless stated otherwise) andM is
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a manifold, the action is called smooth if ϕ is a smooth map. The manifold
M is then called a smooth G-manifold, or for short, simply a G-manifold.
The subgroup Gx = {g | gx = x} is called the isotropy subgroup at the

point x. The orbit of x is G(x) = {gx| g ∈ G}. Note that the isotropy
subgroups corresponding to points in the same orbit G(x) are conjugate
because Ggx = gGxg−1. The canonical map f : G/Gx → G(x) induced by
the action on x is clearly a diffeomorphism.We can consider the set of orbits
as a topological space by taking the quotient space defined by the following
equivalence relation on M: x ∼ y if and only if there exists some g ∈ G
with gx = y. This space of orbits is denoted by M/G. A point x ∈ M is a
fixed point of the action if Gx = G; that is, gx = x for all g ∈ G. The set
of fixed points under the action of G onM is denoted byMG. An action is
free if Gx = {e} for all x ∈ M and is almost free if Gx is a finite group for
all x ∈ M.
Example 7.1 LetG = S1 act by horizontal rotations on the sphereM = S2.
The fixed point setMG is the union of the North and South poles, the orbit
spaceM/G is a semicircle connecting the poles, the isotropy subgroups are
G at the fixed poles and the trivial group {e} elsewhere. Note that, in this
case,M/G is not a closed manifold, but rather, a manifold with boundary.

Basic properties of actions that will be useful for our purposes are
summarized in the following proposition.

Proposition 7.2 ([152]) If G is a Lie group and M a compact (smooth)
G-manifold, then

1. G(x) is a submanifold of M, and the action of G induces a diffeomor-
phism G/Gx → G(x).

2. Up to conjugacy, there are only finitely many isotropy groups. Therefore
there are only finitely many diffeomorphism types of orbits.

3. The fixed point set MG is a possibly disconnected compact submanifold
of M whose components may have different dimensions.

4. If the action is free, then M/G is a manifold and the projection M →
M/G is a principal G-bundle.

The next lemma enables us to reduce the study of fixed sets of torus
actions to the study of fixed sets of circle actions.

Lemma 7.3 Let T = (S1)r be a torus acting smoothly on a compact
manifold M. Then there is some circle S1 ⊆ T such that MS1 = MT.

Proof A smooth action of a torus T on a compact manifoldM has a finite
number of orbit types. So let the isotropy groups beG1, . . . ,Gs not including
T itself. In the Lie algebra T associated to T, we have the lie algebras of the
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isotropy groups: g1, . . . , gs. Since we don’t include T itself, the gi are all of
lower dimension. Therefore there exists a vector in T not in the union of
the gi and exponentiation gives a circle S in T which has the property that it
only intersects each isotropy group in a discrete (so finite by compactness)
subgroup. This is the circle that works. Clearly,MT is inMS.
Now assume x is in MS. What is the T-isotropy group Tx at x? It has

to be one of the Gi or all of T (in which case it is a fixed point for T).
Suppose Tx = Gi. Since x is in MS, we have S contained in Gi, and this
contradicts the fact that S intersects Gi in a finite set. Therefore, Tx = T
and x is inMT . �

The same result holds in the context of CW-complexes with finitely many
orbit types, see [4, Lemma 4.2.1].

7.2 The Borel fibration

Recall from Section 1.10 that, for every compact Lie group G, there exists
a universal principal G-bundle

G → EG → BG .

The space BG, called the classifying space of G, is EG/G where EG is a
contractible space admitting a free G-action. Note that the contractibility
of EG combined with the Puppe sequence show that �BG � G.

Example 7.4 When G is the circle S1, the classifying space BS1 has been
constructed in Example 1.74. Recall that the action of the circle on
S2n+1 ⊂ Cn+1 is given by the complex multiplication z(z1, . . . , zn+1) =
(zz1, . . . , zzn+1). The quotient is the complex projective space CP(n). Let
S∞ be constructed as the direct limit of the inclusions S1 ⊂ S2 ⊂ S3 ⊂ . . . ⊂
∪∞
i=1S = S∞. Now it is known that homotopy groups behave well under

direct limits : limj πk(S
j) = πk(limj(Sj). Hence πk(S

∞) = 0 for all k and,
indeed, S∞ is contractible. Clearly S∞ is also obtained by taking the direct
limit S3 ⊂ S5 . . . ⊂ ∪S2p+1 = S∞. The free actions of S1 on the odd spheres
are compatible with the inclusions, so they induce a free action of S1 on S∞.
Since S∞ is contractible, it is ES1, and the S1-bundle S∞ → CP(∞) is the
universal S1-bundle ES1 → BS1. By multiplying together different copies
of the universal bundle S∞ → CP(∞), we obtain the classifying space of
an r-torus, BTr = (CP(∞))r.

Definition 7.5 Let G be a Lie group and let M be a G-manifold. The
associated Borel fibration is the fiber bundle

M → EG×G M
p→ BG,
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where EG×G M is the quotient of EG×M under the action of G defined
by g(x,m) = (xg−1, gm). The projection p associates to [x,m] the class of
x in BG; p([x,m]) = [x]. The total space of the Borel fibration, EG×G M,
is usually denoted by MG and its rational cohomology is called the rational

equivariant cohomology of M; H∗
G(M;Q)

def= H∗(MG;Q).

Theorem 7.6

1. When the action of G on M is free, then the projection

q : MG = EG×G M → M/G , [x,m] 
→ [m] ,
is a homotopy equivalence.

2. When the action of G on M is almost free, then the projection
q : MG → M/G is a rational homotopy equivalence. That is,
H∗(q;Q) : H∗(M/G;Q) → H∗(MG;Q) is an isomorphism.

3. When the action of G on M is trivial, then MG = BG×M.
4. When H is a compact subgroup of G, then (G/H)G � BH.

Proof (1) and (3) are clear while a proof of (2) is outlined in Exercise 7.1.
The following sequence of homotopy equivalences (the last one coming
from Example 1.79) proves (4):

(G/H)G = EG×G (G/H) ∼= (EG×G G)/H ∼= EG/H � BH .

�

Since (2) above says that, from the viewpoint of rational homotopy the-
ory, almost free actions are equivalent to free actions, it is important to
have a criterion to identify them. The following characterization of almost
free actions achieves this aim.

Theorem 7.7 (Hsiang’s theorem; see [144], [10, Proposition 4.1.7]) Let G
be a compact Lie group and let M be a compact G-manifold. Then the
group G acts almost freely on M if and only if the rational equivariant
cohomology of M, H∗

G(M;Q), is finite dimensional.

Note that, if the action is free, thenwe haveMG � M/G, soH∗(MG;Q) ∼=
H∗(M/G;Q) is finite dimensional becauseM/G is a compact manifold.

7.3 The toral rank

In this section we give conditions for the existence of almost free torus
actions on a manifold M. Our first condition concerns the Euler–Poincaré
characteristic χ(M).
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Theorem 7.8 If a compact manifoldM admits an almost free G-action with
G a compact connected Lie group, then the Euler–Poincaré characteristic
of M is zero.

Of course, for example, any compact Lie group G admits a free action
by its maximal torus via translations and we know that χ(G) = 0 since G
is rationally a product of odd spheres. On the other hand, by Theorem 7.8,
an even dimensional sphere does not admit any almost free circle action.

Proof Suppose thatG acts almost freely onM. Since �BG � G, the homo-
topy fiber of the injection M ↪→ EG ×G M has the homotopy type of G.
We obtain in this way a homotopy fibration

G → M → EG×G M = MG .

The associated Serre spectral sequence satisfies

E2 ∼= H∗(MG;Q) ⊗H∗(G;Q) ⇒ H∗(M;Q) .

By Theorem 7.7, the term E2 is finite dimensional. Since the Euler char-
acteristic is preserved in a spectral sequence and since χ(G) = 0, we have
χ(M) = χ(MG)χ(G) = 0. �

As we explained in the introduction to this chapter, the main “invariant”
for the study of almost free actions is the toral rank of a manifold. Let’s
now define this notion in the context of topological spaces.

Definition 7.9 The toral rank of a space X, rk(X), is the largest integer r
such that a torus Tr acts almost freely on X.

The toral rankmay be bounded for reasons that depend only on topology.
For instance, a wedge of spheres has toral rank zero because the basepoint
must remain fixed under the action. The latter claim follows simply from
the topology of the wedge. The basepoint of the wedge is the only point
of the wedge whose removal increases the number of components, so any
homeomorphism must fix that point. Unfortunately, the toral rank is not a
homotopy invariant.

Example 7.10 (Free S1-action on Y � S2 ∨ S3 ∨ S3) Let S1 act freely on
S3 by the Hopf action, and on S1 × S2 by translation on the first factor.
In each space select a free S1-orbit and glue together S3 and S1 × S2 along
these orbits. The result is a three dimensional CW complex Y admitting a
free circle action. Since the orbits in S3 can be contracted to a point, we
see that Y � S3 ∨ ((S1 × S2)/(S1 × ∗)). The second summand, which for
convenience we denote by Z, is the half-smash product of S1 and S2. We
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also have (from a homotopy pushout argument)

Z = (S1 × S2)/(S1 × ∗) � 
 (S1 × S1)/(S1 × ∗).
But the half-smash product (S1×S1)/(S1×∗) is easy to describe; it is simply
a torus with ameridian collapsed and, homotopically, this is a 2-sphere with
North and South poles identified or, equivalently, a 2-sphere with an arc
attached to the North and South poles. This last identification is clearly of
the homotopy type of S2 ∨ S1, so we see that

Z = 
 (S1 × S1)/(S1 × ∗) � 
 (S2 ∨ S1) = S3 ∨ S2.

Hence, the CW complex Y has the homotopy type of the wedge S2∨S3∨S3.
By the discussion above, rk(S2 ∨ S3 ∨ S3) = 0, but rk(Y) ≥ 1.

Remark 7.11 We can also define the integer rks(M) to be the maximal
r such that there is a torus Tr that acts smoothly on M. This invariant
obeys rks(M) ≤ rk(M), but it is very difficult to compute and the exact
relationship does not seem to be known. The “almost free” condition is not
a standard condition in transformation groups, but work of R. Schultz [233]
has produced, for instance, an exotic sphereN of dimension 17 that admits
no free smooth S1-action. Of course, N does admit a continuous free circle
action since N and S7 are homeomorphic. For general remarks concerning
the difference between smooth and continuous degrees of symmetry, see
[144, Chapter VII].

Since we are interested in obtaining a homotopy invariant and since we
are only considering the rational homotopy type of spaces, we are led to
the following variation of the definition of the toral rank.

Definition 7.12 The rational toral rank of a space X, rk0(X), is the maxi-
mum of rk(Y) for all finite CW complexes Y in the rational homotopy type
of X.

7.3.1 Toral rank for rationally elliptic spaces

The first computations on the rational toral rank are due to Allday and
Halperin [6]. Recall that, if M is a rationally elliptic space, the homotopy
Euler characteristic is defined by

χπ(M) = rankπeven(M) − rankπodd(M).

The first toral rank estimate derived from algebraic models was also one
of the first verifications (along with formality for Kähler manifolds and the
solution of the closed geodesic problem) that rational homotopy theory
could be used to obtain interesting geometric information.
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Theorem 7.13 ([6]) If M is a nilpotent rationally elliptic space, then

rk0(M) ≤ −χπ(M) .

Proof Consider the homotopy fibration Tr → M → MTr associated to an
almost free action of Tr onM. SinceM and Tr are rationally elliptic spaces,
the same is also true for MTr . This follows for homotopy from the long
exact homotopy sequence associated to a fibration and, for cohomology,
from Theorem 7.7. The long exact homotopy sequence then gives

χπ(M) = χπ(MTr) + χπ(Tr).

Recall now that, for a rationally elliptic space X, we have χπ(X) ≤ 0
(see Theorem 2.75). From χπ(MTr) ≤ 0 and χπ(Tr) = −r, we deduce
r ≤ −χπ(M). �

Corollary 7.14 If G is a compact connected Lie group, then rk0(G) =
rank G.

Proof Recall from Example 2.39 that the minimal model of a Lie group
G is an exterior algebra (∧(y1, . . . , yr),d = 0) with r = rank G. It follows
that −χπ(G) = rankG. Therefore rk0(G) ≤ rank G. On the other hand, if
Tr is a maximal torus in G, then the left multiplication by Tr yields a free
action of Tr on G, so that rk0(G) ≥ rank G. �

Corollary 7.15 If M = G/K is the quotient of a compact connected Lie
group G by a compact connected subgroup K, then

rk0(G/K) = rank G− rank K .

Proof From the fibration K → G → G/K (and its long exact homotopy
sequence), we deduce χπ(G/K) = χπ(G) − χπ(K) = −rank G + rank K.
This implies the inequality

rk0(G/K) ≤ −χπ(G/K) = rank G− rank K .

Now denote by Ts a maximal torus in G and by Tr a maximal torus in
K. The maximal tori of a compact Lie group are all conjugate, so we can
suppose Tr ⊂ Ts. The left multiplication by Ts−r = Ts/Tr onG/K is again
a free action. Therefore the rational toral rank of G/K is greater than or
equal to the difference s− r, rk0(G/K) ≥ rank G− rank K. �

Example 7.16 As we have seen, an odd dimensional sphere S2n−1 admits a
free circle action. Since χπ(S2n−1) = −1, we have rk0(S2n−1) = 1.
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7.3.2 Computation of rk0(M) with minimal models

Let G = Tr be an r-torus,M a nilpotent compact G-manifold, and

M → EG×G M
p→ BG

the associated Borel fibration. Our first aim in this section is the description
of the relative minimal model of the Borel fibration.
Let’s first recall the rational cohomology of Tr and BTr (Theorem 1.81).

The cohomology of Tr is an exterior algebra on r generators in degree 1,

H∗(Tr;Q) = ∧(y1, . . . , yr) ,

and the cohomology of the classifying space BTr is a polynomial algebra
on r generators in degree 2,

H∗(BTr;Q) = Q[x1, . . . ,xr] .
In particular, the minimal model of Tr is (∧(y1, . . . , yr), 0), and the minimal
model of BTr is (∧(x1, . . .xr), 0).
Let (∧V ,d) be the minimal model forM. Then a relative minimal model

for the Borel fibration is

(∧(x1, . . . ,xr), 0) → (∧(x1, . . .xr) ⊗ ∧V ,D) → (∧V ,d) .
When the action is almost free, H∗(∧(x1, . . . ,xr) ⊗ ∧V ,D) is finite dimen-
sional by Theorem 7.7. This yields a characterization of almost free actions
in terms of minimal models.

Proposition 7.17 ([130, Proposition 4.2]) If M is a nilpotent compact m-
dimensional manifold, then rk0(M) ≥ r if and only if there is a relative
minimal model of the form

(∧(x1, . . . ,xr), 0) → (∧(x1, . . . ,xr) ⊗ ∧V ,D) → (∧V ,d) ,
where |xi| = 2 for i = 1, . . . , r, (∧V ,d) is the minimal model of M and the
cohomology H∗(∧(x1, . . . ,xr) ⊗ ∧V ,D) is finite dimensional.
Moreover, if rk0(M) ≥ r, then Tr acts freely on a finite CW complex X

that has the same rational homotopy type as M, and if m − r �≡ 0 mod4,
then we can choose X to be a compact manifold.

Proof If we have an almost free Tr action on M, the discussion preceding
the statement of the proposition shows that we have a relative minimal
model with the required properties.
Conversely, suppose we have such a relative minimal model, and let N

be a finite nilpotent CW complex whose minimal model is (∧(x1, . . . ,xr)⊗
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∧V ,D) (see Section 2.6.1). The classes [xi] define classes inH2(N;Q). Mul-
tiply by integers ki to obtain [kixi] ∈ H2(N;Z) and use these classes to
define a map ϕ : N → K(Z, 2)r = (CP(∞))r. The pullback of the universal
Tr-bundle with basis (CP(∞))r gives a finite nilpotent CW complex X in
the rational homotopy type ofM that admits a free Tr-action.
The cohomology of (∧(x1, . . . ,xr)⊗∧V ,D) satisfies Poincaré duality and

the fundamental class is in degree m− r. Therefore by Theorem 3.2, when
m− r �≡ 0 mod4 we can choose N to be a compact manifold. In this case,
the classifying map may be compressed into CP(m − r) and then may be
replaced by a smooth map. The pullback of the Hopf principal bundle over
CP(m − r) then is a principal circle bundle whose total space is a smooth
manifold of the rational homotopy type ofM. �

Example 7.18 Denote by S11 → N → S12 the sphere bundle associated to
the tangent bundle of the sphere S12. We then denote by

S11 → E → (S3)4

the pullback of this fibration along a map (S3)4 → S12 of degree one. Let’s
show that rk0(E) = 1. First of all, the minimal model of E is

(∧(y1, y2, y3, y4, z),d) , |yi| = 3 , |z| = 11 , dz = y1y2y3y4 .

We then consider the relative minimal model (with |x| = 2),

(∧x, 0) → (∧x⊗ ∧(y1, y2, y3, y4, z),D) → (∧(y1, y2, y3, y4, z),d)

where D(z) = dz + x6. Clearly, the cohomology H∗(∧x ⊗ ∧(y1, y2,
y3, y4, z),D) is finite dimensional, which implies by Proposition 7.17 that
there exists a manifold in the rational homotopy type of E that admits a
free action of S1. In particular rk0(E) ≥ 1.
Now suppose that rk0(E) = r ≥ 1. By Proposition 7.17, there exists a

relative minimal model

(∧(x1, . . . ,xr), 0) → (∧(x1, . . . ,xr, y1, y2, y3, y4, z),D)

→ (∧(y1, y2, y3, y4, z),d) ,

with dimH∗(∧(x1, . . . ,xr, y1, y2, y3, y4, z),D) < ∞. Suppose D(y1) =
a �= 0, a ∈ ∧(x1, . . . ,xr). Now, D(z) = dz + τ = y1y2y3y4 + τ with
τ ∈ Ideal(xi), so

0 = D2(z) = ay2y3y4 + ξ ,

where ξ belongs to the ideal generated by y1 and ∧≥3(x1, . . .xr) for degree
reasons. This is impossible because ay2y3y4 is not in this ideal. Therefore,
by similar arguments, D(y1) = D(y2) = D(y3) = D(y4) = 0.
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Now write D(z) = α + β with α ∈ ∧(x1, . . . ,xr) and β ∈ ∧(xi)⊗ ∧+(yj).
The projection (∧(x1, . . . ,xr, y1, y2, y3, y4, z),D) → (∧(x1, . . . ,xr)/(α), 0)
is then surjective in cohomology. Therefore ∧(x1, . . . ,xr)/(α) is finite
dimensional and this can only happen when r ≤ 1.
Finally, note that, by Theorem 7.13, we have an upper bound for rk0(E)

given by 5 = −χπ(E). Therefore, we see that the Allday–Halperin estimate
is definitely not sharp.

Example 7.19 In [148], an example, due to Halperin, is given of manifolds
M and N with rk0(M) = rk0(N) = 0 and rk0(M × N) ≥ 1. This shows,
at least rationally, that taking products can increase the symmetry of mani-
folds. The minimal models ofM = S12 andN are, respectively, (∧(x, y),d),
|x| = 12, |y| = 23, dy = x2 and (∧(u1,u2,u3,u4,u5,u6, v,w),d) with
|u1| = |u2| = |u3| = |u4| = 3, |u5| = 5, |u6| = 19, |w| = 18, |v| = 35,
dv = w2 + u1u2u3u4u5u6, with the other differentials being zero.
Since rk0(M) ≤ −χπ(M) = 0, we have rk0(M) = 0. We will

show that the cohomology of any Sullivan algebra of the form (∧a ⊗
∧(u1,u2,u3,u4,u5,u6, v,w),D) is infinite dimensional when |a| = 2 and
the image ofD−d belongs to the ideal generated by a. This will imply that
rk0(N) = 0. For degree reasons D must satisfy the following properties

Du1 = α1a2, Du2 = α2a2, Du3 = α3a2, Du4 = α4a2, Du5 = α5a3

Du6 = α6a10 + µaw + a3P
Dv = w2 + u1u2u3u4u5u6 +waF + u6a3R+ T
Dw ∈ ∧+(a) ⊗ ∧+(u1,u2,u3,u4,u5) ,

with α1,α2,α3,α4,α5,α6,µ ∈ Q, R and P ∈ ∧a ⊗ ∧+(u1,u2,u3,u4,u5),
and F and T in ∧+(a) ⊗ ∧(u1,u2,u3,u4,u5).
Looking at the coefficient of u6 in D2v, we find

5∑
i=1

(−1)i+1αia2u1 · · · ûi · · ·u6 − u6a3D(R) = 0,

which implies that α1 = · · · = α5 = 0. The equation 0 = D2u6 gives
µaDw = 0, so that either µ = 0 or else Dw = 0.
Now let’s consider the equation D2v = 0. We have

0 = 2wDw − u1u2u3u4u5(α6a10 + µaw + a3P) +D(w)aF

+ (α6a10 + µaw + a3P)a3R .

If µ = 0, then the coefficient of w becomes Dw, so that Dw = 0. If Dw =
0, the coefficient of u1u2u3u4u5aw is µ so that µ = 0. In conclusion, in
any case we have µ = 0 and Dw = 0. Write R = ∑m

i=0 aiRi with Ri ∈
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∧+(u1, · · · ,u5), and observe that the coefficient of a13 in D2v is α6R. It
follows that α6 = 0.
Because of the calculations above, the projection

q : (∧(a,u1,u2,u3,u4,u5,u6, v,w),D) → (∧(a,w)/(w2), 0)

obtained by mapping the ui and v to 0 is a cdga morphism. If the coho-
mology H∗(∧(a,u1,u2,u3,u4,u5,u6, v,w),D) is finite dimensional, then
some power ak is a coboundary. But this means that, in cohomology,
0 = [a]k 
→ ak �= 0 which is impossible. Therefore rk0(N) = 0.
We now show that rk0(M×N) = 1 by giving an explicit relative minimal

model that has finite dimensional cohomology:

(∧(a,x, y,u1,u2,u3,u4,u5,u6, v,w),D) .

The differential is defined as follows

Du1 = Du2 = Du4 = Du3 = Dw = 0,
Dx = u1u2u3a2,
Dy = x2 + 2u1u6a,
Du5 = a3,
Du6 = u2u3xa,
Dv = w2 + u1u2u3u4u5u6 + xau4u6 + ya2u2u3u4 .

A straightforward computation shows that D2 = 0. To prove that the
cohomology is finite dimensional, we put a new gradation V (p) on V by
letting |u1| = |u2| = |u3| = |u4| = |u6| = 3, |a| = |x| = |w| = 2, |y| =
|v| = 3 and |u5| = 5. Since D(V (p)) ⊂ (∧V)≥p+1, this gives a spectral
sequence converging to the cohomology of the algebra. The E2 term is
isomorphic to ∧(u1,u2,u3,u4,u6) ⊗ (∧x)/(x2) ⊗ (∧a)/(a3) ⊗ (∧w)/(w2)
and is finite dimensional. This proves that the cohomology is finite and that
rk0(M ×N) ≥ 1.

7.3.3 The toral rank conjecture

The main problem related to the toral rank is the so called toral rank
conjecture (TRC), which is usually attributed to S. Halperin.

Conjecture 7.20 (TRC conjecture) LetM be a nilpotent finite CW complex.
Then

dimH∗(M;Q) ≥ 2rk0(M) .

The intuition behind the TRC is that an almost free Tr-action somehow
injectsTr, at least cohomologically, intoM. Of course, dimH∗(Tr;Q) = 2r,
so the conjecture is an expression of this intuitive notion. To set the record
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straight, however, we note that examples exist showing thatH∗(M;Q) does
not necessarily contain an exterior algebra on r generators even when an
almost free Tr-action exists onM (see [4, Remarks 4.4.2 (5)]).
From Proposition 7.17 we obtain a reformulation of the TRC conjecture

in terms of minimal models.

Conjecture 7.21 (Algebraic TRC) Let (∧V ,d) be a minimal cdga, and
let (∧(x1, . . . ,xr), 0) → (∧(x1, . . . ,xr) ⊗ ∧V ,D) → (∧V ,d) be a rela-
tive minimal model with |xi| = 2, and such that the cohomology algebra
H∗(∧(x1, . . . ,xr)⊗∧V ,D) is finite dimensional. Then dim H∗(∧V ,d) ≥ 2r.

The TRC conjecture is open in general, but has been proved in some
interesting cases that we will now consider.

Proposition 7.22 The TRC is true for any product of odd-dimensional
spheres.

Proof Suppose an r-torus Tr acts almost freely on a product of odd-
dimensional spheresM = Sn1 × Sn2 × . . . × Snp . By Theorem 7.13,

r ≤ −χπ(M) = p .

This implies that

2r ≤ 2p = dimH∗(M;Q) .

�

Proposition 7.23 The TRC is true for homogeneous spaces.

Proof Let G be a compact connected Lie group and let K ⊂ G be a
compact connected subgroup. Denote the rational toral rank of G/K by
r, and consider the Serre spectral sequence associated to the fibration
K → G → G/K:

H∗(G/K) ⊗H∗(K) ⇒ H∗(G).

It follows that dim H∗(G) ≤ dim H∗(G/K) · dim H∗(K). Since r =
rank G− rank K (see Corollary 7.15), this gives

2r = 2rank G−rank K = 2rank G

2rank K
= dim H∗(G)

dim H∗(K)
≤ dim H∗(G/K) .

�

Recall that a connected graded commutative algebra H satisfies the hard
Lefschetz property if H behaves like the cohomology of a compact Kähler
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manifold (see Theorem 4.35). This means that the following property is
satisfied:

• There is an element ω ∈ H2 such that for every p < m, the multiplication
by ωm−p induces an isomorphism Hp → H2m−p .

Theorem 7.24 ([8]) If a torus Tr acts almost freely on a compact connected
manifoldMwith a cohomology satisfying the hard Lefschetz property, then
the injection of an orbit, Tr · x ↪→ M, induces an injection in homology. In
particular, the TRC is true in this case.

Proof We consider the Borel fibration associated to the action of Tr onM:
M → MTr → BTr. The connecting map of the fibration, δ : Tr ∼= �BTr →
M corresponds to the injection of an orbit of the action. We prove that
H∗(δ;Q) is an injective map.
Write H∗(BTr;Q) = Q[x1, . . . ,xr] and note that the image of the trans-

gressionH1(M;Q) → H2(BTr;Q) is a sub-vector space of the vector space
generated by the xi. By making a change of generators, we suppose that the
image is the vector space generated by the elements xs+1,xs+2, . . . ,xr. The
quotient map q : (∧(x1, . . . ,xr), 0) → (∧(x1, . . . ,xs), 0) defined by

q(xj) =
{
xj for j ≤ s

0 otherwise

can be realized by a map g : BTs → BTr. We now pull back the Borel
fibration along g to obtain a fibration with base BTs.

M �� MTr �� BTr

M

=
��

�� E

f

��

�� BTs

g

��

By construction, the transgression of the new fibration, H1(M;Q) →
H2(BTs;Q), is zero. This implies by Corollary 4.41 that the Serre spec-
tral sequence of the fibration M → E → BTs collapses at the E2 term:
H∗(E;Q) ∼= H∗(M;Q) ⊗H∗(BTs;Q). In particular if s > 0, then H∗(E;Q)

is infinite dimensional. Notice now that the homotopy fiber of the induced
map f : E → MTr is the homotopy fiber of g, Tr−s. Since H∗(Tr−s;Q) and
H∗(MTr ;Q) are finite dimensional (the latter by Theorem 7.7), the same is
true for H∗(E;Q) and, thus, s = 0. This means that in the original Borel
fibration, the transgression H1(M;Q) → H2(BTr;Q) is a surjective map.
Now let

(∧(x1, . . . ,xr), 0) → (∧(x1, . . . ,xr) ⊗ ∧W ,D) → (∧W ,d)
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be a relative minimal model for the Borel fibration. By what we have
said above about the transgression, we obtain a decomposition ∧W =
∧(z1, . . . , zr) ⊗ ∧V , with D(zi) = xi. We now let x̄1, . . . , x̄r be variables
in degree 1, and we form the cochain algebra

(C,D) = (∧(x1, . . . ,xr, x̄1, . . . , x̄r),D)

where D(xi) = 0 and D(x̄i) = xi. This cochain algebra is contractible,
which means that H∗(C,D) = Q. The projection

π : (C,D) ⊗(∧(x1,...,xr)) (∧(x1, . . . ,xr) ⊗ ∧W ,D) → (∧W ,d) ,

obtained by mapping the xi and the x̄i to zero, is a morphism of dif-
ferential graded algebras. Since (C,D) is contractible, π is a surjective
quasi-isomorphism, and since (∧W ,d) is minimal, π admits a section σ .
The section is not unique, but in any case we always have σ(zi) = zi − x̄i.
We denote byψ : (∧(z1, · · · , zr), 0) ↪→ (∧W ,d) the canonical injection, and
we define a morphism of commutative differential graded algebras

ϕ : (C,D) ⊗(∧(x1,...,xr)) (∧(x1, . . . ,xr) ⊗ ∧W ,D) → (∧(x̄1, · · · , x̄r), 0)
by sending the xi, the zi and V to 0, and x̄i to x̄i. The composition ϕ ◦
σ ◦ ψ maps zi to −x̄i, and is therefore an isomorphism. This shows that
H∗(ϕ) : H∗(M;Q) → ∧(x̄1, . . . x̄n) is a surjective map. We now observe
that the relative minimal model

(∧(xi) ⊗ ∧W ,D) → (C,D) ⊗(∧(xi)) (∧(xi) ⊗ ∧W ,D)
ϕ−→ (∧(x̄i), 0)

is a model for the homotopy fibration Tr ∼= �BTr → M → MTr . This
implies that ϕ is a model for the injection of an orbit, and so the injection
of an orbit induces as well an injection in rational homology. �

Corollary 7.25 A compact simply-connected manifold M whose cohomol-
ogy satisfies the hard Lefschetz property does not admit any almost free
torus action.

Proof If there were an almost free Tr-action on M, then there would exist
an injection H∗(Tr;Q) → H∗(M;Q). Since M is simply connected this is
impossible. �

Note that, in the case of a symplectic manifold, this follows from Subsec-
tion 7.6.2 (in particular Theorem 7.67) as well. A weaker form of the TRC
has been proved by Allday and Puppe in [11].

Theorem 7.26 If a torus Tr acts almost freely on a compact nilpotent
manifold M, then

dim H∗(M;Q) ≥ 2r .
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Proof Let us consider the relative minimal model of the Borel fibration:

(∧(x1, · · · ,xr), 0) → (∧(x1, · · · ,xr) ⊗ ∧V ,D) → (∧V ,d) .
We decompose ∧V into the direct sum ∧V = B ⊕ H ⊕ R, with d(H ⊕
B) = 0 and d : R → B an isomorphism. The graded vector space
E = (∧(x1, · · · ,xr) ⊗ R) ⊕ D(∧(x1, · · · ,xr) ⊗ R) is then a free acyclic
∧(x1, · · · ,xr)-module. The quotient map is therefore a quasi-isomorphism
of ∧(x1, . . . ,xr)-modules,

(∧(x1, · · · ,xr) ⊗ ∧V ,D)
�−→ (∧(x1, · · · ,xr) ⊗ ∧V ,D)/E

∼= (∧(x1, · · · ,xr) ⊗H,D) .

For every element h of H we write

D(h) = α(h) + β(h) , α(h) ∈ ∧(x1, · · · ,xr), β(h) ∈ ∧(x1, · · · ,xr) ⊗H+ .

Because of the finiteness of H∗(∧(x1, . . . ,xr) ⊗H,D), there exists at least
r linearly independent elements hi with α(hi) �= 0. The degrees of these
elements hi are odd. By construction, H is isomorphic to H∗(∧V ,d) =
H∗(M;Q). Since the Euler–Poincaré characteristic of M is zero by Theo-
rem 7.8, the dimension of the rational cohomology ofM is at least 2r. �

7.3.4 Toral rank and center of π∗(�M) ⊗ Q

There is a strong relation between the rational toral rank of a space and
the dimension of the center, Z(LM) of the rational homotopy Lie algebra
LM = π∗(�M) ⊗ Q.

Proposition 7.27 ([7]) IfM is a nilpotent compactmanifoldwithπeven(M)⊗
Q = 0, then

rk0(M) ≤ dim Z(LM) .

Proof We suppose we have an almost free action of Tr on M and we
denote by

(∧(x1, · · · ,xr), 0) → (∧(x1, · · · ,xr) ⊗ ∧V ,D) → (∧V ,d)
the relativeminimalmodel of the associated Borel fibrationM→MTr→BTr.
By hypothesis, V = Vodd. Therefore D(V) ⊂ ∧(x1, · · · ,xr) ⊗ ∧even(V).
For v ∈ V , we write D(v) = α(v) + β(v), with

α(v) ∈ ∧(x1, · · · ,xr) , β(v) ∈ ∧(x1, · · · ,xr) ⊗ ∧+V .
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By sending V to zero, we obtain a map of differential graded algebras

(∧(x1, · · · ,xr) ⊗ ∧V ,D) → (∧(x1, · · · ,xr)/(α(V)), 0) .

Since the xi are cocycles, thismap is surjective in cohomology.Now, because
the action is almost free, the algebra H∗(∧(x1, · · · ,xr) ⊗ ∧V ,D) is finite
dimensional, so dim (∧(x1, · · · ,xr)/α(V)) < ∞. This implies that the ideal
α(V) has at least s independent generators α(v1), . . . ,α(vs) with s ≥ r. We
denote by W the graded sub-vector space of V consisting of the elements
v such that α(v) belongs to the ideal

∑
i α(vi) · ∧(x1, . . . ,xr)+. Clearly,

V = W ⊕ (v1, . . . , vs).
We now prove that d1(V) ⊂ ∧2(W), where d1 denotes the quadratic part

of the differential d. This implies, by Proposition 2.60, that dim Z(LM) ≥
s ≥ r.
Let’s fix some i ≤ s. For v ∈ V , d1(v) can be decomposed into a sum,

d1(v) = viσ + ω, where σ and ω belong to the algebra generated by W ⊕
(v1, . . . , v̂i, . . . , vs). Then a standard, but tedious, computation shows that
D2(v) − α(vi) ⊗ σ belongs to

(
R⊗ ∧≥2V

)
⊕ (α(vi)R+ ⊗ ∧V) ⊕

⎛⎝∑
i �=j

α(vj)R⊗ ∧V
⎞⎠ ,

with R = ∧(x1, . . . ,xr). Since D2(v) = 0, we have σ = 0 and d1(V) ⊂
∧2(W). �

For nilmanifolds the relation is stronger. Recall from Theorem 3.18 that
a nilmanifold M with associated Lie algebra L has for minimal model the
cochain algebra on L, C∗(L), and that L is also the rational homotopy Lie
algebra ofM. Denote Z(L) the center of L. Then we have:

Theorem 7.28 Let M be a nilmanifold with associated Lie algebra L. Then
rk0(M) = dim Z(L).

Proof By Proposition 7.27, rk0(M) ≤ dimZ(LM) = dimZ(L). We now
show that there exists a principal Ts-bundle, Ts → M → N, with s =
dimZ(L). This provides a free Ts-action on M and shows that rk0(M) ≥
dimZ(L).
Indeed the short exact sequence 0 → Z(L) → L → L/Z(L) → 0 induces

a relative minimal model

C∗(L/Z(L)) → C∗(L) → C∗(Z(L)) .

By definition of the cochain algebra on a Lie algebra, C∗(Z(L)) =
(∧(x1, . . .xs), 0) and C∗(L) = (∧(y1, . . . , ym,x1, . . . ,xs),D) with D(xi) =
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Pi ∈ ∧2(y1, . . . , ym). Let u1, . . . ,us be elements of degree 2. We then have a
natural morphism of differential graded algebras

ϕ : (∧(u1, . . . ,us), 0) → (∧(y1, . . . , ym),d)

given by ϕ(us) = Ps (where the Ps are d-cocycles because D = d on
∧(y1, . . . , ym)). The morphism ϕ is realized by a map f : N → BTs whereN
is the nilmanifold associated to the Lie algebraL/Z(L). A computationwith
minimal models shows that the nilmanifold M has the rational homotopy
type of the pullback along f of the universal Ts-bundle:

M ��

��

ETs

��
N

f
�� BTs

�

7.3.5 The TRC for Lie algebras

By Theorem 7.28, for finite dimensional nilpotent Lie algebras, the TRC
conjecture reduces to a conjecture on the center of the Lie algebra.

Conjecture 7.29 (Lie algebra TRC) If L is finite dimensional nilpotent Lie
algebra defined over the rational numbers, then

dimH∗(L;Q) ≥ 2dim Z(L) .

While the conjecture is open in general, it has been proved for nilpotent
Lie algebras with certain restricted structures. For instance, we have the
following result of Deninger and Singhof (see [73]; also [48]).

Theorem 7.30 The Lie Algebra TRC conjecture is true for 2-step nilpotent
Lie algebras.

Proof A Lie algebra L is called 2-step if there is a short exact sequence
0 → Z(L) → L → L/Z(L) → 0, where Z(L) is the center of L and
L/Z(L) is abelian. The cochain algebra on the Lie algebra L therefore has
the form

C∗(L) = (∧U ⊗ ∧V ,d)

with d(U) = 0, and d(V) ⊂ ∧2U. By construction, (∧V , 0) is the cochain
algebra on Z(L). We also have U = U1 and V = V1. We equip C∗(L) =
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(∧U ⊗ ∧V ,d) with a second (lower) gradation by putting U = U0 and
V = V1. Then the differential d satisfies

d(C∗(L))qp ⊂ (C∗(L))q+1p−1 ,

and the cohomology is bigraded. It follows that ⊕p+q=rC∗(L)qp is a sub-
complex and, by the usual property of the Euler–Poincaré characteristic of
a finite complex, we have the equality of polynomials

∑
r≥0

⎛⎝ ∑
p+q=r

(−1)p dim C∗(L)qp

⎞⎠ tr =
∑
r≥0

⎛⎝ ∑
p+q=r

(−1)p dim Hq
p(C

∗(L))

⎞⎠ tr.

Denote this polynomial by PL(t). Note that q is the usual degree, so the
summation index r = q + p mixes together the degree and lower degree.
Since C∗(L) = ∧U ⊗ ∧V , we have

PL(t) = (1+ t)m(1− t2)n, m = dim U, n = dim V .

Now multiply the last equation by (1− t)m to obtain

(1− t)mPL(t) = (1− t2)m+n .

By taking the value at the complex number i, we see that |PL(i)| ≥ 2n. Since
the modulus of PL(t) at the point i is less than or equal to the dimension of
H∗(C∗(L)) (by the triangle inequality), we obtain

dim H∗(C∗(L)) ≥ |PL(i)| ≥ 2n = 2Z(L) .

�

Of course, we immediately obtain the corresponding result for nilmani-
folds with appropriately restricted fundamental group.

Corollary 7.31 The TRC conjecture is true for nilmanifolds M with
2-nilpotent fundamental group.

The TRC conjecture is also true for low dimensional nilpotent Lie alge-
bras. In [48], it is proved that the TRC conjecture is true for L if one of the
following conditions holds:

1. dim L ≤ 14;
2. dim Z(L) ≤ 5;
3. dimL/Z(L) ≤ 7.



7.4 The localization theorem 291

7.4 The localization theorem

There is a long history in topology and geometry of obtaining global
information from local properties. From the Lefschetz theorem to the
Poincaré–Hopf theorem to the recent theory of stationary phase, the
dynamical philosophy has been that the “interesting points” of a geometric-
dynamical system are the stationary points. Compact group actions on
manifolds fit into this philosophical framework through their accom-
panying fundamental vector fields, so we should expect interesting
relations between the algebraic topological invariants of the global man-
ifolds and the fixed sets of the actions. The aim of this section is to
relate properties of the cohomology of MG to properties of the coho-
mology of M when G is a compact Lie group acting on a compact
manifoldM.
Recall first that if A is a commutative ring without zero divisors, then

its field of fractions K is the quotient of A × (A\{0}) by the equivalence
relation

(a,b) ∼ (c,d) if ad = bc .

For instance, the field of fractions of Z is Q, and the field of fractions of
the polynomial algebra Q[x1, . . . ,xr] is the field of rational functions in the
variables x1, . . . ,xr, denoted by

K = Q(x1, . . . ,xr) .

If P is an A-module (or an A-algebra), we can consider the K-vector space
(or the K-algebra) K ⊗A P. The kernel of the localization map

ϕ : P → K ⊗A P , ϕ(p) = 1⊗ p ,

is the submodule consisting of elements p such that, for some a ∈ A, we
have ap = 0.
We denote by A = Q[x1, . . . ,xr] = H∗(BG;Q) the rational cohomology

of BG and by K its field of fractions. Note that, since the elements xi have
even degree, the tensor product K ⊗A V inherits only a Z/2Z gradation
(i.e. odd or even) for every graded A-module V . In other words, the even
elements of V remain in even degree and the odd degree elements remain
in odd degree.
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Let’s now come back to our G-manifold M. The injection of F = MG

intoM induces a morphism f between Borel fibrations

F ��

��

M

��
BG× F = EG×G F

f
��

��

EG×G M

��
BG

= �� BG

We are now ready to recall Borel’s localization theorem. Keep in mind
that A = Q[x1, . . . ,xr] = H∗(BG;Q) and K denotes the associated field of
fractions.

Theorem 7.32 ([144, Proposition 1, page 45]; also [10]) If G is a torus and
M is a compact G-manifold, then the map induced from f by localization,

K ⊗A H∗(f ) : K ⊗A H∗
G(M;Q) → K ⊗A H∗

G(F;Q) = K ⊗H∗(F;Q) ,

is an isomorphism of K-algebras.

7.4.1 Relations between G-manifold and fixed set

As a corollary to Theorem 7.32, we deduce the fundamental relation
between the Euler–Poincaré characteristics ofM and ofMG that was already
mentioned in Proposition 3.32.

Theorem 7.33 Let G be a torus acting on a compact manifold M. Then

χ(MG) = χ(M) .

Proof Write A = H∗(BG;Q) and K its field of fractions. The Serre spectral
sequence associated to the fibrationM → EG×G M → BG satisfies

Ep,q2
∼= Ap ⊗Hq(M;Q) =⇒ Hp+q

G (M;Q) .

We tensor the terms of the spectral sequence by K over A and obtain a spec-
tral sequence of finite dimensional K-vector spaces. This gives the following
sequence of equalities:

χ(M) = χK(K ⊗A E2) = χK(K ⊗A E∞) = χK(K ⊗A H∗
G(M)) .

By Borel’s localization theorem, the last term is equal to χK(K⊗H∗(MG)) =
χ(MG) . �
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Remark 7.34 Borel’s localization theorem is not true for any Lie group G.
For instance consider the action of SO(3) on S3 ⊂ R4 given by rotations
in the three first coordinates. The fixed point set is composed of the two
poles (0, 0, 0, 1) and (0, 0, 0,−1). Therefore χ(S3) = 0 and χ(S3)G = 2 in
contradiction to a possible generalization of Theorem 7.33.

A very useful criterion for the existence of fixed points may be obtained
from the localization theorem.

Theorem 7.35 (Borel fixed point criterion) Suppose M is a compact G-
manifold where G is a torus. Then the action has fixed points if and only if
the homomorphism H∗(BG;Q) → H∗(MG;Q) is injective.

Proof Write A = H∗(BG;Q) and let K be its field of fractions. If
H∗(BG;Q) → H∗(MG;Q) is injective, then the A-module generated by
1 ∈ H0(MG;Q) is free, and the K-module K ⊗A H∗(MG;Q) is nonzero.
Therefore K ⊗H∗(MG;Q) is also nonzero, soMG cannot be empty.
On the other hand, ifMG is not empty, the choice of a point inMG gives

a map BG → BG×MG that is a section for the composition BG×MG =
EG×G MG f→ EG×G M

p→ BG. In particular, H∗(BG;Q) → H∗(MG;Q)

admits a retraction and is therefore injective. �

Recall from Definition 4.39 that a fibration F
i→ E → B is TNCZ

(totally noncohomologous to zero) with coefficients in L if i∗ : H∗(E;L) →
H∗(F;L) is surjective.

Theorem 7.36 Suppose M is a compact G-manifold, where G is a torus.
Then the Borel fibration, M → MG → BG, is TNCZ with coefficients in Q

if and only if dimH∗(M;Q) = dimH∗(MG;Q).

Proof Write A = H∗(BG;Q), K its field of fractions and let (A ⊗
H∗(M;Q),D) be a semifree model of the Borel fibration (see Proposi-
tion 2.109). Then, for degree reasons, D = 0 if and only if the fibration
is TNCZ. Therefore, if the fibration is TNCZ, we have by the Borel
localization theorem,

dimQH∗(M;Q) = dim K(K ⊗H∗(M;Q)) = dim KH∗(K ⊗H∗(M;Q),D)

= dim K(K ⊗H∗(MG;Q)) = dimQH∗(MG;Q) .

If the fibration is not TNCZ, then we have, in a similar way,

dimQH∗(M;Q) > dim KH∗(K ⊗H∗(M;Q),D) = dimQH∗(MG;Q) .

�
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We now come to an interesting relation between the cohomologies ofM
and the fixed point setMG when G is a torus.

Theorem 7.37 For each n ≥ 0, we have

∞∑
i=0

dimHn+2i(MG;Q) ≤
∞∑
i=0

dim Hn+2i(M;Q) .

Proof Once again write A = H∗(BG;Q) and let K denote A’s field of
fractions. The morphism f : EG ×G MG → EG ×G M is a morphism
of fibrations over BG. We construct a morphism of semifree A-modules
ϕ : (A⊗H∗(M;Q),D) → (A⊗H∗(MG;Q), 0) inducing H∗(f ;Q) in coho-
mology. As before, let F = MG and also denote BG × F = EG ×G F =
FG.
Recall that C∗(X) is the rational singular cochain algebra on a space X.

We denote by

ϕF : C∗(BG) ⊗H∗(F;Q)
�−→ C∗(FG) ,

and

ϕM : C∗(BG) ⊗H∗(M;Q)
�−→ C∗(MG)

semifree models of C∗(FG) and C∗(MG) (see Proposition 2.109). Then,
by Proposition 2.107, there exists a morphism of C∗(BG)-modules τ such
that the following diagram commutes up to homotopy, and therefore in
cohomology:

C∗(MG)
C∗(f )

�� C∗(FG)

(C∗(BG) ⊗H∗(M;Q),d)
τ ��

ϕM �
��

(C∗(BG) ⊗H∗(F;Q),d)

ϕF �
��

Since C∗(BG) is related to the minimal model (A, 0) of BG by a sequence
of quasi-isomorphisms, there is a morphism of A-semifree modules

ϕ : (A⊗H∗(M;Q),D) → (A⊗H∗(MG;Q), 0)

inducing H∗(f ;Q) in cohomology. Observe that ϕ
(
A⊗Hq(M;Q)

) ⊂
⊕i≥0A⊗Hq−2i(MG;Q). We can therefore consider the restricted morphism
of complexes

ϕ̃ : (A⊗H≤n(M;Q),D) → (A⊗H≤n(MG;Q), 0) ,
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and the induced morphism of quotient complexes

ϕ̄ : (A⊗H≥n(M;Q), D̄) → (A⊗H≥n(MG;Q), 0) .

We tensor by K over A and consider the following diagram of complexes

(K ⊗H≤n(M;Q),D) ��

K⊗Aϕ̃

��

(K ⊗H∗(M;Q),D) ��

K⊗Aϕ

��

(K ⊗H≥n(M;Q), D̄)

K⊗Aϕ̄

��
(K ⊗H≤n(MG;Q), 0) �� (K ⊗H∗(MG;Q), 0)

q
�� (K ⊗H≥n(MG;Q), 0)

Since q is surjective in cohomology and K ⊗A ϕ is a quasi-isomorphism,
K ⊗A ϕ̄ is surjective in cohomology.
Note that, for degree reasons, K ⊗A ϕ maps the vector space Hn(M;Q)

into ⊕i≤0K ⊗ Hn+2i(MG;Q). This implies the surjectivity in cohomology
of the map

K ⊗A ϕ̄ : (⊕i≥0K ⊗Hn+2i(M),D) �� (⊕i≥0K ⊗Hn+2i(MG), 0) .

The result now follows directly. �

Theorem 7.7 and Theorem 7.32 are in fact particular cases of a more
general result (see [144, Theorem IV.6], [10, definition 4.1.5]):

Theorem 7.38 Krull-dim (H∗(MG;Q)) = max {rank Gx |x ∈ X }.

7.4.2 Some examples

Example 7.39 Let M be an even dimensional sphere, M = S2n, with
n > 0, and let G = S1. It follows from Theorems 7.33 and 7.37 that
χ(MG) = 2 and dimH∗(MG;Q) ≤ 2. Therefore, dimHeven(MG) = 2 and
dimHodd(MG) = 0. There are therefore only two possibilities: either MG

has the real homotopy type of the union of two points, or else MG is a
compact connected manifold that has the rational homology of a sphere
and therefore the rational homotopy type of an even dimensional sphere.
For instance, fix 0 < p < n and write the sphere S2n as{
(z1, . . . , zp,x2p+1, . . . ,x2n+1) ∈ Cp × R2(n−p)+1

∣∣∣∣ ∑ |zi|2 +
∑

x2j = 1
}
.

Then the fixed point set of the action of S1 on S2n defined by

t(z1, . . . , zp,x2p+1, . . . ,x2n+1) = (tz1, . . . , tzp,x2p+1, . . . ,x2n+1) , t ∈ S1 ,
is the sphere S2(n−p).
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Example 7.40 LetM = S2n+1. IfMG �= ∅, then we have χ(MG) = χ(M) =
0 by Theorem 7.33, and dimH∗(MG) ≤ 2 by Theorem 7.37. Thus the fixed
point setMG has the rational homotopy type of a sphere S2m+1 withm ≤ n.

Example 7.41 The projective space CP(2) is the quotient of C3\{0} by the
equivalence relation identifying the triples (x, y, z) and (λx, λy, λz) for all
nonzero λ ∈ C. We consider the action of G = S1 on M = CP(2) given as
follows:

t[x, y, z] = [tx, y, z] , t ∈ S1 .
The fixed point setMG is the union of a point P = [1, 0, 0] and of a submani-
fold S2 consisting of the elements [0, y, z], y, z ∈ C. The relative minimal
model for the Borel fibration has the form

(∧x, 0) → (∧x⊗ ∧(u, v),D) → (∧u, v),d) ,
with |x| = 2, |u| = 2, |v| = 5, du = 0, dv = u3. For degree reasons,
D(u) = 0 and D(v) = u3 + αxu2 + βx2u + γx3, with α,β, γ ∈ R. The
injection of the fixed point P into CP(2) induces a commutative diagram of
relative Sullivan models

(∧x, 0) ��

=
��

(∧x⊗ ∧(u, v),D) ��

ψ

��

(∧u, v),d)

��
(∧x, 0) �� (∧x, 0) �� Q

By making a change of generators, we can suppose that ψ(u) = 0. For
degree reasons ψ(v) = 0. Since ψ is a morphism of differential graded
algebras, we deduce that γ = 0.
The minimal model of the injection j of S2 intoM is given by

ρ : (∧(u, v),d) → (∧(u, v′),d), d(v′) = u2, ρ(u) = u, ρ(v) = uv′.

Since the action of S1 on S2 is trivial, j induces a diagram of relative minimal
models

(∧x, 0) ��

=
��

(∧x⊗ ∧(u, v),D) ��

τ

��

(∧u, v),d)
ρ

��
(∧x, 0) �� (∧x, 0) ⊗ (∧(u, v′),d) �� (∧(u, v′),d)

By making changes of generators, we can suppose that τ(u) = u and τ(v) =
α1xv′ + uv′. The compatibility with the differentials gives β = 0.
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If α = 0, then H∗(∧(x,u, v),D) = ∧x⊗ ∧u/u3. By the Borel localization
theorem, Q(x) ⊗∧x H(∧(x,u, v),D) ∼= Q(x) ⊗ H∗(MG;Q), so this would
give H∗(MG;Q) = ∧u/u3, which is not correct. Therefore, α �= 0, and by
a final change of generators, we can suppose α = 1. Therefore, a minimal
model for the Borel fibration associated to the action is given by

(∧x, 0) → (∧x⊗ ∧(u, v),D) → (∧u, v),d) ,
with |x| = 2, |u| = 2, |v| = 5, D(u) = 0 and D(v) = u3 + xu2. Note
that K ⊗A H∗(∧x ⊗ ∧(v,w),D) ∼= K[t]/t2 · e1 ⊕ K · e2 with e1 = 1 − u2

x2
,

e2 = u2

x2
, t = u + u2

x , e1 + e2 = 1. This decomposition corresponds to the
decomposition H∗(MG;Q) = H∗({P};Q) ⊕H∗(S2;Q).

Example 7.42 Let S1 act on S2 by horizontal rotations. There are two
fixed points, the North pole, NP, and the South pole, SP. Let V denote
a small neighborhood of NP which is stable under the action. Now denote
by S21, S

2
2, S

2
3, S

2
4 four copies of the sphere S

2 with the same S1-action and
let V1,V2,V3,V4 denote the corresponding neighborhoods of the North
poles. We then have a diagonal S1-action on S21 × S22 and on S

2
3 × S24. We

remove the interiors of V1 × V2 and of V3 × V4 and paste together the
boundaries. We obtain in this way a S1-action onM = (S21 × S22)#(S

2
3 × S24).

The manifoldM is rationally hyperbolic, and the fixed point set consists of
six isolated points. We verify directly that χ(M) = χ(MG) = 6 (compare
with Theorem 7.33).

Example 7.43 Suppose we are given an action of the circle on M =
(S31 × S32)#(S

3
3 × S34). Let’s show that the fixed point set is path connected.

Since χ(M) = −2, MG is not empty by Theorem 7.33. The vector space
Heven(MG;Q) therefore has dimension one or two by Theorem 7.37. In
the first case, we would have a manifoldMG whose reduced rational coho-
mology has dimension three and is concentrated in odd degrees. This is
not possible by Poincaré duality. We thus have dimHeven (MG) = 2 and
dimHodd(MG) = 4. If there are two components, the sum of the Betti
numbers in one component is greater than or equal to 3 and the reduced
homology is concentrated in odd degrees. Once again this is not possible
by Poincaré duality. ThereforeMG is connected and dim H∗(MG) = 6.

Example 7.44 We construct an action of S1 on M = (S31 × S32)#(S
3
3 × S34)

with fixed point set a torus with two handles. Start with the trivial knot in
S3. The complement is homeomorphic to a product of S1 with an open disk.
The rotation along the meridian circles of this solid torus defines an action
of S1 on S3 whose fixed point set consists of the original trivial knot. In the
next step we choose a closed neighborhood V , stable under the S1-action,
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of a closed arc contained in the trivial knot. We take four copies of the
sphere S3 and of the neighborhood V and we construct the connected sum
(S31 × S32)#(S

3
3 × S34) by first removing the interiors of the products V1 ×V2

and V3 × V4 and then pasting together their boundaries. The diagonal S1

action on the products then extends to the connected sum, and the fixed
point set is a torus with two handles.

7.5 The rational homotopy of a fixed point
set component

In this section, we derive information about the rational homotopy Lie
algebra LF = π∗(�F) ⊗ Q of a component F of MG from knowledge of
the rational homotopy Lie algebra of M, LM = π∗(�M) ⊗ Q. Throughout
this section, G denotes a torus which acts smoothly on a compact manifold
M. Note that the application of rational homotopy is not easy here because
MG is not necessarily path connected and therefore does not admit a min-
imal model. The essential part of this section consists of a presentation of
theorems due to Allday and Puppe.
We will use Z/2Z-graded Sullivan models in the proof of the main the-

orem. For the sake of simplicity, we have concentrated all the algebraic
ingredients necessary for the proof in a subsection. The reader who is only
interested in topological applications can avoid reading that subsection.

7.5.1 The rational homotopy groups of a component

The fixed point setMG decomposes as a finite union of submanifoldsMG =
F1

∐
F2

∐
. . .

∐
Fn. The component F1 is denoted F. The injection of F into

M induces a commutative diagram of Borel fibrations and a commutative
diagram of corresponding relative minimal models:

F ��

��

FG ��

��

BG

=
��

M �� MG �� BG

A ��

=
��

(A⊗ ∧XM,D) ��

f
��

(∧XM,d)

��

A �� (A, 0) ⊗ (∧XF,d) �� (∧XF,d)

Here as usual A = H∗(BG;Q) and K is its field of fractions.
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Theorem 7.45 ([3]) With the notation above, there exists a differential D
on theZ/2Z-vector space K⊗XM such that the cohomologyH∗(K⊗XM,D)

is isomorphic to K ⊗XF as a Z/2Z-vector space.

Proof The canonical augmentation ε : (∧XF,d) → (Q, 0) extends naturally
to an A-linear map ε : (A, 0) ⊗ (∧XF,d) → (A, 0). We tensor ε by K over
A and denote by I the kernel of the augmentation map

� : (K ⊗ ∧XM,D)
f→ (K, 0) ⊗ (∧XF,d) ε→ (K, 0) .

Now let xi be a basis of XM indexed by a well ordered set such that
d(xi) ∈ A ⊗ ∧(xj, j < i). For each xi, the element x̃i = xi − �(xi) belongs
to I, with �(xi) = 0 when |xi| is odd. We denote by X̃M the vector space
generated by the x̃i. The isomorphism

θ : K ⊗ ∧XM → K ⊗ ∧X̃M
defined by θ(xi) = x̃i+�(xi) induces a differentialD = θDθ−1 onK⊗∧X̃M.
Note that the differential algebra (K⊗ ∧X̃M,D) is a Z/2Z-graded Sullivan
algebra, but not necessarily a minimal one. WriteQ(D) for the differential
induced on the indecomposables.
Since f (I) ⊂ K ⊗ ∧+XF, f (X̃M) ⊂ K ⊗ ∧+XF, and f induces a map on

the homology of indecomposables

Q(f ) : H(K ⊗ X̃M,Q(D)) −→ K ⊗XF.

We will now prove that this map is an isomorphism and this will imply the
result.
By the localization theorem we have an isomorphism

θ : K ⊗A H∗
G(M;Q) → K ⊗A H∗

G(MG;Q)

∼= K ⊗H∗(MG;Q) ∼= ⊕n
i=1(K ⊗H∗(Fi;Q)) .

If we write H0(Fi;Q) = Qei with e2i = ei, then H0(MG;Q) is the vector
space generated by the orthogonal idempotents ei:

e2i = ei, ei · ej = 0 if i �= j .

We choose an element x inK⊗AH∗
G(M;Q) such that θ(x) = e1. By inverting

the element θ(x), we kill the components H∗(Fi;Q) for i ≥ 2. We get an
isomorphism of algebras

θ̄ :
(
K ⊗A H∗

G(M;Q)
) [x−1] −→

(
K ⊗H∗(MG;Q)

)
[θ(x)−1]

∼= K ⊗H∗(F;Q) .
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Now, the isomorphism H∗(K ⊗ ∧X̃M,D) ∼= K ⊗A H∗
G(M;Q) shows that

there is a cocycle u in K ⊗ ∧X̃M such that [u] = x. We then consider
the Z/2Z-graded relative minimal model (K ⊗ ∧X̃M ⊗ ∧(v,w),D), where
|v| = 0 , |w| = 1 , D(v) = 0 , and D(w) = uv − 1.
Define a morphism ψ : H∗(K ⊗ ∧X̃M,D)[x−1] → H∗(K ⊗ ∧X̃M ⊗

∧(v,w),D) by putting ψ(x−1) = [v]. Recall that a localized module B[x−1]
is by definition the quotient B[x−1] = B⊗ ∧y /(xy − 1). In our case, since
uv− 1 = 0 in H∗(K⊗ ∧X̃M ⊗ ∧(v,w),D), the morphism ψ is well defined
and is an isomorphism by Lemma 7.46.
We extend the map f : (K ⊗ ∧XM,D) → (K, 0) ⊗ (∧XF,d) to a map

f̄ : (K ⊗ ∧X̃M ⊗ ∧(v,w),D) → (K, 0) ⊗ (∧XF,d) ,
by defining f̄ (v) = 1 and f̄ (w) = 0.

The Borel localization isomorphism H∗(K ⊗ ∧XM)[x−1] ∼=−→ K ⊗
H∗(∧XF,d) then factors as the composition

H∗(K ⊗ ∧X̃M)[x−1] ψ−−−−→∼=
H∗(K ⊗ ∧X̃M ⊗ ∧(v,w),D)

−H∗(f̄ )−−−−→K ⊗H∗(∧XF,d).
Since ψ is an isomorphism, H∗(f̄ ) is also an isomorphism.
We introduce the elements ũ = u − 1 and ṽ = v − 1 that belong to the

kernel of ε ◦ f̄ , and we have D(w) = ũ+ ṽ + ũṽ.
In the same way as in the classical theory of N-graded Sullivan models,

an isomorphism between Z/2Z-graded Sullivan models induces an isomor-
phism on the homology of indecomposable elements (see Lemma 7.56).
In our case this implies that H(K ⊗ X̃M,Q(D)) ∼= H(K ⊗ (X̃M ⊕
(ṽ,w)),Q(D)) ∼= K ⊗ XF. Since K ⊗ XM is isomorphic to K ⊗ X̃M as
a graded vector space, we obtain a differential D on K ⊗ XM such that
H(K ⊗XM,D) ∼= H(K ⊗ X̃M,Q(D)). �

Lemma 7.46 Let (B ⊗ ∧(v,w),D) be a differential Z/2Z-graded commu-
tative algebra with |v| = 0, |w| = 1, D(v) = 0 and D(w) = uv − 1, where
u is a cocycle of degree 0 in B. Then the morphism ψ : H∗(B)[u−1] →
H∗(B⊗ ∧(v,w),D) defined by ψ(u−1) = [v] is an isomorphism.
Proof We filter the cochain algebra (B⊗∧(v,w),D) by the degree inB⊗∧v.
We get a spectral sequence whose E2-term satisfies

E2 = E0,∗2 ⊕ E1,∗2 , E0,∗2 = (
H∗(B,d) ⊗ ∧v) /(uv − 1) = H∗(B,d)[u−1] .

A cocycle α in E1,∗2 decomposes into a sum α = ∑n
i=r biviw, with bi ∈

H∗(B,d). The condition d1(α) = 0 implies that br = 0. Therefore, by



7.5 The rational homotopy of a fixed point set component 301

induction, we have E1,∗2 = 0. The spectral sequence therefore collapses at
the E2-level and this shows that ψ is an isomorphism. �

Here is a main consequence of Theorem 7.45. It gives a powerful connec-
tion between aG-manifold and its fixed point set when the extra condition
of rational ellipticity is added.

Corollary 7.47 ([3]) Let G be a torus, M a compact nilpotent rationally
elliptic G-manifold and F a nilpotent component of MG. Then

1. F is a rationally elliptic manifold;
2. χπ(F) = χπ(M);
3. dimπ∗(F) ⊗ Q ≤ dimπ∗(M) ⊗ Q.

Proof With the above notation, by Theorem 7.45, dimXF = dim KH∗(K⊗
XM,D), so clearly we have dimXF ≤ dimXM . If we let χ(XM), χ(X̃M),
χ(XF) denote the Euler–Poincaré characteristics of the respective complexes
K ⊗ XM, K ⊗ X̃M, K ⊗ XF, the standard result that the Euler–Poincaré
characteristic is invariant under taking homology gives

χπ(M) = χ(XM) = χ(X̃M) = χ(XF) = χπ(F) .

�

As a corollary we recover a special case of the well-known theorem that
the inclusion of an orbit for an effective torus action on an aspherical
manifold induces an injection at the fundamental group level (see [63]).

Theorem 7.48 Let G be a torus acting on a nilmanifold M = K(π , 1).

1. If the action is nontrivial, then MG = ∅.
2. If the action is effective, then the injection of an orbit G ·x ↪→ M induces
an injective map π1(G) → π .

Proof Theminimalmodel of a nilmanifoldM has the form (∧XM,d), where
XM is a finite dimensional vector space concentrated in degree one. More-
over, the dimension ofXM is equal to the dimension of the manifoldM (see
Remark 3.21). SupposeMG �= ∅ and let F be a path component ofMG, and
(∧XF,d) its minimal model. By Theorem 7.45, H∗(K⊗XM,D) ∼= K⊗XF.
ButXM is concentrated in degree 1, so K⊗XM is in odd degrees only. Thus,
we have D = 0 and, therefore, K⊗XM ∼= K⊗XF as a Z/2Z-graded vector
space. Thus, the dimension ofXF is equal to the dimension ofXM. Now,XF
is concentrated in odd degrees, but if there is an element in an odd degree
larger than 1, then the dimension of F would exceed the dimension ofM by
Theorem 2.75 (6). Thus,XF is concentrated in degree one. This implies that
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F is a closed submanifold of the same dimension as M, so MG = F = M,
which is not possible. ThereforeMG = ∅.
Suppose now that the action is effective. We shall show that the action is,

in fact, almost free. If not, then there exists some S1 in some isotropy group
at a point x ∈ M, say. Since we assume the action is effective, we know that
this S1 does not act trivially on the whole manifoldM. By (1), we also know
that MS1 = ∅, but this contradicts the fact that S1 is in the isotropy group
of x. Hence, no isotropy group contains an S1 and the action is almost
free. By Hsiang’s theorem, Theorem 7.7, we have that H∗

G(M;Q) is finite
dimensional. Now let

(∧(x1, . . . ,xr), 0) → (∧(x1, . . . ,xr, y1, . . . , yn),D) → (∧(y1, . . . , yn), D̄)

be a relative minimal model for the Borel fibration M → MG → BG, with
G = Tr. We have, as usual, |xi| = 2 and, because M is a nilmanifold,
|yi| = 1. Because (∧(x1, . . . ,xr),d = 0) is a polynomial algebra and all the
other generators of (∧(x1, . . . ,xr, y1, . . . , yn),D) are in degree 1, the only
way to achieve finite dimensionality for cohomology is to kill the entire
vector space in degree 2 having basis {x1, . . . ,xr}. Therefore, there must
exist r elements yi1 , . . . , yir such that the elements D(yij) form a basis for
the vector space generated by the xk. In particular, this says that theD(yij) all
have nonzero linear parts. Recall from Proposition 2.65 that the linear part
of a differential in a relativemodel represents the connectingmap in the long
exact homotopy sequence of the associated fibration. Here this means that
the connecting map π2(BG)⊗ Q → π1(M)⊗ Q is injective (since the entire
vector space generated by the xk’s is hit by the differentialD). Since π2(BG)

is torsion-free, the usual connecting map π2(BG) → π1(M) is also injective.
Recalling that the composition π1(G) = π1(�BG) ∼= π2(BG) → π1(M)

may be identified with the map induced by the injection of an orbit, we
obtain the result. �

Corollary 7.49 Suppose that G is an r-torus acting on a compact nilpo-
tent rationally elliptic manifold M with χπ(M) �= 0. Then MG has no
contractible component.

Proof For each component F of MG, XF �= 0 and so, by Corollary 7.47,
the rational cohomology of F is not trivial. �

Example 7.50 LetG be a torus acting on the projective n-spaceM = CP(n).
Since the rational cohomology of M is zero in odd degrees, by Theo-
rem 7.37, the cohomology of MG is concentrated in even degrees and
dim H∗(MG;Q) = n + 1. Denote by F a simply connected component of
MG. Since χπ(F) = χπ(M) = 0, and dim π∗(F)⊗Q ≤ dim π∗(M)⊗Q = 2, F
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has the rational homotopy type of a point or of a complex projective space
CP(m) with m ≤ n.

Example 7.51 Let G be a torus acting on a nilpotent rationally hyperbolic
manifoldM, and suppose that πeven(M)⊗Q is finite dimensional. Let F be a
component ofMG. Thenwith the notation of Theorem7.45,H∗(K⊗XM,D)

is infinite dimensional, and so, by Theorem 7.45, K⊗XF ∼= H∗(K⊗XM,D)

is also infinite dimensional. In particular, each nilpotent component of the
fixed point set is a rationally hyperbolic manifold.

Example 7.52 LetM be the connected sumof two copies of the product S3×
S3×S3×S3 and letG be a torus acting onM. Denote by z ∈ π∗(M)⊗Q the
class of the image of the boundary sphere in (S3)4\{∗}, and by y ∈ π∗(�M)⊗
Q the image of z by adjunction. The construction of the differential in the
minimal model of the connected sum (see Example 3.6) shows that the
element y is a generator in the Lie algebra π∗(�M) ⊗ Q. Therefore, by
Corollary 3.4, the rational homotopy Lie algebra π∗(�M) ⊗ Q is a graded
Lie algebra generated in degrees 2 and 10. It follows from Example 7.51
that π∗(�F) ⊗ Q is also infinite dimensional.

7.5.2 Presentation of the Lie algebra LF = π∗(�F) ⊗ Q

When πeven(M) ⊗ Q = 0, or more generally, when the differential D
defined in Theorem 7.45 on the Z/2Z-graded vector space K ⊗ XM van-
ishes, the Borel localization theorem gives information about the Lie algebra
π∗(�F) ⊗ Q.

Theorem 7.53 ([9]) SupposeM is a compact smooth Tr-manifold satisfying
πeven(M) ⊗ Q = 0, and let F be a nilpotent component of MG. Denote by

L(WM) → L(GM) → LM

and

L(WF) → L(GF) → LF

minimal presentations, where L(−) denotes the graded free Lie algebra
functor. Then,

1. dimGF ≤ dimGM;
2. dimWF ≤ dimWM.

Proof Since the action is smooth, for every generic circle S1 ⊂ Tr, we have
XS1 = XTr (see Lemma 7.3). Thuswemay assumewithout loss of generality
that r = 1. In this case, A = Q[t] and K = Q(t). For α ∈ Q, let Qα indicate
thatQ has beenmade into anAmodule via the mapA → Q given by t 
→ α.
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We use the notation contained in the proof of Theorem 7.45. Since XM
is concentrated in odd degrees, X̃M = XM and the differentialQ(D) on the
indecomposable elements is zero. Therefore f induces an isomorphism of
Z/2Z-graded differential algebras

K ⊗A (A⊗ ∧XM,D1) → (K, 0) ⊗ (∧XF,d1) ,
whereD1(XM) ⊂ A⊗∧2XM and d1 is the quadratic part of the differential d.
On the other hand, by the definition of the relative minimal model ofMG,

we haveQ0⊗A(A⊗∧XM,D1) = (∧XM,d1). Denote byC∗ the complex (A⊗
∧∗XM,D1). The universal coefficient theorem gives a short exact sequence

0 → Q0 ⊗A Hi(C∗) → Hi(Q0 ⊗A C∗) → TorA1 (H
i+1(C∗),Q0) → 0 .

Note, in particular, that the indices refer to the gradation A⊗ ∧∗XM.
Now observe that, for a morphism ϕ : P1 → P2 of A-modules, K ⊗A ϕ

is an isomorphism if and only if Q1 ⊗A ϕ is an isomorphism. Then, using
Lemma 7.54 below, we have the following sequence of equalities.

dimQHq(∧XF,d1) = dimQQ1 ⊗A Hq(A⊗ ∧XF,d1)
= dimQQ1 ⊗A Hq(A⊗ ∧XM,D1)

= dimQQ0 ⊗A Hq(C∗) − dimQTor
A
1 (H

q(C∗),Q0)

= dimQHq(Q0 ⊗A C∗) − dimQTor
A
1 (H

q+1(C∗),Q0)

− dimQTor
A
1 (H

q(C∗),Q0)

= dimQHq(∧XM,d1) − dimQTor
A
1 (H

q+1(C∗),Q0)

− dimQTor
A
1 (H

q(C∗),Q0).

By Subsection 2.6.2, we have WM ∼= H2(∧XM,d1), WF ∼= H2(∧XF,d1),
GM = H1(∧XM,d1) and GF ∼= H1(∧XF,d1). The result then follows
directly from the equalities above. �

Lemma 7.54 Let P be a gradedA-module and suppose that dim (Q0⊗AP) <
∞. Then

dimQ(Q0 ⊗A P) = dimQ(Q1 ⊗A P) + dimQTor
A
1 (P,Q0) .

Proof Since dim (Q0 ⊗A P) < ∞, P is finitely generated, and we can write
P as the direct sum of a free part and submodules of the formQ[t]/(tn). Let
0 → N → L → P → 0 be a minimal free presentation of P. We directly
deduce the following exact sequences:

0 → TorA1 (P,Q0) → Q0 ⊗A N → Q0 ⊗A L → Q0 ⊗A P → 0
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and

0 → Q1 ⊗A N → Q1 ⊗A L → Q1 ⊗A P → 0 .

�

7.5.3 Z/2Z-Sullivan models

The purpose of this section is to extend to Z/2Z-graded Sullivan algebras
the basic properties of usual Sullivan algebras. All thematerial of this section
is due to C. Allday [3]. In what follows all vector spaces will be defined over
a field lk of characteristic zero.
AZ/2Z-graded vector spaceA is a vector spacewith a decompositionA =

A0 ⊕ A1. It is a Z/2Z-graded algebra if there is a multiplication satisfying
Ap · Aq ⊂ Ap+q, where the addition p + q is taken modulo 2. The algebra
A is called commutative if for homogeneous elements a and b, we have
a·b = (−1)|a|·|b|b·a. It is called free if it is the tensor product of a polynomial
algebra on elements of degree 0 with an exterior algebra on elements of
degree 1; in this case we write A = ∧V where V is the linear span of the
generators of the algebra.
A Z/2Z-graded differential algebra (A,d) is a Z/2Z-graded algebra A

equipped with a differential d : Ap → Ap+1. For instance, each cochain
algebra (A,d) defines a Z/2Z-graded differential algebra with A0 = Aeven

and A1 = Aodd.
A Z/2Z-graded Sullivan algebra is a Z/2Z-graded differential algebra

(A,d) such that A is the free commutative graded algebra on a vec-
tor space V that admits a basis indexed by a well-ordered set (xi) with
d(xi) ∈ ∧(xj, j < i). We write (A,d) = (∧V ,d). It is called a Z/2Z-graded
minimal Sullivan algebra if d(V) ⊂ ∧≥2V . For instance every Sullivan alge-
bra induces a Z/2Z-graded Sullivan algebra and a minimal Sullivan algebra
(∧V ,d) induces a Z/2Z-graded minimal Sullivan algebra. A morphism of
Z/2Z-graded differential algebras f : (A,d) → (B,d) is a degree zero linear
map that is compatible with the multiplications (f (ab) = f (a)f (b)) and with
the differentials (df = fd). As usual, a quasi-isomorphism is a morphism
that induces an isomorphism in cohomology.
Let (A,d) be a Z/2Z-graded differential algebra. An augmentation is a

surjective map of differential graded algebras ε : (A,d) → (lk, 0), where lk
is in degree 0. A Z/2Z-graded Sullivan algebra (∧V ,d) is equipped with a
natural augmentation sending V to 0. A morphism between Z/2Z-graded
Sullivan algebras f : (∧V ,d) → (∧W ,d) preserves the augmentations if
f (V) ⊂ ∧+W .
When (∧V ,d) is a Z/2Z-graded Sullivan algebra, the vector space V

is called the vector space of indecomposable elements. The differential d
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induces a differential Q(d) on V defined as the composition

Q(d) : V
d−→ ∧+V p−→ ∧+V/ ∧≥2 V ∼= V .

Here, p denotes the canonical projection. The homology H∗(V ,Q(d))
is called the homology of indecomposable elements. An augmentation
preserving map f : (∧V ,d) → (∧W ,d) induces a map of complexes
Q(f ) : (V ,Q(d)) → (W ,Q(d)).
To define homotopies, we consider the contractible Sullivan algebra

(∧(t,dt),d) with |t| = 0, |dt| = 1 and d(t) = dt. We denote by
pi : (∧(t,dt),d) → (lk, 0), i = 0, 1, the augmentations defined by pi(t) = i
and pi(dt) = 0.

Definition 7.55 Themorphisms f , g : (A,d) → (B,d) are homotopic if there
exists a morphism H : (A,d) → (B,d)⊗∧(t,dt) such that f = (1⊗p0) ◦H
and g = (1⊗ p1) ◦H.
Lemma 7.56 ([3]) An augmentation preserving quasi-isomorphism f : (A,
d) → (B,d) between Z/2Z-graded Sullivan algebras induces an isomor-
phism on the homology of indecomposable elements.

7.6 Hamiltonian actions and bundles

The symmetries which are important in symplectic geometry all involve the
symplectic form. Although actions of more general compact Lie groups on
symplectic manifolds may be considered, here we shall concentrate on circle
and torus actions to avoid the machinery of moment maps.

7.6.1 Basic definitions and properties

From now on, (M2n,ω) denotes a closed symplectic manifold.

Definition 7.57

• A smooth action of the circle, A : S1 ×M → M is symplectic if g∗ω = ω

for each g ∈ S1.
• An orbit map α : S1 → M is defined by choosing x ∈ M and taking the
orbit through x; g 
→ gx. We may consider α ∈ π1(M) and we denote
its Hurewicz image by h(α) ∈ H1(M;R). Note that all orbit maps induce
the same map on homology (since M is always connected).

• The fundamental vector field X associated to the action is defined at each
x ∈ M as Dxα(∂/∂θ), where ∂/∂θ is the unit vector field of S1 and Dxα is
the induced map on tangent spaces.
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Themain point that is elicited by the definition of symplectic action is that
the Lie derivativeL(X) (see SectionA.2) vanishes on forms that are invariant
under the action (compare Section 1.7, especially Proposition 1.33). This
property applied to the symplectic form ω gives

0 = L(X)ω = (di(X) + i(X)d)ω = di(X)ω,

where i(X) denotes interior multiplication by X (see Section A.2). Here we
use the formula in Proposition A.4 and the fact that dω = 0. Therefore, the
form i(X)ω is a closed form. Of course, the same holds for every invariant
form onM. Moreover, by Theorem 1.28, we know that the cohomology of
the invariant forms is the same as the ordinary de Rham cohomology, so
we can consider i(X) as a derivation on H∗(M;R). To see this, let β and β ′
be invariant forms that represent the same cohomology class. Hence, there
is an invariant form γ with β − β ′ = dγ . But then,

i(X)β − i(X)β ′ = i(X)dγ = d(−i(X)γ )

since L(X)γ = 0. Therefore, in H∗(M;R), [i(X)β] = [i(X)β ′].
Definition 7.58 The λ-derivation on H∗(M;R) is defined by

λ(b) = [i(X)β],
where b ∈ H∗(M;R) is represented by the invariant form β.

Proposition 7.59 ([179]) The λ-derivation may be identified directly from
the homomorphism induced on cohomology by the action A;

A∗b = 1× b+ uS1 × λ(b),

where uS1 is the generator of H
1(S1;R) corresponding to the unit 1-form

dθ on S1. In particular, when b ∈ H1(M;R), λ(b) = 〈α∗(b), [S1]〉.
So now we have two ways to view the λ-derivation. In fact, the λ-

derivation has already appeared in the proof of Theorem 4.98. Recall from
Definition 4.96 that (M2n,ω) has Lefschetz type if multiplication by [ω]n−1
is an isomorphism: Lef = ωn−1 ∪ : H1(M)

∼=→ H2n−1(M). For the sake of
simplicity, we denote the symplectic form and its cohomology class by ω.
Now here are a few properties of the λ-invariant, see [180].

Proposition 7.60 With the notation of Definition 7.57 and the preceding
discussion, we have:

1. h(α) is Poincaré dual to nλ(ω)ωn−1 = nLef(λ(ω));
2. λ(ωn) = 0 if and only if λ(H1(M)) = 0 if and only if h(α) = 0;
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3. If (M2n,ω) has Lefschetz type, then the three properties of part 2 are
equivalent to λ(ω) = 0.

Proof (1) Let b ∈ H1(M) and note that bωn = 0 for degree reasons.
Applying λ, we have

0 = λ(b)ωn − bλ(ωn) = λ(b)ωn − bnλ(ω)ωn−1

using the fact that λ is a graded derivation. Hence, λ(b)ωn = bnλ(ω)ωn−1.
Taking the Kronecker product with the fundamental class of M gives
〈bλ(ωn), [M]〉 = 〈λ(b)ωn, [M]〉 = λ(b). But λ(b) = 〈α∗(b), [S1]〉 =
〈b,α∗[S1]〉 = 〈b,h(α)〉, so

〈b,h(α)〉 = λ(b) = 〈bλ(ωn), [M]〉 = 〈bnλ(ω)ωn−1, [M]〉
= 〈b,nλ(ω)ωn−1 ∩ [M]〉

and we see that h(α) is Poincaré dual to nλ(ω)ωn−1.
(2) The first equivalence follows exactly as in the proof of Theorem 4.36.

The second equivalence comes from λ(b) = 〈b,h(α)〉 for all b ∈ H1(M).
(3) SupposeM has Lefschetz type. If λ(ω) = 0, then it is clear that λ(ωn) =

0. If λ(ωn) = 0, then we have 0 = λ(ωn) = nλ(ω)ωn−1 = nLef(λ(ω)). But
the Lefschetz type assumption then implies that λ(ω) = 0. �

7.6.2 Hamiltonian and cohomologically free actions

The importance of Proposition 7.60 comes from the following fundamental
definitions in symplectic geometry. If A : Tk×M → M is a symplectic toral
action, then we may define k λ-derivations by λj(ω) = [i(Xj)ω], where Xj
is the fundamental vector field of the jth circle factor in Tk.

Definition 7.61 For a symplectic manifold (M2n,ω):

1. a symplectic action A : Tk × M → M is Hamiltonian if λj(ω) = 0 for
each j = 1, . . . ,k. In particular, if H1(M;R) = 0, then all symplectic
actions are Hamiltonian;

2. a symplectic action A : Tk × M → M is cohomologically free if the
homomorphism on cohomology, ψ : H1(Tk;R) → H1(M;R), defined
by

ψ(uS1j
) = λj(ω)

is injective. Here uS1j
denotes the generator of H1(Tk;R) corresponding

to the j-th circle factor.
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Remark 7.62 Even if (M2n,ω) is only c-symplectic with c-symplectic coho-
mology class ω, we can, by Proposition 7.59, still define λ(ω) for any
S1-action and say that the action is c-Hamiltonian if λ(ω) = 0. Similarly,
we can define a notion of cohomologically free for c-symplectic manifolds.
See [179] for details.

Recall from Theorem 1.102 that, for an S1-action on a closed manifold
M, the Cartan–Weil model is the complex (�X[u],dX), where �X is the
sub-complex of ADR(M) consisting of S1-invariant forms, u is a degree 2
generator and the differential is defined by

dXu = 0, and dXα = dα − ui(X)α,

for α ∈ �X. The Cartan–Weil model induces an isomorphism

H∗(�X[u],dX) ∼= H∗(MS1 ;R).

Thus, the Cartan–Weil model calculates the equivariant cohomology
associated to the action of S1 onM.
The equation dXα = dα − ui(X)α says something interesting. Although

α is an invariant form, even if it is closed, this does not mean that α is
equivariantly closed (i.e. dX-closed). For that, we also require i(X)α = 0.
Now suppose the S1-action is a symplectic action so that the symplectic

form ω is an invariant form. Then we have dXω = dω−ui(X)ω = −ui(X)ω

since dω = 0. Therefore, the interior multiplication i(X)ω is the obstruction
to ω being equivariantly closed: that is, representing a cohomology class in
H∗
S1
(M;R). Of course, we might be able to change ω within its cohomology

class in (�X[u],dX) and achieve equivariant closure. So let’s ask; how can
we augment ω in (�X[u],dX) to make it equivariantly closed? The only
possibility, for degree reasons, is to take ω̃ = ω − fu for some smooth
function f : M → R. The definition of dX then gives

dXω̃ = dXω − dX(fu)

= dω − ui(X)ω − (dXf )u− fdXu

= −ui(X)ω − (dXf )u

= −ui(X)ω − (df − ui(X)f )u

= −ui(X)ω − (df )u

= −u(df + i(X)ω).

Note that ω̃ is closed exactly when df + i(X)ω = 0. Since λ(ω) = [i(X)ω],
this is exactly when the action is Hamiltonian. Thus, denoting the Borel

fibration of the S1-action byM
i→ MS1 → BS1, we have
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Theorem 7.63 ([15]) A symplectic S1-action on (M2n,ω) is Hamiltonian if
and only if ω ∈ H2(M;R) is in the image of i∗ : H2(MS1 ;R) → H2(M;R).

Now, the pullback of the Borel fibration M → MS1 → BS1 via the
inclusion S2 ↪→ BS1 gives a fibration M → E → S2 and this fibration has
an associated Wang sequence:

· · · → H2(E)
i∗→ H2(M)

λ→ H1(M) → · · ·

where λ is the Wang derivation and H2(E) ∼= H2(MS1). It may be shown
(see [180] and Proposition 7.59) that this Wang derivation is precisely the
derivation defined in Definition 7.58. This then gives another “formless”
proof of Theorem 7.63 since exactness of the Wang sequence implies that
λ(ω) = 0 holds precisely when ω ∈ Im(i∗). This Wang approach indicates
how algebraic topological methods can often take the place of geometric
ones and, in the process extend the relevant notions.
Now let’s return to consideration of the properties of Hamiltonian

actions. In particular, we are interested in the fixed point set.

Proposition 7.64 A Hamiltonian action on a compact symplectic manifold
has at least two components in its fixed point set. If the manifold has Lef-
schetz type, then the existence of a fixed point implies that the action is
Hamiltonian.

Proof We give the proof for S1 because fixed point questions always reduce
to this case (see Lemma 7.3). If λ(ω) = [i(X)ω] = 0, then i(X)ω = dH for
some smooth functionH : M → R. SinceM is compact,H has amaximum y
and minimum z onM, so 0 = dHy = i(Xy)ω and 0 = dHz = i(Xz)ω. But ω
is nondegenerate, so we can only have these equalities ifXy = 0 = Xz. Since
a zero for the fundamental vector field corresponds to a fixed point for the
action, we are done. IfM has Lefschetz type (see Definition 4.96), then the
orbit map at a fixed point gives h(α) = 0 and (3) of Proposition 7.60 then
says that the action is Hamiltonian. �

Remark 7.65 Note by [179] that this theorem also holds in the case of
c-symplectic manifolds with c-Hamiltonian action.

Proposition 7.66 Any symplectic torus action A : Tk × M → M splits as
Tk = Tr × Tk−r, where the action restricted to Tr is Hamiltonian and the
action restricted to Tk−r is cohomologically free.

For a proof of this result, see [162] and [179] for a cohomological version.
These types of splittings have long been used in transformation groups. For
instance, the action of a torus can be split into one with finite isotropy
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groups and one with fixed points. Now let’s characterize cohomologically
free actions in the case of Lefschetz type.

Theorem 7.67 ([179]) Suppose that (M2n,ω) has Lefschetz type and that
A : Tk ×M → M is a symplectic torus action with orbit map α : Tk → M.
Then

1. The action is cohomologically free if and only if the induced homomor-
phism α∗ : H1(Tk;R) → H1(M;R) is injective.

2. The action is cohomologically free if and only if it is almost free.

Proof In the following, we take R-coefficients in cohomology. (1) Sup-
pose the action is cohomologically free and choose a vector space splitting
s : H1(M) → H1(Tk) for ψ : H1(Tk) → H1(M) (since ψ is injective). Let

PD : H1(M)
∼=→ H2n−1(M) denote the Poincaré duality isomorphism. Then

for each S1 factor in Tk, we have the following (using Proposition 7.60 (1)).
(Note that multiplication by ωn−1, denoted Lef, is an isomorphism by the
Lefschetz type assumption; see Definition 4.96.)

s(1/nLef−1PDα∗([S1])) = s(1/nLef−1PD(h(α)))

= s(1/nLef−1(nλ(ω)ωn−1))
= sλ(ω)

= sψ(uS1)

= uS1 .

The composition H1(Tk) → H1(Tk) is then the Poincaré duality isomor-
phism, so α∗ must be injective.
On the other hand, suppose α∗ is injective and choose a vector space

splitting t : H1(M) → H1(Tk). Then we can compute.

tPD−1(nLef(ψ(uS1))) = tPD−1(nLef(λ(ω)))

= tPD−1(n λ(ω)ωn−1)
= t(h(α))

= t(α∗([S1]))
= [S1].

Again, since this expresses the Poincaré duality isomorphism, we see that
ψ is injective and the action is cohomologically free.
(2) If the action is cohomologically free, then α∗ is injective by (1). Sup-

pose some isotropy group is not finite; thus, there is a subtorus Ts which
fixes a point x. The orbit map at x then induces a homology factoriza-
tion α∗ : H1(Tk) → H1(Tk/Ts) → H1(M). But the first homomorphism is
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clearly not injective, so α∗ is not injective. Hence, all isotropy groups are
finite and the action is almost free.
Suppose the action is almost free and write Tk = Tr ×Tk−r as in Propo-

sition 7.66. By Proposition 7.64, since the Tr action is Hamiltonian, it has
fixed points. Because the action is almost free, we must have Tr = ∗ and
Tk acts cohomologically freely. �

7.6.3 The symplectic toral rank theorem

In Subsection 7.3.3 we discussed the far-reaching toral rank conjecture,
which says that the size of a space’s cohomology limits its ability to admit
large almost free toral actions. In our context, we ask how large the coho-
mology of a symplectic manifold must be in order to admit a symplectic Tk

action. We can answer this question in the case of Lefschetz type.

Theorem 7.68 If (M2n,ω) is a closed symplectic manifold of Lefschetz type
and Tk acts symplectically and almost freely on M, then

dimH∗(M;R) ≥ 2k.

Proof By (2) and then (1) of Theorem 7.67, we have that α∗ : H1(Tk) →
H1(M) is injective. Take the Borel fibration (see Section 7.2) associated to
the action and go one step back in the associated Puppe sequence (using
�BTk � Tk) to get

Tk
α→ M → MTk .

Because α∗ is injective, duality says that α∗ : H1(M) → H1(Tk) is surjective.
Now, since H∗(Tk) is generated by H1(Tk), we see that α∗ : H∗(M) →
H∗(Tk) is surjective as well. Therefore, by Definition 4.39, the fibration is
totally noncohomologous to zero (i.e. TNCZ) and we have an isomorphism

H∗(M) ∼= H∗(Tk) ⊗H∗(MTk).

Thus, dimH∗(M) ≥ dimH∗(Tk) = 2k. �

Remark 7.69 In Theorem 7.24, we used models to show that the inequal-
ity holds for any c-symplectic manifold whose cohomology satisfies the
hard Lefschetz property (see Theorem 4.35). Here we have given a
more traditional approach using only the weaker Lefschetz type property
(Definition 4.96).

7.6.4 Some properties of Hamiltonian actions

When a torus action is Hamiltonian, there are interesting (and restrictive)
consequences beyond those mentioned above (i.e. existence of fixed points).
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One of the most famous is the following (see, for instance, [161, Corollary
4.8]).

Theorem 7.70 Let Tk act onM and letM → MTk → BTk be the associated
Borel fibration. If the Tk action on (M2n,ω) is Hamiltonian, then, as vector
spaces,

H∗(MTk ;R) ∼= H∗(M;R) ⊗H∗(BTk;R).

Of course, we see that this is equivalent to the fibration being TNCZ.
Here is a situation where the symplectic and c-symplectic worlds diverge.

Example 7.71 ([5]) By Theorem 7.36, we know that the Borel fibration
X → XG → BG is TNCZ if and only if

dimH∗(XG;Q) ∼= dimH∗(X;Q)

where XG is the fixed point set.
Now let S1 act freely on S3 × S3 by translation on the first factor. Take

an equivariant tube C = S1 ×D5 about an orbit (via the slice theorem) and
note that ∂C = S1 × S4 = ∂(D2 × S4). Let X = S3 × S3 − C and sew in
D2 × S4 to obtain N = X ∪∂C (D2 × S4). We let S1 act by rotations on D2

and we observe that this is compatible with the action by translations of S1

on itself (i.e. the action in S3). Of course, the center of D2 is fixed by this
action, so we see that S1 acts on N semifreely (i.e. isotropy is either zero or
all of S1) with NS1 = S4. Note that N has the following cohomology.

Hj(N;Z) =

⎧⎪⎨⎪⎩
0 j = 1, 5

Z j = 2, 4, 6

Z ⊕ Z j = 3.

Now let θ [z0, z1, z2] = [eiθz0, z1, z2] define a semifree action of S1 on
CP(3) with fixed set p ∪ CP(2). Note that p = [1, 0, 0] is fixed by the
homogeneity of the coordinates. The fixed CP(2) consists of all points
[0, z1, z2]. Since CP(3) andN have fixed points, we can take small equivari-
ant disks about chosen fixed points and form the equivariant connected
sum M = CP(3)#N. The fixed set of the S1 action on M is given by
MS1 = p ∪ (CP(2)#S4) = p ∪ CP(2). Now, M is clearly c-symplectic
since the generator ofH2(CP(3))multiplies to a top class. Furthermore, the
action is c-Hamiltonian since H1(CP(3);Z) = 0 and H1(N;Z) = 0 imply
H1(M;Z) = 0. Also, M has Lefschetz type trivially since H1(M;Z) = 0.
However, we plainly see that we have

dimQH∗(MS1 ;Q) = 4 < 8 = dimQH∗(M;Q).
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Therefore, by Theorem 7.36, the Borel fibration is not TNCZ and the c-
symplectic analogue of Theorem 7.70 does not hold.

7.6.5 Hamiltonian bundles

If a Tk action on (M2n,ω) is Hamiltonian, then the Borel fibration M →
MTk → BTk is a bundle whose structure group (i.e., the torus Tk) lies
inside the Hamiltonian diffeomorphisms of M. Recall that a Hamiltonian
diffeomorphism of a symplectic manifold (M2n,ω) is a symplectomorphism
φ : M → M which is the time-1 map of a flow generated by a family of
Hamiltonian vector fields. This means that there are vector fields Xt with
i(Xt)ω = dHt for all t and

dφt
dt

= Xt ◦ φt.

TheHamiltonian diffeomorphism is then given by φ = φ1. TheHamiltonian
diffeomorphisms form a subgroup of the symplectomorphism group of all
diffeomorphisms preserving the symplectic form. For more information,
see [188]. The situation of a Hamiltonian action can then be generalized as
follows.

Definition 7.72 A symplectic bundle F → E → B is Hamiltonian if (F,ωF)
is symplectic and the structure group of the bundle acts by Hamiltonian
diffeomorphisms.

The fundamental properties of Hamiltonian bundles may be found in
[162]. In particular, the following is shown there.

Lemma 7.73 ([162, Lemma 2.3]) If (F2n,ωF) → E → B is a symplectic
bundle and B is simply connected, then the bundle is Hamiltonian if and
only if there exists some cohomology class α ∈ H2(E;R) which restricts to
the class [ωF] ∈ H2(F;R) by i∗(α) = [ωF].
Note the similarity to Thurston’s condition in Theorem 4.91. In the

lemma, however, we do not require B to be symplectic, but we already
know that the bundle is symplectic. Of course, Thurston’s condition is just
a sufficient condition, so the assumption that the bundle is symplectic does
not automatically imply the existence of a class α. Lalonde and McDuff
apply Lemma 7.73 to prove analogues of Theorem 7.70 for various types
of Hamiltonian bundles. For instance, they prove that every Hamiltonian
bundle over a product of complex projective spaces is TNCZ. Indeed, they
ask the

Question 7.74 (Lalonde–McDuff question) Is every Hamiltonian bundle
TNCZ?
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Here we want to consider the special situation where the fiber is a nil-
manifold. We have already seen how to build models of nilmanifolds in
Section 3.2 and, in particular, we know that all generators, {xj}, are in
degree 1. Hence, when we build the model of a symplectic nilmanifold, the
symplectic form is represented by an element ω = ∑

cjk xj xk made up of
products of degree 1 elements. We can now give a result due to Stepien
[243] that answers a special case of the Lalonde–McDuff question using
models.

Theorem 7.75 Let (M2n,ωM) → E → B be a Hamiltonian bundle with B
simply connected and (M2n,ω) a nilmanifold. Then the bundle is rationally
trivial. In particular, the bundle is TNCZ.

Proof Let (∧Y,dY) → (∧Y ⊕X,D)
ρ→ (∧X,dX) denote a relative Sullivan

model for the bundleM → E → B. As discussed above, there is an element
ω = ∑

cjkxj xk in (∧X,dX) made up of products of generators xm ∈ X1

whose cohomology class is [ωM]. Note that, since ωn �= 0 and the xj, j =
1, . . . , 2n are in degree 1, it must be the case that ω uses all of the generators
in X1 and ωn = C x1 x2 · · ·x2n Because B is simply connected, Y1 = 0, so
the differential on the xj has the form Dxj = dXxj + yj, where yj ∈ Y2.
Now, since the bundle is Hamiltonian, Lemma 7.73 says that there is

some cohomology class mapping to the class of ω in H∗(∧X,dX) under
the projection ρ : (∧Y ⊕X,D) → (∧X,dX). If the cocycle τ represents this
class, then ρ(τ) − ω = dXγ , so in (∧Y ⊕X,D) we have τ − b = ω + dXγ
with b ∈ Y2 (since Y1 = 0). If we apply D, then we find 0 = D(ω + dXγ ),
since every element of Y2 is a cocycle and τ is a cocycle. Let ω̃ = ω + dXγ .
So the Hamiltonian hypothesis has allowed us to change the representative
of the symplectic cohomology class in M while keeping the same type of
expression in terms of generators of (∧X,dX); ω̃ = ∑

rjk xj xk. Now we
can use the fact that ω̃ is a D-cocycle to infer that ω̃n is also a D-cocycle.
Hence, computing D ω̃n = 0, we have

0 = C
∑
j

(−1)j−1D(xj)x1x2 · · · x̂j · · ·x2n

= C
∑
j

(−1)j−1(dXxj + yj)x1x2 · · · x̂j · · ·x2n

= C
∑
j

(−1)j−1yjx1x2 · · · x̂j · · ·x2n

(where x̂j denotes deletion of xj) since dXxj consists of products of the
xk not including xj, the element x1x2 · · · x̂j · · ·x2n contains all generators
except for xj and elements in degree 1 have zero squares. But now, since
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{x1x2 · · · x̂j · · ·x2n} is a set of linearly independent elements in ∧X, we see
that we must have yj = 0 for j = 1, . . . , 2n. This means that Dxj = dXxj
and, sinceX = X1, the relative Sullivan model is a tensor product of cdga’s.
Hence, the bundle is rationally trivial. �

Exercises for Chapter 7

Exercise 7.1 LetM be a compactmanifoldwith an almost free action of the compact
Lie group G. We consider the projection q : EG ×G M → M/G , q[(x,m)] = [m].
Show that the fiber of q at x is (G/Gx)G and that (G/Gx)G ∼= EG/Gx =
BGx. Deduce now from the Leray spectral sequence, Hp(M/G;Hq(BGx;Q)) ⇒
Hp+q
G (M;Q), an isomorphism

H∗(M/G;Q) ∼= H∗
G(M;Q) .

Hint: see [144, page 37].

Exercise 7.2 Suppose Mi, i = 1, . . . ,n, are even dimensional simply connected
manifolds satisfying πeven(Mi) ⊗ Q = 0 and dimπodd(Mi) ⊗ Q ≥ 2. Show that
every circle action on the connected sumM1#M2# · · ·#Mn has a fixed point. (Hint:
consider the Euler–Poincaré characteristic and the rational homotopy Lie algebra
of the connected sum.)

Exercise 7.3 Fix a map S3 × S3 → S6 of degree 1 and use it to pull back the unit
sphere bundle of S6 to a S5-bundle over S3 × S3. Compute rk0(X).

Exercise 7.4 LetM be a simply connected compact manifold whose minimal model
is (∧(x, y, z, t),d) with |x| = 3, |y| = 9, |z| = 6, |t| = 11, dx = dy = dz = 0,
dt = xy− z2. Compute rk0(M).

Exercise 7.5 Write n+ 1 = (n1 + 1) + (n2 + 1) + (n3 + 1). Consider the action of
S1 on CP(n) defined by

t[z1, . . . , zn+1] = [t2z1, . . . , t2zn1+1, t3zn1+2, . . . , t3zn1+n2+2, zn1+z2+3, . . . , zn+1] .
Show that the fixed point set is the union CP(n1) ( CP(n2) ( CP(n3).

Exercise 7.6 Let G = S1. Show that G can act on CP(4) with fixed point set the
disjoint union ofCP(3) and an isolated point, and thatG can act on the quaternionic
projective plane HP(2) with fixed point set S4 and an isolated point. Make the
equivariant connected sum CP(4)#HP(2) by removing small invariant discs around
the isolated fixed points and pasting together the boundaries. Show that you have an
action of S1 on a space Z whose cohomology satisfies the hard Lefschetz property,
and such that at least one component of the fixed point set does not satisfy the hard
Lefschetz property (see [7]).



8
Blow-ups and Intersection
Products

As we mentioned in the Preface, models play an important role in under-
standing various properties of complex and symplectic blow-ups. They also
can be used to study features of the Chas–Sullivan loop product, a rather
mysterious new topological tool.
In this chapter we will consider two types of questions. First of all, let

f : N ↪→ M be a closed submanifold of a compact manifold and denote
by C its complementM\N. The natural problem is to know if the rational
homotopy type of C is completely determined by the rational homotopy
type of the embedding, and in that case to describe a model for the injection
C ↪→ M from a model of the initial embedding. Now suppose that the
normal bundle to the embedding has a complex structure. We then can
take the blow-up M̃ of M along N, and ask if it is possible to determine
the rational homotopy type of M̃ from the rational homotopy type of the
embedding.
P. Lambrechts and D. Stanley have given a positive answer to those

questions. They prove that when dim M ≥ 2dim N + 2, then the ratio-
nal homotopy type of the complement C is completely determined by the
minimal model of f . They also prove that whenM is simply connected and
dim M ≥ 2dim N + 3, the rational homotopy type of M̃ depends only on
the rational homotopy type of the embedding and the Chern classes of the
normal bundle [165]. We describe in Section 8.2 their construction of a
model for M̃.
We have seen in Chapter 4 that the assumption that a compact mani-

fold is Kähler implies its formality. Since Kähler manifolds are the most
basic examples of compact symplectic manifolds, a fundamental ques-
tion is whether such a statement also holds for symplectic manifolds. In
Section 8.2, we describe non-formal simply connected symplectic manifolds
that are blow-ups. The key point here is that we can, in some explicit sense,
actually understand the complete rational homotopy of the blow-up rather
than just subsidiary properties (such as existence or nonexistence ofMassey
products). Such an understanding should prove important in the future.
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Our second question concerns the theory of cycles in a compact manifold.
M. Chas and D. Sullivan extended the ideas behind standard intersection
theory to an intersection theory of cycles in LN = NS1 for any compact
oriented manifold N [53]. They define a product, called the loop product,
on H∗(LN),

Hp(LN) ⊗Hq(LN) → Hp+q−n(LN) ,

that combines the intersection product on the chains onN and the Pontrya-
gin composition of loops in �N. Here, minimal models appear as a useful
tool for making explicit computations of the loop product.
As a corollary, we give a proof of the Cohen–Jones algebra isomorphism

between H∗−n(LN;Q) and the Hochschild cohomology

HH∗(C∗(N;Q),C∗(N;Q)) ,

where, as usual, C∗(N;Q) denotes the singular cochains on N with
coefficients in Q.

8.1 The model of the complement of a submanifold

Let M be a compact orientable nilpotent m-dimensional manifold and
suppose that f : Nn → Mm is a smooth embedding of a compact nilpotent n-
dimensional submanifold. The image f (N) admits a tubular neighborhood
which is a compact submanifold (with boundary) T ⊂ M of codimension 0
that deformation retracts toN. LetC be the closure of the complement of T
inM, C = M\T. Then C and T are both compact manifolds with the same
boundary ∂T. Denote by i : ∂T → T, j : C → M, g : ∂T → C, k : T → M
and h : N → T the canonical injections. We then have a commutative
diagram

∂T
i ��

g
��

T

k
��

C
j

�� M

Of course, C has the homotopy type of M\f (N) and the above diagram is
a homotopy pushout.
A key step is to understand the embedding of the complement alge-

braically. With this in mind, a model for j : C ↪→ M will be defined in
Theorem 8.11 in terms of shriek maps and algebraic mapping cones.
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8.1.1 Shriek maps

To an embedding, we can associate a cohomological shriek map defined as
the composition

f ! : sn−mH∗(N;Q)
s−mDN−→ s−mH∗(N;Q)

H∗(f )−→ s−mH∗(M;Q)
DM←− H∗(M;Q) ,

where s is the suspension functor (skV)r = Vr+k, and DN and DM denote
the corresponding Poincaré duality isomorphisms. (Recall that we have the
convention on homology that (H∗)−p = Hp.) In particular, if [N] and [M]
denote the homology orientation classes, then DN(α) = α ∩ [N] and

f !(sn−mv) ∩ [M] = H∗(f )(v ∩ [N]) .

By construction the cohomological shriek map f ! is a morphism of
H∗(M;Q)-modules and an isomorphism in degree m.
Cohomological shriek maps are based on the duality between coho-

mology and homology. We now extend this duality to models. Let (A,d)
be a cdga whose cohomology H∗(A,d) satisfies Poincaré duality with a
fundamental class ω ∈ Am. We denote by ε : (A,d) → (Q, 0) a map of dif-
ferential A-modules of degree −m satisfying ε(ω) = 1. The map ε yields a
duality map

ψA : A → s−mA∨ = s−mHom(A,Q) ,

ψA(1) = s−mε , smψA(a)(b) = (−1)|b|ε(a · b) .

(For this, recall that we have (s−mHom(A,Q))r = (Hom(A,Q))r−m =
Hom(Am−r,Q).)

Lemma 8.1 ψA is a quasi-isomorphism of differential graded A-modules.

Proof This is a reformulation of the fact that H∗(A) satisfies Poincaré
duality. �

Let’s come back now to the smooth embedding f : N → M and let
ϕ : (A,d) → (B,d) be a model for f .

Definition 8.2 A shriek map for f associated to ϕ is a morphism of differ-
ential A-modules g : sn−m(B,d) → (A,d) that induces in cohomology the
cohomological shriek map f ! : sn−mH∗(N;Q) → H∗(M;Q).

From now on we will abuse notation and denote both the shriek map
and the cohomological shriek map by f !.
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Example 8.3 Let ϕ : (A,d) → (A⊗∧W ,d) denote a relative minimal model
for f , and consider the diagram

s−m+n(A⊗ ∧W ,d)

ψA⊗∧W �
��

(A,d)

� ψA
��

s−m(A⊗ ∧W ,d)∨
ϕ∨

�� s−m(A,d)∨

where ψA and ψA⊗∧W are the quasi-isomorphisms defined in Lemma 8.1.
Since (A⊗ ∧W ,d) is a semifree A-module, the lifting property of semifree
models (Proposition 2.107) gives a map f ! : s−m+n(A ⊗ ∧W ,d) → (A,d)
making the diagram commutative up to homotopy. This map is a shriek
map for f associated to ϕ.

Lemma 8.4 The embedding f : N → M admits a model ϕ : (A,d) → (B,d)
with the following properties:

1. A≥m+1 = 0 and B≥n+2 = 0;
2. there is a shriek map f ! : s−m+n(B,d) → (A,d) for f associated to ϕ.

Proof We first define the cdga (A,d) as the quotient of the minimal model
(∧V ,d) ofM by the ideal I = (∧V)>m⊕C1 whereC1 is a complement to the
cocycles in (∧V)m. We then take a relative minimal model of f of the form
(A⊗ ∧W ,d) and we obtain a shriek map g : s−m+n(A⊗ ∧W ,d) → (A,d)
as in Example 8.3. We define J = (A ⊗ ∧W)≥n+2 ⊕ C2, where C2 is a
complement of the cocycles in (A⊗ ∧W)n+1. For degree reasons, g(J) = 0.
We therefore define (B,d) = ((A⊗ ∧W)/J,d). The maps f and g factor to
give the required model and shriek map. �

Lemma 8.5 Let (A,d) be a finite type cdga whose cohomology satis-
fies Poincaré duality with top dimension m and let (M,d) be a finite
type semifree A-module. Then the evaluation in cohomology induces an
isomorphism

[(M,d), (A,d)] ∼=−→ HomH(A)(Hm(M,d),Hm(A,d)) .

Proof First, recall the functor Ext defined in Section 2.8. If (M,d) and (N,d)
are differential graded A-modules, and (P,d) → (M,d) is a semifree model
for (M,d), then

ExtpA(M,N) = Hp(HomA((P,d), (M,d))) , and [(M,d), (N,d)]
= Ext0A(M,N) .

There is a spectral sequence due to Moore [200] converging to
ExtA(M,N)whose E2-term is Extp,qH(A)

(H(M),H(N)), where the indices are
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defined as follows. Let Ln
d→ Ln−1 → · · ·L0 → H(M) be a free resolu-

tion of H(M) as an H(A)-module. Then, since H(M) is a graded vector
space, each Ln is also a graded vector space and d(Ln)q ⊂ (Ln−1)q+1. By
definition, we then have

Extp,qH(A)
(H(M),H(N)) = ExtpH(A)

(H(M),H(N))p+q

= (Hp(HomH(A)((L∗,d),H(N))))p+q .

In this notation p refers to the resolution degree of L∗ and p+ q is the total
degree. In our case (N,d) = (A,d) and we have

Extp,qH(A)
(H(M),H(A)) = (Hp(HomH(A)((L∗,d),H(A))))p+q

∼= (Hp(HomH(A)(H(A)∨, (L∗,d)∨)))p+q

= (Hp(HomH(A)(H(A), (L∗,d)∨)))p+q

= Hp,q((L∗,d)∨) =
{
0 ifp > 0

Hq(M) ifp = 0 .

Here we have used the fact that when C and D are finite dimensional R-
modules, then taking the dual map gives an isomorphism HomR(C,D) →
HomR(D∨,C∨). Since Ep,q2 = 0 when p �= 0, the spectral sequence col-
lapses, and therefore, the morphism that gives the above induced map in
cohomology,

ExtpA(M,A) → HomH(A)(Hm−p(M),Hm(A))

is an isomorphism. In particular

[(M,d), (A,d)] ∼= HomH(A)(Hm(M),Hm(A)) .

�

Corollary 8.6 Let ϕ : (∧V ,d) → (∧W ,d) be the minimal model of an
embedding f : N ↪→ M and let θ : (P,d) → (∧V ,d) be a morphism of
(∧V ,d)-modules which is an isomorphism on Hm and such that (P,d) is
a semifree model for s−m+n(∧W ,d)∨. Then there is a constant q such that
q · θ is a shriek map for the embedding.
This means that shriek maps are defined in a unique way by what they

do on cohomology in degree m.

8.1.2 Algebraic mapping cones

An important tool in our construction of a model for the complement C
is the mapping cone construction associated to a morphism of differential
graded A-modules. Let’s recall that now.
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If f : (X,dX) → (Y,dY) is a morphism of differential graded A-modules,
then the algebraic mapping cone of f is the differential graded A-module

C(f ) = Y ⊕f sX := ⊕∞
i=1 Y

i ⊕ (sX)i,

with differential given by

d(y, sx) = (dYy+ f (x),−sdXx).
It is easy to see that d2 = 0. Also, we can define the morphisms i : Y →
Y ⊕f sX and τ : Y ⊕f sX → X by

i(y) = (y, 0), τ(y, sx) = x.

The mapping cone construction is invariant with respect to quasi-
isomorphisms as the next result demonstrates.

Lemma 8.7 Suppose we have a commutative diagram of differential graded
A-modules,

(X,d)
f

�� (Y,d)

(Z,d)
g

��

h�
��

(T,d)

k�
��

where h and k are quasi-isomorphisms. Then we have the following com-
mutative diagram in which the horizontal maps are the natural injections
and � is also a quasi-isomorphism.

(Y,d) �� C(f )

(T,d) ��

k�
��

C(g)

��
��

In particular C(f ) and C(g) are quasi-isomorphic.

Now, in Example 8.3 and Lemma 8.4, we gave different constructions of
a shriekmap. By Lemma8.7,we see that, in fact, they have quasi-isomorphic
mapping cones.

Lemma 8.8 Let 0 → (X,d)
g→ (Y,d) → (Z,d) → 0 be a short

exact sequence of differential graded A-modules. Then there is a quasi-
isomorphism of A-modules C(g) → (Z,d) making the following diagram
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commutative.

(Y,d) ��

""�
��

��
��

��
(Z,d)

C(g)

�
��

Proof Consider the diagram of short exact sequences

0 �� (X,d)
g

�� (Y,d) �� (Z,d) �� 0

0 �� (X,d) ��

=
��

(X ⊕ Y ⊕ sX,D′) ��

ϕ

��

C(g) ��

ϕ̄

��

0

(Y,d) ��

θ �
��

C(g)

=
��

HereD′(x) = dx ,D′(y) = dy ,D′(sx) = g(x)−sdx−x, ϕ(x) = g(x) ,ϕ(y) =
y ,ϕ(sx) = 0 and θ(y) = y. Since ϕ is a quasi-isomorphism, the same is true
for ϕ̄. �

Interesting examples of short exact sequence of differential modules
arise over the real numbers from the inclusion of relative de Rham forms
associated to the injection j : C → M:

0 → ADR(M,C) → ADR(M)
ADR(j)−→ ADR(C) → 0 .

Over the rational numbers, the situation is similar. We have that the mor-
phism APL(j) : APL(M) → APL(C) is surjective with kernel denoted by
APL(M,C) and this then gives the short exact sequence ofAPL(M)-modules,

0 → APL(M,C) → APL(M)
APL(j)−→ APL(C) → 0 .

Lemma 8.9 If f , g : (X,d) → (Y,d) are two homotopic maps of differen-
tial graded A-modules, then the algebraic mapping cones C(f ) and C(g)
are quasi-isomorphic differential A-modules and we have a commutative
diagram

(Y,d) ��

""�
��

��
��

��
C(f )

�θ

��
C(g)



324 8 : Blow-ups and Intersection Products

Proof By hypothesis (see Definition 2.106), there is a map of A-modules
of degree −1, H : X → Y such that f − g = dH + Hd. We define a map
θ : C(f ) → C(g) by putting θ(y) = y and θ(sx) = sx+Hx. The morphism
θ commutes with the differentials, makes the diagram above commutative
and is a quasi-isomorphism of differential A-modules. �

8.1.3 The model for the complement C

In the previous section, we worked with models as differential modules.
Here, we add hypotheses to obtain models in the framework of cdga’s.
Suppose that we have a smooth embedding f : Nn → Mm and

ϕ : (A,d) → (B,d) is a model for f with associated shriek map
f ! : sn−m(B,d) → (A,d). Since H≥m(C(f !)) = 0, C(f !) contains an acyclic
submodule I such thatC(f !)≥m ⊂ I. Whenm ≥ 2n+2, the quotientC(f !)/I
becomes a differential graded algebra with multiplication defined by

sx · sy = 0 , v · sy = (−1)|v|s(v · y) , x, y ∈ sn−mB , v ∈ A .

Theorem 8.10 ([167]) Suppose Mm and Nn as above are simply connected.
If m ≥ 2n+ 1, then the induced morphism

ϕ : (A,d) → C(f !)/I , ϕ(x) = x

is a cdga model for the embedding j : C → M.

More generally, we have

Theorem 8.11 ([169]) Suppose there is an integer r ≥ 0 such that Hq(f ;Q)

is an isomorphism for q ≤ r and suppose that m ≥ 2n+ 2− r. Let I be an
acyclic submodule in C(f !) containing C(f !)≥m−r. Then the complex C(f !)/I
is a differential graded algebra and the induced morphism (A,d) → C(f !)/I
is a cdga model for the embedding j : C ↪→ M.

As a consequence, under the dimension hypothesis of the theorem, the
rational homotopy type of the complement C depends only on the rational
homotopy type of f .

Proof Note that, ifHq(f ;Q) is an isomorphism for q ≤ r, then by Poincaré
duality,Hq(f !) is an isomorphism for q ≥ m−r. In particular the submodule
I of C(f !) defined by I = S ⊕ C(f !)≥m−r, where S is a complement of the
cocycles in degree m− r− 1, is acyclic.
We use the notation at the beginning of Section 8.1. Denote by

µ : (∧V ,d) → APL(M) a minimal model for M, and by ϕ : (∧V ,d) →
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(∧V ⊗ ∧W ,d) a relative minimal model for k,

APL(M)
APL(k) �� APL(T)

APL(h) �� APL(N)

(∧V ,d) ϕ
��

�µ

��

(∧V ⊗ ∧W ,d)

�
��

By composition with the quasi-isomorphism APL(h), ϕ can be seen to be a
relative minimal model for f , with associated shriek map f ! : sn−m(∧V ⊗
∧W ,d) → (∧V ,d).
Observe first that, by the Thom isomorphism, the multiplication by the

Thom class induces a quasi-isomorphism of APL(M)-modules

sn−mAPL(T)
�→ APL(T, ∂T) .

Now, by Mayer–Vietoris, the restriction of forms APL(M,C) →
APL(T, ∂T) is also a quasi-isomorphism of APL(M)-modules. By the lift-
ing homotopy property of semifree models (Proposition 2.107 (3)) applied
to the diagram

sn−mAPL(T)
� �� APL(T, ∂T) APL(M,C)

���

��
sn−m(∧V ⊗ ∧W ,d)

�
��

g

&&%%%%%%%%%%%%
APL(M)

we get a quasi-isomorphism of (∧V ,d)-modules
g : sn−m(∧V ⊗ ∧W ,d) → APL(M,C) .

Denote by ρ : APL(M,C) → APL(M) the canonical injection. Then, if we
write (P,d) = sn−m(∧V ⊗ ∧W ,d), we have two maps of (∧V ,d)-modules
from (P,d) to APL(M): the morphisms µ ◦ f ! and ρ ◦ g.

(P,d)
f !

�� (∧V ,d) µ
�� APL(M)

(P,d)
g

�� APL(M,C)
ρ

�� APL(M)

Both maps induce isomorphisms in cohomology in degree m, so they differ
by multiplication by a rational number q. By Lemma 8.5, this implies that
µ ◦ f ! is homotopic to ρ ◦ (qg).
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Using Lemmas 8.7, 8.8 and 8.9,we have a sequence of quasi-
isomorphisms of differential (∧V ,d)-modules.

(∧V ,d) ��

µ�
��

(∧V ⊕f ! sP,D)

�
��

APL(M) ��

=
��

(APL(M) ⊕µ◦f ! sP,D)

�
��

APL(M) ��

=
��

(APL(M) ⊕ρ◦(qg) sP,D)

�
��

APL(M) ��

=
��

APL(M) ⊕ρ sAPL(M,C)

�
��

APL(M)
APL(j) �� APL(C)

Now let (∧V ,d) → (∧V ⊗ ∧Z,D) be a relative minimal model for the
embedding j : C → M. Since (∧V ⊗ ∧Z,D) is a semifree (∧V ,d)-module,
we have a commutative diagram

(∧V ,d) ��

��		
			

			
			

(∧V ⊗ ∧Z,D)

θ

��
(∧V ⊕f ! sP,D)

where θ is a quasi-isomorphism of (∧V ,d)-modules. Since (sP)<m−n−1 = 0,
we can suppose that Z<m−n−1 = 0. Denote by I ⊂ C(f !) an acyclic ideal
containing C(f !)≥m−r and by π : C(f !) → C(f !)/I the projection. Then π

is a quasi-isomorphism of (∧V ,d)-modules. Since (C(f !)/I)≥m−r = 0, we
have π ◦θ(∧2Z) ⊂ (C(f !)/I)≥2(m−n−1) = 0. So π ◦θ is a morphism of cdga’s
and this shows that C(f !)/I is a cdga model for the complement C. �

Proposition 8.12 With the same notation, a model for the injection
g : ∂T → C is given by the map of mapping cones

(∧V ⊕f ! P,D) → (∧W ⊕ϕ◦f ! P,D) .
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Proof The morphism APL(g) is quasi-isomorphic to the map induced
between the mapping cones of α and β in the diagram

0 �� APL(T, ∂T)
α �� APL(T)

APL(i) �� APL(∂T) �� 0

0 �� APL(M,C)
β

��

��

APL(M)
APL(j) ��

APL(f )

��

APL(C) ��

APL(g)

��

0

The result follows directly because APL(f ) : APL(M,C) → APL(T, ∂T) is a
quasi-isomorphism. �

Example 8.13 Consider the embedding f of CP(n) into CP(m)with n < m.
The complement C is the set of classes [x1, . . . ,xm+1] with at least one
nonzero element in the sequence xn+2,xn+3, . . . ,xm+1. The homotopy

rt([x1, . . . ,xn+1,xn+2, . . . ,xm+1]) = [tx1, . . . , txn+1,xn+2, . . . ,xm+1]
defines a deformation retraction of the complement onto CP(m− n− 1).
A model of the embedding f is the projection

ϕ : (Q[a]/am+1, 0) → (Q[b]/bn+1, 0) , ϕ(a) = b, |a| = |b| = 2.

Therefore, a shriek map for f ,

f ! : s−2(m−n)Q[b]/bn+1 → Q[a]/am+1 ,

is defined by f !(s−2(m−n)br) = am−n+r. We then have a model for the
complement C,

(Q[a]/am+1) ⊕f ! (ss−2(m−n)Q[b]/bn+1) .
Since the ideal generated by am−n and ss−2(m−n)Q[b] is acyclic, another
model is given by the quotient cdga (Q[a]/am−n, 0) — and this is a model
for the space CP(m− n− 1).

Example 8.14 With the hypotheses of Theorem 8.10, suppose that the
embedding f : Nn → Mm is null homotopic. Let (A,d) and (B,d) be models
forM and N, with A>m = 0, Am = QuM, B>n = 0 and Bn = QuN (where
uM and uN are the respective fundamental classes). A model for f is given by
the trivial map ϕ : (A,d) → (B,d). This means that the A-module structure
on B is trivial: A+ · B = 0. A shriek map is then given by

f ! : sn−m(B,d) → (A,d) , f !(sn−m(uN)) = uM , f !(sn−mB<n) = 0 .

The complement C of the embedding therefore has the homotopy type of

(A,d) ⊕f ! ss
n−m(B,d)/(uM, ssn−muN)
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Since the product of elements in A with elements in sn−mB is zero in this
quotient, the complement C has the rational homotopy type of

(M\{∗}) ∨ 
m−n−1(N\{∗}) ∨ Sm−n−1 .

Example 8.15 Let M be the tangent sphere bundle to the product S2 × S2

and let f : S3 = N → M be the injection of a fiber. By Example 2.69, a
model forM is given by

(A,d) = (∧(a,b,x)/(a2,b2),d) , |a| = |b| = 2 , |x| = 3 , d(x) = ab ,

and a model for f is given by the natural projection ϕ : (∧(a,b,x)/
(a2,b2),d) → (∧x, 0) . Therefore, a shriek map is given by

f ! : s−4(∧x, 0) → (A,d) , f !(s−41) = ab , f !(s−4x) = abx .

The mapping cone is quasi-isomorphic to (∧(a,b,x)/(a2,b2, ab), 0). The
complement C of the embedding thus has the rational homotopy type of
(S2 ∨ S2) × S3.
Note that this space is formal. In this example the embedding f is trivial

in cohomology, but is not homotopically trivial. By Example 8.14, the com-
plement of a trivial embedding is (M\{∗})∨S2. This is a very different space.
In particular, it is not formal because it has nontrivial Massey products (see
Proposition 2.90).

8.1.4 Properties of Poincaré duality models

There are geometric situations for which minimal models alone are not
adequate algebraic reflections. Indeed, this chapter shows this quite clearly.
With this in mind, for our manifold N choose a Poincaré duality model
(A,d) with a fundamental class ω ∈ An (see Theorem 3.9). By definition
of a Poincaré duality model, we have An = Q · ω, A>n = 0, and there are
graded bases ai, a′

i such that (ai · a′
j) = δij ω for all i and j.

Here, the duality map ψA : (A,d) → s−n(A,d)∨ defined in Lemma 8.1 is
an isomorphism of differential graded A-modules (rather than simply being
only a quasi-isomorphism).

Definition 8.16 The element DA = ∑
i (−1)|ai|ai ⊗ a′

i ∈ A⊗A is called the
diagonal cocycle of A.

The diagonal DA is a cocycle, satisfies the useful equality

(a⊗ 1) ·DA = (1⊗ a) ·DA ,

and induces in cohomology the usual diagonal element DH∗(A) defined in
the analogous way on H∗(A,d).
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This diagonal cocycle has a very geometric meaning. Consider the diag-
onal injection � : N → N × N of a 2-connected compact manifold N.
The complement C is the configuration space of two points in N, and we
know how to construct a model of this complement from a shriek map
associated to �.
The multiplication map (A,d) ⊗ (A,d) → (A,d) makes (A,d) into a

differential graded (A⊗ A)-module. Moreover (see Example 2.48), by the
property above, the multiplication by DA,

µDA : s
−nA −→ A⊗ A , s−na 
→ DA · (1⊗ a)

is a morphism of differential graded (A⊗A)-modules. The next result gives
the link between the shriek map and the map µDA .

Lemma 8.17 The multiplication by DA, µDA is a shriek map for the
diagonal injection � : N → N ×N.

Proof Recall that the multiplication m : A ⊗ A → A is a model for the
embedding �. The lemma follows now from the commutativity of the
following diagram in which the vertical maps are isomorphisms.

s−nA
µDA ��

s−nψA
��

A⊗ A

ψA⊗ψA
��

s−2nA∨ m∨
�� s−nA∨ ⊗ s−nA∨

�

8.1.5 The configuration space of two points in a manifold

Let N be a 2-connected n-dimensional compact manifold and let � : N →
N × N be the diagonal submanifold. The purpose of this subsection is to
give a description of a model for the complement of the diagonal: that is, the
configuration space of two points inN: F(N, 2) = {(x, y) ∈ N×N |x �= y}.

Theorem 8.18 ([166]) Let N be a compact 2-connected manifold, and sup-
pose (A,d) is a Poincaré duality model for N with associated diagonal
cocycle DA. Then the quotient map A ⊗ A → (A ⊗ A)/(DA), where (DA)

is the ideal generated by DA, is a model for the embedding j : F(N, 2) ↪→
N ×N.

Proof We use the notation of Subsection 8.1.4. Since µDA is a shriek map
for�, a model for F(N, 2) as anA⊗A-module is given by the mapping cone
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C(µDA). Since N is 2-connected, H≤2(j;Q) is an isomorphism. Therefore,
by Theorem 8.11, there is an acyclic submodule I containing C(µDA)

≥m−2
such that the quotient map

A⊗ A → C(µDA)/I

is a model for the injection F(N, 2) ↪→ N×N. Note thatDA = 1⊗ω+ ... .
This implies that the A-submodule generated by DA is a free module of
rank one. In particular, the multiplication by DA defines an isomorphism
between s−nA and the ideal generated by DA. Therefore the quotient map
q : C(µDA)/I → (A⊗A)/(DA) is a quasi-isomorphism of differential graded
algebras. It follows that the other quotient map A⊗A → (A⊗A)/(DA) is
a model for the injection j : F(N, 2) ↪→ N ×N. �

The homotopy type of the configuration space of k points in N will be
described more generally in Section 9.1.

8.2 Symplectic blow-ups

As symplectic topology became an active area in the mid 1980s and 1990s,
certain fundamental questions naturally arose. For instance, since a com-
pact Kähler manifold is always symplectic and since the standard symplectic
examples are Kähler manifolds (e.g. CP(n)), it was wondered whether all
compact symplectic manifolds were Kähler. We have seen that compact
Kähler manifolds satisfy the hard Lefschetz property (see Theorem 4.35)
and it was shown in Theorem 4.98 that a nilmanifold can only have Lef-
schetz type if it is a torus. By Proposition 4.94, a nilmanifold is symplectic
when it has a degree 2 cohomology class which multiplies up to a top
class, so it is therefore fairly easy to find nonsimply connected compact
symplectic manifolds that are not Kähler (see [257] for more information
on this issue). However, the simply connected case took more work and
it wasn’t until 1984 that McDuff [188] used the symplectic blow-up con-
struction (modeled after the blow-up in complex geometry) to construct a
compact symplectic manifold that did not satisfy the hard Lefschetz Prop-
erty and, therefore, could not be Kähler (with respect to any metric). So
finer questions then arose.
It was shown in [71] (see Theorem 4.43) that compact Kähler manifolds

are formal spaces. In particular, of course, this entails the vanishing of
all Massey products. Even though not every symplectic manifold is Kähler,
could every compact symplectic manifold be formal? Again, the non-simply
connected case is easy by Proposition 3.20 and the simply connected case
is harder. In [257] it was implied that blow-ups were the place to look
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for counterexamples to formality for symplectic manifolds in the simply
connected case and, indeed, Babenko andTaimanov soon thereafter demon-
strated that a certain blow-up has Massey products, so could not be formal
(see [17]). (This approach was later generalized in [230].) The blow-up
construction is fundamental in symplectic (and complex) topology, so if
rational homotopy methods are to find real use there, it is essential to
know more information about blow-ups than just the existence or non-
existence of nontrivial Massey products. Namely, we want to know the
rational homotopy type of blow-ups and, for this, the construction of an
algebraic model is required. In this section, we shall give background on the
blow-up construction and in the next section, we shall describe the model.

8.2.1 Complex blow-ups

The complex blow-up of a complex surface (or rather the blow-down)
originated as a way to remove certain negative intersections in homology
obstructing possible embeddings in some CP(n). See [234] for a brief expo-
sition along these lines. The idea for a complex surface W and a point
p ∈ W is the following. Take a neighborhood T of p given by a holomor-
phic chart and a disk about (0, 0) ∈ C2 and, using those identifications,
take the bundle over CP(1),

LT = {(t, l) ∈ T × CP(1) | t ∈ l},
and note thatT\p is bi-holomorphic toLT\{p×CP(1)} since t �= p uniquely
determines a complex line through the origin in C2. This means that the
neighborhood T can be replaced by LT and, effectively, p has been “blown
up” to a CP(1). This CP(1) is usually denoted by E and is called the excep-
tional curve in the blow-up of W at p, W̃ . It has the property that its
self-intersection is E · E = −1.
Now, again thinking of T as a complex 2-disk centered at p, we see that

any complex line l intersects T in a real 2-disk Dl. Hence, T is a union
of real 2-disks which intersect only at p. Of course, the intersections of
the disks with ∂T are the orbit circles on ∂T = S3 of the Hopf action.
The corresponding disks in LT are simply the Dl, but now taken to be
disjoint. Indeed, the centers of the disks correspond to the lines l, so the
centers form a CP(1). So we see that LT is the (total space of the) disk
bundle over CP(1) whose boundary is the associated Hopf sphere bundle
S3 → CP(1). To form the blow-up W̃ , cut out T (with ∂T = S3 recall) and
glue in LT (also with boundary S3). Furthermore, it is well-known that LT
is the normal disk bundle to the embedding CP(1) ↪→ CP(2), so we may
think of LT as a tubular neighborhood of CP(1) in CP(2). Of course, since
CP(2) = CP(1) ∪ e4, for a 4-cell e4 attached by the Hopf map, if we delete
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an open 4-disk D4 disjoint from CP(1), we have CP(2) −D4 � LT . Then,
by attaching LT to W , we should obtain a connected sum. This heuristic
argument can be made precise (see [234, section 7.1], for instance) to obtain

Proposition 8.19
1. The complex surface W̃ is diffeomorphic to the connected sum

W̃ = W#CP(2).

2. In higher dimensions, the complex manifold W̃2n obtained by blowing
up a point is diffeomorphic to the connected sum

W̃ = W#CP(n).

Such a connected sum is often called the topological blow-up of W at a
point. The bar over CP(2) (and CP(n)) denotes CP(2) (and CP(n)) with its
orientation reversed. This is a way to obtain an oriented manifold whose
orientation is compatible with the orientations of the summands. In sym-
plectic geometry, the role of the blow-up point is taken by a symplectically
embedded ball in order to describe a new symplectic form. Since a ball is
contractible, the symplectic and complex constructions give the same dif-
feomorphism type when they both can be defined. See [189, page 239–251]
for details.

8.2.2 Blowing up along a submanifold

The blow-up construction can be extended to submanifolds and this is now
what we will focus on in the symplectic context. Suppose f : Nn ↪→ Mm is a
codimension 2k submanifold whose normal bundle ν has a complex struc-
ture. If (N,ω|N) ⊂ (M,ω) is a symplectic submanifold, then this hypothesis
always holds for the following reasons. First, the nondegeneracy of ω and
of ω|N leads to a splitting TM = TN ⊕ TNω, where TNω denotes the
ω-complement of TN in TM. Of course, we have the usual isomorphism
ν ∼= TM/TN, where ν is the normal bundle of the embedding, so we obtain
ν ∼= TNω. Now, ω|TNω is a nondegenerate skew-symmetric bilinear (i.e.
symplectic) form on each fiber, thus reducing the structure group of ν to
Sp(k,R) � U(k) (see Exercise 1.3) and making ν a complex bundle with
fiber Ck.
Denote the unit disk bundle of ν byDν and the associated sphere bundle

by Sν. As above, let T denote a tubular neighborhood of N in M diffeo-
morphic to Dν with boundary ∂T diffeomorphic to the sphere bundle Sν.
Also, denote by C the closure of the complement of T inM, C = M\T. The
complex structure on ν implies that the circle S1 (thought of as S1 ⊂ C∗)
acts on the sphere bundle S2k−1 → Sν = ∂T → N to give the projectivized
bundle CP(k− 1) → Pν → N. Note that there is a bundle map ∂T → Pν.
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Definition 8.20 The blow-up M̃ of M along N is the smooth manifold

M̃ = C ∪∂T Pν

obtained from the pushout diagram

∂T
k ��

q
��

C

��
Pν �� M̃

Remark 8.21 The definition above gives the homotopy type of the blow-up
because the map k : ∂T → C is a cofibration and this makes the pushout
a homotopy pushout as well. In particular, this means that any of the
constituent spaces may be replaced by spaces of the same homotopy type
without changing the homotopy type of M̃. To obtain the diffeomorphism
type of the blow-up requires a bit more work and a larger space than Pν
(which has the same homotopy type). This then allows the definition of the
blow-up projection φ : M̃ → M. See [257, Chapter 4] for instance.

The algebraic topology of the blow-up may be understood in terms of
the cohomologies of the spaces involved in its construction. In particular,
we have the following fundamental result. Recall first that if ci ∈ H2i(N;Z)

denote the Chern classes of the bundle ν, then the cohomology of Pν is
given by

H∗(Pν;Z) ∼= H∗(V)[a]/〈ak + c1ak−1 + . . . + ck〉
where a ∈ H2(Pν;Z). By Van Kampen and Mayer–Vietoris, we have

Theorem 8.22 With the notation above:

• π1(M̃) ∼= π1(M).

• There is a short exact sequence

0 → H∗(M;Z) → H∗(M̃;Z) → A∗ → 0

where the quotient A∗ is the ideal generated by a in H∗(Pν;Z):

A∗ = a ·H∗(N;Z)[a]/〈ak + c1ak−1 + . . . + ck〉.
Once these algebraic properties of the blow-up have been given, it still
remains to show that M̃ has a symplectic structure. This can be done, but
we omit details and simply state the result.

Theorem 8.23 ([188]) If M is compact, then the blow-up M̃ of (M,ω) along
(N,ω|N) has a symplectic form ω̃.
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8.3 A model for a symplectic blow-up

Throughout this section we assume that M is simply connected and that
dimM ≥ 2dimN + 3. This latter condition is only required to guaran-
tee that any model of the embedding f : Nn → Mm may be used for the
construction of the blow-up model. (Indeed, without this condition, homo-
topic embeddings with isomorphic normal bundles can be defined that give
non-rationally equivalent blow-ups [168].)

8.3.1 The basic pullback diagram of PL-forms

The key to obtaining a model for the blow-up is the fundamental pushout
diagram

∂T
k ��

q
��

C

��
Pν �� M̃

Amodel for the pushout is given by the pullback of the corresponding homo-
morphisms of Sullivan PL-forms (see Section 2.4). The pushout diagram
induces a commutative diagram

APL(M̃) ��

��

APL(C)

APL(k)
��

APL(Pν)
APL(q)�� APL(∂T)

Note that, since k : ∂T ↪→ C is the inclusion of a sub-complex, APL(k) is
surjective. Therefore, the universal property for pullbacks provides a cdga
homomorphism

φ : APL(M̃) → APL(C) ×APL(∂T) APL(Pν)

and we have the following.

Proposition 8.24 (see [87, Proposition 13.5]) φ is a quasi-isomorphism.

8.3.2 An illustrative example

Example 8.25 Let MPν → M∂T ← MC denote the induced morphisms
of minimal models. It would be very nice if a model for the blow-up could
be obtained as a pullback of these morphisms. Unfortunately, the only time
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we can guarantee this to be the case is when at least one of the morphisms
is surjective (see [87, Proposition 13.6]). Of course, there is one natural
geometric situation where surjectivity holds. Namely, consider blowing up
a point p in a complex manifold M2n (where 2n is the real dimension).
The neighborhood T (as we saw above) is a 2n-ball with ∂T = S2n−1 and
trivial normal bundle ν. Therefore, Pν � CP(n− 1) and the map ∂T → Pν
is simply the Hopf bundle map S2n−1 → CP(n − 1). The minimal models
are, respectively, (∧(z),d = 0) and (∧(x, y),dy = xn), where the degrees
of generators are |z| = 2n − 1, |x| = 2 and |y| = 2n − 1. The long exact
homotopy sequence of the bundle S1 → S2n−1 → CP(n − 1) shows that
Z = π2n−1(S2n−1) ∼= π2n−1(CP(n − 1)), so the identification of (the duals
of) the rational homotopy groups with the sets of generators (see Theo-
rem 2.50) then implies that ymaps to z under the induced model morphism
(∧(x, y),dy = xn) → (∧z,d = 0). Since we are over Q and (∧z,d = 0) is
an exterior algebra, this means that the morphism is surjective.
By [87, Propositions 13.3, 13.6], we then obtain a model of the blow-up

(∧(x, y),dy = xn) ×∧z MC,

where C = W − T = W −D4 and MC is a model for C [87, Proof of
Theorem 38.5]. Let (A,d) be a Poincaré duality model for M with funda-
mental class uA. A model for the embedding C → M is thus given by the
injection (A,d) → (A⊕ Q · u,d) by letting du = uA and setting u ·A+ = 0.
Moreover, the model of the injection S2n−1 → C is given by the morphism
(A⊕ Q · u,d) → (∧(z),d = 0) that maps u to z. Together with y 
→ z, we
have the pullback of the models,

(∧(x, y),dy = xn) ×∧z (A⊕ Q · u,d) = (∧(x, y) ⊕Q A ,dy = xn + ua) .

This model is a model for the connected sumW#CP(n) – just as it should be
by Proposition 8.19 (2). We will also see this when we describe the general
model for a blow-up. Indeed, this example contains many of the ingredients
(at least in spirit) of the general construction of the model for a blow-up.

8.3.3 The model for the blow-up

Let’s first fix notation. The morphism φ : (A,d) → (B,d) is a model for the
embedding f : Nn → Mm with m − n = 2k. We suppose (without loss of
generality by Lemma 8.4) that A≥m+1 = 0, B≥n+1 = 0 and there is a shriek
map f ! : sn−m(B,d) → (A,d). We let (P,d) = sn−m(B,d), and denote by
γi ∈ (B,d) representatives for the Chern classes ci(ν) of the normal bundle
ν (with γ0 = 1 and γk = 0 since 2k > dimV by assumption).
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Proposition 8.26

1. A model for q : ∂T → Pν is given by the projection

proj : (B⊗ ∧(x, z),D) → (B⊗ ∧(z), D̄), x 
→ 0

where |x| = 2, |z| = 2k − 1, Dx = 0, Dz = ∑k−1
i=0 γixk−i, D̄z = 0, and

2k = m− n.
2. A model for k : ∂T → C is given by the homomorphism of algebraic
mapping cones

φ ⊕ id : A⊕f ! sP → B⊕φ◦f ! sP .

Proof Since H∗(Pν;Q) = H∗(N;Q)[a]/∑k−1
i=0 γixk−i, in the relative model

for the bundle Pν → N,

(B,d) → (B⊗ ∧(x, z),D) → (∧(x, z),D) ,

we necessarily have Dx = 0 and Dz = ∑k−1
i=0 γixk−i. We now have only to

recall that q : ∂T = Sν → Pν is a morphism of bundles over N that maps
π2k−1(CP(k− 1)) isomorphically onto π2k−1(S2k−1).
By our dimension hypothesis, the second part of the proposition follows

directly from Proposition 8.12. �

Note that, by our connectivity hypothesis, the two models for APL(∂T)

are isomorphic. Since φ : APL(W̃) → APL(C) ×APL(∂T) APL(Pν) is a quasi-
isomorphism, we have the following definition and result.

Definition 8.27 (Description of the model for the blow-up)
Assume that m ≥ 2n+ 3. Then, with the notation above, define

Bl(A,B) = (A⊕ (B⊗ ∧+(x, z)),D)

with |x| = 2 and |z| = m−n−1 = 2k−1. The algebra structure onBl(A,B)
is induced by the multiplications on A and B ⊗ ∧+(x, z) and the formula
a · (b⊗w) = (φ(a) · b) ⊗w.
The differential D on Bl(A,B) is defined by

D(a) = dAa

D(b⊗ x) = dBb⊗ x

D(b⊗ z) = dBb⊗ z + (−1)|b|
⎛⎝φ!(s−2kb) +

k−1∑
i=0

(b · γi) ⊗ xk−i
⎞⎠ ,

where the γi ∈ B are representatives for the Chern classes, ci(ν), of the
normal bundle ν.
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Theorem 8.28 ([167]) With the above notation, when m ≥ 2n + 3, then
Bl(A,B) is a model for M̃ and the injection A ↪→ Bl(A,B) is a model for
the blow-up projection M̃ → M.

8.3.4 McDuff’s example

A theorem of Tischler (see [251]) says that a closed symplectic mani-
fold (V2m,ω) with integral symplectic form (i.e. [ω] ∈ H2(V ;Z)) may
be embedded symplectically in some (CP(n),α) for n large enough. So
now consider such an embedding for the Kodaira–Thurston manifold,
f : (KT,ω) → (CP(n),α) and take the blow-up C̃P(n). In order to sat-
isfy our usual hypothesis dimM ≥ 2dimN + 3, we take n ≥ 6, but in fact,
simply according to Tischler, we could take n = 5. Let’s now find the model
Bl(A,B) of C̃P(n).
We start by taking the model (A,d) = (∧(a)/(an+1),d = 0) for CP(n)

with a 
→ α. For V = KT, we take the model from Example 4.95,
(B,d) = (∧(u, v, y, t),du = 0, dy = 0, dv = uy, dt = 0). Observe
that the nonformality of KT is expressed by the Massey product vy (see
Proposition 2.90 and Proposition 3.20). Note that these models satisfy the
dimension restrictions imposed by Proposition 8.26. The form of Bl(A,B)
is then

Bl(A,B) = (∧(a)/(an+1) ⊕ ∧(u, v, y, t) ⊗ ∧+(x, z),D),

with |z| = (2n− 4) − 1 = 2n− 5.
We must now define the differential D and for that we need the shriek

map and the Chern classes of the normal bundle. By Theorem 8.32, we
know that the total Chern class of KT is trivial, c(KT) = 1. The total
Chern class of CP(n) is c(CP(n)) = (1 + α)n+1, so the Whitney product
formula gives

c(ν) = c(KT)c(ν) = f ∗c(CP(n)) = f ∗((1+ α)n+1

= 1+ (n+ 1)ω + n(n+ 1)
2

ω2

since f ∗(α) = ω and dimKT = 4.
A general fact that we will not prove (see [165, Lemma 8.3]) is that the

shriek map for any embedding f : V2m → CP(n) is (for 2r = 2n− 2m),

f ! : s−2rB → A, f !(ωj) = �V aj+r

where a 
→ α under the model map and �V is the coefficient relating ωm and
the orientation uV given by the almost complex structure: ωm = �V uV . For
V = KT, by Proposition 4.94 we have a symplectic class ω = uv+ yt with
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ω2 = 2uvyt, so �KT = 2. Therefore we have s−2r(1) = 2ar = 2an−2 and
s−2r(ω) = 2a1+r = 2an−1. Since ω = uv + yt, we can define f !(uv) = an−1
and f !(yt) = an−1. Finally, we have s−2r(ω2) = 2a2+r = s−2r(2uvyt) =
2s−2r(uvyt) which says s−2r(uKT) = a2+n−2 = an = uCP(n) and f !(s−2rξ) =
0 for any other monomial. Here this translates into a differential with

D(a) = 0

D(q⊗ x) = dBq⊗ x

D(q⊗ z) = dBq⊗ z + (−1)|q|
(
f !(s−2rq) + q⊗ xn−2

+q(n+ 1)ω ⊗ xn−3 + q
n(n+ 1)

2
ω2 ⊗ xn−4

)
,

using the fact that γj = 0 for j > 2 since dimKT = 4. Similarly, the
term q (n(n + 1)/2) ω2 ⊗ xn−4 = 0 unless q = 1 for degree reasons. This
description of D has the following consequences.

D(v⊗ x2) = D((v⊗ x)(1⊗ x))

= D(v⊗ x) · (1⊗ x) + (−1)3(v⊗ x) ·D(1⊗ x)

= (dBv⊗ x) · (1⊗ x)

= (uy⊗ x) · (1⊗ x)

= (u⊗ x) · (y⊗ x).

This says that [u⊗ x] · [y ⊗ x] = 0. Of course, we also have [y ⊗ x] · [y ⊗
x] = 0 since y has odd degree, so the Massey product (see Definition 2.89)
〈[u⊗ x], [y⊗ x], [y⊗ x]〉 is defined with representative

(v⊗ x2) · (y⊗ x) − (−1)3(u⊗ x) · 0 = (v⊗ x2) · (y⊗ x) = (vy⊗ x3).

Since v ⊗ x2 is not a cocycle (and from the form of the differential D if
|z| = 7), we see that [vy ⊗ x3] is not in the ideal generated by [u⊗ x] and
[y ⊗ x]. Hence, 〈[u ⊗ x], [y ⊗ x], [y ⊗ x]〉 is a nontrivial Massey product.
Therefore, by Proposition 2.90, we see that the blow-up of CP(n) along
KT, C̃P(n), is not formal. Thus we have the following result.

Theorem 8.29 ([17]) There exist closed simply connected symplectic
manifolds that are not formal.

Of course, the description given above using the model Bl(A,B) shows
exactly howMassey products can propagate from nonformal submanifolds
to blow-ups along them. For a general discussion of this, see [230]. The-
orem 8.29 powerfully illustrates the gap between Kähler manifolds and
symplectic manifolds, even in the simply connected case.
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Remark 8.30 In [188], D.McDuff constructed a blow-up ofCP(5) along an
embedding of the Kodaira–Thurston manifold KT ↪→ CP(5). She proved
that if the hard Lefschetz property failed for M, then it also failed for the
blow-up (see [188, Proposition 2.5] or [257, Chapter 4] for details). G.
Cavalcanti [51] has shown that we can’t decide whether blow-ups have or
don’t have the hard Lefschetz property based simply on the ambient space.
He also shows that there are compact simply connected symplectic blow-ups
which satisfy hard Lefschetz, but which are nonformal. On the other hand,
there are compact simply connected symplectic blow-ups (e.g. McDuff’s
example) which do not satisfy hard Lefschetz, so, by Theorem 4.82, they
are simply connected counterexamples to the Brylinski conjecture.

8.3.5 Effect of the symplectic form on the blow-up

How much of an effect does the choice of symplectic form have on the
rational homotopy type (and hence the diffeomorphism type) of a blow-up?
In [165], embeddings are taken according to the Tischler theorem,

CP(1)
f�→ CP(5), f�

∗
(α5) = � α1,

where αi is the standard Kähler form on CP(i), i = 1, 5 and � ∈ Z. Then,
denoting the resulting blow-ups by C̃P�(5) and using the model Bl(A,B)
(and, in particular, the multiplication derived from the R-dgmodule struc-
ture), the following result is shown.

Theorem 8.31 ([165, Section 8.5]) If �1 �= �2, then the rational homotopy
types of C̃P�1(5) and C̃P�2(5) are different. Hence, there are an infinite
number of rationally distinct blow-ups ofCP(5) alongCP(1) corresponding
to the infinite number of integral symplectic forms onCP(1), � α1 for � ∈ Z.

8.3.6 Vanishing of Chern classes for KT

A key point in the construction of McDuff’s example in Subsection 8.3.4
was the triviality of the Kodaira–Thurston manifold’s total Chern class.
Here we give the details of this vanishing result since it does not seem to be
something that is widely known. The proof relies on an old construction
that goes back at least to Borel and Hirzebruch’s work on the characteristic
classes of homogeneous spaces [34]. This construction is known as the
tangent bundle along the fibers.

Suppose F
i→ E

p→ B is a fiber bundle of smooth manifolds with associ-
ated principal bundle G → P → B, where G right-acts smoothly on P and
G left-acts smoothly on F. ThenG left-acts smoothly on the tangent bundle
TF of F by derivative maps. We can then form the quotient θ = P ×G TF
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and, since E = P×G F, we obtain the following map of bundles

TF

��

τ �� θ

��
F

i �� E

The bundle θ is called the (tangent) bundle along the fibers. The essential
properties of the bundle along the fibers are delineated in [34]:

1. The tangent bundle TF is a pullback of θ : i∗(θ) = TF.
2. If G preserves some other structure on TF, then θ inherits the same

structure and τ is a bundle map preserving that structure. In particular,
if F is almost complex and G preserves the almost complex structure,
then τ is a bundle map of almost complex structures. By (1), we have
i∗(c(θ)) = c(TF), where c(−) denotes the total Chern class.

3. If F → E
p→ B is a smooth bundle of manifolds, then the tangent bundle

of E is given by TE ∼= θ ⊕ p∗(TB) (see [34, Proposition 7.6]).

Our goal is to prove the following result (also see Exercise 8.3).

Theorem 8.32 The Chern classes of the Kodaira–Thurston manifold
vanish. That is, c1(KT) = 0 and c2(KT) = 0.

Proof First, we note that all nilmanifolds have free circle actions on them, so
their Euler characteristics vanish. For KT, this also follows by the product
equality for the Euler characteristic of a fibration. Because c2(KT) is the
Euler class, we see that c2(KT) = 0. Hence, we focus on the vanishing
of c1(KT).
We now take the bundle along the fibers of the Borel fibration associated

to the free symplectic action of T2 on KT:

T(KT)

��

τ �� θ = ET2 ×T2 T(KT)

��

KT
i �� ET2 ×T2 KT

�� BT2

By our standing assumption, the action preserves a compatible almost com-
plex structure, so the bundle map gives i∗(c1(θ)) = c1(KT). Now, because
the action is free, we have the following commutative diagram with q a
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homotopy equivalence:

KT
i ��

p ����
��

��
��

��
ET2 ×T2 KT

q�
��

T2 = KT/T2

Now, the bundleT2 → KT
p→ T2 is classified by the top class inH2(T2;Z),

so p∗(H2(T2;Z)) = 0. Since q is a homotopy equivalence, we therefore also
have i∗(H2(ET2 ×T2 KT;Z)) = 0. Because c1(θ) ∈ H2(ET2 ×T2 KT;Z),
we have c1(KT) = i∗(c1(θ)) = 0. �

8.4 The Chas-Sullivan loop product on loop
space homology

8.4.1 The classical intersection product

Let N be a compact connected oriented n-dimensional smooth manifold
and let � : N → N ×N be the diagonal embedding. Denote by T a tubu-
lar neighborhood of �(N) and by ∂T its boundary. The exponential map
induces a diffeomorphism between T and the normal disk bundle Dν to
�(N) that restricts to a diffeomorphism between ∂T and the associated
sphere bundle Sν. Let p : Dν → N denote the projection. Since N is ori-
ented, there is an orientation class ON ∈ Hn(Dν, Sν) such that the cap

product with ON induces an isomorphism θ : H∗(Dν, Sν)
∼=→ H∗−n(N):

θ(x) = H∗(p)(ON ∩ x).
The homology intersection product on N with coefficients in a field

lk is the map Hk(N) ⊗ Hl(N) → Hk+l−n(N) obtained as the following
composition of maps

Hk(N) ⊗Hl(N)
∼=→ Hk+l(N ×N) → Hk+l(N ×N,F(N, 2))

exc−1−→ Hk+l(T, ∂T)
∼=−→ Hk+l(Dν, Sν)

θ−→ Hk+l−n(N) ,

where exc denotes the excision isomorphism and F(N, 2) denotes the
complement of the diagonal �(N).
In cohomology, we can take the cup product with ON to obtain an iso-

morphism θ ′ : H∗−n(N) → H∗(Dν, Sν): θ ′(x) = H∗(p)(x) ∪ ON . With
coefficients in a field lk, the intersection coproduct is then given by the
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composition of maps

H∗−n(N)
θ ′−→ H∗(Dν, Sν)

∼=−→ H∗(T, ∂T)

exc−1−→ H∗(N ×N,F(N, 2)) → H∗(N ×N)
∼=→ H∗(N) ⊗H∗(N).

We observe that, since the intersection coproduct is an isomorphism for
∗ = 2n, mapping fundamental class to fundamental class, it is a shriek
map by Corollary 8.6, and therefore is multiplication by the diagonal
cohomology class (see Lemma 8.17).

8.4.2 The Chas–Sullivan loop product

In [53], M. Chas and D. Sullivan defined a product on the desuspension of
the homology (with coefficients in a field lk) of the free loop space of N:

H∗(LN; lk) = H∗+n(LN; lk) .

The product, called the loop product, is defined at the chain level using both
the intersection product on the chains on N and the loop composition. We
now give a brief description of the Chas–Sullivan definition without going
into details. We present a more homological version afterwards.
The loop product makes the homology of the free loop space a graded

commutative and associative algebra [53]. More precisely, let p : LN → N
denote the map that associates to a loop its base point. Let σ : �p → LN
and τ : �q → LN be chains such that their projections in N, pσ and pτ ,
are transverse. We then define a space

E = {(s, t,n) ∈ �p × �q ×N |pσ(s) = pτ(t) = n}
as the pullback of the diagram

E ��

��

N

�

��
�p × �q

(pσ ,pτ)
�� N ×N

Note that the composition of the loops σ(s) and τ(t) is defined for (s, t,n) ∈
E. We thus get a map E → LN by mapping (s, t) to the composition of the
loops σ(s) and τ(t). Since N has codimension n in N ×N, when σ and τ

are transverse, then E has codimension n in �p × �q. Chas and Sullivan
then used this construction to define their loop product,

Hp(LN) ⊗Hq(LN) → Hp+q−n(LN) .
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Let’s now consider a more homological version of the loop product for a
compact connected smooth orientable manifoldN. Our presentation looks
like the homological presentation given above for the intersection product.
For Z ⊂ N ×N, we denote by LZ the subspace of L(N ×N) = LN × LN
consisting of loops with base point in Z. For instance L�(N) = LN×N LN,
and the composition of loops defines a map that will be very useful later:

µ : LN ×N LN → LN .

Recall that (T, ∂T) is diffeomorphic to the pair (Dν, Sν) formed by the
normal disk bundle and the normal sphere bundle to the embedding �. Let
p∗Dν and p∗Sν denote the pullbacks over LN×NLN of the disk and sphere
bundles Dν and Sν along the projection p : LN ×N LN → �(N). A point
in p∗Dν is a pair (c, v) with c ∈ LN×N LN and v ∈ (Dν)c(0). Applying the
exponential map to v gives a geodesic u(t) = expc(0)(tv). Let ū(t) denote
the inverse path, ū(t) = u(1− t). The correspondence

(c, v) 
→ ū · c · u
gives a homotopy equivalence p∗Dν → LT , which induces, by restriction,
a homotopy equivalence p∗Sν �→ L∂T .
Denote now by ŌN ∈ Hn(p∗Dν,p∗Sν) the pullback of the orientation

classON ∈ Hn(Dν, Sν). The cap product with ŌN defines an isomorphism

H∗(L�(N)) ∼= H∗+n(p∗Dν,p∗Sν) .

By excision and homotopy equivalence we also have the following isomor-
phisms:

H∗(L(N ×N),LF(N,2))
∼=← H∗(LT ,L∂T)

∼=→ H∗(p∗Dν,p∗Sν) .

Definition 8.33 The (Chas–Sullivan) loop product on H∗(LN) is the
composition

H∗(LN) ⊗H∗(LN) → H∗(LN × LN) → H∗(LN × LN,LF(N,2))

∼= H∗(p∗Dν,p∗Sν) ∼= H∗−n(L�(N))
µ−→ H∗−n(LN) .

Definition 8.34 The dual of the loop product is the composition αN ◦
H∗−n(µ), where⎧⎨⎩ H∗−n(µ) : H∗−n(LN) → H∗−n(L�(N)) ,

αN : H∗−n(L�(N)) ∼= H∗(LN × LN,LF(N,2)) → H∗(LN × LN) .
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8.4.3 A rational model for the loop product

In this section we will suppose that N is 2-connected. Suppose (∧X,d) is a
minimal model forN, and let (A,d) be a Poincaré duality model forN. We
then have a quasi-isomorphism ϕ : (∧X,d) → (A,d). A model for the free
loop space fibration p : LN → N has been described in Section 5.2 (where,
for the sake of simplicity, we write X̄ = sX):

(∧X,d) → (∧X ⊗ ∧X̄,D) , D(x̄) = −sd(x) .
The pullback

(A,d) → (A⊗ ∧X̄,D) = A⊗∧X (∧X ⊗ ∧X̄,D)

is also a model for the projection p.
SinceLF(N,2) is the pullback ofLN×LN along the inclusion i : F(N, 2) ↪→

N ×N, and since the projection π : A⊗ A → A⊗ A/(DA) is a model for i
(see Theorem 8.18), a model for the diagram

LF(N,2) ��

��

LN × LN

��
F(N, 2)

i �� N ×N

is given by the square

(
(A⊗ ∧X̄,D) ⊗ (A⊗ ∧X̄,D)

)
/(DA) (A⊗ ∧X̄,D) ⊗ (A⊗ ∧X̄,D)

π̃��

(A⊗ A)/(DA)

��

A⊗ A
π��

��

where π̃ is the map

(A,d)⊗2 ⊗A⊗A (A⊗ ∧X̄,D)⊗2 → (A,d)⊗2/(DA) ⊗A⊗A (A⊗ ∧X̄)⊗2 .

This shows that a model for the injection

APL(L(N ×N),LF(N,2)) → APL(L(N ×N))

is given by the injection of Ker π̃ by themapµDA , which is themultiplication
by DA (see Subsection 8.1.4):

µDA ⊗ 1: (s−nA) ⊗A⊗A (A⊗ ∧X̄,D)⊗(A⊗ ∧X̄,D)

→ (A⊗ A)A⊗A(A⊗ ∧X̄,D)⊗2 .

From the definition of αN , we deduce the following result.
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Proposition 8.35 ([94]) The map αN is the map induced in cohomology
by µDA ⊗ 1.

As we saw in Section 5.9, another convenient model for the free loop
space is given by the Hochschild complex B(A) = (A ⊗ T(sĀ),D). This
entails the following version of Proposition 8.35.

Proposition 8.36 ([94]) The map αN is the map induced in cohomology by
the following multiplication by DA:

µDA ⊗ 1: (s−nA) ⊗A⊗A (A⊗ T(sĀ))⊗ (A⊗ T(sĀ))

→ (A⊗ T(sĀ)) ⊗ (A⊗ T(sĀ)) .

We now give a model for the multiplicationµ : LN×NLN → LN. Recall
that T(sĀ) is a differential coalgebra whose comultiplication is defined by

∇([a1| · · · |aq]) =
q∑
i=0

[a1| · · · |ai] ⊗ [ai+1| · · · |aq] .

Then we see that

1⊗ ∇ : B(A) → (A⊗ T(sĀ) ⊗ T(sĀ),D) = A⊗A⊗A B(A) ⊗ B(A)

is a morphism of differential A-modules.

Proposition 8.37 The morphism H∗(µ;Q) : H∗(LN;Q) → H∗(L�(N);Q)

is the map induced in cohomology by the morphism 1⊗ ∇.

Proof The composition of loopsµ : L�(N) → LN is the pullbackmorphism
in the diagram

L�(N)

��

µ
��"""""""""""""

��&&
&&&

&&&
&&

LN

��

"" 
  

  
  

  

N[0,1] ×N[0,1] ϕ̄
��

s

��

N[0,1]

r

��

N
�

��		
			

			
			

		 N
�

""�
��

��
��

��

N ×N ×N
ϕ

�� N ×N
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with ϕ(a,b, c) = (a, c), s(c, c′) = (c(0), c(1), c′(1)) and r(c) = (c(0), c(1)).
The model for this diagram is

A B(A)
1⊗∇

��" " " " " " " " " " " " " " " " "

B(A,A,A) ⊗ B(A,A,A)

''��������������

B(A,A,A)

((���������
θ��

A

��

A

��

A⊗ A⊗ A

��

m

))��������������

A⊗ A

��

m

((�����������

θ

��

where A = A⊗A⊗A (B(A)⊗ B(A)), B(A,A,A) denotes the double bar con-
struction (see Section 5.9), the map m denotes the standard multiplication,

θ(a[a1| · · · |an]a′) =
n∑
i=0

a[a1| · · · |ai] ]1⊗ 1[ [ai+1| · · · |an]a′ ,

and θ̄ (a ⊗ a′) = a ⊗ 1 ⊗ a′. The model for the composition of loops
is thus obtained by taking the pushout map in this diagram: that is, the
map 1⊗ ∇. �

8.4.4 Hochschild cohomology and Cohen–Jones theorem

Recall that the Hochschild cohomology of a graded differential algebra
(A,d), HH∗(A,A), is the homology of the complex HomA(B(A),A). This
homology is a graded algebra whose product " is defined for f , g ∈
Hom(T(sĀ),A) = HomA(B(A),A) by

f " g : T(sĀ)
∇−→ T(sĀ) ⊗ T(sĀ)

f⊗g−→ A⊗ A
m−→ A .

Using the isomorphismψA : A → s−nA∨, we obtain, by duality, a coprod-
uct on the Hochschild homology of A, HH∗(A). The coproduct has degree
n and is the map induced in cohomology by the composition

B(A) = A⊗A B(A)
ψA⊗1−→ s−nA∨ ⊗A B(A)

= s−nHom(T(sĀ),A)
s−n"−→ s−n

(
Hom(T(sĀ),A) ⊗Hom(T(sĀ),A)

)
= s−n (A∨ ⊗ T(sĀ))⊗2

ψ⊗2
A←− sn(A⊗ T(sĀ))⊗2 = snB(A)⊗2 .
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We are now ready to prove the theorem of Cohen and Jones.

Theorem 8.38 ([62], [191], [94]) The isomorphism

H∗(LN;Q) ∼= HH∗(A)

is an isomorphism of coalgebras. By duality, the loop algebra H∗(LN;Q)

is isomorphic as an algebra to the Hochschild cohomology algebra
HH∗(A,A).

Proof The theorem is a direct consequence of the commutativity of the
following diagrams (the first one coming from Proposition 8.37 and the
second one being a combination of Proposition 8.36 and Lemma 8.17).

H∗(LN;Q)
µ

�� H∗(L�(N);Q)

H∗(B(A))
H∗(1⊗∇)

��

∼=
��

H∗(ψA⊗1) ∼=
��

H∗(A⊗A⊗2 B(A)⊗2)

∼=
��

H∗(ψA⊗1)∼=
��

H∗(s−nA∨ ⊗A B(A))
H∗(1⊗∇)

�� H∗(s−nA∨ ⊗A⊗2 B(A)⊗2)

s−nH∗(L�(N);Q)
αN �� H∗(L(N ×N;Q))

H∗(s−nA⊗A⊗2 B(A)⊗2)
H∗(µDA⊗1)

��

∼=
��

H∗(s−nψA⊗1) ∼=
��

H∗(A⊗2 ⊗A⊗2 B(A)⊗2)

∼=
��

H∗(ψA⊗1)⊗2∼=
��

H∗(s−2nA∨ ⊗A⊗2 B(A)⊗2)
H∗(m∨⊗1)

�� H∗((s−nA∨)⊗2 ⊗A⊗2 B(A)⊗2)

�

Since a quasi-isomorphism of differential graded algebras, ϕ : (A,d) →
(B,d), induces an isomorphism of Hochschild algebras HH∗(A,A) ∼=
HH∗(B,B), we can choose A = C∗(N;Q), A = APL(N) or A = (∧V ,d),
where (∧V ,d) is the minimal model of N, in Theorem 8.38. We thus have
the following isomorphisms of algebras:

H∗(LN;R) ∼= HH∗(ADR(N),ADR(N)) ,

H∗(LN;Q) ∼= HH∗((∧V ,d), (∧V ,d)) .



348 8 : Blow-ups and Intersection Products

8.4.5 The Chas-Sullivan loop product and closed geodesics

Let (LN)a denote the subspace of LN consisting of curves of length less
than or equal to a. Following [110], we define the critical value cr(α) of a
homology class α ∈ Hq(LN;Z) to be the number

cr(α) = inf{ a |α ∈ Im (
Hq((LN)a;Z) → Hq(LN;Z)

) } .
Denoting the loop product by •, Goresky and Hingston prove the
Theorem 8.39 ([110]) The critical value behaves well with respect to the
loop product:

cr(α • β) ≤ cr(α) + cr(β).

Moreover, we have the following nilpotency result.

Theorem 8.40 ([110]) If all closed geodesics are nondegenerate, then every
homology class α ∈ H∗(LN;Z) is level-nilpotent; that is, there is an integer
r depending on α such that cr(•rα) < r cr(α).

This level-nilpotency of the homology classes for the loop product begs
the question of whether the classes are nilpotent in the usual sense. In order
to investigate this question, we consider the transverse intersection of a
homology class in LN with �N viewed as a submanifold of LN. This
transverse intersection induces a morphism of algebras I : H∗(LN;Q) →
H∗(�N;Q) [53] that can be computed in the following way. Denote by
(∧V ,d) the minimal model forN, by (∧V⊗∧sV , δ) the minimal model for
LN, and by ϕ : (∧V ,d) → (A,d) a finite dimensional model for M with
A>n = 0 and An = Qω. Then we have a quasi-isomorphism

ϕ ⊗ id : (∧V ⊗ ∧sV , δ) → (A⊗ ∧sV , δ) = (A,d) ⊗(∧V ,d) (∧V ⊗ ∧sV , δ) .
Now, the multiplication by ω, α 
→ α · ω, induces a map

I∗ : H∗(�N;Q) = ∧sV → H∗(A⊗ ∧sV , δ) = H∗(LN;Q).

Lemma 8.41 ([93]) The map I∗ is dual to the intersection map I.

This computation gives a nilpotence result analogous to the result above
of Goresky and Hingston, Theorem 8.40.

Theorem 8.42 ([93]) The image of the intersection map I : H∗(LN;Q) →
H∗(�N;Q) is a finitely generated algebra, and its kernel is a nilpotent
algebra.
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Exercises for Chapter 8

Exercise 8.1 LetG be a connected Lie group. Show that the loop algebraH∗(LG;Q)

is isomorphic to the tensor product H∗(G;Q) ⊗ H∗(�G;Q), where H∗(G;Q) is
equippedwith the intersection product, andH∗(�G;Q) has the Pontryagin product.

Exercise 8.2 Use the Lambrechts–Stanley model Bl(A,B) (see Definition 8.27) to
obtain the rational homotopy type of the blow-up of a point in a manifoldM.

Exercise 8.3 A result of F. Peterson says that, in particular, if a real n-dimensional
manifold has torsionfree integral cohomology, then any complex 2n-bundle is com-
plex trivial if and only if its Chern classes vanish. (Note that we are not saying the
bundle is complex parallelizable, for this is a restrictive concept requiring analyt-
icity of sections.) Show that we can see the triviality of the tangent bundle of KT
directly from the following.

1. Consider the principal bundle T2 → KT
p→ T2. Show that T(T2) is trivial

as a complex bundle because c1(T2) = χ(T2) = 0 and the trivialization is
accomplished by left translation on T2. Therefore, the induced action of T2 on
T(T2) = T2 × C is given by Ly(x, s) = (yx, s).

2. Show that the bundle along the fibers is given by

θ = KT ×T2 (T2 × C) = (KT ×T2 T
2) × C = KT × C.

Hint: to see that KT ×T2 T
2 = KT is an equivariant homeomorphism, define

the inverse maps: λ : KT ×T2 T
2 → KT, λ([x, g]) = xg; τ : KT → KT ×T2 T

2,
τ(x) = [x, e]. Hence, θ is a trivial complex bundle.

3. Now show that T(KT) ∼= θ ⊕ p∗(T(T2)) and therefore it is trivial. Because the
tangent bundle is complex trivial, all Chern classes vanish.



9
A Florilège of geometric
applications

This chapter is a survey on the types of models which arise when study-
ing configuration spaces, smooth algebraic varieties, function (or mapping)
spaces, and arrangements. We also give a brief introduction to two
subjects, Gelfand–Fuchs cohomology and iterated integrals, which pro-
vided unexpected connections between models and geometric analysis at
the very dawn of rational homotopy theory. Here we explain the rele-
vant models and then refer to the appropriate literature for details or
proofs.
Section 9.1 is a quick survey on the rational homotopy type of configu-

ration spaces. When M is a manifold, the configuration space of k points
in M is the space F(M,k) = {(x1, . . . ,xk) ∈ Mk |xi �= xj for i �= j }. We
recall, in particular, how to compute the Betti numbers and the ranks of the
homotopy groups of F(M,k). The main problem centers around knowing if
the rational homotopy type of F(M,k) depends only on the rational homo-
topy type of M. By the work of Kriz and Totaro, this is true for complex
projective varieties and, by the work of Lambrechts and Stanley, this is true
when k = 2 and M is a 2-connected compact manifold. Further, we dis-
cuss certain chain complexes giving the rational cohomology of unordered
configuration spaces.
Next, in Section 9.2, we consider arrangements of hyperplanes and affine

subspaces and their accompanying models. The main problem here is to
understand the topology of the complement of the arrangement. This is
directly related to configuration spaces because the configuration space of
k points inR2 is the complement of the arrangement formed by the complex
hyperplanes zi = zj. Here we describe the atomic model of Yuzvinsky and
give concrete examples.
We have seen in Theorem 4.43 that compact Kähler manifolds are formal

spaces. We may then wonder if the minimal model of a smooth algebraic
manifold also has some special properties. In Section 9.4, with this objective
in mind, we first use the existence of a pure Hodge structure on the coho-
mology of a compact Kähler manifold to give another proof of formality.
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In [69], Deligne extended the notion of pure Hodge structure to that of
mixed Hodge structure and proved that the cohomology of any complex
algebraic manifold carries such a structure. Here, we discuss briefly the
result of Morgan (see [201]) which says that the minimal model of a com-
plex algebraic manifold also possesses such a structure. Some homotopy
consequences are then given.
Spaces of mappings, and, more generally, spaces of sections of fibra-

tions are very useful in geometry. The free loop space is an example of a
space of mappings, and the space of sections of the free loop space fibration
p : LM → M is the loop space on the topological monoid aut(M). By work
of D. McDuff [187], the space of finite parts ofM with labels in a space X
can be identified with the space of sections of a sphere bundle overM. We
explain these ideas in Subsection 9.5.1 and show how to compute the ratio-
nal homotopy type of the space of sections of a given fibration. Finally, the
Gelfand–Fuchs cohomology can be interpreted as the cohomology of the
space of sections of a certain bundle. We then obtain explicit computations
of the Gelfand–Fuchs cohomology in Subsection 9.5.4.
K. Chen’s theory of iterated integrals is another geometric way to obtain

rational homotopy information for manifolds. Since this theory has been
used in many circumstances in geometry, we have included a presentation
of the theory in Section 9.6. This gives us the opportunity to make precise
the links with the Sullivan approach.
Section 9.7 contains a list of cohomological conjectures that have

appeared in different parts of the book and that we present here together
with their interrelations.

9.1 Configuration spaces

Let M denote an m-dimensional manifold. The space of ordered configur-
ations of k points in M is the space

F(M,k) = { (x1, . . . ,xk) ∈ Mk | xi �= xj for i �= j } .
When two manifolds are homeomorphic, then their configuration spaces
are also homeomorphic. The natural question is then: When M and N are
homotopy equivalent, is it true that F(M,k) and F(N,k) are also homotopy
equivalent?
By Example 9.1 below, F(Rn, 2) � Sn−1, so we see that the answer is no

in general. Now, ifM is compact and nonsimply connected, then the answer
to this question is also no as shown by R. Longoni and P. Salvatore [176].
On the other hand, Levitt has proven that the answer is yes for compact
2-connected manifolds when k = 2 [172], andM. Aouina and J. Klein have
shown that the homotopy type of some suspension of F(M,k) depends only
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on the homotopy type of M [13]. For general compact simply connected
manifolds, the problem remains open.
In this section, we will be concerned with the rational homotopy of con-

figuration spaces. Of course, here wewant to know if the rational homotopy
type of F(M,k) depends only on the rational homotopy type ofM. In Sub-
section 8.1.5, we show by a theorem of Lambrechts and Stanley, that this is
true for k = 2 when the manifold is 2-connected. We will also show how to
get the rational homotopy groups and the rational Betti numbers of F(M,k)
directly from a model of M. In case M is a complex projective manifold,
a model for F(M,k) can be derived from a model for M. Now, in certain
cases we can obtain homotopy equivalences of F(M,k) with well-known
spaces. For instance, we have the following.

Example 9.1 When M admits a multiplication, then the map (x, y) 
→
(x,x−1y) induces a homeomorphism between F(M, 2) andM×M\{e}. For
instance F(Rn, 2) ∼= Rn×(Rn\{0}) � Sn−1. In the same way, F(S1×S1, 2) �
S1 × S1 × (S1 ∨ S1).

Example 9.2 WhenM is a sphere Sn, n ≥ 2, then F(M, 2) � Sn and F(M, 3)
has the homotopy type of the tangent sphere bundle to Sn. The map from
the sphere bundle to F(M, 3) maps (x, v) to (x,−x, expx(v)).

9.1.1 The Fadell–Neuwirth fibrations

Let M be a manifold, and let q1, . . . ,qn be n distinct fixed points in M.
For i ≤ n, let Qi = {q1, . . . ,qi}. Observe that the space M\Qi is an open
manifold for i ≥ 1, and we have a map

π : F(M\Qn−1,k) → M\Qn−1
sending a k-tuple onto its first component: π(x1, . . . ,xk) = x1. Fadell and
Neuwirth prove the following result that is basic in the theory.

Theorem 9.3 ([83]) The projection π is a locally trivial fiber bundle with
fiber F(M\Qn,k − 1). Moreover, when n ≥ 2, the fiber bundle admits a
section.

Clearly, the fiber over the basepoint qn is F(M\Qn,k−1). Also, the section
is easy to construct. In M, we first choose an open n-dimensional disk D
around q1, of radius 1 for some metric, and we suppose that D does not
contain any of the points q2, . . . ,qn−1. We now choose k−1 distinct points
y1, . . . , yk−1 in D on a sphere of radius 1/2 around q1. We then define
a section σ of π by the following process. When x �∈ D, we put σ(x) =
(x, y1, . . . , yk−1). When x ∈ D, then we put σ(x) = (x, |x|y1, . . . , |x|yk−1),
where we denote the distance between q1 and x by |x|.
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9.1.2 The rational homotopy of configuration spaces

The homotopy type of the manifold M\Qk is easy to describe. First, since
the group of homeomorphisms of M acts k-transitively (i.e. any two given
sets of k distinct points can be mapped one onto another by a single
homeomorphism), we can suppose that the k points belong to an open
set homeomorphic to an m-dimensional open disk D. The space D minus
the points has the homotopy type of a wedge of k spheres Sm−1, one of
them being the boundary of the disk. Therefore, if k ≥ 2, the space M\Qk
has the homotopy type of the wedge ofM\Q1 with a wedge of k−1 copies
of the sphere Sm−1;

M\Qk � M\Q1 ∨ (∨k−1Sm−1).

Proposition 9.4 ([90]) If the cohomology algebraH∗(M;Q) requires at least
two generators, then we have an isomorphism

π∗F(M,k) ⊗ Q ∼= ⊕k−1
i=0 π∗(M\Qi) ⊗ Q .

Proof We have the following sequence of fibrations

F(M\Q1,k− 1)

��

F(M\Q2,k− 2)

��

· · · M\Qk−1

��
F(M,k)

��

F(M\Q1,k− 1)

��

· · · F(M\Qk−2, 2)

��

M M\Q1 · · · M\Qk−2

All the fibrations except maybe the first one admit a section and so their
long exact homotopy sequences split into short exact sequences.
Recall from Theorem 3.3 that the Lie algebra π∗(�(M\Q1))⊗ Q admits

a filtration such that the graded associated Lie algebra is the free product
of π∗(�M) ⊗ Q with a free Lie algebra on one generator. Hence, the cen-
ter of π∗(�(M\Q1)) ⊗ Q is zero. The same is also true for the center of
π∗(�(M\Qi)) ⊗ Q for i ≥ 2 since, by the above description of M\Qi, we
have π∗(�(M\Qi)) ⊗ Q ∼= (π∗(�(M\Q1)) ⊗ Q)

∐
L(x2, . . . ,xi−1). There-

fore, by induction on the sequence of fibrations above, we find that the
center of π∗(�F(M\Q1,k− 1)) ⊗ Q is zero.
Now, we know that the image of the connecting map in the exact rational

homotopy sequence for a fibration �F → �E → �B is contained in the
center of π∗(�F) ⊗ Q, so the long exact homotopy sequence of the first
fibration also splits into short exact sequences. This yields the result. �
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9.1.3 The configuration spaces F(Rn, k)

The Betti numbers of F(Rn,k) can be derived from the Fadell–Neuwirth
fibrations. Indeed, we have the

Proposition 9.5 The integral homology groups of F(Rn\Qm,k) are free
abelian groups and we have isomorphisms of groups

H∗F(Rn\Qm,k) ∼= ⊗k−1
j=0H∗(∨m+jSn−1) .

In particular,

H∗F(Rn,k) ∼= H∗F(Rn\Q1,k− 1) ∼= ⊗k−1
j=1H∗(∨jSn−1) .

Proof Suppose n > 2. We prove the result by induction on k. For k = 1,
we have

H∗F(Rn\Qm, 1) ∼= H∗(∨mSn−1) .
So suppose the result is true for k−1 points, and anym. Then, for degree rea-
sons, the Serre spectral sequence of the Fadell–Neuwirth fibration collapses
at the E2-level and we have isomorphisms

H∗F(Rn\Qm,k) ∼= H∗F(Rn\Qm+1,k− 1) ⊗H∗(Rn\Qm)

∼= ⊗k−2
j=0H∗(∨m+1+jSn−1) ⊗H∗(∨mSn−1)

∼= ⊗k−1
j=1H∗(∨m+jSn−1) ⊗H∗(∨mSn−1) .

The case n = 2 requires more care and is done in detail in [61]. �

The multiplicative structure of the cohomology of F(Rn,k) has been
described by F. Cohen in [61].

Theorem 9.6 Let aij be a sequence of variables of degree n − 1, for i, j =
1, . . . ,k. Then we have an isomorphism of algebras,

H∗(F(Rn,k);Z) ∼= ∧(aij)/I ,

where I is the ideal generated by the relations aij − (−1)naji, a2ij = 0 and the
Arnold relations

aijajr + ajrari + ariaij .

This gives the complete rational homotopy type of the configuration
spaces of points inRn because, by a result of Kontsevich, the spaces F(Rn,k)
are formal.

Theorem 9.7 ([156, Theorem 2]) The spaces F(Rn,k) are formal.
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The case n = 2 was proved previously by Arnold [42]. Indeed, F(R2,k)
is the complement in Ck of the union H of the hyperplanes Hij =
{ (z1, . . . , zn) | zi = zj}. The projection

ϕij = zi − zj : Ck\Hij → C\{0}
is a homotopy equivalence and this implies that H1(Ck\H;R) is generated
by the classes of the 1-forms

eij = ϕ∗
ij

(
dz
2π iz

)
= dϕij
2π iϕij

.

A simple computation then shows that the Arnold relations (A) are satisfied:

A : eijejr + ejreri + erieij = 0 .

This defines, by restriction, a morphism of differential graded algebras

(∧(eij)/(A), 0) → ADR(F(C,k)) ,

which is a quasi-isomorphism. This then proves the formality of F(R2,k).

9.1.4 The configuration spaces of a projective manifold

Independently, and by using different methods, I. Kriz [160] and B. Totaro
[254] gave a model for the configuration spaces F(M,k) whenM is a com-
plex projective manifold. In order to describe this model, first let pi : Mk →
M denote the projection on the i-th component and let pij : Mk → M2

denote the projection on components i and j. Since M is a manifold, we
can find a graded basis {ai, a′

j} of H∗(M;Q) such that ai ∪ a′
j = δ

j
iω where

ω denotes a fundamental class and δ
j
i is the Kronecker delta. The class

DM = ∑
i(−1)|ai|ai ⊗ a′

i ∈ H∗(M ×M;Q) is called the diagonal class and
we set Dij = p∗

ij(DM) ∈ H∗(M;Q)⊗k. Then we have

Theorem 9.8 Let Mm be a complex projective manifold. Then a model for
F(M,k) is given by the differential graded algebra

(H∗(M;Q)⊗k ⊗ ∧(xij, i, j = 1, . . .k) / I, d) ,

where |xij| = m−1, d(xij) = Dij and the ideal I is generated by the relations⎧⎪⎪⎪⎨⎪⎪⎪⎩
xij = xji,

xijxjr + xjrxri + xrixij,

p∗
i (x) · xij = p∗

j (x) · xij.
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Note that, in this description, we recover the Arnold relations. Also note
that the compatibility of the differential with the Arnold relations comes
from Poincaré duality. Once again, we have a situation where we obtain a
complete description of the rational homotopy type.
Now suppose that Mm is any compact, simply connected manifold and

let (A,d) denote a Poincaré duality model for M with diagonal class DA
(see Definition 8.16). Then we can form a new commutative differential
graded algebra by replacing (H∗(M;Q), 0) by (A,d) in themodel of Kriz and
Totaro.We let pi : A → A⊗k denote the injection pi(a) = 1⊗· · ·⊗a⊗· · ·⊗1
with the element a in the ith position. In a similar way pij : A⊗2 → A⊗k
denotes the map that sends a⊗ b to the k-tuple x1 ⊗ · · · ⊗ xk with xi = a,
xj = b and the other xi equal to 1. We can then form the cochain algebra

G(M,k) = (A⊗k ⊗ ∧(xij, i, j = 1, . . .k) / I ,D) ,

where D(a) = d(a), |xij| = m − 1, D(xij) = pij(DA) and the ideal I is
generated by the relations⎧⎪⎪⎨⎪⎪⎩

xij = (−1)m xji, x2ij = 0,

xijxjr + xjrxri + xrixij,

pi(x)xij = pj(x)xij.

Conjecture 9.9 G(M,k) is a model for the configuration space F(M,k).

The conjecture is true for complex projective manifolds. By a result of
Lambrechts and Stanley, it is also true for 2-connected manifolds when
k = 2 (Subsection 8.1.5). Some other results go in the direction of the
conjecture; for instance the cohomology ofG(M,k) is the right cohomology.

Theorem 9.10 There is an isomorphism of graded vector spaces

H∗(G(M,k)) ∼= H∗(F(M,k);Q) .

This result is essentially the work of Bendersky and Gitler [24].
The present presentation comes from a re-writing due independently to
B. Berceanu, M. Markl and S. Papadima [26] on one hand, and to Y. Félix
and J.-C. Thomas [90] on the other.
Note that the permutation group 
k acts freely on F(M,k). The quo-

tient Ck(M) = F(M,k)/
k is called the space of unordered configurations
of k points in M. This construction gives a lot of interesting spaces. For
instance, when M is the space R2, then π1(Ck(M)) is the braid group Bk
on k generators. Of course, even if M is simply connected, Ck(M) is not
simply connected, and so its minimal model gives less information than we
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might hope. We can, however, compute the rational cohomology of Ck(M)

in case the dimension ofM is odd.

Theorem 9.11 ([31]) If dimM = m is odd, then

H∗(Ck(M);Q) = ∧kH∗(M;Q) .

For instance, whenM = S3, a basis of the vector space of cohomology is
given by e0 in degree 0 and e3 in degree 3. The only words of length k in
∧(e0, e3) are ek0 and e

k−1
0 e3. Therefore for any k ≥ 1,H∗(Ck(S3);Q) = ∧(z)

with z in degree 3. In particular, Ck(S3) �Q S3.
Now letM be a compact simply connectedm-dimensional manifold, with

m even. Let V = H∗(M;Q),W = s−m+1H∗(M;Q) and let DM ∈ V ⊗V be
the diagonal class. We consider the differential graded algebra

(∧(V ⊕W),d) ,

where d(V) = 0 and

d(s−m+1a) = DM · (1⊗ a) ∈ V ⊗ V

for s−m+1a ∈ W . In fact we need to write this last expression as an element
of ∧2V . For that, if DM = ∑

i(−1)|ai|ai ⊗ a′
i, then we have

d(s−m+1a) = 1
2

(∑
i

(−1)|ai|ai ∧ (a′
i · a)

)
,

where the · means the cohomology multiplication. Example 9.13 gives a
concrete example of computation.
The algebra ∧(V ⊕W) can also be equipped with a second gradation

(∧(V ⊕W))k = ⊕2p+q=k ∧p W ⊗ ∧qV .
Then d(∧(V ⊕W))k ⊂ (∧(V ⊕W))k. Therefore, the cohomology decom-
poses as a direct sum H∗(∧(V ⊕W),d) ∼= ∑

k H
∗
k(∧(V ⊕W),d). We then

have

Theorem 9.12 ([91]) With the above notation, when m is even, there is an
isomorphism of graded vector spaces

H∗
k(∧(V ⊕W),d) ∼= H∗(Ck(M);Q) .

Example 9.13 To compute H∗(Ck(CP3);Q), we have to form the cdga

(∧(e0, e2, e4, e6,x5,x7,x9,x11),d)
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where the subscripts indicate the degrees, and d(ei) = 0, d(x5) = e0e6+e2e4,
d(x7) = e2e6 + (1/2)e24, d(x9) = e4e6, d(x11) = (1/2)e26. We define a
second (lower) gradation by saying the xi are in degree 2 and the ej in
degree 1. The differential preserves the gradation, and H∗

k(∧(ei,xj),d) =
H∗(Ck(CP3);Q).

The multiplicative structure ofH∗(Ck(M);Q) has been explained in [88].
As an illustration, we extract from [88] the rational cohomology algebra of
Ck(CP

2): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k = 1, 2 ∧x/x3 |x| = 2 ;

k = 3 ∧(x, y)/(x3, yx2) |x| = 2 , |y| = 3 ;

k ≥ 4 ∧(x, y)/x3 |x| = 2 , |y| = 3 .

9.2 Arrangements

An arrangement A of linear subspaces in a complex vector space Cn is
simply a finite set of linear subspaces of Cn. The associated intersection
lattice L(A) is the poset of intersections among subspaces in A ordered
with reversed inclusions: x ≤ y if and only if y ⊂ x. For x, y ∈ L(A), the
meet x ∧ y is defined to be x ∧ y = ∩{z ∈ L(A) |x ∪ y ⊂ z }, and the join is
defined to be the intersection x∨y = x∩y. With these operations, L(A) is a
lattice. If σ is a collection of elements inA, we denote by ∨σ , the join of all
the elements in σ . For x ∈ L(A), the rank of x, rk(x), is the maximal length
r of a sequence of the form Cn < x1 < x2 < · · · < xr = x, with xi ∈ L(A).
When x < y and there is no z such that x < z < y, we write x ≺ y.

The lattice L(A) is said to be geometric if each time x ≺ y, then, for each
z, either x ∨ z ≺ y ∨ z or x ∨ z = y ∨ z. When a lattice is geometric, the
following properties hold:

1. If x < y, all the maximal sequences x < x1 < · · · < xn = y have the
same length.

2. For every x, y ∈ L(A), we have rk(x) + rk(y) ≥ rk(x ∨ y) + rk(x ∧ y).

The arrangement A is said to be geometric if the lattice L(A) is geometric.
The complement, M(A), of an arrangement A is the complement of the

union of the elements of A; that is, M(A) = Cn − ∪x∈A x. When A is an
arrangement of codimension one subspaces, then the cohomology ofM(A)

is well known and the space is formal by a result of Brieskorn [42]. When all
the subspaces x have codimension at least 2, thenM(A) is simply connected
and rational homotopy theory applies.
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Example 9.14 Denote by A the arrangement of C2n formed by the sub-
spaces Hi = {(z1, . . . , z2n) | z2i−1 = z2i = 0}, for i = 1, . . . ,n. Then the
projection M(A) → ∏n

i=1 C2\{0} is a homeomorphism and we obtain a
homotopy equivalenceM(A) � (S3)n.

Example 9.15 Let A be an arrangement in Cn, and consider the injection j
of Cn into Cn+1 as the hyperplane zn+1 = 0. The image of A by the map j
is an arrangement A′ in Cn+1 and we clearly haveM(A′) � 
2M(A).

Example 9.16 Consider in C6 the arrangementA = {H1,H2,H3,L}where
Hi = {(z1, . . . , z6) | z2i−1 = z2i = 0}, and L = {(z1, . . . , z6) | z1 = · · · = z6}.
This arrangement is not geometric. The chainC6 < L is maximal, but taking
intersections with H1 produces the non-maximal chain H1 < H1 ∨ L = 0
(where, for instance, the subspace K = {(z1, . . . , z6) | z1 = z2 = z3 = 0} ∈
L(A) lies between 0 and H1).

LetA be an arrangement of linear subspaces inCn. Since we are interested
in the complement of the union of the elements of A, we suppose that A
does not contain any two elements x, y such that x ⊂ y. This implies that
the rank of any element x ∈ A is 1.
The relative atomic complex of A is the complex (D,d) defined by

Yuzvinsky as follows [267]. The complex D is the Q-vector space gen-
erated by all the subsets σ = (x1,x2, . . . ,xk) of A. We write |σ | to denote
the number of elements in σ , and we choose an ordering on the elements
of A, so that each sequence is always written following this ordering. The
differential of σ = (x1,x2, . . . ,xk) is defined by

d(σ ) =
∑
j∈J(σ )

(−1)j σ\{xj} ,

where J(σ ) = { j ∈ {1, . . . ,k} | ∨ σ = ∨(σ\{xj}) }. The degree of σ is
defined by

deg σ = 2 codim (∨σ) − |σ | .
Finally we can define a multiplication on D as follows. For two sequences
σ , τ , take

σ · τ =
{
(−1)ε(σ ,τ)σ ∪ τ if codim∨σ+ codim∨τ = codim∨(σ ∪ τ)

0 otherwise.

Here “codim” denotes the complex codimension and ε(σ , τ) the sign of the
permutation that must be applied to σ ∪ τ to put the elements in the chosen
linear order.
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With those choices, (D,d) is a cochain complex [267]. The following
result, due to Yuzvinsky, gives the link between the geometry and the
topology of an arrangement [267].

Theorem 9.17 The relative atomic model of Yuzvinsky is a model of the
complement M(A).

Example 9.18 Let’s describe the relative atomic model associated to the
arrangement of Example 9.16. By definition we have

d(L) = d(H1) = d(H2) = d(H3) = d(H1,H2) = d(H1,H3)

= d(H2,H3) = 0 ,

d(H1,H2,H3) = d(L,H1) = d(L,H2) = d(L,H3) = 0

d(L,H1,H2) = (L,H2) − (L,H1), d(L,H1,H3) = (L,H3) − (L,H1),

d(L,H2,H3) = (L,H3) − (L,H2),

d(L,H1,H2,H3) = −(H1,H2,H3) + (L,H2,H3) − (L,H1,H3)

+ (L,H1,H2).

The elements (Hi) have degree 3 and generate, in cohomology, an exterior
algebra ∧(H1,H2,H3). There are two other cohomology classes: [(L)] in
degree 9, and [(L,H1)] in degree 10. We then consider the cdga

(∧(x1,x2,x3) ⊕ Qy⊕ Qz, 0),

where xiy = xiz = yz = z2 = 0, |xi| = 3, |y| = 9 and |z| = 10. The
morphism ϕ : (∧(x1,x2,x3) ⊕ Qy ⊕ Qz, 0) → (D,d) defined by ϕ(xi) =
(Hi), ϕ(y) = (L) and ϕ(z) = (L,H1), is then a quasi-isomorphism. This
shows thatM(A) has the rational homotopy type of (S3×S3×S3)∨S9∨S10.
For geometric arrangements, the following notion is important as we will

see in Lemma 9.21.

Definition 9.19 A sequence σ = (x1,x2, . . . ,xk) of elements of A is said to
be independent if, for each k, ∨σ > ∨(σ\{xk)}. Note that subsequences of
independent sequences are also independent.

Lemma 9.20 If the lattice L(A) is geometric, then a sequence σ =
(x1, . . . ,xk) is independent if and only if rk σ = k.
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Proof Suppose σ is independent. Then each subsequence of σ is indepen-
dent and we have a sequence of inequalities

x1 < x1 ∨ x2 < x1 ∨ x2 ∨ x3 < · · · < ∨σ .

Therefore rk σ ≥ k. If rk σ > k, then this sequence is not maximal and there
is another element y ∈ A such that for some p

(x1 ∨ · · · ∨ xp) < (x1 ∨ · · · ∨ xp) ∨ y < (x1 ∨ · · · ∨ xp) ∨ xp+1 .

This will imply that

rk (x1 ∨ · · · ∨ xp ∨ xp+1) ≥ rk (x1 ∨ · · · ∨ xp) + 2 (9.1)

> rk (x1 ∨ · · · ∨ xp) + rk (xp+1), (9.2)

in contradiction with the definition of a geometric lattice.
Suppose now that rk σ = k and consider the sequence

xτ1 ≤ xτ1 ∨ xτ2 ≤ · · · ≤ ∨σ ,

obtained from σ by some permutation τ of the set {1, 2, . . . ,k }. If all
inequalities are strict for any τ , then σ is independent. Otherwise, some
inequality is in fact an equality, and, since the rank of σ is k, another part
of the sequence extends to the form

(xτ1 ∨ · · · ∨ xτr) < (xτ1 ∨ · · · ∨ xτr) ∨ y < (xτ1 ∨ · · · ∨ xτr) ∨ xτr+1 .

As above, the existence of such a sequence is impossible for a geometric
lattice. �

It follows directly from the definition of the differential that independent
sequences are cocycles. The key point in the geometric case is the following
result.

Lemma 9.21 ([85]) If the lattice L(A) is geometric, then each cohomol-
ogy class of (D,d) is represented by a linear combination of independent
sequences.

Of course, now we want to see what the salient properties of arrange-
ments are with respect to rational homotopy theory. The first property is
an analogue of Brieskorn’s result for geometric arrangements [42].

9.2.1 Formality of the complement of a geometric lattice

Theorem 9.22 ([85]) Let A be a subspace arrangement. If L(A) is a
geometric lattice, then the space M(A) is formal.
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Proof Define a linear map ψ : D → H∗(D,d) by

σ 
→
{

[σ ] if σ is independent,

0 otherwise.

We first prove that the map ψ is multiplicative. Now, by Lemma 9.20,
if σ is not independent, then σ ∪ τ is not independent and ψ(σ) = ψ(σ ·
τ) = 0. We suppose therefore that σ and τ are independent. If σ ∪ τ is
not independent, we can suppose there is x ∈ σ such that ∨(σ ∪ τ) =
∨(σ\{x} ∪ τ). In that case

codim ∨ (σ ∪ τ) = codim ∨ (σ\{x} ∪ τ)

≤ codim ∨ (σ\{x}) + codim ∨ τ

< codim ∨ σ + codim ∨ τ .

Therefore, by definition of the product and of ψ , we have, ψ(σ ∪τ) = 0 and
ψ(σ) ·ψ(τ) = [σ ] · [τ ] = [σ · τ ] = 0. In case σ , τ and σ ∪ τ are independent,
the result follows from the equality ψ(σ) · ψ(τ) = [σ ] · [τ ] = [σ · τ ] =
ψ(σ · τ).
We now prove that ψ is a morphism of complexes: that is, ψ(dσ) = 0

for every σ . Write σ = (x1, . . . ,xk) and σi = σ\{xi}. When all the σi are
dependent, ψ(σi) = 0 for all i, and the result is proved. When all the σi are
such that ∨σ = ∨σi are independent, we have

ψ(dσ) = ψ

(∑
i

(−1)iσi
)

=
[∑

i

(−1)iσi
]

= [dσ ] = 0.

These two cases are in fact the only possibilities. Suppose indeed that
∨σ = ∨σi = ∨σj and all the σi are independent. Then by Lemma 9.20,
rk σi = k − 1. Since rk σj = rk σ = rk σi = k − 1, all the σj are also
independent.
By Lemma 9.21, ψ induces a surjective map in cohomology. The map

H(ψ) is clearly injective and therefore ψ is a quasi-isomorphism. �

9.2.2 Rational hyperbolicity of the space M(A)

Let A = {x1, . . . ,xq} be a geometric arrangement of subspaces of codimen-
sion at least two. When each subspace is transversal to any intersection
of the other ones in A, then the complement is a product of odd dimen-
sional spheres. In fact, by a result of G. Debongnie [68], this is the only
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case where M(A) satisfies Poincaré duality. More precisely, Debongnie’s
theorem states:

Theorem9.23 ([68]) LetA be a geometric arrangement. Then the following
conditions are equivalent:

1. The rational cohomology of M(A) satisfies Poincaré duality.
2. M(A) is a rationally elliptic space.
3. codim(∩x∈Ax) = ∑

x∈A codim(x).
4. M(A) is a product of odd dimensional spheres.

Remark 9.24 The assertion (3) ⇒ (4) is easy to understand. Suppose
(3) is verified. Let x1, . . . ,xr be the subspaces in A. Then the quotient
map p : Cn → Cn/(∩xi) induces a homotopy equivalence Cn\(∪xi) →
(Cn/(∩xi))\ ∪ (xi/ ∩ xi)). Hence we can suppose ∩xi = {0}. Write xi =
Ker(ϕi : Cn → Cni). The map

ϕ = (ϕ1,ϕ2, . . . ,ϕr) : Cn →
r∏
i=1

Cni

is a homeomorphism which induces a homotopy equivalence

Cn\ ∪ xi →
r∏
i=1

(Cni\{0}) .

Since we also have a homotopy equivalence
∏r
i=1(S2ni−1) →∏r

i=1(Cni\{0}), the space M(A) has the homotopy type of a product of
odd dimensional spheres.

9.3 Toric topology

Recently, ideas and tools from rational homotopy theory have proved to
be important in the study of toric spaces. Let’s now briefly discuss these
notions. Denote C∗ = C − {0}. A toric variety is a normal algebraic variety
M containing the algebraic torus (C∗)n as a Zariski open subset in such a
way that the natural action of (C∗)n on itself extends to an action onM. A
fundamental example is given by the so-called moment-angle complex ZK
defined for any simplicial complex K in [45]. When K has m vertices, ZK is
the complex ∪σDσ ⊂ (D2)m, where

Dσ = { (z1, . . . , zm) ∈ (D2)m | |zi| = 1 if i �∈ σ } .
Clearly, each ZK is a toric variety. In the sequel, we will only consider
moment-angle complexes. TheDavis–Januszkiewicz space associated to K,
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DJ(K) is defined by the Borel construction

DJ(K) = ZK ×Tm ETm.

For any coefficient ring R, the cohomology ring H∗(DJ(K);R) is iso-
morphic to the Stanley–Reisner algebra R(K) [45]. Recall that R(K) =
R[x1, . . . ,xm]/IK where |xi| = 2 and the ideal IK is generated by the square
free monomials xi1 . . .xir with σ = {i1, . . . , ir } �∈ K. The spaceDJ(K) can be
shown to be homotopy equivalent to the subspace ∪σ∈K(BT)σ of (BT)m,
with (BT)σ ∼= (BT)dim σ , see [45]. We then have the following formality
result due to Notbohm and Ray.

Theorem 9.25 ([212]) The space DJ(K) is rationally formal.

Indeed, this formality result is valid for any ring R. As a corollary,
a model for DJ(K) is given by (Q(K), 0) and a model for the moment-
angle complex ZK is given by (Q(K) ⊗ ∧(u1, . . . ,um),d) with d(ui) = xi.
However, the spaces ZK are not always formal as shown by examples of
Denham and Suciu [72]. The spacesZK are also related to spaces of arrange-
ments. Let K be a simplicial complex on the set 1, . . . ,m. We associate to
it the complex coordinate arrangement AK = {Lσ | σ �∈ K }, where, for
σ = {i1, . . . , ir},

Lσ = { (z1, . . . , zm) ∈ Cm | zi1 = zi2 = · · · = zir = 0 } .
Then, we have

Theorem 9.26 ([45]) The spaces M(AK) = Cm\ ∪σ Lσ and ZK have the
same homotopy type.

9.4 Complex smooth algebraic varieties

In [201], John Morgan studied models of smooth complex algebraic
varieties. A key to his approach is the notion of pure Hodge structure.

Definition 9.27 Let V be a Q-vector space. A pure Hodge structure of
weight n on V is a finite bigradation on Vc = V ⊗Q C,

Vc = ⊕p+q=nVp,q,

such that Vp,q = Vq,p.

Remark 9.28 The existence of a pure Hodge structure of weight n on V is
equivalent to the existence of a decreasing filtration F• on Vc such that

Vc = F0(Vc) ⊃ F1(Vc) ⊃ . . . ⊃ Fn(Vc) ⊃ Fn+1(Vc) = {0}
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and Vc = Fp(Vc) ⊕ Fn+1−p(Vc), for any p. The correspondence goes as
follows.

• If F• is given, one sets Vp,q = Fp ∩ Fq.
• If the bigradation is given, we set Fp(Vc) = ⊕k≥pVk,∗.

For instance, ifM is a connected compact KählermanifoldM, the fact that
the different Laplace operators �d, �∂ , �∂ coincide implies the existence
of a pure Hodge structure of weight k on Hk(M;Q), see [71, Section 5].

Theorem 9.29 Let M be a compact connected Kähler manifold. Then the
complex minimal model (∧V ,d) of M admits a bigradation such that the
following properties hold.

1. Let Vk be the subspace of elements of degree k in V. There is a decom-
position of Vk into Vk = Ck ⊕ Nk, with d|Ck = 0, d injective on Nk
and

Ck = ⊕i+j=kC
i,j
k and Nk = ⊕i+j≥k+1N

i,j
k .

2. The bigradation is extended multiplicatively to (∧V ,d) and d(∧V)i,j ⊂
(∧V)i,j.

3. The quasi-isomorphism ρ : (∧V ,d) → (Ac(M),d) is compatible with the
bigradation Ac(M) = ⊕p,qAp,q.

4. The bigradation induced on the cohomology of (∧V ,d) gives the pure
Hodge structures of H(M;C).

The proof is modelled along the steps of construction of a minimal model
and uses an argument involving the pure Hodge structure onHk(M;C). We
refer the reader to [71, page 271] for more details. As a consequence, this
result gives a short proof of the formality ofM.

Corollary 9.30 A compact connected Kähler manifold M is formal.

Proof Let ρ : (∧V ,d) → (Ac(M),d) be the model of M described above.
We define Ci to be the subset of Vi consisting of the elements of degree i
and bidegree (r, s) with r + s = i. We denote by Ni a complement of Ci in
Vi. The elements of Ni are of degree i and of bidegree (r, s) with r+ s > i.
Observe that the elements of Ci are cocycles and that the differential d is
injective on Ni.
Denote by I the ideal of ∧V generated by ⊕iNi. If z is a cocycle of

degree j in It,u, the class [z] is of degree j and bidegree (t,u) with t + u > j.
Since Hj(∧V ,d) ∼= Hj(M;C) has a pure Hodge structure of weight j, we
have [z] = 0 and the ideal I is acyclic. The conclusion is now a direct
consequence of Exercise 2.3. �
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So, we have a bigradation on the minimal model of a compact Kähler
manifold which induces the pure Hodge structures on the cohomology.
In order to extend this structure to minimal models of smooth algebraic
varieties, we have to replace the notion of pure Hodge structure with that
of mixedHodge structure. The next remark gives the flavor of what a mixed
Hodge structure is.

Remark 9.31 Consider two smooth projective algebraic varieties X1 and
X2 such that X1 ∩ X2 is also a smooth projective algebraic variety. If we
want to study X = X1 ∪X2, the first elementary tool is the Mayer-Vietoris
exact sequence which includes, for instance with k > 1,

. . . ��Hk−1(X1 ∩X2)
δ ��Hk(X)

ϕ
��Hk(X1) ⊕Hk(X2) �� . . .

In Hk(X), two types of pure Hodge structures are interfering:

1. a structure of weight k− 1 coming from Hk−1(X1 ∩X2);
2. a structure of weight k coming from Hk(X1) ⊕Hk(X2).

To separate them, we introduce a filtrationW• on Hk(X) defined by:

1. Wk−2 = 0;
2. Wk−1 = Im δ;
3. Wk = Hk(X).

On the associated graded vector spaces, Grk−1Hk(X) = Im δ and
GrkHk(X) = Hk(X)/Ker ϕ, we get pure Hodge structures of respective
weights k−1 and k.More generally, the definition ofmixedHodge structure
goes as follows.

Definition 9.32 Let V be a Q-vector space. A mixed Hodge structure on V
consists of two filtrations (W•,F•) such that:

1. W• is an increasing filtration on V, called the weight filtration;
2. F• is a decreasing filtration on Vc = V ⊗ C, called the Hodge filtration;
3. the filtration F• induces a pure Hodge structure of weight k on each of
the GrWk (V) = Wk/Wk−1.

In [69], [70], Deligne constructed a mixed Hodge structure on the coho-
mology of any complex algebraic variety. Morgan adapted the notion of
mixed Hodge structure to the context of differential algebras and defined
the notion of mixed Hodge diagrams, see [201, Definition 3.5]. In partic-
ular, any complex smooth algebraic variety gives rise to a mixed Hodge
diagram and its model has a bigradation.
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Theorem 9.33 If M is the minimal model of a simply connected, smooth
complex algebraic variety, then

1. we can write M = ⊕0≤r,sMr,s with M0,0 = C, Mr,sMt,u ⊂ Mr+t,s+u
and dMr,s ⊂ Mr,s;

2. the minimal modelM admits a mixed Hodge structure and the induced
mixed Hodge structure on its cohomology coincides with the mixed
Hodge structure on the cohomology of the variety.

From this, Morgan deduces the following properties.

• The homotopy groups πk(X)⊗Q of a simply connected, smooth complex
algebraic variety are endowedwith amixedHodge structure coming from
the mixed Hodge structure of the variety’s minimal model. (For the non-
simply connected case, we send the reader to [202, Theorem 9.2].)

• Not all finite, simply connected CW-complexes are homotopy equivalent
to smooth complex algebraic varieties since there exist minimal models
of finite, simply connected CW-complexes that cannot have bigradations
(see [201, page 196]).

Concerning, the existence of mixed Hodge structures on the homotopy
groups, a different approach was used by R. Hain. In short, he proved that
if A is a connected multiplicative mixed Hodge complex, then the Bar con-
struction on A is a mixed Hodge complex. This structure induces a mixed
Hodge structure on the indecomposables that correspond to homotopy
groups. The details are in [128].

9.5 Spaces of sections and Gelfand–Fuchs cohomology

9.5.1 The Haefliger model for spaces of sections

Let

F �� E
p

�� B
σ

**

be a fibration with section σ where B and F are simply connected and B is
finite dimensional. Then the space �(p) of sections of p that are homotopic
to σ is a nilpotent space [203], and a model for �(p) has been constructed
byHaefliger [126]. Our goal here is to describe this model. The construction
starts with a relative minimal model of p

(∧V ,d) → (∧V ⊗ ∧W ,D) → (∧W , D̄) . (9.3)
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We first show that we can always modify this model to obtain a relative
minimal model such that a model for the section σ is the map ρ : (∧V ⊗
∧W ,D) → (∧V ,d) that is the identity on V and mapsW to 0.
Since p admits a section, there is a map of cdga’s ρ : (∧V ⊗ ∧W ,D) →

(∧V ,d) that is the identity on V . We now change generators by replacing
eachw ∈ W byw−ρ(w) and this gives an automorphism of (∧V⊗∧W ,D)

that we use to modify the differential D. Clearly, we now have ρ(W) = 0.
Also, because we have modified the generators w by elements of ∧V , we
see that the differential in the fiber, D̄, remains unchanged.
We now choose a connected and finite dimensional model (A,d) for

(∧V ,d),
(∧V ,d) �−→ (A,d),

and we tensor the models in (9.3) with (A,d) over (∧V ,d) to obtain a new
relative model for the fibration,

(A,d) → (A⊗ ∧W ,D) → (∧W , D̄) .

Let A∨ = Hom(A,Q) be the dual of A. Now denote a graded basis for A
by (ai) and the dual basis of A∨ by (a′

i). The duality < , > between A and
A∨ means that 〈a′

i, aj〉 = 1 if i = j and 0 otherwise. We give a′
i the degree|a′

i| = −|ai|.
Since A is finite dimensional, we can consider the morphism of commu-

tative algebras,

θW : A⊗ ∧W → A⊗ ∧(A∨ ⊗W) ,

defined by

θW (a) = a, θW (w) =
∑
i

ai ⊗ (a′
i ⊗w) .

Haefliger proves the existence of a unique differential D on ∧(A∨ ⊗ W)

such that θW : (A⊗ ∧W ,D) → (A,d) ⊗ (∧(A∨ ⊗W),D) is a morphism of
cdga’s.
Let Q(D) be the linear part of the differential D in (∧(A∨ ⊗ W),D).

Denote by I the graded differential ideal of ∧(A∨ ⊗W) generated by (A∨ ⊗
W)≤0 and Q(D)(A∨ ⊗W)0, and form the quotient cochain algebraM� =
(∧(A∨ ⊗W)/I,D). The combination of θW and the quotient map (∧(A∨ ⊗
W),D) → M� gives a map of cdga’s

ϕ : (A⊗ ∧W ,D) → (A,d) ⊗M� .

We can now state Haefliger’s theorem [126].
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Theorem 9.34 Let ev : �(p) × B → E denote the evaluation map given by
(s,b) 
→ s(b). Then the morphism ϕ is a model for ev. In particular M� is
a Sullivan model for the space of sections �(p) homotopic to σ .

Notice that the space of functions from X into Y may be identified with
the space of sections of the trivial bundleX×Y → X. Therefore, the process
above furnishes us with a model for function spaces. We give more details
on this construction below.

Example 9.35 A model for the space of free maps, Map(Sn,X), can be
obtained from the Haefliger model. First of all, a finite dimensional model
for Sn is given by the exterior algebra (∧a, 0) if n is odd and ((∧a)/a2, 0) if
n is even. We denote this cdga by E(a). Let (∧W ,d) be the minimal model
for X. A model for the evaluation map Sn ×Map(Sn,X) → Sn ×X is then
given by

ϕ : E(a) ⊗ (∧W ,d) → E(a) ⊗ (∧(W ⊕ snW),D) ,

where we have written snW for a′ ⊗ W . By definition, we have ϕ(x) =
x + a · snx for any x ∈ W . Extend sn to ∧W as a derivation of degree
−n. Then we have for any element α ∈ ∧W , ϕ(α) = α + a · sn(α). The
compatibility of ϕ with the differentials then gives, for each element x ∈ W ,

dx+ asn(dx) = ϕ(dx) = Dϕ(x) = D(x+ asnx) = dx+ (−1)naD(snx) .

Therefore D(snx) = (−1)nsn(dx). In the case n = 1, we therefore recover
the model of the free loop space obtained in Theorem 5.11.

Using the Haefliger model, we can obtain information about the ratio-
nal homotopy groups and rational cohomology of �(p) when B is
n-dimensional and F is (n+ 1)-connected.

Proposition 9.36 Let F → E
p→ B be a nilpotent fibration and suppose

that B is n-dimensional and F is (n+ 1)-connected. Then the space �(p) is
simply connected and we have an isomorphism of graded Lie algebras,

πq(��(p)) ⊗ Q ∼= ⊕r≥0Hom(Hr(B;Q),πq+r(�F) ⊗ Q) .

The Lie bracket on the right-hand side is obtained by taking the diagonal
in homology followed by the bracket in π∗(�F) ⊗ Q:

[f , g](x) =
∑
i,j

[f (xi), g(xj)],

if the diagonal is given by �(x) = ∑
i,j xi ⊗ xj.
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In particular, as a graded vector space, we have

πq(�(p)) ⊗ Q ∼= ⊕r≥0Hr(B;Q) ⊗ πq+r(F) ⊗ Q .

Denote byMap(X,Y, f ) the component of the mapping spaceMap(X,Y)

consisting of the maps homotopic to f : X → Y. The rational homotopy
groups of Map(X,Y, f ) have been computed independently by G. Lupton
and S. Smith [177], U. Buijs and A. Murillo [46] and J. Block and
A. Lazarev [30]. Denote by ϕ : (∧V ,d) → (A,d) a model of f with (∧V ,d)
a Sullivan model for Y. A linear map g : ∧ V → A of degree q is a
ϕ-derivation if g(xy) = g(x)ϕ(y) + (−1)q|x|ϕ(x)g(y). Together with the
differential D defined by D(g) = dg − (−1)|g|gd, the ϕ-derivations form a
complex Der((∧V ,d), (A,d),ϕ).

Proposition 9.37 Suppose X and Y are simply connected. Then there is an
isomorphism of graded vector spaces,

H−qDer((∧V ,d), (A,d),ϕ)
∼=−→ πqMap(X,Y, f ) ⊗ Q.

When Y is rationally hyperbolic and X is finite, the space of maps from
X into Y has infinite Lusternik–Schnirelmann category and its cohomology
is usually very large. For instance M. Vigué-Poirrier proved the following
exponential growth law for the Betti numbers of particular mapping spaces.

Theorem 9.38 ([260]) Let XM be the space of maps from a compact con-
nected manifold M into a space X that has the rational homotopy type of a
wedge of simply connected spheres. Then the Betti numbers of XM exhibit
exponential growth; that is, there is an A > 1, such that for k large enough,∑k

i=0 dim Hi(XM;Q) ≥ Ak.

The free loop space on a manifoldM is a very important object in geom-
etry. We have seen its importance for geodesics. It is also important, for
instance, for spaces of immersions. Denote by Imm(S1,M) the space of
immersions of S1 into a manifold M. There is a map from Imm(S1,M) to
the free loop space L(SM) of M’s tangent sphere bundle SM which asso-
ciates to an immersion the loop of unit tangent vectors. The Hirsch–Smale
theorem (see for instance Smale [239]) says that, for smooth manifolds P
andQ, Imm(P,Q) has the weak homotopy type of the space of bundle maps
from TP to TQ that are linear and injective on the fibers. Since the tangent
bundle of S1 is trivial, the space of bundle maps from TS1 to TM has the
homotopy type of the free loop space onM. Hence, after re-parametrizing
to have unit speed curves, Imm(S1,M) is weakly equivalent to L(SM).
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9.5.2 The Bousfield–Peterson–Smith model

The space Map(X,Y) is in general not path connected. In [39], A. K.
Bousfield, C. Peterson and L. Smith constructed a cdga that is a model
for Map(X,Y) in the sense that its geometric realization has the rational
homotopy type of Map(X,Y). This approach has been developed by E.
Brown and R. Szczarba in [43].
In fact, ifY is nilpotent of finite type andX is of finite typewith finite coho-

mology, then the componentMap(X,Y, f ) of themapping spaceMap(X,Y)

containing f : X → Y is a nilpotent space of finite type. Therefore, it has a
minimal model, and we describe this model now.
The functor Map(X,−) is the right adjoint to the product functorX×−:

Map(X × Z, Y) ∼= Map(Z,Map(X,Y)) .

The correspondence associates to amap g : Z → Map(X,Y) themap g : X×
Z → Y obtained as the composition ev ◦ (1× g),

X × Z
1×g

�� X ×Map(X,Y)
ev �� Y .

Here ev denotes the evaluation map X ×Map(X,Y) → Y.
Let CDGA be the category of cdga’s over Q. IfA = (A,d) is a fixed cdga

of finite type, we consider the tensor product functor A ⊗ − : (B,d) 
→
(A,d) ⊗ (B,d) of CDGA into itself. Since the category CDGA modelizes
topology in a contravariant way, a good model for the function space is
given by a left adjoint to the tensor product. Functors of this type were
first systematically studied by Jean Lannes. Their utilization for models of
mapping spaces is due to A.K. Bousfield, C. Peterson and L. Smith [39] (see
also [232] for a coalgebra version).

Proposition 9.39 Let A = (A,d) be a fixed cdga of finite type. The tensor
product functorA⊗− : (B,d) 
→ (A,d)⊗(B,d) ofCDGA into itself admits
a left adjoint functor Ã.
Proof Let (∧V ,d) be a minimal algebra. We consider, as in the Haefliger
model, the morphism of commutative algebras

θ : ∧ V → A⊗ ∧(A∨ ⊗ V) .

There is then a differentialD on∧(A∨⊗V) such that θ : (∧V ,d) → (A,d)⊗
(∧(A∨ ⊗ V),D) is a morphism of cdga’s. We define

Ã(∧V ,d) = (∧(A∨ ⊗ V),D) ,

and note that this construction extends to any cdga (B,d), making Ã into
a functor Ã : CDGA → CDGA (see [39] for details).
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The adjunction process works as follows. Let ϕ : (∧V ,d) → (A,d) ⊗
(B,d) be a map of cdga’s and write ϕ(v) = ∑

i ai ⊗ ϕi(v). We associate to
ϕ the map

ϕ : (∧(A∨ ⊗ V),D) → (B,d)

defined by ϕ(a′
i ⊗ v) = ϕi(v). �

Now we describe the process that gives the model of a connected compo-
nent of function spaces. We first define the maximal connected component
of an augmented cdga. Let (A,d) be a cdga and let ε : (A,d) → Q be a mor-
phism. We consider the ideal I generated by A<0 ⊕ (A0 ∩Ker(ε))⊕ d(A0 ∩
Ker(ε)). The quotient cdga (A,d)ε = (A/I,d) is called the maximal con-
nected component (A,d) with respect to ε. This is the maximal connected
quotient through which ε factors

(A,d)

ε

��

�� (A,d)ε

++�
�
�
�
�

Q

Now consider the component Map(X,Y, f ) of Map(X,Y) consisting of
the maps homotopic to f . Denote by ϕ : (∧V ,d) → (A,d) a model of f . The
injection of the basepoint {f } into Map(X,Y, f ) induces the augmentation

ε : Ã(∧V ,d) = (∧(A∨ ⊗ V),D) → Q , ε(a′
i ⊗ v) = 〈a′

i,ϕ(v)〉 .

Theorem 9.40 ([39], [43]) With the above notation, Ã(∧V ,d)ε is a model
of the connected component of f inMap(X,Y).

The proof is very short since it is a direct consequence of the next result
(implied by the existence of Ã).

Lemma 9.41 Let APL : S → CDGA and ‖ − ‖ : CDGA → S denote the
Sullivan functor and its adjoint, spatial realization, (between CDGA and
the category of simplicial sets) respectively. If A = (A,d) and B = (B,d)
are two cdga’s with A non-negative of finite type, then HomS(‖A‖, ‖B‖)
has the same homotopy type as ‖Ã(B)‖.
Proof Let X ∈ S. The claim follows directly from this sequence of
isomorphisms:

[X,HomS(‖A‖, ‖B‖)]S ∼= [‖A‖ ×X, ‖B‖]S
∼= [B,APL(‖A‖ ×X)]CDGA
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∼= [B,APL(‖A‖) ⊗ APL(X)]CDGA
∼= [B,A ⊗ APL(X)]CDGA

∼=
[
Ã(B),APL(X)

]
CDGA

∼=
[
X, ‖Ã(B)‖

]
S
.

�

Now suppose X and Y are pointed spaces and that f preserves the base
points. We can then consider the space of pointed maps Map∗(X,Y, f ) and
we have

Proposition 9.42 ([43]) Amodel forMap∗(X,Y, f ) is given by the maximal
connected component (∧((A+)∨ ⊗ V),D)ε.

Example 9.43 (The models of Map(CP2, S6) and Map∗(CP2, S6))
By taking a trivial bundle and using the formula following Proposition 9.36,
we see that the mapping space Map(CP2, S6) is simply connected. There-
fore, we do not need to refer to a base point. As a finite dimensional
model of CP2, we take A = (A, 0) = (∧(x2)/(x32), 0). We follow the pro-
cedure described in Example 9.35 and get as model for the mapping space
Map(CP2, S6) the cdga

(∧(u6,u4,u2, v11, v9, v7),D),

where indices indicate degrees and the differential is given by D(u2) =
D(u4) = D(u6) = 0,D(v11) = u26,D(v9) = 2u6u4 andD(v7) = u24+2u2u6.
Moreover, a model for the pointed mapping space is given by the cdga

(∧(u4,u2, v9, v7),D) , D(u2) = D(u4) = 0 ,D(v9) = 0 ,D(v7) = u24 .

Therefore, the mapping space Map∗(CP2, S6) has the rational homotopy
type of S4 × S9 × CP∞.

Remark 9.44 Let Map∗(X,Y, ∗) be the connected component of the trivial
map in the mapping space of based maps. The existence of an H-space
structure on this space is studied in [89], [158]. Evidently, such a structure
exists if X is a co-H space or Y an H-space. These situations appear as
particular cases of a sufficient condition involving the LS-category ofX and
the differential of the minimal model of Y, see [89, Theorem 2]. The main
tool in the proof is Haefliger’s model described above.

9.5.3 Configuration spaces and spaces of sections

Let M be a compact m-dimensional manifold and let (X, ∗) be a pointed
space. The space C(M,X) of finite configurations in M with labels in X is
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the quotient of the disjoint union (∞
k=1F(M,k) ×
k X

k by the relation

(u1, . . . ,uk,x1, . . . ,xk) = (u1, . . . ,uk−1,x1, . . . ,xk−1) if xk = ∗ .

Here, 
k is the symmetric group acting by permutation on the two factors.
A point in C(M,X) can be described in a unique way as a finite set of points
in M, without ordering, with a label in X\{∗} attached to each point. For
instance, when X = S0, then C(M,X) = (∞

k=1Ck(M) is the space of finite
unordered configurations inM.
Now let T̂M denote the fiberwise compactification of the tangent bundle

toM. This gives a sphere bundle

Sm → T̂M → M ,

with a natural section obtained by choosing, for each point u in M, the
point at infinity in T̂uM. We now take the fiberwise smash product of this
bundle with the trivial bundleM ×X → M and get a new fiber bundle


mX ��T̂(M,X)

γM,X
��M.

The fiber over a point u is the quotient of (TuM×X)( {∞} by the relation
(v,x) ∼ ∞ if either ||v|| ≥ 1 or else x = ∗. We denote by �(M,X) the space
of sections of γM,X.
To each element (u,x) = (u1, . . . ,uk,x1, . . . ,xk) in C(M,X) we want

to associate a section σ(u,x) in �(M,X). In order to do this, suppose M is
equipped with a metric such that each point is the center of a geodesic disk
of radius 1. Then let 2r denote the maximal distance between two different
ui, and let d = min (r, 1). Let D1, . . . ,Dk be the geodesic disks of radius d
centered at u1, . . . ,uk. Outside of the disks Di we put σ(u,x)(y) = ∞. When
y ∈ Dr, we choose the unique unit speed geodesic g(t) such that g(0) = ur
and g(t0) = y for some t0 ≤ d, and we define σ(u,x)(y) = (

t0
d g

′(t0),x). This
defines a continuous map

σ : C(M,X) → �(M,X).

Theorem 9.45 ([187]) The map σ is a weak homotopy equivalence.

Remark 9.46 From an explicit model for �(M, Sq), it is proved in [94] that
the rational Betti numbers of the configuration space Ck(M) of k unordered
points in an even dimensional orientable closed manifold M depend only
on the rational cohomology algebra ofM.
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9.5.4 Gelfand–Fuchs cohomology

LetM be a compact smoothm-dimensional manifold with LM the Lie alge-
bra of smooth vector fields onM. LetC∗(LM) denote the differential graded
algebra of continuous multilinear forms on LM with coefficients in R.

Definition 9.47 The Gelfand–Fuchs cohomology of the manifold M is the
cohomology of C∗(LM).

Now consider the principal U(m)-bundle

U(m) → EU(m)(2m) → BU(m)(2m)

that is the restriction of the universal principal U(m)-bundle U(m) →
EU(m) → BU(m) to the 2m-skeleton of BU(m). Observe that EU(m)(2m) is
not the 2m-skeleton of EU(m), but EU(m)(2m) is a free U(m)-space and the
associated fiber bundle (i.e. the Borel construction) over BU(m) is

γ̂m : EU(m)(2m) → EU(m) ×U(m) EU(m)(2m) f−→ BU(m) .

Clearly f has the homotopy type of the inclusion BU(m)(2m) ↪→ BU(m).
Let TM be the tangent bundle of M and denote by TcM its complex-

ification. The complex vector bundle TcM → M is classified by a map
g : M → BU(m). We denote by γm the pullback of γ̂m along g,

EU(m)(2m) ��E
γm

��M.

Solving a conjecture of Bott, Haefliger proved the following result.

Theorem 9.48 ([125]) The cochain algebra C∗(LM) is a model for the space
of continuous sections of γm.

Thus, the cohomology of the space of sections of γm is isomorphic to
the Gelfand–Fuchs cohomology. Observe now that the rational homotopy
class of the map g is completely determined by what it does in cohomology
since BU(m) �Q

∏m
i=1K(Q, 2i). We have

H∗(g;Q) : H∗(BU(m);Q) = Q[c1, . . . , cm] → H∗(M;Q) , |ci| = 2i .

By the properties of complex bundles, H∗(g;Q)(c2i+1) = 0 and
H∗(g;Q)(c2i) = pi, the ith Pontryagin class. Therefore, if the Pontryagin
classes vanish, g is homotopically trivial, E ∼= M × EU(m)(2m), and the
space of sections of γm is identified with the space of maps from M into
EU(m)(2m).
In the case M = Rm, the fiber bundle γm is trivial, so H∗(EU(m)(2m);Q)

is the cohomology of the Lie algebra Am of smooth vector fields on Rm.
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A model for EU(m)(2m) is easy to describe. Recall that a model for the
universal U(m)-bundle is given by

(∧(c1, . . . , cm), 0) → (∧(c1, . . . , cm,h1, . . .hm),d) → (∧(h1, . . . ,hm), 0) ,

with |ci| = 2i and d(hi) = ci . Let I denote the ideal of ∧(c1, . . . , cm) gener-
ated by the elements of degree > 2m. Then (∧(c1, . . . , cm)/I, 0) is a model
for BU(m)(2m), and we have the next result.

Proposition 9.49 The cdga

(∧(c1, . . . , cm)/I ⊗ ∧(h1, . . . ,hm),d) = (∧(cj)/I, 0) ⊗∧(cj) (∧(cj,hj),d)

is a model for EU(m)(2m).

The cohomology of this algebra is well known and a basis for it has been
described by Vey [106]. It follows also from [106] that EU(m)(2m) has the
rational homotopy type of a wedge of spheres. For instance EU(1)(2) has
the rational homotopy type of S3 and EU(2)(4) has the rational homotopy
type of S5 ∨ S5 ∨ S7 ∨ S8 ∨ S8. From Theorem 9.38, we then deduce

Theorem 9.50 ([260]) LetM be a compact connected nilpotent manifold of
dimension m ≥ 2, whose Pontryagin classes are zero. Then there is A > 1
such that for k large enough,

∑k
i=0 dim Hi(C∗(LM)) ≥ Ak.

9.6 Iterated integrals

While all of this section can be written in the framework of simplicial sets
(see [59], [127] or [248]), for the sake of simplicity, we will stay within the
world of manifolds to describe the various ideas introduced by K.T. Chen.

9.6.1 Definition of iterated integrals

Let M be a smooth manifold. Throughout this book, we have been moti-
vated by the same recurrent theme: find homotopical information about
a smooth manifold M from its algebra of differential forms. One of the
simplest and well-known ways of doing this relies on differential 1-forms.

If ω ∈ A1DR(M) is closed, the map α ∈ M[0,1] 
→
∫
α

ω respects homotopy

classes of smooth loops. In a series of papers, K.T. Chen extended this fact
to p-forms and to spaces more general than manifolds, called differential
spaces. Since we will be interested only in path spaces on manifolds, we will
not use this more general notion. The paper [59] gives a general overview
of his theory.
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The first objects introduced by Chen that we encounter are the iterated
integrals. To introduce them, let’s begin with a very particular situation.
Let ω1 and ω2 be two 1-forms on a smooth manifold M. If α : [0, 1] → M
is a piecewise smooth path onM, for 0 ≤ t1 ≤ t2 ≤ 1, we define(∫

ω1ω2

)
α

=
∫ 1

0

(∫ t2

0
ω1(α(t1))dα(t1)

)
ω2(α(t2))dα(t2),

where
∫ t2

0
ω1(α(t1))dα(t1) =

∫ t2

0
ω1(α(t1))

(
dα(t1)
dt1

)
dt1.

This association is denoted by
∫

ω1ω2 and called an iterated integral. In

the particular case above, this is a function on the space Pfree(M) of (free)
piecewise smooth paths onM. Note that Pfree(M) has the homotopy type of
the space M[0,1] of free paths, thus the homotopy type of M. We can also
see another way to define this function. It is more sophisticated, but it will
lead us to the general case. Let

�k = {(t1, t2, . . . , tk) | 0 ≤ t1 ≤ t2 ≤ . . . tk ≤ 1}

be the euclidian simplex and let pi : �k → [0, 1] be the canonical projection
for i = 1, . . . ,k. We denote by ω̃i the 1-form on �2 which is the pullback
of ωi along α ◦ pi. We have(∫

ω1ω2

)
α

=
∫
�2

ω̃1 ∧ ω̃2.

This iterated integral is nothing more than an integral on �2 and the
qualification iterated comes from the manner in which we compute the
integral.
In the framework we are going to describe, iterated integrals are not only

functions on Pfree(M), but more generally forms on Pfree(M). Since Pfree(M)

is not a classical smooth manifold, we first have to give a meaning to this
notion and that is where Chen’s notion of differentiable space comes in.
As we mentioned above, our situation is sufficiently simple that we can
avoid the introduction of this notion. Recall that a form on a manifold is
defined by its trace on any trivializing open set, so the next definitions come
naturally.

Definition 9.51 Let M and N be two smooth manifolds.
A smooth map α : N → Pfree(M) is a continuous map such that there

exists a partition of [0, 1], 0 = t0 < t1 < . . . < tr = 1, for which the
restrictions α� : N × [ti, ti+1] → M of the adjoint map are smooth. The
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charts of Pfree(M) are the smooth maps α where N is an open subset U of
an Rn.

Definition 9.52 Let M be a smooth manifold. A differential
p-form on Pfree(M) is a correspondence which associates to any chart(
α : U → Pfree(M)

)
an element ωα ∈ ApDR(U), such that ωα◦� = �∗(ωα) for

any smooth map � : U′ → U. We let ApDR(Pfree(M)) denote the space of
differential p-forms on M and take

ADR(Pfree(M)) =
⊕
p≥0

ApDR(Pfree(M)).

Observe that ADR(Pfree(M)) has a cdga structure with respect to the
obvious differential and the product of forms. Now, we are ready for the
definition of iterated integrals as forms on Pfree(M).

Definition 9.53 Let ω1, . . . ,ωk be forms on a smooth manifold M with

ωi ∈ AqiDR(M). The iterated integral
∫

ω1 . . . ωk is a ((q1+· · ·qk)−k)-form

on Pfree(M) defined as follows.
Let α : U → Pfree(M) be a chart with adjoint α� : U × [0, 1] → M.

Decompose the differential form α∗
� (ωi) on U × [0, 1] into

α∗
� (ωi)(x, t) = dt ∧ ω′

i(x, t) + ω′′
i (x, t),

where ω′
i and ω′′

i do not contain the factor dt, and set(∫
ω1 . . . ωk

)
α

=
∫
�k

ω′
1(x, t1) ∧ · · · ∧ ω′

k(x, tk)dt1 . . .dtk.

Observe that the form ω′
i is the interior product of the form α∗

� (ωi) with

the vector field
∂

∂t
. Let ω̃i,α be the pullback of the form ωi along the compo-

sition U × �k
idU×pi ��U × [0, 1]

α�
��M . The iterated integral can also

be expressed as: (∫
ω1 . . . ωk

)
α

=
∮
�k

ω̃1,α ∧ · · · ∧ ω̃k,α,

where
∮
is the integral along the fiber in the trivial bundle U × �k → U.



9.6 Iterated integrals 379

9.6.2 The cdga of iterated integrals

Let Chen Pfree(M) be the sub-vector space of forms on Pfree(M) generated by
the

π∗
0 (ω0) ∧

∫
ω1 . . . ωk ∧ π∗

1 (ωk+1),

where

• ωi ∈ ADR(M), for i = 0, . . . ,k+ 1;

•
∫

ω1 . . . ωk is the iterated integral of Definition 9.53;

• π0, π1 : Pfree(M) → M are the evaluations α 
→ α(0), α 
→ α(1)
respectively.

Theorem 9.54 The complex Chen Pfree(M) is a differential graded subalge-
bra of ADR(Pfree(M)).

This comes from Lemma 9.56 and Lemma 9.58 below which show the
stability of Chen Pfree(M) under the differential and the product of forms.
Before stating these lemmas, we mention an alternative presentation of the
elements of Chen Pfree(M).

Remark 9.55 The forms π∗
0 (ω0) ∧ ∫

ω1 . . . ωk ∧ π∗
1 (ωk+1) on Pfree(M) can

also be presented as integrals along a fiber, see [105] or [191]. In the
diagram,

Pfree(M) × �k
ẽvk ��

p
��

Mk+2

Pfree(M)

the map ẽvk is the evaluation defined by

ẽvk(τ , (t1, . . . , tk)) = (τ (0), τ(t1), . . . , τ(tk), τ(1)).

Let (ωi)0≤i≤k+1 be (k+ 2) forms onM and note that∮
ẽv∗
k(ω0 ∧ · · · ∧ ωk+1) = π∗

0 (ω0) ∧
∫

ω1 . . . ωk ∧ π∗
1 (ωk+1),

where
∮
is the integral along the fiber in the trivial bundle p.
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Lemma 9.56 (Coboundary of an iterated integral; [59])
Let ωi ∈ AqiDR(M) for i = 1, . . . ,k. The following formula holds:

d
∫

ω1 . . . ωk =
k∑
i=1

(−1)q1+···+qi−1−i
∫

ω1 . . .dωi . . . ωk

−
k−1∑
i=1

(−1)q1+···+qi−i
∫

ω1 . . . (ωi ∧ ωi+1) . . . ωk − π∗
0 (ω1) ∧

∫
ω2 . . . ωk

+ (−1)q1+···+qk−1−k+1
∫

ω1 . . . ωk−1 ∧ π∗
1 (ωk).

Proof First, let’s consider this formula (up to sign) and explain the origin of
the terms contained in it. Recall that there is a Stokes theorem for integration
along a fiber (see [112, page 311]):

d
∮
�k

ω =
∮
�k
dω ±

∮
∂�k

ω.

Let’s understand the last term in the particular case of �2. The boundary
∂�2 of �2 = {(t1, t2) | 0 ≤ t1 ≤ t2 ≤ 1} has three faces:
• the face t1 = 0 which gives the term π∗

0 (ω1) ∧ ∫
ω2;

• the face t2 = 1 which gives the term
∫
ω1 ∧ π∗

1 (ω2);• the face t1 = t2 which gives the term
∫
ω1 ∧ ω2. (Recall that the pull back

of two forms onM along the diagonalM → M×M is the wedge product
of the two forms, [112, page 209].)

Now, let’s explain the signs that appear in the expression of the coboundary.
Consider the case of the iterated integral of one form ω ∈ ADR(M). Let
α : U → Pfree(M) be a chart. As in Definition 9.53, we decompose α∗

� (ω) as
α∗
� (ω)(x, t) = dt ∧ ω′(x, t) + ω′′(x, t) and observe that

α∗
� (dω) = −dt ∧ dω′ + dt ∧ ∂ω′′

∂t
+

∑
j

dxj ∧ ∂ω′′

∂xj
.

This gives: (∫
dω

)
α

= −
∫ 1

0
dω′ dt +

∫ 1

0

∂ω′′

∂t
(x, t)dt

= −
(
d
∫

ω

)
α

+ ω′′(x, 1) − ω′′(x, 0)

= −
(
d
∫

ω

)
α

+ π∗
1 (ω)(α) − π∗

0 (ω)(α).
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The general formula follows by induction (see [59, Proposition 1.5.2]). �

It is time to recall certain conventions and definitions concerning permu-
tation of graded objects. First, let A be the free commutative graded algebra
generated by elements (ωi)1≤i≤n of respective degree qi. For any permuta-
tion σ of the set {1, 2, . . . ,n}, we denote by ±σ ,(qi) the element of {−1, 1}
such that

ω1 ∧ · · · ∧ ωn = ±σ ,(qi) ωσ(1) ∧ · · · ∧ ωσ(n).

Definition 9.57 Let k and l be non-negative integers. A shuffle of type (k, l)
is a permutation σ of the set

{
1, 2, . . . ,k+ l

}
such that:

σ−1(1) < σ−1(2) < · · · < σ−1(k)

and

σ−1(k+ 1) < σ−1(k+ 2) < · · · < σ−1(k+ l).

We denote by Sh(k, l) the set of shuffles of type (k, l).

Lemma 9.58 (Product of iterated integrals; [59]) Let ωi ∈ AqiDR(M) for
i = 1, . . . ,k+ l. The following product formula holds:∫

ω1 . . . ωk ∧
∫

ωk+1 . . . ωk+l =
∑

σ∈Sh(k,l)
±σ ,(qi)

∫
ωσ(1)ωσ(2) . . . ωσ(k+l).

Proof The two terms on the left-hand side correspond to integration over
�k and�l respectively. The right side is an integration over�k+l. The result
comes from the classical triangulation of a product of two simplices:

�k × �l =
⋃

σ∈Sh(k,l)

{
(tσ(1), . . . , tσ(k+l))|0 ≤ t1 ≤ . . . ≤ tk ≤ 1,

0 ≤ tk+1 ≤ . . . ≤ tk+l ≤ 1
}
.

�

9.6.3 Iterated integrals and the double bar construction

We now want to compare the double bar construction of Subsection 5.9
with the complex of iterated integrals Chen Pfree(M). Let M be a con-
nected manifold with basepoint ∗ ∈ M. We denote by (A,d) (or A if
there is no ambiguity) the differential algebra ADR(M) and define an
augmentation ε : A → R by f 
→ f (∗) if f ∈ A0 and ε(ω) = 0 if
ω ∈ A>0.
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First recall that B(A,A,A) = (A⊗ (sA⊗ · · · ⊗ sA)⊗A,D) with
(
sA

)q =
A
q+1

and the differential D as in Definition 5.51. Consider the map:

B(A,A,A)
ψ

��ADR(Pfree(M))

ω0 ⊗ [ω1| . . . |ωk] ⊗ ωk+1 � ��π∗
0 (ω0) ∧ ∫

ω1 . . . ωk ∧ π∗
1 (ωk+1)

Lemma 9.56 shows that ψ is compatible with the differentials.
In the case A = ADR(M), the bar construction on the left-hand side can

have elements of negative degree. The classical procedure for avoiding this
is to replace A by an equivalent augmented complex without elements of
degree 0 in the augmentation ideal. Chen uses a normalization of the bar
construction that we present now (see [58, page 22] or [105, page 353] for
details).
If f ∈ A0, set Si(f )[ω0| . . . |ωk] = [ω0| . . . |ωi−1|f |ωi| . . . |ωk]. Define

Degen(A) as the subspace of B(A,A,A) generated by the Si(f ) and the
[D, Si(f )]. Chen proves:
Proposition 9.59 Let A = ADR(M). The space Degen(A) is stable under
the differential D and is acyclic if M is connected. Thus, the quo-
tient N(A,A,A) = B(A,A,A)/Degen(A) has the same cohomology as
B(A,A,A).

Moreover, since ADR(Pfree(M)) has no elements of negative degree, the
map ψ above induces a map (which we still denote by) ψ : N(A,A,A) →
ADR(Pfree(M)). Finally observe that B(A,A,A) = N(A,A,A) if A

0 = 0.
We would also like to consider the other bar constructions presented in

Subsection 5.9 and to relate them to certain complexes of iterated integrals.
For this, we introduce:

• the subspaceP∗,a(M) ofPfree(M) consisting of the paths with origin ∗ ∈ M;
• the subspace P∗,∗(M) of Pfree(M) consisting of the based loops on (M, ∗);
• the cdga’s ADR(P∗,a(M)) and ADR(P∗,∗(M)) as in Definition 9.52.

Observe that

• Pfree(M) is of the homotopy type ofM[0,1], therefore ofM;
• P∗,a(M) is of the homotopy type of P(M), therefore is contractible;
• P∗,∗(M) is of the homotopy type of the loop space �(M).

For the proof of the next result, we refer the reader to the paper of Chen
[59] (see also [105] with a slightly different sign convention).



9.6 Iterated integrals 383

Theorem 9.60 (Chen, [59]) Let M be a simply connected manifold and
A = ADR(M). The followingmaps of complexes are quasi-isomorphisms:

1. ψ : N(A,A,A) → ADR(Pfree(M)),
ω0 ⊗ [ω1| . . . |ωk] ⊗ ωk+1 
→ π∗

0 (ω0) ∧ ∫
ω1 . . . ωk ∧ π∗

1 (ωk+1);

2. ψ : N(A,A,R) → ADR(P∗,a(M)),
ω0 ⊗ [ω1| . . . |ωk] 
→ π∗

0 (ω0) ∧ ∫
ω1 . . . ωk;

3. ψ : N(R,A,R) → ADR(P∗,∗(M)),
[ω1| . . . |ωk] 
→ ∫

ω1 . . . ωk.

As a consequence, the images of these maps give the cohomology of
the corresponding spaces. In particular, recalling from Section 5.9 that
B(A,A,A) is quasi-isomorphic to A, we have

Corollary 9.61 If M is a simply connected manifold, then the two cdga’s,
ADR(Pfree(M)) and Chen Pfree(M), have the same minimal model as M.

Let’s focus on the last item of Theorem 9.60 which gives a model for
the loop space �(M). Let Chen P∗,∗(M) be the subspace of ADR(P∗,∗(M))

generated by the iterated integrals
∫
ω1 . . . ωk, where ωi ∈ ADR(M).

Remark 9.62 This complex can also be expressed using a presentation
similar to Remark 9.55. In the diagram

P∗,∗(M) × �k
evk ��

p
��

Mk

P∗,∗(M)

the map p is the canonical projection and evk is the evaluation defined by
evk(τ , (t1, . . . , tk)) = (τ (t1), . . . , τ(tk)). Definition 9.53 coincides with:∫

ω1 . . . ωk =
∮
ev∗
k(ω1 ∧ · · · ∧ ωk),

where
∮
is the integral along the fiber in the trivial bundle p.

Finally, observe that inP∗,∗(M) the maps π0◦α and π1◦α are constant, so
that π∗

0 (ω) = π∗
1 (ω) = 0 for any ω ∈ A≥1(M). This presentation is nothing

other than Remark 9.55 restricted to P∗,∗(M).

In [59, Theorem 4.1.1], Chen proves that [ω1| . . . |ωk] 
→ ∫
ω1 . . . ωk

induces an isomorphism of Hopf algebras between N(R,A,R) and
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Chen P∗,∗(M). The product is the shuffle product of Lemma 9.58 and the
diagonal is given by:

�

(∫
ω1 . . . ωk

)
=

k∑
i=0

∫
ω1 . . . ωi ⊗

∫
ωi+1 . . . ωk.

This and Theorem 5.52 directly imply the next statement.

Corollary 9.63 ([59]) LetM be a simply connectedmanifold with loop space
�(M). The map [ω1| . . . |ωr] 
→ ∫

ω1 . . . ωr induces an isomorphism of Hopf
algebras between N(R,A,R) and Chen P∗,∗(M). This gives an isomorphism
of Hopf algebras between the cohomology of the loop space �(M) and the
cohomology of the complex of iterated integrals:

H∗(�(M);R) ∼= H∗ (
Chen P∗,∗(M)

)
.

9.6.4 Iterated integrals, the Hochschild complex and the free
loop space

We would like now to study the cohomology of the free loop space with
iterated integrals. Denote by Pfree loop(M) the subspace of Pfree(M) consisting
of the free loops onM. Observe that Pfree loop(M) has the homotopy type of
the free loop space LM. Let Chen Pfree loop(M) denote the subspace of forms
on Pfree loop(M) generated by the

π∗
0 (ω0) ∧

∫
ω1 . . . ωk.

We leave to the reader the descriptions of these forms as integrals along a
fiber as in Remarks 9.55 and 9.62. As a complement to Section 5.9, note
that the shuffle product onB(ADR(M)) gives a cohomology algebra isomor-
phismwithH∗(LM;R). As in Subsection 9.6.3, we observe thatB(ADR(M))

has elements of negative degree.We kill themby quotienting by a differential
ideal Degen(A) which is acyclic whenM is connected.

Theorem 9.64 ([59, Theorem 4.2.1], [105, Proposition 4.1]) Let M be a
simply connected manifold. The map

B(ADR(M))
ϕ

��ADR(Pfree loop(M))

ω0 ⊗ [ω1| . . . |ωk] � ��π∗
0ω0 ∧ ∫

ω1 . . . ωk

induces an isomorphism of algebras between B(ADR(M)) and Chen Pfree loop

(M). Therefore, there is an isomorphism of algebras,

H∗ (
Chen Pfree loop(M)

) ∼= H∗(LM;R).
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Table 9.1 Chen’s iterated integrals.

Iterated integrals Bar constructions Spaces

Chen Pfree (M) B(A,A,A) M[0,1]

Chen P∗, a (M) B(A,A,R) P(M)

Chen P∗,∗ (M) B(R,A,R) �(M)

Chen Pfree loop (M) B(A) LM

Table 9.1 gives a summary of the correspondences between the vari-
ous complexes of iterated integrals, bar constructions and particular path
spaces.

9.6.5 Formal homology connection and holonomy

In this paragraph, we replace Chen P∗,∗(M) by a differential algebra, free as
an algebra, whose homology is isomorphic to the Pontryagin algebra of the
loop space, �(M), of a simply connected manifoldM with finite Betti num-
bers. Denote by V the subspace s−1H+(M;R); that is, Vn = Hn+1(M;R)

for all n ≥ 1 and V0 = 0. The free graded Lie algebra on V , denoted by
L(V), is a sub-vector space of the free tensor algebra T(V), and if T(V)

is endowed with the Lie algebra structure coming from the commutator
bracket, then L(V) is the sub-Lie algebra generated by V , see [87, Page
289]. A Lie derivation on L(V) is a map ∂ : L(V)n → L(V)n−1 such that
∂[l, l′] = [∂l, l′] + (−1)|l|[l, ∂l′] for all homogeneous elements l and l′ of
L(V). Finally, we introduce the completion of the tensor product as:

ADR(M)⊗̂ L(V) =
⊕
n

∏
p

(An−pDR (M) ⊗ L(V)p).

This is the set of all formal sums
∑

i ωi ⊗ li such that, for each integer n,
there are only a finite number of terms ωi ⊗ li such that |ωi| + |li| = n.
Recall thatADR(M)⊗̂ L(V) is a graded Lie algebra with a bracket defined

on homogeneous elements by [a⊗ b, a′ ⊗ b′] = (−1)|a′| |b|aa′ ⊗ [b,b′]. The
map d is extended to the tensor product by setting d(a ⊗ b) = da ⊗ b on
homogeneous elements. Similarly, if ∂ is a Lie derivation onL(V), we define
∂(a⊗ b) = (−1)|a|a⊗ ∂b.

Definition 9.65 Let M be a compact simply connected manifold. Set V =
s−1H∗(M;R) and fix a homogeneous basis (Xi)i∈I of V. A formal homology
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connection is a pair (w, ∂) with

w =
∑
I

ωi ⊗Xi +
∑

(i1,i2)∈I×I
ωi1i2⊗Xi1Xi2 + · · ·

∈ ADR(M)⊗̂ L(V) ⊂ ADR(M)⊗̂T(V)

and ∂ a Lie derivation on L(V) such that:

• the ωi are closed elements of ADR(M);
• the family ([ωi])i∈I ∈ H∗(M;R) is the dual basis of (sXi)i∈I;
• w is of degree −1, which means |ωi1...ir | = 1+ ∑r

j=1(|ωij | − 1);
• d and ∂ satisfy the Maurer–Cartan equation dw = ∂w + 1

2 [w,w].
We give below an equivalent definition in the context of maps instead of

tensor products. First, let’s consider an easy example.

Example 9.66 Consider the space CP(2) with its real cohomology denoted
by H∗ and real homology denoted by H∗. We choose a basis X1 ∈ V1 =
s−1H2,X2 ∈ V3 = s−1H4. Let ω be the Kähler form in A2DR(CP(2)), and let
([ω], [ω2]) be a dual basis of (X1,X2). We set ∂X1 = 0, ∂X3 = 1

2 [X1,X1]
and extend it to L(X1,X2) as a Lie derivation. An easy computation shows
that w = ωX1 + ω2X2 is a formal homology connection on CP(2).

Remark 9.67 A formal homology connection can be viewed as a differential
form with values in a Lie algebra, the free Lie algebra L(V). If we consider
the classical case of a form ω ∈ A1(M; g) where g is the Lie algebra associ-
ated to a Lie groupG, then we see that ω can be extended to a morphism of
graded algebras ω′ : C∗(g) → ADR(M) where C∗(g) is the classical cochain
algebra on g. This map ω′ is compatible with the differentials if and only
if dω − 1

2 [ω,ω] = 0. The analogue of the classical situation exists for the
formal homology connection of Chen as shown by the next result.

Theorem9.68 Let (ω, ∂) be a formal homology connection on a simply con-
nected compactmanifoldM.We choose a basis (xJ) ofL(V) and decompose
ω as ω = ∑

J ωJ ⊗ xJ ∈ ADR(M)⊗̂ L(V). Let

�ω : C∗(L(V), ∂) → ADR(M)

be defined by �ω(w) = ∑
J ±ωJ〈w,xJ〉, where C∗(L(V), ∂) = (∧W ,d) is

the cochain algebra introduced in Subsection 2.6.2, w ∈ W and 〈 , 〉 is the
duality between W•+1 and L(V)•. Then the following are true:

1. ∂2 = 0;
2. �ω is compatible with the differentials;
3. �ω induces an isomorphism in cohomology.
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For the proof, we refer the reader to [59] or [248, Theorem IV. 2.(1)] and
observe, as a direct consequence, that a formal homology connection gives
a Sullivan model.

Corollary 9.69 Let (ω, ∂) be a formal homology connection on a simply
connected compact manifold M. The map �ω defined in the statement of
Theorem 9.68 is a Sullivan model of M.

We have not introduced differential Lie algebra models here, yet we note
that Theorem 9.68 contains within it the fact that (L(V), ∂) is such a model.
In fact, if we let (T(V), ∂) denote the associative tensor algebra obtained
as the enveloping algebra of (L(V), ∂), then we can use a holonomy map
$ : C∗(�(M)) → (T(V), ∂) constructed by Chen to give an isomorphism
of algebras between the Pontryagin algebraH∗(�(M);R) andH∗(T(V), ∂),
see [59, Section 3.4] or [248, Proposition IV.3.(1)] for a different approach
to the construction of the map $.

9.6.6 A topological application

In Subsection 4.6.5, we considered the question of which symplectic man-
ifolds are nilpotent spaces (and thus are amenable to minimal model tech-
niques, see Proposition 4.100). Iterated integrals can be used to approach
this question (but not answer it completely yet). We will only state the result
and refer the reader to the original paper of Chen [57].

Theorem 9.70 Let Mn be a connected manifold and suppose ω1, . . . ,ωm
are closed 1-forms on M which satisfy the following conditions:

• ωi ∧ ωj = 0 for i, j = 1, . . . ,m;
• the cohomology classes [ω1], . . . , [ωm] are linearly independent.

Then π1(M) contains a free subgroup G of rank m. Moreover, if ω is a
closed q-form on M such that

• ωi ∧ ω = 0 for i = 1, . . . ,m;
• for some α ∈ πq(M), the integral

∫
α
ω �= 0;

then {β · α}β∈G is a basis of a free abelian subgroup of πq(M).

This result allows us to see the action of π1(M) on πq(M) in terms of
differential forms. Indeed, we can also see Proposition 4.100 from this
viewpoint. Can we use Theorem 9.70 or an extension of it to understand
nilpotency in the context of symplectic manifolds?
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9.7 Cohomological conjectures

Throughout the book we have indicated a series of conjectures related to
geometrical problems. Our purpose in this section is to recall them in a
more general setting.

9.7.1 The toral rank conjecture

The toral rank conjecture states that if a torus Tr acts almost freely on
a compact manifold M, then dimH∗(M;Q) ≥ 2r. With the help of Borel
fibrations, it can be reformulated in terms of fibrations in the following
form:

Conjecture 9.71 If F → E → B is a quasi-nilpotent fibration (e.g. if
π1(B) = 0) where F is a torus Tr and the cohomology of B is finite
dimensional, then dimH∗(E;Q) ≥ 2r.

This leads to the more general

Problem 9.72 Let F → E → B be a quasi-nilpotent fibration, where F is a
rationally elliptic space and the cohomology of B is finite dimensional. Is it
true that dimH∗(E;Q) ≥ dimH∗(F;Q)?

9.7.2 The Halperin conjecture

The Halperin conjecture is also related to fibrations. Let’s recall it and note
the strong relation with the conjecture above, see also Section 4.2.

Conjecture 9.73 If F → E → B is a quasi-nilpotent fibration, where F is
a rationally elliptic space with χ(F) > 0, then the Serre spectral sequence
degenerates at the E2 term: that is, there is an isomorphism of H∗(B;Q)-
modules, H∗(E;Q) ∼= H∗(F;Q) ⊗H∗(B;Q).

Apositive answer to theHalperin conjecture would give a positive answer
to Open Problem 9.72 in the case χ(F) > 0.
There are equivalent forms of theHalperinConjecture: LetX be an elliptic

space with χ(X) > 0. Then the following conditions are equivalent (see
Proposition 4.40):

1. The Halperin conjecture is true for X.
2. H∗(X;Q) has no non–zero derivation of negative degree.
3. The space of self-homotopy equivalences of X, autX, has the rational

homotopy type of a product of odd dimensional spheres.
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The relation between the second and the third characterization fol-
lows from the following fact. The commutator of two homotopy self-
equivalences gives to π∗( autX) ⊗ Q the structure of a graded Lie algebra,
and there is a morphism of graded Lie algebras πq( autX) ⊗ Q →
DerH−q(X;Q) that is surjective when X is formal.
The derivation viewpoint has a geometric meaning. As we saw in

Chapter 6, Belegradek and Kapovitch proved that when M is a compact
manifold and H∗(M;Q) has no nonzero negative degree derivation, then,
for every torus T and every vector bundle ξ over C × T with secE(ξ) ≥ 0,
there is a finite covering p : T → T such that (p∗ × id)(ξ) = ξC × T where
ξC is a vector bundle over C. Since bundles do not generally have this prop-
erty, this then gives an obstruction to positive sectional curvature on total
spaces of bundles. In fact, however, Corollary 6.41 is true even when only
the cohomology derivations which descend from derivations of the mini-
mal model vanish. The question is, how can these be recognized? Let MC
denote the minimal model of C. There is an obvious graded Lie algebra
homomorphism

ρ : H∗(Der(MC)) → Der(H∗(C)),

but knowledge of Im(ρ) is scant. Of course, if C is formal, then ρ is
surjective, but otherwise, we know little.

Problem 9.74 Determine Im(ρ) for various classes of spaces C. In particu-
lar, determine when Im(ρ) = 0.

Denote by Baut1(C) the classifying space for the monoid of self-
equivalences that are homotopic to identity. This space classifies fibrations
with simply-connected bases and fibers of the homotopy type of C. The
differential graded Lie algebra (Der(MC),dC) is a Lie algebra model
for Baut1(C). This provides an interesting connection between curvature
properties and abstract homotopy theory.
Furthermore, while it was proved in [237] that homogeneous spaces of

maximal rank have no negative degree cohomology derivations (and so
satisfy the Halperin Conjecture), the following is as yet unknown.

Problem 9.75 Show that a biquotient G//H has no negative degree
cohomology derivations if rk(G) = rk(H).

9.7.3 The Bott conjecture

Recall from Section 6.4 that we have the following conjecture of Bott.

Conjecture 9.76 If M is a closed manifold with secM ≥ 0, then M is
rationally elliptic.
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Of course, the power of the conjecture (if true) is in the contrapositive
statement. Since most manifolds are rationally hyperbolic, this would say
that most manifolds cannot carry metrics of non-negative sectional cur-
vature. Also, consider Bott’s conjecture in relation to Open Problem 9.72
above.

Problem 9.77 Let F → E → B be a quasi-nilpotent fibration, where F
has secF ≥ 0 and the cohomology of B is finite dimensional. Is it true that
dimH∗(E;Q) ≥ dimH∗(F;Q)?

Conjecture 9.76 is related to many others as we noted in Section 6.4.
At the present time, there seems to be no good approach. Even the results
of Chapter 6 lack a certain coherence, at least in terms of their relations to
minimal models and the viewpoint of rational homotopy theory. Of course,
there is also Paternain’s result saying that certain geodesic flows only occur
on rationally elliptic manifolds. So we might fairly pose the

Problem 9.78 Make the connection between geometric constraints on
manifolds and algebraic constraints on minimal models systematic.

The reader may well ask what our precise meaning is here. Evidently,
that is part of the problem.

9.7.4 The Gromov conjecture on LM

Let M be a rationally hyperbolic manifold. Gromov conjectured that the
cohomology of the free loop space LM = MS1 has exponential growth. On
the other hand, Vigué-Poirrier proved that the Betti numbers of the function
space from a compact manifold into a wedge of (at least two) spheres has
exponential growth. She conjectured [260] that, for any fibration p : F →
E → B, where F has the rational homotopy type of a wedge of spheres,
the cohomology of the space of sections of p has exponential growth. Both
conjectures merge into a common problem concerning the homology of
function spaces. We can state this as

Problem 9.79 Let F → E → B be a quasi-nilpotent fibration where F is
rationally hyperbolic and B is a compact manifold. We suppose moreover
dimB = n and F is (n + 1)-connected. Do the Betti numbers of the space
of sections have exponential growth?

9.7.5 The Lalonde–McDuff question

F. Lalonde and D. McDuff have asked the following

Question 9.80 (Lalonde–McDuff question) Is every Hamiltonian bundle
TNCZ?



9.7 Cohomological conjectures 391

Recall that this says that if F → E → B is a symplectic fiber bundle where
the structure group of the bundle reduces to the Hamiltonian diffeomor-
phisms, then the fibration is TNCZ. Of course, we know that all bundles
are TNCZ when the fibers are simply connected Kälher manifolds or max-
imal rank homogeneous spaces. We have also seen in Theorem 7.75 that
the Lalonde–McDuff question is answered affirmatively for nilmanifolds.

Problem 9.81 Use models to examine the Lalonde–McDuff question in
other cases of interest.



Appendix A
De Rham forms

In this appendix we give basic definitions and results about differential (also
known as de Rham) forms. General references for the whole appendix are
[107], [112] and [262].

A.1 Differential forms

We shall begin by considering Euclidean spaceRn. Of course,Rn is a smooth
manifold with the topology naturally given by the standard vector space dot
product structure. We can define vector fields on Rn by choosing a vector
space basis {e1, . . . , en} and defining the vector fieldEj byEj(x1, . . . ,xn) = ej
at the point (x1, . . . ,xn) ∈ Rn. In other words, Ej is simply ej placed at
every point of Rn. That such a definition gives a smooth vector field is
due to the fact that the coordinates are global. Any vector field on Rn,
V : Rn → Rn × Rn, now has the form V(x1, . . . ,xn) = (x1, . . . ,xn, V̂) with

V̂(x1, . . . ,xn) =
n∑
j=1

aj(x1, . . . ,xn) ej,

where the coefficients aj are now smooth functions on Rn. It is apparent
that we are thinking of Rn × Rn here as pairs (x, vx), where vx is an n-
vector starting from x. This is the first instance of what is called the tangent
bundle of a manifold. Here, it is very simple because the topology of Rn is
simple, but it can be more complicated as we shall see. In order to be able
to understand these more complicated situations, let’s look a little more
closely at the Rn case now.
Let x ∈ Rn. Consider a smooth curve β : (−ε, ε) → Rn defined on a small

interval (which for convenience we take to be (−ε, ε)) with β(0) = x. Of
course, we now have n functions βi : (−ε, ε) → R defined as the coordinate
functions of β,

β(t) = (β1(t), . . . ,βn(t)).
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The tangent vector of β at 0 is then computed coordinatewise,

β ′(0) = (β ′
1(0), . . . ,β

′
n(0)),

andwe define the collection of all vectors arising as tangent vectors to curves
through x to be the tangent space, Tx(Rn), to Rn at x. It is clear that each
vector through x is the tangent vector to a curve, and therefore Tx(Rn)

identifies to the vector space of vectors at x. The tangent bundle of Rn is
defined to be

T(Rn) = {(x, vx) | x ∈ Rn and vx ∈ Tx(Rn)}.
If f : Rn → Rk is a smooth map, then it induces a map Df : T(Rn) →

T(Rk) of tangent bundles which is a linear map on the tangent space at
each point. For f (x) = y, the map Df is defined as follows. Let (x, vx) ∈
T(Rn) and suppose β is a curve in Rn that defines vx as above. Then the
composition α = f ◦ β is a smooth curve in Rk with α(0) = f ◦ β(0) =
f (x) = y. We then define Df (x, vx) = (y,α′(0)). Note that, in Rn, we can
always choose β(t) = x+ t vx, the line through x in the vx-direction. If we
are only interested in the map Df restricted to a particular tangent space
Tx(Rn), then we denote this linear map byDxf . The vector α′(0) is given by

α′(0) = d(f (β(t))
dt

∣∣∣∣t=0 = d(f (x+ t vx)
dt

∣∣∣∣
t=0

,

where we have taken the straight line through x as β. This is exactly the
definition of the usual directional derivative of vector calculus. Therefore,
the map Df is just a generalization of that. Indeed, by looking at the coor-
dinate functions αi of α, we see that Df is just the vector consisting of the
directional derivatives of the αi.
The directional derivative also allows us to transform functions into new

functions.Namely, ifV is a vector field and f : Rn → R is a smooth function,
then the smooth function Vf is defined by

Vf (x) = d(f (x+ t Vx)
dt

∣∣∣∣
t=0

,

the usual directional derivative in Rn in the direction of Vx (the value of V
at x). If V = Ej, then it is easy to see that Vf = ∂f /∂xj, the usual partial
derivative in the jth coordinate direction.
Now consider the dual space Rn∗ with dual basis {de1, . . . ,den}; that is,

dei(ej) =
{
0 if i �= j

1 if i = j.
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We can also take the exterior algebra on this basis,�(n) = �(de1, . . . ,den).
This is the free graded algebra satisfying the anti-commutativity condition
a∧ b = −b∧ a. Note that this means that dei ∧ dei = 0 for all i = 1, . . . ,n.
An element φ of degree p has the form

φ =
∑

ai1···ip dei1 ∧ · · · ∧ deip

where the sum is over all
(n
p

)
choices of p dej’s among the n dej’s available

and the ai1···ip ’s are constant. Note that, by the anti-commutativity property
of the exterior algebra, we can always order the ij so that i1 ≤ i2 ≤ . . . ≤ ip.
The algebra �(n) appears to be the dual of the exterior algebra �(Rn).
Note that in order to apply an element of the exterior algebra to vectors,
we need to have a definition that takes account of the anti-commutativity of
the exterior algebra. For instance, if we simply said that de1 ∧ de2(v,w) =
de1(v) · de2(w), then we would not have de1 ∧ de2 = −de2 ∧ de1. Just
substitute e1 for v and e2 forw and get 1 and 0 for the respective calculations.
So, the application of an exterior algebra element dei1 ∧ . . .∧deip to vectors
v1, . . . , vp is defined by

dei1 ∧ . . . ∧ deip(v1, . . . , vp) =
∑
σ∈
p

(−1)sgn(σ )dei1(vσ(1)) · · ·deip(vσ(p)),

where the sum is over all permutations σ in the permutation group
p. This
definition is compatible with anti-commutativity and will provide a global
wedge product below. In fact, we can define 1-forms dEi dual to the vector
fields Ei by requiring

dEi(Ej)(x1, . . . ,xn) =
{
0 if i �= j

1 if i = j.

Note that, at any point (x1, . . . ,xn) ∈ Rn, we have Ei(x1, . . . ,xn) = ei for
each i = 1, . . . ,n. So Ei and 1-forms dEi are defined globally and evaluate
to the corresponding dual vector space basis elements at every point in Rn.
Because of the obvious identifications, we may sometimes use the notation
dei for global forms.
Just as for vector fields, we define a p-differential form α : Rn → Rn ×

�p(Rn) by α(x1, . . . ,xn) = (x1, . . . ,xn, α̂) with

α̂(x1, . . . ,xn)

=
∑

ai1···ip(x1, . . . ,xn)dEi1(x1, . . . ,xn) ∧ · · · ∧ dEip(x1, . . . ,xn)

=
∑

ai1···ip(x1, . . . ,xn)dei1 ∧ · · · ∧ deip ,
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where the sum is taken over all multi-indices of length p and the ai1···ip are
smooth functions on Rn.
From now on, we will simply denote a form α by its second coordinate,

α̂. A 1-form α = ∑
ai dEi may be applied to a vector field V = ∑

cjEj to
produce a smooth function on Rn as follows:

α(V)(x1, . . . ,xn) = α(x1, . . . ,xn)(V(x1, . . . ,xn))

=
(

n∑
i=1

ai(x1, . . . ,xn)dei

)⎛⎝ n∑
j=1

cj(x1, . . . ,xn) ej

⎞⎠
=

n∑
k=1

ak(x1, . . . ,xn) · ck(x1, . . . ,xn),

using the duality between dei and ej.
More generally a p-form α = ∑

ai1···ip dEi1 ∧ · · · ∧ dEip acts on a p-tuple
of vector fields V1, . . . ,Vp as follows:

α(V1,V2, . . . ,Vp)(x) =
∑

ai1···ip(x) (dei1 ∧ · · · ∧ deip)((V1)x, . . . , (Vp)x) .

Moreover, if f : Rn → R is a smooth function, then we may define a
1-form df by df (V)(x) = Vf (x) for all vector fields V . This is our first
example of what will be called exterior differentiation.
The vector space formed by the forms is equipped with a multiplication,

called the wedge product. Let α = ∑
ai dEi1 ∧ · · · ∧ dEip be a p-form and

β = ∑
bj dEj1 ∧ · · · ∧dEjq be a q-form. The wedge product α ∧β is defined

to be the (p+ q)-form

α ∧ β =
∑
i,j

aibj dEi1 ∧ · · · ∧ dEip ∧ dEj1 ∧ · · · ∧ dEjq .

If Y1, . . . ,Yp+q are vector fields, we have,

(α ∧ β)(Y1, . . . ,Yp+q)

=
∑

σ∈
p+q
(−1)sgn(σ )α(Yσ(1), . . . ,Yσ(p)) · β(Yσ(p+1), . . . ,Yσ(p+q)).

Here, the sum is over all permutations σ in the permutation group 
p+q.
It is also possible to integrate n forms (as the notation dej suggests). If a

form has the expression α = a dE1 ∧ . . . ∧ dEn, then its integral over some
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regionW ⊆ Rn is defined to be∫
W

α =
∫ ∫

· · ·
∫
a(x1, . . . ,xn)dE1(x1, . . . ,xn) ∧ . . . ∧ dEn(x1, . . . ,xn)

=
∫ ∫

· · ·
∫
a(x1, . . . ,xn)de1 ∧ . . . ∧ den

=
∫ ∫

· · ·
∫
a(x1, . . . ,xn)dx1 . . .dxn,

where we have used the more familiar integral notation using coordinates.
Note that, since dEi ∧ dEj = −dEj ∧ dEi, the integral is a signed integral
depending on the order in which integrals are taken. The Rn-form ω =
dE1∧ . . .∧dEn is called a volume form on Rn because if we take its integral
over any particular regionW , we obtain the signed volume ofW .
If f : Rk → Rn is a smooth function and β is a p-form on Rn, then a

new p-form f ∗β on Rk is defined by “pulling back” β: namely, if β =∑
βidEi1 . . .dEip , then

f ∗β =
∑

(βi ◦ f )dfi1 ∧ . . . ∧ dfip ,

with dfir = ∑ ∂fir
∂xk

dxk. If V1, . . . ,Vp are vector fields, then f ∗β(V1, . . . ,
Vp)(x) = β(Dfx((V1)x), . . . ,Dfx((Vp)x)), where Dfx is the derivative map
of f on tangent vectors. This now leads us to a more general situation.
If Mn is a smooth n-manifold, then M is covered by charts (i.e. homeo-

morphisms onto open sets) ντ : Uτ → Rn such that the transition functions
ντγ = ντ νγ

−1 (restricted to the appropriate images) are smooth func-
tions from Rn to itself. The charts, in effect, parametrize M allowing
calculations to be done in euclidean space. For instance, tangent spaces
are defined using our definition in Rn. If β : (−ε, ε) → M is a curve with
β(0) = x ∈ Uτ ⊂ M, then α = ντ β : (−ε, ε) → Rn is a smooth curve
with a tangent vector α′(0) at ν(x). We then say that TxM consists of all
such vectors. (IfM is embedded in some large RN , then we can visualize the
tangent space just as we do for surfaces embedded in R3.) We then define
the tangent bundle toM to be

TM = {(x, vx) |x ∈ M and vx ∈ TxM},
where TxM is the tangent space to M at x. Local coordinates provide a
basis for TxM, {e1, . . . , en}, and we may write vx = ∑

aiei as for Rn. Of
course, in the particular chart, the coefficients ai are functions, changing
as x changes. There is a projection p : TM → M given by p(x, vx) = x.
A vector field V on M is then a smooth mapping V : M → TM such that
pV(x) = x for all x ∈ M. It should be mentioned, however, that it is not in
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general the case that the tangent bundle of M is a product M × Rn as was
true for Rn, because otherwise each manifold would support vector fields
that never vanish, which is not the case for instance for S2. When the vector
field is restricted to a chart Uτ , then we can write the tangent bundle over
Uτ as such a product.
Charts also tell uswhetherM has consistent orientations of tangent spaces

as we move around the manifold. Each transition function ντγ is a map-
ping from an open set in Rn to another open set in Rn. Therefore, if we
consider the linear map on tangent spaces Dxντγ : TxRn → TyRn (where
y = ντγ (x)), then we may take det(Dxντγ ). Since det(Dxντγ ) is always dif-
ferent from 0, its sign is the same on any connected domain of the transition
map, so the question of consistent orientation reduces to looking at all pos-
sible overlaps of charts on the manifold. If charts can be chosen coveringM
so that det(Dxντγ ) > 0 for all choices of τ and γ , thenM is orientable. For
example, spheres, tori, odd-dimensional real projective spaces and complex
projective spaces are orientable. The Klein bottle and even-dimensional real
projective spaces are nonorientable. We have the following useful result.

Proposition A.1 Every simply connected manifold is orientable.

Wemay view forms by their images in the different charts. A p-form onM
can be seen as a collection of p-forms on the open images of all charts in Rn

obeying a compatibility relation. Namely, for a p-form onM, α = {ατ }τ , we
must have ν∗

τγ ατ = αγ . With this definition, we now can treat forms locally
by fixing a chart (i.e. a coordinate system) and writing the local expression
for the form as above forRn. With this in mind, note that we now can define
a wedge product of forms on M simply by taking wedge products in the
images of charts in Rn and then forming the collection: that is, if α = {ατ }τ
and β = {βτ }τ , then α ∧ β = {ατ ∧ βτ }τ .
A volume form on Mn is an n-form ω that is non-zero at every point.

It is not true that every manifold has a volume form. For example, for
surfaces embedded in R3, the existence of a volume form is equivalent to
the existence of a nonvanishing normal vector field over the whole surface.
As the example of the Möbius strip shows, such vector fields sometimes are
forced to be zero at points on the surface. TheMöbius strip is nonorientable
and this is in fact the criterion for nonexistence of a volume form.

Proposition A.2 A compact manifold M has a volume form if and only if
it is orientable.

In particular, by Proposition A.1, every compact simply connectedmanifold
has a volume form.
Note that a vector field on M also has a local expression in terms of

chosen coordinates, so all local computations may be carried out as in Rn.
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The cotangent bundle and pth exterior algebra bundle are defined to be

T∗M = {(x,φx) |x ∈ M and φx ∈ Tx∗M},
�p(T∗M) = {(x,φx) |x ∈ M and φx ∈ �p(Tx∗M)},

where Tx∗M is the dual vector space to TxM and �∗(Tx∗M) is the exte-
rior algebra on it. There are obvious projections q : T∗M → M and
�q : �pT∗M → M here as well. A p-form α on M is then seen to be a
smooth mapping α : M → �p(T∗M) such that �qα(x) = x for all x ∈ M.
In this way, the geometry of M is linearized. We denote the p-forms on M
by ApDR(M) and the entire graded algebra of forms by ADR(M).

A.2 Operators on forms

There are several important operations that are performed on forms to
create new ones illuminating certain geometric properties.
LetMn be a manifold with a vector field X and a (p+ 1)-form α defined

on it, then we define a p-form i(X)α by

(i(X)α)(Y0, . . . ,Yp−1) = α(X,Y0, . . . ,Yp−1) ,

where Y0, . . . ,Yp−1 are vector fields. The operation on the (p+ 1)-form α

that produces the p-form i(X)α is called interior multiplication by X. Inte-
rior multiplication is an anti-derivation (or in more modern terminology, a
graded algebra derivation), meaning that

i(X)(α ∧ β) = (i(X)α) ∧ β + (−1)|α|α ∧ (i(X)β).

If X and Y are vector fields, then their bracket [X,Y] is defined by its
action on smooth functions, [X,Y]f = X(Yf ) − Y(Xf ). The bracket is
obviously anti-commutative by definition. It also satisfies a Jacobi identity
(see Exercise A.1),

[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0,

that will be important when we consider Lie groups. Here the action of a
vector field on a function is slightly different from that in Rn. There may be
no straight line x+ t Vx onM in the definition, so we modify the definition
as follows. Let X be a vector field and let f be a function on M. At x ∈ M
choose a curve β : (−ε, ε) → M such that β ′(0) = Xx. Then

Xf (x) = d(f (β(t))
dt

∣∣∣∣
t=0

.
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IfX is a vector field onM, then there is an associated flow φ : R×M → M
given by fixing x ∈ M and finding the solution of the differential equation

dφ(t,x)
dt

= Xφ(t,x),

with φ(0,x) = x. The flow is also written φt(x). For fixed x, this is a curve
c(t) = φt(x) starting at x and following the vector fieldX in the sense that its
tangent vector at c(t) is Xc(t). For fixed t, φt : M → M is a diffeomorphism
of M. Therefore, it can be used to pull back forms. To see the effect of the
flow (or equivalently, the vector field X) on forms, we can find the rate of
change of the pulled-back form φt

∗α minus the original form α at the same
point. The definition is

L(X)α(x) = lim
t→0

φt
∗αφ(t,x) − α(x)

t
.

The operation L(X) is called the Lie derivative with respect to X. We can
also express L(X)α by its action on vector fields. Let α be a p-form, then

L(X)α(Y0, . . . ,Yp−1)

= X(α(Y0, . . . ,Yp−1)) −
p−1∑
j=0

α(Y0, . . . , [X,Yj], . . . ,Yp−1).

The Lie derivative L(X) is a degree 0-derivation on forms:

L(X)(α ∧ β) = (L(X)α) ∧ β + α ∧ (L(X)β).

In [112, page 157] it is shown that the following formula holds (see
Exercise A.2):

φt
∗α − α =

∫ t

0
φs

∗L(X)α ds.

Then we can see that φt
∗α = α if and only if L(X)α = 0. In this way

the Lie derivative can tell us that α is invariant along trajectories of a vec-
tor X. A form α that has L(X)α = 0 for a vector field X is said to be
L(X)-invariant.
We defined the differential of a function f to be the 1-form df satisfying

df (X) = Xf for a vector field X. The operator d is called the exterior
derivative and is defined on all forms. For a (p−1)-form α and vector fields
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Y0, . . . ,Yp−1, the p-form dα is defined by,

dα(Y0, . . . ,Yp−1) =
p−1∑
j=0

(−1)jYj(α(Y0, . . . , Ŷj, . . . ,Yp−1))

+
∑
i<j

(−1)i+jα([Yi,Yj],Y0, . . . , Ŷi, . . . , Ŷj, . . . ,Yp−1),

where “hats” above Yi’s indicate that they are missing. We denote this
operation on forms by d : ApDR(M) → Ap+1DR (M). For instance, from the
formula, we recover the definition df (Y) = Yf and, for a 1-form α, we
find

dα(X,Y) = X(α(Y)) − Y(α(X)) − α([X,Y]).

The most important property of d is contained in the following
theorem.

Theorem A.3 The vector space ADR(M) equipped with the exterior deriva-
tive d and the wedge product is a (commutative graded) cochain algebra.
For a p-form α and a q-form β, we have,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ and d2 = d ◦ d = 0. (A.1)

The following result explains the relation between i(X), d and L(X).

Proposition A.4 Let α be a form. Then L(X)α = (di(X) + i(X)d)α.

Proof Suppose α is a p-form. For vector fields Y0, . . . ,Yp−1, we have

di(X)α(Y0, . . . ,Yp−1)

=
p−1∑
j=0

(−1)jYj(α(X,Y0, . . . , Ŷj, . . . ,Yp−1))

+
∑
i<j

(−1)i+jα(X, [Yi,Yj],Y0, . . . , Ŷi, . . . , Ŷj, . . . ,Yp−1),
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i(X)dα(Y0, . . . ,Yp−1) = dα(X,Y0, . . . ,Yp−1)
= X(α(Y0, . . . ,Yp−1))

−
p−1∑
j=0

(−1)jYj(α(X,Y0, . . . , Ŷj, . . . ,Yp−1))

−
p−1∑
j=0

(−1)jα([X,Yj],Y0, . . . , Ŷj, . . . ,Yp−1)

+
∑
i<j

(−1)i+jα([Yi,Yj],X,Y0, . . . , Ŷi, . . . , Ŷj, . . . ,Yp−1).

Note that the anti-commutativity of forms forces some terms in the sum
d i(X) + i(X)d to cancel. For instance,

α(X, [Yi,Yj],Y0, . . . , Ŷi, . . . , Ŷj, . . . ,Yp−1)
+ α([Yi,Yj],X,Y0, . . . , Ŷi, . . . , Ŷj, . . . ,Yp−1) = 0

since switching the first two vector field entries changes the sign. We have
the following remaining terms:

X(α(Y0, . . . ,Yp−1)) −
p−1∑
j=0

(−1)jα([X,Yj],Y0, . . . , Ŷj, . . . ,Yp−1)

= X(α(Y0, . . . ,Yp−1)) −
p−1∑
j=0

α(Y0, . . . , [X,Yj], . . . ,Yp−1)

since we make j switches to put the bracket in the jth place and (−1)2j = 1.
This is then the formula for the Lie derivative L(X). �

The final operation on forms that will be important for us is integration.
IfMn is an n-manifold and α is an n-form, then we can integrate α overM.
If α is nonzero in one chart U having coordinates x1, . . . ,xn, then we can
write

α = a(x1, . . . ,xn)de1 ∧ . . . ∧ den.

Then integration onM becomes the usual multiple integral in Rn:∫
M

α =
∫ ∫

· · ·
∫
a(x1, . . . ,xn)de1 . . .den.
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If α is a p-form, p �= n, then
∫
M α = 0. If α is non-zero in more than

one chart, it is necessary to piece together these types of integrals using a
partition of unity. We will not go into this here. Integration of forms onM
satisfies the following essential property.

Theorem A.5 (Stokes’s theorem) If Mn is an n-manifold with boundary ∂M
and α is an (n− 1)-form, then∫

M
dα =

∫
∂M

α.

A.3 The de Rham theorem

An essential connection between differential geometry and topology is pro-
vided by the de Rham Theorem A.6 given below. Recall that the exterior
derivative d : ApDR(M) → Ap+1DR (M) makes A∗

DR(M) a cochain complex. Its
cohomology is called the de Rham cohomology H∗

DR(M),

Hp
DR(M) = Ker(d : ApDR(M) → Ap+1DR (M))

Im(d : Ap−1DR (M) → ApDR(M))
.

The forms α with dα = 0 are called closed forms, while the images under d,
dβ, are called exact forms. Therefore, de Rham cohomology is the quotient
of the closed forms modulo the exact forms. For instance, if f : M → R is
a smooth function on a connected manifold M, then df = 0 only if f is a
constant function. Since there are no exact 0-forms, we have H0

DR(M) =
R. If M is not connected, then a function could take different constant
values on different components. If there are k components, H0

DR(M) =
Rk. In some sense, de Rham cohomology is a measure of the solvability
of differential equations given by dω. However, the de Rham theory is
not purely analytic, for there is a link to ordinary topology provided by
integration and Theorem A.5.
A singular p-simplex is a smooth map ρ : *p → M, where

*p = {(t0, . . . , tp) | ti ≥ 0 for all i and
∑

ti ≤ 1},

is a p-simplex in Rp+1. Here by “smooth” we mean that there is some open
neighborhood of *p over which ρ can be extended such that the extension
is smooth. Usually, singular simplices are continuous maps, but for man-
ifolds we can restrict to smooth ones because the subcomplex consisting
of the smooth maps computes the same cohomology. The set of singular
p-simplices is the basis for a free abelian group Cp(M) and there is a
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boundary operator ∂ : Cp(M) → Cp−1(M) given by

∂ρ(t0, . . . , tp−1) =
∑
i

(−1)iρ(t0, . . . , 0, . . . , tp−1),

where 0 occurs in the ith place. It can be seen that ∂2 = 0, so that

. . .
∂−→ Cp+1(M)

∂−→ Cp(M)
∂−→ Cp−1(M)

∂−→ . . .

forms a chain complex. An associated cochain complex is formed by tak-
ing Cp(M;R) = HomZ(Cp(M),R) with transposed boundary operator,
called the coboundary operator, ∂∗ : Cp(M;R) → Cp+1(M;R), defined by
∂∗(φ)(ρ) = φ(∂ρ), where φ ∈ Cp(M;R) and ρ ∈ Cp+1(M;R). Clearly, we
also have (∂∗)2 = 0 and

. . .
∂∗−→ Cp−1(M;R)

∂∗−→ Cp(M;R)
∂∗−→ Cp+1(M;R)

∂∗−→ . . .

is a cochain complex. In particular, we may define the singular cohomology
ofM with R coefficients to be

Hp(M;R) = Ker(∂∗ : Cp(M;R) → Cp+1(M;R))

Im(∂∗ : Cp−1(M;R) → Cp(M;R))
.

Integration defines a homomorphism from p-forms onMn to p-cochains
onM with real coefficients,∫

: ApDR(M) → Cp(M;R),
(∫

α

)
(ρ) =

∫
ρ

α,

where ρ ∈ Cp(M) is a p-chain in M. The integration makes sense because
α is a p-form and ρ is a p-chain. Indeed, each integral is calculated over a
simplex by pulling back the form. If α is a p-form and ρ a (p + 1)-chain,
then we have

∂∗
(∫

α

)
(ρ) =

(∫
α

)
(∂ρ) =

∫
∂ρ

α =
∫
ρ

dα =
(∫

dα
)
(ρ),

by Stokes’s theorem. This shows that integration is a morphism of cochain
complexes, and therefore it induces a homomorphism on cohomology,
H∗
DR(M) → H∗(M;R). The famous theorem of de Rham is then

Theorem A.6 (de Rham’s theorem) If M is a smooth manifold without
boundary, then integration induces an isomorphism of algebras

H∗
DR(M)

∼=→ H∗(M;R).
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Therefore, in the book, we will typically write H∗(M;R) when we refer
to cohomology, even though it may be coming from forms. Note that
integration is not an algebra map, however it induces in cohomology an
isomorphism of graded algebras where the multiplication in H∗

DR(M) is
induced by the wedge product of forms, and by the usual cup product in
singular cohomology.

A.4 The Hodge decomposition

The Hodge decomposition of forms provides a canonical way to view the
vector spaces of cohomology. Let Mn be a compact oriented Riemannian
n-manifold. There is a Hodge star operator, ∗, that associates to every p-
form α an (n− p)-form ∗α so that the following properties hold.
1. The Hodge star applied to the constant function at 1 is the volume form

of the manifold: ∗1 = ω. Note that this immediately implies that the star
operator depends on the metric of the manifold.

2. ∗ is linear.
3. ∗(fα) = f (∗α), where f is a function.
4. ∗ ∗ α = (−1)np+pα, for a p-form α.
5. α ∧ ∗α = 0 if and only if α = 0.
6. If β is another p-form, then α ∧ ∗β = β ∧ ∗α.
We can indicate the local formula for ∗ by considering p-forms α = aIdeI

and β = bJdeJ. This notationmeans that we are just takingmonomials here,
where I = (i1, . . . , ip) and J = (j1, . . . , jp). Then

α ∧ ∗β =
{
0 if I �= J

±aI bI ω if I = J,

where the ordering of I and its complement determine the sign. In particular,
if α = ∑

I aI deI with |I| = p, then α ∧ ∗α = ∑
(a2I ) ω.

The Hodge star operator allows us to define an inner product on p-forms
by taking

(α,β) =
∫
M

α ∧ ∗β.

This definition has all of the standard properties of an inner product. For
instance, property (6) of ∗ immediately shows that (−,−) is symmetric. The
formula for α∧∗α shows (α,α) ≥ 0 and property (5) shows (α,α) = 0 only
when α = 0. Finally, note that the star operator is an isometry with respect
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to the inner product. Here we use property (3), the anti-commutativity of
forms and symmetry.

(∗α, ∗β) =
∫
M

∗α ∧ ∗ ∗ β = (−1)np+p
∫
M

∗α ∧ β

= (−1)np+p
∫
M
(−1)p(n−p)β ∧ ∗α = (−1)np+p+np−p2

∫
M

β ∧ ∗α

=
∫
M

β ∧ ∗α = (β,α) = (α,β),

since 2np− p(p− 1) is always even.
We can also define a co-differential δ : ApDR(M) → Ap−1DR (M) by setting

δ = (−1)np+n+1 ∗ d ∗ .

Again note that, as opposed to d, δ depends on the metric (since ∗ does).
Also, the presence of ∗ in the definition tells us that δ is not in general a
derivation. By property (4) of the star operator and d2 = 0, we see that
δ2 = 0. So we have forms α that are co-closed, δα = 0, and forms β that
are co-exact, β = δγ for some γ . Let us now prove the key fact relating δ

to d.

LemmaA.7 LetMn be a compact oriented Riemannian n-manifold without
boundary. If α is a (p− 1)-form and β is a p-form, then (dα,β) = (α, δβ).

Proof Note first that the derivation property of d gives

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β.

Now we compute using Stokes’s theorem,

(dα,β) =
∫
M
dα ∧ ∗β =

∫
M
d(α ∧ ∗β) − (−1)p−1α ∧ d ∗ β

= (−1)p
∫
M

α ∧ d ∗ β

= (−1)p
∫
M

α ∧ (−1)n(n−p+1)+(n−p+1) ∗ ∗d ∗ β

= (−1)p+n(n−p+1)+(n−p+1)
∫
M

α ∧ ∗(∗d∗)β
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= (−1)p+n(n−p+1)+(n−p+1)
∫
M

α ∧ ∗(−1)np+n+1δβ

= (−1)np+n+1+p+n(n−p+1)+(n−p+1)
∫
M

α ∧ ∗δβ

=
∫
M

α ∧ ∗δβ = (α, δβ),

since the exponent of −1 reduces to 2n + 2 + n(n + 1) which is always
even. �

The operators d and δ are therefore adjoint to one another. Note for
example, that if α is closed, then (α, δβ) = 0 for all β. Similarly, if α is
co-closed, then (α,dβ) = 0 for all β. So closed forms are orthogonal to
Im(δ) and co-closed forms are orthogonal to Im(d). Indeed, the implica-
tions may also be reversed here. Suppose α is orthogonal to Im(δ). Then,
(dα,dα) = (α, δ dα) = 0 implies that dα = 0. A similar argument holds for
α orthogonal to Im(d). We therefore have the

Proposition A.8
(1) A form is closed if and only if it is orthogonal to all co-exact forms.
(2) A form is co-closed if and only if it is orthogonal to all exact forms.

Now define an operator � : ApDR(M) → ApDR(M) by � = d δ + δ d. Note
that � is self-adjoint; that is, (�α,β) = (α,�β) by the adjointness of d and
δ. We want to know which forms are both closed and co-closed.

Lemma A.9 Let α ∈ ApDR(M). Then �α = 0 if and only if dα = 0 and
δα = 0.

Proof We have

(�α,�α) = ((d δ + δ d)α, (d δ + δ d)α)

= (d δα,d δα) + (d δα, δ dα) + (δ dα,d δα) + (δ dα, δ dα)

= (d δα,d δα) + (δ dα, δ dα)

since d δα is closed and δ dα ∈ Im(δ). Now, if �α = 0, then the positive
definiteness of the inner product implies that both d δα = 0 and δ dα = 0.
But then we have

0 = (d δα,α) = (δα, δα),

which implies δα = 0 by positive definiteness. Similarly, we have dα = 0.
On the other hand, if α is closed and co-closed, then by the formula above
(�α,�α) = 0 and this implies �α = 0. �
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The forms that are both closed and co-closed are called harmonic forms.
Obviously, the harmonic p-forms form a sub-vector space of ApDR(M) and
we will denote this subspace byHp. The Hodge decomposition asserts that
all forms can be made up of harmonic forms, exact forms and co-exact
forms.

Theorem A.10 (Hodge decomposition theorem) Let M be a compact
oriented Riemannian manifold without boundary. Then

ApDR(M) = Hp ⊕ Im(�) = H ⊕ Im(d) ⊕ Im(δ).

Proof Suppose α ∈ Hp and β = �γ for some γ . Then (α,β) = (α,�γ ) =
(�α, γ ) = 0, since � is self-adjoint. Hence, H is orthogonal to Im(�).
Indeed, some hard analysis shows that if a form β is orthogonal to all
harmonic forms, then β ∈ Im(�). Analysis also shows that dim (Hp) is
finite, so there is a finite basis of harmonic forms h1, . . . ,hk which we can
take to be orthonormal by scaling appropriately. Now let α ∈ ApDR(M) and
denote by αH the form

αH =
k∑
i=1

(α,hi)hi.

Note that (α−αH,hj) = (α,hj)−∑
i(α,hi)(hi,hj) = (α,hj)− (α,hj) = 0 by

orthonormality of the hi’s. By what we said above, this means that α−αH ∈
Im(�). Hence, ApDR(M) = Hp ⊕ Im(�).
We have already seen in Proposition A.8 that Im(d) and Im(δ) are orthog-

onal. Since forms inHp are both closed and co-closed, these three subspaces
are mutually orthogonal. Clearly, Im(�) ⊆ Im(d) ⊕ Im(δ) and, since
ApDR(M) = Hp ⊕ Im(�), we also have ApDR(M) = H ⊕ Im(d) ⊕ Im(δ). �

Corollary A.11 Let α ∈ ApDR(M). Then α has a unique decomposition

α = H(α) + αd + αδ,

where H(α) ∈ Hp, αd ∈ Im(d) and αδ ∈ Im(δ).

Proposition A.8 says thatHp and Im(d) give all closed forms in ApDR(M).
Moreover, we see that α is exact precisely when H(α) = 0, αδ = 0 and α =
dβδ for a unique element βδ ∈ Im(δ). To see this, suppose α = dxδ = dyδ
with xδ, yδ ∈ Im(δ). Then we have

0 = d(xδ − yδ) = d(δx̄− δȳ) = dδ(x̄− ȳ),
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where δx̄ = xδ and δȳ = yδ. But then

0 = (dδ(x̄− ȳ), (x̄− ȳ)) = (δ(x̄− ȳ), δ(x̄− ȳ)),

and this implies xδ − yδ = δ(x̄− ȳ) = 0. Hence, xδ = yδ.
The foregoing discussion says that when we calculate Hp

DR(M), we can
simply ignore the summand Im(d) and find

Theorem A.12 (de Rham existence) If M is a compact orientable Rieman-
nian manifold without boundary, then

Hp = Hp
DR(M) = Hp(M;R).

Finally, it is important to note that this theorem only gives an isomor-
phism of vector spaces in each degree. It is not true in general that the
wedge product of harmonic forms is harmonic. Thus, there is no algebra
homomorphism in general from harmonic forms to cohomology.

Exercises for Appendix A

Exercise A.1 If V and W are tangent vector fields on M, then we define their Lie
bracket by

[V ,W](f ) = V(W(f )) −W(V(f )).

Apply the definition of bracket to prove the following properties.
(1) [V ,W] = −[W ,V].
(2) [aV + bW ,Z] = a[V ,Z] + b[W ,Z] where a,b ∈ R.

(3) [[V ,W],Z] + [[W ,Z],V] + [[Z,V],W] = 0 (Jacobi Identity).

(4) [fV , gW] = fg[V ,W] + fV(g)W − gW(f )V for smooth functions f and g.

Exercise A.2 Show that the flow φt associated to a vector field X satisfies

φt
∗α − α =

∫ t

0
φs

∗L(X)α ds

for a form α and Lie derivative L(X). Hint: see [112, page 157].



Appendix B
Spectral sequences

Before explaining what is in this appendix, we first mention what is not in
it. It does not contain a complete presentation of spectral sequences – nor a
historical background of the subject. The readers interested by these points
should consult one of the classical books introducing algebraic topology or
[186]. But, since in many parts of the book we have been led to natural
questions and properties about spectral sequences (see Subsection 4.2.3,
Theorem 4.56, Section 4.4, Theorem 7.36, Question 7.74, Section 9.7,...),
we must at least give the flavor of what a spectral sequence is and how
we can use it (as well as some basic examples for entertainment). This
appendix also includes some proofs of theorems used in other chapters.
For instance:

• the Zeemann–Moore theorem (Theorem B.15), which is essential for the
study of morphisms of fibrations (Corollary B.16);

• the odd spectral sequence (Theorem B.18) that is fundamental for the
understanding of the models of homogeneous spaces or biquotients (see
Theorem 3.33 or Corollary 3.51 for instance) andmore generally for pure
models (see Subsection 2.5.3);

• the spectral sequences that appear in the particular case of a double
complex, the Frölicher spectral sequence of which is an example (see
Definition 4.69).

B.1 What is a spectral sequence?

Definition B.1 A (homology) spectral sequence
{
Er,dr

}
is a sequence (Er) of

Z-bigradedmodules, each of themwith a differential dr : Erp,q → Erp−r,q+r−1
and such that Er+1 = H(Er,dr). The module Er is called the r-level
(or r-stage) of the spectral sequence. An element of Erp,q is said of total
degree p+ q.
A morphism of spectral sequences f :

{
Er,dr

} → {
E′r,d′r} is a fam-

ily of morphisms f r : Er → E′r of bigradation (0, 0) and such that
f r+1 = H(f r).
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If we start with E2, we observe that:

• E3 = Z2/B2 with Z2 = Ker d2 and B2 = Im d2;
• E4 = Z3/B3 with Z3/B2 = Ker d3 and B3/B2 = Im d3.

If we denote by Zr−1 (Br−1) the respective sets of elements of E2 that sur-
vive up to level r (are killed at or before level r), then we get a tower of
inclusions

0 ⊂ B2 ⊂ B3 ⊂ · · · ⊂ Br ⊂ · · · ⊂ Zr ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ E2,

and Er+1 = Zr/Br.

Definition B.2 Let’s denote Z∞ = ∩rZr, B∞ = ∪rBr and E∞
p,q = Z∞

p,q/B
∞
p,q.

The spectral sequence
{
Er,dr

}
converges to a graded module H if there is

a filtration (F•H) of H such that, for any p, E∞
p,q = (FpH/Fp−1H)p+q. A

spectral sequence collapses at level r if we have an isomorphism of bigraded
modules between Er and E∞.

We represent a spectral sequence by an array or a sequence of arrays.
We say that a spectral sequence is a first quadrant spectral sequence if
Erp,q = 0 for p < 0 or q < 0. In this case the representation goes like
this:

· · · · · ·

· · · · · ·

· · · · · ·

q ��

p
��

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'd2

''��������������

,,�������������������������

d4

--(((((((((((((((((((((((((((((((((((

The elements of total degree n are on the line p + q = n and a differential
di joins a point of the line p + q = n to a point of the line p + q = n − 1.
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We have represented d2, d3 and d4 above. We also have:

• Er+1p,q = Erp,q if r > max(p,q+ 1);
• Er+1p,0 is always a submodule of Erp,0 and we have a sequence of inclusions

E∞
p,0 = Ep+1p,0

� � �� · · · � � ��E3p,0
� � ��E2p,0 ;

• Er+10,q is always a quotient of Er0,q and we have a sequence of surjections

E20,q �� ��E30,q �� �� · · · �� ��Eq+20,q = E∞
0,q .

Definition B.3 In a first quadrant spectral sequence, the transgression is the
relation from E2q,0 in E

2
0,q−1 given by the diagram

E20,q−1

��

0 �� E∞
q,0

�� Eqq,0

��

dq �� Eq0,q−1 �� E∞
0,q

�� 0

E2q,0

Proposition B.4 Let fr : (E
∗,∗
r ,dr) → (E′∗,∗

r ,d′
r) be a morphism between

two spectral sequences such that fn is an isomorphism for some integer n.
Then, for any integer m, n ≤ m, fm is an isomorphism. If we have first
quadrant spectral sequences, then f also induces an isomorphism between
E∞ and E′∞.

B.2 Spectral sequences in cohomology

Definition B.5 A spectral sequence in cohomology
{
Er,dr

}
is a sequence,

(Er) of Z-bigraded differential modules such that dr : E
p,q
r → Ep+r,q−r+1r

and Er+1 = H(Er,dr).
A morphism of spectral sequences f :

{
Er,dr

} → {
E′
r,d

′
r
}
is a fam-

ily of morphisms fr : Er → E′
r of bigradation (0, 0) and such that

fr+1 = H(fr).

In fact, a spectral sequence in cohomology can be viewed as a third
quadrant (homology) spectral sequence and all that we said above is easily
adapted to this situation. For instance, we say that a spectral sequence in
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cohomology is a first quadrant spectral sequence if Ep,qr = 0 for p < 0 or
q < 0. In this case the representation goes like this:

d2
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Proposition B.4 is still valid in this context.

B.3 Spectral sequences and filtrations

Most of examples of spectral sequences arise from a filtration on a complex.

Definition B.6 A filtered differential R-module is a graded R-module M
such that M = ⊕∞

n=0M
n, d(Mn) ⊂ Mn+1, Fp+1M ⊂ Fp(M) and d(Fp(M)) ⊂

Fp(M).
The filtration is called bounded if, for any n, there exist two integers s(n)

and t(n) such that

0 = Fs(n)(Mn) ⊂ Fs(n)−1(Mn) ⊂ · · · ⊂ Ft(n)(Mn) = Mn.

Definition B.7 A bigraded differential algebra is a bigraded Z-module E∗,∗
with a multiplication Ep,q ⊗ Er,s → Ep+r,q+s and a differential d such that

d

⎛⎝ ⊕
p+q=n

Ep,q

⎞⎠ ⊂
⊕

r+s=n+1
Er,s.

A filtered differential graded algebra is a filtered differential module and
a differential graded algebra A such that the multiplication sends FrA⊗FsA
into Fr+sA.

Theorem B.8 Any filtered differential graded R-module gives rise to
a spectral sequence in cohomology

{
E∗,∗
r ,dr

}
, r ≥ 1, with Ep,q1 =

Hp+q(FpM/Fp+1M). If the filtration is bounded, the spectral sequence
converges to H(M,d).
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In the case of a filtered differential graded algebra, any stage of the
spectral sequence is a bigraded differential algebra.

Of course, this is where the use of upper and lower indices shows itself
to be powerful. We set:

• Zp,qr = FpMp+q ∩ d−1(Fp+rMp+q+1);
• Bp,qr = FpMp+q ∩ d(Fp−rMp+q−1);
• Ep,qr = Zp,qr /(Zp+1,q−1r−1 + dZp−r+1,q+r−2r−1 ).

With this notation, we have to prove that we get a spectral sequence. For
instance, the differential d sends Zp,qr to Zp+r,q−r+1r and induces dr : E

p,q
r →

Ep+r,q−r+1r . We refer the reader to [186, Chapter 2].

B.4 Serre spectral sequence

Theorem B.9 ([236]) Let f : E → B be a fibration with F path connected
and B simply connected. We consider homology and cohomology with
coefficients in any commutative ring.

1. There is a filtration of Hn(E),

0 = H−1,n+1 ⊂ H0,n ⊂ H1,n−1 ⊂ · · · ⊂ Hn−1,1 ⊂ Hn,0 = Hn(E),

and a first quadrant spectral sequence such that:

E2p,q = Hp(B;Hq(F)), E∞
p,q

∼= Hp,q/Hp−1,q+1.

2. There is a filtration on Hn(E)

0 = Hn+1,−1 ⊂ Hn,0 ⊂ · · · ⊂ H1,n−1 ⊂ H0,n = Hn(E),

and a first quadrant spectral sequence in cohomology such that:

Ep,q2 = Hp(B;Hq(F)), Ep,q∞ = Hp,q/Hp+1,q−1.

Each (Er,dr) is a differential bigraded algebra.

This spectral sequence is called the Serre spectral sequence. The key to
its construction is a filtration of the chain complex on the total space by a
“basic degree”. For more general versions using local coefficients, see [236].

Example B.10 In general, a spectral sequence gives little information about
the algebra structure ofH(A,d) because the convergence uses an associated
graded step. We give here an illustration of this fact, see also Remark 3.36.
Consider the Hopf fibration S3 → S7 → S4. By taking the orbits of the S1

action on the fiber and the total space, we get a fibration S2 → CP(3) → S4.
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The Serre spectral sequence of this fibration has Ep,q2 = Hp(S4) ⊗ Hq(S2)
and thus collapses at level 2. Yet, the cohomology algebra of CP(3) is not
the tensor product of these two algebras.
In this example, we can also observe that the Euler class is zero and that

the fibration has no section.

In opposition with the previous example, the next one shows how we can
get information about the cohomology algebra of the loop space �S3.

Example B.11 Consider the fibration �S3 → PS3 → S3. The cohomology
ring H∗(�S3;Z) has a single generator x2n in each even degree with the
only relations being n · x2n = x2n. Thus, all powers of x2 are nontrivial.

Proof The fibration �S3 → PS3 → S3, where PS3 = {γ : I → S3 | γ (0) =
(1, 0, 0, 0)} is the contractible path space on S3, has the following spectral
sequence diagram.

x6

����
���

���
���

���
���

���
���

� x6 ⊗ y3

x4

����
���

���
���

���
���

���
���

� x4 ⊗ y3

x2

����
���

���
���

���
���

���
���

��
x2 ⊗ y3

y3

Here we are not saying that we know the cohomology of �S3. We are
simply indicating the structure that we now determine algebraically for the
convenience of the reader.
The diagram has two vertical lines with the cohomology of the fiber

along the vertical axis and the cohomology of the base along the horizontal
axis. The only possible nonzero differential is the one shown, d3, which
moves over to the right by three and moves down by two. Because the path
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space is contractible, the class y3 cannot survive to infinity, for it would
then provide a nonzero class in H3(PS3;Z) = 0. Thus, there must exist an
element x2 with d3(x2) = y3. The differential d3 is a derivation, so we have
d3(x22) = 2x2⊗d3(x2) = 2x2⊗y3. This says that the element x2⊗y3 must
still be killed in order to avoid producing a nonzero class inH5(PS3;Z) = 0.
So there must exist x4 with d3(x4) = x2 ⊗ y3. Hence d3(2x4 − x22) = 0.
The cocycle 2x4 − x22 would survive to infinity if it were not zero, so we
must have 2x4 = x22. We will do one more case to see the general algebraic
pattern. We have d3(x23) = 3x22 ⊗ y3 = 6x4 ⊗ y3, so there must exist x6
with d3(x6) = x4 ⊗ y3. Therefore, d3(3 · x6) = d3(x23) and, by the same
argument as before, we must have 3 · x6 = x23. Inductively, we can then
show that classes x2n exist with n · x2n = x2n. �

We now state three particular cases of the Serre spectral sequence. Proofs
can be found in any classical algebraic topology book or in [186].

Corollary B.12 With the hypotheses of TheoremB.9, suppose thatHp(B) =
0 for 0 < p < p0 and Hq(F) = 0 for 0 < q < q0. Then there is an exact
sequence

Hp0+q0−1(F) →Hp0+q0−1(E) →Hp0+q0−1(B)
→Hp0+q0−2(F) · · · →H1(E) → 0.

Corollary B.13 (Gysin sequence) With the hypotheses of Theorem B.9,
suppose that the fiber F has the homology of a sphere Sm. Then we have
exact sequences,

· · · ��Hk+1(E) ��Hk+1(B) ��Hk−m(B) ��Hk(E) �� · · · ,
and

· · · ��Hk(E) ��Hk−m(B)
ψ

��Hk+1(B) ��Hk+1(E) �� · · ·
Themorphismψ satisfiesψ(v1∪v2) = v1∪ψ(v2). In fact,ψ ismultiplication
by the Euler class of the fibration.

Corollary B.14 (Wang sequence) With the hypotheses of Theorem B.9,
suppose that the basis B has the homology of a sphere Sm. Then we have
two exact sequences,

· · · ��Hk(F) ��Hk(E) ��Hk−m(F) ��Hk−1(F) �� · · · ,
and

· · · ��Hk−1(F)
θ ��Hk−m(F) ��Hk(E) ��Hk(F) �� · · · .

The morphism θ acts as an algebra derivation.
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B.5 Zeeman–Moore theorem

Since we are concerned with rational homotopy type, we now work with
vector spaces over a field of characteristic zero.

Theorem B.15 (Zeeman–Moore theorem) If fr : (E
∗,∗
r ,dr) → (E′∗,∗

r ,d′
r) is a

morphism between two first quadrant spectral sequences such that Ep,q2 =
Ep,02 ⊗E0,q2 , E′p,q

2 = E′p,0
2 ⊗E′0,q

2 and f p,q2 = f p,02 ⊗ f 0,q2 , then any two of the
following conditions imply the third:

(1) f2 : E
p,0
2 → E′p,0

2 is an isomorphism for all p;

(2) f2 : E
0,q
2 → E′0,q

2 is an isomorphism for all q;
(3) f∞ : Ep,q∞ → E′p,q∞ is an isomorphism for all (p,q).

This theorem was first proved by J.C. Moore [200, Exposé 22]. Gener-
alizations were given by Zeeman [268], see also [130, Theorem 17.17].
From Theorem B.9 we immediately obtain the following topological
interpretation.

Corollary B.16 Let

F
f

��

��

F′

��
E

g
��

��

E′

��
B

h �� B′

be amorphism between orientable fibrations. Then any two of the following
conditions imply the third:

(1) H∗(h) is an isomorphism;
(2) H∗(f ) is an isomorphism;
(3) H∗(g) is an isomorphism.

Proof In the statement of Theorem B.15, if properties (1) and (2) are satis-
fied, then (3) will follow directly from the hypotheses and Proposition B.4.
We suppose now that (1) and (3) are satisfied and prove (2). We follow

the proof of [182, Theorem 11.1, Chapter XI] with an appropriate modifi-
cation in the case of cohomology. We will use the classical Four Lemma of
homological algebra that we recall below for the convenience of the reader,
see Lemma B.17. We consider the property:

(2)j: the map f2 : E
0,q
2 → E′0,q

2 is an isomorphism for all q, 0 ≤ q ≤ j.
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Observe that E0,02 = E0,0∞ . The hypothesis (3) implies that (2)0 is satisfied.
So we now work by induction and assume (1), (3) and (2)j, with j fixed.
Step 1.We do a second induction, on the integer i, considering the property

(2)ji : f
p,q
i is an isomorphism for all q, q+ i ≤ j + 2, and all p,

and a monomorphism for all q, q ≤ j, and all p.

Observe that (2)j2 is true and suppose that (2)
j
n is satisfied for some integer

n. We have to prove (2)jn+1 and for that we need to come back to the
construction of the (n + 1)st page from the nth page. First we look at the
subspacesZ∗,∗

n . Consider the following morphism between exact sequences:

0 �� Zp,qn ��

Z(f )p,qn
��

Ep,qn ��

f p,qn
��

Ep+n,q−n+1n

f p+n,q−n+1n
��

0 �� Z′p,q
n

�� E′p,q
n

�� E′p+n,q−n+1
n

If q ≤ j, then (q − n + 1) + n ≤ q + 1 ≤ j + 2 and f p+n,q−n+1n is an
isomorphism and f p,qn a monomorphism, by assumption. Therefore,Z(f )p,qn
is a monomorphism.
If q ≤ j − n + 1, then f p,qn is an isomorphism and f p+n,q−n+1n a

monomorphism. Therefore Z(f )p,qn is an isomorphism.
We look now at the B∗,∗

n :

Ep−n,q+n−1n
��

f p−n,q+n−1n
��

Bp,qn

B(f )p,qn
��

�� 0

E′p−n,q+n−1
n

�� B′p,q
n

�� 0

If q ≤ j, then f p−n,q+n−1n is an isomorphism. Therefore B(f )p,qn is
surjective.
Finally, we arrive at the space E∗,∗

n+1:

0 �� Bp,qn ��

B(f )p,qn
��

Zp,qn ��

Z(f )p,qn
��

Ep,qn+1

f p,qn+1
��

�� 0

0 �� B′p,q
n

�� Z′p,q
n

�� E′p,q
n+1 �� 0
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If q ≤ j, Z(f )p,qn is a monomorphism and B(f )p,qn is surjective. Therefore
f p,qn+1 is a monomorphism.
If q ≤ j − (n + 1) + 2 = j − n + 1, then Z(f )p,qn is an isomorphism.

Therefore, f p,qn+1 is an isomorphism.
We have thus proved (2)ji for any i.

Step 2.We establish (2)j+1. In order to see this, using a descending induction
on i, we prove that f 0,j+1i : E0,j+1i → E′0,j+1

i is an isomorphism for any i ≥ 2.
Observe that, in first quadrant spectral sequences, we have:
– E0,j+1i

∼= E0,j+1∞ for i large enough,

–Z0,j+1i = E0,j+1i+1 , for any i ≥ 2, because the range of di : E
−i,j+i
i → E0,j+1i

is zero.
From this first property and the hypothesis (3), we may assume that f 0,j+1n+1

is an isomorphism and we are reduced to proving that f 0,j+1n is an iso-
morphism also. We consider the following morphism between two exact
sequences:

0 �� Z0,j+1n
��

Z(f )0,j+1n
��

E0,j+1n

dn ��

f 0,j+1n
��

En,j−n+2n

f n,j−n+2n
��

0 �� Z′0,j+1
n

�� E′0,j+1
n dn

�� E′n,j−n+2
n

From Step 1, we know that f n,j−n+2n is an isomorphism. On the other hand,
we have Z0,j+1n = E0,j+1n+1 , so Z(f )0,j+1n is an isomorphism by induction. This

implies the injectivity of f 0,j+1n .
Recall now that B(f )n,j−n+2n is surjective; this implies the surjectivity of

f 0,j+1n by the same argument, replacing En,j−n+2n by Bn,j−n+2n in the previous
diagram.
We then get that f 0,j+1n is an isomorphism and (2)j+1 follows.
The same argument works to prove that (2) and (3) imply (1). �

Lemma B.17 (The Four Lemma [182, Lemma 3.3, Chapter I]) Consider
the following commutative diagram with exact rows.

• ��

α1

��

• ��

α2

��

• ��

α3

��

• ��

α4

��

•
α5

��• �� • �� • �� • �� •
(i) If α1 is an epimorphism and α2 and α4 monomorphisms, then α3 is a

monomorphism.
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(ii) If α5 is a monomorphism and α2 and α4 epimorphisms, then α3 is an
epimorphism.

B.6 An algebraic example: The odd spectral sequence

The following result gives the structure of the cohomology algebra
H∗(G/T;Q) where T is the maximal torus of a compact connected Lie
group G and, more generally, for the algebra H∗(G/H;Q) if H is a closed
subgroup of maximal rank in G, see Theorem 3.33.

Theorem B.18 Let (A = ∧(Q⊕ P),d) be a cdga where Q is concentrated
in even degrees and P in odd degrees such that d(Q) = 0 and d(P) ⊂ ∧Q.
Further, suppose that H(A,d) is of finite dimension. Then the following
conditions are equivalent:

(1) P and Q have the same dimension;
(2) χ(H(A,d)) > 0;
(3) H(A,d) is evenly graded.

If these conditions are satisfied, then H(A,d) = ∧Q/I, where I is the ideal
generated by dP.

This statement can be generalized to any minimal model, see [129] or
[87, page 444].

Proof We give A a new (lower) gradation defined by GsA = ⊕i(∧Q ⊗
∧iP)s−i and observe from the hypotheses that dGsA ⊂ GsA. Therefore, this
gradation induces a gradation GsH on cohomology H = H(A,d) and the
corresponding Euler characteristics of GsH and GsA are equal. Observe
also that an element of (∧Q⊗ ∧iP) is of odd lower degree if and only if i is
odd. As a consequence, we have:

χ(GsH) =
∑
i

(−1)idim H((∧Q⊗ ∧iP)s−i,d)

=
∑
i

(−1)idim (∧Q⊗ ∧iP)s−i.

Therefore, the global Euler characteristic of H = ⊕sGsH is obtained by

χ(H) =
∑
s

χ(GsH) =
∑
s

∑
i

(−1)idim (∧Q⊗ ∧iP)s−i.

To use the finite dimensional hypothesis, we have to take into account a
special type of Poincaré polynomial adapted to this situation called the
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Koszul–Poincaré polynomial:

PH(t) =
∞∑
s=0

χ(GsH)ts =
∞∑
s=0

∑
i

(−1)idim (∧Q⊗ ∧iP)s−its.

This last term does not depend on the differential and can be computed as:

PH(t) =
∏p
i=1(1− t2ui)∏q
j=1(1− t2vj)

,

if Q is of dimension q generated by elements of degrees (2v1, . . . , 2vq) and
P of dimension p generated by elements of degrees (2u1−1, . . . , 2up−1). In
order to have H of finite dimension, this expression must be a polynomial
and we therefore require p ≥ q.
If χ(H) > 0 then one has p = q and, in this case, χ(H) is the quotient

∏
ui∏
vj
.

Reciprocally, p = q implies χ(H) > 0.We have thus proved the equivalence
between (1) and (2). Obviously (3) implies (2). So we are reduced to proving
(1) or (2) implies (3).
For that, we use a classical construction in minimal models in which we

kill the vector space Q by adding a copy sQ, shifted by one degree (i.e.
|sq| = |q| − 1 if q ∈ Q). We construct a cdga (∧Q ⊗ ∧P ⊗ ∧sQ,d) with
d(sq) = q, observe that (∧Q⊗ ∧sQ,d) is acyclic and therefore see that the
cohomology of (∧Q⊗ ∧P⊗ ∧sQ,d) is ∧P.
We now forget all the degrees and consider the degree in word length in

P and sQ. In (∧Q⊗∧P⊗∧sQ,d), the differential d lowers this word length
by exactly one, so we have an induced lower degree on the cohomology.
We denote it by Hk.
We now filter (∧Q⊗∧P⊗∧sQ,d) by the word length degree in sQ. This

gives a spectral sequence with first page Ei,j1 = ⊕i(∧isQ) ⊗Hj(∧Q⊗ ∧P).
Let k be the greatest integer such thatHk(∧Q⊗∧P) �= 0 and let α ∈ Hk.

Choose an element a of maximal word length in ∧sQ that is of degree
dimQ. (For this, recall that Q is in even degrees, so sQ is in odd degrees.
Therefore, the product of all generators in sQ is one such element a.) The
product aα cannot be killed in the spectral sequence (since it is in the corner),
so dimP ≥ k + dimQ. From the assumption dimP = dimQ, we deduce
k = 0 and, thus, H = ∧Q/(dP) is evenly graded. �

B.7 A particular case: A double complex

DefinitionB.19 A double complex is a bigradedR-moduleM equippedwith
two differentials, d′ : Mp,q → Mp+1,q and d′′ : Mp,q → Mp,q+1, such that



B.7 A particular case: A double complex 421

d′d′′ + d′′d′ = d′2 = d′′2 = 0. The total complex associated to the double
complex is (Tot(M),d) with Tot(M)n = ⊕p+q=nMp,q and d = d′ + d′′.

Since d′2 = d′′2 = 0, we have two cohomologies associated to a double
complex:

H∗,∗
I (M) = H(M∗,∗,d′) and H∗,∗

II (M) = H(M∗,∗,d′′).

Because d′d′′ + d′′d′ = 0, the respective differentials d′ and d′′ induce dif-
ferentials d̄′ on HII(M∗,∗) and d̄′′ on HI(M∗,∗) so that we get two new
cohomologies

H∗,∗
I HII(M) = H(H∗,∗

II (M), d̄′) and H∗,∗
II HI(M) = H(H∗,∗

I (M), d̄′′).

Theorem B.20 Let (M∗,∗,d′,d′′) be a double complex. Then we have two
spectral sequences:

{
IEr, Idr

}
and

{
IIEr, IIdr

}
such that

IE
∗,∗
2 = H∗,∗

I HII(M) and IIE
∗,∗
2 = H∗,∗

II HI(M).

Moreover, ifMp,q = 0when p < 0 or q < 0, then the two spectral sequences
converge to H∗(Tot(M),d).

The idea is to take the two spectral sequences associated to the following
filtrations:

FpI (Tot(M))t =
⊕
r≥p

Mr,t−r and FpII(Tot(M))t =
⊕
r≥p

Mt−r,r.

A quick (and wrong!) glimpse at this situation might elicit the idea that such
spectral sequences always collapse at level 2. A counterexample is given in
the case of the Frölicher spectral sequence in Example 4.75.

Exercises for Appendix B

In order to understand spectral sequences, the reader needs to experiment and do
concrete examples on his or her own. Here we suggest some “easy” problems for a
beginner.

Exercise B.1 Use the Wang exact sequence to prove Hq(�Sm) = Z if q = k(m− 1)
and 0 otherwise.

Exercise B.2 Give a generalization of Example B.11 and determine the cohomology
algebra of �Sm. Hint: see for instance [37, page 204].

Exercise B.3 Let f : S3 → K(Z, 3) be the classifying map of the fundamental class.
Let X denote the pullback of the path fibration PK(Z, 3) → K(Z, 3) along f .
Compute H5(X).

Exercise B.4 By using the Serre spectral sequence of the fibration S1 → S2n+1 →
CP(n), determine the cohomology algebra of H∗(CP(n);Z). (Remember, the
differentials are derivations.)
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Exercise B.5 By using the Serre spectral sequence of the path fibration K(Z,n) →
PK(Z,n+ 1) → K(Z,n+ 1), determine the cohomology algebra H∗(K(Z,n);Q).

Exercise B.6 By using the Serre spectral sequence of the fibration U(n) → EU(n) →
BU(n), determine the cohomology algebra H∗(BU(n);Q).

Exercise B.7 Compute the cohomology algebras, with coefficients in Q, of the
various Stiefel and Grassmann manifolds.



Appendix C
Basic homotopy
recollections

In this appendix we collect a few classical notions and results in homotopy
theory that are used in various chapters. We denote the set of homotopy
classes of maps from the (pointed) space X to the (pointed) space Y by
[X,Y], where we take homotopies relative to the basepoint. If f : X →
Y, then pre- and post-composition with f induce respective morphisms of
homotopy sets f � : [Y,Z] → [X,Z] and f� : [Z,X] → [Z,Y].

C.1 n-equivalences and homotopy sets

In Chapter 2, we defined a notion of cdga homotopy and considered
sets of homotopy classes of cdga morphisms. We saw there that ratio-
nal homotopy equivalences (i.e. quasi-isomorphisms) induce bijections of
homotopy sets. This result is the cdga analogue of the following thread of
ideas.

Definition C.1 ([240, page 404]) A continuous map of path connected
spaces f : X → Y is called an n-equivalence for n ≥ 1 if for every x ∈ X,
the induced map f� = πq(f ) : πq(X,x) → πq(Y, f (x)) is an isomorphism
for 0 < q < n and an epimorphism for q = n. A weak equivalence or
∞-equivalence is an n-equivalence for all n ≥ 1.

The effect of an n-equivalence on homotopy sets is described by the

Proposition C.2 ([240, Corollary 7.6.23]) If f : X → Y is an n-equivalence,
then
– f� : [P,X] → [P,Y] is bijective if P is a CW-complex of dimension

≤ n− 1;
– f� : [P,X] → [P,Y] is surjective if P is a CW-complex of dimension≤ n.

The next result, Whitehead’s theorem, provides a way to detect n-
equivalences of simply connected spaces by looking at homology.
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Theorem C.3 ([240, Theorem 7.5.9]) Let f : (X,x0) → (Y, y0) be a
map of path connected and pointed spaces. If there is n ≥ 1 such that
πq(f ) : πq(X,x0) → πq(Y, y0) is an isomorphism for q < n and an epimor-
phism for q = n, then Hq(f ) : Hq(X,x0) → Hq(Y, y0) is an isomorphism
for q < n and an epimorphism for q = n. Conversely, if X and Y are simply
connected and Hq(f ) is an isomorphism for q < n and an epimorphism for
q = n then f is an n-equivalence.

A map f : X → Y is a homotopy equivalence if there exists g : Y → X
with fg � idY and gf � idX. The symbol � denotes the homotopy relation
between maps and we also write X � Y when there exists a homotopy
equivalence X → Y. We then say that X and Y have the same homotopy
type. Note that we do not need a chain of maps here as in the defini-
tion of rational homotopy type (see Definition 2.34) because in this case
we require the existence of a map that is a homotopy inverse. The fol-
lowing result provides the link between weak equivalences and homotopy
equivalences.

TheoremC.4 ([240, Corollary 7.6.24]) Amap f : X → Y of CWcomplexes
is a weak equivalence if and only if it is a homotopy equivalence.

C.2 Homotopy pushouts and pullbacks

Throughout the book, we have used the notions of homotopy pushout and
homotopy pullback. In this section, we recall these general notions and
mention several simple results about them.
Given two maps f : X → W and g : Y → W , form the space

P(f , g) = {(x, θ , y) ∈ X ×WI × Y) | f (x) = θ(0), g(y) = θ(1)}.

This space is the homotopy pullback of f and g in the following sense. First,
the square

P(f , g)
ḡ

��

f̄
��

X

f
��

Y
g

�� W
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is homotopy commutative, where f̄ and ḡ are the canonical projections.
Further, given any other homotopy commutative square

Z
h ��

k
��

X

f
��

Y
g

�� W

there exists a map ω : Z → P(f , g)

Z

k

..

ω

��

h

��
P(f , g)

ḡ
��

f̄
��

X

f
��

Y
g

�� W

in which ḡω � h : Z → X and f̄ω � k : Z → Y. The map ω is not unique,
even up to homotopy.
The following are fundamental results for homotopy pullbacks.

Proposition C.5 ([184]) In the following diagram,

A ��

��

B ��

��

C

��
D �� E �� F

the squares BCFE and ACFD are homotopy pullbacks if and only if the
squares BCFE and ABED are homotopy pullbacks.
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Lemma C.6 ([184, Corollary 7, Corollary 9]) Consider the homotopy
commutative cube below:

U1 ��

k

��

���
��

��
��

�
X1

���
��

��
��

�

h

��

Y1 ��

g

��

V1

f

��

U2

���
��

��
��

�
�� X2

���
��

��
��

�

X2 �� V2

Suppose that the top and bottom squares are homotopy pullbacks. If the
maps f , g and h are homotopy equivalences, then so is the map k.

The dual notion is that of a homotopy pushout. Given maps f : W → X
and g : W → Y, the homotopy pushout of f and g is given by

D(f , g) = (X ∪ (W × I) ∪ Y)/ ∼

where (w, 0) ∼ f (w) and (w, 1) ∼ g(w). This space is also called the the
double mapping cylinder of f and g and is a homotopy pushout of f and g
in the following sense. First, the square

W
f

��

g

��

X

ḡ
��

Y
f̄

�� D(f , g)

is homotopy commutative, where f̄ and ḡ are the canonical inclusions.
Further, given any other homotopy commutative square

W
f

��

g
��

X

h
��

Y
k

�� Z
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there exists a map ω : D(f , g) → Z

W

g

��

f
�� X

ḡ
��

h

//

Y
f̄

��

k 00

D(f , g)
ω

��
Z

in which ωḡ � h : X → Z and ωf̄ � k : Y → Z. In general, the map ω is
not unique, even up to homotopy.
Two basic results about homotopy pushouts are the following.

Proposition C.7 In the following diagram,

A ��

��

B ��

��

C

��
D �� E �� F

the squares ABED and ACFD are homotopy pushouts if and only if the
squares ABED and BCFE are homotopy pushouts.

Lemma C.8 ([184, Corollary 7, Corollary 9]) Consider the following
homotopy commutative cube:

U1 ��

f

��

���
��

��
��

�
X1

���
��

��
��

�

h

��

Y1 ��

g

��

V1

k

��

U2

���
��

��
��

�
�� X2

���
��

��
��

�

X2 �� V2
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Suppose that the top and bottom squares are homotopy pushouts. If the
maps f , g and h are homotopy equivalences, then so is the map k.

As indicated by the two statements above, properties of homotopy pull-
backs can often be dualized for homotopy pushouts. Although the next
result is a case where duality between homotopy pullbacks and pushouts
fails, it nevertheless provides a useful homotopical tool.

Theorem C.9 (Theorem of the cube) If the bottom of a cube is a homotopy
pushout and all sides are homotopy pullbacks, then the top of the cube is a
homotopy pushout.

As a consequence, we have

Corollary C.10 Let X be a space and ABED be a homotopy pushout. Then
the square

A×X ��

��

B×X

��
D×X �� E×X

is a homotopy pushout.

Wenote here that homotopy pullbacks and homotopy pushouts are really
only defined up to homotopy equivalence. Replacing any of the spaces or
maps by homotopy equivalent ones in the initial diagram produces the same
homotopy pushout or pullback up to homotopy. In some discussions of
homotopy pushouts and pullbacks, such as in [184], the specific homotopies
being used are also taken into account.

C.3 Cofibrations and fibrations

Two of the most basic homotopical objects are fibrations and cofibra-
tions. Fibrations are probably more familiar to geometers because they are
the homotopical analogues of fiber bundles. Indeed, locally trivial bundles
with paracompact base spaces and covering spaces are examples of fibra-
tions. We begin by recalling the notion of cofibration and then see how
duality provides the definition of fibration. For this section, we refer to
[137] and [265].
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Definition C.11 A map j : A → X is a cofibration if for any commutative
diagram of solid arrows

A

j
��

id×0
�� A× I

j×id
�� H

//

X
id×0

��

f 00

X × I
H′

��
Z

there exists a dotted arrow H′ such that the diagram still commutes.
The quotient map q : X → X/j(A) (or the space X/j(A)) is called the
cofiber of j.

If j : A → X is a cofibration, the map j is injective and induces a home-
omorphism from A to j(A). Therefore, we consider A as a subset of X
(closed in X if X is Hausdorff) and denote the cofiber by X/A. For a space
A, let CA denote the cone on A defined by CA = (A × I)/((a, 1) ∼ ∗).
If f : A → X is any map, recall that the mapping cone of f (or the
homotopy cofiber of f ) is the inclusion q : X → Cf = X ∪f CA (or the
space Cf = X ∪f CA) with X ∪f CA = X ∪ CA/((f (a) ∼ (a, 0)). In
the case of a cofibration j : A → X, the cofiber X/A has the homotopy
type of the cone Cj. That is, we have a homotopy equivalence of pairs
(X/A, ∗) � (Cj,CA).
A space X has a non-degenerate basepoint x0 if the inclusion x0 ↪→ X

is a cofibration. This implies, at least for compactly generated spaces
(see [265] for this definition), that there is an open neighborhood U of
x0 which contracts to x0 in X relative to x0. In other words, there is
a homotopy H : U × I → X such that H(u, 0) = u, H(u, 1) = x0
and H(x0, t) = x0. CW complexes always have nondegenerate base-
points. Indeed, every point of a CW complex is a nondegenerate base-
point. A space is said to be well-pointed if it has a nondegenerate
basepoint.
If the spaces are well-pointed, A → A∨X is a cofibration, called a trivial

cofibration, with cofiber X. Note also that the inclusion A → CA is a
cofibration with cofiber 
A. More generally, if f : A → X is any map, then
the mapping cylinder A → Mf = X ∪ (A ∧ I)/(f (a) ∼ a ∧ 0), a 
→ a ∧ 1, is
a cofibration with cofiber Cf and f is the composition of a cofibration and
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a homotopy equivalence:

A
f

��

jf ��





X

Mf

�

!!�������

Any sequence A
f−→ X

q−→ C is called a cofiber sequence if q : X → C
has the homotopy type ofMf

�−→ X −→ Cf .
For any map f : A → X, we have the Barratt–Puppe sequence,

A
f−→ X

q−→ Cf
δ−→ 
A


f−→ 
X

q−→ 
Cf −→ · · ·

where each three-term sequence is a cofiber sequence. For any space Z,
the Barratt–Puppe sequence induces an exact sequence of pointed sets or
groups:

[A,Z] f �←− [X,Z] q�←− [Cf ,Z] δ�←− [
A,Z]
(
f )�←− [
X,Z] (
q)�←− [
Cf ,Z] ←− · · ·

Finally, we mention that, if either of the maps f or g which define a
homotopy pushout is a cofibration, then the homotopy pushout of f and g
has the homotopy type of the ordinary topological pushout of f and g.
Now suppose that, instead of considering the problem of extending

homotopies, we dualize the definition of cofibration and consider the prob-
lem of lifting homotopies. With this in mind, for a space Y, let YI =
{ω : [0, 1] → Y} be the free path space on Y. Note that any map f : X → Y
induces f I : XI → YI, ω 
→ f ◦ ω.

Definition C.12 A map p : E → B is a fibration if for any commutative
diagram of solid arrows

Z

g

11

G′

��

G

""
EI

pI
��

ev0
��

BI

ev0
��

E
p

�� B
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there exists a dotted arrow G′ such that the diagram still commutes. Here,
for any space Y, the notation ev0 denotes an evaluation mapping YI → Y
given by ev0(ω) = ω(0). The map F = p−1(∗) → E (or the space F) is called
the fiber of p.

Note that the diagram above is equivalent to the following one defining
the homotopy lifting property. TheG’s in the following diagram have tildes
over them to denote that they are the adjoints of the maps in Definition C.12
under the exponential correspondence.

Z× 0
g

��

��

E

p
��

Z× I

G̃′




G̃

�� B

Namely, given the commutative diagram of solid arrows, it is the homotopy
lifting property which ensures the existence of the lift G̃′.
If p : E → B is a fibration with B path connected, the map p is onto. If

f : X → Y is any map, the homotopy fiber of f is the map Ff → X (or the
space Ff ) defined by Ff = {

(ω,x) ∈ YI ×X | f (x) = ω(0) and ω(1) = ∗},
(ω,x) 
→ x. In the case of a fibration p, the fiber F has the homotopy type
of the homotopy fiber Fp.
The projection pB : E× B → B is a fibration, called the trivial fibration,

with fiber E. The path fibration P(X) = {
ω ∈ XI | ω(0) = ∗} → X, ω 
→

ω(1), is a fibration with the loop space �X as fiber. More generally, if
f : E → B is any map, the path fibration associated to f , pf : Ef → B, is
a fibration with fiber Ff , defined by Ef = {

(ω,x) ∈ BI × E | f (x) = ω(0)
}
,

pf ((ω,x)) = ω(1). Any map is the composition of a homotopy equivalence
and a fibration as shown below.

E
f

��

� ��)
))

))
))

B

Ef

pf

��*******

Note that, as wementioned at the start of Section C.3, locally trivial bundles
with paracompact base spaces and covering spaces are fibrations.

Any sequence F
ι−→ E

f−→ B is called a fiber sequence if ι : F → E has
the homotopy type of Ff → Ef → E. For any map f : E → B we have the
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Puppe sequence

. . . −→ �Ff
�ι−→ �E

�f−→ �B
∂−→ Ff

ι−→ E
f−→ B

where each three-term sequence is a fiber sequence. For any space Z, the
Puppe sequence induces an exact sequence of pointed sets or groups:

[Z,B] f�←− [Z,E] ι�←− [Z,Ff ]
∂�←− [Z,�B] (�ι)�←− [Z,�E] ←− · · ·

Recall that the multiplication in the space of loops �B, µ : �B× �B →
�B, is the ordinary composition of loops and the inverse map ν : �B → �B
is given by ν(ω)(t) = ω(1 − t), ω ∈ �B. The group-like properties of �B
extend to the analogue of a group action of �B on the fiber F. This is
expressed in the following

Definition C.13 Let p : E→B be a fibration of fiber F. The holonomy of
p is a map Hol : �B × F → F obtained by the homotopy lifting property
applied to G(ω,x, t) = ω(t):

�B× F × 0 ��

��

E

p
��

�B× F × I

G′
��

G
�� B

with Hol(ω,x) = G′(ω,x, 1).

Finally, we mention that, if either of the two maps f or g defining a
homotopy pullback is a fibration, then the homotopy pullback of f and g
is of the homotopy type of the topological pullback of f and g. Of course,
the topological pullback is both easier to define and more familiar from its
role in bundle theory, so this identification is often useful.
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homomorphism, 4
homotopy, 106
nilpotent, 117
TRC, 289

Lie bracket, 3, 77, 408
Lie derivative, 399
and symplectic action, 307
formula, 400

Lie group, 2
abelian, 8
action, 11
classifying space of, 38
cohomology
Hopf’s theorem, 18

cohomology of, 16, 43, 45
connection on, 270
even dimensional
as complex manifold, 162

exponential, 6, 11
homomorphism, 2
Killing form of, 270
left-right translations, 4
made discrete, 266
maximal compact subgroup of, 3
minimal model of, 71
one-parameter subgroup of, 5
rank of, 8
second Betti number, 22, 40
sectional curvature of, 270
semisimple, 21, 270
simple, 21, 26
third Betti number, 23

Lie subalgebra, 4
Lie subgroup, 3
lifting lemma, 61
lifting of cdga homotopies, 63
localization map, 291
loop product, 342, 343
dual of, 343
Hochschild model, 345
model of, 345

lower grading, 188
Lusternik–Fet theorem, 209
Lusternik–Schnirelmann category, 88

Malcev basis, 121
manifold
almost complex, 150
Calabi–Eckmann, 159, 160
closed, 227
cohomologically symplectic, 188
complex, 148
elliptic four-dimensional, 108
flat, 241
Grassmann, 177
Heisenberg, 117, 162
Hodge, 160
Hopf, 159, 161, 174
integrable almost complex, 154
Kähler, 157, 166
strict formality of, 172

Kodaira–Thurston, 120, 156, 162,
165, 190

orientable, 397
P-, 232
pure, 188
symplectic, 182
nonformal, 338

mapping
cone, 429
algebraic, 322

cylinder, 429
space, 370
pointed, 373

theorem, 89
Massey product, 94
higher order, 95

maximal torus, 8
and Weyl group, 127

McDuff’s blow-up example, 337
minimal cdga, 59
realization of, 90

minimal model, 59, 64
of free loop space
of S2, 213

Q, 67
Q to R, 68
R, 67
canonical, 140, 141
equivariant, 123, 124, 221
existence, 64
of H-spaces, 73
of a product of manifolds, 73
of biquotient
purity of, 138

of classifying space, 72
of cofiber, 90
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of complex algebraic variety, 367
of complex projective space, 72, 78
of connected sum, 108
of diagonal map, 73
of fiber, 81
of homogeneous space, 131, 133
of Lie group, 71
of map, 66, 67
of nilmanifold, 118, 122
of space, 67
of sphere, 72, 78
of Stiefel manifold, 71
of torus, 72
of wedge of spaces, 73
rational, 67
of map, 67

real, 67
relative, 66, 67
uniqueness, 64
of Kodaira–Thurston manifold, 162

mixed Hodge structure, 366
model, 74
r-filtered, 171
bigraded, 95, 113
Cartan–Weil, 51
Cartan–Weil, 309
Dolbeault, 169
filtered, 96
finite, 75
for blow-up, 336, 337
for configuration space, 355
for loop product, 345
Haefliger, 369
for mapping space, 369

of Map(CP2, S6), 373
of biquotient, 137
of blow-up
example, 334

of complement of submanifold, 324
of free loop space, 210, 369
of homogeneous space, 83, 131, 133
of map, 74
of McDuff blow-up example, 337
of principal bundle, 84
of space, 74
Poincaré duality, 109
pure, 86, 188
r-bigraded, 170
semifree, 101
Sullivan, 64

moment-angle complex, 363
morphism, 58

NDR-pair, 429
Nijenhuis tensor, 155
nilmanifold, 92, 116
almost complex structure on, 155
four-dimensional, 192
Lefschetz type, 193
minimal model of, 118, 122
nonformality of, 120, 121
non-Kähler, 167
symplectic, 191
and Brylinski conjecture, 185

toral rank of, 288
two-step, 290

nilpotent
fibration, 79
fundamental group, 76
group, 76
space, 68
symplectic, 194

non-degenerate basepoint, 429
non-formal space, 94
normalization of the bar construction,

382
normalizer, 7

obstructions to formality, 97
one-parameter subgroup, 5
orbit, 274
orientable, 397
orthogonal group, 9

P-manifold, 232
rationally elliptic, 234

parallelizable, 5
path fibration, 39, 79, 431
of S3, 414

Poincaré duality
isomorphism, 319
model, 109

polar decomposition, 3
Pontryagin class, 46
Postnikov tower, 88
for nilmanifold, 122

primitive element, 18
principal bundle, 32
flat, 254
pullback of, 33
trivial, 33
universal, 34, 275

problem
Belegradek–Kapovitch
biquotients, 390
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derivations, 390
curvature
and cohomology, 390

elliptic fiber, 389
exponential growth of Betti numbers,

391
geometry versus algebra, 390
Lalonde–McDuff and models, 391

pullback
of fiber bundle, 27
of principal bundle, 33

Puppe sequence, 40, 432
pure
cdga, 419
fibration, 189
manifold, 188
minimal cdga, 86, 188
splitting of, 87

pure Hodge structure, 364
and bigradation of model, 365

quasi-isomorphism, 59, 60
quasi-nilpotent fibration, 79
question
Lalonde–McDuff, 314, 391

r-bigraded cdga, 170
rank, 8, 121
rational
category, 89
homotopy
descent phenomena, 249
Lie algebra, 77
of fixed point set, 301
type, 68

space, 90
toral rank, 272
of nilmanifold, 288

rationalization of space, 68, 91
rationally
elliptic space, 84
hyperbolic space, 84

real homotopy type, 69, 143
realization
of graded Lie algebra, 92
of minimal cdga, 90
of model by manifold, 106

relative atomic complex, 359
relative minimal cdga, 66
relative minimal model, 67
of diagonal map, 73
of fibration, 81

of Hopf fibration, 82
of path fibration, 81
of sphere bundle, 82
of universal principal bundle, 82
r-bigraded, 170
realization of, 91

relative model
of Borel fibration, 280

Ricci curvature, 269
Riemann curvature, 240
Riemannian
connection, 239
properties of, 239

metric, 239

scalar curvature, 269
sectional curvature, 240
semifree, 236
model, 101, 320
module, 100

shriek map, 319, 329, 342
cohomological, 319

shuffle, 381
product, 384

singular cohomology, 403
soul, 252
space
mapping, 370
non-nilpotent, 68
of orbits, 274
symmetric, 53
of free paths, 377

special orthogonal group, 9
special unitary group, 10
spectral sequence, 409
associated to double complex, 421
collapses, 410
comparison theorem, 416
converges, 410
first quadrant, 410
in cohomology, 411
morphism, 409, 411
odd, 419
of Hopf fibration, 414
Serre, 413
transgression, 411

spinor group, 9
splitting rigid, 259
and derivations, 263

Stiefel manifold, 42
cohomology of, 43, 45
minimal model of, 71

Stokes’s theorem, 402
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strict formality, 172
subspace arrangement
formality of, 361

Sullivan
model, 64

Sullivan cdga, 59, 68
minimal, 59
structure of, 60

Sullivan polynomial forms, 67
suspension
of graded vector space, 57

symmetric space, 53
symplectic
action, 306
splitting of, 310

bundle, 190
group, 11
manifold, 182
almost complex structure of, 187
nonformal, 338

nilpotent manifold, 194
star operator, 184
vector space, 200

symplectically harmonic form, 184

tangent
bundle, 393, 396
map, 393

space
complex, 153
real, 152

theorem
Allday–Halperin, 279
Babenko–Taimanov, 338
Belegradek–Kapovitch, 259
Blanchard, 165
Borel localization, 272, 292
Chen, 388
Cohen–Jones, 347
Darboux, 182
de Rham, 403
Eschenburg, 243
existence of equivariant model,

124
Fang–Rong, 244
Gromoll–Meyer, 210
Gromov, 224
Grove, 216
Haefliger, 369
Hodge decomposition, 407
Hsiang, 276
Kriz, Totaro, 355
Lambrechts, 225

Lusternik–Fet, 209
mapping, 89
Miller, 110
second proof of, 115

Nomizu, 119, 191
O’Neill, 242
of the cube, 428
on filtered algebras and spectral

sequences, 412
Paternain, 230
soul, 252
splitting, 252
Stasheff, 113
Stepien, 315
Stokes’s, 402
Sullivan–Barge, 106
Tanaka, 222
Thurston, 190
Totaro, 250
Vigué-Poirrier–Sullivan, 213
Whitehead, 424
Yuzvinsky, 360
Zeeman–Moore, 416
hard Lefschetz, 163

TNCZ, 164, 165, 293, 313
criterion for, 293

topological blow-up, 332
topological entropy, 227
and rational ellipticity, 230

toral rank, 271, 277
of wedge of spheres, 277
rational, 272, 278
of homogeneous space, 279
of Lie group, 279

toric variety, 363
total complex, 421
total degree, 169, 409
totally
convex, 252
geodesic, 252
non-cohomologous to zero,

164, 293
transgressive element, 39
TRC, 283, 388
algebraic, 284
and hard Lefschetz, 285
and Lefschetz type, 312
for homogeneous spaces, 284
for Lie algebras, 289
is toral rank conjecture, 272

unitary group, 10
universal fibration, 45
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