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Surgery on Paracompact Manifolds
by

Laurence R. Taylor

Abstract

In this thesis we solve the problem of surgery for
an arbitrary, finite dimensibnal, paracompact manifold.
The problem of surgery 1s to decide whether, given a
proper map f ¢+ M—+ X , a bundle (vector, PL-micro, or
TOP-micro), v , over X , and a stable bundle map
F:vy v over f (vM is the normal bundle of M , so
we mast assume M dis respectively a differentiable, a
PL , or a topological, finite dimensional, paracompact
manifold), we can find a cobordism W with 3w =M U N,

a proper map g£: W+ X with g|M =f , a stable bundle
map G: vy, >V with GIvM = F , such that g|N is a
proper homotopy equivalence.

If this problem can be solved, we show this forces
conditions on X , v , and £ . In particular, X must
be a Poincaré duslity space (Chapter 2), v must 1ift
the Spivak normal fibration of X , and f must be degree 1.

If X, v, and f satisfy these conditions, there is
a well-defined obstruction to solving this problem if .m,
ths dimension of M , is at least five (Theorem 3.2.1).
This obstruction lies in a naturally defined group,
L.(X,w), and every element of this group can be realized,

in a specific fashion, as the obstruction to a surgery



problam, provided m > 6 (Theorem 3.2.4). Lm(X,w)
depends only on bthe system of fundamental groups of
‘X (Theorem 3.2.3).

Finally, we have applications for paracompact
manifolds along the same lines as the compact case.
Perhaps the most interesting of these 1s the theoreti-
cal solution of the related guestions of when g Poincare
duality space has the proper‘homotopy type of a para-
compact manifold, and if a proper homotopy equivalence
between paracompa~ct manifolds can be properly deformed
to a homeomorphism, diffeomorphism, or PL-equivalence

(Theorem 3.2.4).
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INTRODUCT1ION

The objecﬁ of this work 1s to give an adequate
theory of surgery for paracompact manifolds and proper
maps. By adequéte we mean first that it should contain
the theory of surgery for compact manifolds. Secondly,
the theory should be gensral enough to permit extensions
of the theoretical results of compact surgery.

These objectives are largely realized. We oblain
surgery groups which characterize the problem in dimen-
sions greater than or equal to five. These groups depend
only on the proper 2-type of the problem. Using these
groups one can classify all paracompact manifolds of a
given proper, simple homotepy type (see [33] or [10] for
a definition of simple homotopy type).

The first chapter constitutes the chief technical
results of this work. In [33], Siebenmann gives a
"geometric" characterization of proper homotopy equiva-
lence (Proposition IV). This characterization was also
discovered by Farrell-Wagoner [9] from whom I learned it.

In section 2 we develop an algebraic process tQ
handle this characterization. In section 3 we apply this
process to construct groups which are the analogue of
the homotopy and homology groups. Thus we get actual
groups measuring by how much a map fails to be a proper
homotopy' equivalence. These groups also satisfy a version

of the Hurewicz and Namioka theorems, so one can often
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use the homology groups, which satisfy a version of
excision, Mayer-Vietoris, etc.

In section 4 we construct a cohomology thsory for
our theory. We get various products for this theory.
Section 5 1s devoted to an analysis of simple homotopy
type along the linzs set out by Milnor in [23]. Section
6 is devoted to constructing locally compact CW complexes
with a given chain complex (see Wall [38] for a treat-
ment of the compact case of this problem).

Chapter 2 is devoted to an analysis of Poincare
duallty for paracompact manifolds and its generalization
to arbitrary locally compact, finite dimensiocnal CW
complexes.

In Chapter 3 the actual surgeries are performed.

It has been observed by several people (especially

Quinn [29] and [30]) that all the surgery one needs to

be able to do is the surgery for a pair (X,3X) for which
X & X 1is a proper l-equivalence (in the compact case
this mzans the inclusion induces isomorphisms on com-
ponents and on ﬂl). We do this in the first section.

In the second section, we sketch the gensral set up and
applications of the theory of paracompact surgery.

A word or two is in order here about internal ref-
erencing. A reference reads from right to left, so that
Corollary 3.4%.1.5 is the fifth corollary to the first
- theorem of section 4 in chapter 3. If the reference is

made from chapter 3 it would be Corollary 4.1.5, and if
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from section 4, Corollary 1.5. Theorem (Proposition,
Lemma) 3.4.6 is the sixth theorem of section 4% of
chapter 3.

Perhaps we should also remark that our use of the
term n-ad agrees with the use of the term in Wall [14]
(see especially Chapter O).‘ For an n-ad, K, 3;K denotes

th face of X

the (n-1)-ad whose total space 1is the 1
and with the (n-1)-ad structure induced by intersecting
the other faces of K . 8.,K 1is the (nul)—aq obtained
by deleting the i race. s K denotes the (n+li—ad
obtained by making K the (n+l)—st face (it can also
be regarded as the (n+l)-ad, K x I , where I has the
usual pair structure).

Lastly, several acknowlédgements are in order. This
thesis was written under the direction of J. Wagoner,
to whom I am indebted for many suggestions during the
preparation of this work. 1T am greatly indebted to him
and to T. Farrell for sharing their results and intuition
on proper homotopy with me at the very beginning. ThanXks
are also due to G. Cooke for many helpful discussions.
Many other friends likewise deserve thanks for their help.
The National Science Foundation should also be thanked

for its support during my graduate career.



Chapter 1

The Proper Homotopy Category and Its Functors

Section 1. Introdﬁction, elementary results, and

homogamous spaces.

The purpose of this chapter is to recall for the
reader some of the basic results we will nsed and to
‘describe a "good" category in which to do proper homo~
topy theory.

The notion of a proper map is clearly essential.

We define a map to be proper iff the inverse image of
every closed compact set is contained in a closed compact
set. We note that this definition is also found in
Bredon [2], page 56.

With this definition of a proper map we lmmediately
have the notions of proper homotopy, proper homotopy
equivalence, etc., and we can define the category of all
topological spaces and proper maps. Classlically there
are several functors which apply to this situation. As
examples we have sheaf cohomclogy with compact supports
and Borel-Moore homology with closed supports (see Bredon
[2]).

We prefer to use singular th=ory whensver possible.
Here too we have cohomology with compact supports and
homology with locally finite chains. Most of the results

concerning such groups are scattered (or non-existent)



in the literature. As a partial remedy for this situa-
tion we will write out the definitions of these groups

and at least indicate the results we neecd.

Definition: A collection of subsets of X 1is said

to be locally finite if every closed, compact subset of
X intersects only finitely many elements of this col-

lection.

L.r.

Definition: Sq (X3T) , where T dis a local

system of R-modules on X (see Spanier [35] pagés 583
281-283), is defined to be the R-module which is the set
of all formal sums Z%jo, where g 1s a singular
g~simplex of X , and & € F(G(VO)) is zero except for

a set of ¢ whose images in X are locally finite.

sU(X:I") is the module of functions @ assigning
to every singular g-simplex ¢ of X an element
¢(c) e I'(a(V,))

For a family of supports V¥ on X (see Bredon [2]
page 19 for a definition) let SX(X;F) denote the sub-
module of Si.f.(X;F) stich that the union of all the
images of the o occurring with non-zero coefficient
in a chain lies in some element of . S%(X;F) consists
of the submodule of all function ¢ for which there exists
an element c¢ € ¥ such that if Image o N ¢ =@ , 9(c) =0.

These modules become chaln complexes in the usual

fashion. Note that for the family of compact supports, c,



S; (X3;I') is just the ordinary singular chains with local
coefficients.

For a proper subspace A € X (inclusion is a proper
map) we get relative chain groups Sg (X,A3) and
S%(X,A;F) . Actually proper subspace 1s sometimes stronger
than we need; i.e. Sg (X,A31") and sY (X,A;T) are de-
fined for any A € X . There is a similar definition for
'the chain groups of a (proper) n-ad.

The homology of SX(X,A;P) will be denoted HX(X,A;F)
except when ¥ = ¢ when we just write H, (X,A3T) . The
homology of si(x,A;P) will be written H$(X,A;F)

Now S%(X,A;F) c s9(X,A3T) . The quotient complex
will be denote S .(X,43) and its homology Bl (X500,
Wa have similar definitions for proper n-ads and also for
homology.

We will next set out ths properties of these groups
we will use. Some of ths obvious properties such as
naturality and long exact sequences will be omitted.

Cup preducts: There is a natural cup product

oy . - . U
H¢(X.Al,...,An,rl) ® H™(X:A A T) ——=

n+l,-..’
Iq+k(X'A A A3, ® T,) for a proper (mtl)-ad
L] l,..., n’..', m, l 2 p p
(X:Al,...,Am) It is associative and commutative in the

graded sense (i.e. a+b = (_l)dega.-deg'bb ca)

Since 8> < 8%, all this follows easily from the
\V _— 3

ordinary cup product with local coefficients once one

checks that if a cochain was supported in c¢ € ¥ , then



its product with any other cochain i1s supported in ¢
if one uses the Alexander-Whitney dlagonal approxima-
tion (Spanier [35] page 250).

Cross products: There are natural products

Ax. . K o, . X

B (KA s sh3T)) © B (V3B ey Bysly) >

q+k |

H—,T_l X xY: XxBl,...,Xme,Al xY,-..,Aan; lel"g) and
1

‘1’ V' . /P/.fn . . b4
Hq(XcAljtsl,An’l—‘l) ® }LL{ (YaBl’.-n’Bm7I-\2) —_%

Hﬂ;fi (X x ¥z XxByyeeesXxByshy xTyeenshy x¥5 Iy xI5)

-1
where (V) = {K E,X><Y|W1(K) e ¥} and V¥ xY =
{KxY < XxY|K e ¥} . These satisfy the usual properties
of the cross product.

We discuss this case in some detail. Let us first

:S»{’,.f.

defins =
n

(XxY) - Z SE(X) 8 55(Y) , where &
i+j:n J

is the completed tensor product, i.e. infinite sums are

allowed. If o:A” » XxY , and if w; and T, are

1

the projections, (o) = Z .(md) ® (w,3). , where
AU R § 2775
i+j=n
i( } is the front i-face and ( )j is the back j~face
(see Spanier [35] page 250). This extends over all of

S%.f.

n and is a natural chain map.

The cohomology cross product is then defined on the
chain level by (cxd)(g) = c(i(ﬂld)) ® d((Wgc)j) , where
¢ is an i-cochain, d a j-cochain, and o an (i+j)-
chain. One checks it has the usual properties.

L1,
We next define A : Sﬁ r (X) ® Sg Ly - Si+§(X><Y)



~as follows. Let hi ; : Al+3 4 A xAY Dbe a homeomorphism
3

such that (b ) : At + AT xa? by x o (x,0) and such
b

that (b ), :AY o+ A xA? by y o+ (0,y) . Define
?

Aoy @ oy) hijo (qX><dY) and extend "linearly"; i.e.

ﬁ)_ Z a®p:*A(g, ®cf) . A then becomes
a,8
a chain map, and the homology cross product is then defined

AMZagy ® B

‘on the chain level as above. It has the usual properties.
Slant product: There are natural products

,&If.
Hg(YzBl,...,Bm;l“l) ® Hype K xY: Ay xYyehh %Y,

| L.t
X x B 3Ty« T) = H " (Xihq,..,A 5T 8 T,)

l,-a

X}<B 1

and HY(Y:By,...,B_ ;7)) ® H +k(XxY TH NI

I
The product is defined on ths chain level by
clo = ¢]E 6o, = 5 ( Z m ) ® c(m,a)j) ® a)

i+j:q+k
where ¢ applied to a chain is zero if the dimensions do
not agree. The slant product is natural on the chain

level and has all ths usual properties.

Cap product: There is a natural product

N
H$(X:Al,.. 3A F ) ® H (X Al, '-’An,Bl,'- m, 2) __'—"?

Lo sB3T ® 1Y)

where d : X =+ XxX 1s the diagonal map. The cap product

Hinw(x : B It is given by ufz=uld,v,
has all the usual properties. We get better support con-
ditions for our cap product than we did for an arbitrary

slant product because dy, of a chain in XxX 1is



"locally finite" with respect to sets of the form ¢ xX
and Xxec¢ for any closed, compact ¢ € X .
One of the most useful of the usual properties of

- the cap product is the

Browder Lemma: ([3], [4]). ZLet (X,A) be a proper

pair (A 1is a proper subspace), and let Z e Hi(X,A;Ié).
Then 37 € Hi_l(A;IélA) is defined. The following |

dlagram commutes

x=1, . * . * o, * 0 _
Hy, (&3T[A) — HiP(X,A,Pl)—-)' H(P(X,I‘l) — pr(g,rllA)

n(-1)%z lnz ' [nz lnaz
\f ¢ ~ »

oy P mor oWy L OO p L
Hn_*(A, (r1®r2) |A.)—}Hn_*(x,rl®l 2)—»Hn_*(X,A ,F18>I‘2)—>Hn_l_>éA,Fl| A).

In two cases, we also have a universal coefficient
formula relating cohomology and homology. We first have
the ordinary universal coefficient formula; namely

0 - Bxt(H, ( ,0),2) » H'( , Hom(I',2)) - H_( ,1),2) - 0

k=1
is split exact (see Spanier [35], page 283).

We have a natural chain map

SJB,.f. (

; , Hom(T',2)) —* Hom(S_( ,I), 2)

a e
given by af(c)(p) = @(cj . If the space X 1is HCL
Bredon [2], shows that a induces a homology isoﬁor-
phism, so we get O - Ext(H:+l(X,F),Z) -+ Hi'f'(X,Hom(F,Z))
- Hom(Hz(X,P),Z) -+ 0 is split exact.

Write I for Hom(I,Z) . Then if ¢ € 1 ( 1)

the following diagram commutes



0 » Ext(H,_;( ,2), 2)—> H ( ,2) — Hom(H_( ,2),2)~ O

Ext (Ne) {cu | Hom(Nz)
+ ~—
0 - Ext(H 1 ( »T),2)= B, ) Hom(H,( ,T),2)— 0
L.f. . . i
If ¢ e Hy ( ,I"), and if the spaces in question

arc HCL , the following dlagram comnputes

K-
0 — EXt(Hk-*—-l( sZ2),2) =+ H ( ,Z2) - Hom(HK—*( yZ2),7) =+ O
lExt(ﬂc) Ne Hom{(Nc)
st ] 1.f. *
0 - EXt(HC ( ,F),Z) -+ H* ( 9F) -+ Hom(HC( ,F)’Z) -+ 0 .

These formulas can actually be seen on the chain level by
picking representatives and using the Alexander-Wanitney
diagonal approximation.

These homology and cohomology groups enjoy other
pleasant properties. One which we shall exploit heavily
throughout the remainder of this work is the existence of
a transfer map for any arbitréry cover. For particulars,
let w3 i + X be a covering map. Then we have homo-

L.f. Lof. 2
*

morphisms tr: H X3y - H (X;7T)  and

tr: H:(i;F*T) -+ H:(X;P) . The first of these is given
by defining tr(c) for a simplex o and extending

"linearly." tr o= Z_; g, s Wwhere p runs over
pem " (v,) F
all the points in W"l(vo) (v, 1is a vertex of ¢) and

dp is o 1lifted so that v, goes to p . It is not

hard to check tr 1is a chain wmap. For the cohomology



trace, define tr(c) as the cochain whose value on the
simplex ¢ in X is ec(tr(o)); i.e. (tr(c))(o) =c(tr(o)).
If £ : XY is a proper map, and if 7w : ¥ o Y is a
cover, then, for the cover X - X which is induced from
T oby £, ,E*(tf z) = tr £.2 and tr(f*c) = £*(tr ¢)
Warning: Thé trace tends to be highly uanatural except
in this one situation.

As an easy exercise, ons may check that if

K2 . Lofo o, .
HC(X,W Fl) and if Z ¢ $q+k (X,FZ) , then, in

]

c

Hq(X;Fl R Fg) y m e N trz)=trchi.

In the coming pages, we will want to study spherical
fibrations and paracompact manifolds. For the former
objects we have

Thom Isomorphism Theorem: Let £ be a spherical

fibration of dimension (g-1) over B . Let S(E) be its
total space, and let D(¥) be the total space of the
associated disc bundle. Then there is a class

Ug € HY(D(E),8(E)5 pf(Iy)) (where p : D(E) - B is the
projection, and FE is the local system on B given at

be B by Hq(p_l(b), p'l(b)'n S(E)3Z)) such that
B (B0 — B (D(E),S(E); pYI ® Tp))
P . 1($) E

U UE:

is an isomorphism. One also has

Ue N: B (D(E), S(E)3p" (1)) — H,_ (B} Iz ® 1)

is an isomorphism.

Note that we have been (and will continue to be) a



little sloppy. If ¢ ¢ H$(B;F) , c U UE should
actually be p*(c) U UE . A similar notational amal-
gamation has occurred when we write UF N

This theorem is proved by a spectral sequence
argument (see [26]), so one need only check that we
still have a Serre spectral sequence with the appro-
priate supports.

For a paracompact manifold (i.e. a locally
Euclidean, paracompact, Hausdorff space), possibly with

boundary, we have

Lefschatz Duality: ([20], [W4]). If M,3M) is a

paracompact manifold pair of dimension n , there is a

L.f.
class [M] ¢ H (M,BM;FM) (where PM

system for the bundle v , the normal bundle of M) such

is the local

that the maps

niMj: H$(M,BM;F) -+ Hi_*(M;F ® Iy

and  N[M]: H$(M;F) -+ Hﬁ**(M,aM;P ® PM) are

isomorphisms.

This completes the first objective of this section,
so we turn to the second. The functors above already
give us -much non~trivial information on the category of all
spaces and proper maps, but they sre insufficient even to
determine if a map is a proper homotopy equivalence on
the subcategory of locally compact, finite dimensional

CW complexes, a category in which we are surely going to
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be interested. In fact, the next two sections will be
concerned preclisely with thz problem of constructing
functors which will determine whether a map is or is
not a proper homotopy equivalence in this category.

If we restrict ourselves to finite complexes, ths
Wnitehead Theorem ([43] ) already provides the answer.
Notice that to solve the problem, even for finite com-
plexes, we are forced to consider homotopy, which means
base points. In order té solve the problem for locally
finite complexes, we are going to have to consider lots
of base points simultaneously. The category of spaces we
are about to define is about the largest in which we can
place our points nicely. It 1s also closed under proper

homotopy equivalence.

Definition: A set B of points of X 1is said

to be a set of base points for X provided‘
a) every path component of X contains a point of B
b) given any closed, compact set ¢ € X , there is
a closed compact set D such that there is a point of B
in every path component of X - ¢ which is not contained
in D

Definition: A set of base points, B , for a path

connected space X 1s sald to be irreducible 1if, for any
set of base points C for X with C& B , the cardi-
nality of € 1is equal to the cardinality of B

A set of base pecints for any space X 1s said to be
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irreducible provided it is an irreducible set of base

poilnts for each path component of X .

Definition: Two locally finite sets of points are

~said to be equivalent (~) provided there is a 1-1 corre-
spondence betwsen the two sets which is given by a locally

finite set of paths.

Definition: Consider the following two properties

of a space X:

1) Bvery set of base points for X has an irreducible,
locally finite subset.

2) Any two irreduéible, locally finite sets of base
points for X are equivalent.

A space X 1is said to be homogamoug provided X x I

satisfies 1) and 2).

Proposition 1: If X has the proper homotopy type

of an homogamous space, then X has properties 1) and 2).
Proof: We first prove two lemmas.

Lemma 1: Let f : X > Y be a proper map which
induces injections of H°(Y) into H(X) and of
0 . o . .
Hend(Y) into Hend(X) . Then, if {p} 1is a set of base
points for X , ({f(p)} dis a set of base points for Y.

. . . . o
Proof: Since f 1induces an injection on H~ , there

is an f(p) in every path component of Y .

Now look at ths path components of Y-c¢ , where c

is some closed, compact subset of Y . Let {w,} be the
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set of path components of Y-c¢ such that £1

M)

contains no point of {p} . Since {p} 1is a set of

base points for X , U f‘l(Wd) =D, where D 1is some
o

closed, compact subset of X . Then f(X-D) N W = )

for all o .

Define a cochain B by

1 q € Wa

0O q¢ Wy

Bla) =

Then 68(A) = B(A(L)) - 3(A(0)) =0 if ANec =40 .

B . 1 _ . )
Hence 638 = 0 in S_ ,(Y32) . But since f(X-D) N W, a8,
%o . 0
f'8 = 0 in Send
_ N 0 ) . . |
B =0 in H_ .(Y¥;5Z) . But this implies g W,

(X32) . Since f* is an injection on

O

Hend ?

is containad in some compact set. Q-E.D.

Lemma 2: Let f be a map properly homotopic to the
identity. Let {p} ©be a locally finite set of points.

Then {f(p)} 1is equivalent to a subset of {p} .

Proof: We have F : Xx1I -+ X a proper map. The
set {pxI} 1is clearly locally finite. Since F is
proper, {F(pxI)} 1is easily seen to be locally finite.
But {F(pxI)} provides an squivalence between {f(p)]}
and some subset of {p} (more than one p may go to a

given f(p)). Q.E.D.

Now let X have ths proper homotopy type of Y ,
an homogamous space. Hence we have proper maps f: XY

and g: Y =+ X with the usual properties.
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Let {p} be a set of base points for X . Then by
Lemma 1, {f(p)} 1is a set for Y , and {f(p) x 0} is
a set for ¥xI . Since Y 1is homogamous, there is an
irreducible, locally finite subset {f(p') x0} . By
Lemma 1, {g°f(p')} is a locally finite set of base
peints for X . But by Lemma 2, there is a further re-
finement, {p"} 5 of {p} such that {p"} ~ {go f(p')}-l
But then {p"} 1is easily seen to be a set of base points
also. Now {p"} 1is in 1-1 correspondence with {f{(p")},
and {f(p") x0} 1is a set of base points for YxI by
Lemma 1. {f(p") x0} 1is a subset of {f(p') %0} and is
thus irreducible. Hence {p"}. is easily seen to be ir-
reducible, and therefore X satisfies 1).

Let {p} be an irreducible, locally finite set of
base points for X . We claim that there is an irredu-
cible, locally finite set of base points {q} for YxI
such that {p} ~ {gom(g)} , where 7 : ¥YxI -+ Y is
projection.

By the argument in Lemma 2, we see that we have a
locally finite set of paths {Ap} from {p} to
{g o £f(p)} . However, -(g of)*l(g<>f)(p) may contain
more points of {p} +than just p . But since {kp} is
locally finite, there are only finitely many such points,
say Pyse--»sPy + Let g = £(p) xO and define
q; = f{p) x1/i for 1 <1 <n . The resulting set of
points, - {q} , is easily seen to be locally finite, and
by several applications of Lemma 1, {q} is an irredu-

cible set of base points for Y xI
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So suppose given {p} and {p'l , irreducible,
locally finite sets of base points for X . Pick {q}
and {qg'l as above to be irreducible, locally finite
~sets of base points for Y xI . Since Y is homogamous,
{a} ~ {q'} 5 so {gow(q)} ~ {gow(q")} . Thus {p} ~{p'},

so X satisfies 2). []

Corollary 1.1: A space which is the proper homotopy

type of an homogamous space 1s homogamous.

Corollary 1.2: The mapping cylinder of a proper map

whose range 1is homogamous is homogamous.

Proposition 2: Let {3} Dbe a locally finite open
cover of X . Further assume that each & 1is path con-
nected and that each & 1is compact. Then X 1is homo-

gamous .

Corollary 2.1: A locally compact, locally path con-

nected, paracompact space is homogamous.

Corollary 2.2: A locally compact CW complex is

homogamous .

Corollary 2.3: A paracompact, topolegical manifold

is homogamous .

Proof: If {©)} is the collection for X , {3 x1}
is a cover for X x I with the same properties, so, if

we can show 1) and 2) hold for X , we are done.

Since each & is path connzcted, each path com-

ponent of X is open. Also the complement of a path
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component is open, so each path component is both open
and closed. Hence X 1is homogamous 1iff each path com-
poneht is, so we assume X 1s path connected.

We claim X is g-compact, i.e. the countable union
of compact sets.. In fact, we will show {3} is at most
countable. As a first step, definé a metric d on X
as follows. If p#q , 1look at a path A from p to
q + A 1is compact, so it is contained in a finite union
of O's. Hence A 1is contained in a closed, compact set
so A intersects only finitely many &'s. Let
r(Aip,q) = the number of &'s that A intersects
(non-empty). Define d(p,q) = m%n r(A;p,q) . This is a
natural number, so there is actually some path, A, such
that d(p,q) = r(A3;p,q) . If p = q, set d(p,q) =0 .

d 1is easily seen to be a metric.

Let us fix p e X . Then to each ¢ we can asso-
ciate a number m@,p) = min d(p,q) . We claim that, for
any n,n@,p) < n for'on%i}finitely many & . For n = 0O,
this is an easy consequence of the fact that {8} is
locally finite. Now induct on n . Let Glﬁ""gk; be
all the ¢'s such that m®@,p) < n-1 . Let

-

c= U 6. . ¢ 1is compact.
R}
i=1

Suppose & N c = @ . Then we claim m@®,p) > n+l
To see this, pick q e€ & , and any path A from p to g.
If we can show r(Ajp,q) > n+tl , we are done. Let

[0,x] Dbe the closed interval which is the first
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component of A_l(c) , where X : I -+ X 1is the path.
Since ¢ N& =4 , )\—1(6;-)25 , where s > x . Pick
x <t <s . Then A(t) £ ¢ , so the path from p to
A(t) already intersects at least n of the &¢'s , so,
from p to q , it must intersect at least n+1

Therefore, if m@,p) <n, 6Nz#B . But since
{6} is locally finite, there are only finitely many &
for which this is true. This completes the induction.

Hence the cover {¢} 1is at most countable. If
{31 1is finite, X 1is compact and hence is easily seen
to satisfy 1) and 2). Hence we assume {5} 1is
infinite.

ko

Enumerate {3} , and set Cp = .U 3. . Since Cy
is compact, there are but finitely ;égy' 0's such that
& N Cp # @ . Let E be the union of ¢ and these 8's.
Then E 1is compact, as is dE , the frontier of E in
X . Let {Wa} be the path components of X - C, not
contained entirely in E .

Look at WOL N dE . Tt might be empty, in which
case wa is actually a component of X since 3E
separates the interior of E and X-E . But X is
connected, so W, N JE #@ . Now if pe dE, p € 6 with
G N Ck =@ . Now ¢ is a path connected set missing
C, with o not contained entirely in B , so & C_:_wOL
for some o . Hence the WOL cover oLE .

The Wa are disjoint, so, as 3E 1s compact, there

are only finitely many of them. ‘Some Wa ‘may be compact
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Set D, =EU (compact ﬁa) - Then D, 1is compact.
Since the C, are cofinal in the collection of

.all compact subsets of X , we may assume, after re-

finement, that Cy S DO ;€D € ...c2C

cD cC

1 1 k k

Now let {p} be a set of base points for X . Let
{wa,k} be the set of unbounded path components of X -Cy ,
which we saw above was finite. Since {p} is a set of
basé‘points, in each Wa,k there are infinitely many
p ¢ {p} for which there exists an & ¢ {3} such that
ped E_Wd,k . We get a locally finite subset
{p'} € {p} by picking one element of {p} N3 for each
such non-empty interéection as 3 runs over {3} . By
the above remarks, this set is a set of base points. It
is clearly locally finite, so X satisfies 1).

Now let {pk} and {qk} be locally finite
irreducible sets of base points (they are of necessity
both countable). Look at all the p's in D . Join
them by paths to some ap not in D, - Join the qk's
in D, to some py's mnot in Dy - Note that the
number of paths intersecting C_ < (number of p, in DO) +
(number of 4 in DO).

For the inductive step, assume we have joined all the
pk's in Dn—l to some qk's and vice versa. Suppose
n-i <

)

moreover that the number of paths intersecting C
(number of p, in Dy _4) + (number of g in Dy
for 1 <1 <n.

Look at the pk's in -Dn - Dn—l which have not

k+l£ . e @
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élready been joined to some qp in D Fach of

n-1 °

these lies in some W i.e. in an unbounded com-

a,n-1"’

ponent of X - Cn-l . Join th=s p_ in W

o,n-1 n (Dn_Dn—l)

which have not already been fixed up to some qp in

W D by a path in W

a,n-1 ~ Dn a,n-1> ++€: outside of C _q-

(Recall there are an infinite number of p, [and qk] in

each Wa p » SO we can always do this.) Do the same for
2

the- q, in D, - D 4

Now each of these new paths misses Cn-l y 80 ths

number of paths intersecting Choy £ (number of P 1in

1

Dn—i) + (number of q in D ) for 1 <i<n. For

n-i

i =0, the number of paths intersecting Cn <

(number of p, in Dn) + (number of q, 1in Dn)

This completes the induction and shows X satisfies 2). [J
Local compactness and g-compactness are easily seen

to be proper homotopy invariants, so we redefine an

homogamous space to be locally compact, g~compact, in

addition to homogamous. Note now that any (irriducible)

set of base points for an homogamous space is countable.

Section 2. The & -A construction.

In this section we describe our construction. It
will enable us to produce a proper homotopy functor on
any homogamous space from an ordinary homotopy functor
(a homotopy functor is a functor from thz category of
based topological spaces and based homotopy classes of

maps to some category).
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Now our homotopy functor, say H , takes values
in some category ¢ . Assocclated to any hﬁmogamous
.space, X , we have‘an irreducible set of locally flnite
base points, I . We also haﬁe a dlagram scheme, 8 ,
consisting of the closed, compact subsets of X (see the
definition below for the definition of a diagram scheme).
Our basic procedure is to associate an element in « to
 the collection H(X - G, p) , where C is a closed com-
pact subset of X , and pe I . In order to be able to
do this, we must impose falirly strenuous conditions on
our category 4« , but we prefer to do this in two stages.

Definition (see [25] page 42): A diagram scheme

is a triple & = (J,M,d) , where J 1is a set whose

elements are called vertices, M 1is a set whose elements

are called arrows, and d : M=+ JxJ 1is a map. Given a

diagram schem=s 8 and a category « , a diagram over 8

is a map from J to the objects of & (j = Aj) and a

map from M to the morphisms of & such that, if

d(m) = (i,j) 'm goes to an element of Homf(A., Aj)
Notation: [#, @1 denotes the category of all

diagrams in & over #® . (A map between diagrams over

8 1is a collection of morphisms fj : A. - B. such that

J J
fj °m=me f;, , where me Hom(Ai,Aj) , and
m € Hom (B, , Bj) correspond to the same element in M ).
If I is an index set (i.e. a set) @' denotes the
éategory whose objects are sets of objects in & indexed

by I . The morphisms are sets of morphisms in a
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indexed by I . Finally, if & and ® are categories,

{#,8} 1is the category of covariant functors from & to

8 (see {25] page 63).

Definition: A category < 1s weakly regular with

respect to an index set I provided:

1) @ has products and zero objects.

2) Let 3(I) = {T{T € I and T is finite} . If {cC.}
is an object in ﬂI, each T ¢ F(I) induces an endomor-
phism of {Gi} by

G; = G; is the ldentity if 1 g T
This induces

Gy -~ Gi is the zero map if 1€ T

a unique map XT : >< Gi - >< Gi . We require that
iel ieI
there exist an object W (Gi) and a map
iel
X G, - wu (G;) which is the coequalizer of the family
iel iel
of morphisms X, for all T e F(I)

We easily check

TLemma 1: u: dI -+ d 1is a functor whan 4 1s a

weakly regular category with respect to 1 . Q.E.D.

Examples: The categories of groups, abelian groups,
rings, and pointed sets are all weakly regular with re-
spect to any index set I . pn 1in each case is given as
follows. We define an equivalence relation R on ;X; Gi

ie

th

th component of x) = (the 1~ com-

by xRy iff (the 1
ponent of y) for all but finitely many i e I . Then
u () = X Gy/R .

. 1 K
iel iel



21

Lemma 2: If B8 1is a diagram scheme, and if & 1is
a weakly regular category with respect to I , then

[#,4] 1is also weakly regular with respect to 1

Proof: [#®,Z] 1is easily seen to have a zero object.
[8,4] has products, for to each object in [ﬂ,d]l ,

({G.:}s{m;}) , we associate the diagram ()< G: s o
T ie1 9

X m;) . It is not hard to check that this diagram

iel

has the requisite universal properties.

To see condition 2), to {G,.} associate u(G:a).
t iel 'Y

Then X m, induces u (m;) , so we do get a diagram.
iel - el
To show it 1s a coequalizer, let Xj be the objects

of a diagram. Set H. = X G
o el

. . We i
ij are given

gj: Hj - Xj which commute with the diagram maps. If

T1»>T5 € F(I) we also have gy © XT1: g; ° XT2 . Hence

by the universality for u for & , we get unique maps

fj : ? (Gij) - Xj such that

commutes. If we have a map in # from ) to k , we get

H. —> H
J. k
\ \‘:.‘.
gj H(Glj) ————————— gk —— L{(le)
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with the front and back sguares and both end triangles
commutative. By the uniqueness of the map %(Gij) -+ X
the bottom square-also commutes and we are done. Q.E.D.
Suppose given a functor F e {#,B} . If F does
not preserve products, it seems unreasonable to expect
it to behave well with respect to 4 , 850 assume F
preserves products. Then we gel a natural map
Q o FL 5 F o W (FI is the obvious element in {QI,BI}).
F  preserves y 1ff this map 1s an isomorphism.
Now suppose « 1s complete with respect fo a
diagram scheme 8 . Then we have a functor

lim : [#8,4] -+ & , the limit functor (see [25], page Wh).
8

Definition: If 8 1is a diagram scheme, and if &

is a #-complete, weakly regular category with respect
to 1 , then we define ¢ : [S,d]l + d to be the com-

posite 1im o u

Proposition 1: Let #® Dbe a diagram scheme, and

let @& and B be two §-complete, weakly regular cate-
gories with respect to I . Let F e {4,B} . Then
£ [Q,J]I -+ d 1is a functor. If F preserves products

and 1lim , there is a natural map € © F; -+ Fo e (where
8

Fy: [8,4] > [$,B] is the induced funztor). If F

preserves W o, this map is an isomorphism.
Proof: Trivial. [}

Unfortunately, the limit we are taking is an inverse
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limit, which 1s notorious for causing problems. In some
cases however (and in all the cases in which we shall be
interested) it is possible to give a discription of ¢
as a direct limit. In fact, we will describe the A-
construction as a direct limit and then investigate the

relationship betwsen the two.

Definition: A lattice schems 8 1is a diagram

scheme (J,M,d) such that J 1is a partially ordered

set with least-upper and greatest lower bounds for any

finite subset of J . We also require that a:M = J xJ

be a monomorphism and that Image d = {(j,k} ¢ IxJ|j > k).
To the lattice scheme 8 and the index set I , we

assoclate a diagram scheme $; as follows (ﬁI is the

diagram of "cofinal subsequences of #8"). If o € ;>< J,

define J = {j=J;3-= pi(a) for some i€ I} . l;i is

Just the ith projection, so Ja 1s Just the subset of

J we used in making up o . Define Pyt I - J by

pa(i) = pi(a) - Set Jp = {a € éééJlJa is cofinal in J

and U p;lfj) is finite for all k e J} . (A subset
i<k

of J 1s cofinal iff given any j e J , there is an

element k of our subset so that k > j . JI may be

thought of as the set of "locally finite, cofinal sub-

sets of J).

We say o > B 1iff pi(a) 2> pi(B) in J for all

ieT. Set M; = {(a,8) ¢ JyxJrla 2B} and let dy
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be the inclusion. Given a,8 € JI , define vy € JI by
p; {vy) = least-upper bound of p;(a) and p,(8) . (It is
nct hard to see vy € JI) . Greatest-lower bounds can be
~constructed similarly. Hence @I is also a lattice
scheme.

Now if J does not have any cofinal subsets of
cardinality < card (I) , Jp = @ . Since J has upper
bounds for finite sets, if J has finite cofinal sub-
sets, then J has cofinal subsets of cardinality >

card(I) - N, where N is some natural number, then the

-1

condition that U Py

i<k
Empty diagrams are a nuisance, so we define an I-~lattice

(j) Dbe Tinite forces Jp = 2 .

scheme as a lattice scheme with cofinal subsets of cardi-
nality = carda(I)
We can now defins 6: [@,Q]I -+ [@I,ﬂ] as follows.

Ifr {di} € [ﬂ,d]I , 8{(d) has for objects éa = :XfG

iel 1pi(a)’
where G;j is the ;* object in the diagram for d
(a € Jpy J &8 dy, 1c¢ I). If a > B , we define 8, 6B

by the maps Gipi(a) —+ Gipi(B) which come from the
diagranm di

We can also deflne maps 5& =+ 1 as follows.
J

Map G by the unique map in di if

ip; (o) J
p; (@) 23 , and by the zerc map if j > p; (@) . (Notice

that there are at most finitely many 1 such that
pi(a) < J Dby the second defining condition on JI)

These maps induce a unigue map 6, X Gij .  Composing
' ' ieT



with the projsction, we get a unique map

8, u (Gys) = u

@  jer J
It k>3, 6& —> commutes as one easily
jJ
\u
k
checks. If o 28 , éa\\“ also commutes.
I
AT
%8
Lemma 3: &: [ﬂ,d]l -+ [ﬁI,d] is a functor.

Proof: The proof is easy and can be safely left to

the reader. Q-E.D.

Now suppose 4 1is @I—c0comp1ete. Then we have a

colimit functor colim .
8
T

Definition: TIf 8 1is an I-lattice scheme, and Iif

a4 1ls a ﬂI—cocomplete, weakly regular category with re-
spect to I , then we define A : fﬁ,d]l ~+ d to be the

composition colim o &
8
1

Proposition 2: Let 8 Dbe a diagram scheme and let

4 and 8 Dbe two ﬂl—cocomplete, weakly regular cate-
gories with respect to I . Let F e {4,8} . Then

As [ﬁ,d]l -+ @ is a functor. There is always a natural
map A o F; +Fo A . If F preserves products and

colim ,. this map is an isomorphism.
B
I
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Proof: Trivial. [

The maps we constructed from 5a to 4 combine to
give us a natural transformation from A tg £ whanever
- both are defined: We would like to study this natural
transformation in order to get information about both A
and & . A (8,I)-regular category is about the most

general category in which we can do this successfully,

and it includes all the examples we have in mind.

Definition: A category & is said to be (8,I)-

regular provided
1) 7 is weakly regular with respect to I
2) 4 has images and inverse images
3) There is a covariant functor F from & to the
category of pointed sets and maps such that
a) F preserves kernels, images, products, limits
over 8, increasing unions, and p .
b) F reflects kernels, images, and isomorphisms

4) # is S8-complete and 8, -cocomplete

I
5) I 1is countable.
Examples: The categories of groups, abelian groups,

rings, and pointed sets are all (8,1I)-regular for any

I-lattice scheme. The functor F 1is just the forgetful

functor.

Lemma 4: Let & be a (8,I)-regular category. Then

)<’ and Y preserve kernels and images.
iel
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Proof: >< is known to preserve kernels (Mitchsll
ie]l
[25], page 67, Corollary 12.3).

Since F preserves images, if Im{(f) is the image

f .
of A —=>B , then F(A) 1is onto F (Im(f)) and
F(Imn(f)) injects into F(B) . Let K, be the image

f

i : '
of Ai-————* B.1 . Then, since F preserves products,

F(a) — X F(X) is onto. X K; —» ¥ By is
ie iel iel ield
a monomorphism since ><’ is a monofunctor. Since F
iel
preserves monomorphisms, F(Ki)-——9 X F(B,) 1is
iel iel
seen to be a monomorphism as F also preserves products.

Since F reflects lmages, >( Kﬁ is the image of

iel
X o, — X B,
ieT + iel *

Let Ki *-Ai -+ B.l be kernels. Then

XK, —> xa, —£> xB

oL

(Ky) —> ;) ——> u(B;)

commutes. Since F reflects kernels, we need only show
that F(u(Ki)) injects into F(u(Ai)) and is onto
F(r)"1(0) . Since F preserves u , We may equally
consider u(F(Ki)), ete. Since F preserves products,

we may as well assume the diagram (%) 1is in the éategory
of pointed sets.

We show u(K,) 1is onto £7h0) . Let x e £t (o) < ulh;).
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Lift x te ye xXA; , which we may do since X is
: iel

onto (L in the category of pointed sets. Now
iel
g(y) ¢ ><Bi can have only finitely many non-zero com-

_ ponents since it goes to O in u(B;)
Define 3 by

p; (y) if p;(gly)) =0

pi(§) =
0 if p,(gly)) #0

Then ¥ also lifts x and g(y) = O . There is a

Z € )<Ki such that h(z) = ; , SO u(Ki) maps onto
f_l(O) . A similar argument shows u(Ki) injects into
u(Ai) . Hence u preserves kernels.

Now let K, be the image of Ay * By . Then

)(Ai I— XKi —_— XBi

! J |

way) —> p(K) —> u(By)

commutes. By general nonsense, 1t suffices to prove the
result assuming we are working in the category of pointed
sets.

Since ;K' preserves images, )(Ai %.><Ki is onto,
S0 u(Ai) -+ iiéi) is easlily seen to be onto. Since u

preserves kernels, u(Ki) injects into u(Bi) s, SO

w(K;) 1is the image of u(A;) = u(B;) . Q.E.D.

Theorem 1: Let & be a (8,I)-regular category.

Then € preserves kernels and images.



29

Proof: By Mitchell [25] (page 67, Corollary 12.2)
lim preserves kernels, so € = limo p alsoc does using

L 8
Lemma % and general nonsense.

Now let Kij be the image of Ai -+ B We claim

3 1J

that, if x e e(Ky ) , then there exists a ¢ J; such

J
that x 1is in the image of 6m(Kij) . Agsuming this for

now we proceed as follows.

Since 5a(Ki ) = X Kipi(a) , & preserves kernels

J il o
and images by Lemma 4. Hence

| |

J
commutes and 5a(Kij) is the image of éa(Aij)-—%rba(Bij).
By the usuval abstract nonsense, we may as well assume we
are in the category of pointed sets (note F preserves

£ Dby Proposition 1).

Now using our claim we can easily get
E(Aij) - E(Kij
e preserves kernels. Hence £(K,.) is the image of

i
E(Aij) + e(Byy) - [

) is onto. E(Kij) -+ E(Bij) injects since

We prove a stronger version of our claim than we
have yet used.

Lemma 5: Let & Dbe the category of pointed sets.
Let {Gij} be an object in [&,d]I . Then if x € E(Gij),

there is an a ¢ JI such that 6_(G..) contains x in

a< 1]

its image. If y,3 E'Ga(Gij) both hit x , then there
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is a B £ o such that, in 58((}i ) 5 the images of ¥y

J
and 2z differ in only finitely many coordinates. In

fact, if there is a j € J such that Jj < p.(a) for all
. . i

i€ I and such that y and 2z agree in X G.. , than
ie] 1Y
B8 can be chosen so that y = z in 6B(Gij).
Proof: If x € E(Gij) , there exist unique
a; € W (Gi.) such that x hits a. . Since >< is
J . el J / iel
onto M , we may 1lift aj to bj € ){Gij . Since J

iel
has countable cofinal subsets, let the natural numbers
j = 1,2,... Dbe on2 such. Since I 1is countable (and

infinite or our result is easy) we also assume it to bs

the natural numbers.

Now lock at b, and bl . Since they agree in
u(Gil) » by projected into }(Gil differs from By in
only finitely many ccordinates. Let Il c i be the
finite subset which indexes these unequal coordinates,
together with the element 1 e I

Next look at the pairs (b3, b,) and (b3, by)

As before, projected into ¥ Gips by and by agree in all
but finitely many coordinates. 1In ‘X_Gil y b3 and bl
differ in only finitelylmany coordinates. Set 12 c I

to be the finite subset of I which indexes the unequal
coordinates of (b3,b2) or (b3,bl) which lie in T - I,
togethar with the smallest integer in 1 —Il

Define Ik to be the finite subset of I which
~ indexes the unequal coordinates of (bk’bk—l)""’(bk’b2)°

(Py,1) which lie in T - (I, j U ... U T, UIy) ,



together with the smallest integer in

8

Then I = Ik as a disjoint union. Define «a

k=1
by pi(a) =k , where 1€ I, . Since I is countable,

but, not finite, and since each Ik is finite, a ¢ JI

i o = D, : . ] 2
Define vy € 6a(Gij) by py(y) pl(bpi(a)) A chase
j through the

3 » -+ L] L3 L] 1 i i . .
map 6a(G13) iSI(GU) Thus y hits x in E(GIJ)

- through definitions shows y hits each a

Now suppose y,z € ba(Gij) both map to x . Then

they map to the same element in each M (Gij) . Let
iel

a. be the image of y in >< G under the map

J iel 1
5 (G..) > X G.. which we defined just before Lemma 3.
o 1J e *9
Set b, to be the image of z in X G.. Then a.
and bj differ in only finitely many coordinates.
Let Il be the finite subset of 1 which indexes

the unequal coordinates of aq and bl . If there is
a g_pi(a) for all 1 e I such that y and 2 agree
in i%; Gij , We may assume J = 1, so a] = b1 y and
Il = @ .

Define Ik as the finite subset of 1 which indexes

the unequal coordinates of (ak’bk) which lie in

I - (T U Il) . Define 8 by

ol Yoeee
k-1 if ie I for some k > 2

p; (B) = k -,
' p;(a) if 1 ¢ I, for any k 22
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Note pi(B) £ pi(a), since 1 ¢ I, , this says
ps(a) # p; (b))« But if k > p;(a), p,(a) = 0=p,(b,)
Dby the definition of our map from 8, to X . Hence
: . iel
k <py(a) , so py(B) < pyla)
Let ¥y De the projection of y into GB(Gij) , and
let =z be ths projection of 2z into 5S(Gij) .
Pi(Y) = pi(api(a)) and pi(Z) = pi(bpi(s)) ° It
pi(api(s)) # pi(bpi(ﬁ)) » then i I, forany k>2,

since ie I, for k >2 says that p;(a) # p;(b) but

p;lay _9) = p;(b_q) « If i¢ I forany k , it says

that p;(y) = py(2) = Thus p;(y) = p;(2) if 1i¢ I, .

Hence they agree for all but finitely many 1€ I . 1In

fact, if I, =& , Yy =2 . Q.E.D.
We can now describe E(Gij) as a colimit (direct

limit). Let u(Gij) be the u functor applied to
a

{a . Then the map 6a(Gij) -+ E(Gij) factors

ip, (o)}

through u(Gi

)
a J

Theorem 2: Let & be a (8,I)-regular category.

Then the natural map colim Mo, =+ £ 1s an isomorphism.
9
I
Hence € 1s a cokernel, kernel preserving functor.

Proof: Let us first show F preserves colim ; 1.€.

81

we must show that the natural map colim F(Aa)-—i~—-F

(colim Aa) is an isomorphism. To do this, we first
9
I
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compute Im(f). If Im(fa) is the image of

F(Aa) <+ colim F(Aa) —+ F(colim Aa) , then by Mitchell
[25] (Proposition 2.8, page 46), Im(f) = g Im(fa)
Let Tm(g,) be the image of A_ ~ colim Ay - Then,
since F preserves images, F(Im(gy)) = Im(f ) , so

g Im(f, ) = g F(Im(gy))

Now f{a} has a cofinal subsequence (which 1s countable
and, if I 1is finite, it is also finite) {a,;} such that

o, < aq < ven K an { see . Therefore

oo

JIm(e,) = U Im(r, ) = U FlIn(g, )) since fa

l} is
i=o i i=o i

cofinal.

Again by Mitchzs11l [25] (Proposition 2.8, page 46),
olim A_ =U Im¢ = U Im .  Thus
c @ & \ga) Y (gai)

F(colim Aa) = F( U Im(gOL )) . Since @ is a (8,I)-
i=o 1 [£3) .
regular category, the natural map U F(Im(g, )) =
i=o i

F(U Im(g_ )) is an isomorphism. Thus the map U
i=o ] o

Im(fa) < F(g Im(ga)) is an isomorphism. But this map is

just the natural map colim F(A_ ) = F(colim A_)
9 a 8 a

I T
The natural map colim My + £ 1is thes map which comes
from the maps My ™ € - To show it is an isomorphism, it
is enough to show it is for pointed sets by the result
above and the fact that F reflects isomorphisms. But
this is exactly what Lemma 5 says.
Now € preserves kernels by Theorem 1, and it

preserves coxernels since colimits preserve cokernels by
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Mitchell [25] (page 67, Corollary 12.2 dualized). {]

n
Corollary 2.1: Let [Gij} € [ﬂ,d]l be a collec-

tion of exact sequences in a (§,I)-regular category
n o, Ah n-1
157 G157 Gy

of diagrams such that Im(f?j) = ker(fggl)) . Then thsz

a4 (i.e.. there are maps f which are maps

n
n e(fy 5) n-1
sequence -+ E(Gij) L > g(Gij ) =+ .. is

also exact.

Corollary 2.2: Let & .be a (8,I)-regular abelian

category. Let {G;j, f;j} be a collection of chain com-

plexes in [s,y]l .  Then {E(G;j), e(f; )} 1is a chain

J
complex, and H*(E(G;j)) = e(H*(GIj)) » where H_ 1is the

homology functor (see Mitchell [25], page 152).

Proofs: The first corollary is easily seen tc be
true. (It is, in fact, a corollary of Theorem 1.)
The second corcollary is almost as easy. If {Zgj}

are the n-cycles, and if {B?El} are the (n+l)-

) . n+1 n * fe
boundaries, 0 - Bij - Zij ~+ Hn(Gij) + 0 1is exact.
Applying ¢ we get 0O — e(Bn+l) —+ e(Zn Yy » e(H_ (GF.)) -0

pplying ’ g i] 1] n' i j

is exact. DBut as ¢ preserves kernels and images,

is the collection of (n+l)-boundaries. Hence

* * . . .
Hn(E(Gij)) - E(HH(Gij)) is an isomorphism. [}

Now suppose J has a unique minimal elemsnt jo .
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Then we get a square

8(Gy,) > X Gy
J iel

I o

e(Gy ) —* (Gy5 )

ij 4 e
J iel o

g

Theorem 3: Ina (8,I)-regular category, the above
~diagram is a pullback in the category of pointed sets,
so 1f F reflects pullbacks the above square is a pull-
back.

Proof: As we showed in the proof of Theorem 2 that

F and colim commute, we have F(A(Gij)) = A(F(Gij)),

81

so we may work in the category of pointed sets.

The omnipresent Lemma 5 can be used to show the
above square is a pullback. The pullback is the subset

of &(Gy ) x (X G;; ) consisting of pairs which pro-
iel Jo

ject to the same element in u (G ) . Given any ele-
iel Jo

ment, x , in E(Gij) we can find o € J; such that

the element is in the image of & (G'j) . Lift the image

of x in u(Gijo) to y e £§I Gy iy - Let z € aa(GijO)

be an element which hits x . Then y pushed into

X G. . and 2z agree, except in finitely many places.

It is then easy to find B ¢ JI with B < a and an

element q € 6q(Gij) such that g hits x and y .

This says precisely that our square is a pullback. []
Remarks: 1In all.oﬁr examples, F reflects pull-

backs. The analogues of Corollaries 2.1 and 2.2 may be
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stated and proved by the reader for the A functor.

Theorem 4: In a (®,1)-regular category,
e(Gij) = 0 iff given any J ¢ J there exists a
k > j such that Gik -+ Gij is the zero map for all

but finitely many 1 .

Proof: Suppose given J we can find such a k .
- Then we can produce a cofinal set of j's, Jg £ jl L oovey,

such that the map u(G.. ) =+ u(G, . ) is the zero map.
Ly g1

Hence € = 0 .

Conversely, suppose for some jo that no such Kk
exists. This means that for every Kk 2> jO there are

infinitely many 1 for which Gik *'Gij_ is not the
o}

Zero map.
As usual, it suffices to prove the result for
pointed sets, so assume we-have Zik € Gik which goes

non-zero into Gijo . Pick jo < 31 < Jo K e a

countable cofinal subsequence of J . We define an
element o of ﬂI as follows. Well order I . Then

af(i) = jo until we hit the first element of I for

which a 2. . is defined. Set oa(i) = for this 1
1dye k

and continue defining a(i) = Jj until we hit the next

element of I for which a Zij is defilned with
k
1

2k . Set a(i) = j until we hit the next 7

Kk .
1 1k

1
2

with k, 2> k Continuing in this fashion 1s ssen to

1

give an element of ﬁI . Define Za by Zia(i) =
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unless i 1s one of the distinguished elements of I ,

in which case set Z. = 7.

ia (1) i’ where Jy = a(1)

Then ZOL € Aa(Gij) . It 1is non-zero in iSI (Gijo)

by construction, so E(Gij) 70 . 0

Section 3. Proper homotopy functors and their relations.

We begin by clarifying the concept of an ordinary
homotopy functor. A homotopy functor is a functor, h ,
from the category of pointed topological spaces to some
category, « . Given a spéce X and two base points
Py and Po s ahd a path A  from by to Py s there
is a natural transformation o, : h(X,pl) -+ h(X,pz) which
is an isomorphism and depends only on the homotopy class
of A rel end points. Furthermore, h(X,p) + h(XxI1,
pxt) given by x — (x,t) is an isomorphism for t = O
and 1

For any homotopy functor we are going to associate
a preoper homotopy functor defined on the category of
homogamous spaces and countable sets of locally finite
irreducible base points.

To be able to do this is the generality we need,
we shall have to digress momentarily to discuss the con-
cept of a covering functor.

Let X Dbe a homogamous space, and let {xi] be a
countable, locally finite, irreducible set of base points

for X . (From now on we write just "set of base points"
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for "countable, locally finite, irreducible set of base

points.") Let #, be some naturally defined collection

X
of subsets of X (by naturally defined we mean that if

f : XY is a proper map, et

Sy g_&X) - 8y isa
diagram with arrows being inclusion maps. Assume @X

is an {x;}-lattice, and assume & ¢ By

Daefinition: A covering functor for @X is a func~
tion, 8 , which assigns to each Wl(X—C,Xi) a sub-

group Snl(X—c,xi) subject to

| |

commutes whenever D < C, X5 ¢ C , and where the verti-
cal maps are induced by inclusion (C and D are any ele-

ments of ﬁX).

Remarks: We have two examples for EX in mind.
In this section we can use the set of all closed, com-
pact subsets of X for QX . For cohomology however,
we will have.to use the set of open subsets of X with

compact closure for &X .

Examples: There are three‘useful examples we shall
define.

1) no covering functor (the subgroup is the whole
group)
| 2) the universal covering functor (the subgroup is

the zero group)
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3) the universal cover of X but no more covering
funztor (the subgroup is the kernel of Wl(X—C,Xi)’*

m (X,%4))

Definition: A compatible covering functoer for ﬂX

1s a covering functor S5 such that, for any C € EX y
the cover of the component of X -C cantain X; .~ corre-
sponding to Sﬁl(X—C,xi) exists. We write (X,~) for

é compatible covering functor for & (which is inferred

X

from context) to denote a collection of pointed spaces

p

\/‘\i,\ i
((X-C) ,Xi) , where (X-C)

is the covering space of the
compogent of X-C containing Xi; and ii is a 1lift of x; to this
cover such that ﬂi(gté,ii) =57 (X-C,x;). Notice this notation
is mildly ambiguous since if we change the ﬁi we get a
different object. As the two objects are homeomorphic
this tends to cause no problems so we use the more com-
pact notation.

We say (X,~) < (X,---) provided ths subgroup of
Wl(X—C,Xi) corresponding to --- contains the one cor-
responding to ~ . Hence any (X,~) < (X, no cover),

and, if the universal covering functor is compatible

with Sy, (X , universal cover) < (X,~)

Now the no covering functor is compatible with any
ﬂX . If X 1s semi-locally l-connected, the universal
cover of X but no more covering functor is compatible
with any @X . If ﬁX is the collection of closed,

compact subsets of X , and if X 1is locally l-connected,
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the universal covering functor is compatible with QX’
as in any other covering functofc Hence é CW complex
is compatible with any covering functor (see Lundell
and Weingram [21] page 67, Theorem 6.6) for 85

We can now deseribe our construction. Let (X,~)
be a covering functor for X . Assume from now on
that our homobtopy functor takes values in a (ﬂX,{Xi})—
regular category for all homogamous X with base points
{Xi} .« We apply the € and A constructions to the
collection

o~ i ~ ’
h((X-C) ,x.,) if x; € X-C

Cyp = .
1c o if x; # X-C .
If D € C, there is a unique map ((X—D)l,ﬁi)“*((iia)l,ii)
if x; € X-D Dby taking the 1ift of the inclusion which
B A . g i ~ o Ni
takes X; in (X-D)" to x; in (X~C)™ . Hence we get
a mabp GiD - GiC . We denote thsse groups by E(X:h’{%i}’N)

and A(X: h,{ii},") o

Theorem 1: Let {xi} and {y;} be two sets of base
points for X, X homogamous with countable base poinis.
Let A Dbe a locally finite collection of paths giving
an equivalence between {Xi} and {y;} - Then there are
natural transformations N : e(Xzh, {ii},~)'+a(X:ih,{§i},—ﬁ
and N : A(X:th, {%i},~) -+ A(X : h, [ﬁi},-) which are iso-
morphisms and depend only on the proper homotopy class of

A rel end points. (— is the covering functor induced by

the set of paths A, )
Proof: Define a, as follows. By relabeling if

necessary we may assume x; goes to y; by a path
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in A . Map h((X-C)',%,) to h((X-C)',y,) by the zero

map if the path from x5 to 7y hits C . If the path

o~ s

misses C , map h((X~C)l,§i) to h((X‘C)i,yl) by

lifting the path from x.

: o~ :
; to o y; into (X-C) beginning

~

at x; (say it now ends at 2z , and then map

((XmC)i,z) to ((X~C)l,§i) by the unique homeomorphism

~

covering the identity which takes 2z to ¥i - This

defines a homomorphism @y on € and A .

If by A"t we mean the collection of paths from

y; to x; given by the inverse of the path from X; to

¥4 » We can also define aA_l

ap°a _; takes h((X-C)', ¥;) to itself by the
A” 1 ,

zero map 1f the path hits C and by the identity other-
wise. Since all but finitely many paths miss C , this
induces the identity on € . Since the emplty set is the
minimal element of &y , QAC’GA_l is the identity on
£§£ h(X,y,) and u(h(X,&i))- Hence it is also the
identity on A . A similar argument shows aA_l° G, is
the identity, so they are both isomorphisms.

The sawme sort of argument shows %p depends only on
the proper homotopy type of A . It can be safely left
to the reader. []

If h 1is actually a homotopy funcfor on the cate-

gory of pairs (n-ads) we can define Y(X,A:h,{ii},~) for

ths pair (X,A) (where y denotes € or A) using
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_ i, i Ay oA
Gicu-h((X—C) , (AN (X~C)7) U (x;),%4), where

Ao |

AN (X—C)i = ﬂ_l(A n (X—C)i), T (ijg)i - (X-C)i , 1if

x; £ C and is O otherwise (for n-ads use

W@, G, U E-ob UG v Goh U, E)
_ n-1 1’71

or 0)

Now suppose we have a connected séquence of homotopy
functors h_ 5 1.e. each h, is a functor on some cate-
gory of pairs and we get long exact sequences. By apply-
ing our construction to (X,A) , one would hope to get
a similar long exact sequence for the € or A theories.

Several problems arise with this naive expectation.

To begin, we can certainly define groups which fit into

a long exact sequence. Define Y(A;X:h*,{xi},~) where
~ A | ~ ~
y =& or A from G, = h ((A A (X-C)7) U (Xi),xi)

if oxy ¢ C and O if x; ¢ C . Then Corollary 2.1, or
its unstated analogus 3.1, shows we get a long exact
sequence +-+ > Y(A3X ¢ ho,{xg),~) v (X hp, {x;1,~)

Y(X,Ath ,{X;},~) = y(A;x:hn_l,{ii},~) -+ «+.  The problem
of course is to describe vy(A3X:etc.) in terms of A

We clearly have lLittle hope unless A 1is homogaméus,
and for convenience we insist A € X be a proper map.
Such a pair is said to be homogamous, and for such a
pair we can begin to describe Y(A3X : ete.)

Pick a set of base points for A , and then add

enough new‘points to get a set of base points for X .
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Such a collection is a set of base points for (X,A).

Two such are equivalent provided the points in X-A can
be made to correspond via a lgcally finite collection of
paths in X all of which lie in X-A . A set of base
points for (X,A) is irreducible provided any subset
which is also a set of base points for (X-A) has the
same cardinality. (Note an irreducible set of base
points for (X,A) 1is not always an irreducible set of
base points for X . (Sl,SO) is an example.) We can
construct € and A  groups for X based on an irre-
ducible set of base points for (X,A) , and whenever we
have a pair, we assume the base points are an irreduci-
ble set of base points for the pair. If X has no
compact component, then any irreducible set of base
points for (X,A) 1is one for X . Over the compact com-
ponents of X , the A group is just the direct product
of h(ﬁ,p) for one p 1in each component of A . As in
the absolute case, we drop irreducible and write "set of
base points" for "irreducible set of baée points!.

With a set of base points for (X,A), there is a
natural map vy(Ajh ,{%i},"F) “+ y(A3X: h ,{ﬁi},~) , where
“F is the covering functor over A induced as follows.
Let O8(X) denote the following category. The objects
are closed compact subsets C < X . The morphisms are the
inclusions. Given A < X a closed subset, there is a n
natural map #(X) = 8(A) given by C —+ C N A . A 1lift

functor F : @(A)IQ H{X) 1s a functor such that
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8(4) £ 9(X) -+ 8(4) is the identity and such that ths
image of F is cofinal in 8(X) . “F is the covering

functor whose subgroups are the pullbacks of

s ((X-F(C))7T,x,)

g

ni((A—C)i %) — > 7w (X - F(C))i,xi)

for X; € A-C , C € O(A) . The existence of our natural
map y(&: .- o~p) —F v(A5X: ..o ~)  presupposes “p 1S
compatible with A , but this is always the case since

il T
the appropriate cover of (A-C) is sitting in (X-F(C))™ .
We denote this natural map by 7T(4,X)

Notice first that <T(A,X) 1is a monomorphism since
each map is. Moreover, T(A,X) 1is naturally split. The
splitting map is induced as follows. We need only defins
it on some cofinal subset of #&(X) , so we define it on

- i~ 3 “
{F()[ce 8(A)) + h((a N (X~F(C))7) U (&,),%,) goes
Rl é : s i L 3
to 0 if x; £ A , and it goes to h,((A -C) ,Xi) if
X, € A, where ~ in this last case is the cover given
~ o~ i
by the covering functor ~p . A N (X-F(C))" 1is just

several dlsjoint copies of (A -C) union covers of

other components of A ~C , The map collapses each of

these covers of other components of A -C to ii and on

~—~ 7

the copies of (A -0)"

it 1is just the covering projection.
At this point, this is all we can say about <(A,X)

This map howaver has many more properties and we shall
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return to it again.

Now let f:X Y be a pfoper map between homo-
gamous spaces. We have the mapping cylinder Mf
(Mq,X) is an homogamous pair (Corollary 1.1.2). Let
{xi} be a set of base points for (Mf,X) . We also
have the homogamous pair (Mg,Y) . By Lemma 1.2 a set
of base points for Y is also a set of base points for
(Mf,Y) . If {yi} is such a set, T(Y,Mf) is an iso-
morphism. This 1s seen by showing the splitting map is
a monomorphism. But if we use the 1ift functor
F(C) = T x £75(C) U C E M, this is not hard to see.

Given a covering functor on Mf , 1t induces cover-
ing functors én X and Y , and these are the covering
functors we shall use. Given a covering functor on Y ,
we can get a coverlng functor on Mf as follows. The
subgroups to assign to 7y (Mn - £71¢) x T U C) are ths
subgroups for ﬁl(Yﬂ-C) . One can then assign subgroups
to all other required sets in such a way as to get a
covering functor. If we use the obvious 1lift functor for
Y , the induced cover is the original.

By taking the cofinal collection F(C) , it is also
not hard to see  y(Mq,¥: h, {7;1,) =0 . We dafine

o oy(X: hn,{ii},~)-+'y(Y :hn,{§i],~) if no component

of Y 1is compact by y{(X:ete.) v (M), Y(X;Mf:etc.)

. a ~
A~ A ~ =
——> y(Mp:h ,{x;},~) —==> y(Mpih 5 {y;),~) €

v(Y:etc.) . DNotice that this map may depehd on the
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paths used to join {ﬁi} to {§i} . If f is properly
1/2-connected, (i.e. f 1induces isomorphiéms on H°
and Han : compare this definition and the one in {11])
there is a natural choice of ﬁéths.

This choice is obtained as follows. Take a set of
base points {x;} for X . By Lemma 1.1, {f(x)} is
a set of base points for Y . Let {Xij'ﬁ {xi] be any
subset obtained by picking precisely one element of {xi}
in each f—lf(xi) . By Lemma 1 below, {X{} is a set
of base points for X . Thus we can always find a set
of base points for X on which f is 1-1 and whose
image under f 1is a set of base points for Y . Take
such a set of points as a set of base points for (M.,X).
Take thszir image in Y as a set of base points for
(Mp,Y) . The paths joining these two sets are just ths
paths

Xy %t 0<t<1

Ao (8) = :
%4 £lxg)

sy
It
-

Given a properly l/2-connected map f , we can get
another definition of the induced map. Pick a set of

base points {x;} as in the last paragraph. Then we

N T
have f_ : y(X:h, {xl],~)-—~>y(yrh,{f(xi)},~) defined
i R T — P
by taking h({(X-C),x;) —> h(¥Y-F(C), f(x;)) by £,

where F is a 1ift functor which splits H(Y) —+ $(X)
and F 'is the 1lift functor used to get the covering
functor for X from the one over Y . One sees easily

the two definitions of f agree.
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Now suppese we consider 1 : A S X for an

homogamous palir. Then we can defins i* as above.

It is not hard to see

> y(X:ete.)

y(43X : ete.)

| T(A,X)

vy(A 1 ete.)

commutes, where the paths we use in defining i, are

)\Xi(t):Xixt in AxIUXxl:Mi

Lemmg 1: If £ ¢+ X =+ Y 1is a proper map which
induces epimorphisms on H° and Hgnd , then, if {f(p)}
is a set of base points for Y , {p} 1is a set of base

points for X .

. . . . o}
Proof: Since f 1is an epimorphism on H~ , each

path component of X has a point of {p} in it.

Now define a cochain in S°(X) for some closed
compact set DS X , o , as follows. $D(q) =1 if
g 1is in a path component of X-D with no point of
{p} in it and is O otherwise. 6¢D =0 in Sénd .

Since f 1is an epimorphism 5n Han , there must
be a chain in sXY), ¥ , such that f£*y = ¢ in
sgnd(x) . But this means thesre is some closed compact
set C < X such that ¢ and ¢ agree for anj point
in X-C . Hence there is a closed, compact set ES Y

such that f_l(E) D CUD . There is also a closed,

compact F € Y such that there is an f(p) 1in each
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hnl

path component of Y ~-E which i1s not contained in F .

¥ restricted to Y~E must be O since some component

1

of X-D which is not contained in f ~(E) has a point

of {p} has a point of {p} in it. Hence ¢ restricted

to X -t HE) is O , SO We are done. Q.E.D.

Definition: An homogamous pair (X,A) 1is properly

. . . . . 0
O-connected if the inclusion induces monomorphisms on H

and  H®

end We have already defined properly 1/2-connected.

If (X,A) 1is properly O-connected we can choose a set
of base points for tha pair to be a set of base points
for A . We say (X,A) 1is properly n-connected, n > 1
provided it is properly 1/2-connected, and, with base
points chosen as above, A{X,A :m, [xi}, no cover) = 0,
1 <k <n . It is said to be properly n-connected at co
provided it is properly 1/2-connected and e(X,A P e

{x;}, no cover) =0, 1<k<mn.

Proposition 13 If (X,A) 1is properly 1/2-connected,

and if i ¢ A(A: 7y ,{x;}, no cover) = A(X: 7y, {x;}, no

cover) 1is onto, (X,A) 1is properly l-connected and

conversely.

Proof: If (X,A) 1is properly 1l/2-connacted,

AA: T {xi}, no cover) — A(X: 7 {Xi}’ no cover) is

seen to be an isomorphism by applying Theorem 2.4 to ths
kernel and cokernel of this map, together with the
definition of a set of base points.

Hence A(A3X: Wl)-*? A(X:Wl) —* A(X,A: Wl) ~ 0
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is exact.

ACA3X: Wl)'—"ﬁ> A(Xzmy)

A(A:nl)

commutes, and i, 1is an epimorphism. Hence

CAa(X,A: m) =0, so (X,A) 1is properly l-connected.

The converse follows trivially from Proposition 2

and the definitions. [J

Proposition 2: Let (X,A) be a properly l-connscted

pair. Then +t(A,X) 1is an isomorphism if the base points
for ths pair are a set of base points for A . We may use

any 1ift functor to induce the covering functor.

Proof: If T 1s an isomorphism on the & objects,
we need only show h(i, %i) = h(i N i, ﬁi) .  But

A=AnNX if Wl(A)'—?’ﬂl(X) is onto, so if we can show

the result for the € objects we are done.

We nsed only show <t 1is onto. By Theorem 2.4
applied to the cokernsls of the maps inducing T , we
need only show that for each C € $(X) , thsare is a

D2>C in 8(X) such that
—— i N ~ — i ~ ~

| P

I Ty . N . A
h((A-C)%, %) —= n((E N X-FCN U x;,%,)



satisfies Image i, € Image T, for all x; £ D .

*

) i
We saw A N (X-F(C))" was just some copies of

—~ i .
(A-C) , together with covers of components of
A-Cc< (X-F(C))' . Since (X,A) is properly 1/2-

connected, we can find D so that Image i, < h(copies

*
of (A-C)); i.e. we can find D so that

(X - FON' N (A-C) = (X-FON* n@a~-c)* .

Since (X,A) 1is properly l-connected, we can find

D1 2D so that

(Y - -
m (X -F(Dy), A -Dyy x4)

m (X-F(C) , A-C , x5)

is zero for all xj 4 D; . But this says all the copies

e i

of (A —Dl)1 in AN (X-—F(Dl))l go to the same copy of

i ~ Tt -
(A-C)Y in AN (X-F(C))T , namely the one containing
Xy - 0
Theorem 2.4 can also be used to get
The subspace principle: Let (X,A) Dbe an arbitrary
homogamous pair. Then y(A3X : h, {Xi},"‘) = 0 iff
y(A: h, {ﬁi},~) = 0 provided, for the if part,

1) if Ay is a collection of disjoint subsets of

A, hUA U p,p) z®h(h, Up,p)
a - o

2) if E < B are subsets of A , and if there is a
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q ¢ E such that h(%,q)-—*kﬂﬁ,q) is the zero map,
then h(E U p,p) —> h(B U psp) 1is the zero map for

any p . h need only be natural on subsets of A

Proof: Only if is clear as 7T(A,X) 1is naturally

split, so we concentrate on the 1if part.

Yy(A:h, {ii}’N) = 0 implies by Theorem 2.4 that

we can find a cofinal sequance CO E_Cl € ... of closed,

— ] A R
compact subsets of A such that h((A-—Cj) yX3) —F

N —— i
}1(@.—03_1) »%;) is the zerd map for all x; 4 Cj . If

Yy = A 5, h(A) 1is also zero.

- T T — .
We then claim h{((A N (X-—F(Cj))l U xi,xi) —
~ N i ~ "
(A N (X"F(Cj;l)) U xi,xi) is the zero map, and, if

vy=a, n@nx, z)=0.

?

This last is easy since A N ¥ is the disjoint
o ~ o4
union of copies of A . Now A N (X-—F(Cj)) = g U Zy
a B
B

whaere B runs over the path components of A 'Cj

in (X-—F(Cj))l , and o, runs over the path components

B
R B dvraSy i
of 7 ~((A ij) ) where T : (X-—F(Cj))' —-7*(XZ—F(Cj))
is the covering projection and (A -Cj)B is the component

of A-—Cj corresponding to B . ZQB is the aB_th

component of W—l((A-Cj)B)

| ) ——
N . 14 - - b
Similarly A N ‘X F(Cj_l)) g E% Zab. The map

we are looking at is just the map induced on the direct



sum by the maps h(zOLB U X, ,%;) _—+h(zab
the unique a; such that Za is mapped into by ZaB

U %£.,%.
' xl,xl) for

b
Zz, = (A nC.)B , 'so if x. €.Z s the map is the zero
Gg j i ag
A—_/ . ~
map since it is then a map of the form h((A-—Cj)l,xi) —
T —

h((A-—Cj_l)l, ﬁi) , Wwhich we know toc be zero.
If ii 4 Z, » the map is now a map of the form
B

~ ~

nh-CHP U %.%5) >n(k-t. P U %.,%), which is
j 10 j-1 £i9%3/ ¢

still zero by the properties of h . []

We now investigate the invariance of our construc-

ticn.

Theorem 2: Let f,g : X + Y be properly homotopic
maps between homogamous spaces. Then there is a set of
paths A  such that

£
YK+ hy {xg),e) = v (¥ 2 n,1F;1,7)

£ x _ lr

h Y(Y . hy [3;1}5”)
commutes.

Proof: Let F : X x I —=Y be the homotopy, and

‘let M, Dbe its mapping cylinder. Then it is possible

AL

to pick paths so that

~

Y(MF:ha {';{1] x 0,~) ——> Y(MF th, {Yi}a”)

| Jo

Y(Mpih, (%) x1,") ——>y(Mp :h, {§;1,)
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commutes, where the horizontal maps are the maps induced

by the paths joining {X;} x t %o {(F:} (t =0, 1)

and the left hand vertical map is the map induced by

the canonical path ﬁi x 0 to ﬁi x 1l iIn X x 1T & MF .

It is now a chase of definitions to show the de-

sired disgram commutes. []

Corollary 2.1l: Let £ : X > Y be a proper homotopy

equivalence between ‘two homogamous spaces. Then f, 1is

an lsomorphism.

Proof: There is a standard derivation of the

corollary from the theorem. (]

Corcllary 2.2: A proper homotopy equivalence be-

tween homogamous spaces 1is proper n-connected for
all n (i.e. its mapping cylinder modulo its domain
is a properly n-connected pair).

Proof: (Mf, X) is clearly properly 1/2-connscted.
i, @ a(X: m) > A(Y: 7)) is onto, so it is easy to
show (Mf,X) is properly l-connected. Then

Yy(XsMer m) 2 v(X: m) = y(Mpm) , so

Y(May X2 M) = 0. ]
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Corollary 2.3: If f : X =+ Y 1is a proper homotopy

equivalence, Y(Mf,X: h,[%i},~) =0 .

Proof: Since f 1is properly l-connected,
Y(X;Mf:h, etc.) £ v(X:h, ete.) by Proposition 2.
y(X:h, etc.) Z Y(Mf:h, etc.) by Corollary 2.1. Hence
Y(Mf,X : h, etc.) =0 . 0

In the other direction we have

Theorem 3: (Proper Wnitehead) Let f : X+ Y be
properly n-connected. Then for a locally finite CW

complex, K , of dimension <n , f [K,x] —+ [K,Y] is

#2

an epimorphism. If f 1is properly (n+l)-connected, f#

1s a bijection.

Remarks: [K,X] desnotes the proper homotopy classes
of proper maps of K +to X . PFor a proof of this result,
see [11] Theorem 3.4 and note the proof is valid for X

and Y homogamous.

Definition: An homogamous space 2 1s sald to

satisfy Dn provided the statement of Theorem 3 holds
for Z in place of X and for each proper map f be-

tween homogamous spaces.

Proposition 3: Let Z Dbe properly dominated by a

space satisfying Dn . Then 4 satisfies Dn .

Proof: We leave 1t to the reader to modify the
proof of Proposition 1.1 to show Z 1s homogamous iff it
is properiy dominated by an homogamous space. Let K Dbe

a space satisfying Dn and properly dominating 7
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Then [Z,X] is a matural summand of [K,X] for any

homogamous X , S0 the result follows. []

We finish this section by proving a proper Hurewicz

and a proper Namiokxa th=orem.

Definition: A (as opposed to the) universal covering
functor for X 1is a covering functor ~ such that

E(X:W1,~) = A(X:W1,~) = 0 . Note that if the universal

covering functor is compatible with X , then it is a
universal covering functor for X . There are other

examples however.

We start towards a proof of ths Hurewicz theorem.
The proof mimics Spanier [35] pages 391-393. We first

prove

Lemma 2: Supposs & = {G..} 1is a system of singular

chain complexes on spaces Xij . Suppose the projection
ma ps Gij - Gij—l are induced by continuous maps of the

spaces Xij —+ Xij-l . Assyme 1 >0, J2>20.

Assume we are given a system C = [Cij} , Where

i is a subcomplex of Gij which is generated by

the singular simplices of G.lj which occur in Cy

Also assume that the projection Gij'+ Gij

each Ci

3
_q ‘takes
Ci3 7 Cig-1 -
Lastly assume that to every singular simplex
gt A%~ Xij for j>n (n 1is given at the start and

held fixed throughout) there is assigned a map

Pisod: a% x T+ X;5 , which satisfies



56

a) Pij(d)(z,O) = g(z) , where g : AY <.

Xij

pr’ojectionh_X
7 ™Mi-n
1 . q —— ’ —
| b) Define gl. A : Xij—n by gl(z)
Pij(c)(z,l)-- Then we require that gy € Cij—n’ and,

if ¢ge Cij’ then gy = G -

k

¢) Tr ef ¢ A9l 4 A% opits the kD

vertex, then

k - (k)
Pij(o) °(eq x 1) = Pij(o )
Then €(C) < e(4) 1is an homology equivalence.

(Compare Spanier [35], page 392, Lemma 7).
Proof: Let a(i,k) : C; € Gy, Dbe the inclusion,

and let ~(i,k) ¢ G be defined by <(i,k)(g) = 81

ik ~ Cik-n
and extend linsarly. (Here we must assume k >n ).

Define Py * Gik ? Gypop to be projection.

One easily checks that condition c¢) makes T(1i,k)

into a chain map. <{(i,k) ° a(i,k) : Ciyx @ Cipop 1s Just

the map induced on the Cij by P, on the Gij . This

follows from condition ©b).
is chain

We claim a(i,k-n) © g(i,k) : G,y * G

ik |
homotopic to p . To show this, let Dg:'S(Aq)’+S(Aq'xI)

ik-n

be a natural chain homotopy betwsen A(hl) and A(ho) s
where h,h: AT 5 A% % T are the obvious maps (8 is

the singular chain functor).
Define a chain homotopy Dy 3 S(Xik) -+ S(Xikwn) by

Do) = 8(Pyy(a)) (D (E)) (where £ : A% €A% is the

identity) where g 1is a g-simplex. One checks, using



¢) and the naturality of Dq , that aDikj_Dika = oy -

a(i,k-n) © T(i,k)

By definition, (&) = lim u(G;,) and
B ik

K
e(C) = 1lim “(Cik) . Since
= :

a(i,k)
Cik * Gy
4

a(i,k-1)

Cik-1 > Giyp1

commutes, we get a chain map a : €(C) - (&) , which
is just the inclusion.

Since 7T(i,k) ° al(i,k) = pp »

afi,k) T(i,k)
Cik s, Cik —_— C
51 P Py
' o (i, k-1) (3 k1)
Cik-1 > Gy g1 i,k-1-n

commutes along the outside square. Unfortunately the
right-hand square may not commute as we have made no
stipulation as to the behavior of Pij
Py - Similarly

o, (. g, a(ik-n)y o

ik ’ ik-n i’ ik-n

; z

(i, k- 1) c a(i,k-1-n) G
1k 1 > 1k l -n > ¥ik-1l-n

with respect to

57
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may not commite. However, since a(i,k-n)°T(i,k) is

chain homotoplic to Py »

H, (60 s w1 (e, ) s w6 )

lH(pl) 1H(pl)

H(T) H(a)
TRCIIIE g NN E el RO

does commute.
Define 3(i,k): Gik - Cik—2n for k 3 2n by

B(i,k) = t(i,k-n)ea(i,k-n)°v(i,k) . We claim

H
H,(Gyp) _HE) H, (Cixop)

lH(pl) J/H(pl)

H(B)
H, (G 1) > H,(Cix 1 _op

commutes. To see this, look at

H(T) H(a) H{T)
H*(Gik) —_— H*(Cik_n) —_— H*(G.lk_n) —— H*(Gik_2n)

lH(_Dl) I J'H(pl) II lH(pl) 11T lﬁ(pl)

H(t) VH@) H(t)
H(Gypq) =+ B(Cyp 5 1) PHLG ) T H(Gyy g o)

The square II commutes since it already does on the
chain level. Similarly the square II + III commutes.
The square I + IT commutes on the homology level. The

desired commutativity is now a diagram chase.

Now define T : e(H, (&) = e(H,(C)) wusing the
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H(8)’s . We also have H(a) : H_(e(C)) - H_(e(4))
By Corollary 1.2.2 we have H(a): e(H,(C)) » e(H ()
© © H{(a) and H(a)eT are both induced from the maps
H(pzn) , and hence are the identities on the inverse

limits. Q.E.D.

Lemma_3: Let X be an homogamous space. Then ws
can find a countable, cofinal collection of closéd, com-

pact sets C., < X , with Cj < C Let

J J+l

g N > ~
Gij = S((X-—Cj)l,xi) , the singular chain groups on
et i e —— j_ . - o~ i ~ n
(x-cj) . Let %J=:sux-cj) , A n(x-cj),xf

(see Spanier [35], page 391 for a dsfinition).

Suppose (X,A) is properly l-connscted and properly
n-connected at oo for n > 0 . Then the inclusion map
e(C) € (&) is an homology equivalence. (Notice that
if we pick a set of base polints Xy for A , they are a

set for the pair, and (&) = E(X;H*,{ii},N)-)

Proof: Let r = min (g,n) . Thsn we produce for
q N j_ ~
every o ¢ Gjy a map Pij(d) : AT x I ((X-Cj_r) y %3 )
which satisfies
= g N | rojection
a) Py (0)(2,0) =3: p > (x-0pN) E >
m—
b) If ol(z)::Pij(d)(z,l), o) € cij~r ,
l 9]
P, (o) : A% w1 B2y A0~

and if 'O € Cij » Pij

‘/‘\___J

At projsction i
ux-cﬁ ) sty UX—CTT))
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¢) Pyy(0) 0 (Cfx1) =

(k)

f(projection 1 step)OPij(d q <n

(k)
From such a P , it is easy to see how to get a P

as required by our first lemma. We remark that C. and

1]
Gij satisfy all the other requirements to apply ths lemmas
~ Hence Lemma 2 will then give us the desired conclusion.
We define Pij by Induction on q » Let g = O .

. 0 i .
Then o€ Gy is a map o : A - ((X—Cj) ) « Since the

j o -
point 0(A®) 1lies in the same path component of (X -C)*
as ii , there is a path joining them. Let Pij(o) be

such a path. If o(p”) = %; » P;4(0) should be the con-

J

stant path. This defines P for ¢ =0, and P 1s

1]
easily seen to satisfy a) -c).

Now suppose Pij is defined for all o of degree <gq,
0 <q£n so that it has properties a) -c).

If oge C b) definss P(c) , and P then

ij
satisfies a) and c). So suppose O ¢ Cij . a)and c)

define Pij on A%x0 U Aq'xI ;3 l.e. wWe get a map

q " r— 5 )
f @t A*x0UA XTI —*ﬁ>(X-Cj_q+l) . There is a homeomor-

phism h:E3xI ~ aA%xT such that h(E4x0) = aA%%0 U A%« T;
nE?™t «0) = A%« 1; and nET a1 U ETx1) = A9x1 .
q_ga-1 N T T et

defined by g = foh «
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Because g < n and (X,A) is properly n-connected

at oo, we could have chosen (and d4id) the Cj so that
wq(x—ck, AN (X-Cply*) —%wq(x-ck_l, AN (X-Cp_q)y*)

is the zero map for g < n . Thus we get a homotopy

i

_ N s —~—
g (8,80 w1 — (-, , T x-c,_b
4—q J-a
between pPq ° g and an element of Cij—q .
Define Pij(o) to be the composite
_1 . T N——
pdyy Bx3y g B, YL P, clearly
J—q iJ
satisfies a) and b) . Since h was chosen carefully,

c) 1is also satisfied.
In this way P 1is defined for all simplicies of
degree < n . MNote that a singular simplex of degree > n

is in Cij iff every proper face 1s in Cij

Suppose that P has been defined for all degrees
(o)

<g, Where q >n . If oe C; we define P

ij ?
by b) as usual. It satisfies a) and ¢) . So sup-

ij

pose O ¢ Cij . Then a) and c¢) define a map
. e |
£ Aty oUuAtT — X -cC,_ ) By the homotopy

J-n

extension property we can extend f to some map

P(o) : Alx1 —> (X-C5_p) It clearly satisfies a)
and c¢) . It also satisfies b) since every proper
face of 07 1is in Cij*n . Hence we have defined our P.

Q.E.D.
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Now define e(n)(X,A' Hq,") to be

— ,
s(H(b((X C),Aﬂ(X C),x)/S((X c) ,

T N

in-cpt, 2P0 s@n -0, ey %))

Then there are natural maps

(l’l) . ~) = (l’l—l) . ~) 3 e
£ (X,A .Hq, ) =+ & (X,A.Hq, )

+ e (X, A Hq, {ii},~

Lemma 4: Assume (X,A)  1s a properly l-connected
pair which is properly n-connscted at oo for some n > 0.

Then the natural map e<n)(X,A: Hq,~) -+ e(X,A: Hq,[;{i],~
is an isomorphism for all q .

Proof: We have the following commutative diagram

P

T~—i n ~ i 1
o-—-->s((x-cj) ,etc.) N S(Aﬂ(X—Cj) )——>S((X—Cj) ,ete.)

la ;

— T~
0 — 8(A N (X - cj)l) >  S((X - cj)l)

— (the quotient complex) ————» O
, , ,
A T Ty
—_— s((x-cj) ,Aﬂ(X—Cj))——i"‘ 0
where (the guotient complex) was used in defining s(n)(X,A).

Now, since (X,A) is properly l-connected, the sub-

Space groups s(n)(A;X : ete.) and e(A3;X : etc.) are
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the absolute groups. Since (A,A) is properly 1-
connected and properly n-connected at infinitely
for all n , Lemma 3 says E{a) is an isomorphism
on homology. Similarly Lemma 3 says €(8) is an
isomorphism on homology. Thus =£(y) 1is an isomor-

phism on homology as asserted. Q.E.D.

Theorem 4: Suppose (X,A) 1is properly l-connected
and properly (n-1)-connected at oo for some n > 2
Then the Hurewicz map e(X,A: 7! , {%i},“) —
e(X,4 : Hn,[%i},“) is an isomorphism, where

P AP i I :
wn((X-—Cj) , AN (X-—Cj) U xs, xi) is 7, quotiented

~ —— i A A
out by the action of Wi(A N (X-C.)" U x., X:)
j i i
Proof: The usual Hurewicz theorem contains the

T — i ~ P i "
fact that wr'l((x-cj) , AN (X—cj) ) Xg) —>

o —

o~ - ~ 1 ~
Hén—l)((x__cj)l , & n (X-—Cj)l, x;) is an isomorphism.

Thus &(X,A : ng, {ﬁi},~) -+ e<n“1)(X,A: Hn,~) is an

isomorphism. But Lemma 4 says s(n“l)(X,A:Hn,~) —

e(X,A: Hn’ {ii},~) is an isomorphism. [
Th=orem 5: Suppose that e(Azm, {ﬁi]’NF) =0

where ~p is the cover over A 1induced by the 1lift
functor F from a cover ~ over X . Then the natural
surjection &(X,A: nh,{xi},~) —3» e(X,A : Wﬁ, {xi},~)

is an isomorphism.
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Proof: Set Gij = Wh((X—ij% AN (X—Cj) U Xi’%i)
AN N R .
and Hij = nn((x-cj) s AN (X—Cj) U xi,xi) . Define
Kij to be the kernel of Gij‘4 Hij -+ 0 . Kij is
- generated by elements of'the form x-ax , where

xe ((Xf-:\é")i A N (iffal)i U %.,%:) and
n j’l o J i1

~ i ~

| Since e(A : 5 {ﬁi], NF) = 0 , the subspace

principle says that we can assume the map
~ T — i ~ ~ - T N— j__ - ~
Wl(A N (x_cj) U xi,xi) —_ Trl(_L\. n (X—Cj_l) U xi,xi)

is the zero map. Then Kij - Kij—l takes x-ax to
1,00 - i lex) = 1,00 - 1,e) o 1,(x)=1,(x) -

i,(x) =0, so this map is the zero map. [l

Theorem 6: Let (X,A) Dbe a properly l-connected
pair. Then, for any covering functor ~ on X , the
natural map e(X,A : L {ﬁi},~) — e(X,A : nh,{ii},

no cover) is an isomorphiam.
Proof: We have

. - E(A:Wk,[xi],~F) — £ (X: Mepeoes~) —F e(X,A: ete.)

l | |

. e(A:nk,[ii],no cover)—3 e(Xitete.) —¥ e(X,A: etec.)

commutes. The first two maps are clearly isomorphisms

for k >2 , so the third is for k > 3 . Moreover
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E(A H Tfl,"'F) E—— 5(X37T19~)

l |

e(A:7y,n0 cover) —3 £(X: ete.)

is a pullback since it is obtained as the & construc-
tion applied to pullbacks. Hence the theorem remains

true for k¥ =2 . {]

 Corollary 6.1: Suppose (X,A) is a properly 1-

connacted pair which is (n-1)-connected at o for some
n>2. If n=2, assume E(A:Wl, no cover -
a(X:vl, no cover) 1is an isomorphism. Then the Hurewicz
map e(X,A: m 5 0o cover) —> e{X,A: Hn,N) is an iso-
morphism, where ~ 1s any universal covering functor

for X .

Theorem 7: Theorems 4,5, and 6 are true (after
appropriate changes) with A 1instead of & . They are

also true for the absolute groups.
Proof: EFasy. [}

Now suppose (X,A) 1is a locally compact CW pair.
Then we might hope to improve our Hurewicz theorems by
getting information about the sscond non-zero map

(see [42]). We do this following Hilton [13].

Definition: Two proper maps f,g: X * Y are said

to be properly n-homotoplc if for every proper map
g : K+ X, where K 1s a locally compact CW complex

of dimension < n , f@ 1is properly homotopic to g@ .
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X and Y are of the sam= proper n-homotopy type
provided there exist proper maps- £ :X+Y and

g : Y X with -fo g and g ° f properly n-homotopic
to the identity. Two locally compact CW complexes, K
and L , are said to be of the same proper n-type iff

n

K" and L™ have the same proper (n-l)-type. A proper

celliular map f : K+ L 1is said to be a proper n-equl-

valence provided there 1s a proper map g: Ln+l - Kn+l

n+l o, g and g © flKn+l properly n-homo-

with f}X
topic to the identity.
A proper Jm-pair, (X,A), 1is a properly l-connected,

locally compact CW palr such that the maps

A(Xn—1 Ui, A: 7, no cover) —9-A(XnLJA, As m oy no cover)
are zero for 2 {n <m . A proper J -pair at co is

the obvious thing.

Lemma 5: The property of being a J -pair is an

invariant of m-type.

Proof: See Hilton [13]. Q-E.D.

Theorem 8: Let (X,A) be a proper J-pair at oo .
Then the Hurewicz map h e(X,A¢ 2 {ﬁi}, no cover) —>

A - - 2
(X, Az Hn,{xi},~) , where ~ 1is a universal covering

functor for X , satisfies hIl is an isomorphism for

#<m , and hm+l is an epimorphi§m.
Proof: See Hilton [13]. []

Cbrbllarv 8.1: Th=z same conclusions hold for a

proper -Jm-pair with the A groups.
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Corollary 8.2: Let (X,A) be a properly (n-1)-

connected, locally compact CW pair, for n > 2 . If
n=2, let A(A: 7, no cover) ~ A(X: T, no cover)

- be an isomorphism. Then the Hurewicz map

h, e A(X,A:'Wh, no cover) + A(X,A: H ,~) 1s an isomor-

hism, where ~ 1is a universal covering functor for X.
b

h is an epimorphism.

n+l
Proof: 1In section 5 we will see there 1s a locally

finite l-complex T € A such that (A,T) 1is a proper

1/2~equivalence and A(T: s no cover) = O Tfor k > 1.

Then (T, T) is certainly a proper J -complex.

(T, T) € (X,A) is a proper {(n-l)-equivalence, so (X, A)

is a J -complex by Lemma 5. [

Theorem 9: (Namioka [28]) Let # : (X, A) - (Y, B)
be a map of pairs of locally compact CW complexes. Let
#|X and @|A be properly n-connscted, n >1 (B|X
and @A should induce isomorphisms on A( : 7y, no
cover) if n = 1) . Then the Hurewicz map

hoq¢ A((Mﬂ : M@IA’ X) s Toyqs DO cover) —»
A((MQ : M@IA’ X): Hn+l’~)’ where ~ is a universal
covering functor of Mﬁ y 1s an epimorphism.

Proof: (Mg : Mﬂ‘A’ X) is a triad, and the groups
in questioh are the proper triad groups. The reader should
have no trouble defining these groups. We can pick a set of
base points for (X,A) , and it will also be a set for

our triad.
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The triad groups fit into a long exact sequence
A0y 5805 M) = ACQMEXD) = AC(My: My X)) wee

where again we get subspace groups. Since QIA and

Q]X are properly n-connected. hm for (MQ,X) is an
isomorphism m < n and an epimorphism for m = n+l .

By the subgroup principle, h =~ for ((MQIA’A)5 Mg) is
an isomorphism for m < n and an epimorphism for m = n+l.
Thekstrong version of the 5-lemma now shows the triad

hn an isomorphism and the triad hn+1 an epimorphism. [J

Notation: Ax(X,A: ~ ) will hereafter denote
A(XLA: H*,{ﬁi},~) for some set of base points for the
pair (X,A) . Similar notation will be employed for
homology n-ad groups, subspace groups, etce

We conclude this section with some definitions and

computations.

Definition: An homogamous space X is said to have

monomorphic ends, provided A(X:my,no cover) - 'zi m (Xy%5)
is a monomorphism (equivalently ¢ **% is a ménomorphism).
A space has epimorphic ends provided the above map is onto,
and isomorphic ends if the map is an isomorphism.

As examples, if X 1s an homogamous space which is
not compact, X x R has ons, isolated end (see [32])
whiech is epimorphic. X x R2 has isomorphic ends. These
results use Mayer-Vietoris to compute the number of ends

of X x R and van-Kampen to yield the T information,

using the following pushbut
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(X-C) x (Y-D) —> X x (¥Y-D)

} !

(X - C) %Y » X xY-CxD

In fact, this diagram shows that if X and Y
are not compact, X xY has one end, which is seen to
be epimorphic since Wl(X><Y - CxD) ~» Wl(X><Y) is
easily seen to be onto. If X has epimorphic ends,

T (X -C,p) + 7 (X,p) must always be onto, so if X
and Y have epimorphic ends, XxY has one isomorphic
end.

Monomorphic ends are nice for then the third
example of covering functor that we gave (the universal
cover of X but no more) becomes a universal covering
functor. Farrell and Wagoner ([9] or [11]) then showed
that a proper map £ ¢+ X+ Y, X, Y Jlocally compact CW ,
with X having monomorphic ends is a proper homotopy
equivalence provided it is a properly l-connected map;
a homotopy equivalence; and f: H:(%) + H:(i) is an
isomorphism where ~ denotes the universal cover

(coefficients are the integers).

Section 4. Proper cohomology, coefficients and products

In attempting to understand ordinary homotopy theory,
cohomology theory is an indispensable tool. In ordinary
compact surgery, the relationship between homology and
cohomology in Poincare duality spaces forms the basis of

many of the results. To extend surgery to paracompact
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objects, we are going to need a cohomology theory.

If one grants that the homology theory that we
constructed in section 3 is the right one, then the
correct cohomology theory is not hard to intuit. To
be loose momentarily, in homology we associate to each

o~
compact set C the group HyM-C) . If M-C is a
manifold with boundary, Lefschetz duality tells us this
. * e -~
is dual to H, (M-C , d3C) , where M-C 1is the closure
T ——t

of M-C . If C<D, we have a map H,(M-D) —>

—— P

—~ el ¥ L
Hy(M-C) , so we need a map H,(M-D, aD)~>H,(M-C,d3C).

It t
A candidate for this map is H:(M-D, 3D) ——»
_———— P

i, (M=D,r) «&E— 1 (M-C, D-C) ——i—n—c—é.-Hz(M’:Jc,'g(J:) ,
where Z§€55': ﬂ—l(M-D) (r: M-C —> M-C). inc is the
map induced by inclusion, tr 1is the trace, and ex 1is
an exclsion map.

The first problem that arises 1s that ex need not
be an isomorphism. This problem is easily overcome. We
define & (X) to be the category whose objects are open
subsets of X whose closure (in X) 1s compact. If
U,V ¢ 8(X) , there is a morphism U=V iff U<V or
U=V. 6(X) will be our diagram scheme. Note we have
a functor 6 (X) » D(X) which sends U ~+ U . Since X
is locally compact, this functor has a cofinal image
(X is homogamous, hence locally compact).

The second problem which arises concerns covering
functors. Since X-U , Ued(X) is closed, it is
hard to get conditions on X so that X -U has arbitrary

covers. There are two solutions to this pfoblem. We
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can restrict 8 ((X) (e.g. if X 1is an homogamous CW
complex, and 1f we pick sets U so that X - U is a
subcomplex, then we always have covers), or we can
ignore the problem. We choosé the latter alternative,
and when werwfité ~ 1is a covering functor for X , we
mean ~ 1is compatible with X -U for each U e &¢(X) .

It is not hard to sze that if X 1s locally l-connected,
then universal covering functors exist despite the fact
that the universal covering functor need not.

Now we could have defiﬁad homology and homotopy
groups using &(X) 1instead of #®(X) . Given a cover-
ing functor for & (X) there is an obvious one for 8(X).
It is not hard to show that the homology and homotopy
groups for X are the same whether one uses @& (X) or

8(X) .

Definition: A«(Xs4q,...,A ¢ ~,T), where T is a

local system cn X , denotes the A-construction applied

—— . — Vo W) I i~ — . .*
to Gy ~ He((X-10)T5 &7 N (x-U)l,.,.,Ann X-m*: i,
where the homology group is the ordinary (singular) n-ad
*k *
homology group with coefficients 1 I' , where 1 I 1s

the local system induced from T by the composite

(X-U)y" —— X -UcSX.

Definition: A*(X:~;F) is the A-construction applied

e S ~
to Gy = HA(X -0, 30 n (X" 1°1) .

(3U = frontier of U in X.)
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A¥(X,a: ~,I') 1is the A-construction applied to
* e i PN P i o~ l/\J i
Gig = HC((X—U) ; 300N (X-U)", AN (X-U)" 3 i*T).
Caution: (X,A) must be-a proper pair (i.e. A € X
is proper) before H:(X,A) makes sense. A similar

remark applies for n-ads.

A*(X;Al,...,An:~,P) is defined similarly.

-~ In our definition we have not defined our maps

Gio = Giy if UCSV . If XoV =7 (X-V) , where

1V iU
~) i
ms: (X-U)" -+ X-U, then the map is the composite

Ho((X-V)™, v n (X-V)7517T) —l%I%CX—V&V;Tl)
% —_t T N— Pl e j_ = * /V »
H, ((X-WF, (V-U) N X-0)70,)-2283 1 ((x -1,

1125
"

30 N (%i?h)i; i*F) where Iy and I, are the obvious
local systeﬁs. A similar definition gives the map in
the palir and n-ad cases.

Once again we get long exact sequences modulo the
usual subspace difficulties. We let A*(A;X:~,F) denote
the subspace group with a similar notation for sub-n—ad
groups. Again we get a subspace principle. Lastly the
cohomology groups are "independent" of base points
(compare Theorem 3.2) and are invariant under proper
homotopy equivalence. The proofs of these results should
be easy after section 3, and hence they are omitted.

One reason for the great power of cohomology is that
we have various products. The first product we investigate

is the cup product.
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Theorem 1: There is a natural bilinear pairing,

the cup product
Hm(X,A;l—i) x An(X,B:“’,FE)‘_} Am+n(X;A.’B:~,I‘l ® 1_‘2) .
If {A,B} 1is a properly-excisive pair, the natural
* .
map A (X, AUB: ~,T 8F2) - A*(X;A,B:~,I‘13F2) is an
isomorphism, so we get the "usual" cup product.
Proof: Given o € Hm(X,A;Fl) , define, for any

m 1 o~ "Ni *
e H(X-U)",b AN X-U)s i?l) via

UeoalX , 9

m m, .. ~—— r* m,, .1

B (x,a5T)) » HR((X -1), (K -U);0) —> EN((X -7,
———

An (Xx-u)?t, 1*T') . One then checks that if

n ~—t i — /—\/i e Ni N
Gy = EHE-WY ,Fn (x-%, a0 n X-1)", 1"Ty) and

. *
if Hyy = the group for A (X34,B:~,T, ®T5), then

Ups
Gig — > H;

| oy

Giy =™ Hiy

commutes. Hence the maps U Py give us a map
AP (X,B:~,T,) + AMP(X34,B:~,1; 8T,) o One easily checks
this map gives us a natural bilinear pairing.

Now we have a natural map A*(X,AUB) ~ A (X ' AL,B) .

We get a commutative diagram

eee + AF(X,A U B) — A¥(X, A) — AT UB, A X)) T ore

! / }

see =+ AT(X34,B) —> AT (X, 4) ———#A”"(B,A n B X)
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where the rows are exact. {4,B} a properly-excisive
pair implies A¥(AUB,A) - A®(B,4N3) is an isomorphism
for a set of base points in A N3 which is a set for

A, B, and AUB . The subspaée principle now shows_ the
right hand map ié an isomorphism. The middle map is the
identity, so thz left hand map is an isomorphism. This
establishes the last part of our claim. [}

For completenzss we give the desfinition of a pro-

perly-excisive pair.

Definition: A pair {A,B} of homogamous spaces

is said to be properly excisive with respect to some

covering functor ~ , provided
A" (A UB3A,B:~,I) =, (A UB3A,B:~ T)= HZ
for any local system I .

The pair is properly-excisive if it 1is properly
exclsive with respect to all covering functors compatible
with AUB .

The other product of great imvortance is the cap

product. We get two versions of this (Theorems 2 and 3).

Theorem 2: There 1s a natural bilinear pairing,

the cap product

)\/ofn

AT (KA, Ty) % HZT T (X54,B3T,) A (X,Bi~, Ty 81)

If {A,B} is a properly-excisive pair, we can define
the "usual" cap product.

‘ L.t ) ,
Proof: Let Ce H_ (X34,B50%) « Define
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,P,f_ o~ o~ T~
Cy ¢ Hy, ((x —u)* ,Aﬂ(X oyt ,Bﬂ(X mt ,0U N (X - 1) r,)
. L.f.

from HEf'(XL\.B,Ia)—?H* (XABUP) ~<SL—

Lof. ' .

g fo-us A -U, B-U, 2U; L)

tr
% f.

—t P
((x=m*; an (x- U)l, Bn(x mi, 30 0 x-miss F)

One can chack that N CU satisfies the necessary
commutativity relations to define a map Am(X,A:~,Fl) —>
6, (XyB:~, I 8T,)

If {X,A} is properly excisive, H;(A UB3A,B) =0
from A* = 0 . Universal coefficients shows & f'(AUB,

A,B) = 0, so the standard exact sequence argument shows

gL (B, r,) = gefe(x,n U B r) . [

Theorem 3: There is a natural bilinear palring, the

cap product

Hm(X,A:,Fg) % An+m(X;A,B:~I’2) — An()(,]e,:rv,rl ® ) .

1f {A,B} 1is a properly-excisive pair, we can

define the "usual" cup product.
Proof: Given o € Hm(X,A;Fl) , define

W — .
oy ¢ HN(X - A0 (X-17, 1" T by

m . m i LT PP |
o~ i B .
AN (X-U)7317[}) . One checks again that the necessary
diagrams commute. The statement about {A,B} follows

from the 5-lemma and the subspace principle. [J
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We will also need a version of the slant product
for our theory. To get this we need to define a group
for the broduct of two - ads. As usual we apply ths
A construction to a particulér situation. Pick a set
of base points for X and a set for Y . Our indexing
set is the cartesian product of these two sets. Our

diagram is 3(X) x@(Y) = {UxVE XxY|Uea(X), Veo (D},

1% L3 m——— S . ——— ——— =
G%j})i{]f = H*((X—U)l X (Y_V)J;(Aln (X““U)l) X (Y"V)J,-o-,

T~ L e

x-mt x & x @ vt .

The resulting group will be denoted  Ax((X3A;,..058 ) x
(Y;Bl,...,Bm): ~y ===, ') (I is some local system on
X XY) .
Theorem 4: There 1s a natural bilinear pairing,
the slant product
m
H (Y3Bl"°"Bm3Fl) X Am+n((X;Al,...,An) X

(Y;Bl,...,Bm); I; x Fl) - AH(X;Al,...,A ;e FZ) .

n’
R o .
Proof: For e H (Y’Bl"°"Bm’ll)’ define ®, as
in Theorem 1. Thase give us the necessary maps. []

Corollary 4.1: If 4 : X - X x X 1is the diagonal,

and 1f Ce A, (X30,B: ~,T1), and if € H (X435 I,),

then
® N C=9ldc . []
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Using our slant product, we can define the cap
product of Theorem 3 "on the chain level”; There are
two basic chain groups we would like to use. For an
homogamous CW complex we woula like to use the cellular
chains, and when X 1is a paracompact manifold with a
locally finite handlebody decomposition, we want to use
the chains based on the handles. Ws do the former case
and leave the reader to check the theory still holds in
the latter.

If X 1s an homogamous CW complex, we define
P (X;A,B:~,I") = A*(X*;X*_l,A*,B*:~,F) (where A% = aNnX*)
for *>2 . If * =0 or 1, we must use subspace groups

A*((X*;X*‘l,A*,B*); X:~,I. A and B are subcom-

plexes. Similarly define

A*(X*;,X.*—]_,A.*,B*:”,F)

{l

P*(X;4,B:~,1)

i

L] ’& V —_
c& Poxen,B) =5 Tox™5x*1,4%,8%)

1

c* (X : A, B) = HF(x*;x* 1A%, 3%) .

The triple (X*,X*—l,X*‘g) gives us a boundary map

*
Py > Pyqs PT o BT

, etce This boundary map makes the
above objects into chain complexes (33 = 0), and by
Corollary 2.2.2, the homology of these complexes 1is just
what one expectse.

A diagonal approximation hy: P,(X;A,B:~,I') —»
Ay (((X,A) x (X,B))*: ~,I'xTI') 1is a cellular approximation

to d: X~ XxX with a homotopy H: XxI™* XxX such that
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m o H and 7, » H are proper. (((X,A);<(X,B))*
is just U (X, « (X,B)*¥) . Any two such diagonal
approximations are cellularly homotopic so that the

homotopy composed with projection is proper.

‘Theorem 5: Given any diagonal approximation h ,

there is a bilinear pairing.

m - ; .~
By :CT(XA50) x P (X54,B: ~ 1) —> P (X,Bi~,I] ®L,).

h

if fe C"(X,A,T) and ce P (K54, B~ T0)

then 8By (f,c) = (-1)*

Bh(éf,c) + Bh(f,ac) . Hence we
getvan induced pairing on the homology level. Any two
Bh(f, )} are chain homotopic, so the pairing on homology
does not depend on the diagonal approximation. This

pairing is the cap product of Theorem 3.

Proof: h,(c) e An+m(((X,A)><(X,B))n+m, etce).

Doy (XXM THA™) o (M5, EM)

27,15 xI'y)  lles as a

natural summand of this first group. Let p; be the
n

projection. Then B, (f,c) = flpm(h*(c)) . The rest

of the proof involves checking this definition has all

the asserted properties. []

We also want to define the cap product of Theorem
2 on the chain level. Unfortunately, there is no slant

product of the needed type, so we must use brute force.

Theorem 6: Given any diagonal approximation h ,

there is a bilinear pairing

n . Lof yvon mer .
Byt P(X,A: ~,I) x cn+m(X,A,B,I2) —¥ P (X,B:~,T; ®T,).
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H’l %Ofo
If fe P (XA:~IY) and ce C (X;A,B;F2),

then
38, (£,¢) = (-1)™™ B (6F,c) + B, (f,9¢) .

Hence we get an induced pairing (independent of h)
on the homoiogy level. This pairing 1s the cap product

of Theorem 2.

L.,
Proof: Let c e C (X;A,B;FE)O Define

n+m
—~ I~ s . —t s~ —
Cy € f};g'((x nh in-mi, Ba@-miewa Gimd
*
i F2) by exclsion and trace as in Theorem 2. We define
\“/ ,W

Bh( ,c) from the maps H (x-mrnx™; x-m* X0t

,etc-)

TTr— P N

b T . i
LN B (-0 0 1% -0 n 3™, ete.)  where

| is the slant product and b, is the homology class

L.f i Ny
given via H_J ° (X -1 n XM etee) ——>
% T o o p
nm‘(((x U)lﬂ x-mY) n X0 ete.) —D
e e —
L.f. i m ns .

Hopn' (-0t 0 x™ x (@-m* nx" ) etc.)

- - » . ~
(superscript 1 denotes a component containing X5 s

and superscripts n, m and n+tm denote skeletons.

Note in passing that hy(tr bU) 7 tr(h*bU) , which
is why we are unable to define a general slant product
like Theorem % to cover this case.

The rest of the proof incolves verifying diagrams

commute and verifying our equation. []

Lastly we prove the Browder lemma, which will be
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essential in our study of Poincare duality.

Theorem 7: Let (X,A) be a proper pair, and let

L.f. :
ce H ' " (X,A; I's) . Then
A*Lasxev, T)) ——=> AT (KA, T) >
(-1)%n e Ne
N4
Oy (B3Xi~, Ty ®T,) ——> A (X:~, T8 [ ——>
AY(X: ~, Tp) > A*(A3X: ~, T))

lm ' ln s

By (KA, Ty B L) —————= Ay o (AsX:i~y D 8 1,)

1

commutes.

Proof: The usual Browder lemma (see section 1)
says that the corresponding diagram commutes for ordinary
homology and cohomclogy with compact supports. Commuta-
tivity is then trivial for the above diagram. (While ws
have not defined a cap product for subspace groups, the
reader should have no difficulty writing down the nec-

essary mapse) 0

section 5. Chain complexes and simple homotopy type.

In our A-construction as applied to the homology or

homotopy functors, we still have some structure that we
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have not utilized.
As an example of this extra structure, let us

consider e(X: This is-an inverse limit

L)
Lim u(ﬁl(X-C, Xi)> . Now many of the vl(X-C, Xi)
are isomorphic. (Unfortunately this isomorphism is
not natural but depends on a path joining x; to xj.)
Our e-construction makes no use of this fact. In order
to be able to make effective use of this extra structure,
we need a way to choose the above isomorphisms.
We will do this through the concept of a tree.
A tree for an homogamous space X will be a l-dimensional,

locally finite, simpliclal complex, T , such that

1) A(T Wk) =0 for k >0

2) If T'< T is a subcomplex of T , T' has

the proper homotopy type of T iff T = T' o

o
(This last condition is to insure that o-_l-_i~_@ voo
is not a tree for R° , but réther gy s se 1S4 )

We also require a map f : T - X which is properly 1/2-
connzacted.

Two trees (T,f) and (S,g) are equivalent pro-
vided there is a proper homotopy equivalence h: T -+ 5
with heo g properly homotopic to f .

A space X 1s said to have a tree provided X 1is
homogamous and there is a tree for X . Any locally
path connected homogamous space has a tree. To see this,

let {p} be a set of base points for our space X .
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We claim Hl(T;Z) = 0, and in fact, if Hy 1is
computed from the simplicial chains thesn there are no
l-cycles. This is fairly clear, so it will be left to
the reader. Now any locally finite l-complex with
Hl(T) = 0 satisfies A(T: Wk) =0 for k>0 . One
shows £ is properly l1/2-connscted by showing that

ZO

O : ‘ . o}
‘end(x) - Zend(T) is an isomorphism (Zend are the

o-cycles in Sgnd) -  But this follows from our con-
struction. Lastly suppose T! §>T is a connected
subcomplex, and suppose pe€ T - T' . Now by definition

p 1is in an essential component of X-—Ci for all 1 < n
for some n . Since each essentlal component of X-C;
has infinitely many base points in it, let {g} Dbe the
set of base points in the component of X - Cn contain-
ing p . Then {q} & T-T', as is easily seen. Hence
Hgnd(T) ~+ Hgnd(T') has a kernel, and so T' < T is not

a proper homotopy equivalence. Hence X has a tree.

From now on in this section we restrict ourselves to
the category of homogamous CW complexes. We willl denote
this hCW complex.

Given X , an hCW complex, we have the category
¢“(X) whose objects are all sets A S X such that

1) A 1is a subcomplex

2) A 1is connected

3) There exists an element of 3(X) , U, such that

A is an essential component of X-U .

The morphisms are .inclusions.
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Let £Ci} be a cofinal collection of compact subsets
of X . We can assume X 1s path connected since we
can do each path component segaratelya We may assume
{p}nC, #8 . Pick a point pg e {p} nc, . Look at
the components of X - Cj with a point of p 1in
them. As we showed in the proof of Proposition 1.2,
there are only finitely many components of X - C_ =
The components whose closure is not compact are called
essential components. We may assume {p} N (each essen-
tial component of X - CO) ncy 7 8 since this is trus
a1 %2 %n
for some compact set. Let P19 P st Py be a sub- -
set of {p}l N C, , one for each essential component of

.
X - C, . Join p;- to p, by a path Ap,q - Now look

o a

at the essential components of X - C; . Pick p21,°°-,p2m

(which we may assume are in 02)’ one for each essential
o -
component of X - C1 . Each p21 lies in an essential
componant of X - Co’ so pick paths Ao i which join
2

a.
p2l to the appropriate element in {pi} . These paths

should lie in X - C_ - Continue in this fashion to get
a
[pj] , one for each essential component of X - Cj—l“

{p?} may be assumed to lie in Cj . We can also get
o

paths A which join p.1 to the appropriate pq
Jaly j j-1
and which lie in X - Cj-l .
a @ X
Now T has {pj} for vertices and (pj ,pk‘) is
Q.
a l-simplex iff k = j-1 and X, joins p.1 to
ay J’ai J

Py + The map £:T = X is the obvious one.
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Now given a tree (T,f) for X , we get a

functor C?CX)-£;££2~%? ¢(T) (f is always assumed

to be cellular.

Definition: A 1ift of & (f) 1is a covariant functor

F: &T) - C(X) such that @(f)eF 1is the identity
and such that the image of F 1is cofinal. The set of
all 1ifts is a diagram scheme by defining F < G iff
F(A) ¢ G(A) for all A e (*(T) . We denote this

diagram scheme by £(f) .

Definition: A tree of rings is a covariant functor

R: C(T) =R , where R is the category of all rings
(rings have units and all ring homomorphisms preserve

units). A tree of modules over R 1is a collection of
modules M, , A e &(T) , where M

A A
module. A tree of right (left) R-modules requires each

is a unitary RA—

M, to be a right (left) R -module. If A S B in é{T),
there is a unique map Ppp’ Mq -+ MB s wnich 1Is an
R(A € B)-linear map; i.e. if T : Ry = Ry 1s the ring

homomorphism associated to A< B by R,

pAB(au + bB) = pAB(a)f(a) + pAB(b)f(B)

for a, B € RA; a,b € MA .

An R-module homomorphicm f : M -+ M' 1s a set of

maps f[,: M

AP My MA for each A e C(T) such that

1) f

A is an RAmmodule homomorphism



2) For ASB, M A o u
1
PaB l PyB
£
B -
M, > MY

commutes, where the vertical maps come from the tree

structure on M and M' .

Example: Given an nCW complex X with a tree
(T,f) and given F e 2(f) , we get a tree of rings
from R, = Zﬂi(F(A),f(p)) where if A # T , p is the
vertex 9A , the set theoretic frontier of A . If
A =T, pick a vertex for a base point and use it. This
will be the tree of rings we will consider for our
geometry, and we will denote 1t by Zwl .

The tree of Zﬂi-modules we will consider will be

various chain modules. Ths basic idea is given by

r“-_/i -~ i_l
M, = Hi(F(A) , F(A) , f(p)) , where =~ denotes the
| P -1
universal cover of F(A) , and F(4) is w of the

T r—
i-skeleton of F{(A)} in F@)(w : FA) = PQR)) .

Now given an R-module M , we can form A(M) by
applying the A-construction with index set the vertices
of T , and with diagram scheme @ (X) . Given U e o(X),
there are finitely many A ¢ (C(T) for which A N U =
a vertex. ©Set r

JMA ifped

G =
pU O otherwise



for some A such that A N U = a vertex. An R-module
homomorphism f : M - M' clearly induces a map

A(f)Y ¢+ A(M) = AM") . An R-module homomorphism, f ,
which induces an isomorphism A(f) is said to be a
strong eQuivalence and the two modules are said to be
strongly eduivalent. Note that this relation on R-
modvules seems neither symmetric nor transitive. Never-
thaless we can define two R-modules M and M' to be
equivalent iff there is a (finite) sequence of R-modules

M = MO, M oo Mn = M' such that either M, 1is

1? i

strongly equivalent to M,

j41 ©T M. is strongly

i+l
equivalent to Mi .

We tend only to be really interested in the equi-
valence class of M (indeed, we are often interested
merely in A(M)). The relation of equivalence 1s not
howaver very nice. We would like M equivélent to M
iff there were '"maps" f : M-+ M' and g : M' -+ M

whose composites were ths identities. To do this pro-

perly we need a short digression.

Definition: A functor F which assigns to each

Ae (T) a cofinite subcomplex of A , F(A) , such
that F{A) < F(B) whenever B < A and such that

F(T) = T will be called a shift functor. (T) will
denote the set of all shift functors on T . o/ (T)

is partially ordered via F > G iff F(a) < G(a) for
for all A e (1) . (Fn&® =F@R)NGR) , and

one checks it is a shift functor. F N G >F and FNGD>G.
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Given a tree of R-modules and a shift functor F ,
we get a tree of R-modules, MF , in a natural wayj i.e.

F is going to induce a functor from the category of R-

- modules to itself. M is defines as follows. Let

F

_ n
Ae &(T) . Then F(A) = U A, , with A; e C(T) .
n' i:l .
(MF)A = {il MAi ® R, , where the tensor product is
formed using the homomorphisms RA - RA . Note that
) i

there is an RA—module map

® R

(M.), = M, 5

m
r e (Pplyp L, ® Ry > 9 My

n
& M
i=1 i i=1 i
is defined as follows. Since A S B, F(A) € F(B) ,

so each Ai is contained in a unique Bj « Let p.lj

be pAiBj if Ay E_Bj and O otherwise. fij is the

map RAi — RBj if Ai E_Bj and O noth;rwise. g 1is

the map Ry =+ Ry . Then (pplyp= & & DP3j3®fj5838-
i=1 j=1

Notice that (MF)A — M commutes.

J(pF)AB lpAB

() g ——> My

n
If £ : M- M is a map, (f.), = & f, ?¢g ,
FIA 42y Ay BAyA
where By .p ¢ RA - RA y defines a map
Ty

so that MF———————+ Mﬁ commutes.

b

M —— M

For the natural map of My into M we write My G M .
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If G > F there is a natural map MG -+ MF induced by

the inclusion of each component of G(A) in F(A) .

Lemma 1: MF

< M is a strong equivalence.

Proof: Ws must show A(MF) -+ A(M) is an isomor-
phism. Suppose B e C{T) and B < F(4) . Then
(IF)B ——“~*9 TB commutes and there is a map h :M3 —+ (MF)A
so that the resulting triangles commute. But then clearly

L\.(MF) =AM . Q.E.D.

As motivation for our next definition we prove

Lemma 2: Let f : M > N be a strong equivalence.
Then there is a shift functor F and a map NF + M such

that M commutes.

/|

NF S N

Proof: By Theorem 2.4 applied to kernel and cokernel,
f is a strong equivalence iff for any A e C(T) there is
a Uea(T) such that for any Be ¢@(T) with B<A-U

T

B

. B
M
JPAB
£y

M, ?

=

B

N
Pag

(.___.........

Z

satisfies
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1) ker £, € ker M .and
: B = Pyp |
2) Image N < Image T
£ Pyp = ~HaBE Ly o

For each A € @ (T), pick such an element in & (T),

)

 + Now let F(A) = A - U Uy F is easily seen to be

ACD
a shift functor, and for any B e C(T) with B< F(a) ,

1) and 2) hold.

- Now look at M, =————>N; where  Aq < F(A)
2 2
p
h 4 fAl W
M ——>N
A A
1 1
q
¥ W
My 7 Ny
A, S F(A,) . Then there exists a map h:N, - M, defined
2 1 A2 A
by h(x) = q(f, )=t p(x) for all xe N, . By proper-
1 2
ties 1) and 2), h is well-defined, and if g :Ry Ry
2

1s the homomorphism given by the tree, h 1s easlly seen
to be g=linear.

Define a shift functor Fe G by Fo G(A) = Flay),
n 1=1

where G(a) = U A; + Then one checks that the h defined
i=1

N Cr

above yields a map N,

pop " M Q.E.D.

Definition: A T-map f:M N 1is a map MF * N,
where F e /(7). Mz * N induces a natural map My * N

for all G >¥ . We say f 1is defined on M, for all

G
G2F « Two T-maps f,g:M —* N are equal provided that,

for some F € #(T) such that f and g are defined
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on MF s, the two maps MF =+ N are equal.

Remarks: If f 1is defined on MF , and if g
is defined on MG , [ and é are both defined on
MFﬂG o With this remark it 1s easy toc see equality of
T-maps is an equivalence relation. 1t is also easy to
see how to add or subtract two T-maps, and it is easy
to check that if fl = f2 and g1 ~ 8 > then

fitg) = Totgs «

Hence, if HomT(M,N) is the set of eqﬁivalence
classes of T-maps from M to N , HomT(M,N) has the
structure of an abelian group. An equivalence class of
T-maps is called a map-germ.

We can compose two T-maps f: M-+ N and g: N- P
as follows. g 1s defined on NF and f 1is defined on
MF . Hence f: MF + N is an actual map, and we define
the T-map geof to be the map geo f4: (MF)G*“_* Noe—P -

Note (MF)G = Maop

gof 1is well-defined.

One can check that the map-germ

Hence Lemms 2 becomes

Lemma 3: M and N are equivalent 1ff they are

T-equivalent.

Proof: If M and N are equivalent, Lemma 2 shows
how to get T-maps M-+ N and N - M using the sequence
of strong equivalences.

It M and N are T-eguivalent, we have T-maps
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f+ M>» N and g: N- M such that fog = idN and

gof = idM « Nowa T-map f: M -+ N induces a unique
map A(f): A(M) - A(N) via A(f) = A(f) ¢ A(inc)“l

" where f is defined on MF and inc: MF
clear that A(f) dspends only on the map-germ of f .

c M. It is

Hence in our case, g 1induces an equivalence of M and

N by N2N, —5—>» M., Q.E.D.

G
Also useful is

Lemmg 4: Let f and g be T-maps. Then f = g
iff A(f) = 4(g) .

Proof: f =g iff f-g =0 . A(f-g)=4(F) -4(g).
Thus we need only show h = 0 iff A(h) = 0 . Since
A(h) depends only on the map-germ, and since A4(0) = 0,

one way is easy.

So assume we are given a T-map h: M+ N with
A(h) = 0 . We may as well assumz h is an actual map,
since otherwise set M = My and proceed. We have a sub-
medule ker h € M defined in thes obvious way. Since
ker h € M 1s a strong eguivalence, Lemma 2 says we
can find F such that MF -+ Ker h E M + But then
MF -+ N 1s the zero map. R.E.D.

Definition: If R 1is a tree of rings, let Mg

be the category of trees of R-modules and germs of maps.

Let My(gy be the category of A(R)-modules.
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Proposition 1t mR is an abelian category. The

natural functor A: mR - mA(R) is an exact, additive,

faithful functor.

Proof: The functor just takes M -to A(M) and
[f] to A(f) ([f] denotes the map-germ of f). A is
additive moreorless by definition, and faithful by

Lemma 4.

(g]

A preserves kernels: Let M ——> N be a map-
germ in my . We can find G such that M, L5 W is
a representative. Clearly any kernel for [g] 1s equi-
valent to ker g < MG , Wwhere ker g 1s the obvious
submodule. But A(ker g) 1is clearly a kernel for A(g).

An entirely similar argument shows A preserves
cokernels, so A 1is exact.

To see My is normal and conormal, take representa-
tives for the germs and construct the quotient or the
kernel module.

WR has pullback and bushouts again by finding

representatives and then constructing the desired modules.

Now by [25], Theorem 20.1 (c), page 33, My 1is abelian. []

We want to do stable algebra, and for this we need
an analogue of finitely-generated projective. Projective
is easy, we Jjust insist that a projective R-module is
projective in the category M, (see [25], page 69-71 for

definitions and elementary properties).
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For the analogue of finitely-generated, we first
produce the analogue of a finitely-generated, free

medule.

Definitiqn: Let T be a tree and let S bhe a set.

A partition of S is a functor F: &(T) - o8 (where o5
is the category of subsets of S and inclusion maps)
satisfying:
1) w(T) =5 .
2) If AnB=4,7®)nTB) =4 A,Bec (1)),
n
3) Let Ai € G(T) [ i:]_,.-.,[l. If '_[I"' U Ai
n i=1
is compact, #(T)- U W{Ai) is finite.
i1
4) Let s ¢ 8 . Then there exist A, e (),
n
i = l,l-o,n SUCh that T - U Aj_ iS CompaCt an'i
i=1
s ¢ ﬂ(Ai) for any i = l,eceyn o
Definition: Let R Dbe a tree of rings over T .
Let 7 be a partition of S . The free R-module based
on m, F_ , is the tree of R-modules defined by (FW)A
is the free Ry -module based on m(A) , and if A € B ,

Pyt (FW,?A "—*?(FH)B is induced by the inclusion

m(A) < w(B) .

Definition: A tree of R-modules, M , is said to

be locally~-finitely generated iff there is a set of
generators,' S 4y and a partition, mw, of S , such
_ that there is an epimorphism Fo—= M.

Let us briefly discuss partitions. If 7 and p

are two partitions of a set S , we say wgp Iiff
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m(A) < w(p) for all A e E(T) . (Hence we could
talk about the category of partitions, but we shall
largely refrain.) Two partitions are equivalent iff

there exists a finite sequence m = Moy MpseeesT, =0

of partitions with wm, S 7,4 , or w4, &7, . (Th}s

is clearly an equivalence relation.) Given two sets
X and Y , and partitions 7 and p , 7T UpE 1is the

partition of X U Y given by (wup)(a) = w(a) uy p(a) .

Lemma 5: Let R be a tree of rings over T , and
let X and Y be sets. Then if 7w and w' are

equivalent partitions of X , F is isomorphic to F

m !

in mR . If p is a partition of Y , FWUp = Fp 3] Fw

(X and Y are disjoint).

Proof: To show the first statement we need only
show 1t for w < 7' . In this case there is a natural

map f: F_~-F_, . For each 4 ¢ &(T), (Fn)A - (Fw')A

is injective, so f 1is a monomorphism. If w7 & 7'
then 7'(A) - m(A) has only finitely many elements.

To see this observe we can find A; € C(T) ,

i = l,-.o,n SU.Ch that A. ﬂ A.i = g L] and T - U Ai—'A.
i=1

n
is compact. Then by 2) w'(a) & »'(T) - y T (A)
i=1
n
so m(A)-m@) ¢ (T) - U 7m(A;) - m(A) © w(T) -
i=1

n
U m(ag) - m(A) , which is finite. Since w'(A) - 7(a)
1=1

is finite, fA(Fn)A -+ (FW')A has finitely generated
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cokernel, so when the A construction is applied to it,
4) guarantees that A(f) 1is onto, so f 1is an equiva-
lence. The second statement is the definition of w U p

and F_ & Fp . Q.E.D.

It is not hard to see that if we have a partition
of S for the tree T , then S has at most countably
many elements if T 1is infinite, and at most finitely
many if T 1is a point. In the case S 1s infinite, we
have a very handy countably infinite set lying around,
namely the vertices of T , There is an obvious parti-

tion, 7 , where w(A) = {p|] p is a vertex of A} . De-

note T by F(l) o 1f T = point, let F(l)

T denote

the free module on one generator; i.e. still F_ for the

above partition m . F(n) = F(n_l) @ r1) for n >2 .

Lemma 6: Let 7 be any partition of a set 8 for

the tree T , and let R Dbe a tree of rings. Then

e Pl p(n)

- is equivalent to

for some n > 1 . 1If

T is infinite, n can be chosen to be 1 .

Proof: If T = point, this is obvious, so assume

T 1s infinite. F.® F(l) is just FWUQ s Where p is

the standard partition on V , the vertices of T .
Since V U 8 1is infinite, there is a 1-1 correspondence
a ¢t VUS -~V . Any such a 1induces an equivalence of

VuS

categories a : 2 —_— 2V . We show that we can pick

« so that o o (mr U p) is equivalent to p . (We will

show in Lemma 7 that ao (m U p) 1is a partition for any a.)
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OQur o 1s defined by picking a strictly increasing
sequence of finite subcomplexes, CO E_Cl = sy SO
that U C; =T . Let A (i) Dbe the essential compo-

i=o
" nents of T - C;-. Set Al(—l) =T , and let

Koy = (7 U p) (R (1)) - (T UR) A () . Tote

Keg N Kpos™ g and K, . NK =@ by 2), so

ki k ki k'i+l

Ky; N Kp 5 # ¢ iff k=4 and 1 =3 .

k
Now Kki is finite. We define a on Kki by
induction on 1 . Let Ly, = p(a (1)) - % plhp(1+1)) ,

and note that the cardinality of KKi is greater than
or equal to the cardinality of Lki + Define a on
Kl—l by mapping some subset of it to Ll—l and mapping
any left over elements to any elements of V (a should
be injective).
Suppose o defined on K. 4;_; s0 that
a(Kkj) < p(Ak(j)) for j £ i~1 . We need only define
a on K; so that a(K) €p(®,(1)) to be done.
look at M =1L,.. - U Image a(K%j) . Map some subset

kL all 4
jgi-1

of Kki to M . Map the rest of Kki to any elements

of p(A (1)) at all.

By 4), vVus= U L. 5, and S = U L.
’ all x Kt all k &t
211 i all i

(as disjoint unions as we saw). Since o 15 onto each

L

i and since 1t injects when restricted to each Kki s

a is 1-1. Furthermore, < = ao (mUP) satisfies
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(4, (1)) € p(A, (1)) by construction.

Set A(a) = x(a) N p(A) . We claim A 1is a parti-
tion. Clearly A is a functor (@(T) = 2V . 1) and
2) are trivial and 4%) is not much harder ( 1), 2) and
4) hold for the intersection of any two partitions, it
is only 3) which might fail). To show 3), note

n
Aa, (1)) = g8, (4)) » If T - J B. 1is compact, there
k k 27

is a minimal 1 such that Bj contains Ak(i) for some

k¥ (perhaps several, say k = l,eo.,m). Then

n
') Ma (1)) 2 A(B) « A(T) - U A(B;) S (D) -U AR (1)
k=1 531

= g(T) -4 T(Ak(i)) + The last two unions are over all
Ak(i) E.Bj for J = lyesesn « The last set is finite,
so 3) holds. Hence X 1is a partition and thus =< is
equivalent to p o |

The map from F_  ~ FT induced by a 1is the ob-

up

vious map: (Fvup)A -+ (FT)A is the isomorphism induced by
the equivalence of bases a : (mUOXA)4><(A) . Lemma §

completes the proof modulo the proof of Lemma 7.

Lemma 7: Let X and Y be two (disjoint) sets,
and let @™ be a partifion of X for the tree T . Any
1-1 correspondence a : X * Y 1induces a partition aow
of Y for the tree T .

Proofs: The easy proof 1s omitted.

Lemma 8: F_ 1s projective.

Proof: By Lemma 6 and standard nonsense, it is



enough to prove the result for F(l) . By Mitchell [25]

Proposition 1k.2, page 70, we need only show

[f] .

M splits whenever [f] is an epimorphism
(note mp 1is abelian by Proposition 1 so we may apply
Mitchell). .

By taking a representative for [f], we may as well

(1)

assume that we have a map f: M > F = F which 1is an
epimorphism. Now there 1is a partition T with wm<p
(p the standard partition for F(l)), such that the
inclusion of (FW)A in F, 1lies in the image of M,
under f, 3 i.e. define m(h) = {x ¢ p(A)[x e Image T;}.
Since f is an epimorphism, one can easily check

p(A) - m(A) is finite, and from this result one easily
deduces T is a partition.

Now pick a base point =x ¢ T . This choice lmmedi-
ately orders all the vertices of T by saying p 24
provided ths minimal path from p to =« hits q o |
Ay e C(7) for each p a vertex of T , p # * , 1is
defined as the unique A € C(T) such that q € A im-

plies q 2 p .«

Given a partition w , define a new partition =T by

«{a) = g wla) (again, w(A) - ©(A) 1is finite,
A Sh P

t(A) € m(A) , so one can check T 1is a partition).

98
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Since T < 7 , (FT)A S F, lies in Image (fA)

Now given any vertex v of T , there is a unique
p such that v e T(Ap) and "v e t(A) Iff Ap C A,
unless v ¢ T(Ap) for any Ap (there are only finitely

many of the latter). To see this, set A = N A .
VGT(Ap) 5

Now Ap n Aq Z @ implies ép g_Aq (or Aq E_Ap) . By
4) the intersection runs over finitely many objects, so

A=A for some p . This Ap has the properties we

p
claimed.
Define x, € MA 10 be any element such that
P
pr(XV) hits the image of the gensrator in (Fw)Ap

corresponding to v . Define h : FT - M by

h, : (FT)A ~ M, takes the generator corresponding to v

to p, A(xv) o We extend linearly. ©Notice that if the

generator corresponding to v 1lies in (FT)A ) Ap <A,

SO pApA makes sense.

It is not hard to check the hA induce a map

T

Q.E.D.

h:F =M, and f oh : FT'+ F is just the inclusion.

If 6% is the category of locally-finitely

generated trees of projective R-modules, we have

Lemmag 9: Let O - M=+ N—+Q * 0 be a short exact
sequence of R-modules. Then if N, Q ¢ Gﬁ% , Me (?R.
I M, Qe &
summand of a locally~-finitely generated free module.

, N e 4}_. Lastly, any P e @% is a
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Proof: The proof is easy.

Remarks: &_ 1is a suitable category in which to do

R
stable algebra (see Bass [1])~ 6% has a product, the
direct sum. (?R is also a full subcategory of My ,
which is abelian by Proposition 1. Hence we may use

either of Bass's definitions of the K-groups. Note 6%

is semi-simple (Bass [1]) so the two definitions agree.

Notation: X_(R) = KO(cPR) and Klf(R) = K, (@) for

R a tree of rings.

Given a map of trees of rings R = S (RA ~ 5, takes
units to uaits) we can define M @, 8 for M a right

R-module by takingr (M ®r S)A = M ®R& S, + ® induces

a functor mR —+ mg . The only non-trivial part of this
is to show ® 1is well-defined on map-germs. DBubt since

®R53

> N
® A(S) l
A(R) e

A(S)

Mg S

MA(R)

commutes, this is easy. ® 1is, as usual, an additive,
right exact functor.

Now given a partition 7 , F_ ®R£3: F where

T ?

R
¥

is the free R-module based on W(F% similariy).
Hence it is easy to see ® takes (?R to G% . ® is
cofinal in the sense of Bass [1], so we get a relative

group Ko(f) , where f : R~ S 1is the map of trees
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of rings. Thsre is an exact sequence

Ky (R) ~ K (8) ~ K (£) =~ K (R) ~ K (8) .

We denote by Ki(T) , 1 = 0,1, the result of
applying the K-groups to G& , where G% is the
category of locally-finitely generated projective
modules over the tree of rings "I" , where ("T")A = Z
for all A , and Pap = id + There is always a functor
G~ (P induced by the unit map "I"™ + R’. The rela-
tive KO of this map will be called the reduced Kl of
R, written EI(R) .

Remarks: If the tree of rings is a point the
functor mR =+ mA(R) induces a functor 5%l4' GK(R) 3
where Gg(R) is the category of finitely-generated pro-
jective A(R)-modules. This functor induces an isomor-
phism on K, and Ky . For the compact case (T = pt.),
torsions lie in quotients of Klﬂgk(R)) . This, togethsr
with Proposition 2 belbw is supposed to motivate our
choice of 6%_ as the category in which to do stable

algebra.

Definition: Let W be an hCW complex of finite

dimension. Let X and Y be subcomplexes. Let (T,f)
be a tree for W . Lastly let ¥ € £(f) . Then
Zvl(w,F?f) is the tree of rings we have earlier as an
example. Pick a locally finite set of paths, A , from
the cells of W to the vertices of f£(T) (the paths all

begin at the baracenter of each cell).
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Cx(WsX,Y:A,F) 1is ths tree of Zm (W,F,f)-modules
——~ —— ——— —

given at A by H (F@)*; r)*™L, F@O)* n x, PG)*NY),

where ~ is the universal cover of F() , so, for

o — o

- example, F(A)* NY is the part of the universal cover

of F(A) 1lying over Y n (the #x-skeleton of F()). 1In
Pl

each F(A) pick a base point covering the vertex 34 .

o~ Fo——
These choices give us maps F(A) = F(B) whenever A S B .

C*(W;X,Y:A,F) is defined from the cohomology groups
A T et T e T
H (F)™ FA)™T75, 2aFr@)7, F(A)" n X, F@A) N Y) . The

maps are the ones we defined in section .

Proposition 2: C,(WiX,Y:A,F) (€ (W3X,Y:A,F)) 1is

a locally-finitely generated, free, right (left) 2Zm (W,F,f)-
module. If G e £(f) satisfies G > F , there is an
induced map Zmy (W,F,f) = Zmy (W,G,f) . Co(WiX,Y:A,F) ®
Zvl(w,G,f) is equivalent to Ca(W3;X,Y:pA,G) . Zwl(w,G,f) ®
C*(W3;X,Y:A,F) is eguivalent %o C*(W;X,Y:A,G) . The
A-functor applied to Cua(WsX,Y:A,F) is P(W3X,Y:i~)3
ACCH(W3X,Y:A,F)) = P¥(W3X,Y:~) {(the P were defined in

section 4)).

Proof: The assertions are all fairly obvious. Note
in passing that the set S for C, (%) 1is the set of
all #-cells in W-(X U ¥Y) . [}

Proposition 3: The choice of path A determines a

basis for G, (C*) .
Proof: Let S be the set of all *-cells in

W~ (XUY) . Partition S8 by w(A) = the set of all
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+-cells in W(X U Y) such that the cell and its
associated path both lie in F(A) . w7 1is seen to
be a partition, and Fv is edquivalent to Cy . The
path also determines a 1lift of the cell into F(A) ,

so each (FW)A is based. []

Apparently our tree of rings and modules is going

- to depend on the 1lift functor we choose. This 1s not
tha case, and we proceed to prove this. Given a shift
functor F and a tree of rings R , RF is the tree of

n
rings given by (RF)A = ® R, where the A; are the
i=1 i
essential components of F(A) . Py 1s just @ Pis »
is the projection Py . B. where Ai c B: .

where D
i73] J

13
We now redefine MF . MF is going to be an RF—

n
module. (M), = & MA with the obvious RF-module

Ay
structure. Note M, ®., R 1s just our old M. .
F “Rp F
Now a T-map of rings is just a map RF~+S « As in

the case of modules, we can define a map-germ between
two rings, and the category of trees of rings and map-

germs 1s an additive category.

Lemma 10: The maps K, (Rp) + K;(R), 1 = 0,1, are

isomorphisms.

Proof: M~ M , £~ fp defines a functor @h - G%W-

Using this functor, one checks 61{
F

valence of categories. Th= result is now easy. Q.E.D.

4»@% is an equi-

Hence given a map-germ f: R+ S , we get well-

defined induced maps Ki(R)‘+ Ki(S), i=0,1, and
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Kl(R) — _K-l(S) .

Lemma 11: Let f : R- S be a map such that
A(f) is an isomorphism. Then there is a shift

functor F and a map g: SF -+ R such that

commutes.

Proof: The proof is just like that of Lemma 2.
Q‘E.DQ

Lemma 12: Let [f]: R+ S be a map germ such that
A(f) is an isomorphism. Then the maps X (R) - K (8);

Kl(R) - Kl(S) ; and Kl(R) ~+ EI(S) are isomorphisms.

Proof: This proof is easy and will be left to the

reader. Q.E.D.

Remarks: By Lemma 12, the K-groups we get will not
depend on which 1lift functor we use. Let

Ki(X:f) = 1i Ki(Zwl(X,F,f)). Since all the maps
FeL(f)

in our direct limit are isomorphisms, Ki(X:f) is
computable in terms of Ki(Zwl(X,F,f)) for any F .

Kl(X:f) is defined similarly.

Definition: A stably free (s-free) tree of R-

modules is an element, P, of (?R such that [P] 1is in

the image of K_(T) . Let P be an s-free R-module.
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An s-basis for P 1is an element F ¢ 4& and an isomor-
phism b : F ®T R~ P & bl ®T R , where Fle f& .

Two s-bases b : F ®T R+P@F & R and
¢ : ¥y, @ R~+P D F3 ®p R are equivalent (b~ec) iff

-1
, Y o tw o {(c¢ ® id, )
3 F3 Fl ?

in Kl(R) , where tw: (P ®Fy &, R) @ F3 3y R =7

0= (FadF (b ® id F2€9Fl)

(P®F, 8 R) ® F; 8 R 1is the obvious map.

3

We can now give an exposition of torsion following
Milnor [23]. Given a short exact sequence
0o BE-2sp £5¢ 40 and s-bases b for E and c
for G , define an s-basis be for F Dby picking a
splitting r : G+ F for p and then taking the com-
position F; & F, ae)y (5o Fy

F @ (F3 @ FH) , where h(e,x,g,z) goes to (i(e) +r(g),x,z).

) ® (¢ ®F) 2>

It is not hard to check that this s-basis does not depend
on the cholce of splitting map.

We use Milnor's formulation. Let F E_Fl S eee &P
and suppose each F./F; ; has an s-basis by . Then
blb2 oee Dy is seen to be well-defined; i.e. our con-~
struction is assoclative.

Let E and F be submodules of G . Then E+F
is the submodule of G generated by E and F . EOF

is the pullback of

o $—m
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Lemma 13: (Noether) The natural map

E/ENF —» E+F/F 1is an isomorphism.

Proof: Apply the ordinary Noether isomorphism to
each term. Q-E.D.

Now let E/ENF have an s-basis b , and let
F/ENF have an s-basis ¢ . Base E+F/F by b
composed with the Noether map (we will continue to denote
it by b). Similarly base E+F/E by ¢ . Then bc~ch

as s-bases for E+F/ENF .

Definition: Let b and ¢ be two s-bases for P.

Then [b/c] € K&(R) is defined as follows: if

F—>poF, ; G—+P®F, , then [blc] =

(F ® F,,0,G ® F) , where h : F @ F, 221y
* -1 .5
Bid
n 1 —C._——-——__? . /
(Pearl) @Fz) — (P@Fg) ® Iy G®F; . Two

s-basis are equivalent iff [b/c] = 0 . The formulas
[b/c] + [e/d] = [b/d] and [b/c] + [d/e].= [bd/ce] are
easy to derive from thé relations in the relative KO .
We next define a torsion for chain complexes. A
free chain complex is a set of s-free modules, Pn ’
together with map-germs o _ : P_ - Pn—l such that

n n

an anﬂl =0 . A finite free chain complex 1s cne with
only finitely many non-zero Pn « A positive free chain

complex has Pn =0 for n<O0O.

Definition: Let {Pn, an] be a finite free chain

complex., Let Py be s-based by Cp and suppose each
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homology group Hi is s-free and s-based by hi .
The sequences O -« Bn+l -+ Zn -+ Hn -+ 0O and

O-2 —+P -+B -0, where. B = Image (P, +P )

cand Z, = kernel'(an) , are short exact. Let b Dbe an

s~basis for Bn , wnich exist by an inductive argument.
_ n .
T(Px) = % (-1)7 b h P 17c ] ¢ K (R) .

It is easy to show +t(P,) does not depend on the
cholce of brl . Let O - Pt~ Pg-» Pl +0 Dbe a short
exact sequence of finite chain complexes. There is a
long sequznce

Hye (P') =———> H,(P)

3 ¥
Hye (P") .
Suppose each homology module is s-based. Then we have

a torsion associated to % , where

= H (P, 3., = H (P,

¥
n

= H (P)y %3

3n
since ¥ ,iS acyclic.

Theorem 1: 1(Py) = t(Py) + t(PL) + 7(¥) .

Proof: See Milnor [23], Theorems 3.1 and 3.2. [

We next describe the algebraic Subdivision Theorem
of Milnor [23] (Theorem 5.2). Given a chain complex C, ,

suppose it is filtered by C,EO) - Cil) < ... C an) = Oy

such that the homology group Hi(c(*)/c(A‘l)) =0 for
i#zn. Y=oy,
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Then we have a chain complex (6*, 3*) given by
_EX = Hk(c(k)/C(A“l)) and 3 is given by the boundary
in the homology exact sequence of the triple (C(A),C(A—l),

C(A_g)) . There is a well-known canonical isomorphism

Hi(E) —41*>'Hi(c) (see Milnor, Lemma 5.1).

Now suppose each Cik)/cix—l) has an s-basis ¢

each Ek has an s-bhasis EX : each Hi(ad has an s-basis

h; . Assume Cy is a finite complex. Then so is Cy, .

pach ¢ M e e 4 torsion. If C; is s-based

by cg c% ces c? , and Hi(C) 1s based by h; composed

with the canonical isomorphism, then the torsion of C

is defined. Lastly the torsion of C 1s also defined.

Theorem 2: (Algebraic Subdivision Theorem)

) =) + 5 M)y
A=0

Proof: The proof is the same as Milnor's [23],

Theorem 5.2. One does the same inductlion, but one just

- k :
shows T(C(k)) = T(C(k)) + = T(C(x)/C(K-l)) (notation
A=0

is the samz as Milnor's). 0

Now let (K,L) be a pair of finite dimensional
hCW complexes with L a proper deformation retract of
K . We have the modules C4(K,L:A,F) . The exact
sequence of a triple makes C4, 1nto a chain complex, whoss
homology is zero since L 1s a proper deformation re-
tract of K . Ths paths A gives us a basis for C,

up to sign; i.e. we must orient each cell, which we can
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do arbitrarily. =T(K,L:A,F) ¢ R&(Zwl(K,F,f)) is the
‘torsion of this complex with the basis given by A .
We proceed to show it does not depend on the choice
of signhs.

Let t' be thz torsion with a different choice of
signs. Then, by Lemma 1% below, <'-1 = % (—1)*[c*/c£],
where o¢x and ci are maps F_. -+ Cyx , one with the
sipns for < and the other with the signs for ~=' . But

-1 1

¢y~ c¢x : F_ - F_ lies in the image of 5} -+ 6% , and

so [cx/ct] = 0 in K (R) .

Lemma 14: Let C, be a chain complex. Let cy

and ci : P+ Cx be two free bases for Cx . Suppose

He(C) is s-based. Let <t and <' be the torsions from
1

the bases ¢y, and cx respectively. Then

T -1 = (—1)*[0*/03;]
Progf: This is a fairly dull computation. R.E.D.

Now suppose G 1is a different 1ift functor with
F <G . Then by Proposition 2, the basls cu: F_ — Ci( F)
goes to cx ¢ F_ -~ Cy( G) wunder o (F) ZWl( G) . Let
1

el ©F 4 C. () be the usual basis. Then 7S p , and

P
cx
P Fp —% Cx 1s cyx « The inclusion F_ - Fp lies
in the image of fT in CPR s SO [c*/cﬁ] =Q0e

fi(ZWl(K,G,f)) . Hence i, t(K,L:F,A) - ©(K,L:G,A) = O
where 1, : Ki(Zﬁl(K,F,f)) -+ Ki(Zﬁl(K,G,f)) . Therefore

“we can define T(X,L:A) ¢ Ki(K:f) .
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7 (K,L:\) depends strongly on A . We would like

this not to be the case, so we pass to a quotient of Kl‘

Definition: Let G be a tree of groups with

~associated tree of rings 2G . The Whitehead group of
G, Wh(G) = Ky (26)/(A(G)) , where (A(G)) is the sub-

group generated by all objects of the form (1) , legl,

F(l)) where [gl is the map-germ of F(l) to itself

induced by any element g € A(G) as follows: g can be
represented by a collection -{gp} , Where gp € GA(p) ,
with pe A(p) and {A(p)} cofinal and locally finite.

Define a partition, # , of the vertices of T by

n

m(A) {pe T|a(p) €A} . 7 is seen to be a partition

and 7 < P, the standard partition. Define a map

g : F - F, by g : (F, A - (¥ ) takes ey to ep'fADA

(gp) where £, 53
this is a well-defined map-germ. Wnat we have actually

(ZG)A — (ZG)B . It is not hard to show

done is construct a homomorphism A(G) - Ki(ZG) defined
by g —+ (F(l),[g],F(l)) . By definition,
A(G) - K (Z6) —» wn(G) -+ O is exact.

Given a homomorphism f : G -+ H Dbetween two trees

of groups, we clearly get a commutative square

AG) —— Kl(zm

s

A(H) ——-"-El(ZH) )

so we get a homomorphism Wh(G) - Wh(H) .
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Lemma 15: Let f ¢ G-+ H be a map between two
trees of groups for which A(f) is an isomorphism.

Then Wh(G) - Wh(H) is an isomorphism.

Proof: A(f) : A(ZG) -» A(ZH) 1s also an isomorphism,

so apply Lemma 12 and the 5-lemmas. Q.E.D.

We can now define Wh(X:f) as Llim Wh(Z#i(X,F,f))-
» FEZ(T)

Proposition 4: Let (X,L) be a pair of finite

dimensional hCW complexes with L a proper deforma-
tion retract of K . Then if A and A' are two cholces
of paths, then <(X,L:A) = t(X,L:A") in Wh(X:f) .

Hence we can define <(X,L) € Wh(X:f) .

Proof: We can pick any 1ift functor we like, say
F . Cyu(KyL:iA,F) = Cu(K,L:A",F), and each is naturally
based. Let 7, be the partition asocociated to A (see
Proposition 3) and let W; be the paftition assoclated
to A' . Let px be the partition p(4) = {e|e is a
¥-cell in F(A) and the path for e in A 1lies in F(4)
and the path for e in A' alsc lies in FA)} .

. !
p*“'n—*nﬂ*o

The basis F_. - C, 1s equivalent to the basis
%

F_ - Cy « Similarly F_. - Cy 1s equivalent to the

Tx P x

basis F_, + CL - (Cx = Cplone,A)s Cp = Cylona,AT))
*
T -7 = T(K,LiA') - T(K,LA) = 2 (-1)" [7me/my] , by
Lemma 1%. If we can show [m«/mx] 1is in the.image of

A(Zvl) we are done. But this is not hard to see (Wh( )

was defined by factoring out by such things). 0
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Having defined a torsion, we prove it invariant

under subdivision. We follow Milnor [23].

Theorem 3: The torsion ’T(K,L) is invariant
under subdivision of the pair (X,L); (X,L) a finite
dimensional hCW pair.

Proof: TFollowing Milnor [23] we prove two lemmaso

Lemma 16: Suppose that each component of K -1L
has compact closure and is simply connected. If L is

a proper deformation retract of X , then <(X,L) = O,

Proof: (Compare Milnor [23] Lemma 7.2). Let
f : T—- K be the tree. We wish to find a set of paths
A so that the boundary map in Cu(K,L:F,A) comes from
P -

Let {M;} be the components of K-L . Pick a
point q; € M; , and join [qi} to T by a locally
finite set of paths A; . Now join each cell in M; to
q; by a path lying in M; . Let A be the set of paths
gotten by following the path from the cell to a a5 and
then following the path A; . Clearly A is a locally
finite set of paths joining the cells of K-L to T .

Let e Dbe a cell of K-L . Then if f is a cell
of 2e , to compute the coefficient of f din 3de we
join the baracenter of f to the baracenter of e by a
path in. e and look at the resulting loop. The path
from e and the path-from f hit the sams i s and

since my(M;,q9;) = 0 , the coefficient is’ + 1, so the
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boundary map comes from £FT . R.E.D.

Lemma 17: Suppose that Hy(Cx(K,L:A)) 1is not zero,
but is a free Zwl(K)wmodule with a preferred basis.
Suppose each basis element can be represented by a cycle
lying over a single component of K-L . Assume as be-
fore that each component of K -1 is compact and simply

connected. Then <(K,L) = O .

Proof: Pick a set of paths as in Lemma 16 so that
the boundary maps come from G& . Look at a cycle =z ,
representing a basis element of Hy, . What this means
is the following. Let C,2C & e be an increasing
sequence of compact subcomplexes with {J Ci = K and

P

Mi E-Ci « Then =z € H*(K-Ci,'L-Ci) for a maximal Ci'

Then =z 1is represented by a cycle lying in some component

of (Mi+1) , where 7 : K-C; - K~-C; . All the
lifted cells of Mi+l lie in a single component of
n'l(Mi+l) , SO let g ¢ wl(K-Ci) be such that gx also

lies in this distinguished component.

Then the torsion computed with this altered basis
is zero since it again comes from Wh(T) = O . But
the new basis for H, 1is clearly equivalent to the old
one in Wh(XK) . Q.E.D.

The proof of Theorem 3 now follows Milnor's proof

of Theorem 7.1 word for word except for a renumbering of

the requisite lemmas. (]

Lemma 18: If M< L <X, where both L and M

are proper deformation retracts of K , then
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T(K,L) = T(K,M) + ix7(L,M) , where ix: Wo(L:f) -
Wh(K : 1 o f) is the map induced by i: L< K . (Note

thzs tree must be in L.)

Proof: This is a simple application of Theorem 1.

Q.E.D.

Let f: X+ Y be a proper, cellular map between
two finite dimensional hCW complexes. Let Mf be the
mapping cylinder. Y 1s a proper deformation retract of

Mf and we have

Lemma 19: 7(Mp, ¥) =0 in Wh(Mq,t) , where

t + T—+Y 1is a tree for Y < Mf
Proof: Word for word Milnor [23] Lemma 7.5. Q.E.D.

Definition: For any cellular proper homotopy

equivalence f : X -Y , X and Y as above, there is
a torsion, <T(f) , defined as follows. Let t : T =+ Y
be a tree for Y . Then, as in Lemma 19, t 1is also

a tree for M. under T - Y S M. . -T(f) = i*T(Mf,X),
where T4 @ Wh(Mf:t) -+ Wn(Y:t) , where r is the
retractlion.

Just as in Milnor we have

Lemma 20: If 1 : L + K 1is an inclusion map

(i) = = (X,L) if either is defined.

Lemma 21: If fo and fl are properly homotopic,

() = 1(f)) -
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Lemmg 22: If £ : X =Y and g + Y =+ Z are
cellular proper homotopy equivalences, then
t{g o T) = t(g) + g4t(f) , vwhere t : T+ Y 1is a

tree for Y and g4 : Wh(¥:t) ~—— Wh(Z:g ot) .

Remarks: Tt follows from Lemma 21 that we may
define the torsion of any proper homotopy equivalence
- between finite dimensional hCW complexes, since we
have a proper cellular approximation theorem [1l].

Now in [33], Siebenmann defined the notion of
simple homotopy type geometrically. In particular, he
got groups ((X) associated to any locally compact
CW complex. If x is finite dimensional, we can define
a map T:((X) - Wh(X:f) by choosing a tree f: T - X.
If g: X =Y 4is an element of ((X), g goes to
T(Mg—l,Y), where g—l: Y + X is a proper homotopy in-
verse for g .

v 1s additive by Lemma 22 and depends only on the
proper homotopy class of g by Lemms 21. That T is
well-defined reduces therefore to showing that g a
simple homotopy equivalence implies =(g) =0 . We
defer for the proof to Farrell-Wagoner [10], where it is
also proved T 1is an isomorphism. The 1lnverse for <«
is easy to describe. Let a € Wh(X:f) Dbe an auto-

(n)

morphism of F for some n . Wedge n Z2-spheres to
each vertex of the tree. Attach 3-cells by o to get an

hCW complex Y with Y - X 3-dimensional. Then
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i:X S Y is an element of ¢(X) and T(i) = a . Again
we defer to [10] for the proof that this map is well-
defined.

In {33] Siebenmann also constructs an exact sequence

O - Wh‘Wl(X)-4 C(X) - KO WlE(X) -+ K Wl(X) . We have

fjf“*7Wh(X:g)f”’¢é}

0 ﬁUWh'ﬂl(X) Kq WlE(X) -+ K Wl(X)
commutes. Farrell and Wagoner describe o and B and
prove this diagram commutes. They they show the bottom

. -1 . .
row is exact, so = is an isomorphism.

Note now that if g: T - X 1s another tree for X,

we have natural maps Wh(X:T) - Wh(X:g) which take

T(X,Y) computed with f to <T(X,Y) computed with g ani
vice-versa. This shows Wh(X:f) does not really depend
on the choice of tree. We content ourselves with re-
marking that the map Wh{(X:f) -+ Wh(X:g) is not easy to
describe algebraically.

In [33] Siebenmann derives some useful formulas
which we hame:

1) Sum formula

2) Product formula

3) Transfer formula.

Note if w7 : Y - ¥ 1is a cover, w 1nduces
*

m: C(Y) - ¢(Y) . We are unable to say much about this

map algebraically. The product formula 1s algebraically
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describable however.

Lemma 23: Let Cyx be an s-based, finite chain
complex over the tree of rings R . Let D, be an
s-based, finite chain complex on the ring S (the tree
of rings over a point). Then (C ® D), 1is defined. If
Cy 1s acyclic with torsion <t , (C ® D), 1is acyclic with
torsion x(D)e° iy ©(C) € Wh(R x 8) , where R x S 1is
the tree of rings (R x S)A =R, x8 , and
iey ¢ Wh(R) - Wn(Rx8) 1is the obvious split monomorphism.
If Dy is acyelic, then so is (C ® D), , and if

t(D) =0, then =(C®D) =0.

Proof: The first formula is Siebenmann's product
formula and 1s proved by inducting‘On the number of cells
in Dy . The second formula is new, but it is fairly
easy. 1t baslcally requires the analysis of maps
Wh(S) » Wh(R x S) of the form D4y - P ® D, for P an
s~based R-module. These maps are homomorphisms, and so,
it t(,) =0, T(P®D, =0 . But t((C®D),)= x (-1)¥
T(Ck ® Dg) » (There is evidence for conjecturing tiat
the map Wh(S) - Wh(R x S) 1is always ©O) . Q.E.D.

We conclude this section by discussing the notion
of duality. In particular, we would like a functor
E I mR -+ M§ which generalizes the usual duality
P - Homp (P,R) in the compact case. Up until now Mg
has denoted without prejudice eilther the category of

right or left R-modules. We now fix it to be the cate-

gory of right R-modules. mﬁ then denotes the category
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of left R-modules.

Actually, we are really only interested in
* :(?R +(?§ . Hence we begin by discussing a functor
* 1 38 - 3% y Wwhere ER is the category of locally-

finitely generated free modules. % will satisfy

1) % is a contravarilant, additive, full faithful
functor |

2) *x 1s naturally equivalent to the ildentity.

By this last statement we mean the following.
Given x : ER -+ SR there will be another obvious
duality * : 3% —+ ¥ . The composite of these two is
naturally equivalent to the identity.

We proceed to define *x . If FA is a free right
RA—module based on the set A , there is also a free
lef't RA-module basa2d on the same set, FZ . FE can be

. c c .
described as HomRA(FA’RA)’ where Homp 1s the set of

all R - linear homomorphisms which vanish on all but

finitely many generators. Hcmg (FA’RA) is easily seen
A

A
Let A< B, and let f : R-+ S Dbe a ring homo-

to have the structure of a left R, -module.

morphism. Then we have

c X ¢ ex
HomBA(FA,RA) — HomRB(FA ® RB,RB) "

C

R

C
Homp (Fp/Fy_,»Rp) —> Hom .

5 (FgsRg) -
The map ex 1is an isomorphism since

0 - EA ® RB = Iy~ FB—A -+ 0 1is split exact. Thus we
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get a well-defined homomorphism

c c
HomRA (FA’ RA) ——4>HDmBB (FB, RB) .

Now given F.o, let F_ Dbe the tree of left

modules over the tree of rings R defined by

75y = Hom®
A R,

above to define g

(FW(A)’ RA) , and use the map discussed

. . * * *
Given a map f : F_ -~ Fp s define f : Fo = Fy

by (£ ). = ) : Homp ( R ) ° )

x*
We must check that (f )A is defined and that the
requisite diagrams commute. This last is trivial, so we
concentrate on the first objective. To this end, let

c .
a € HomR‘(Fp(A), RA)" We must show Hom(fA)(a) lies

A
. C .
in HomRA(FW(A)’RA) E_HomR.A (FW(A)’RA) . Since a has

compact support, a vanishes on the generators corre-

sponding to a subset S < p(A) - with p(A) - S finite.
Hence there is a B e G(T) so that p(B) €8 ; i.e. a
vanishes on generators corresponding to p(B) . Let

Pr@) = Fo(r) ¥, Ba 3 16t Fpop) ™ Fo(p) ®, By 3 and

B B
let EB = fg ® id . Then
Hom(fk)
Hom(Fp(A), RA,) rd Hom(FW(A), RA)
i J
Hom(fB) )

R 4
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o is in the kernel of 1 , so Hom(fk)(a)Ae ker j .
But this means Hom(fA)(a) has compact support.

There is a natural map F - F**  induced by the
natural inclusion of a module in its double dual. This
map 1s an isomorphism and

F ooy F*

[l

G —_— G**

commutes.
% is clearly contravariant and a functor. 1If
%

* . .
TS p o, One sees Fp -+ FW is an equivalence. Hence we

can define * for map-germs. (f+—g)* = £*

+ g* is easy
to see, so * 1s additive. ©Since ** 1is naturally
equivalent to the identity, =* must be both faithful and
full, so 1) is satisfied.

We next define the subcategory on which we wish to
define % . Let ﬁR be the full subcategory of mR such
that M e M iff there exists f: Fp - F_ with coker
f 2 M. Note fﬁ E.ﬁﬁ . We define = : My -+ m% by
M" = ker(£*)

Given M, N ¢ ﬁR y, a map g: M~+ N , and resolutions
Fp -+ Fo- M= 0 and F, - FB + N.- O , note that we can

compare resolutions. That is, we can find h and f so

that f commutes .
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Define g*: N* - M* by f '(E
.

N —E—— M*

Lot

B) Fr—a F¥

L oL

F;___f;__ﬁ_).F* .

P

We first note that the definition of g* does not
depend on h and [ , for if we pick hl and fl such

that A) commutes, there is.a commutative triangle

o
FW———-*——~7Fé .
Dualizing we get X *

« B -hy
FB ——=F
s
F* ’ .

a

Now this triangle shows that the map we get from fl, hl
is the same as we got from f, h .

To show M' does not depend on the resolution is
now done by comparing two resolutions and noting
(1a)* = id .

Unfortunately (M*)* may not even be defined, so
we have 1little hope of proving a result like 2). One

useful result that we can get however is
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Lemma 24: Let f : P -+ M Dbe an epimorphism with
Memg and Pep . Then £t M* -+ P* is a monomor-

phism.

Proof: The proof 1s easy. Q.E.D.

If we restrict ourselves to {?R , we can get 1)
and 2) to hold. It is easy to see P¥ ¢ @i for pPe &
Now the equation (P & Q)* = P* ® Q© is easily seen
since direct sum preserves kernels. Thus
Po "™ =p" e Q* , so0 it is not hard to see P - P**
must be an isomorphism since if P 1s free the result is

known. Lastly, * 1is natural, i.e. if f : R+ 5 1is

a map, ﬁé —_— ﬁg' commutes. That 5% hits
J,* l*
L 0

MR > Mg

ﬁé follows since ® 1s right exact.

Definition: Let {Mi,ai} be a chain complex with
Mi € ﬁR « Then {m;,a;} is also a chain complex. The
cohomology of {Mi,ai} is defined as the homology of
x %
{(M585) .

Proposition 5: Let (X,Y) be an hCW pair; let F

be a 1ift functor; and let A be a set of paths. Then

{C*(X;Y: F,A), 34} 1is a chain complex as we saw. Its
* *

dual is {C¢ (X,Y: F,A),8 ) . Hence the cohomology of a

pair is -the same as the cohomology of its chaln complex.

Proof: GEasy. []
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Notice that our geometric chain complexes lie in

‘@h . For such complexes We can prove

Theorem 4: Let {Pr,ar}' be a finite chain complex
in Gh . Hk(P) =0 for k <n iff there exist maps

Dr: Pr H'Pr+1 for r < n with Dr_lar-*-BrJrlDr = idpr .

Proof: Standard. []

" Corollary 4.1: (Universal coefficients). With

i

{Pr,ar} as above, Hk(P) 0 for k < n implies

It

O for k > n implies

Py =0 k<n. H(P)
H(P) =0 for k2n

Proof: Standard. M

Now suppose {Pr,ar} is a chain complex in fh .
Then coker 3, € ﬁﬁ . By Lemma 24, ker 841 = (coker ar)*.

Now

P

d r-1

Pf-———+-coker ar

Hr(P)

0
commutes and is exact. If Hr(P) € Eﬁ , applying duality
to this diagram yields

Pl —> ker(5,) £y (H,(P))* . By definition,

r J’
A P

coker o = H'(P) . B°a = 0, so there is a unique,

natural map HT(P)’*(HP(P))*
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Corollary 4.2: With {Pr,ar} as above, if
H(P) =0 for k<n, H(P)emy . If H(P) e B ,

the natural map H (P) — (H_(P))® is an isomorphism.
n' .

Proof: By induction one shows 2, ¢ &R y and

d

since P —ntl, % H (P) ——30  is exact,
n+l n n

it is not hard to see Hn(P) € My . If Hn(P) € (PR s

O-—%f(Hn(P))*-——é Z; —~%*P;+l is exact, so
HY(P) & (H (P)T . [

Theorem 5: With ‘{Pr’ ar} as above, suppose
H(P) =0 for k<n and HE(P) =0 for k >n . Then
H (P) ¢ § and the natural map H(P) » (H (P))" 1is an
isomorphism. In KO(R) , [Hn(P)] = (-1)"X(P) , where
X(P) & X (R) is T (-1)T[P] .

Proof: Since Hk(P) =0 for k < n , the seguence

oo ———aPn+ —_ Pn-——9 Pn_l-m—v s+ splits up as

1

. a —+Pn+ _%Zn_?O

1

0O —>z —>p —>P , —F°"

The second sequence is exact, and
cor——>P 4 —> 2, —=H —+0 1is exact since Hk(P) =0

for k >n by Corollary L.l.
By Corollary 4.2, H, € ﬁé . Dualizing, we get

o-o) * Z. *I * .
<— P L. % (Hn) “4«— O 1s exact by

Corocllary 4.1 and Lemma 2%. As in the proof of Theorem k4,




i . . * x .
w2 get a chaln retraction up to D : Pn+l — Zn . This

* * * *
shows (Hn) eCr’R. But 4——Pn+1+—zn “— (Hn) — 0

*

el 4<— ¢++ “gplice together to give

x o, * 3
0 &— %ﬁﬂr-PD<F'P
the cochain complex. s “ﬁP(Hn)* is now easily seen

to be an isomorphism.

-1 -
Now r2§+1('1)r[PT] + (Dz) + (GDYTH]D =0

and EOGDTRD = (DM =0 e K00 by

Bass [1], Proposition 4.1, Chapter VIII. Summing these
two equations shows Y(P) + (—l)n_l[Hn] =0 . [

Now let us return and discuss the products we
defined in section 4. We defined two versions of the
cap product on the chain level (see Theorems 4.5 and hk.6).
Notice that the maps we defined on P*(X;A,B) and
P*(X;A,B) actually come from maps on the tree modules
Co(X3A,B:A,F) and C¢*(X;4,B:A,F). Thus if f is a
cocycle in C™(X,A:T), and if h 1is a diagonal approxi-
mation, Theorem 4.5 yields a chain map

n_=t

CopppX3h,B) ———IL——?C*(X,B) . DNote that in order for

this to land in the asserted place, 'I' pulled up to the
universal cover of X must just be ordinary integer

coefficients.

m+*

£ N, dualizes to fU,_: ¢ (X,B) —> c™ ™ (X;1.B) .

n n'
Since w2 did not define cup products on the chain level,
we may take this as a definition. Nevertheless ws assert

that on homology, .ftﬁllinduces the cup product of
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Theorem %.1. This follows from the duality relations
we wrote down between ordinary cohomology and homology
(see the discussion around the universal coefficient
theorems in section 1).

Now one easily sees x induces a map Wh(x):
Wh(R) - Wh%(R) , Where Wh%(R) is the group formed
from left modules. If fN (or Uf) 1is a chain equiva-
lence, we can compare tT(Uf ) . We get
Wh(*)(t(£n))= (-1)™(f U) by definition.

Next we study the cap product of Theorem 4.6. A
cycle ¢ € Ci’f'(X;A,B;P)' yields maps C*(X,A) - Cm_*(X,B).
¢* is a left module, while C, 1is a right module, so
ﬂhc is not a map of tree modules. If I' has all its
groups isomorphic to Z 4, which it must to yield the
asserted product, we get a homomorphism w : Pl(X) + 2y =
Aut(Zz) given by the local system. We cén make C* into
a right module (or C4 into a left module) by defining

Myra = a+M, , vwhere m € (C*),, ace (zry), and is

A
the involution on (2Zm), induced by g ¢ (‘rTl)A goes

to w(g)g—l, where w(g) € Zy = {1,-1} is the image of
g under the composition (vl)A -+ ﬂrl(X)-—E-.*-Z2 . Let

C; be C* with this right module structure.

*
Then Myc: C (X,A) - Cm_*(X,B) is a chain map. If

we dualize, we get a map (ﬂhc)*:cm—*(X,B) >
(C$(X,A))du311zed . C$ dualized is just cY , and

YK =N A
(ﬂhc) ﬂh\,.
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The involution is seen to induce an isomorphism

Wh£(G) —» Wh(G) , and the composition

wh () 2 ) X
- Wh(G) ———> Wh ' (G) —>Wh(G) 1s the map induced by

26 —¥ 26 via — (it is not hard to see this map induces

a map on the Whitehead group level.) We will denote the
map on Wh(G) also by - .

| If ﬂhc is a chain isomorphism, either from

Co(X,8) == C__(X,B) or Cf  (X,B) =% Cy(X,4) , we can

compare the two torsions. We gel the confusing equation

T(th) = (-1)m T(ﬂhc) where despite their similar
appearance, the two ﬂhofs are not the same {which is
which is irrelevant). |

We conclude by recording a notational convention.
We will sometimes have a map on homology such as |
Ne : AT(M) - Ax(M) . Tf this map is an homology iso-
morphism we will bften speak of the torsion of Nec¢ (or
Uf, etc.). By this we mean that there 1s a chain map
(which is clear from the context) and these maps on the
chain level are equivalences. Note that by the usual
nonsense, the torsions of these product maps do not
depend on a choice of cycle (cocycle) within the homology
(cohomology) class. Nor do they depend on 1lift functor
or choice of paths. They are dependent on the treg at
this stage of our discussion, but this too is largely
fictitious. A better proof of independence is given at

the end of section 6. Especially relevant for this last
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discussion are Theorem 2.1.2 and the discuésion of the

Thom isomorphism in the appendix to Chapter 2.

Section 6: The realization of chain complexes.

In [37] and [38], Wall discusséd the problem of
constructing a CW complex whose chain complex corresponds
to a given chain complex. We discuss this same problem
for locally compact CW complexes. Throughout this section,
complex will mean a finite dimensional, locally compact
CW complex.

If we have a chain complex A, , there are many
conditions it must satisfy if it is to be the chalin complex of
a complex. Like Wall [38] we are unable to find an algebraic
description of these conditions in low dimensions. We

egscape ths dllemma in much the same way.

Definition: A geometric chain complex is a positive,

finite, chain complex Ay together with a 2-complex K ,
a tree £ : T+ K, and a 1lift functor f € £(f) such
that 1) each A, is a locally-finitely generated free
Zﬂl(K,F,f)—module

2) each 3,: A + A, 1 1s a map (not a map-germ)

3) in dimensions < 2, Cu(K:F) = Ay &

Tor 3) to make sense, we must define equality for two
free tree modules. If A 1is free and based on (S,w)
and if B 1is free and based on (R,p), A = B iff there

exists a 1-1 map a : S +—+ R such that aow is
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equivalent to p . One easily checks this is an equi-
valence relation.

Notice that if A, 1s going to be the chain com-
plex of some complex, then all the above conditions are
necessary.

Given two geometric chain complexes A, and B, ,
a map fxi Ay > By 1s a map (not a germ) on each Ay

and akfk = fkmlak as maps.

Definition: A map fx : Ax -+ By Dbetween two

geometric chain complexes is admissible provided

1) if L 1is the 2-complex for By , L = K wedged
with some 2-spheres in a locally finite fashion

2) f, and -fl are the identity

3) f, is the identity on the 2-cells of K and
takes any 2-sphere to its wedge point. (The tree for L
is Just the tree for K . The lift functor for L isg
just g_l(lift functor for K), where g : L - K is the

collapse map).

Remarks: It seems unlikely that we really need
such strong conditions on a map before we could handle
it, but in our own constructions we usually get this,

and these assumptions save us much trouble.
The chief geometric construction is the following.

Theorem 1: Let X ©be a connected complex. ZLet A,
be a geometric chain complex with an admissible map

fe t Ay » Cu(X) which is an equivalence. Then we can
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construct a complex Z and a proper, cellular map
g : Z -+ X so that C,(Z) = A, and

T, .
Ay ——> C,(X)

\,

Cx(Z)
commutes. g 1s a proper homotopy equivalence.

Proof: We construct Z skeleton by skeleton.

Since f, 1is admissible, 22 = X2 wedge 2 spheres.

g5 ¢ 22 -+ X 1s just the collapse map onto X2 . To
induct, assume we have z¥  and gp ¢ z¥ = X so that
C,(z") = A, 1in dimensions < r and (gr)* = fyx in
these dimensions. 1If we can show how to get Zr+l, S
we are done since A, is finite.

Now Ar+l is free, so pick generators {ei] . We

. I-. =
have a map 3 : A ~+ A and CT(Z ) A, . Hence

r+l
each de, 1is an r-chain in %' . We will show that these
r-chains are locally finite and spherical (i.e. there is
a locally finite collection of r-spheres U S§ E_Zr such
that aei is homologous to S? , and, if hi is an
(r+1)-chain giving the homology, the {hi} may be picked
to be locally finite). We will then attach cells by
these spheres and extend the map.

Let us now proceed more carefully. For each Ai ’
de; ¢ A, and dey € (Ar)wi for some W; € e (T) with
{Wi} cofinal in the subcategory of &(T) consisting of

all A such that e; ¢ (A.), - Since  C.(Z") =4, ,
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_ T _ . .
aei = c; € (Cr(Z ))Bi for some .Bi e ¢(T) with

Bi g_wi (we write Bi < Wy provided Bi = wi and

{Bi} is cofinal in the subcategory of all A € C(T)

for which e, € (Ar)A - ¢y 1s nowa real geometric

chain. Bci = 0 since 3 1s actually a map. Let
Nt
[c;] ©be the homology class of c¢; in H.(F.(B;)) ,

where F is the 1ift functor for Z' . Now g*[ci] =0

TN
in H,(#(U;)) , where F 1is the 1lift functor for X ,

and Ui <B; -

Hence there is an f; € Hr+1(gr: Fr(Ui) -+ b(Ui))

g . o7
with £ ﬁ-[Ci] . But g 2

~+ X 1is properly r-con-

nected (it induces an isomorphism of A( :ﬂi)!s and

O

Hend

's by assumption, so it is always 1-1/2-connected.
Hence the universal covering functor for X 1s a
universal covering functor for 7', so A i) = 0 Aff

A(Mg y Xt Hk;“) =0 for k <r by the Hurewicz theorem.
r
But A(Mgr,X: Hk,N)

an isomorphism for k < r and an eplmorphism for k = r.

= Q0 for k < r 1iff A(Hk(gr)) is

But this is true if A(H (f) is an isomorphism for k < r,
which it is.) Hence the Hurewicz Theorem gives us ele-

- _
ments sy € 7, (g : FL(V) - F(V;)) where V; < Uy

and s; hits the image of f; in H (’gr: Fo(V ) =
/——v

F(V;)) " under the Hurewicz map.

r+1

Let ZT+l = 2" U a collection of (r+1)~cells, {ei}

attached by Si ¢ Bpyqt Zr+l + X 1s g. on z¥ . Since
T

gp © S; ¢ s" - z" 4+ X are properly null homotopic, choose

a locally finite collection [Qi} of null homotopies of
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r+1

g, ° S; to zero in F(Vy) . g4 Z + X is defined

by Qi on each e: e Eril is obviously still proper.

i
T r+l
C*(Z ) = C*(Z )

r+l)

induces an isomorphism for x <r .

= A by taking the cell ej to the generator

'Cr+1(Z T+l

e; FP+1(B) = F,(B) U (all cells e; for which the

generator e, 1lies in B 1less those for which

1
g1 (ey) £F(B)) &
Then g, F(B)) 2 F_, (B) . Notice that if a cell

e does not attach totally in Fr(B) g gr+l(e) Z F(B),
S0 Fr+l(B) is a subcqmplex. Fr+l(B) is cofinal in B,

so F is a 1lift functor.

r+l1 .
Look at the chain map (gr+1)* : Cr+1(ZT+1) - Cr+l(X)°

e; as a cell goes under (gr+1)* to the same element in

(c (X)), as the generator e. does under f. for all
B i *

r+1
Be@(T) such that e; 1s a cell in Fr+l(B) . Hence

f
r+l Lt CLpq (XD commutes. []

r+l) T

C (Z

r+l

Definition: A relative geometric chain complex is a

triple (A_,X,L) consisting of a finite;'positive chain
complex A_ and a pair of complexes (K,L) . Understood
“is a tree and a 1ift functor. Then each Akv is a locally-
finitely generated free ZWl(K) tree module; each 'ak is
a map; and in dimensions < 2, A, = C (K,L) .

- An admissible map 1s a chaln map, not a germ

f,* A, B, and K =K' wedge a locally finite collection
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of 2-spheres. s and fl are the identity, and £

is the map induced by the collapse K - K' .

Corollary 1.1: Let (X,¥) be a pair of complexes,

- X connected. Let A be a relative geometric chain
complex with an admissible map f_: A -~ C _(X,Y) which
is an equiﬁalence. Then we can construct a complex 2
wiph Y as a subcomplex and a proper cellular map

g: Z -+ X which is the identity on Y such that

£
¢, (Z,Y) =a_ and A, — C(X,¥) commutes.
L
C,(2,Y)

g 1s a proper homotopy equivalence of pairs.

Proof: The proof parallels the proof of Thesorem 1,
except we must now use Namioka to show our elements are

spherical. [

Now let f : A - C*(X) be an arbitrary chain equi-
valence. As in Wall [38], we would like to replace A
by an admissible complex with f* admissible while

changing A, as little as possible. Look at

d
) —%A_:s ——)-A'2-——)-A_l }AO }A_l—"oo. ——->.O

[l |

--o"—_“c _'>C _"“*CO"'"-’")'O

3 2
One might like to try the complex

—_—

1
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fr090

e

LI >C3 WCE zCl*‘—‘—)’CO—“)’O .

The top complex 1s clearly admissible, but unfortunately
the map is no longer an equivalence. The cycles in A3
are now bigger with no new boundaries, and the boundaries
in Cg are smaller with no fewer cycles.

Note first that X 1s not of great importance. If
we replace X by something in its proper homotopy class,
we will not be greatly concerned. Let X' be X with
2-spheres wedged on to give a basis for A2 and 3-cells
attached to kill them. Then X' has the same simple
homotopy type as X , Ck(X') = Ck(X) except for
k =2,3, and Cg(X') = C (X) @A, for k = 2,3. Let

£, = £, k #2,3, and let fé = (£5,9) and £ = (f,,1d).
1
*

Then A = C*(X’) is still an equivalence and now

f} is a monomorphism. TLet A" Dbe the complex

féoa 1 1 1 1
—=—>C, = L, X') — (g '7700 0 .

LI 2 .—..-._;Q.A

3
Then h_: A; —+'C; has homology in only one dimension:
—_ n S ! . £ '
0 — Hy(h) —H,(A') —H,y(C') —> 0 . Since A, —>A4
and since the composition A ——9A;=-+ C; is an equi-
! !
valence, H,(A') = H,(h) ® H,(C') .

Now by Theorem 5.5, Hz(h) is s-free, provided we

can show Hk(h) = (0 for k >3 . But since we have a




chain equivalence A_ - C; we have a chain homotopy

inverse in each dimension. We then clearly get a chain

homotopy inverse for A& — Cﬁ', k >4 , and h3 ° gé

chain homotopic to idC' . But this implies HX(h) = 0,
k>3 .

Since H2(h) is projective, we get a map p = 3op',
where. p' : Hy(h) = Cé is given as follows. Both Aq

and Cé map into G, = Cé ’

Image C3 -+ Hg(h) =+ 0 1s exact. ©Split this map by

and O - Tmage AB -

3

Now 03') -+ Tmage C. + O is exact, so we can lift o to

3

p': Ha(h) - Cé . ©Since g 1s a monomorphism, note

o: H,;(h) » Image C, and note Image Aq N Tmage ¢ = {1} .

Tmage p' N Image f3 = {1} .

Form A, and hg, by

- d3+p v . N
o 7 Ay, .A3$I{2(h) --~——-rc2 +C1 > C > 0

lfu £axp! ' lid lid lid

1 ot ! W !
3 /C2 f’Cl ’-CO —‘—9'0

o * 8 -_—_*CL:—"""‘““—‘—"'}C

Note ker(d +p) = (ker 3,0) since p 1is a monomorphism
and if p(x) € Image 3, P(x) = {1} as Image A3 N Image o =
{1} . Likewise note Image(d +p) = Image Cé since

] . .
' . Hence h. 1is an equi-

Image A3 ® Image p = Image C3 «

valence.
Note p : Hz(h) -+ Cé is a direct summand. We split

p as follows.
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- 5]
see TR Ay A3GBH2(h) ——342+-Cé —> «ao , where a
id 1o ng
LI '—‘*—'}'ALF'—-——-—-*A;)) \;A2 3 ¢ o e

is inclusion on the first factor commutes. These maps
must define a chain equivalence, so the dual situation

is also an equivalence.

, 5 - | _
- 4—-Ai*€r¥i—-A§ e(Hz(h))*Je——iil——- (CZ)*Aé—— oue

* *
o f2
6A GA R
s 3 * . 2 * ; .o
aoo‘é:‘—AL‘.é“ A3 ) ] A2 <
ker 8, = ker 6% ® (H,(h))*, and Image (3%+p*) =

Image 3" & Image p* . H3(Top complex) =
ker 63/Image(a*-*p*) = (ker 6§/Image 2¥) @ ((H2(j))*/1magep*)-

H3(Bottom complex) = ker 5§/Image bg . H3(a): H3(T0p) —3
H3(Bottom) is ker Gg/ﬁmage ¥ ker ég/image 6%
& —_— @
(H2(h))i/&mage p*
Hence, if Hs(a) is an isomorphism, Image 3% = Image 6% y

and pT: (Cé)* — (Hg(h))* is ontoc. (H2(h))* is

projective so split p* . Dualizing splits p: Hz(h)-ébcé .

H2(h) may not be free (it is only s-free).

Ay ® Hy(h) 1s often free, but we prefer to keep 'A3 .

Hence form Ai and ‘fi by




(n) ...

'°'——}A.)+ ——— A @(H2(h)s®}.‘(n)) _——1702@1‘1

3
fi, £+ (04 +0) 11d+0
C

“eo o ! —_— ' > e
CH C3 _—

where S 1s a shift functor so that the map germs p and
p' are actual maps.

By wedging on n 2-spheres at each vertex of the

S

. are admissible. DNotice that

S
tree, we see A_ , T

exactly the same procedure makes a map I ,: A, = C _(X,Y)
admissible.

In section 3, Proposition 3 we defined what it meant

by X satlsfies Dn. We briefly digress to prove

Theorem 2: The following are equivalent for n 2> 2,
X a complex.

1) X satisfies Dn

2) X 1is properly dominated by an n-complex.

3) Ak (X: universal covering functor) = 0 for k > n.

Proof: 1) implies 2) as X" € X is properly n-
connected and hence dominates X 1if X satisfies Dn .
2) implies 3) by computing Ak from the cellular chain
complex of the dominating complex.

3) implies 2): Since Ak(X: ) =0 for ¥ >n ,

by Theorem 5.4 dualized to cohomology, we get chain

retracts
‘ ° S ; Sn+1
O-%C > X C
r - T-1 < n+l ¢—
5 D D D

Cn —Ly ... there r = dim X < oo . By an induction
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argument, Image an+l is s-free, and Cn = Image an+l€BAn

(dualize everything to get these results in the cochain

complex and then dualize back). An is s-free and
O_>A_ —+-C —-)'-.-w—)CO-*}O

I

%’Cn_—?cn_l—*.o. —é-co-—"o

wwo —3 Cn+1

gives us én n-complex and a chain equivalence. An is
only s-free, so form O —A 93 F(m) —%'Cn_l ® F(m)-—% o
which is now a free comvlex. If n >3 , the complex
and the map are clearly admissible, so by Thecrem 1 we
get an n-complex Y and a proper homotopy edquivalence

g: Y~ X, so X satisfles 2).

In n =2, X has the proper homotopy type of a
3-complex by the above, so we assume X 1s a 3-complex.
.Its chain complex is then O - C3 -+ 02 -+ Cl - C, 7 0O with
HZ(C) = 0 . Wedge 2-spheres to X at the vertices of the

tree to get a chain complex O —=+C, > C,®C, > C;, = C_ —~ O,
3 2773 1 o
J

. 2 - — .
Since H7(C) =0, G, = Cy @ kernel 3, . Let 2 C3 7 G
be the inclusion. Then we have

'j ' N .
l’ L? l;d -lid
B: 0 — C2 ?‘Cl > CO >0
. _ —

where (C3 $ ker 32) (C3 ® ker 82) & C3 by
r(x,y) = (0,y,x) » This is a chain equivalence between

B and A .
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Both A and B are the complexes for a space.
The chain map is easily realized on the l-skeleton
‘ >

as a map, and we show we can find a map g: X2 -+ X Vj S

realizing the whole chain map.

Let {ei} be the two cells of X° . Their attach-
ing maps determine an element in A(Xlz Wl,") , Where
this group denotes the A-construction applied to the
grohps Wi(p_l(Xl—c),ﬁi) , Wwhere p: X+ X 1is the pro-
jection for the universal cover of X . (i.e. ~ denotes
the.covering functor over Xl induced in the above manner
from the universal covering functor on X .) Let
g : X' > Xv8° be the natural inclusion. As in the proof
of Theorem 1, the {ei} determine an element of
A(gl: Hys ~) . The following diagram commutes, and the
rows are exact _

A(X?:ﬂ2,~) - Algy3my,~) » A(Xl:wl,")*A(X?“:vl,"):T
n| i g

Oza(Xl:H2,~)+A(X2:H2,~) - A(gl:H2,~) - A(XI:H1,~)

where A(Xl:Hl,~) and A(X;:H2,~) are defined similarly to

A(Xl:ﬂ1,~) . Xl E_X2 is properly l-connected, the subspéce
groups are the groups asserted. h 1is an isomorphism by

the Hurewicz theorem, so a diagram chase yields a unique
element in A(glz T,,~) which hits our element in both
A(Xl:vl,~) and A(gle2,~) . Use this element to extend

the map to gs: X2 + X Vj S? . By our choices g5 induces
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an isomorphism of A 'S. Hence g, 1is a proper
1
homotopy equivalence. Thus 3) implies 2) for n > 2 .

2) implies 1) is trivial. ]
Corollary 2.1: If X satisfies Dn for n 2 3 ,

X has the proper homotopy type of an n-complex. []

Combining our admissibility construction with

Theorem 1 gives

Theorem 3: Let f, ¢ A, = C,(X) be a chain map
for a complex X . Then there exists a complex Y,
satisfying D2 ; a complex Y 2 ¥ such that
C*(Y,YO) = A, 1in dimensions greater than or equal to
35 and a proper, celluiar homotopy equivalence g: Y = X

such that g~ T in dimensions greater than or equal

%
to 4. The torsion of g may have any preassigned value.
Proof: Make A T, admissible. The new complex

is eee —>4) —A ® (7) —-——'—>c2ea(?) —>Cy —>

3
Construct a Y from this complex as in Theorem 1. Wnen
we pick a basis for ABéB(?) , pick a basis for A3 and
one for (?) and use their union. Then there is a sub-
complex Y, < Y whose chalin complex 1s

o—+(?)—+c2@(?)—»c —~»C, —>0 . The first (?) is

1
Hg(h) ® FCm) . It is not hard to show AB(YO: ~) =0,
so Y° satisfies D2 . The remainder of the theorem is

trivial. except the remark about torsion. But for some

m >0 , we can realize a given torsion by an automorphism
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(m)

F(m) -+ F(m) . Hence by altering the basis in F s

a s
we can cause our map to have any desired torsion (we
may have to take m bigger, although in the infinite

case m = 1 will realize all torsions). []

Theorem 4: Let fy : Ay * Cx(X,Z) be a chain map
for a pair (X,2) - Then there exists a complex Y
such that Y2 Y 223 Cu(Y,Y ) =4, in dimensions
greater than or equal to 33 a proper cellular homotopy
equivalence g: Y » X which is the identity on Z such
that g, = fe in dimensions greater than or equal to 4.

The torsion of g may have any preassigned value.
Proof: Use Corollary 1l.1l. []

We conclude this chapter by returning briefly to the
question of the invariance of torsion for chain maps under
a change of tree. The natural map Wh(X:f) - Wh(X:g) is
a homomorphism, so the property of being a simple chain
equivalence 1is independent of the tree. But now use
Theorem 3 to get a proper homotopy equivalence X —+ ) &
with torsion =T . Suppoée éiven a éhain map, say for

example, Nc:A™X) - Ay (X)  with torsion <t . Then

e px * (e
the composition A™(X) — Am_*(X)'“—“+'Am_*(x(_l)mT)

is simplé, so a change of trees leaveé it simple. 3But

the second map is a proper homotopy equivalence of spaces,
and hence is independent of the tree. Hence so must be

Nc « {(Note here we are using our convention of writing

chain equivalences on the homology level.)
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CHAPTER II

Poincaré Duality Spaces

Section 1. - Introduction, definitions, and elementary

properties

In this chapter we discuss the analogue of manifold
in the proper homotopy category. We seek objects, to he
called Poincare duality spaces, which have the proper
homotopy attributes of paracompact manifolds. To this
end, we begin by discussing these attributes.

There is a well known Lefschetz duality between H,
and H: or between H® and Hi"f' which is wvalid for
any paracompact manifold with boundary. (see for instance
Wilder [44].) This duality is given via the cap product
with a generator of Hﬁ“f' s perhaps with twisted co-
efficients. This generator is called ths fundamental
class.

Given any paracompact handlebody M, M can be covered
by an increasing sequence ofrcompact submanifolds with
boundary. Let {Ci] be such a collection. If
[M] € Hﬁig'M (M;Zt) is the fundamental class, its image

. /?I.fﬁ . t » . - ‘a - -
in Hdim M(M-—Ci,aCi,Z ) via inclusion and excision is

the fundamental class for the pair (M-C;,3C;) . A word
about notation: Zt oceurring as a coefficient group will
always denote coefficients twisted by the first Stiefel-

Whitney class of the manifold.
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Theorem 1: The fundamental class [M] in

Hﬁ'f' (M;Zt) induces via cap product an isomorphism
ALM): AR (Mim) — a, (M:)
where ~ 1is any covering functor.

If M has a boundary, we get a fundamental class

2

[M] e'HN

nEMl s AN TR Qe ) — 4 (2 )

'f'(M,aM;Zt) and isomorphisms

N—*(

niM) e 4™ " (M: ~)  ——> A (M,dM:~)

A similar result holds for a manifold n-ad.

Proof: The proof is easy. On the cofinal subset
of compact submanifolds with boundary of M , [M]
induces, via inclusion and excision, the fundamental
class for the pair ((n+l)-ad in general) (Efffg,aci),
where C. 1s a compact submanifold with boundary of M ,

i
and ﬂfrﬁi is the closure of M-—Ci in M . aci is
equally the boundary of Ci as a manifold or the frontier
of C; as a set. By the definition of N[M] , it induces
an isomorphism for each base point and set C; - Hence. |

it must on the inverse limit. []

If one computes the homology and cohomclogy from
chain complexes based on a PL triangulation, on a handle-
body decomposition, or on a triangulation of the normal
disc bundle, N[M] induces a chain isomorphism. We can

ask for the torsion of this map. We have
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Theorem 2: If (M,3M) is a manifold with

L.f.

(possibly empty) boundary, and if [M]e Hy (M,BM;Zt)

is the fundamental class, N[M] :AN"*(M,aM:~)'—$-A*(M:~)

and N[M] :AN_* (Mz~) —> A, (M,d3M:~) are simple equi-
valences as chain equivalences, where ~ 1s the univer-

sal covering functor.

Proof: Given a handlebody decomposition, the proof
is easy. The cap product with the fundamental class
takes the cochain which is 1 on a given handle and zero
on all the other handles to ths dual of the given handle.
Hence N[M] takes generators in cohomology to generators
in homology (up to translation by the fundamental group).
The fact that the simple homotopy type as defined by a
PL triangulation or by a triangulation of the normal disc
bundle is the same as that defined by a handlebody has
been shown by Siebenmann [34]. [

We are still left with manifolds which have no
handlebody decomposition. Let N = cPt # 83 x 8° # 85 x 8°.
Then x(N) =1 . N x MI has [N] x [M] as a fundamental
class. For M we use the simple homotopy type defined
by a triangulation of the normal disc bundle. Then
N[N1 x [M] is a simple equivalence iff N[M] is by
Lemma 1.5.23, since N[N] 1is known to inducé a simple
equivalence. But N[N] x [M] is a simple equivalence
since N xM has a handlebody structure (Kirby-Siebenmann

[18]). Note Theorems 1 and 2 now hold for arbitrary
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paracompact manifolds.
With these two thecrems in mind, we make the

following definition.

-

Definition: A locally finite, finite dimensional

CW pair (X,3X) with orientation class Wy € Hl(X;Zz)
is said to satisfy Poincar€ duality with respect to [X]

and the covering functor ~ provided there is a class

.f.

W
(X,3X;2 ©) such that the maps
N 2

(X] ¢ H

n[x] s AV T*(xe ) —> A, (X,3X:~) and

n(x) = AN (x,0x: ) —> 4, (X:)

w
are lsomorphisms. Z L denotes coefficients twisted by

the class Wy e
If X 1is an n-ad we require that all the duality

preducts be isomorphisms.

Remarks: The two maps above are dual to one another,
so if one 1is an isomérphism the other 1is also.

Suppose ~ 1is a regular covering functor for X ,
and suppose --- 1is another regular covering functor with
~--- »~ . Then the chain and cochain groups have the
structure of ZWi(X:F,f:~) " modules, when f: T — X 1is
a tree and F € £(f) . The tree of groups Wi(X:F,f:“)
is the tree given by (Tr]'_)A = wl(F(A),p)/Wl(ﬁzﬂs,p) where
p 1is the minimal vertex for A . There is a map of rings
Zni(X:F,f:~) — Zni(X:F,f:-—~) , and the tensor product
takes A(X:~) to A(X:---) . 8Since N[X] 1is an isomor-

phism for ~ , we-can get chain homotopy inverses, so uander
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tensor product, N{X] still induces isomorphisms for

————
-

As we have the Browder Lémma (Theorem l.4.7), with
' patience We'can prove a variety of cutting and gluing

theorems. The following are typical.

Theorem 3: Let (X: aox,alx) be a triad. Then the
following are equivalent.
1) (X: 3_X,3,X) satisfies Poincaré duality with

.. 1)

. o w
respect to V e Hy (X:3_X,3,X:2 and ~ . (wl is

1
the orientation class.)
2) (3%, 3y

L.t

l}X) satisfies Poincaré duality with
W
respect to 3V € HN_l'(aOX,a{O 1) X:Z 1) and ~ where ~
2

is induced from ~ over X and Wy is the orientation
class induced from W, over X . Moreover, one of the
. AK . ' .
maps nv = A (X,alX. ) —-}AN_*(X,aOX. )
*
nv : A (X,0 X:~) — Ay, (X3, X:~)
is an isomorphism. (Hence they are both isomorphisms.)
3) The same conditionsras 2%) but considering
(21%:310,13%)
Proof: The proof is fairly standard. Wg look at

one of the sequences assoclated to a triple, say

* o I * .~ * Ve
AT (X213 X,09X:™) — > AT (X,3,X:~) —+ A (aox,aio,l}x.x. )

1nv lnv lnaV

QN_*(X:”) — AN_*(X,aOX:~) ——*AN_l_*(BOX:X:~)




146

1) implies both NV's are isomorphisms, so the 5-~lemma
shows N3V is an isomorphism. 2) implies one of the

NV's 1s an isomorphism and that

NAVsA (aox,a{o’l}x:ﬂ - A (3, X:~)

N-1-x*
is an isomorphism. Hence we must investigate how the
subspace groups depend on the absolute groups. Make
sure the set of base points for X contains a set for

aox . Then we have a diagram

* o~ L * L4 * o
A (aox,a{o’l}x. ) — A (aox,a{o,l]x.x. }

LﬂaV lnav

Ayo1-53X:") ———— By s (@X:~)

which commutes. The horizontal maps are naturally split,
so if Nav on the subspace groups is an isomorphism,
then it is also an isomorphism on the absolute groups.
Hence 1) implies 2) and 3).

Now if N3V on the absolute groups is an isomorphism,
then it is also an isomorphism on the subspace groups by

Theorem 1.3. Hence 2) or.3) implies 1). [

Theorem 4: Let Z =Y U ¥Y' and set X =¥ N Y'.
Then any two of the following imply the third.

1) Z satisfies Poincare duality with respect to
[Z] and ~ .

2). (Y,X) satisfies Poincard dﬁality with respect
to 3[2Z] and -~ .

3) (Y',X) satisfies Poincard duality with respect

to 3[Z2] and ~
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where ~ 1s a covering functor over Z ,  which then
"induces ~ over Y and Y' . An orientation class
over 2 which induces one over Y and Y' has been

assumed in our statements.

Proof: The reader should have no trouble proving

this. [}

A map ®:M+X , where M and X are locally
compact CW n—ads»which satisfy Poincaré duality with
respect to [M] and ~ , and [X] and --- respectively,
is said to be degree 1 provided it is é map of n-ads and

1) @ (--=) = ~ s Where 9*(--~) 1is the covering
functor over M 1nduced by ¢ from --- over X .

2) If wy € Hl(X;Zg) is the orientation class for
X, ¢*wl is the orientation class for M .

3) e [M] = [X] .

Theorem 5: Let ¢ t M =+ X be a map of degree 1.

Then the diagram

AT (M:~) AN AY (X:~)
A[M) ln[x]
A (M27) > Ay _p(X3™)

commutes. (~ over M is the covering functor induced
from ~ over X .) Hence N[M] induces an iscomorphism

of the cokernel of 9% , K (M:~) onto the kernel of

®, Kn;r(M:N) « Thus ¢ 1is k-connected, ®_ and o©F

are isomorphisms for r <k and r>n- X .
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Similarly let o : (N,M) ~+ (Y,X) Dbe.a degree 1
map of pairs. Then @ 'gives split surjections of
homology groups with kernels JK* , and split injections
of cohomology with cokernels K* . The duality map
N{M] induces isomorphisms K*(N:~) -+ Kn_*(N,M:~) and

(N:~)

K*(N,M:~) 2K

Analogous results hold for n-ads.

Proof: The results follow easily from the definitions

and the naturality of the cap product. []

Section 2. The Spivak normal fibration

One important attribute of paracompact manifolds
is thes existence of normal bundles. In [35] Spivak
constructed an analogue for these bundles in the homotopy
category. Although he was interested in compact spaces,
he was often forced to gonsider paracompact ones. It is
then not too surprising that his definition is perfectly
adequate for our problem. This is an example of a general
principle in the theory of paracompact surgery, namely
that all bundle problems eﬁcountered are exactly the same
as 1in the compact case.‘ One does not need'a "proper"

normal bundle or a "proper" Spivak fibration.

Definition: Let (X,3X) be a locally compact,
finite dimensional CW pair.‘ Embed (X,3X) in (Hn,Rn-l),
where H"™ is the upper half plane and R = o . Let
(N;Nl,Né) be a regular neighborhood of X as a subcomplex
of H'; i.e. XS N, dXS N, and N(N,) . collapses to

X(3X) . Let &(Ny{,N,X) be the space of paths starting
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in Ny lying in N , and ending in X  endowed with
the CO topology. (If A,B,C are spaces with A,C < B ,
a similar definition holds for O°(a,B,C).) There is the
endpoint map w:é?(Nl,N,X) + X . w 1is a fibration and
is called the Spivak normal fibration. Its fibre is

called the Spivak normal fibre.

Spivak showed that a necessary and sufficient condition

for a finite complex to satisfy Poincare duality with
respect to the universal covering functor was that the
Spivak normal fibre of the complex should have the homo-
topy type of a sphere. He also showed that if one
started with a compact manifold then the normal sphere
bundle had the same fibre homotopy type as the Spivak
normal fibration, at least stably. Before we can do this
for paracompact manifolds, we will need to do some worke.
In practice, the fact that the Spivak normal fibra-
tion 1s constructed from a regular neighborhcod is incon-
venient. More convehient for our purposes is a semiF

regular neighborhood.

Definition: Let (X,3X) be a pair of finite

dimensional, locally compact CW complexes. A semi-regular
neighborhood (s-r neighborhood) is a manifold triad

(M: My M,) and proper maps 1: X =M and j:aX -~ M,

such that X =M commutes, and such that

Y

i- and j are simple homotopy equivalences. Lastly we
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require that M be parallelizable (equivalent to being

stably parallelizable.)

Theorem 1l: The fibration w: G(Ml,M,X) » X is
stably fibre homotopy equivalent to the Spivak normal

fibration.
Proof: The proof needs

Lemma 1l: If ((M,Ml,Mg) , 1,3) 1is an s-r neigh-
borhood of X , then so is ((M,Mj,M;) x (D%,s%71),
ixc, jxc), when ¢ denotes the constant map. The
triad structure on the product is (M xD"j MlxDn U
M x g™, M, xD?) . Let £ be P ,M,X)—> X and let
N obe @y xD” U Mx8"Th, MxD®, X)—$X . Then £x(n)
is fibre homotopy equivalent to 1, where (n) is the
trivial spherical fibration of dimension n-1 and =*

denotes the fibre join.

Proof: The first statement is trivial and the
second is Spivak [35], Lemma 4.3. Q.E.D.

Now if (M: Ml’MZ) is an s-r neighborhood of X ,

then for some n , (M:Ml’MZ) X (Dn,Sn_l)‘ is homeomor-

n+m
R s Where

phic to a regular neighborhood of X 1in
m = dim M . If we can show this, then the lemma easily
implies that & is stably equiﬁalent to the Spivak
normal fibration formed from this regular neighborhood.
By crossing with p? if necessary, we may assume

dim M > 2 dim X+1 , so we may assume 1 and j are

embeddings. Since M is parallelizable, (M,dM) dimmerses
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in ELE™L) L Ir m>2 dim X+1 we can subject i

and j to a homotopy so that i:X -~ M< H" and

m—l)

jsdaX M, < R become embeddings on open neigh-

2

~ borhoods U and U, , where U 1s a neighborhood of

X and U, = M, N U soc it 1s a neighborhood of 33X .

2 2
In U sits a regular neighborhood of X , (N: Ny N2) .

_ Eense (N: Ny,N,) ¢ (M: M;,M;) and excision gives a

simple homotopy equivalence 3N E ﬁTTﬁ and 3N2 E_ﬂirﬁé)
(this uses the fact that 1 and J are simple equi-

valences.) By the s-cobordism theorem (see [33] or [10])
these are products (assume m > 6) so (M: Ml’ M2) is

homeomorphic to a regular neighborhood of X 1in rT, M

Corollary l.l. The Spivak normal fibration is

stably well defined.

Remarks: By definition we have a Spivak normal
fibration for any regular neighborhood, so we can not
properly speak of "the" Spivak normal fibration. By ths
corollary however they are all stably equivalent, so we
will continue to speak of the Spivak normal fibration
when we really mean any fibration in this stable class.

Now, for finite complexes we know that the‘complex
satisfies Poincaré duwality iff the Spivak normal fibre
has the homology of a sphere. Unfortunately, this is not
true for our case. In fact, Spivak has already shown
what is needed to get the normal fibre a sphere. This

information is contained in Theorems 2 and 3.
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Definition: A locally compact, finite dimensional

CW complex is a Spivak space provided the normal fibre

of any Spivak normal fibratien has the homology of a
sphere. A Spivak pair is a pair, (X,9X) , of locally
compact, finite dimensional CW complexes such that ths
normal fibre of any Spivak normal fibration has the
homology of a sphere, and such that the Spivak normal
fibration for X restricted to 23X is ths Spivak normal

fibration for 23X . A Spivak n-ad is defined analogously.

Theorem 2: The following are equivalent.

1) X 1is a Spivak space
gt
N
the universal cover of° X , such that
n[Xl: HE(X) -
3) n[X): ¥*E -

2) There is a class [X] € (X:Z) , when X is

N- (X) is an isomorphism
ﬁ: “(X) is an isomorphism .

* HhH ¥

Proof: 2) implies 3) thanks to the following com-
mutative diagram
L. -
Hy'f

0 - Ext(H: T(X),2) = (X) — Hou(u*(X),2) —» 0

Ext(n[X]) | n[x] Hom(N[X])

0 - Bxt(Hy_, ; (%),2)-v8V"*(X) — Hom(n,_, (%),2)30

3) implies 1) thanks to Spivak, Proposition 4.4, and
the observation that the Spivak normal fibration for X
pulled back over X is the Spivak normal fibration for X.
This observation is an easy consequence of Theorem 1, the

definition of s-r neighborhood, and the fact that the
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transfer map (¢(X) ~ ¢(X) is a homomorphism,

1) implies 2) as follows. Look at

-

Hy_4 (D(X)) > Hy  (X)
nu
Hy e, (D)8 (X)) <——— Hy,\  (¥,3N)
n[N]
K, 0 y *
H (X) £ H, (W)

where U -is the Thom class for the normal disc fibra-
tion D(X) with spherical fibration S(X) . (N,dN)

is an s-r neighborhood for X . The horizontal maps are
induced by the inclusion X € N and the homotopy equi-
valence (N,3N) = (D(X),S(X)). All horizontal maps are
isomorphisms. The composite map Hg(i) to HN_*(X)

is essentially the cap product with U N [N] , where

U N [N] should actually be written i, (U N j _[N] ,

HE T (0 (%)) —HE T

»?/f.

(X) and

0E),s(X) . KT &) is the

where i*

i, H :Ef'(N 3N) —+H

homology group of the infinite singular chains on D(X)
which project to give locally finite chains on X .
_(Hi'f'(D(ﬁ),S(K)) is similar.) Now [X] = U N [N] shows

2) 1is satisfied. [ 1) was used to get the Thom class U].[]

Remarks: If wi is the first Stilefel-Whitney class
of the Spivak normal fibration, [X] comes via transfer

from a class in Hﬁ'f' of X with coefficients twisted
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by wy; . This class, denoted [X] 5 is called the
fundamental class of X . These same remarks are valid

for pairs (and indeed for n-ads) after our next theorem.

Theorem 3: If 23X 1s a Spivak space with funda-
mental class [3X] , then the following are equivalent.

1) (X,3X) dis a Spivak pair

% f.

2) There is a class [X] € (X,dX) when X

is the universal cover of X (3X 1is the induced cover
over 3X) such that a[X] = fgi] g Hﬁii'(gi) and such
that any one of the following four maps is an isomorphism
a) n[X] :u (X0 — Hy_ ()
B) N[ @ 1*(%,50) — K I (@)

¢) N[E):EN(D) —— Hy_ (%,30)

2

D) n[X] :EYNX) —— H'T(X,3X)

*HB*

= o

The equation 3[X] = [3X]- means the following. In

X , 9X consists of (many) copies of some cover of 3X .

)Lf.

d: (X ax)-—+ H% -1 T (3X)

takes the class [i] to a class in each component of X .

These classes are all equal. There is a transfer map from

W L.f.
Hﬁ:{‘(ax;z l) to H (3X; some coefficients). What

N-1
a[i] = [3X] means is that under this transfer map, [3X]

should go to a[i]o Note this requires that the coeffi-

Wy _
cients 2 untwist in 23X .




155

Proof: 2) implies the normal fibre is a sphere
as follows. By the Browder lemma, the 5-lemma, and
a diagram like the one in the;proof of Theorem 2, A),
B), or C) implies D) . D) dimplies that the Spivak

normal fibre is a sphare by Spivak, Proposition L.k,

The Spivak normal fibre is a sphere implies A) -D)
as follows. The Thom isomorphism and Lefschetz duality
imply 4) -D) hold for [X] =UN [N] , where U is
the Thom class of the fibration and [N] is the funda-
mental class for the regular neighborhood of X .

If 1) holds, then A)-D) hold for [X] =U n [N].
[3X] = U, N [N2] wvhere U, 1s the Thom class for the
normal fibration for 3% and [N2] is the fundamental

class of the regular neighborhood for X . Since the

-~ ———

fipbration over X restricts to the one over 33X ,
i*Uy = U, , vhere i*¥U 1is defined as follows. The total
space of the normal fibration for X is §(N1,N,X) ]

The total space of this fibraﬁion restricted to 23X is
GYNI,N,SE) . The total space of the nmormal fibration for

3X is &Ny N N,,N,,3X) . The inclusions (N; NN,,N,,3%) <
Py ,N,3%) < Py ,N,%)  are all fibre maps. Let

El < E2 - E3 denote the corresponding disc fibrationso

The Thom class U 1lives in Hk(EB,E3;p*F3) , Where p

is the projection and P3 is a system of local coeffi-

cients on X . (see Spanier [35], page 283). Let I De
the local coefficients for E; . Then Ij"~ P3 by the
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fibre map. Hence U pulls back to Hk(Ei,él;p*Ts) .
U, lives in Hk(El,El;p*Pl) , and hence goes over to
a class in Hk(El,El;p*F3) where it must be
+ (U pulled back). To write i*U = U, means the co-
efficient systems Pl and P3 are the same. Now
a[N] = [N,] , so one sees a[%] = [3X] . Hence 1)
implies 2). '

Given 2) we know the normal fibre 1s a sphere
and we must just check that the fibration restricts
properly. Note first that the choice of [i]‘ is unijue
up to sign, so if 2) holds, the class [i] =un [N].
3[X] = i*u n [N2] always. Now -[d3X] = U, N [N2] y SO
if a[X] = [ax] , U, = i*U , as is not hard to see.
(By the remark at the end of 2), the local coefficients
for U and for U, have to be the same.) Hence the
inclusion  (N; N N,, Ny, 3X) € (N;,N,3X) 1is a fibre
homotopy equiValencé. This shows 2) implies 1). [J

Now suppose & 1is an arbitrary spherical fibration
over a locally compact, finite dimensional CW complex X.
The total space is not; in general, such a complex. Our
techniques apply best to such spaces however, and we want
to study these total spaces. Hence we wish to replace
any such total space by a Spacé with the proper homotopy

type of a locally compact, finite dimensional CW complex.

Definition: Let S(E) Dbe the total space of a

spherical fibration £ over a locally compact, finite

dimensional CW n-ad X . A cwation (CW-ation) of E
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is an n-ad Y. and a proper map f : Y X' such that
the folléwing conditions are satisfied. Y has the pro-
per homotopy type of a loca11§>compact, finite dimen-
sional CW n-ad. There are maps S(E);%:éY’ such that
heg 1is a fibre map, fibre homotopic tg the identity and

such that goh is properly homotopic to the identity.

g
Lastly S(&) Y should commute. The pair
——

N
X
(M(£),Y) is seen to satisfy the Thom isomorphism for
the A* and A, theories. (see the appendix for a
discussion of the Thom isomorphism in these theories.)
The simple homotopy type of Y 1is defined by any locally
compact, finite dimensional complex having the same proper
homotopy type of Y and for which the Thom isomorphisms
are simple homotopy equivalences. TFor a bundle £ ,
(D(E), C(E)) will denote the pair (M(f), Y) with this
simple homotopy type. Such a pair is sald to be a simple
cwation.

Remarkxs: Any spherical fibration of dimension two
or more has a cwation. The proof of this fact is long

and is the appendix to this chapter.

Theorem 4: Let & Dbe any spherical fibration of
dimension > 1 over a Spivak space X . Then (D(£),C(E))
is a Spivak space. If [E] 1is the fundamental class, and

if Uz is the Thom class, we have the formula U N [E] =[X].
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If (X,3X) is a Spivak pair, then (D(E):C(£]3X))
is a Spivak triad. In general a cwation of a Spivak
n-ad has an (n+l)-ad structure. We still have the formula
Up N [E] = [X] -
Proof: The n-ad case follows by induction from
the pairs case, so we concentrate on the latter. To show

(D(¥),C(E)) 1is a Spivak space look at

e v Qofo
H*(D(E)) -----f-mmm- Hyegg_s (D(E)5 C(E) U D(E[3X))
EJ/U;H
n[x) i
sH T B®),bERD)

UE when pushed into H*(D(E),C(Z)) has integer

coefficients. [X] denotes the image if the fundamental

A el . o
class of XinH (D(E), C(E) U D(E|3X)), which again has

N
integer coefficients as it factors through Hﬁ'f'

(%,2X)).

Let V¥ be the isomorphism given by (UEU)"lo(ﬂ[X])'. We
claim ¥(x) = x N ¥(1) , where 1 e HO(BFE)) is the
generator. But UE n ¥(1)) =4(UE Uux)ni¥@)=xn (UEFTW(l))
=x N [X] = UE n ¥(X) , so we are done. Let A = ¥(1) .

Since & has dimension > 1 , D(E[3X) U C(E) is

simply connected. NA : H*(B?E), C(E) U D(E|a3x)) —

—~—
Hyyy— (DCE))  1s also an isomorphism, so

on: HY(C(E) U D(E[3X)) — Hy, ., ; (C(E) U D(E[oX)) 1is
also an isomorphism. Hence if 23X =@ , (D(E), C(¥)) 1is a
Spivak bair by Theorem 1. Then (D(£): C(£),D(E|3X)) can

be shown to be a Spivak triad.
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We must still verify our equation. if we can show
the local coefficients behave correctly, we will get a
diagram like the one we used %o define V¥ , only this
time with local coefficients. Let PE be the local
coefficients in X for the Thom class. Let le be the
local coefficients in X for N[X] . Let I be the
local coefficients in D(E) for [(E] « Then if we could
show I'® p*(rg) - p*<pw1) , where p : D(E) =+ X y We
would be done as one can easily check. To éheck that two

local systems are equivalent 1t is enough to check that

they agree for any g € m (D(£),x) . But

+1 0 if g, W(1) = ¥(1)

I(g) =
-1 if g, ¥(1) = -¥(1)
where g, +H ° - (D(E), C(E) U D(E[3X))  is the map

*

induced by the covering transformation g

+ i *
r‘ L if g" U
1_, -1 if g" U = U

I
o=
Y

p*(Fg)(g)

1

Hence

{1

+ 1 if g*[X] [x]

(' ® p*(f‘g))(g) = )
| -1 if g [X] = -[X]

which is just p*(Fw Y(g) . [
1

Corollary L4.1: Let X be a 1oéally compact, finite
dimensional CW n-ad. Let & Dbe a spherical fibration of

dimension > 2 over X . Then if D(E) 1is a Spivak
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(ntl)-ad, X is a Spivak n-ad.

Proof: Let [X] = Uz N [E] + Then N[X] induces
— = —~— e

isomorphisms - H:.(D(E);Z) ~> Hy_ (D(E),D(E]3X);2) , or
equivalentiy H:(i) —%rHN_*(i,gi;Z) » Inducting over
the n-ad structure of X and applying Theorems 1 and
2, we get X 1is a Spivak n-ad. [}

- Theorem 5: X 1is a Spivak n~ad 1ff X 1is for any
cover of "X . If X 1is an n-ad and Y' is an m=-ad,
X x Y is a Spivak (n+tm-1)-ad iff X is a Spivak n-ad and

Y 1s a Spivak m-ad.

Proof: By induction, if we can prove the result for

pairs we are done modulo the easy result that if (Y,X)
and Y',X) are Spivak ads, then so is Y U Y' . This is
alsoc shown by induction using cutting and gluiﬁg arguments
to deduce the cap product isomorphisms of Theorems 2 and 3.
A careful proof is left to the reader.

Our first statement is immediate from Theoreﬁ 1,
since if N is an s-r néighborhood for X, N is one

for i .

For the second statement we prove

Lemma 2: If Vo is the Spivak normal fibration for
‘any finite dimensional n-ad Z , and if X and Y are

such complexes, Vg % Vy T Vyoy e

Proof: Let D be the disc fibration of vZ » Then

Z

x D, U D < D

VX*\)Y = VX Y X X \)Y - X X DY . Let (N . N1,N2)

be the s-r neighborhood for X from which Vy Wwas formed,
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(M: Ml’M2) is the corresponding object for Y . Then
Vy,y has F(NxM; UN; xM , N xM, X xY) for total
space. Vy X DY consists of triples e e vX, fe Vys and
“te [0,1] with .(£,0) = (g,0) if £(1) = g(1) e Y .

Thgn vy xDy =& vy . glven by (e,t,f) goes to the path
(e(s), £(1l-t+st)) is a fibre map. There is a similar

map for DX X Vy s which agrees with the first on Vy XVy e
Hence we get a fibre map Vy *¥ Vy 2 Vy oy Now vy

. . . 0 ) 1 1
restricts from a fibration vX over N . vY and VY Y

aré defined similarly, and we have a fibre map

1 T 1
vXE*VY - vaY .
vy, y = NxM; U N) xM , which Is a homotopy equivalence.

There is an initial point map

Vg ¥Vy =+ NxM; U N, xM via the composition i likewise a
L . . ; 1 1 1
homotopy equivalence. Hence by Dold [7], Vi ¥ Vy = Vxy

is a fibre homotopy equivalence. Hence so is

v Q.E.D.

Yy 7 Vxxy
Now XxY is a Spivak space iff Vy,y 15 spherical

and, if Z< XxY is a piece-of the triad structure,

vXXle Zv, . If X and Y are both Spivak pairs, the

lemma shows the result easily. If XxY¥ 1is a Spivak triad,

(X x3Y, 3X x9dY) is a Spivak pair. By the lemma, the

normal fibration is Vg ¥Vay ° Since its fibre has the

homology of a sphere, the fibres of both Vx and Vay

must have the homology of spheres. Since' 2 *vaYIX:xp,

p € 3Y 1is equivalent to VX:*(D)"fOT n = dim Vay

and since vX=kvaY]aX><aY = Vay,ay? 25 (X x3Y,3X x3Y)

is a Spivak pairy one sees vy *x (n)|3X 2 viy *(n), so
X X

(X,3X) is a Spivak pair. A similar argument shows (Y,3Y)
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is a Spivak pair. []
Theorem 6: Let X be a Spivak n-ad, and let N
be a regular neighborhood‘for‘ X. If (D(X),c(X)) is
a simple cwation for this normal fibration, there is a
proper map of (n+l) - ads g:N - D(X) such that the
composition N = D(X) - X 1is a proper homotopy inverse
for- X< N . If [N] and [D(X)] are the fundamental
classes for N and D(X) respectively, g«[N] = [D(X)].
g is a homotopy equivalence of (n+l)-ads (not
necessarily a proper homotopy equivalence). g 1s how-

ever properly (dim N - dim X-1) connected.

Remarks: If [X] 1lives in x-dimensional homology,
then the normal fibration has a simple cwation if

dim N - k > 3 .

Proof: To be momentarily sloppy, let D(X) denote
the total space of the normal disc fibration for VX .
Since X © N 1s a proper homotopy equivalence, pick an
inverse N - X . Pull D(X) back over N . It is also
a disc fibration and so has a section (see Dold [7]
Corollary 6.2). Map N -+ D(X) by the section followed
by the map into D(X) . Under the composition
N+ DX)-+X, we just get our original mép. But now
we can take the map from the total space of the fibration

to the cwation. Letting D(X) be the disc cwation again,

we get a map N - D(X) -so that the composition N - D(X) -+ X

is our original mép. 'The map N -+ D(X) 1is easily seen to
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be proper and is g .

g 1s a homotopy equivalence of (nt+l)-ads by
construction. g : N - D(X) is also a proper homotopy
equivalence (g:‘N -+ D(X) , the map of n-ads is not
necessarily a proper homotopy equivalence). The fol-~

lowing dlagram commutes

A
H¥ (N,38) €«—E— 1 (D(X),C(X))

lﬂ[NJ : -Lg*[N]

,F/ f. (gO)* ’P/.fo

niN], g* , and (go)*are all isomorphisms, so g{N] is
also an isomorphism. Therefore, g [N] =+ [D(X)], and
we may orient N s0 that g.[N] = [D(X)] &

The map C(X) - X is properly g-connected, where the
normal spherical fibration has dimension q . This is
easily seen from the fibration sequence 8T + S(E) + X ,
where S(E) 1is the total space of the normal spherical

fibration, by noticing that

A(S(E) = m) ———>A(C(X) : m)

N

AlX o m

commutes, where A(S8(E): m.) 1s formed from the groups
m (8(E}X -C,B), where pe S(E) covers pe X (i.e.
just pilck one p for each base point in X ). The

horizontal map is an isomorphism since C(X) 1is a cwation.




lek

The first vertical map is an isomorphism for k < gq and
an epimorphism for k = g, s0 we are done.

The map N1 C N =+ X 1is properly r-connected, where

r = (dim N-dim X~1). This is seen by showing that the map

Nl Z N 1is properly r-connected. But this is easy. If
- is a locally compact complex with dim K < r , any map
of Ko N deforms properly by general position to a map
whose image lies in N - X . Hence A(leﬂk) - A(N:m )

is onto for k < r and 1-1 for k £ r-1.

K

Now g, : N - D(X) 1is a proper equivalence so the map

is properly r-connected. ©Since r < g , g3 Nl -+ C(X)

is properly r-connected. If X 1is a space, we are done.

If (X,3X) 1is a pair, the regular neighborhood is

(N: Ny,N,) and the cwation is (D(X): c(X), D(X)).
C(X) N D(eX) = ¢c(3X). g: Ny N N, » C(3X) 1is properly
r-connected as it 1s an example of the absolute case.
Ny — D(3X) is a proper homotopy equivalence, hence pro-
perly r-connected. g: Ny - C(X) and g: N - D(X) we
saw were properly r-connected, so the case for palrs is

done. For the n-ad case, just induct. [j

We are now ready to define Poincaré duality spaces.

Definition: A Spivak n-ad X is a Poincard duality

n-ad iff thz g of Theorem 6 is a proper homotopy equi~

valence of (n+l)-ads for some regular neighborhood.

Remarks: Apriori our definition depends on which
regular neighborhbod we have used in Theorem 6. In factk

this is not really the case, as our next theorem
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demonstrates.

Theorem 7: Let X be a locally compact, finite

dimensional CW n-ad. Then X is a Poincard duality
space iff X satisfies Poincard duality with respect
to [X] e Hﬁ°f°(i;z) and with resbect to a universal
covering functor.

A pair (X,dX) 1is a Poincaré duality pair iff aX

is a Poincaré duality space and X satisfies Poincare
duality with respect to a universal covering functor and

2.f.
HIl

a class [X] € (X,3X;Z) such that a[%] = [3%) -

A similar result holds for n-ads.

Proof: Since N{X] : A*(X,~) - Am_*(X:~) an iso-
morphism implies N[X] :Hc(i) -+ Hn_*(i) is an isomorphism,
if X satisfies Poincaré duality then, by Theorem 2, X
is a Spivak space. Similarly, by Theorem 3, we may show
(X,3X) is a Spivak space if 3X 1is a Poincard duality
space and if (X,3X) satisfies Poincare duality. In both
cases, the fundamental class, [X] , transfers up to give

+ [X] . Now look at
*
T
8 (X, 0%z ~) — AT (W,N,:~)

lm[m]

g% ' o
An+k_*(NaNl=~)"“——* An+k_*(D(X),C(X). )
A (Xem)

where r: (N,N,) - (¥,3X) 1is a proper homotopy inverse
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for (X,3X) < (N,N2), and U, is the Thom class for
the normal fibration v . By Theorem 4%, thz compositiocn

is just N[X], and r*, N[N] ; and Uvﬂ are all isomor-

 phisms. Hence (X,3X) satisfies Poincaré duality iff

g« 1s an isomorphism. If g 1is a proper homotopy equi-
valence, g, 1is clearly an isomorphism. If (X,3X)
satisfies Poincaré duality, and if dim N-dim X >3 , g«
is a proper homotopy equivalence by the Whitehead thsorem.
To see this, first note ~ is a universal covering func-
tor for both N and D(X) . Since dim N-dim X > 3 ,

N, €N and C(X) € D(X) are at least properly 2-con-

1
nected. Sinde 3X 1s by hypothesis = Poincaré duality
space, gyl A*(Nl:~) + Ay (C{X):~) 1is an isomorphism.

By the connectivity of Ny & N and c(X) < D(X) , thesse
groups are already the subspace groups for a wise choice
of base points. By the Browder lemma g,:A4,(N:~) —
0,(D(X):~) 1is an isomorphism, and g is at least pro-

perly 2-connected, so the Whifehead theorem applies to

show that g 1s a proper homotopy equivalence. []

Remarks: Note that the proof shows that g must
be a proper homotopy equivalence whenevefJ'dim N-dim X > 3.

We have seen that manifolds satisfy Poincéré duality
with respect to any covering functor. The Thom isomor-
phism also holds for any covering functor. Hence it is

easy to see
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Corollary 7.1: A Poincard duality n-ad satisfies

Poincaré duality with respect to any covering functor. [J

Definition: The torsion of the equivalence

N[X]: A"(X,0X:~) » &__, (X:~) 1is defined to be the
torsion of the Poincaré duality space X (~ is the
universal covering functor). 8ince (D(X),C(X)) is a
simple cwation, and since N[N] 1is a simple equivalence
(Theorem 2.1.2), =(X) = (—l)n+kr(g) , where <T(X) is
the torsion of X and everyfhing else comes from the
diagram in the proof of Theorem 7. A simple Poincaré
n-ad is one for which all the duality maps are simple

isomorphisms.

Examples: By Theorems 2.l.1. and 2.1.2, any para-
compact manifold n-ad is a simple Poincaré n-ad. There
are also examples of Spivak spaces which are not Poincare
duality spaces. One such is the following. Let X bea
finite complex whose reduced homology with integer coeffi-
cients 1is zero, but which is not contractable. (The dode-
cahedral manifold minus an open disc is such an example.)

(o]
Look at C(X\/S2), the open cone on XVS2 « The obvious

map R = G(8%) — %(X\/Sz) is seen to indﬁce isomorphisms
on H, and H: » Since R3 is a Spivak space, so is
%(X\/Sg) . C(XvS®) 1is not a Poincard duality space as
)(VS2 is not a Poincaré duality space.

In the other direction, we have as an application of

a theorem of Farrell-Wagoner [9]
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Theorem 8: Let X be a locally compact complex
with monomorphic ends. Then X 1is a Poincaré duality
space iff X is a Spivak space. An analogous result
is true for n-ads

Corollary 8.1: Let X be a Spivak n-ad. Then

X x R2 is a Poincaré duality space.

~ Proof: We only prove X Spivak implies X Poincare.
If X has monomorphic ends, and if N 1is an s-r neigh-
borhood with dimlN—dim X >3 , 3N has monomorphic endse.
C(X) also has monomofphic ends. The g of ‘Theorem 6
is at least properly 2-connected. Hence by [9] we need
only prove g induces isomorphisms on Hy and Hi » But
g«[N] = [D(X)] , and g on homology is an isomorphism
since it is a homotopy equivalence. Since N and C(X)
are both Spivak spaces, Theorem 1 shows g induces iso-
morphisms on H: .

To show the corollary, observe that if X 1is not
compact, X><32 has monomorphic ends. It is a Spivak
space by Theorem 5, so, in this case, we are done. If
X 1is compact, X is already Poincard duality space, e
the result will follow from the next thzorem. 0

Theorem 9: Let X be a Poincaré duality n-ad, and
let Y be a Poincaré duality m-ad. Then XxY is a
Poincare duality (n+m-1)-ad. If X or Y is compact,

the converse is true.

Proof: From.Lemma 2 we have
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C(XxY) = D(X) xC(Y) U C(X) xD(Y) € D(X) xD(¥Y) = D(XxY)

If N dis an s-r neighborhood for X and if M 1s one
for Y, NxM is one for XxY . Hence we have

gxf: NxM->D(XxY) 1is a map on {(n+tm-l)-ads. It
is a proper homotopy equivalence if g and f are.

Now suppose X 1s compact. By Theorem 5,__X is a
Spivak n-ad, and hence a Poincard duality n-ad. Since
g xf is a proper homotopy equivalence, it induces iso-
morphisms on the proper homotopy groups. We claim
AN xM : Wk) = wk(N)><A(M:nk) for N compact. This is
easlly seen by using the cofinal collection of compact
subsets of NxM of the form NxC 4, C<& M compact.
A similar result computes A(D(XxY): Wk) « Since gxf
and g induce isomorphisms, f,: A(M:ﬂk) -+ A(D(Y):nk)
is an isomorphism. By inducting this argument over the
various subspaces of D(Y) , f 1is seen to be a proper
equivalence of (m+l)-ads. Hence Y is a Poincaré duality

m-ad © I:]

~

Theorem 10: X a Poincaré duality n-ad implies X

is a Poincaré duality n-ad for any cover of X . If X
is compact or if X is a finite sheeted cover, then the

converse is true.

Proof: Let N be an s-r neighborhood for X .
T —

Then N is an s-r neighborhood for X s SO D(X) = D(X) .

X a Poincaré duality n-ad implies N -+ D(X) is a proper
~ o~
homotopy equivalence of n-ads. But then so is N - D(X) ,

~

so X 1is a Poincard duality n-ad.
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If X is a Poincard duality n-ad, X 1s a Spivak
n-ad by ths n-ad analogue of Theorems 1 and 2. Hsnce
if X 1is compact, it is a Poincaré duality n-ad.

Now if X —». X 1is finite sheeted and we know
N - D(X) is a proper homotopy equivalence, we must show
N - D(X) is a proper homotopy equivalence. But if
dim N-dim X > 3 (which we may freely assume), this map
is properly 2-connected. Since A(ﬁ:_wk) - A(N:vk) is
an isomorpnism for k > 2 when N is a finite sheeted
cover, N - D(X) is seen to be a'proper homotopy equi-
valénce. Inducting the argument shows N - D(X) a proper
homotopy equivalence of (h+1)—ads, so X 1is a Poincard

duality n-ad. [J

Remarké: The full converses to Theorems 9 and 10 are
false. Let X be any Spivak space which is not a Poincare dusli-
space. Then X x R2 is a counterexample to the converse
* of Theorem 9 as it is a Poincaré duality space by Corollary
8.1. X xT° is a counterexample to Theorem 10, since
X x T2 1s not a Poincaré duality space by Theorem 9, but_

its cover X x 32 is

Theorem 11: Let & Dbe any spherical fibration of

dimension > 2 over a locally compact, finite dimensional
CWn-ad X .« Then X 1is a Poincaréd duality n-ad iff D(E)

is a Poincard duality (n+l)-ad.

Proof: By Theorem 4 or Corollary 4.1, we may assume .

X and D(E) are Spivak ads, and we have the formula
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U N O[] = [x] . Since the Thom isomorphism is valid

for the A&  theory (see the appendix), N[X] 1is an
isomorphism iff N[E] 1is an isomorphism. Since

dim £ > 2 , a universal covering functor for X induces
one for D(E) « Theorem 7 nowvgives the desired con-

clusions. T[]

Remarks: The torsions of the Poincare dualityr
spaces occurring in Theorems 9, 10, and 11 can be "com-
puted". In particular, T(XxY)=A(t(X),t(Y)) where A
is the pairing C(X) x C(¥) - C{XxY) (see Lemma 1.5.23
and fhe preceding discussion). o(X) = tr =(x) , where
tre ¢(X) ~ () .+ T(E) = (-1 w(d(ENY, where n
is the dimension of the fundamental class of X , and t
is the ﬁranspose operation on  {(X) . These formulas
are ﬁot very hard to deduce ahd will be left to the reader.
We conclude this section by investigating the

"uniqueness" of the Spivak normal fibration. We first prove

Lemma 3: Let D(E) Dbe a cﬁation for some spherical
fibration & over a Poincarevduality n-ad. If there is
a stably parallelizable manifold (n+l)-ad N and a pro-
per, degree one, homotopy equivalence N - D(E) , then

£ 1is stably equivalent to the Spivak normal fibration.

Remarks: Given all the spherical fibrations over a
Poincare duality n-ad X , we wish to determine which of
these could be the normal fibration of some complex hav-

ing the proper homotopy type as X . In the compact case,
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Spivak [36] showed that there was only one, the one with

the reducible Thom space. Lemﬁa 3 shows that if D(E)

has the degree one proper homo}opy type of a stably
parallelizable manifold, then £ 1is the normal fibration
for X . If E 1is the normal fibration for some complex

Y , D(E) has the degree ons proper homotopy of a parallel-
izable manifold, so again there is one aﬁd only one candi-

date for a normal fibration.

Proof: If the equivalence were simple,. N would be

an s~r neighborhcod and this would follow from Thescrem 1.

Now by Siebenmann [33], Nx8T — D(E) xS' is a simple
equivalence. D(E) xSl is a simple cwation for E><Sl
over XZxSl . N’xS1 is an s-r neighborhood for X>(Sl .

O ,N,0) xS" + Nxs' makes the map Ny x8" € Nxs' into

a fibration, so vX><Sl is fibre homotopy equivalent to

vX gl But ixSl is stably fibre homotopy equivalent

X

to v_ 71 by Theorem 1. Hence vy 1is stably £ . [
XxS ‘

Theorem 12: If f : X -+ Y 1s a proper homotopy

* ~
equivalence between Poincare duality n-ads, then f Vy = Vyx o

Proof: Let £ = f*(vY) .  Then

D(E) —» £ ———¥ yy —* D(vy)
X ————+ Yh(/////'
commutes. The top horizontal row is a proper homotopy

equivalence, as one can easily check by applying A :ﬂk)
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to everything. Since D(vi) has the degrée 1l proper
homotopy type of a parallelizable manifold, so does

D(E) . Hence by Lemma 3, E £ vy o []

Spivak's identification of the normal fibration
actually proves a stronger theorem. We can also prove

this result as

Theorem 13: Let f : X -+ Y be a degree one map of

Poincare duality n-ads. If there is a spherical fibration

=

F over Y such that f (E) = vy » then E 2 vy .

Proof: D(v ) —r v, —* £ —> D(E)

LS

X —mX
commutes, so it is not hard to show the top row is a degree
one map. UvX N [D(VX)] = [X] ; UE N [D(E)] = [Y]; and
f*UE =U, and f [X] = [Y] . Hence the top row must
take [D(gx)] to [D(E)]. D(vx) has the proper homotopy
type of a parallelizable manifold (n+l)-ad, N , so there
is a degree 1 map g: N - D{(E) . ©Since N 1is parallel-
izable, there is a topological microbundle over D(E)
which pulls back to the normal bundle of N (namely the
trivial bundle). If dim £ > 2 (which we may always
assume) then any pair (D(E(Z); C(E(Z)) , for Z< Y as
part of the n-ad structure on Y , 1s properly 2-connected.
Hence by the remarks following Theorem‘3.1.2, we can find

a parallelizable M and a degree one proper homotopy

equivalence M= D(¥) . By Lemma 3, E = vy * [l
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Remarks: Logically Theorem 13 should follow Theorem
2 in Chapter 3. We do not use the result until we are
past that point, so it does no harm to include it here.

The chief purpose of Theorem 13 is to severely limit

the bundles which can occur in a surgery problem.
Section‘3o The normal form for Poincaré duality spaces.

_In order to get a good theory of surgery, one needs
to be able to do surgery on Poincard duality spaces; at
least one must be able to modify fundamental groups. The
results of this section show that Poincard duality spaces
look like manifolds through codimensilion 1. These results
are a direct generalization of Wall [39] Section 2,

expeclally pages 220-221.

Definition: TLet X be a Poincaré duality n-ad.

)P/o o -
Then, if [X] € H, £ , X 1is said to have formal dimen-

sion n « (X 1is often said to be of dimension n .)

Theorem 1: Let X be a Poincaré duality space of
dimension n > 2 . Then X satisfies Dn . If X 1is a

connected Poincaré duality m-ad, m > 2, of dimension n > 3,

then X satisfies D(n-1).

Proof: This follows easily from definitions and

Theorem 1.6.2. []

Theorem 2: Let X be a Poincaré’duality space of
dimension n, n >4 . Then X has the proper homotopy

type of Y , where Y 'is a Poincar€ duality space which
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is the union of two Poincare duality pairs (Z,3H)

and (H,dH), where H is a smooth manifold of dimen-
sion n formed from a regular- neighborhood in R® or

a given tree for Y by adding 1 handles along the
boundary, and where Z 1is a subcomplex satisfying D(n-2).
The torsion of this equivalence may be made to assume any
preassigned value. The map induced by inclusion

A(H:ﬂi) - A(Y:m) is surjective.

Proof: Let 6* be the dual chein complex X o
There is a chain map N[X]: 6* -+ Cx(X) « By Theorem 1.6.3,
we can find a complex Y with Cu(Y) = Gx in dimensions
greater than 3. C3(Y) = 6369junk, and the complex

Y2 U junk satisfies D2 .

Now we could have arranged things so that the only
vertices of X were the vertices of the tree. This is
seen as follows. First we claim we can find a subcomplex
V& X which contains all the vertices and such that T € V
as a proper deformation retract. We do this as follows.
Let o = {UI U 1s a 1l-dimensional subcomplex of X ,

TC U, and U contains all the vertices of X} . o # @
as Xl € # . o 1is ordered by .inclusion. ZLet U; 21U, 2 °°-
be a totally ordered sequence in < s+ Then N Ui is also
in ¢ . Let V be a minimal element of « , which

exists by Zorn. We claim ‘Hl(V) =0, so if not look at

a cycle'in V . At least one of the l-simplexes of the

cycle is not in T for T has no l-cycles. Let Vl cv
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be all of V 1less one of the l-simplexes in the cycle
which is not in T . Then Vl is a subcomplex, T & Vy,
and Vl contains all the vertices. This contradiction

shows Hl(V) = 0 . The inclusion T < V is a proper

O-equivalence, and A(T:m

) = A(Vsm ) =0 for k>1.

Hence T € V 1is a proper deformation retract.

Set K=V-T, and look at X/K . The collapse
map X - X/K 1s a proper homotopy equivalence. For a
proof see [6] Proposition 2.11, page 220. Note that all
the maps there may be taken to be proper. X/K has only
the vertices of the tree for O-cells.

Now, to return to our proof, we may assume 6n::CO(X)
has a generator for each vertex of the tree. an—l has
a generator for each one cell of X . As in Wall [39]
Corollary 2.3.2, each (n-1)-cell is incident to eilther
two n-cells, or to the same n-cell twice. Look at an

n-1 Xn—l for an n-cell. This can be

attaching map S
normalized to take a finite, disjoint, collection of discs,
onto the (n-1)-cells homeomorphically and to take the

rest of 81 into the (n-2)-skeleton. Each (n-1)-cell
eventually_gets just two such discs mapped onto it. The
n-discs together with the (n-1)-cells corfésponding to

the l-cells of the tree are seen to form a regular neigh-
borhood in R™ of the tree, and H 1is obtained from this
by attaching l-handles.

If Z is the part of Y in dimensions < n-2 (or is

Y° U junk if n=4) Y =172 Uyy H where H is formed from
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n-disecs corresponding to the n;cells by attaching
l-handles as indicated by the (n-1l)-cells. Actually,

we want to form the mapping cylinder of dH -+ Z and
then take the union along. 3H o Since H 1is a manifold,
the resuit clearly is homeomorphic to Y . We denote by

2, the mapping cylinder, so Y = Z Ua H , and 9dH 1is

q
a subcomplex of Z . Note that 2 still satisfies D(n-2).
Now Z< Y 1is at least properly 2-connected, for 2
always contains the 2-skeleton of Y. Since (H,0H) is
a Poincaré duality spacey Theorem 2.l.4% says (Z,3H)
satisfies Poincaré duality with respect to the covering
functor induced from the universal covering functor for Y.
But this is just the universal covering for 2 as Z2< Y
is properly 2-connected. dH 1is a Poincaré duslity space,
so Theorem 2.2.7 says (Z,dH) is a Poincaré duality pair.
The statement about the torsion is contailned in
Theorem 1.6.3, so we finish by showing A(H:my) —+ A(Y:my)
is onto. Our proof is basically Wall [39] Addendum
2.3.3, but is more complicated. We too will use the con-
struction of Z and H via dual cell decomposition. In

b

our original complex, there were O-cells e, » one for

each p a vertex of T . There were l-cells ei satis-

q

fying 9 ei = gieg--eo s Where g, is a loop at p . The

g; which occur generated A(Y:Wl) « In the dual complex

we have n-cells, ei » and (n-1)-cells e;_l with
P _ i _ J . X .
de, ?(i_gi en_1) ,?en—l , Wwhere the sign is given by
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the local coefficients on Y , and where-the sums run

over all (n-1)-cells incident to eg « The core l-disc

of the handle corresponding ta e;_l followed by the
unique minimal path in T from the endpoint of the
l-disc to its initial point has homotopy class g -

Hence A(H:Wi) is onto A(X:Wl) o [

Corollary 2.1: Let X be a Poincaré duality space

of dimension 3. Then X has the proper homotdpy type
of Y, where Y is the union of two Poincaré duality
pairs (Z,dH) and (H,3H) , where H 1is a regular
neighborhood in R3 of a given tree for X , and is a
subcomplex of Y satisfying D2 . The torsion of this
equivalence can be arbitrary.

Proof: Using the dual cell decomposition as before,
let Z Dbe the subcomplex of Y such that 63 = Cy(Y¥,2)
and such that Z satisfies D2 . @3 has one 3-cell for
each vertex of the tree. Now there is a locally finite
collection of paths from each n-cell to the vertex of
the tree it represents.

Given H , a reguiar neighborhood of the tree in
R , we describe a map 34 = Z which extends to a map
H -+ Y such that the induced map C(H,dH) + C(Y,Z) is an
isomorphism. Hence Z Uaﬂli haé the proper homotopy of
Y and Qe will be done. The map is the following. H can
be viewed as the connected sum of a collection of n-discs,

one for each vertex of the tree, by tubes corresponding
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to the l-cells of the tree. H can then be_properly
deformed to the subcomplex consisting of n-discs joined
by the cores of the connecting tubes. dH wunder this
deformation goes to a collection on (n-1)-spneres joined
by arcs. Map the (n-l)-sphere to Z by the attaching
map of the corresponding n-cell in Y . Map an arc be-
tween two such spheres to the paths to the tree, énd then
along the unigue minimal path in the tree between the

two vertices. This map clearly has the necessary pro-

perties. []

Theorem 3: Let (X,3X) be a Poincaré duality pair
of dimehsion n, n>4% . Then (X,3X) has the proper
homotopy type of a Poincare duality pair (Y,3Y) which is
the union of a Poincard duality pair (Z, 3H U 3Y) and
a Poincaré duality pair (H,3H) , where H 1s a regular
neighborhood in RY of any given tree for Y by adding
l-handles along the boundary, and 2Z 1is a subcomplex of
Y satisfying D(n-1l). The torsion of this equivalence
may be given any preassigned value. A(H:m) = A(Y:my)

is onto.

Proof: By Theorem 2 or Corollary 2.l, we may assume
39X already looks like XK UM , where M 1is a regular
neighborhood for a tree of 23X in Rn"l , and K satis-

Let Cy be the dual complex for Ch_e(X) o Then

there is a chain map N[X]: Cyx = C.(X,dX) . We apply
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Theorem L.6.4 to find a complex Y with <C,(Y) = C,

in dimensions greater than 3 and with XS Y,

C,(Y) = Cy U junk. Set L to be 721 myen

M< L . Normalize the attaching maps for the n-cells as
befores 1r 7 = v yu (YU junx UM if a = %),
then Y =Z UH where H has the advertised description.
Notice 3H N 3X can be M 1if one likes. As before,
(H,aHj is a Poincaré duality pair, so one shows

(Z, 3H U 3X) 1is a Poincaré duality pair. 8H N 3X =M ,
so 3H = (3H - M,aM) U (M,3M) and 23X = (K,dM) U (M,3M) .

The rest of the theorem proceeds as in Theorem Z. O

Appendix: The cwation of a spherical fibration.

We recall the definition. Let & Dbe a spherical
fibration over a finite dimensicnal, locally finite CW
n-ad. Assume dim £ > 2 . Let S(E) be the total space.
We seek an n-ad Y , a proper map f : Y + X , and maps

g
S(E) =Y which commute with the two projections. We

h
also require that Y have the proper homotopy type of a

locally compact, finite dimensional CW n-ad. geoh must
be properly homotopic to the identity, aﬂd- he g must
‘be fibre homotopic to the identity. We give Y a simple
homotopy type by finding an equivalent CW complex for
which the Thom isomorphism is simple.

We digress briefly to include a discussion of thé

Thom isomorphism. If D(¥) is the total space of the
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disc fibration associated to £ , we define A(D(E):h:~)
and A(D(E),S(E):h:~) to be the groups one gets by
applying the A construction to the groups

1.~ . '_r\J'__lr\JA
~h(r " (X-C),p) for D(E) and h(n‘%X—C),P (X-C),p) for
(D(E),5(£)), where p 1is a vertex of X , X-C is a

cofinal subcomplex of X , P is a lift of p into

—~— P o~ f“’) L4
D(E), 5 and m: D(E), > X-C and P: S(E), -X-C are
Pl

the projections for the fibrations induced over X-C

by restriction and pull back from D(E) and BS(E)
respectively.

Now the Thom class for & , UE goes under

o )
X-C- X-C - X to the Thom class for S(£), . If h

is cohomology we modify the groups above in the obvious
manner. We will denote by A« (D(E):~) the *-th homology
group with covering functor ~ . A* is the cohomology
theory. Then we have maps Up U= AT (D(E):~) —>
A"TD(E),5(E):~) and Up N x4, (D(E),S(E):-) —>
A« (D(E):~) . They are easily seen to be isomorphisms.
The maps h and g induce isomorphisms of

A«(S(E):~) and A«(Y:~), with a similar result for
cohomology (the reader should have no trouble defining
Ax(S(E):~) or its cohomology énalogue). We also get
isomorphisms of A*(D(E),S(E):~)- and  A,(Mp,¥:~) , again
with a similar result in cohomology. Hence we can speak
of a Thom isomorphism for the cwation.

We first prove that if we can find a cwation, we can

give 1t a uniqUe'simple homotopy type. Let C be a CW

n-ad the proper homotopy type of the cwation Y (C locally




compact, finite dimensional}.

-

where p 1s a proper homotopy
cellular. (It is easy to find
denote the torsion of the corre
isomorphism. If A: K -+ C 1is
valence, the Thom isomorphism a

torsion To + P,t(A) Dby Lemma
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c —2 5y

S

equivalence with fop
such 'p .) Let Tp
sponding Thom homology
a proper homotopy equi-

ssociated to poA has

1.5.22. Since we may

pick T(A) arbitrarily, we can find a p with T, = 0 o

Suppose now we have X : K
cellular. Let a : Y + K be a

to A . Then
aop

C —> K

fok M
X

properly homotopy commutes. We

equivalence of pairs F:(Mfop,C

- F
Flc =aop, and M,

By Lemma 1.5.19, M -+ X and

fop

so F : M — Mfok is a Simp

fop
torsion of F from (Mfop,c)

so by Theorem l.5.1, the torsio

7 Meoa
N

p

- Y with v, =0, fol

proper homotopy inverse

get a proper homotopy
) —> (Mfok’K) such that

commutes.

Mfok ~ X are simple,
le equivalence. Thea

n of aep on the subspace

groups is zero. But as dim £ > 2 , fop and fol are

at least properly 2-connected.

Hence the subspace groups
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with the induced covering functbr are the absolute groups
with the universal covering functor. Hencé aopP 1is a
simple homotopy equivalence, so the simﬁle homotopy type
of a cwation ié uniqueo. ’

We now construct the promised Y . Notice first that
we can replace X Dby any 1ocaily compact, finite dimen-
sional CW complex of the same proper homotopy type. Hence
we may as well assume X 1s a 1ocally finite simplicial
complex of finite dimension. This is seen as follows. By
[11] Theorem 4.1 and Lemma 5.1, X is the union of A and B
where A and B are the disjoint union of finite complexes.
FEach finite complex has the homotopy type of a finite sim-
plicial complex, and if a subcomplex is already simplicial,
we need not disturb it. Hence we get a locally finite
simplicial complex Y and a map f: X =+ Y by making sub-
complexes of the form CND, CeA, D€ B simplicial, and
then making C and D simplicial. Then Y = A'UB' where
f+A—+A'" and f: B —+ B! aré proper homctopy equivalences.
Also f: E + E' 1is a proper homotopy equivalence where
E = {CNDjCeA, De B} . The proper Wnitehead Theorem shows
f is a proper homotopy equivalence. X being what it is,
we can éubdivide X until we find open’sets Ci such that

—

X -C; and C; are subcomplexes, each 5& is compact,

and E|E& is trivial. Furthermore, U C; = X , the

Ci are locally finite, and the Ci are indexed by the

positive integers. We set V, = |J C. . We can also

j<i Y




184

find an increasing collection of open sets Ui such

We first construct spaces Y; and maps g; and fy

inductively so that

Elv —-———->—Y

A) wlv\\\\& y///

= k .
Let Y =V x5, k =dim € 22 . gy and £}

commutes.

exist since &IVl is trivial. fl is just projection.
We now induct; i.e. we have
1) A space Y; and maps g; and f; such that
A) commutes.
2) g; 1s a homotopy equivalence.
3) Y, = Yi_l!J Ei><Sk via some homotopy equivalence

1

= = = Kk

-1 A _
W) gs_glfiTy Uy = gglf5 ) Uy 5) F3 q1¥5 9 =F5]¥5., -
5) Let o, ={C; NC; NN Cir|i1_<i2 <oee<i ],

11 )

If Ce o restricted to le(C n VA) is a homotopy

r* By
equivalence.
Notice that Yy, gy, and fy satisfy (1-5). (Let
= g.)
If we can verify 1) - 5) , we can construct Y as

the increasing union of Y, with identifications. g and

f can be defined-from the gi and fi respectively by ).
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Intuitively, Y has the pfoper homotbpy type of
a locally compact, finite dimensional complex, since
it is covered by finite compléxes, Ei><Sk , of
bounded dimension in a locally finite fashion. For a
better proof, see Proposition l. |

Now given Yi—l’ fi—l’ and Bi_1s e construct Yi’
fi, and gy -

By Dold [8], E|Vi can be gotten from ilviul and
EIEi as follows. Over E;_E_VA_l y, We have an equiva}ence
P s (Elvi_l)laz_ﬁ_ﬁi_l:——+ (Eg“ﬁ*vi_l)><sk . Let
H) = Elﬁi-l’ Hy = E& xSK , and let H3=={(x,w)|x€ Hll
TNV, 1, we (CAT, N, 7x) = nw(t)) for all
te I, ®(x)=w@)} . Then E|V, £2H U Hy U Hy, where
Hll5;~ﬁ_vi_l is embedded in H3 via x — (x, constant
path at ®(x)). The embedding of H,|T; 0 V. 1is harder
to describe. Let o' be the inverse to o . Then ©°@'
is fibre homotopic to the identity. Let ¥ Dbe a fibre
homotopy between these two maps, with V¥( ,0) = id. Then

HEICi N Vy_; 1s embedded in Hy via x — (9'(x), V(x,t)).

We must now define the p in 3). We are given

— P . ) k
.[gi—l RS
B) Y. e @ v, §) memmmmee- 5 (C. NV, ) xsf
1-11 59860V 4 1MV
\,fi—l . J,proj
oAy 4, gy
C, NV, > T, N0V, .
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We would like to fill in the dotted arrow-with O S0
that the diagram actually commuteso To do this, we may
have to alter % within its fibre homotopy class, but
this will not change our bundle.

Since gi-1 is a homotopy equivalence, it has an
inverse, h . h may be assumed to be a fibre map, so
ho €41 is a fibre homotopy equivalence. Let G De
its fibre homotopy inverse. Then Goho g;_y 1s fibre
homotopic to the identity. g5.1° (Goh) is homotopic
to the identity. |

Set p = (id)e®°(Geh) . Then p is a fibre map
so the bottom square commutes. Set mltr(id)—l°p° 81+
Then ¢, 1is fibre homotopic to @ ,and B) commutes
with 1 in place of ® . p 1s a homotopy equivalence,
so 3) is satisfied. |

From now on, we assume ® chosen so thaft B) com-
mutes with the p along the dotted arrow. ©Set
¥; = ¥ q Uy Oy x8% . f; is defined by flY; ; =f;
and fiIEi><SK = proj. B) assures this is well defined
on the intersection. |

g; 1is unfortunately harder to define. EIV} =
Hy UHy, UHy , so let a:E]Vi*-rHlUHZ UHy bean
equivalence. o may be chosen to be the identity on
EIUi_l . We define a map ho:H UHy UHy =Y as
follows. g[Hl =851 ° To define g on the other two

pieces, look at V¥ , the fibre homotopy between @° @'
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and id. This can be extended to a fibre map of
-(Ei «8%) « T — (Ei «&%)  since id: (C; NV, _q) x 5K —>
(C; NV, _q) « 5% can clearly be extended. Let F be
the fibre map which extends ®o®' . Note F is fibre
homotopic to the identitys

Now define (gIHB)(x,w) = gi_l(x) -~ Note our two
definitions agree on Hl n H3 o We could have defined
(g|H3)(X,w) = w(l) equally well. We define
(ng2)(x) = F(x) . If xe H, N H3 , then (ng3)(x) =
(glH3) (@' (x), ¥(x,8)) = ¥(x,1) = 9o @' (). (glHy)(x) =
F(x) = @op"(x) by the definition of F . Hence g 1is
well defined, and we set g ~g°a .

Now 4} clearly holds since alf{ElCU._l) is the

1

identity. 1) holds as g: H, U H3 UH, —* Y, preserves

1
fibres by construction. Hence we are left with showing
2) and 5).

For r sufficiently large, C € Jr implies
cn vi: # , since the collection {Ci} is locally finite.
We show 5) by downward induction on r , since if
cn Vi =¢ , 5) is obvious. Assume we have establishad
the result for r = ktl . Let Ce o4 . If CA Ei::@,
then C N ﬁi-l =CcnN v& and we are done since 5) holds
for g4_1 and a 1is a fibre homotopy equivalence. If
cn Vi = E& N Vi we are done since F is a fibre map.
Sodlet L =CNV, ,,

K and L non-empty. gilfgl(L) is a homotopy equivalence,

and iet K =¢nN Ei with both
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again since a 1s a fibre homotopy equivalence and
gi“llfgl(L) is. gilf;l(K) is also a homotopy equi-
valence, again since F 1is a fibre homotopy equivalence.

= : -1
KNLcV,,, and KNLe o . . Hence gilfi (Kn L)

1
is a homotopy equivalence. Therefore gi|f£l(c) is a
homotopy equivalence and we are done with 5).

For 2), note that gi-1 is a hométopy equlvalence,
SO giIYi—l is. gilfll(ai) is since F 1is fibre
homotopic to the identity. éilf;l(aij—Vi_l) is a
homotopy eguivalence by 5). Hence g4 is a homotopy

equivalence.

Therefore we have a space Y and maps S(§) —f—= 7Y .

NPL

X

We claim g 1is a homotopy equivalence. Since by Milnor
[22], S(E) has the homotopy type of a CW complex, this
is equivalent to showing g induces 1somorphisms in
homotopy. But Wkgg) = EEE nk(gi) ,-and since ﬁk(gi) = 0,
T .

m (g) = 0 .

Let h : Y —» 5(E) be a homotopy inverse for g .
By an easy argument like the one after diagram B , we may
assume h .preserves fibres and that haAé Vis fibre'
homotopic to the identity. Notice that by construction
f-l(x) is homeomorphic to a sphere of dimension dim £ .
w_l(x) has the homotopy type of such a sphere. Since
heog 1is fibre homotopic to the identity, g.: n’l(x)-—+
f;l(x) has a left inverse. As both spaces are spheres of

dimension 2 or more, g2, 1s a homotopy equivalence.
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Now in the terminology of Bredon [2], f is ¥-
closed, and f_l(x) is y~taut, where V is the family
of compact supports. {(Note Y is locally compact, so V¥
is paracompactifying, and then apply (d) on page 52
to show f-l(x) is y-taut. f 1is Vy-closed easily from
the definition, which is on page 53, since X 1is
Hausdorff.) Hence we have a Leray spectral sequence for
the map f : ¥ - X . We have the Serre sequence for
m: S(E) - X , and g induce$ a map between these two.
g 1nduces an isomorphism on the E2 terms since it is
a homotopy equivalence on each fibre. Hence
g Hz(Y) ——ﬁ>H;(S(E)) is aﬁ isomorphism, where @
is the set of supports whose image in X 1s compact.

As dim E > 2 , s HZ(X) ——?H@(S(E)) is an iso-
morphism for #* < 2 . Hence £ HE(X) — HL(Y) is an

*

isomorphism for x < 2 , so f : H® (x) — H° (YY) is

end end
an isomorphism, so f is a proper O-equivalence.

We claim vf is a propér‘l—equivalence. To see this,
note f|C is a l-equivalence for C ¢ Jp all r>1.
Now an easy van-Kampen induction shows f 1is a l-equlvalence
when restricted to any union of Ei’s . Hence f 1is a
proper l-equivalence. ‘

Thus gyt A(S(E):m) —> A(Y:m) is an isomorphism
as both groups are isomorphic, via W# and f# , to
A(X:Wl) .

Now we still have maps
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h
Y - £7 (K ) 7 “"‘S(EIX-K ) where K; =X- U T
\ / j2i
X - K
g restricted to each fibre is still a homotopy equi-
valence with inverse induced from h . For any cover,

~ 4, of X-—Ki, we get

~

T T — h T T—
Y - e HE) T T S(F|X -K.)
W l

g

o N

where the covers on the top row are the induced covers
'{____—__
from ~ over X-—Ki . S(ElX-—Ki) is the same as
Y a4
S(E|X-—Ki) , the spherical fibration induced from
T

EIX-Ki over X -K; . § likewise induces a homotopy

equivalence of fibres, so as before we get

n*:ES(S(E[ X -Kp), BEla(E-Ky))) — BE(Y-r Y, (r-e7h k)

is an isomorphism. A word about the existence of these
covering spaces 1is in order. Since X-—Ki is a CW-
comolex, its cover exists. The cover for S(EIX-—Ki)

then also clearly exists. We claim Yﬁ-f—l(Ki) is
semi-locally l-connected, from which it follows that its
cover also exists. To see our-claim, observe

f e Y-—f—l(Ki)-—+ X-K; 1is a l-equivalence. Given any
point ye Y-f T(K) , let NS X-K; bea neighborhood

of f(y) such that Wl(N)'“+ #1(X-Ki) is the zero map.

N
/J
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Since X -K; is semi-locally l-connectéd; such an
N exists. Now f-l(N) is a neighborhood for y ,
ahd Wl(f&l(N) ——'ﬂi(Y-f"l(Ki)) is also zero. Hence
o

Y-f "(K.,) is semi-locally l-connected.

i

Therefore, h*: A¥(S(E):~) —» A% (¥:~) 1is an
isomorphism for any covering functor induced from one over
X . Since f 1is a proper l-equivalence, 1f we take a
unlversal covering functor fpr X , we get one for Y o
(The actual covering functor on Y 1is the following.
Any A e C(Y) 1s contained in a unique minimal
f_l(X-—Ki), so let the cover over A Dbe induced from the
cover over this space.)

g¥: A%(Y:~) — A*(S(E):---) is defined where ---
is the covering functor indiced by g from ~ over Y.
g¥oh* = (gon)*: A*(S(E):~) — A*(S8(E):---) 1is an iso-
morphism as ~ and --- are equivalent covering func-
tors. Hence ho g = (hog)* : A¥(Y:~)& is an iso-
morphism, so heg 1is a proper homotopy equivalencé.
g oh is already a fibre homotopy equivalence, ahd it is
not hard to change h until hog is properly homotopic
to the identity and geh 1is fibre homoﬁdpic to the
identity.

To finish we need only show Proposition 1 below.
We first need

Theorem 1: Let Y Dbe a locally compact, separable
ANR . Then Y 1is properly dominated by a locally-finite

simplicial complex,
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Proof: Let & be an open covering of Y by sets
where closure is compact. Since Y 1is metrizable, ¥

is paracompact, so we can assume a 1s locally finite.

We now apply Hu [15]? Theorem 6.1, page 138, to
get a locally finite simplicial complex X and maps
$: X=+Y and V¥: ¥+ X with 9$oV{ a-homotopic to ths
identity, i.e. if H 1s the homotopy, for each y e Y,
there exists U € o such that H(y,tj e U for all
t ¢ [0,1]. By our choice of o , ¢ °{ 1is properly
homptopic to the identity.

Now X 1is actually the nerve of some cover & 1n
the proof of  Hu, Theorem 6.1. In the proof, we may
take & to be star-finite and locally finite. Then the
nerve X is a locally finite simplicial complex, and the
map ¢¥: X + Y 1is proper. To see this last statement, it
is enough to show ¢'(U) is contained in a compaét sub-~
set of X for any Ue€ a . Recall ¢ 1is defined by
picking a point in each V e & and sending the vertex of
the nerve which corresponds to V to our chosen point
and then extending. Our extension satisfies the property
that any simplex lies entirely in some element of o . BSo

let U be the union of all elements of a intersecting

1
U . ﬁi is compact as o is locally finite, so let U,

be the union of all elements of o intersecting lﬁl . ﬁé
is again compact, so there are only finitely many elements

of & which intersect U, . Let K & X be the subcomplex
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gensrated by these elements of & . K is finite,

hence compact, and v_l(U) =K. [

Corollary 1.1: Let ¥ be a locally compact,

Vseparable ANRV, and suppose the covering dimension
of Y, dim Y , is finite (see Hurewicz and Wallman
[16] for a definition). Then Y is properly domi-
nated by a locally finite simplicial complex of dimen-

sion dim Y o

Proof: Make the same changes in Hu [15] Theorem
6.1, page 164 that we made to the proof of Theorem 6.1,
page 138. We get a simplicial complex P and a proper
map ¢ : P -+ Y such that for any map f : X + Y with
X a metric space of dimension < dim Y , there exists
amp VvV : X P with ¢°V¥ a-homotopic to f . ‘More-
over, P has no simplices of dimension > dim Y . Apply

this for X=Y , f=1id . 0

Corollary 1.2. A locally compact, separable ANR of

dimension < n satisfies Dn .

Proof: By Corollary 1.l and nonsense, it remains to
show Y 1is homogamous. But an ANR is locally contractible
(Hu [15], Theorem 7.1, page 96), and any metric space is
paracompact, so Corollary 1l.1.2.1 applies. []

Proposition 1: The space Y which we constructed

has the proper homotopy type of a locally compact, finite

dimensional CW complex.
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Proof: We first show Y 1is a finite dimensional,
locally compact, separable ANR . We then find a finite
dimensional simplicial complex Z and a proper map
h:2 -+ Y which is properly n-connected for any finite n.
Since Y and Z Dboth satisfy an for some finite n ,

h 1is a proper homotopy equivalence.

Step 1: Y is a finite dimensional, locally compact,
separable ANR.

By Hu [15] Lemma 1.1, page 177, Theorem 1.2, page
178, and induction, each Y. is an ANR. The induction
is complicated by the necessity of showing

;El (¥ N C.) 1s an ANR. Hence our induction

Y. . N f 1.1 N Ty

i-1
hypothesis must be
a)k Y, is an ANR

Y. N fil(Vk N C) is an ANR for all Ce o,

P, r Y

One then shows that for some finite r , b)k

holds vacuously. b)k g S > T, and b)k-l p imply b)k -
’ ) )

sc we get b)k,r for all r . b)k 1 and a)k-l imply
a)k s, SO we are done.

Since each Yi is an ANR, each Yy is a local ANR
(Hu, Proposition 7.9, page 97). If Y 1is metrizable,
Y is an ANR by Hu, Theorem 8.1, page 98. Now Y is Ty
and regular. To see this observe each Yi is Tl and

regular since it is metrizable. Now if UGS Y 1is any
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compact set, there is a Yi with V E_Yi and V homeo-
morphic to U . With this result and the observation that
Y 1s locally compact, it is easy to show Y is Ty and
regular. Y 1is locally compact because it has a proper
map to the locally compact space X . Y 1s O-compact
since X 1s, so Y 1s second countable. Hence Y 1is
metrizable (see Kelley [17] page 125) and separable.
" We are left with showing Y has finite covering
dimension. By Nagami [27] (36-15 Corollary, page 206),
we need only show the small cohomological dimension with
respect to the integers (Nagami, page 199) is finite
(Y is paracompact since it is o©-compact and regular (see
Kelley [17], page 172, exercise Y , a) and b))).
To compute d(¥: Z), look at the map f: Y-+ X . f
is a closed, onto ma§o f 1is onto by construction, and
f dis closed since Y 1s the increasing union of compact
sets {D;}, F £ Y is closed iff F N Dy 1is closed for
all i, and f£(F N Dy) is closed since F N D; is
compact and X 1is Hausdorff. We can find an increasing
sequence of compact sets v& such that E <€ X 1is closed
iff EN vi is closed. ®Since f 1is proper, Di==f_l(v5)
has the expected properties. But f(F N Di) =
£(F) n Vi if Dy = f-l(Vi) , so f 1is closed. Hence
by Nagami [27] (38-4 Theorem, page 216), d(Y:Z) < Ind X +k,
where k 1is the dimension of the bundle £ . To see this,
note f-l(x) is homeomorphic to s for all xe X ,

S0 d(f"l(x):z) = k . Since X 1s paracompact and
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metrizable, Ind X = dim X = d(X:Z) = dimension of X
as a CW complex (see Nagami 8-2 Theorem for the first
equality; Nagami 36-15 Corollary shows the second;
Nagami 37-12 Theorem and subdivision shows the third
[this uses.the fact that X 1is a regular complex]).

Step 2: There is a locally compact, finite dimen-
sional CW complex Z aﬁd a pfoper map h ¢ Z -+ Y which
is prbperly n-connected for all n .

We define Z and h by induction; i.e. we have

1) a finite CW complex Z; and a map hii Z. =+ Y,

1 1

2) h;y 1is a homotopy equivalence

. - -1 = .
3) h; restricted to (in hi) (cn Vi) is a

homotopy equivalence for all C € J} s, T 21 .

)-l

-1 _
W) hyl(hy e £y 70U 1) = by gl (hy_j ey 107U )

—

_ : k .
(hi"'lo fl—l)*l(v]_—l N -51) ~+ (vl_l N -C—l) xSk is a cellular
homotopy equivalence.

If we can find such Zi and hi sy We can find Z
and h : 2-+Y . h 1is clearly proper.

_1(

nl (o)™ HE) ¢ (Fon) ™) » () is a homotopy

equivalence by 3) for all C € S r21l, so
h| (f o h)—l(Di) is a homotopy equivalence where

D. = U C. . Thus h induces isomorphisms on H° and

St
o _
Hopg @ and Ak Ws) =0 for s >1 . Hence we are dona

if we can produce Zﬁ and hi o
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We proceed by induction on 1 . Z1 = Vi XSk and

-

hy = id . 1) - 5) are trivial, so suppose we have
Z

1 and hi—l . We have

j__
2. N (£, .o h. YT, .NT.)
i-1 i-1° Pl i-1"%
-1 = — Py = = K

Let p' be this composition. Deform p' +to a cellular

map as follows. For some r >0, Ce¢ Jr implies

cn Ci =9 , Now deform p! to a cellular map over each

cn Ei n ?i_l for Ce o, , all r >1 and finally to

a cellular map over C; N Vi—l + Denote this map by A .

_ - k
Let Z; = Z; 9 Uy (Cyx87) . We can extend h; ; to
a homotopy equivalence hi: Zi ~+ Yi which leaves hi—l
. -1 .
fixed on (f; 5 © hy ;)7 7(U;_5) « h; 1in fact can be
chosen to be a homotopy equivalence on each (inhi)_l(Crivi)
by extending inductively over the various C € J} .

1) - 5) hold and we are done.
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CHAPTER 3

The Geometric Surgery Groups

Section 1: The fundamental theorems of surgery

In this section we will prove three results which
may be called the fundamental theorems of surgery. They
constitute all the geometry needed to defins surgery
groups and to prove these groups depend only on the proper
l-type of the spaces in guestion. These results together
with the s-cobordism theorem constitute the geometry nec-
essary to give a classification of paracompact manifolds
in a given proper homotopy class 4 la Wall [41], Chapter
10.

Let ¢ denote either TOP, PL, or DIFF. If X is
a locally finite, finite dimensional CW n-ad, and if v
is a (C-bundle over X , then Qm(X,v) is the space of
cobordism classes of the following triples: a ¢ manifold
n-ad My, dim M = m ;3 a proper map of n-ads f: M - Xj
a stable bundle map F: Yy Vo where Vi is the normal
bundle of M and F covers f . Such a triple is called
a normal map, and the cobordisms are called normal cobor-

disms.

Theorem 1: Given a € Qm(X,v), there 1s a represen-
tative (M,f,F) of a with f properly [§]~connected
if X 4is a space. ([ 1) = greatest integer.)

For a pair (X,dX) , we have a representative
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((M,BM),f,F) with f: M=+ X pfOperly [%]-connected;
“f: 3M —+ 3X properly [Egl]—connected; and the pair map
f£: (M,dM) - (X,0X) properly - [5]-connected. If 3X S X
is properly O-connected, the map of pairs may be made

properly homologically [mgl]—connected provided m 2> 3 .

Proof: The proof follows Wall [40], Theorem 1.k.
(See the remark following his proof.) We first remark

that his Lemma 1.1 is equally valid in our case.

Lemma 15 Suppose M and X 1locally compact, finite
dimensional CW complexes, ¥ : M-+ X a map. Then we can
attach cells of dimension < k to M so that the result-
ing complex is locally finite and so that the map is pro-

perly k-connected,

Proof: We may assume V{ cellular by the cellular
approximation theorem. Then the mapping cylinder of
is & locally compact, finite dimensional complex, and

(M,,M) is a CW pair. Set M' - MY U M . Note then that

¥

M' 1is obtained from M by adding cells of dimension < k

and that the M' - MW is properly k-connected. Q.E.D.

Now given a representative (N,g,G) for a , attach
handles of dimension < k to N  to get ¥ : W - X with
W =NUM, V¥N=¢g , and with ¥ covéred by a bundle
map which is G over N 4, and V¥ 1is properly k-connected.
The argument that we can do this is the same as for the
compact case. Wall [41] Theorem 1.1 generalizes immedi-

ately to
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Lemma 2: Given o € Qm(X,v) with any representa-
tive (M,f,F) , any element of A(f: ) determines a
proper regular homotopy class of immersions of a disjoint

Dm—k

.
collection of 8% x into M for k < m-2 = dim M-2.

Proof: Precisely as in Wall, Theorem l.l, we get
a stable trivialization of the tangent bundle of M .over
each sphere Sk in our collection. Given any sphere Sk,
we see in fact that there is an open submanifold U S M |
such that we get a trivialization of the taﬁgent bundle
of U which agrees with the one for T, . In fact U = £l
(the disc bounding f(Sk)) will do (we have momentarily
confused Sk with its image in M), Notice that we can
pick such a collection of TU's to be locally finite. Now
apply Hirsch [14], Haefliger [12], or Lees [19] to immerse
each Sk in its U with trivial normal bundle. This is
a proper homotopy, so each a determines a proper map
which immerses each sphere. |

It is not hard to show any two such immersions which

are properly homotopic are regularly properly homotopic.

Q.E.D.

If there is an embedding in the proper reguiar homotopy
class of o , we can attach a collection of handles by «
and extend our map and bundle map over resulting trace of
the surgeries. Notice that in an embedding, all the spheres
have diéjoint images, so we can certainly do the surgery.

The map can be extended properly by construction, and one
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shows the bundle map extends precisely as in the compact

case (Wall [41] Theorem 1l.1).

Lemma 3: Given a e.Qm(X,v) with any representa-
tive (M,f,F) , we can do surgery on ahy element

o € A(f:ﬁk) for m > 2k

Proof: General position supplies us with an embed-

dirig. Q.E.D.

We now return to the proof of Theorem 1. By our
lemmas, we see that if m > 2k , we can get W as
advertized. Now W 1is obtained from M by adding
handles of dimension 2.(m+l)-k >k+1 4, so MS W is
properly k-connected. Hence the map M -+ X 1s properly
k-connected.

In the pairs case, given a representative, we first
fix up the boundary as above. Then we can attach handles
away from the boundary to get the absolute map fixed up.

The long exact homotopy sequence shows that the pair
map is properly [%]—connected. If m 1is even, we are
done. The case for m = 2k+1 follows Wall [41] Theorem
1.k, |

We may assume that we have f: (M,aM) - (X,3X) con-
nected up to the middle dimension on each piece. Let E
be the disjoint union of the (k+l)-cells of Mf—M . Then
we have a proper may OE - Mf « Since 3E 1s k-dimen-
sional, and since (Mf,M) is properly k-connected, there 1is

a proper homotopy of the attaching maps into M .
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3E = U Sg , so embed these spheres in M- with trivial
norma? bundle by Lemmas 2 and 3. Join each sphere to oM
by a locally finite collectioﬁ of tubes, one for each sphere.
(Since Hgnd(x,ax) = 0 by hypothesis, and since M - X
is properly l-connected (at least), and since 3M - 3X
is properly O-connected, Hgnd(M,aM) = 0 so0 We can do this.
Note in fact that we need only disturb &M in a (pre-
assigned) neighborhood of a set of base points.) By
general position we may assume all these tubes disjoint
(m > 3). Hence we get framed embeddings of a collection
of disjoint %5 . We may assume (by adding trivial discs
if necessary) that the centers of our discs form a set of
base points for M .

We claim that if we do these relative surgeries we
will have killed X, (M,3M) without affecting our other
conditions. Our proof of this claim is the same as Wall’s.
Let H denote the unlon of the handles, N, the constructed
manifold, fj: (N 3N ) — (X,3X) the resulting map. Note
that (NO,BNO) +~ (M, H U aNO) is a proper excision map.
We can pick a set of base points for oM away from 3M N H.
As usual we can pick them so that they are a set of base
points for f : 3M —+ 3X . They are then also seen to be a
set of base points for M, Ng» oN 5 and H U BNO « With
these base points and the above excision map we get an
exact sequence Ak(HLJBNO,aM:M:~) ﬂ»Ak+l(f:~) »—Ak+l(fo:~)<»
Ak_l(H U BNO,BM:M:~) .
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Clearly the lower relative'proper homotopy groups
of £, vanish. Notice (H, H N aM) =+ (H U aNo,aM) is
also a proper excision map. Since (H, HN 3M) 1is a

k+l’ Sk-l y DK+1)

collection of copies of (DK xD :

A(H,H N 3M) dis O except in dimension %k . If we pick
base points in H , A, (H U BNO,BM:—) = 0 also except in
dimension k{~here is any covering functor). Hence
A1 (H U 3N _, 3M:M:~) =0 .

Let g:M —~ X denote f on M to distinguish it from
f on (M,3M) . The cpllection of elements above generates

Ag: ﬂk+l) » Clearly the composite A(g:ﬁk+1) =+ Ak+l(g:~) -

Byeyq (£37) Ak+1(fo:~) is the zero map. But by Hurewlcz,
the first map is an isomorphism, and the second map 1is
onto since 3M -+ 3X 1s properly k-connected. Hence
Depp (£3~) = B (£4:~)  is the zero map.

Now the last two paragraphs and our exact sequence

show Ak+l(fo) =0 as claimed. []

Remarks: Note throughout the proof that should

3xX = alX UdX and oM = 3;M U a,M , and if d,M =+ 9,X

is already properly r—connectéd, theﬁ we need attach no
cells of dimension less than r to 82M in our construc-
tion (provided Hgnd(X,81X) = 0 , otherwise to get this
part of the result we must attach some k-cells in azM).
In particular, if 3,M = 3,X 1is a proper homotopy equi-
valence, we can do our construction away‘from 32M (except

possibly for the last step).
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Theorem 2: Let f: (M,BM)”'+ (X,3X) e a degree 1
normal map; i.e. a bundle over X and a bundle map over
f are understood; Let (X, 3X) be a Poincare duality
pair of formal dimension at least 6. Suppose 3X = X
is a proper l-equivalence. Then f 1s normally cobordant
to g: (N,3N) = (X, 9X) with g a proper homotopy egui-
valence. The torsion of g: N * X may have any pre-
assigned value. The torsions of g: 3N » oX and of g

as a map of pairs is then determined.

Proof: The proof of the theorem divides info two cases.
Case 1:  dim(X) = 2k .

By Theorem 1, we can do surgery on f to make the
map f: M+ X k~-connected, and fto maké the map 3f: aM~—3X
(k-1)-connected (properly connected actually, but we shall
be sloppy). Since k >3, f, 3f , and 3M S M are all
(proper) l-equivalences.

Now subdivide (M,3M) wuntil the chain map
¢, (M,3M) —+ C (X,3X) 1is onto. C,(X,3X) 1is C_(X,d%:A,F)
for a collection of paths A and a 1ift functor F . The
tree for X should come from a tree for oM , which we
can clearly assume., C*(M, 3M) 1is defined in the same
way only with lift functor e L Let D, (f) be the
kernel complex. _

Then H, (D (£)) =0 for r <k and H (D (f)) =0
for r > k . Now Theorem 1.5.5 shows Hk(D*(f)) is an
s-free tree module. Doing‘surgery on trivial (k-1)-spheres

in 3M replaces M by its boundary connected sum
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with a collection of (¥ x ¥)’s . Hence we may as well
assume Hk(D*(f)) is free and based. Let [ei} be a
preferred basis for this module.

By the Namioka Theorem, A(f: k+l) -+ Hk(D*(f)) is an.
isomorphism. Thus the ey determine classes in A(f:vk+l).

These in turn determins a proper regular homotopy class of

immersions ei:(DA><Dk, aDk><Dk) + (M, 3M) . We claim the

e; are properly regularly homotopic to disjoint embeddings. .

It is clearly enough to show this for the restricted im-
mersions éi: (Dk,aDk) + (M,3M) , for then we just use

small neighborhoods of the éi to get the e, .

The proof for the 5i proceeds as follows. Let C;

be an increasing sequsnce of compact subsets of M with

U Cy = M« Let C; De such that any element of
J

m (M - Cj) , when pushed into Wl(M-Cj_l) , lies in
the image of Wl(aM n M - Cij)) (compatible base
points are understood). We can do this as M &S M is a

proper l-equivalence.

We now proceed. Only a finite number of the éi do
not lie in M-C, . Bmbed these disjointly by the standard
plping argument. |

Again, only finitely many 5i wnich do lie in M-—02
do not lie in M-—C3 . Put these in general position.

The intersections and self-intersections can be piped into
oM N (M-Cy) without disturbing the e; We embedded in
the previous step. This follows from Milnor [24], Theorem

6.6, where we see that, to do the Whitney frick, we need
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only move one of the protagonists. Hence we can always
leave the e; from previous steps fixed.

Continuing in this faéhion, we can always embed an
éi which lies in M—Cj ', but not in M--‘(:J.Jr:L , in
M-—Cj_1 « This gives us a proper regular homotopy and
establishes our claim.

We next perform handle subtraction. Let N be ob-
tainea from M by deleting the interiors of the images
of  the e; o Let U be tﬂe union of the images of the
e Let 3N = NN a3M .

By our constructicn, there is a chain map

C*(U U aM, aM) ~ D*(f) such that

0—C, (UU3M, aM)—>C, (M,3M)=>C_(M,U U 3M) —>0

! H )

O—=>D_ (f) ——> C, (M,3M) —+c*(x,ax) —0

chain homotopy commutes. C_(U U 3M,3M) has homology
only in dimension k where it is Hk(Dk(D*(f)) + The
map C, (U U 3M, 3M) ~ D_(f)} gives this isomorphism in

homology by construction.

Hence C*(M,U U aMm) - C*(X;BX) is a chain equivalence.

Now (N,3N) E_(M, U U dM) 1is a proper excision map, so
g: (N,3N) - (X,3X) 1is a proper homotopy equivalence from
N to X . It induces propér homology isomorphisms on
3N - 3X and is thus a prdper equivalence there since
X € X 'is l-connected. Hence g 1is a proper homotopy

equivalence of pairs. By adding an h-cobordism to oN ,
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we can achieve any torsion we like for the map g: N =+ X.
To compute the other two torsions is now a standard exer-
cise. We récord merely the result. Let g': (N,aN)= (X,3X)

and 9g: oN = 3X Dbe the other two maps.
t(g) = (DB X(e)t ana (e =1l - (DI ()t

Case 2: dim (X) = 2k+1 .

] This time, Theorem 1 permits us to suppose that f
induces k-connected maps M —+ X and aM —+ 3X , and more-
over We may assume Kk(M,QM) = 0 , Hence we get a short
exact sequence of the modules 0 - Kk+l(M,aM) *—Kk(aM) -+
Kk(M) + 0. (K (M) is the tree of modules which is the
kernel of the map H*(C(M:A,f—lF)) -+ H*(C(X:A',F)) . The
other K-groups are defined similarly).) Theorem 105.5
now tells us each of these modules is s-free. As before
we can perform surgery on trivial (k+l)-spheres in 3M to
convert all bf the above modules to free modules. Again we

can get a locally finite collection of immersions

éi:.(Dk+l,aDk+l) ~+ (M,3M) representing a basis of

We can no longer modify the éi by a proper regular

homotopy to get disjoint embeddings (we could do this if
dM € M were properly 2—connectéd) but by the same sort

of argument as in the first part, we can modify the e.

i
k+1 -

until 3D is a collection of disjoint embeddings.

5|
The rest of the proof is the same as Wall’s. We

have represented a basis of Kk+l(M,aM) by framed,
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disjoint embeddings Sk -+ 3M . Attach corresponding
(k+1)-handles to M , thus performing surgery. Let

U Dbe the union of the added handles, and let (N,3N)

be the new pair. Since our spheres are null homotopic
in M, M ‘is just replaced (up to proper homotopy type)
by M with (k+1)-spheres wedged on in a locally finite
fashion. Hence K (N) is free, with a basis given by
these'spheres.

Dually, the exact sequence of the triple

BN S ANUUCS N, reduces, using excision, to

0 = K, (N,2N) ~ K, (M,3M) = K, (U,U N 3N:M) ~ K, (N,3N) 0.

k+1( k+l(

The map K, -, (M,3M) - Kk(U,U N J3N:N) 1s seen to be zero

k+1
since it factors as KK+1(M,BM) -+ Kk(aM) *’KK(U:M) -+

K, (U,U 0 3N:M), and K, (U:M) is zero. (Note -that in this-
composition, KK(BM) should be a subspace group, but such
a group is isomorphic to the absolute group in our case.)
Since X, (U,U N 3N:M) 1is free, so is X, (N,aN) and

K pq (N,0N) £ K4 (M,3M) o

k+1(
The attached handles correspond to a basis of

Kk+l(M,aM),‘so'the map Kk+l(N) -+ Kk+1(M,aM) is an epi-
morphism, since Kk+l(N) is free and based on a set of
generators for Kk+l(M’aM) and the map takes each basis
element to the corresponding generator. But Kk+l(M,aM)

is free on these generators, so-this map is an isomorphism.
Hence kal(N) ﬁ'Kk+l(N,aN) is an isomorphisme

Now, by Poincard duality, KK(N,BN) 4'Kk(N) is an
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isomorphism. The natural maps ”Kk(N,aN) - (Kk(N,aN))*
and KK(N)-+(KK(N))* are isomorphisms by Corollary
1.5.4.2 since all the modules are free. Hence the map
| K, (N) = KK(N,éN). is an isomorphism. Thus K (3N) = O,
so f restricted to 3N 1is a prdper homotopy equivalence.
Next choose a basis for Kk(N) and perform surgery

on it. Write P for the cobordism so obtained of N to

N' say . Consider the induced map of degree 1 and Poincar€

triads (P: N U (AN xI) 5, N') + (XxTI: XxO U dXxI, Xx1).
We will identify N U (3N xI) with N . In the exact

sequence

4. |
0=K 1 (M) K 1 (P) 2K 4 (P,N) ——= K, (N) 2K (P) = O

the map d 1is by construction an isomorphism. Hence

Kk(P) = 0 and Kk+l(N) ~+ Kk+1(P) is an isomorphism.

The dual of & is K., (N,3N) = K1 (P,N') , so it
is an isomorphism (the map is the map induced by the
inclusion). Now, since f on 3N 1is a proper homotopy
equivalence, Kk+1(N) ~ Kk+l(N’aN) is an isomorphism.
Kk+l(N) = K1 (P) 1is an isomorphism, so K (P) =
(P,N') is an isomorphism. o

K1
Thus in the sequence

O=Kyiq

(N')-+Kk+l(P)'+Kk+l(P,N')-+Kk(N') =+ 0
we have X ,(N') =K (N') =0, so N' =X isa proper
homotopy equivalence. B3N' = 3X 1s the same as 3N =+ 3X

(i.e. we did nothing to 3N as all our additions were
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in the interior of N) and therefore is a proper homotopy
equivalence. Hence we have an equivalence of pairs. The
statement about torsions is proved the same way as for
Case 1. O

Remarks: Note that our proof is still valid in the
case 0oX = alx U 3,X provided BlM -+ alx is a proper
homotopy equivalence (of pairs if 23;X N ¥,X # #) and

3. X € X is a proper l-equivalence ((X:alX,BZX) should

2
be a Poincare triad). The proof is word for word the same
after we note that KiﬁazM) -+ Ki(aM) is always an iso~
morphismland that we may attach all our handles away from
91M . By induction, we can ﬁrove a similar theorem for
n-ads, which is the result we needed to prove Theorem
2.2+13.

Our approach to surgery is to consider the surgery
groups as bordism groups of surgery maps. To make this
approéch work well, one needs a fheorem_like Theorem 3
below.

Definition: Given a Poincare duality n-ad X 4 a

surgery map is a map f: M + X where M is a (?-manifold
n-ad, f dis a degree 1 map of n-ads, and there is a
bundle v over X and a bundle map F: vy v which
covers f . |

GiVeﬁ a locally finite CW n-ad X with a class
Wy € Hl(K;Z2) , we say M *£+2X-iL>KL is a surgery map

over- (K,Wl) provided g is a map of n-ads with g*wl




211

equal to the first Stiefel-Whitney class of X , and
provided f 1is a surgery map.

Two surgery maps over (K,w;) are said to be
" bordant (oﬁer (K,wl)) if there is a surgery (n+l)-ad

w L Y-—Qﬂ'(K><I, wl) which is one of the surgery maps

on Kx0O and the other on Kx1 .

Theorem 3: Let M-Jl?jx-ii4‘K be a surgery map over
(X, wy) , a 3-ad. Suppose the formal dimension of X is
at least 6. Then, if flalM is a proper homotopy equi-
valence, and if B2K C K 1is a proper l-equivalence, we
can find another surgery map Nz d»x over (Kywp)
with h a proper homotopy equivalence of 3-ads, and with
i bordant over (K,wl) to g so that over alK><I the

bordism map is alK 4»alx crossed with I .

Proof: 1If 3,X & X were a proper l-equivalence we
could finish easily using Thecrem 2. The proof then con-
sists of modifying X and 82X to get this condition.
The idea is to do surgery first on 3,X (and then on X)
to get 32X -+ aéK a proper i-equivalence (similarly for
X =+ K) and theh show that we can cover fhese surgeries
on 3,M (and M) .

Look at the map g: 0,X = K . By Theorem 2.3.2,
82X can be replaced by L U H s Where H 1is a manifold
and L satisfies D(n-3), where n 1s the formal dimension
of X . This replacement does not alter the pordism

class in which we are working. Let wq also denote the
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restriction of wy € Hl(K;Zz) to 3.K . Let v 5e

the line bundle over 32K classified by Wy o Let

g: H > 3,K denote the induced map.

| Then Ty é g*v is trivial, for H has the homotopy

type of a l-cbmplex so the bundle is trivial iff its first

Stiefel-Wnitney class vanishes (and wy(1y @ g*v) = 0 by

construction). Hence we can fiﬁd a bundle map F: vy=v .
By Theorem 1, we can add 1 and 2 handles to H to

get’ W with oW = H UH' U aHxI and a map G: W = 3K

with G|/H = h and GlH' a proper l—eduivalence. Let

,'Y =LxI UW by glulng 8H x I to L x I via the map

0 + L crossed with I . (YiL UypH, LU H' ULxI) is

&H
‘a Poincare duality triad. This follows since (L,dH) 1is
a Poincare duality pair and Y is (L,3H) x1I glued to
the manifold triad (W: H,3H xI,H') along ©dHxI

(L,dH) xI is a Poincare duality triad by Theorem 2.2.9,
and we can glue by Theorem 2.1.3 and Theorem 2.2.7.

Let Z =L Uy, H' « We have a map of Y * KxI given

oH
by L > K crossed with I on LxI and by W > K«x1I

on W . We claim the restriction 2 - a2K><li is a proper
l—equivalénée. o

To this, note first that 3 &« H! is a push out.
nj n| |
L € Z

®H € L  is properly l-connected by construction (see
Theorem 2.3.2). It follows from a Mayer-Vietoris afgument

that H' € Z 1induces isomorphisms on Hgnd and H° .
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Since A(BH:Wl) -+ A(L:Wl) is onto, it follows from
a van-Kampen argument that A(H':m) = A(Z:m) 1s onto.

Now consider H' E_Z —+ a;K «  The composite is a
proper l-equivalence by construction. The first map
is propérly l-connected, as we saw in the last paragraph.
‘Tt then follows that Z *zazK is a proper 1—equivaienceo

It is easy to extend our bundle v over all of Y .

- Wall [41] pages 89-90 shows how to cover our surgeries
back in a2M + One changes f: a2M - B2X fhrough a pro-
per homotopy until it is transverse regular to all our
core spheres in H E_B2X . The inverse 1lmage of a core
sphere back in 3,M. will be a collection of dis joint
épheres, and Wall shows that, if we do surgery correctly
on fhese spheres, then we can extend all our maps and
bundles. Hence we get F: P = Y and a bundle map

Vo - v>, where v is the extepded v over Y .

Thus our original problem M + X =+ K is normally
cobordant over (K, wy) to a probiem for which 3,X + 3,K
is a proper l-equivalence. We have not touched alM-+51X ’
so we still have that this map is a proper homotopy equi-
valence. 1In fact the part of 3P over alM is Jjust a
producte.
| Now use Theorem 2.3.3 on X and proceed as above
to get a problem for which X + K 1s a proper l-equivalence. -
Note that we need never touch 3X so alx -3 alK is still
a proper homotopy equivalence and 32X —+ 62K is still a

proper l-equivalence. [J
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Sectilon 2: Paracompact gsurgery-patterns of application.

It has been noted by several people (see especially
Quinn [29] or [30] that the theorems in section 1, the
s-cobordism theorem, and transverse regularity are all
the geometry one needs to devélop a great deal of the
theory of surgery.

We define surgery groups as in Wall [41] Chapter 9.
Let X be a locally compact CW n~ad, and let w € Hl(K;Zé)
be an orientation. An object of type n o&er (K,w) 1is

a surgery map (see section 1) over snI{ for which, if

M —> X —>s K is the surgery map. g: 3 M~ 3 X is a
proper homotopy equivalence of n-adse. |

We write (&,f) ~ O to denote the existence of a
surgery map over (snK,w) such that 9 .4 1s (8,53
i.e. if W —> 2 —> s s K 1is the surgery map,

n+l1 n

7z —> SnK is our. original problem; and such

3 W ¥ 3

N+1 N+1
that 3 is a proper homotopy equivalence of (n+l)-ads.
(8,1) ~ (ﬁl,fl) provided (#,f) + -(Ql,fl) ~ 0 , where
+ denotes disjoint union, and -(@,f;) denotes the
same object but with the reverse orientation. Write
LE(K’W) for the group of objects of type n and dimen-
sion m (i.e. m is the dimension of M) modulo the
relation ~ + One checks ~ 1s an equivalence relation

and that disjoint union makes these sets into abelian

ETOuUps.
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If we require the torsions of all the homotopy

‘equivalences in the above definitions to be O s

we get groups LS(XK,w) . If "¢ < C(K) 1is a subgroup

| closed under the involution induced by the orientation

w , then we get groups L;(K,w) by requiring all tor-

sions to lie in c(¢(K) 1is Siebenmann’s group of simple

~ homotopy types; see Chapter 1, section 5, or [33]).

Theorem 1: Let a € L;(K,w) s n+m > 6 ., Then if
M-JB*)(-*]§ 1s a representative of o with f a proper l-equi-
valence, o« =0 iff there is a normal cobordism WX x1 with

3 W= Xx0 our original map 9, and 0, W=>X x1 a proper homotopy

equivalence of n-ads with torsion lying in ¢ .

Proof: Standard from Theorem 1.2, by doing surgery

on the boundary object. []

c ' c c
Theorem 2: so+ —+ Lm(anK,w) *—Lm(énK,w)~+Lm(K,w) -

c .
L, K,w) = *++ is exact.
Proof: A standard argument. []

Theorem 3: If f: Kl -+ K2 is a proper map of n-ads
1

we get an induced map L;(Kl,f w) L; (K2,w) where
f#(c) < e, f#_L:g(Kl)"+ ¢ (K,) . If f 4dis a proper 1-
equivalence, the induced map is an isomorphism for

~1

= ! .

c f# (e")

Proof: The induced map is easily defined by M =+ X = Kl
goes to M — X —ﬁ'Kl 4;?K2 « For the last statement, if

m>5 this is just Theorem 1.3 if K, and K, are l-ads.
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if Kl and K2 are n-ads, an induction qrgument
shows the result for n+m > 6 .
| The result is actually true in all dimensions
and a proof can be given folléwing Quinn's proof in

the compact case (see [29] or [30]). We will not carry

it out here. []

Theorem 4: Let X be a l-ad, and let Mt -2 x Sk
be a surgery map over (K,w) with ¢ a proper homotopy equi-
valence and with f a proper l-equivalence. Suppose given
o € L;+1(K?w) , m > 5 , and suppose the torsion of ¢ lies
in ¢ . Then there 1s an dbject of type 1, W > XxI » K,
over (K,w) with 3W =M U N, N = Xx1l a proper homotopy
equiValence whose torsion also lies in ¢ , and such that
the surgery obstruction for this problem is o .

Proof: The proof is basically Quinn's (see [29]).
Given a , there is always an object of type 1, P*Z2—K,
whose obstruction is (-a). (We may always assume 3P
~and 9Z are non-empty by removing a disc from Z and its
inverse image from P , which we can modify to be a disc.)
MxT - XxI *K is also an object of type 1 over K »

Take the boundary connected sum of Z and XxI by
extending 9Z # X x0 (we may élways assume X and Z
are in normal form so we may take this sum in their discs).
Simiiarly we may extend 3P # M><O . We get a new object
of type 1, P #MxO MxI — Z #XXOXXI -+ X .

By the proof of Theorem 1.3, we may do surgery on
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Z #XxO IxT until the map of it to K ié a proper
‘l—equivaience, and we may cover this by a normal cobordism
of P #MxO MxI . In dolng tﬁis, we need never touch

Mxl or Xx1 ., Let P' =+ 2Z' > K‘ denote this new object
of type 1. Note that it still has surgery obstruction
(-a).

-~ Now using Theorem 1.2, we can do surgery on #: A
where Z' is considered to be a triad (Z';Xx1, any other
boundary components). @ restricted to the other boundary
components is a proper homotopy equivalence, so we may do
surgery leaving them fixed (X x1 & Z' 1is a proper 1-
equivalence). Let W be the normal cobordism obtained
over Mx1l . Then W =+ XxlxI 1is a surgery map,

3 M » Xx1x0 1is our old map, and 3,M * Xxlxl 1is a
proper homotopy equivalence. We can make all our torsions
lie in ¢ , and then the surgery obstruction for

W—=XxI ~+K must be a . 0

Definition: Let {ECX) , for X a Poincaré duality

space of dimension n, be the set of all simple, degree 1,
homotopy equivalences @ : ¥ - X (N a (¢ -manifold)

modulo the relation # ~ ¥ iff there is a (®-homeomorphism

h such that N & | properly homotopy
ﬁ\\\‘xxx

v

commutes.

A similar definition holds for X a Poincaré n-ad.
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Theorem 5: There is an exact structure sequence

(X,w) » o (X) = [X,5/ €] 513 (x,w),

-

where w 1is the first Stiefel-Whitney class of the Poincare

5
oo o [ZX,F/Q] > L

duality space X with the dimension of X > 5 . We also
insist that the Spivak normal fibration of X 1ift to a
(- bundle. By exactness we mean the following. First of
all, -aQL(X) may be empty, but in any case, 8_1(0) is
the image of o, (X) . If s (X) 1is not empty, then
L;+1(X,w) acts on it, and two elements of # »{X) which
agree‘in [X,F/ ] differ by an element of this action.
The sequence continues infinitely to the left. (£X is

the ordinary suspension of X .)
Proof: See Wall [41], Chapter 10. []

Theorem 6: Let -~ Dbe the involution defined on ¢(X)
in Chapter 1, section 5. Define Am(K,w) = Hm(ZE,Q(K)),
where ((X) is made into a 22~module by the involution = .

If K is an n-ad, then e+« - Am+l(K,w) -+ L;(K,w) -+

h

L,(Kyw) =+ a (K,w) > «*+  is exact for m+n 2> 6.

Proof: Ths map L5 - Lh

is just the forgetful map.
The map Lh + A just takes the torsion of the part of
the boundary that was a homotopy equivalence and maps it
into A (if the homotopy equivalence is over more than
one component, sum the torsions). The map A — 1°  takes
a proper homotopy equivalence M" - X whose torsion hits

an element in Am+l y and maps it to the obstruction to

surgering the map to a simple homotopy equivalence. See
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Shaneson [31] for the details of proving these maps
well-defined and the sequence exact. []

Corollary 6.1: If. AC(Ksw) = H'(Z,,c) ,

cee o A;+1(K,w) - LZ(K,W) - L;(K,w) -+ A;(K,W) + e
is exact for mtn > 6 . [l
We now produce our major computation.-

Theorem Z:l Let K have a finite humber'of stable ;
ends, €y5...,€, , and let m of eachlend-and .Wl(L) be
finitely generated, flnltely presented.‘ Then K2 has the
proper 2-type of a finite (n+1l)-ad L U ( U d, I.x[O w)),
and Lm(K,w)-: Lm(L,w) , where, if X islan 2-ad, L addition-
ally is an (£+n)ﬁﬁ.(:denotessimple homotopy equivalence

over L , with any permissible torsion over each- aiL;

i.e. we have an exact sequence

n C. A
1 S S
ce s — iG:)le (']'Tlgi,W) —+ Lm(ﬂ-l(L) ,W) -+ Lm(K,W) —
C .

1®1Lm l(wl 1,w)~+-°- R where ci==ker(Wh(wl€i) -+ Wh(vl(L))).

Lem > 7 .

Proof: The map L;(L,w) -+ L;(K,w) is given by
M ﬁ’X -+ L goes to

MU ( U 3, Mx[O m))+xu(u 3, Xx[O oo))*Lu(u 3, Lx[o,oo)).
i=1 i=1 i=1

Siebenmann’s thesis [32] shows this map is a monomor-

phism. To show that the map is onto we can assume

1Note added in proof: Compare Maumary, The open surgery
obstruction in odd dimensions. Notices Amer. Math. Soc.

17 (number 5) p. B48.
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W -35-2 ~—>» K 1is a surgery map and that 'Z2 is a mani-

fold using Theorem 4 (this representation theorem is

also needed to show injectivity). By Siebenmann [32], we
can assume Z 1is collored; i.e. Z =N U (}3 aiN><[O,m)).
By making @ transverse regular to the Biﬁzlwe gel a

problem over L 4, say V > N * L . We claim

n n
VU (U3, V x [0y=)) +NU (U
i=1 i=1

3;Nx[0,°)) has the same
surgery obstruction as W > Z . But this is seen by
actually constructing the normal cobordism using
Siebenmann’s concept of a l-neighborhood and some compact

surgery. [J

Corollary 7Z.l: We can improve L + m > 7 to

L +m>6.

Proof: Using recent work of Cappell-Shaneson [5],
one can get a modified version of Siebenmann’s main
theorem. One can not collar a 5-manifold, but one can
at least get an increasing sequence of cobordisms whose
ends are aiN # 82 x52 #oeee # 82 xS2 . This is

sufficient. [J

Actually, one would hope that these surgery groups
would be periodilc, just as the compact ones are. This
is actually the case, but the only proof I know involves
describing surgery in terms of algebra. This can be done,
but the result is long and will be omitted.

We briefly consider splitting theorems. The two~

sided codimension 1 splitting theorem holds; i.e. if W
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has the simple homotopy type of - Z = (X,3X) U (Y,3X)
with 23X € X a proper l-equivalence, then the map
W=+ Z can be split. The proqgf is the same as for the
compact case. Hence we also get codimension greater
than or equal to 3 splitting theorems for proper sub-
manifolds. In fact, most of Wall [41] Chapter 11 goes
over with minor modifications.

We are unable to obtain a one-sided splitting
theorem in general, due to a lack of a Farrell fibering
theorem in the non-compact case.

We alsc note in passing that one could define sur-
gefy spaces as in [29] and [30]. We then get the same
basic geometric constructions; e.g. assembly maps énd
pullback maps. We have nothing‘new to add to the theory,
so we leave the reader the exercise of restating [29] so

that it is wvalid for péracompact sSurgery spaces.
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