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Abs t r ac t  

I n  t h i s  t ,hesis we so lve  the  problem of surgery  f o r  

a n  a r b i t r a r y ,  f i n i t e  dimensional,  para-compact manifold. 

Ths problem of surgery  i s  t o  decide whether,  given a  

proper map f  : M -+ X , a bundle ( v e c t o r ,  PC-mlcro, o r  

TOP-micro) , v , over X , and a  s t a b l e  b m d l e ,  a ~ i p  

F : vM -+ v over f  ( v M  i s  t he  normal b-widle of M , so  

we must assume M i s  r e s p e c t i v e l y  a d i f f e r e n t i a b l e ,  a  

PL , o r  a  topo log ica l ,  f i n i t e  dimensional,  paracompact 

man i fo ld ) ,  we can f i n d  a  cobordism W wi th  aW = M U N ,  

a propsr  map g: W + X wi th  g l  M = f , a s t a b l e  bundle 

map G: v W  -+ v wi th  G I  v M  = F , such t h a t  gl N i s  a  

proper homotopy equivalence.  

If t h i s  problem can be so lved ,  we show t h i s  fo rces  

condi t ions  on X , v  , and f  . I n  p a r t i c u l a r ,  X must 

be a  ~ o i n c a r g  d u a l i t y  space (chapter  2 ) ,  v must l i f t  

th-. Spivak normal f i b r a t i o n  of X , and f  must be degree 1. 

If X ,  V ,  and f  s a t i s f y  these  cond i t ions ,  t h e r e  i s  

a  wel l -def ined o b s t r u c t i o n  t o  so lv ing  t h i s  problem i f  m ,  

the  dimension of M , i s  a t  l e a s t  f i v e  (Theorem 3 .2 .1 ) .  

Thi.s obstruc-Lion l i e s  i n  a  n a t u r a l l y  def ined  group, 

L (X,w), and every element of t h i s  group can be r e a l i z e d ,  m 

i n  a  s p e c i f i c  f a sh ion ,  a s  the  o b s t r u c t i o n  t o  a  surgery  



problem, provided m 2 6 (Theorem 3.2.4). Lm(X,w) 

depends on ly  on the system of fundaaen ta l  groups of  

X (Theorem 3.2.3). 

F i n a l l y ,  we have a p p l i c a t i o n s  f o r  paracompact 

manifolds  a long  t h e  same l i n e s  a s  t h e  compact case .  

Perhaps t h e  most i n t e r e s t i n g  of t h e s e  i s  t h e  t h e o r e t i -  

/ c a l  s o l u t i o n  of  t h e  r e l a t e d  ques t i ons  of when a  Po incare  

d i l a l i t y  space  has  t h e  p roper  homotopy type  of a  para-  

compact manif o l d ,  and i f  a  proper  homo topy eqa iva lence  

between p a r a x m p a e t  manifolds can be p r o p e r l y  deformed 

t o  a  homeomorphism, d i f  f eomorphism, o r  PL-eqzivalence 

(Theorem 3.2.4). 
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INTRODUCTION 

The o b j e c t  of t h i s  work i s  t o  give a n  adequate 

theory  of surgery  f o r  paracompact manifolds and proper 

maps. By adequate we mean f i r s t  t h a t  i t  should con ta in  

the theory  of su rge ry  f o r  compact manifolds.  Secondly, 

the  theory  should be gene ra l  enough t o  permit  ex tens ions  

of the  t h e o r e t i c a l  r e s u l t s  of compact surgery .  

These o b j e c t i v e s  a r e  l a r g e l y  r e a l i z e d .  We o b t a i n  

surg2ry groups which c h a r a c t e r i z e  t h s  problem i n  dimen- 

s ions  g r e a t e r  than or  equal  t o  f i v s .  These groups depend 

only  on ths  proper 2-type of the  problem. Using these  

groups one can c l a s s i f y  a l l  paracompact manifolds of a 

given proper ,  simple homotopy type (see [33] o r  [ l o ]  f o r  

a d e f i n i t i o n  of simple homotopy t y p e ) .  

The f i r s t  chapter  c o n s t i t u t e s  the  ch ie f  t e c h n i c a l  

r e s u l t s  of t h i s  w x k .  I n  [33] ,  Siebenmann g ivss  a 

"geometric" c h a r a c t e r i z a t i o n  of proper homotopy equiva- 

lence  (Propos i t ion  IV) . This c h a r a c t e r i z a t i o n  was a l s a  

discover.ed by Farrell-Waganer [ 9 ]  from whom I learned  i t .  

I n  s e c t i o n  2 we develop a n  a l g e b r a i c  process t o  

handle t h i s  c h a r a c t e r i z a t i o n .  I n  s e c t i o n  3 we app ly  t h i s  

process  t o  c o n s t r u c t  groups which a r e  the  analogue of 

the  homotopy and homology groups.  Thus we g e t  a c  tuil 

groups measuring by how much a map f a i l s  t o  be a proper 

homotopy, squivalence.  These groups a l s o  s a t i s f y  a ve r s ion  

of the  Hurewicz and Namioka theorems, s o  one can o f t e n  



use t h e  h3mology groups, which s a t i s f y  a v s r s i o n  of 

e x c i s i o n ,  Mayer-Vietoris, e t c .  

I n  s e c t i o n  4 we cons t ruc t  a  cohomology thsory  f o r  

our theory.  We g e t  var ious  products f o r  t h i s  theory.  

Sec t ion  5 i s  devoted t o  a n  a n a l y s i s  of simple h2motopy 

type along the l i n s s  s e t  ou t  by Miln3r i n  [ 2 3 ] .  Sec t ion  

6 i s  devoted t o  cons t ruz t ing  l o c a l l y  compa-t CW complexes 

wi th  a given cha in  complex (see  Wall [38] f o r  a  t r e a t -  

ment of the  compact case of t h i s  problem). 

Chapter 2 i s  devoted t o  a n  a n a l y s i s  of Poincare  

d u a l i t y  f o r  paracompact manifolds and i t s  g e n e r a l i z a t i o n  

t o  a r b i t r a r y  l o c a l l y  compact, f i n i t e  dimensional CW 

cotlplexes . 
I n  Chapter 3 the a c t u a l  s u r g e r i e s  a r e  performed. 

I t  has  been observed by s e v e r a l  people ( e s p e c i a l l y  

Quinn [29] and [ 3 0 ] )  t h a t  a l l  the  surgery  one needs t o  

be a b l e  t o  do i s  the  surgery  f o r  a  p a i r  (X,aX) f o r  which 

ax 5 X i s  a proper 1-equivalence ( i n  the  compact case  

t h i s  msans the  j nclus  ion induces isomorphisms on com- 

ponents and on . We d3 t h i s  i n  the  f i r s t  s e c t i o n .  

I n  the  second s e c t i o n ,  we ske tch  the  gene ra l  s e t  up and 

a p p l i c a t i o n s  of the  theory  of paracompact surgery .  

A word o r  two i s  i n  order  here  about  i n t e r n a l  re f -  

e renc ing .  A r e fe rence  r eads  from r i g h t  t o  l e f t ,  so  t h a t  

Corol la ry  3.4.1.5 i s  the f i f t h  c o r o l l a r y  t o  the  f i r s t  

theorem of s e c t i o n  4 i n  chapter  3. If the  r e fe rence  i s  

made rrom chapter  3 i t  wmld bc Corol la ry  b.1.5,  and i f  



iii 

from s e c t i o n  It, Corol la ry  1.5.  Theorem (Propos i t ion ,  

Lemma) 3.4.6 i s  t he  s i x t h  theorem of s e c t i o n  4 of 

chap te r  3. 

Perhaps we should a l s o  remark t h a t  our use of the  

term n-ad agrees  wi th  the  use of t h s  term i n  Wall [14] 

( see  e s p e c i a l l y  Chapter 9). For a n  n-ad, K ,  aiK denotes 

the  (n-1)-a3 whose t o t a l  space i s  t he  ith face  of K 

and w i t h  the  (n-1)-ad s t r u c t u r e  induced by i n t e r s ~ c t i n g  

the  o t h e r  f a c e s  of K . biK i s  the  (n-1)-ad obtained 

by d e l e t i n g  the  ith f a c e .  s K denotes the  (n+l)--a3 n  

obta ined  by inaking K t he  ( n t 1 ) -  S t  f a c e  ( i t  can a l s o  

be regarded a s  the  (n+l ) -ad ,  K x I , where I has the  

usua l  p a i r  s t r u c t u r e ) .  

L a s t l y ,  s e v e r a l  acknowledgements a r e  i n  o rde r .  This 

t h e s i s  vas  w r i t t e n  under the  d i r e c t i o n  of J. Wagoner, 

t o  wh3m I am indebted f o r  many suggest ions  during the  

p repa ra t ion  of t h i s  work. I am g r e a t l y  indebted t o  him 

and t o  T .  F a r r e l l  f o r  shar ing  t h e i r  r e s u l t s  and i n t u i t i o n  

on proper homotopy wi th  me a t  t h e  very beginning.  Thanks 

a r e  a l s o  due t o  G .  Cooke f o r  many h e l p f u l  d i scuss ions .  

Many o t h e r  f r i e n d s  l i kewise  deserve thanks f o r  t h e i r  he lp .  

The Nat iona l  Science Foundation should a l s o  be thanked 

f o r  i t s  support  dur ing my graduate  c a r e e r .  



Chapter I 

The Proper Homotopy Category and I t s  Functors 

Sec t ion  1. In t roduc t ion ,  elementary r e s u l t s ,  and 

homogarnous spaces .  

The purpose of t h i s  chapter  i s  t o  r e c a l l  f o r  the 

reader  some of the  bas ic  r e s u l t s  we w i l l  need and t o  

desc r ibe  a  "good" category i n  which t o  do proper homo- 

topy theory.  

The n 3 t i o n  3f a  proper map i s  c l e a r l y  e s s e n t i a l .  

We de f ine  a  map t o  be proper i f f  t he  inverse  image of 

every closed compact s e t  i s  contained i n  a  c losed  compact 

s e t .  We note  t h a t  t h i s  d e f i n i t i o n  i s  a l s o  found i n  

Bredon [ 2 ] ,  page 56. 

With t h i s  d e f i n i t i o n  3f a proper map we immediately 

havz the  not ions  of proper homotopy, proper homotopy 

equivalence,  e t c . ,  and we can de f ine  the  ca tegory  of a l l  

t opo log ica l  spaces  and proper maps. C l a s s i c a l l y  t h e r e  

a r e  s e v e r a l  func to r s  which apply  t o  t h i s  s i t u a t i o n .  As 

examples we have sheaf cohomology wi th  compact suppor t s  

and Borel-Moore homology wi th  c losed supports  ( s e e  Bredon 

[PI ) .  

We p r e f e r  t o  use s i n g u l a r  theory whenever poss ib l e .  

Here too  we have cohomology wi th  compact supports  and 

homology with  l o c a l l y  f i n i t e  cha ins .  Most of t he  r e s u l t s  

concerning such groups a r e  scat t ,ered ( o r  non-exis ten t )  



in the literature. As a partial remedy for this situa- 

tion we will write out the definitions of these groups 

and at least indicate the results we need. 

Definition: A collection 3f subsets of X is said 

to be locally finite if every closed, compact subset of 

X intersects only finitely many elements of this zol- 

lection. 

Definition: S L.f. (X;T) , whsre is a local 
q 

system of R-modules on X (see Spanier [35] pages 58; 

281-2831, is defined to be the R-module which is the set 

of all formal sums Cad 6 , where d is a singular 

q-simplex of X , and ad a r(d(Vo)) is zero except for 

a set of d whose images in X are locally finite. 

sq(x:J?) is ths module of functions 9 assigning 

to every singular q-simplex 0 of X an element 

~ ( 0 )  E r(d(Vo)) 

For a fanily of supports $ on X (see Bredon [2] 

$ page 15 for a definition) let S (X;r) den2te the sub- 
d.f. q 

module of S ( X ; l 7 )  such thst the union of all the 
9 

images of the d occurring with non-zero coefficient 

in a chain lies in some element of $ . sq(x;r) consists 
$ 

of the submodule of all function Y for which there exists 

an element c E 3, such that if Image fl c = % , ~ ( d )  = 0. 

These modules become chain complexes in the usual 

fashion. Note that for the family of compact supports, c, 



C Sq (X;r) is just the ordinary singular chains with local 

coefficients . 
For a proper subspace A 5 X (inclusion is a proper 

C map) we get relative chain groups S (X,A;r) and 
4 

s;(x,A;T) . Actually proper subspace is sometimes stronger 

than we need; i.e. sC (X,A;r) and sq (X,A;r) are de- 
4 

fined for any A 5 X . There is a similar definition for 

the chain groups of a (proper) n-ad. 

C C The homology of S,(X,A;r) will be denoted H,(X,A;r) 

except when $ = c when we just write H,(X,A;r) . The 

hom~logy of s*(x,A;~) will be written Jr $(x,A;~) . 
Now s:(x,A;~) c - sq(x,A;r) . The quotient complex 

q will be denote Send(X,A ;T) and its homology H ~ ~ ~ ( x , A ; ~ ) .  

We have similar definitions for proper n-ads and also for 

homology. 

We will next set out ths properties of these groups 

we will use. Some of the obvious properties such as 

naturality and long exact sequences will be omitted. 

Cup products: There is a natural cup product 

k y;(x:al,. . . ,A .r ) 8 H (x:A~+,, . . . ,~,;r~) U * 
n' 1 

I$+~(X:A~, . . . ,An,. . . ,Am;rl 8 r2) for a proper (m+l)-ad 

(X:A1,. . . ,Am) . It is associative and commutative in the 

graded sense (i.e. a W b  = (-1) dega *degbb. a) . 
q Since S 5 sq , all this follows easily from the Jr 

ordinary cup product with local coefficients once one 

checks that if a cochnin was. supported in c e \1, , then 



i t s  product wi th  any o the r  cochain i s  supported i n  c  

i f  one uses  the  Alexander-Whitney diagonal  approxima- 

t i o n  (Spanier  [35] page 250).  

Cross products :  There a r e  n a t u r a l  products  

k 
H ~ ( x : A ~ , .  .. , A , ; T ~ )  H ( Y : B ~ ,  . . . , ~ ~ ; r ~ )  > 
$ 

$xY 
Hq+k 

( X  x Y: x x B ~ ,  . . . ,X x B , , A ~  Y , .  . . , A ~  Y;  rl 5) , 
-1 

where n  1 ($1 = ( K S X X Y ( T ~ ( K )  c $1 and $ x Y  = 

{K x Y 5 X x YI K E $ 3  . These s a t i s f y  the  usua l  p r o p e r t i e s  

of t he  c r o s s  product .  

We d i scuss  t h i s  case  i n  some d e t a i l .  Let  us f i r s t  

&.f. 
def ine  T : S ~  (x Y) -t S s ~ ( x )  5 s ? ( Y )  , where 6 

i +  j  =n J 

i s  t h s  completed tensor  product ,  i . e .  i n f i n i t e  sums a r e  

a l lowsd.  I f  d : an + X X Y  , and i f  rl and T a r e  

the  p r o j e c t i o n s ,  T(o)'= .Z ( d  @ d , where 
i+ j  =n 

i ( i s  the  f r o n t  i - f ace  and ( ) i s  t h e  back j-face 

( see  Spanier  [35] page 250) .  This extends over a l l  of 

and i s  a  n a t u r a l  cha in  map. 

The cohomology c r o s s  product i s  then  def ined on the  

cha in  l e v e l  by ( c  x d ) ( d )  = c ( ~ ( ~ ~ c I ) )  B d ( ( ~ ~ 2 6 ) ~ )  , where 

c  i s  a n  i -cochain,  d  a  j-cochain, and 0 a n  ( i + j  ) -  

chain.  One checks i t  has the  usua l  p r o p e r t i e s .  

.C. f. 
We next de f ine  A : Si (Y) + s i + j ( X x Y )  



: A i +  j  a s  fo l lows .  Let  hi -+ 4i x A' be a  homeomorphism . . , - 
i i 

such t h a t  i (h i  3 J . )  : 13 -+ A xI3j by x - (x,O) and such 

i t h a t  (hi ) : A ' - + A  xAj  by y  + ( 0 , y )  . Define 
, j  j 

A(dx o by) = h i j  O ( d x x o Y )  and extend " l i n e a r l y " ;  i . e .  

h (Cad ,  €3 C p 0  ) =  C a @ @  * k ( d a  8 d B )  . then becomes 
@ a , $  

a  cha in  map, and the  homology c r o s s  product i s  then  defined 

on t-he cha in  l e v e l  a s  above. I t  has the  usua l  p r o p e r t i e s .  

S l a n t  product: There a r e  n a t u r a l  products  
& . f a  

H ~ ( Y : B  l,..., ~,;r , )  €3 H 
q+k ( X x Y :  A 1 x Y ,  ..., A n x Y ,  C 

I &.f .  
XxBl, . . . ,XxBm;r2 x r l )  - Hk (x:A,, . . . ,A n '  -r 1 B r2) 

q and H (Y:B1 ,..., Bm;rl) B X  q+k ( X x Y : A 1 x Y  ,..., A n x Y ,  

xxB1, ..., x x B m ;  r2 ~ r ~ )  L H k ( x : A l , .  . . ,A n 7  .r 1 r 2  . 
The product i s  def ined  on the  cha in  l e v e l  by 

where c  app l i ed  t o  a  cha in  i s  zero i f  the  dimensions do 

not  ag ree .  The s l a n t  product i s  m t u r a l  on the  cha in  

l e v e l  and has a l l  t he  usua l  p r o p e r t i e s .  

Cap product: There i s  a  n a t u r a l  product 

v n H $ ( x : A ~ ,  . . . , i in;rl) B H ~ + ~ ( x : A ~ ,  . . . , A , , B ~ ,  . . . ,B  m 7  .r 2 ) ---+ 

H:'~(X : B 1 ' . B B 1 )  . I t  i s  given by u n z = u l d , v ,  

where d  : X -+ X x X  i s  t h e  d iagonal  map. The cap product 

has a l l  t he  usua l  p r o p e r t i e s .  We g e t  b e t t e r  support  con- 

d i t i o n s  f o r  our cap product than  we d id  f o r  a n  a r b i t r a r y  

sl .ant  product because d* of a  cha in  i n  X x X  i s  



" l o c a l l y  f i n i t e "  wi th  r e s p e c t  t o  s e t s  of t he  form c  x X  

and X x c  f o r  any cl-osed, compact c  5 X . 
One of the  most u s e f u l  of the  u s m l  p r o p e r t i e s  of 

the  cap product i s  the  

Browder Lemma: ( [ 3 ] ,  [b] ) .  Let ( X , A )  be a  proper 

+ p a i r  (A i s  a  proper subspace) ,  and l e t  Z E: % ( X , A ; r 2 ) .  

If Then a Z  E: H n - , ( ~ ; r 2 1 A )  i s  def ined.  The fol lowing 

diagram commutes 

I n  two cases ,  we a l s o  have a  u n i v e r s a l  c o e f f i c i e n t  

formula r e l a t i n g  cohomology and homslogy. We f i r s t  have 

the  o rd ina ry  u n i v e r s a l  c o e f f i c i e n t  formula;  namely 
* 

0 -+ E X ~ ( H * - ~ (  ,TI , Z )  -+ H ( , Hom(r,Z)) -+ H,( , r )  , Z )  + 0 

i s  s p l i t  exac t  ( see  Spanier [35], page 283).  

We have a  n a t u r a l  cha in  map 

*'f. ( , Hom(r,Z)) - -  H O ~ ( S ; (  , r ) ,  Z )  a  : S, 

g iven  by a ( c ) ( g )  = y ( c )  . If t h e  space X i s  HCL 

Bredon [ 2 ] ,  shows t h a t  a  induces a  homology isomor- 

*+ 1 L.f .  (x,Hom(r,z)  phism, s o  we? g e t  0 + Ext(Hc ( x , r ) , Z )  + H* 

+ Hom(H;(x,r),Z) + 0 i s  s p l i t  exac t .  
- 

Write f o r  Hom(17,Z) . Then i f  c  c H ~ (  ,T) , 
t h e  fo l lowing  diagram commutes 



8 . f .  I f  (2 E Hk ( , r ) ,  and i f  the  spaces  i n  ques t ion  

a r c  HCL , t he  fol lowing diagram commutes 

These formulas can a c t u a l l y  be seen  on the  cha in  l e v e l  by 

p ick ing  r e p r e s e n t a t i v a s  and using the  Alexander-Wnitney 

d iagonal  approximation.  

These homology and cohmology groups enjoy o t h s r  

p l easan t  p r o p e r t i e s .  One which ws s h a l l  e x p l o i t  heav i ly  

throughout the  remainder of t h i s  work i s  t h e  ex i s t ence  of 

a t r a n s f e r  map f o r  any a r b i t r a r y  cover. For p a r t i c u l a r s ,  - 
l e t  TT : X -+ X be a covering map. Then we have homo- 

(XiI') -+ H t S f '  (;; n * ~ )  and morphisms t r  : H, 

* - 
tr:  Hc(X;n*r) -+ H ~ ( x ; T )  . The f i r s t  of t hese  i s  g ivsn  

by de f in ing  t r ( d )  f o r  a simplex d and extending 

" l i n e a r l y . "  t r  d = C 
OP ' where p runs over 

pen-l(v,) - 
a l l  t h e  po in t s  i n  n-l(v,) (vo i s  a v e r t e x  of 0 )  and 

6 i s  d l i f t e d  s o  t h a t  vo goes t o  p . It  i s  not  
P 

hard t o  check tr i s  a cha in  map. For the  cohomology 



t r a c e ,  de f ine  t r ( c )  a s  t h e  cochain whoss value on the  

simplex d i n  X i s  c ( t r ( d ) ) ;  i . e .  ( t r ( c ) ) ( b )  = c ( t r ( 6 ) ) .  
w 

I f  f : X -t Y i s  a proper map, and i f  n : Y -t Y i s  a - 
cover ,  then,  f o r  the cover X + X which i s  induced from 

r by f , ?,(ti Z )  = t r  F,z and t r ( f * c )  = f * ( t r  c )  . 
Warning: The t r a c e  tends t o  be h igh ly  u m n t u r a l  except 

i n  t h i s  one s i t u a t i o n .  

A s  an  easy  e x e r c i s e ,  one may check t h a t  i f  

k - c s H~ ( X ;  n*rl and i f  Z E Hq+k '(X;T2) , then ,  i n  

I n  the  coming pages, we w i l l  want t o  s tudy  sphe r i ca l  

f i b r a t i o n s  and paracompact manifolds.  For the  former 

o b j e c t s  ue have 

Thom Isomorphisa Theorem: Let be a s p h e r i c a l  - 
f i b r a t i o n  of dimension (4-1) over B . Let S(E)  be i t s  

t o t a l  space ,  and l e t  D ( E )  be the  t o t a l  space of the  

a s s o c i a t e d  d i s c  bundle. Then t h e r e  i s  a c l a s s  

UF E H q ( ~ ( 4 )  , ~ ( 5 ) ;  pg(I',:)) (whare p : D ( S )  + B i s  the  
t, 

p r o j e c t i o n ,  and I' i s  t h e  l o c a l  system on B given a t  4 
b E B by ~ ~ ( ~ - l ( b ) ,  p-l(b) n S(E) ;Z) )  such t h a t  

i s  a n  isomorphism. One a l s o  has 
* 

U, n: H * ( D ( s ) ,  S ( E ) ; P  u-)) --+ H * - ~ ( B ;  8 r) 
$3 

i s  a n  isomorphism. 

Note t h a t  w e  have been (and w i l l  cont inue t o  be)  a 



l i t t l e  sloppy. I f  c E H * ( B ; ~ )  , c U U, shauld 
CP 

a c t u a l l y  be p * ( c )  U U . A s i m i l a r  n o t a t i o n a l  amal- 4 
gamation has occurred whsn we w r i t e  Ut fl . 

This theorem i s  proved by a s p e c t r a l  sequence 

argument ( s e e  [26]), so one need only check t h a t  we 

s t i l l  have a S e r r e  s p e c t r a l  sequence wi th  the  appro- 

pr  i a  t e  suppor t s .  

For a paracompact manifold ( i . e .  a l o c a l l y  

Eucl idean,  paracompact, Hausdorff s p a c e ) ,  poss ib ly  wi th  

boundary, we have 

Lefschstz  Duali t v :  ( [20] ,  [&I). I f  M , a M )  i s  a 

paracompact manifold p a i r  of dimension n , t h e r e  i s  a 

(M,31;rM) (where TM i s  the  l o c a l  c l a s s  [MI s Hn 

system f o r  the  bundle v , t h e  normal bundle of M) such 

t h a t  t h e  m p s  

 MI: q ( ~ , a n ; r )  + 

and n[M] : $ ( M ; T )  + Hn-,(M,aM;r C '  @ rM) a r e  

isomorphisms. 

This completes the  f i r s t  ob jec t ive  of t h i s  s e c t i o n ,  

s o  we t u r n  t o  t h e  second. The func to r s  above a l r e a d y  

give us much n o n - t r i v i a l  information on the  category of a l l  

spaces  and proper maps, but they a r e  i n s u f f i c i e n t  even t o  

determine i f  a map i s  a proper hom3topy aquivalence on 

the  subcategory of l o c a l l y  compact, f i n i t e  dimensional 

CW complexes, a ca tegory  i n  which we a r e  s u r e l y  going t o  



be i n t e r e s t e d .  I n  Cact, t he  next  two s e c t i o n s  v i l l  be 

concerned p r e c i s e l y  wi th  the  problem of cons t ruc t ing  

func to r s  which w i l l  determine whether a  map i s  o r  i s  

not  a  proper h3motopy equivalence i n  t h i s  category.  

I f  we r e s t r i c t  ourse lvss  t o  f i n i t e  complexes, t h s  

Woitehead Theorem ([43] ) a l r e a d y  provides t h e  answer. 

Notice t h a t  t o  so lve  the  problem, evzn f o r  f i n i t e  com- 

p lexes ,  we a r e  fo rced  t o  cons ider  homotopy, which means 

base p o i n t s .  I n  order  t o  solve? t h e  problem f o r  l o c a l l y  

f i n i t e  complexes, we a r e  going t o  have t o  consider  l o t s  

of base po in t s  s imultaneously.  The category of spaces we 

a r e  about  t o  de f ine  i s  about the  l a r g e s t  i n  which we can 

place our po in t s  n i c e l y .  I t  i s  a l s o  c losed  under proper 

homotopy equivalence.  

D e f i n i t i o n :  A s e t  B of po in t s  of X i s  s a i d  

t o  be a  s e t  of base po in t s  f o r  X provided.  

a )  every pa th  component of X conta ins  a  po in t  of B 

b )  given any c losed ,  compact s e t  c  5 X , t h e r e  i s  

a  c losed  compact s e t  D such t h a t  t h e r e  i s  a  po in t  of B 

i n  every path component of X - c  which i s  no t  containsd 

D e f i n i t i o n :  A s e t  of base p o i n t s ,  B , f o r  a  pa th  

connected space X i s  s a i d  t o  be i r r e d u c i b l e  i f ,  f o r  any 

s e t  of base po in t s  C f o r  X w i th  C 5 B , t h e  c a r d i -  

n a l i t y  of C i s  e q m l  t o  the  c a r d i n a l i t y  of B . 
A s e t  of base po in t s  f o r  any space X i s  s a i d  t o  be 



i r r e d u c i b l e  provided i t  i s  an  i r r e d u c i b l e  s e t  of base 

po in t s  f o r  each path component of X . 
Def in i t ion :  Two l o c a l l y  f i n i t e  s e t s  of po in t s  a r e  - 

s a i d  t o  be equiva len t  ( - )  provided t h e r e  i s  a  1-1 cor re -  

spondence between tha two s e t s  which i s  given by a  l o c a l l y  

f i n i t e  s e t  of pa ths .  

Def init- i~g: Consider the fol lowing two proper t i e s  

of a  space X :  

1) Evsry s e t  of base po in t s  f o r  X has a n  i r r e d u c i b l e ,  

l o c a l l y  f i n i t e  subse t .  

2 )  Any two i r r e d u c i b l e ,  l o c a l l y  f i n i t e  s e t s  of  base 

po in t s  f o r  X a r e  equiva len t .  

A space X i s  s a i d  t o  be homogamous provided X x I 

s a t i s f i e s  1) and 2 ) .  

P r o p ~ s i t i o n  -- I: I f  X has  the  proper homotopy type 

of a n  homogamous space,  then  X has p r o p e r t i e s  1) and 2 ) .  

Proof:  We f i r s t  prove t w ~  lemmas. -- 

Lemma 1: Let f : X + Y be a  proper map which 

induces i n j e c t i o n s  of H'(Y) i n t o  H'(x) and of 
0 ,3 

Hend(Y) i n t o  Hend(X)  . Then, i f  {p} i s  a  s e t  of base 

po in t s  f o r  X , { f ( p ) ]  is  a  s e t  of base po in t s  f o r  Y. 

Proof:  Since f induces a n  i n j e c t i o n  on HO , t h e r e  

i s  an  f ( p )  i n  every pa th  component of Y . 
Now look a t  t h s  pa th  components of Y - c  , where c  

i s  some c losed ,  compact subse t  of Y . Let (W,} be the  



- 1 
s e t  of pa th  components of Y - c such t h a t  f  ( W a )  

con ta ins  n3 po in t  of {p] . Sinze {p] i s  a  s e t  of 

-1 base po in t s  f o r  X , U f  (Wa)  ,s D , where D i s  some 
a  

c losed ,  compact subse t  of X .  Then f ( X - D )  Il Wa = f l  

f o r  a l l  a  . 
Define a  cochain B by 

Then & $ ( A )  = @ ( X ( l ) )  - ~ ( h ( 0 ) )  = O  i f  A fl c = a .  

Hence 6 3  = 0 i n  s i n a ( Y ; Z )  . But s i n a e  f(X-D) n Wa = 13 , 
0 

f * ~  = 0 i n  Send(X;Z) . Since f *  i s  a n  i n j e c t i o n  on 

0 

Hend B = 0 i n  H ' : ~ ~ ( Y ; z )  . But t h i s  implies  W 
a  3 

i s  contained i n  some compact s e t .  Q.E.D. 

Lemma 2:  Let f be a map proper ly  homotopic t o  the  -- 
i d e n t i t y .  Let {p] be a  l o c a l l y  f i n i t e  s e t  of p o i n t s .  

Then { f ( p ) ]  i s  equiva len t  t o  a  subse t  of {p] . 
Proof:  We have F : X x I  -+ X a  proper map. The 

s e t  { p x I ]  i s  c l e a r l y  l o c a l l y  f i n i t e .  Since F i s  

proper ,  {F(p X I ) ]  i s  e a s i l y  seen  t o  be l o c a l l y  f i n i t e .  

But { ~ ( p  x I )  3 provides a n  equivalence between [ f  ( p )  

and some subse t  of {p] (more than  one p may go t o  a  

given f ( p ) ) .  Q.E.D.  

Now l e t  X have t h e  proper h3motopy type of Y , 
a n  h,3rnogamous space. Hence we have proper naps f :  X - + Y  

and g: Y -+ X with  t h e  usua l  proper-ti.es. 



Let be a  s e t  of base poin ts  f o r  X . Then by 

Lemma 1, { f  ( p ) }  i s  a  s e t  f o r  Y , and ( f  ( p )  x 03 i s  

a  s e t  f o r  Y  x 1 . Since Y i s  homogamous, t h e r e  i s  a n  

i r r e d u c i b l e ,  l o c a l l y  f i n i t e  subse t  {f ( p '  ) r O} . By 

Lemma 1, (g o f  ( p t  ) }  i s  a  l o c a l l y  f i n i t e  s e t  of base 

po in t s  f o r  X . But by Lemmz 2 ,  t h e r e  i s  a  f u r t h e r  r e -  

f inement,  {p"] , of {p} s u ~ h  t h a t  {p"} - {g o f  ( p ' ) } .  

But then  {p"]  i s  e a s i l y  seen  t o  be a  s e t  of base po in t s  

a l s o .  Now {pn}  i s  i n  1-1 correspondence wi th  { f ( p t ' ) } ,  

and {f ( p u )  x O] i s  a  s e t  of base po in t s  f o r  Y x I  by 

Lemma 1. { f  (pit) x O} i s  a  subse t  of { f  ( p t )  x 03 and i s  

thus  i r r e d u c i b l e .  Hence (p"} i s  e a s i l y  seen  t o  be i r -  

r e d u c i b l e ,  and t h e r e f o r e  X s a t i s f i e s  1). 

Let ( P I  be a n  i r r e d u c i b l e ,  l o c a l l y  f i n i t e  s e t  of 

base po in t s  f o r  X . We claim t h a t  t h e r e  i s  a n  i r r edu-  

c i b l e ,  l o c a l l y  f i n i t e  s e t  of base po in t s  {q} f o r  YxI 

such t h a t  ( p ]  - { g o  ~ r ( q ) }  , where n : YxI -+ Y  i s  

p r o j e c t i o n .  

By t h e  argument i n  Lemma 2 ,  we s e e  t h a t  we have a 

l o c a l l y  f i n i t e  s e t  of pa ths  {Ap] from [p} t o  

{ g  0 f ( p ) }  . I-Iowever, (g  ~ f ) ' ' ( ~ o f ) ( p )  may con ta in  

more po in t s  of (p} than  j u s t  p  . But s i n c e  (Ap} i s  

l o c a l l y  f i n i t e ,  t h e r e  a r e  only f i n i t e l y  many such p o i n t s ,  

s ay  pl, . . . , p ,  . Let q  = f ( p )  X O  and defin-? 

q i  = f ( p )  x l / i  f o r  1 5  i L n  . The r e s u l t i n g  s e t  of 

p o i n t s , .  {q]  , i s  e a s i l y  seen  t o  be l o c a l l y  f i n i t e ,  and 

by s e v e r a l  a p p l i c a t i o n s  of Lemma. 1, { q }  i s  a n  i r r edu-  

c i b l e  s e t  of base po in t s  f o r  YxI . 



So suppose  g i v e n  {p)  2nd { p ' }  , i r r e d u c i b l e ,  

l o c a l l y  f i n i t e  s e t s  of  base  p o i n t s  f o r  X . P i c k  ( q )  

and E q ' ]  a s  above t o  be i r r e d u c i b l e ,  l o c a l l y  f i n i t e  

s e t s  o f  base  p o i n t s  f o r  Y X I  . S i n c e  Y i s  homogamous, 

C o r o l l a r y  1.1: B space  which i s  t h e  p r o p e r  homotopy 

t y p e  o f  a n  homogamous space  i s  homogamms. 

C o r o l l a r y  1 . 2 :  The mapping c y l i n d e r  of a  p roper  map 

whose r a n g e  i s  homogamous i s  h3mogamous. 

P r o p o s i t i o n  2: L e t  {3] be a  l o c a l l y  f i n i t e  open 

cover  of  X . F u r t h e r  assume tha t  e a c h  3 i s  p a t h  zon- 

n e c t e d  and t h a t  e a c h  8 i s  compact.  Then X i s  homo- 

gamous . 
C o r o l l a r y  2.1: A l o c a l l y  compact ,  l o c a l l y  p a t h  con- 

n e c t e d ,  paracompact  s p a c e  i s  hmogamous. 

C o r o l l a r y  2.2:  A l o c a l l y  compact CW complex i s  

homogamous. 

C o r o l l a r ~  2..3: A paracompact ,  t o p o l o g i c a l  manifo ld  

i s  h3mogamous . 
P r o o f :  If (03 i s  t h e  c o l l e c t i o n  f o r  X , {3 X I }  

i s  a c o v e r  f o r  X x I w i t h  t h e  same p r o p e r t i e s ,  s o ,  i f  

we c a n  show 1 )  and  2 )  h o l d  f o r  X , we a r e  done.  

S i n c e  e a c h  0 i s  p a t h  - , o n l i ~ c t e d ,  e a c h  p a t h  com- 

ponent  of  X i s  open. A l s o  t h e  complement o f  a p a t h  



component i s  open, so  each pa th  component i s  both open 

and c losed .  Hence X i s  homogamous i f f  each pa th  com- 

ponent i s ,  so  we assume X i s  path connected. 

W 2  c la im X i s  0-compact, i . e .  t he  countable union 

of compact s e t s .  I n  f a c t ,  we w i l l  show {T) i s  a t  most 

countable .  A s  a f i r s t  s t e p ,  de f ine  a met r ic  d on X 

a s  fo l lows .  I f  p # q , look a t  a pa th  A from p t o  

q . A i s  compact, so  i t  i s  contained i n  a f i n i t e  union 

of 0 s .  Hence A i s  contained i n  a c losed ,  compact s e t  

so A i n t e r s e c t s  only f i n i t e l y  many 3 ' s .  Let 

r (A;p ,q )  = t he  number of 0 Is t h a t  A i n t e r s e c t s  

(non-empty). Define d ( p , q )  = min r (A;p ,q )  . This i s  a 
A 

n a t u r a l  number, so  t h e r e  i s  a c t w l l y  some pa th ,  A , such 

t h a t  d ( p , q )  = r ( h ; p , q )  . I f  p = q ,  s e t  d ( p , q )  = 0 . 
d i s  e a s i l y  seen  t o  be a met r ic .  

Let us f i x  p E X . Then t o  each 8. we can asso-  

c i a t e  a n m b e r  m(B,p) = min d ( p , q )  . We claim t h a t ,  f o r  
q@ 

any n , m ( ~ , p )  ( n f o r  on ly  f i n i t e l y  many 8 . For n = 0 ,  

t h i s  i s  a n  easy consequence of the  f a c t  t h a t  {@) is 

l o c a l l y  f i n i t e .  Now induct  on n . Let S1,. . . ,3k be 

a l l  t h e  8 ' s  such t h a t  m(19,p) ( n - 1  . Let 

k 
c = U 6i . c i s  compact. 

i=l 

Suppose 6 fl c = @ . Then we cla im m(B , p )  2 n+l  . 
To see  t h i s ,  p ick  q s 8 , and any pa th  h from p t o  q .  

If we can s h m  r (X;p ,q )  2 n+l  , we a r e  done. Let 

[O,x] be the c losed  i n t e r v a l  which i s  the  f i r s t  



component of X-'(c) , where A : I -+ X is the path. 

Since c n 6 = a , A s , where s > x . Pick 

x < t < s . Then A(t) d c , so the path from p to 

A(t) already intersects at least n of the 0 ' s  , so, 
from p to q , it must intersect at least n + l  . 

Therefore, if m(8,p) i n  , 6 fl 2 f . But since 

{a] is locally finite, there are only finitely many 0 

for which this is true. This completes the induction. 

Hence the cover {Dl is at most countable. If 

{o] is finite, X is compact and hence is easily seen 

to satisfy 1) and 2). Hence we assume {o} is 

infinite . 
k 

Enumerate (01 , and set Ck = !J 6 i s  Since ck 
i=o 

is compact, there are but finitely many 0 ' s  such that 

5 fl Ck # 0 . Let E be the union of c and these D t s  . 
Then E is compact, as is aE , ths frontier of E in 

X . Let {W,] be the path components of X - Ck n3t 

contained entirely in E . 
Look at W, fl aE . It might be empty, in which 

case W, is actually a component of X since aE 

separates the interior of E and X - E . But X is 

connected, so Wz fl BE # 0 . Now if p E aE, p E b with 
0 n Ck = 0 . Now is a path connected set missing 

Ck with IB not contained entirely in E , so 19 5 W, 

for some a . Hence the Wa cover aE . 
The Wa are disjoint, so, as aE is compact, thsre 

- 
are ohly finitely many of them. Some W, may be compact 



Set Dt = E U (compact ) . Then Dk is compact. 
a 

Since the Ck are cofinal in the collecti-on of 

all compact subsets of X , we may assume, after re- 

c ... finement, that Co 5 Do 5 C 1 s  D1z . . . c  Ck 5 Dk 5 Ck+l- 
Now let {p] be a set of base points for X . Let 

(Wa,k] be the set of unbounded path components oE X - Ck , 
which we saw above was finite. Since {p] is a set of 

base points, in each Wa ,k there are infinitely many 

p e {p] for which there exists an 3 e {3] such that 

p e 3 c W  
a ,k 

. We get a locally finite subset 

{pl} 5 {p] by picking one element of {p} fl 3 for each 

such non-empty intersection as runs over {B] . By 

the above remarks, this set is a set of base points. It 

is clearly locally finite, so X satisfies 1). 

Now let {pk] and {qk] be locally finite 

irreducible sets of base p2ints (they are of necessity 

both countable). Look at all the pkls in Do . Join 

thsm by paths to some qa not in Do . Join the qkls 

in Do to some pk's not in Do . Note that the 

number of paths intersecting Co 5 (number of pk in Do) + 

(number of qk in Do). 

For the inductive step, assume we have joined all the 

pkls in Dn-l to some qkls and vice versa. Suppose 

< moreover that the number of paths intersecting Cn-i - 
(number of pk in Dn-i) + (number of qk in Dn-i) 

for l L i ( n .  

Look at the pkls in D n  - Dn-l which have not 



a l r e a d y  been joined t o  some q t  i n  Dn-l . Each ~ f  

these  l i e s  i n  some i . e .  i n  a n  unbounded com- 'a,n-l '  

ponent of X - Cn-l . J o i n  the  pk i n  Wa,n-l  n (D,-D,_~) 

which have not  a l r e a d y  been f i x e d  up t o  some q t  i n  

'a, n-:i - Dn by a  pa th  i n  Wa,n - l ;  i . e .  ou t s ide  of Cn-l .  

(Reca l l  t h e r e  a r e  a n  i n f i n i t e  number of pk [and qk] i n  

, S O  we can always do t h i s . )  Do t h e  same f o r  each W 

the  qk i n  Dn - Dn-l ' 

Now each of t h s s e  new paths misses Cn-l , s o  t h s  

< (number of pk i n  numSer of pa ths  i n t e r s e c t i n g  Cn-i - 
Dnqi )  + (number of qk i n  D f o r  l ( i  5 n  . For 

i = 0 , the  number of paths i n t e r s e c t i n g  Cn ( 

(number of pk i n  D ) + (nunber of qk i n  Dn)  . n  

This completes the  induct ion  and shows X s a t i s f i e s  2 ) .  0 
Local compactness and 6-compactness a r e  e a s i l y  seen 

t o  be proper homotopy i n v a r i a n t s ,  so  we r e d e f i n e  an  

homogamous space t o  be l o c a l l y  compact, 0-compact, i n  

a d d i t i o n  t o  homogamous. Note now t h a t  any ( i r r iduc ib1 .e )  

s e t  of base po in t s  f o r  a n  homogamous space i s  countable .  

Sec t ion  2 .  The & - A  cons t ruc t ion .  

I n  t h i s  s e c t i o n  we desc r ibe  our cons t ruc t ion .  I t  

w i l l  enable us t o  produce a proper homotopy func to r  on 

any homoganous space from a n  o rd ina ry  hamotopy func to r  

(a homntopy func to r  i s  a  f u n c t o r  from tha  ca tegory  of 

based topo log ica l  spaces and based homotopy c l a s s e s  of 

maps t o  some ca tegory ) .  



Now our homotopy f u n c t o r ,  s ay  H , t akes  values  

i n  some ca tegory  d . Associated t o  any homogarnous 

space,  X , we h v s  a n  i r r e d u c i b l e  s e t  of l o c a l l y  f i n i t e  

base p 3 i n t s ,  I . We a l s o  have a diagram scheme, B , 
cons i s t ing  of the  c losed ,  compact subse t s  of X ( see  the  

d e f i n i t i o n  below f o r  the  d e f i n i t i o n  of a diagram scheme). 

Our bas i c  procedure i s  t o  a s s o c i a t e  a n  element i n  Q t o  

the  c o l l e c t i o n  H ( X  - C ,  p )  , where C i s  a c losed  com- 

pac t  subse t  of X , and p E I . I n  order  t o  be a b l e  t o  

do t h i s ,  we must impose f a i r l y  s t renuous condi t ions  on 

our ca tegory  , but we p r e f e r  t o  do t h i s  i n  two s t a g e s .  

D e f i n i t i o n  ( see  [25] page 42) :  A diagram scheme 

i s  a t r i p l e  B = !J,M,d) , where J i s  a s e t  w h ~ s e  

elements a r e  c a l l e d  v e r t i c e s ,  M i s  a s e t  whose elements 

a r e  c a l l e d  arrows,  and d : M -+ J x J  i s  a map. Given a 

diagram schemz 8 and a ca tegory  Q , a diagram over B 

i s  a map from J t o  the  o b j e c t s  of d ( j  .+ A . )  and a 
J 

map from M t o  the  morphisms of d such t h a t ,  i f  

d(m) = ( i ,  j ) m goes t o  a n  element of Hom!Ai, A j  ) . 
Notation: [ a ,  Q] d e n ~ t e s  the  ca tegory  of a l l  

diagrams i n  d over r9 . (A map between diagrams over 

8 i s  a c o l l e c t i o n  3f morphisms f j  : A + B such t h a t  
- j j 

f m = m 0 f , whsre m E H3rn(Ai ,A . ) , and 
J 

ii Hom(Bi, B . )  correspond t o  the  same element i n  M ) . 
J 

If I i s  a n  index s e t  ( i . e .  a s e t )  Q1 denotes t h e  

ca tegory  whose o b j e c t s  a r e  s e t s  of o b j e c t s  i n  Q indexed 

by I . The morphisms a r e  s e t s  of morphisms i n  c7 



indexed by I . F i n a l l y ,  i f  d and 8 a r e  c a t e g o r i e s ,  

{g,t3] i s  the  ca tegory  of cova r i an t  func to r s  from LI t o  

@ ( s e e  [251 page 6 3 ) .  

Def in i t ion :  A ca tegory  d i s  weakly r e g u l a r  w i th  

r e s p e c t  t o  a n  index s e t  I provided: 

1 )  a has products  an3 zero  o b j e c t s .  

2 )  Let 3!I) = {TIT 5 I and T i s  f i n i t e }  . If  { G ~ ]  

i s  a n  o b j e c t  i n  d, each T E 3 ( I )  induces a n  endomor- 

phisrn of { G ~ }  by 

+ Gi i s  t h e  i d e n t i t y  i f  i d T 
This induces 

Gi + Gi i s  the  zero map i f  i € T . 
a  unique map Xr - X G i  . + X Gi . We r e q u i r e  t h a t  

is I i~ I 

t h e r e  e x i s t  a n  o b j e c t  P ( G i )  and a  map 
i e  I 

X Gi + ii ( G i )  which i s  t h s  coequal izer  of t h e  family 
ie  I ic  I 

of morphisms Xy f o r  a l l  T 5 ( I )  . 

We e a s i l y  check 

Lemma 1: p: ~7'  + a is a  f u n c t o r  when Q i s  a  

weakly r e g u l a r  category wi th  r e s p z c t  t o  I . Q.E.D. 

Examples: The ca t egor i e s  of groups,  a b e l i a n  groups,  

r i n g s ,  and pointed s e t s  a r e  a l l  weakly r e g u l a r  w i t h  r e -  

s p e c t  t o  any index s e t  I . i n  each case i s  given a s  

fo l lows .  We d e f i n e  a n  equivalence r e l a t i o n  R on X Gi 
i s  I 

t h  
bjr x R y  i f f  ( t h e  ith component of x) = ( t h e  i com- 

poncnt of y) f o r  a l l  but  f i n i t e l y  many i s I . Then 



Lemms 2: If B i s  a  diagram scheme, and i f  a i s  - 
a  weakly r egu la r  category wi th  r e s p e c t  t o  I , then 

[ B , d ]  i s  a l s o  wsakly r e g u l a r  w i th  r e s p e c t  t o  I . 

Proof:  [fi,g] i s  e a s i l y  seen t o  have a  zero ob jec t .  

I 
[fi,g] has products ,  f o r  t o  each ob jec t  i n  [&,a] , 
( { G ~ ] , ~ ] )  , we a s s o c i a t e  the  diagram ( X  Gij , 

ia I 
X m i )  . I t  i s  not  hard t o  check t h a t  t h i s  diagram 
ic: I 
has the r e q u i s i t e  u n i v e r s a l  p r o p e r t i e s .  

To see  cond i t ion  21, t o  { G .  . ]  a s s o c i a t e  p (G. . ) .  
1 J ia I 1- J 

Then X m .  induces p ( m i )  , S O  we do g e t  a  diagram. 
i e  I I i c :  I 

To s h ~ w  i t  i s  a  coequa l i ze r ,  l e t  
X j  

be t h e  ob jec t s  

of a  diagram. Se t  H j  = G i j  . We a r e  given 
ia I 

: H. .+ X which commute wi th  the  diagram maps. If 
g j  J j  

T1,T2 c: 3( I )  we a l s o  have 
j  

0 XT = g j  0 
x ~ 2  

. Hence 
1 

by the  u n i v e r s a l i t y  f o r  p f o r  ff , we g e t  unique maps 

X j  such t h a t  

j  

commutes. I f  we have a  map i n  fi from j  t o  k , we g e t  



wi th  the  f r o n t  and back squares  and both end t r i a n g l e s  

commutative. By the  uniqueness of the  map p ( G . . )  -+ Xk, 
i 1 J  

t he  bottom square a l s o  commutes and we a r e  done. Q.E.D. 

Suppose given a  func to r  F c {Q,B] . I f  F do2s 

not  preserve products ,  i t  seems unreasonable t o  expect 

it t o  behave w e l l  wi th  r e s p e c t  t o  , s o  ass-me F 

preserves  products .  Then we g e t  a  n a t u r a l  map 
I I 

y 0 F' -+ F 0 p (F' i s  the  obvious element i n  { ~ 7  ,B 3 ) .  

F preserves  p  i f f  t h i s  map i s  a n  isomorphism. 

Now suppose d i s  complete wi th  r e s p e c t  t o  a  

diagram scheme 8  . Then we have a  f u n c t o r  

l i m  : [Q ,a ]  -+ d , the  l i m i t  f unc to r  ( s e e  [25] ,  page 44 ) .  
8 

Def in i t ion :  If Q i s  a  diagram scheme, and i f  a 

i s  a  Q-complete, weakly r e g u l a r  ca tegory  wi th  r e s p e c t  

t o  I , then  we de f ine  E : [&,a] I + t o  be the  com- 

p o s i t e  l i m  0 y . 
69 

Proposi t , ion 1: Let D be a diagram scheme, and 

l e t  d and B be two 8-complete, weakly r e g u l a r  ca t e -  

g o r i e s  wi th  r e s p e c t  t o  I . Let F E {G',B} . Then 

E : [Q,c7j1 -+ i s  a  f u n c t o r .  I f  F preserves  products 

and l i m  , t h e r e  i s  a  n a t u r a l  map E F' -f F O E (where 
Q # 

F# : [8,9] + [B,B]  i s  t h e  induced f u n - t o r ) .  I f  F 

preserves  y , t h i s  map i s  a n  isomorphism. 

ProoC: T r i v i a l .  0 

Unfor tuna te ly ,  the  l i m i t  we a r e  tak ing  i s  a n  i n v s r s e  



l i m i t ,  which i s no tor ious  f o r  causing problems. In same 

cases  however (and in  a l l  t h e  cases  i n  which we s h a l l  be 

i n t e r e s t e d )  i t  j s  poss ib l e  t o  give a  d i s c r i p t i o n  of E 

a s  a  d i r e c t  l i m i t .  I n  f a c t ,  we w i l l  de sc r ibe  the  A- 

cons t ruc t ion  a s  a d i r e c t  l i m i t  and then i n v e s t i g a t e  t h l  

r e l a t i o n s h i p  be tween the  two. 

D s f i n i t i o n :  A l a t t i c e  scheme i s  a  diagram 

scheme (J ,M,d)  such t h a t  J i s  a  p a r t i a l l y  ordered 

s e t  w i th  least -upper  and g r e a t e s t  lower bounds f o r  any 

f i n i t e  subse t  of J . We a l s o  r e q n i r e  t h a t  d:M -+ J x J  

be a  monomorphisn and t h a t  Image d = { ( j , k )  E J x J (  j  > k ) .  

To t h e  l a t t i c e  scheme B and the  index s e t  I , we 

a s s o c i a t e  a  diagram scheme a s  fo l lows  ( B I  i s  the  

diagram of l l c o f i n a l  subsequences o f  & I f f ) .  I f  a E X J ,  
i c  I 

de f ine  Ja = { j  z J / j  = p i ( a )  f o r  some i E I }  . pi i s  

j u s t  the  ith p r o j e c t i o n ,  s o  Ja i s  j u s t  t he  subse t  of 

J we used i n  making up a . Define pa. I + J  by 

-1 
and il pa j )  i s  f i n . i t e  f o r  a l l  k c: J }  . (A subse t  

jLk 
of J i s  c o f i n a l  i f f  g iven  any j  E J , t h e r e  i s  a n  

element k  of our subse t  so t h a t  k 2 j . JI may be 

thought of a s  the s e t  of " l o c a l l y  f i n i t e ,  c o f i n a l  sub- 

s e t s  of J ) .  

We say a 2 P i f f  p i ( a )  p i ( @ )  i n  J f o r  a l l  

i E I . S e t  MI = [ ( a , @ )  E J I x J I l a L @ ]  and l e t  dI 



be t h e  i n c l u s  ion. Given a , $  c JI , def ine  y c JI by 

p i (y)  = l eas t -upper  bound of p i ( a )  and p i ( $ )  . ( I t  i s  

not  hard t o  s e e  y e J I )  . Greatest-lower bounds can be 

cons t ruc ted  s i m i l a r l y .  Hence BI i s  a l s o  a  l a t t i c e  

scheme . 
Now i f  J does not  have any c o f i n a l  s u b s e t s  of 

c a r d i n a l i t y  card ( I )  , JI = . Since J has upper 

bomds f o r  f i n i t e  s e t s ,  i f  J has f i n i t e  c o f i n a l  sub- 

s e t s ,  then  J 'has c o f i n a l  subse t s  of c a r d i n a l i t y ,  

card ( I )  - N , where N i s  some n a t u r a l  number, then  the 

- 1 cond i t ion  t h a t  U pa ( j )  be f i n i t e  f o r c e s  JI = fl . 
jLk 

Empty diagrams a r e  a  nu isance ,  s o  we d e f i n e  a n  I - l a t t i c e  

scheme a s  a  l a t t i c e  scheme wi th  c o f i n a l  s u b s e t s  of ca rd i -  

n a l i t y  = c a r d ( 1 )  . 
We can now d e f i n s  6 :  [&,fl l l  + [QI,d] a s  fo l lows .  

- I f  {di]  E [Q,f l ] I  , 6 (d l  has f o r  o b j e c t s  fja - l % ~ i p i ( a ) ,  

where Gi j  i s  the  jth a b j e c t  i n  the  diagram f o r  di 

(a E J I ,  j  c J ,  i c  1 If a , B  , we de f ine  6a - + 6  B 
by the  maps 

Gipi ( a )  G i p i ( ~ )  
which come from the  

diagram di . 
We can a l s o  de f ine  maps h a  -t p a s  fo l lows .  

J 

&P Gipi ( a )  + G~~ by the  unique map i n  di i f  

p i ( a )  2 j  , and by the zero  map i f  j  > p i ( a )  . (Notice 

t h a t  t h e r e  a r e  a t  most f i n i t e l y  many i such t h a t  

p i ( a )  < j  by t h s  second d e f i n i n g  cond i t ion  on J I )  . 
Thsse maps induce a  uni.que map -+ X G. . Composing " i c 1  1 j  



with  the  p r o j ~ c t i o n ,  we g e t  a  unique map 

Lemma 3: 6 :  [&,a]' + [BI ,c7] i s  a  func to r .  

Proof:  The proof i s  easy  and can be s a f e l y  l e f t  t o  

the  r e a d e r .  Q.E.D. 

Now suppose G' i s  BI-cocomplete. Then we have a  

c o l i m i t  func to r  colim . 
I 

D e f i n i t i o n :  I f  B i s  a n  I - l a t t i c e  scheme, and i f  

5' i s  a  BI-cocomplete, 

spec t  t o  I , then we 

composition colim o 6 

I 

weakly r e g u l a r  ca tegory  wi th  r e -  

de f ine  ' A : [.8,ffl1 -+ a t o  be the  

P ropos i t ion  2: Let a9 be a  diagram scheme and l e t  

ff and B be two a91-cocomplete, weakly r e g u l a r  c a t e -  

g o r i e s  wi th  r e s p e c t  t o  I . Let F E {Q,E-] . Then 

A: [B ,dl I -+ ff i s  a  f m c  t o r .  There i s  always a  n a t u r a l  

map A o F$ -+ F o n . I f  F preserves  products  and 

colim , . t h i s  map i s  an  isom3rphism. 

@I 



Proof:  T r i v i a l .  0 -- 

The m p s  we cons t ruc ted  from ba t o  y combine t o  
j  

g ive us a  n a t u r a l  t ransformat ion  from A t o  E whenever 

both a r e  defined.. We would l i k e  t o  s tudy  t h i s  n a t u r a l  

t ransformat ion  i n  x d e r  t o  g e t  information about both A 

and E . A ( & , I ) - r e g u l a r  category i s  about the  most 

gene ra l  ca tegory  i n  which we can do t h i s  s u c c e s s f u l l y ,  

and i t  includes  a l l  the  examples we have i n  mind. 

Def in i t ion :  -- A category d i s  s a i d  t o  be ( & , I ) -  

r e g u l a r  provided 

1) ~7 i s  weakly r e g u l a r  w i th  r e s p e c t  to  I 

2 )  d has images and inverse  images 

3 )  There i s  a  cova r i an t  func to r  F from d t o  the  

ca tegory  of pointed s e t s  and maps such t h a t  

a  ) F preserves  k e r n e l s ,  images, products  , l i m i t s  

over 8 ,  i nc reas ing  unions,  and p . 
b )  F r e f l e c t s  k e r n e l s ,  imagss, and isomorphisms 

4 )  c7 i s  &-complete and &I-cocomplete 

5) I i s  countable .  

Examples: The c a t e g o r i e s  of groups,  a b e l i a n  groups,  

r i n g s ,  and pointed s e t s  a r e  a l l  ( & , I ) - r e g u l a r  f o r  any 

I - l a t t i c e  scheme. The f u n c t o r  F i s  j u s t  the  f o r g e t f u l  

f u n c t o r .  

Lemma 2: Let d be a  ( & , I ) - r e g u l a r  category.  Then 

)( and v preserve  ke rne l s  and images. 
i e  I 



Proof:  i s  known t o  preserve  k e r a e l s  (Mitchi.ll  
i c  I 

[25] , page 67, Corol la ry  12 .3 ) .  

f  
of A -B , then  F(A) is  onto F (1m(f ) )  and 

F ( I m ( f ) )  i n j e c t s  i n t o  F(B) . Let Ki be the  image 

of Ai  * Bi . Then, s i n c e  F  p res s rves  products ,  

5 F ( A ~ )  - X F(Ki) i s  onto.  )( K i - - + X  Bi i s  
i e  ie  I i e  I i e  I 

a  monz~morphism s ince  X i s  a  monofunctor. S ince  F  
ie  I 

preserves  monomorphisms, X F(Ki) ---f X F i g i )  i s  
i~ I i e  I 

seen t o  be a  monomorphism a s  F  a l s o  preserves  produr.ts.  

Since F  r e f l e c t s  images, )( Ki i s  the  image of 
i e  I 

X A i l X  Bi . 
i e  I i e  I 

Let Ki -+ A i  -+ Bi be ke rne l s .  Then ' 

commutes. Since F  r e f l e c t s  k e r n e l s ,  we need only  show 

t h a t  F ( p ( K i ) )  i n j e c t s  i n t o  F (p (Ai ) )  and i s  onto 

F (~ ) - ' !o )  . Sin-e F  preserves  p  , we may equa l ly  

consid2r  p ( F ( K i ) ) ,  e t c .  Since F  preserves  products ,  

we may a s  we l l  assune t h s  diagram ( * )  i s  i n  t h e  ca tegory  

of pointed ss ts .  

We show p(Ki) i s  onto f - l ( 0 )  . Let x E f- '(0) 5 v ( A i ) .  



L i f t  x t o  y c X A i ,  which we may do s ince  )( i s  
i c  I 

onto y  i n  the  category c~f pointed s e t s .  Now 
i e  I 

g ( y )  t: X Bi can have only f i n i t e l y  inany non-zero corn- 

ponents s ince  i t  goes t o  0 i n  y ( B i )  . 
- 

Define y  by 

Then 7 a l s o  Lifts x and g ( y )  = 0 . There i s  a 

z c  XKi such t h a t  h (Z)  = y , so  y(Ki) maps onto 

f - l ( 0 )  . A sirni-lar argument sh3ws u ( K i )  i - n j r c t s  i n t o  

p(Ai) . Hence y preserves  ke rne l s .  

Now l e t  Ki be the  image of Ai + Bi . Then 

commutes. By gene ra l  nonsense, it s u f f i c e s  t o  prove the  

r e s u l t  assuming we a r e  working i n  the  category of pointed 

s e t s .  

Since X preserves  images, XAi + X Ki i s  on to ,  
i c  I 

S O  y ( ~ ~ )  -+ p(Ki) i s  e a s i l y  seen t o  be onto.  Since y  

Theorem 1: Let c7 be a ( @ , I ) - r e g u l a r  category.  

Then E preserves  ke rne l s  and images. 



lim preserves kernels, so E = lim 0 p also does us ing 
a9 8 
Lemma 4 and general n~nsense . . 

Now let Kij be the image of A.. + Bij . We c1ai.m 
1 J 

that, if x E E (K. . )  , then there exists a E JI such 
1 J  

that x is in the image of 6 (K. . )  . Assuming this for 
IJ 

 now^ we proceed as follows. 

Sin-e ba(Kij) = X Kipi(a) , ba preserves kernels 
ia I 

and images by Lemma 4. Hence 

6 a (A. 13 . )  + 6,(Kij) ba!Bij) 

commutes and 6,(K . )  is the image of ba(A. . )  -P6a(B. . )  . 
1 J 1 J 1 J 

By the usual abstract nonsense, ws may as w5ll assums we 

are in the category of pointed sets (note F preserves 

E by Proposition 1). 

Now using our claim WE? can easily get 

A + K .  is onto. E(K. . )  + E(B 
1 J 1 J i j 

injects since 

E preserves kernels. Henze E (K. .) i.s the image of 
1 J 

We prove a stronger version of our claim than we 

have yzt used. 

Lemma 5: Let ~7 be the category of pointed sets. 

Let {G. . I  be an object in [iQ,c7]' . Then if x c E(G. . ) ,  
1 J 1 J 

there is an a E JI such that b , ( G .  . )  contains x in 
1 J 

j.ts image. If y,z E ba(G. . )  both hit x , then there 
1 J 



i s  a  @ L a  such t h a t ,  i n  6 ( G . . )  , t h e  images of y  
1 J  

and z d i f f e r  i n  only f i n i t e l y  many coord ina tes .  I n  

f a c t ,  i f  t h e r e  i s  a  j  E J such t h a t  j L p i ( a )  f o r  a l l  

i d I and such t h a t  y  and z agree  i n  X G i j  , t h sn  
i E  I 

can be chosen so  t h a t  y  = z i n  5 (G. . )  . B 1 J  

Proof: I f  x E E(G. . )  , t h e r e  e x i s t  unique -- 1 J 
a .  E p  ( G i j )  such t h a t  x h i t s  a .  . Since i s  

J i d 1  J i€ I 

onto p  , we m y  l i f t  a  t o  b j  E X G ~ ~  . Since J 
ii I j  

has countable cof i n a l  s u b s e t s ,  l e t  the  n a t u r a l  niambers 

j = 2 , .  . . be one such. Since I i s  countable (and 

i n f i n i t e  o r  our r e s u l t  i s  easy )  .we a l s o  assume it t o  be 

the n a t u r a l  numbers. 

Now look a t  b2 and bl . Since they  agree  i n  

p(Gil) , b2 pro jec ted  i n t o  X G ~ ~  d i f f e r s  from B1 i n  

only f i n i t e l y  many coord ina tes .  Let I1 5 I be the  

f i n i t e  subse t  which indexes these  unequal coord ina te s ,  

t oge the r  wi th  the  element 1 E I . 
Next look a t  t h e  p a i r s  (b3, b2) and (b3, bl) . 

A s  be fo re ,  p ro jec t ed  i n t o  )( Gi2 ,  b  and b2 agree  i n  a l l  3 
but f i n i t e l y  many coord ina tes .  I n  X Gil  , b3 and bl 

d i f f e r  i n  only f in i t e ly lmany  coord ina tes .  Se t  I2 5 I 

t o  be the  f i n i t e  subse t  of I which indexes the  unequal 

coord ina tes  of ( b  b  ) o r  ( b  b  ) which l i e  i n  I - 11, 
3' 2 3'  1 

t o g e t h l r  wi th  the  s m l l e s t  i n t e g e r  i n  I - I1 . 
Define Ik t o  be t h s  f i n i t e  subse t  of I which 

indexes t h e  unequal coord ina tes  of (bk,bk-l),  . . . , (bk ,b2) ,  

( b k , l )  which l i e  i n  1 - (Ik-l U ... U I2 U 11) , 



t oge the r  wi th  t h e  sma l l e s t  i n t e g e r  i n  

1 - u ... u I* U I l l .  

00 

Then I = U Ik as  a d i s j o i n t  union. Define a 
k = l  

by p i ( a )  = k , where i c  Ik . Since I i s  countable ,  

but no t  f i n i t e ,  and s i n c e  each Ik i s  f i n i t e ,  a e JI . 
Define y c b , (G.  . )  by pi!y) = pi(bp. ( a )  ) . A chase 

1 J  1 

through d e f i n i t i o n s  shows y h i t s  each a through the  
j 

map ba(G. . )  + 
1 J  i e  P I ( G i j )  . Thus y h i t s  x i n  E ( G .  1 J . )  . 

Now suppose y , z  c b a ( G .  . )  both map t o  x . Then 
1 J  

they map to  the same element i n  each ( G i j )  . Let 
i c  I 

a be the  image of y i n  )( G i j  under the  map 
j i€ I 

6,(G. . )  + X G i j  which we def ined  j u s t  before  Lemma 3. 
1 J  i c  I 

Se t  b t o  be the  image of z i n  )( G i j  . Then a 
j i e  I j 

and b j  d i f f e r  i n  only f i n i t e l y  many coord ina tes .  

Let Il be the  f i n i t e  subse t  of I which indexes 

t h ?  unequal coord ina tes  of a l  and bl . I f  t h e r e  i s  

a j p i ( a )  f o r  a l l  i c I such t h a t  y and z ag ree  

i n  k G i j  , we may assume j = 1, s o  a1 = bl , and 
i c  I 

I 1 = L  

Define Ik a s  the  f i n i t e  subse t  of I which indexes 

the  unequal coord ina tes  of (ak ,bk)  which l i e  i n  

I - (lk-l U ... U 11) . Define 8 by 

C k-1 i f  i c Ik f o r  some k L 2  
p i ( @ )  = 

pi(") i f  i d Ik f o r  any k 2 



Note p i (@)  ( p i ( a ) ,  s i n c e  i € Ik , t h i s  says 

by th;. d e f i n i t i o n  of our map from 6, t o  X . Hence 
i a  I 

Let 7 be the  p r o j e c t i o n  of y  i n t o  6 ( G . . )  , axd 
8 1 J  

l e t  2 be t h s  p r o j e c t i o n  of z  i n t o  6 G . .  . 
i3 1 J  

pi(?) = and p i (z )  = p . ( b  1 pi (8)  ) I f  

pi (3 p i ( p ) )  ' ~ i ( ~ p ~ ( 8 )  ) , then  i ,d Ik f o r  any k 2 , 
s i n c e  i € Ik f o r  k  2 2 says t h a t  pi(ak) # pi(bk) b>t 

pi(ak-l) = pi(bk-l) I f  i 6 Ik f o r  any k , i t  says 

t h a t  pi(y) = p i (z )  Thus pi(?) = p i ( z )  i f  i 6 I1 . 
Hence they  ag ree  f o r  a l l  but  f i n i t e l y  many i C I . I n  

- 
f a c t ,  i f  I = @ , y  = z . Q.E.D. 

We can now desc r ibe  E ( G . . )  a s  a  c o l i m i t  (d i rec . t  
1 J 

l i m i t ) .  Let G .  . be the  func to r  a p p l i e d  t o  
a lJ  

through p(G. . )  . 
a 1 J 

Theorem 2: Let be a  ( & , I ) - r e g u l a r  category.  

Then t h e  n a t u r a l  map colim pa -+ E i s  a n  isomorphism. 

&I 
Hence E i s  a  cokerne l ,  k e r n e l  preserv ing  func to r .  

Proof:  Let us f i r s t  show F  preserves  colim ; ioeo 

&I 
we must show t h a t  t h e  n a t u r a l  map colim F ( A ~ )  - F 
(colim R a )  i s  a n  isom3rphism. To d 3  t h i s ,  ws f i r s t  

JQ I 



compute 1m(f ) .  I f  Im(f ) i s  the  image of a 
F(Aa) + colim F(Aa) + F(col.im A a )  , t hen  by Mi tche l l  

[25] (P ropos i t ion  2.8,  page 4 6 ) ,  Im( f )  = U Im(fa)  . 
a 

Let Im(g,) be the  image of Aa  + colim Ra . Then, 

s i n c e  F preserves  images, F( Im(ga) )  = lm(fa)  , so 

Now [a}  k3s a c o f i n a l  subssquence (which i s  co-mtable 

and,  i f  I i s  f i n i t e ,  i t  i s  a l s o  f i n i t e )  (a i}  such t h a t  

a, < al < - . -  < an  ( ... . Therefore 

cof i n a l .  

Again by Mi tche l l  [25] (P ropos i t ion  2.8,  page 4 6 ) ,  
C D  

colim Ra = U lm(ga) = U Im(ga ) . Thus 
a i =o i 

(0 

F(co1im A,) = F (  u Im(ga ) )  . Since ~7 i s  a , I ) -  
i = o  i 

r e g u l a r  ca tegory ,  t he  n a t u r a l  map ~ ( I m ( g  ) )  5 
i = o  

In 
a i 

F( U lm(ga ) )  i s  an isomorphism. Thus t h e  map 9 
i z 0  i fi, 

Im(fa)  5 F(U Im(g,)) i s  a n  isomorphism. But t h i s  map i s  
a 

j u s t  t he  n a t u r a l  m p  colim F(A,) + F(co1im A,) . 
9, 9, 

The n a t u r a l  map colim pa -+ E i s  t h e  map which comes 

f'rom the  maps pa -+ E . To show it  i s  a n  isomorphism, it 

i s  enough t o  show it i s  f o r  pointed s e t s  by t h e  r e s u l t  

above and t h e  f a c t  t h a t  F r e f l e c t s  isomorphisms. But 

t h i s  i s  e x a c t l y  what Lemma 5 says .  

Now E p reserves  ke rne l s  by Theorem 1, and it 

preserves  cokernels  s ince  c o l i m i t s  presnrve cokernels  by 



Mitchel l  [25] (page 67, Corol la ry  12.2 d u a l i z e d ) .  0 
n 

C o r o l . l a r ~  2.1: Let ( G i l l  E [8,G'11 be a  c o l l e c -  

t i o n  of exact  sequences i n  a  (B , I ) - r egu la r  category 

n  n  n-1 5' ( i . e .  t h e r e  a r e  maps f i j :  G i j  -+ G i j  which a r e  maps 

of diagrams such t h a t  I m ( f ? .  ) = k e r ( f y 1 ) )  . Then thz 
1 J  1 J 

a l s o  exac t .  

Coro l la ry  2.2: Let c7 . be a  ( & , I ) - r e g u l a r  a b e l i a n  

category.  Let { G ? . ,  f * . )  be a  col lect j .on of cha in  :om- 
1J . 1 J  

I * * plexes  i n  [a,?]  . Then { & ( G i j ) ,  ~ ( f .  . ) I  i s  a chain 
1 J  

complex, and H, ( E ( G ~ .  ) ) = &(H,(G*.  ) ) , where H, i s  the  
1 J  1 J  

homology func to r  ( see  Mi tche l l  [25], page 152) .  

Proofs:  The f i r s t  c o r o l l a r y  i s  e a s i l y  seen  t o  be -- 
t r u e .  ( I t  i s ,  i n  f a c t ,  a  c o r o l l a r y  of Theorem 1. ) 

The second c o r o l l a r y  i s  almost a s  easy.  I f  {z:~) 

n+ 1 a r e  t h e  n-cycles ,  and i f  {Bij ] a r e  the  ( n + l ) -  

boxndaries , 0 + B F 1  + z:~ -+ H,(G:.) -+ 0 i s  exac t .  
1 J  1 J  

n  
Applying E , we g e t  0 -+ &(Bi j  ) + E ( H ~ ( G * . ) ) + o  

1J 

i s  exac t .  But a s  E p reserves  ke rne l s  and images, 
n  

E ( Z .  . )  i s  t h e  c o l l e c t i o n  of n-cycles f o r  E ( G T . )  and 
1 J  1 J  

E !Bn+l) i s  the  c o l l e c t i o n  of (n+l)-boundaries .  Hence 
i j  

* * 
H n ( a ( G i j ) ) + ~ ( H n ( G . . ) )  i s a n i s o m o r p h i s m .  a 

1 J  

Now suppase J has a  unique minimal element jo . 



Then we g e t  a  square 

Theorem 3: I n  a  ( & , I ) - r e g u l a r  ca tegory ,  t he  above 

diagram i s  a  pul lback i n  t h s  category of pointed s e t s ,  

s o  i f  F r e f l e c t s  pullbacks the  above square  i s  a  p u l l -  

back. 

Proof:  As we showed i n  the  proof of Theorem 2 t h a t  

F and colim commute, we have F (n (Gi j ) )  = a(F(G. .)I, 
I 

1 3  

s o  we may work i n  t h e  ca tegory  of pointed s e t s .  

The omnipresent Lemma 5 can be used t o  show the  

above square i s  a  pullback.  The pul lback i s  t h e  subse t  

of & ( G i j )  X (  )( G i j  ) c o n s i s t i n g  of p a i r s  which pro- 
i c  I o 

j - c t  t o  the  same element i n  p ( G i j  ) . Given any e l e -  
i s  I 3 

ment, x , i n  & ( G i j )  we can Eind a e JI su,ch t h a t  

t he  e l enen t  i s  i n  the  image of b a ( G i  j )  . L i f t  t he  image 

of x i n  p ( ~ ~ ~  ) t o  y  c  )( G~~ . Let z E b a ( G i j  ) 
o is I o o  

be a n  element which h i t s  x  . Then y pushed i n t o  

X G i j  and z a g r e e ,  except i n  f i n i t e l y  many p laces .  
0 

I t  i s  then  easy t o  f i n d  B i^ JI wi th  B ( a  and a n  

element q  E ba(G. . )  such t h a t  q  h i t s  x and y . 
1 J 

This says  p r e c i s e l y  t h a t  our square  i s  a  pullback.  0 

Rsmarks: I n  a l l  o u r  examples, F r e f l e c t s  p u l l -  

backs. The analogues of C o r o l l a r i e s  2 .1  and 2 .2  may be 



s t a t e d -  and proved by the  r eade r  f o r  the A f u n c t o r .  

Theorem 4: I n  a  (B , I ) - r egu la r  ca tegory ,  

& ( G . . )  = 0 iff g i v e n a n y  j  c: J t h e r e  e x i s t s  a  
1 J 

k  2 j  such t h a t  Gik -> Gi i s  the  zero  map f o r  a l l  

but f i n i t e l y  many i . 
Proof:  S7~ppose given j  we can f i n d  such a  k . 

Then we can produce a c o f i n a l  s e t  of j ' s ,  jo ( jl ( 9 

such t h a t  t he  map p(G. ) + p(G.. ) i s  t h e  zero map. l j ,  I Jk -1  
Hence E = 0 . 

Conversely,  suppose f o r  some jo t h a t  n ,  such k 

e x i s t s .  This means t h a t  f o r  every k 2 j, t h e r e  a r e  

i n f i n i t e l y  many i f o r  which Gik -> G i j o  i s  no t  t he  

z s ro  map. 

A s  u s u a l ,  i t  s u f f i c e s  t o  prove t h e  r e s u l t  f o r  

pointed s e t s ,  so assume we.have Zik E Gik which goes 

non-zero i n t o  Gi jo . Pick  j o ( j l L j 2 1  . - .  a 

countable  c o f i n a l  subsequence of J . We def ine  a n  

element a  of BI a s  fol lows.  Well o rder  I . Then 

a ( i )  = j, u n t i l  we hi.t the f i r s t  element of I f o r  

which a  Z i j k  i s  def ined .  S e t  a ( i )  = jk f o r  t h i s  i 

and cont inue de f in ing  a ( i )  = jk u n t i l  we h i t  t h e  next 

element of 1 f o r  which a  Z i j  i s  def ined  wi th  

1 

kl 2 k . S e t  a ( i )  = j  u n t i l  we h i t  t he  next Z i j  
kl k2 

with  k2 2 kl . Continuing i n  t h i s  f a sh i3n  i s  seen t o  

give a n  element of . Define Za by Z i a ( i )  = 0 



unless  i i s  one of the  d is t inguishedelemgnts  of I , 
i n  which case s e t  where 

Then Z a c  A ( G . . )  . I t l s  non-zero i n  II ( G . .  ) 
a I J  i~ I l J o  

by c o n s t r u c t i o n ,  so  & ( G i j )  # 0 . 0 

Sec t ion  3. Proper homotopy func to r s  and t h e i r  r e l a t i - o n s .  

We begin by c l a r i f y i n g  t h e  concept of a n  ord inary  

homotopy func to r .  A homotopy func to r  i s  a  f u n c t o r ,  h  , 
from the  ca tegory  of pointed topo log ica l  spaces  t o  some 

ca tegory ,  2' . Given a  space X and two base po in t s  

P 1  and P2 , and a  pa th  A from pl t o  p2 , t h e r e  

i s  a  n a t u r a l  t ransformat ion  ah : h(X,pl) + h(X,p2) which 

i s  a n  isomorphism and depends only on the  homotopy c l a s s  

of A r e 1  end p o i n t s .  Furthermore,  h(X,p) + h(Xx I ,  

p  x t )  given by x  + ( x , t )  i s  a n  isomorphism f o r  t = 0 

an3 1 . 
For any h3motopy func to r  we a r e  going t o  a s s o c i a t e  

a  proper homotopy func to r  def ined  on t h e  ca tegory  of 

homogamus spaces and countable s e t s  of  l o c a l l y  f i n i t e  

i r r e d u c i b l e  base po in t s .  

To be a b l e  t o  do t h i s  i s  the  g e n e r a l i t y  we need, 

we s h a l l  have t o  d i g r e s s  momentarily t o  d i s c u s s  the  con- 

cep t  of a  covsr ing func to r .  

Le t  X be a  homogamous space ,  and l e t  (xi} be a  

~ o u n t a b ~ e ,  l o c a l l y  f i n i t e ,  i r r e d u c i b l e  s e t  of base po in t s  

f o r  X . (From now Jn we w r i t e  j u s t  I tse t  of base poin ts"  



f o r  "countable ,  l o c a l l y  f i n i t e ,  i r r e d c i b l e  s e t  of base 

po in t s .  I f )  Let fix be same natura1l.y def ined  c o l l e c t j  on 

of subse t s  or X (by n a t u r a l l y  def ined  we mean t h a t  i f  

f : x + Y i s  a  proper map, f - l g  c ) ax i s  a  Y -  X 
diagram with arrows being inc lus ion  maps. Assume 

i s  a n  { x i } - l a t t i c e ,  and assume @ E  a x .  

Def in i t ion :  A covering func to r  f o r  BX i s  a  fun-- 

t i o n ,  S , which a s s i g n s  t o  each nl(X-C,xi) a  sub- 

group S.rr (x-c ,x . )  s u b j e c t  t o  1 1 

commi~tes whenever D 5 C ,  xi d C , and where the  v e r t i -  

c a l  maps a r e  induced by i n c l u s i o n  ( C  and D a r e  any e l e -  

ments of AX). 

Remarks: We have two examples f o r  fix i n  mind. 

I n  t h i s  s e c t i o n  we can use the  s e t  of a l l  c losed ,  com- 

pac t  subse t s  of X f o r  dOX . For coh~mology h3wever, 

we w i l l  have t o  use the  s e t  of open s u b s e t s  of X wi th  

compact c losu re  f o r  
' 

Examples: There a r e  t h r e e  u s e f u l  examples we s h a l l  

de f ine .  

1) no covering func to r  ( t h e  subgroup i s  t h e  whole 

group) 

2 )  t h e  u n i v e r s a l  covering runc to r  ( t h e  subgroup i s  

the  zero  group) 



3 )  the universal cover of X but no more covering 

functor (the subgroup is ths kernel of nl(X-C,xi) .+ 

Definition: A compatible cotrering functor for DX 

is a covering functor S such that, for any C E QX , 
the cover of the component of X - C  contain xi corre- 

sponding to Snl(X-C,xi) exists. We write X ,  fo: 

a compatible covering functor for ax (which is inferred 

from context) to denote a collection of pointed spaces 
i A  -i 

( ( -  x i )  , where (X-C) is the covering space of the 

component of X-C containing xi, and Gi is a lift of xi to thls 
chJ 

cover such %hat nl(x-c,gi) =Snl(X-C,x. ). Notice this notation 
I 

is mildly anbiguous since if we change the Gi we get a 

different object. As the two objects are homeomorphic 

this tends to cause n3 problems so we use the more com- 

pact notation. 

We say X X -  provided tho subgroup of 

7 (X-C,xi) corresponding to --- 1. contains the one cor- 

responding to - . Hence any (X,-) ( (X, no cover), 

and, if the universal covering functor is compatible 

with gX, (X , universal cover) ( (X,-) . 
Now the no covering functor is conpatible with any 

QX . If X is semi-locally 1-connected, the universal 

cover of X but no more covering functor is compatible 

with any BX . If BX is the collection 3f closed, 

compact subsets of X , and if X is locally 1-connected, 



t h e  u n i v e r s a l  covering func to r  i s  compatible wi th  f i x ,  

as  i n  any o t h e r  covering func to r .  Hence a  CW complex 

i s  compatible wi th  any covering func tn r  ( see  Lundell  

and Weingram [21] page 67, w ha or em 6.6) f o r  .QX . 
We can now desc r ibe  our cons t ruc t ion .  Let (X,") 

De a covering fun - to r  fo: X . Assune from now on 

t h a t  our homotopy func to r  takes  values  i n  a  (.gX, {xi] ) -  

r e g u l a r  category f o r  a l l  homogamous X wi th  base po in t s  

{xi] . We apply  the  E and A cons t ruc t ions  t o  the  

collec'cion 

& i n  rV i n  If D 5 C ,  t h e r e  i s  a  unique map ((X-D) x i  -+ X - C  ,xi)  

i f  xi e X-D by tak ing  t h e  l i f t  of t h e  i n c l u s i o n  which 
A 

,- i takes  xi i n  (X-D) t o  ;i i n  ( z ) i  . Hence we g e t  

a  map GiD + GiC . We denote t h s s e  groups by E (X:h, (2.  1 ] ,-) 
and A ( X :  h,[$i} ,-) . 

TheorgmL: Let {xi] and (yi} be two s e t s  of base 

p o i n t s  f o r  X, X homogamous wi th  co.antable base poin2s. 

Let A be a l o c a l l y  f i n i t e  c o l l e c t i o n  of pa ths  giving 

a n  equivalence between fx i ]  and {yi] . Then t h e r e  a r e  
A 

n a t u r a l  t ransformat ions  a,: &(X:h, [ x ~ } , - ) + E ( X : ~ , ( $ ~ ] , - )  

and a : A(X:h, - )  + A(X : h ,  (pi] ,  - ) i~hhlch a r e  i s o -  n 
morphisms and depend only  on the proper homotopy c l a s s  of 

A r e 1  end poin ts .  (- i s  the  covering f u n c t o r  induced by 

the s e t  of paths  A .  ) 

Proof:  Define a,, a s  fo l lows .  By r e l a b e l i n g  i f  

necessa ry  we may assume xi goes t o  yi by a  pa th  



.-i A - i A 

i n  A . Map h ( (X-C)  ,x i )  t o  h((X-C) ,yi )  by the  zero 

map i f  t he  pa th  from xi t o  yi h i t s  C . If the  pa th  

- i  l i f t i n g  the  path from xi t o  y .  i n t o  (X-C) beginning 
1 

h 

a t  xi ( say  i t  now ends a t  z , and then nap 
PQ i 

( ( x - C )  z t o  ( (X-C) ,y i )  by thz  m i q u e  homeomxphism 
h 

covering the  i d e n t i t y  which takes  z  t o  yi . This 

de f ines  a  homomorphism a-,, on E and A . 
I f  by A - ~  we mean the  c o l l e c t i o n  ~f  paths  from 

yi t o  xi given by the  inverse  of t he  pa th  from xi t o  

yi , we can a l s o  de f ine  a 
,-I 
- 

a, 0 a takes  h i - c  5 )  t o  i t s s l f  by the  
'4-1 

zero map i f  the  path h i t s  C and by the  i d e n t i t y  o the r -  

wise.  Since a l l  but f i n i t e l y  mamy paths miss C , t h i s  

induces the  i d e n t i t y  on E . Since the  empty s e t  i s  the  

minimal element of ;QX , a, 0 a is  t h e  i d e n t i t y  on 
A-l ,. 

X h(x ,y i )  and h X y i  Hence i t  i s  a l s o  t h e  
ic  I 

i d e n t i t y  on A . A s i m i l a r  a r g m e n t  shows a 1°a,  i s  
n - 

t he  i d e n t i t y ,  so  they a r e  both isomorphisms. 

The same s o r t  of argument shows an depends only on 

the proper homotopy type of A . I t  can be s a f e l y  l e f t  

t o  the  r eade r .  

If h  i s  a c t u a l l y  a  homotopy func to r  on the  ca t e -  

gory of p a i r s  (n-ads) we can d e f i n e  Y ( X , A : ~ , { ; ~ ] , - )  f o r  

the  p a i r  (X,A) (where y denotes E o r  A) using 



- w 
A 

GiC = h((x-CIi ,  ( A  Cl X - c  U ( 2 )  x i  where 

- .  - 1 - i  i n (x-c)' :- r (A n (x-c l i ) ,  r : (x-C) -+ x - c i  , i f  

xi k C and i s  0 oth$rwi.se ( f o r  n-ads use 

Now suppose we have a connected sequence of homotopy 

func to r s  h, ; i . e .  each hn i s  a f m c t o r  on some c a t e -  

gory of p a i r s  and we g e t  long exact  sequences. By apply- 

ing our cons t ruc t ion  t o  (X,A) , one would hope t o  g s t  

a s i m i l a r  long exac t  sequsnce f o r  the  E o r  A t h e o r i e s .  

Seve ra l  problems a r i s e  wi th  t h i s  naive expec ta t ion .  

To begin,  we can c e r t a i n l y  de f ine  groups which f i t  i n t o  

a long exac t  sequence. Define y (A;X:h,,{xi] ,-) where 

,-> 

y = ~  o r  n from Gic = h* i (L  n ( x - c ) ~ )  u (;i) ,;i) 

i f  xi d C and O i f  xi E C . Then Corol la ry  2.1,  o r  

i t s  uns t a t ed  analogue 3 .1 ,  shows we g e t  a long exac t  

sequence + y ( A ; X  : % , ( x i ) , - )  -+ y ( X :  hn, { x i ] , - )  + 

h 

X , A : ~ ~ , ~ } , -  + y ( A ; ~ : h ~ - ~ , E x ~ ) , - )  -+ The problem 

of course  i s  t o  desc r ibe  y(A;X:etc.) i n  terms of A . 

We c l e a r l y  have l i t t l e  hope un les s  A i s  homogamoas, 

and f o r  convenience we i n s i s t  A 5 X be a proper map. 

Such a p a i r  i s  s a i d  t o  be hom3gamous, and f o r  such a 

p a i r  we can begin t o  desc r ibe  y ( A ; X  : e t c . )  . 
Pick  a s e t  of base po in t s  f o r  A , and then add 

enough new po in t s  t o  g e t  a s e t  of base po in t s  f o r  X . 



Such a c o l l e c t i o n  i s  a  s e t  of base po in t s  f o r  ( X , A ) .  

Two such a r e  equiva len t  provided the  po in t s  i n  X-A can 

be made t o  correspond v ia  a  l o c a l l y  f i n i t e  c o l l e c t i o n  3f 

paths i n  X a 1 1  of which l i e  i n  X-A . A s e t  of base 

po in t s  f o r  ( X , A )  i s  i r r e d u c i b l e  provided any subse t  

which is  a l s o  a  s e t  of base po in t s  f o r  (X-A) has the  

same c a r d i n a l i t y .  (Note a n  i r r e d u c i b l e  s e t  of bass  

po in t s  f o r  ( X , A )  i s  no t  always an  i r r e d u c i b l e  s e t  of 

l o  base po in t s  f o r  X . (S ,S ) i s  a n  example.) We can 

c o n s t r u c t  E and A groups f o r  X based on a n  i r r e -  

duc ib le  s e t  of base po in t s  f o r  (X,A) , and whenever we 

have a  p a i r ,  we a s s m e  the  base poin ts  a r e  a n  i r r e d u c i -  

b l e  s e t  of bass po in t s  f o r  t h e  p a i r .  If X has no 

compact component, then any i r r e d u c i b l e  s e t  of base 

po in t s  f o r  ( X , A )  i s  one f o r  X . Over the  compact com- 

ponents of X , t he  A group i s  j u s t  t h e  d i r e c t  product 

of h ( ? , p )  f o r  one p  i n  each component of A . A s  i n  

the  a b s o l u t e  c a s e ,  we drop i r r e d u c i b l e  and w r i t e  " s e t  of 

base po in t s "  f o r  " i r r e d u c i b l e  s e t  of base p o i n t s n .  

With a  s e t  of base po in t s  f o r  ( X , A ) ,  t h e r e  i s  a  
A 

n a t u r a l  map y(A;h ,{xi} ,"F) + y ( A ; X :  h  ,{Gi} , - I  , where 

- i s  t h e  covering func to r  over A induced a s  fo l lows .  F 
Let B(X) denote the  fol lowing category.  The o b j e c t s  

a r e  c losed  compact subsots  C 5 X . The morphisms a r e  the  

i n c l u s i o n s .  Given A 5 X a  c losed s u b s e t ,  t h e r e  i s  a  n  

n a t u r a l  map sQ(X) + & ( A )  g iven by C -+ C 11 A . A l i f t  

func tor  P : B ( A )  + B ( X )  i s  a  func to r  such t h a t  



&(A) 4 & ( X I  -+ Q ( A )  i s  t h e  i d e n t i t y  and such t h a t  t h e  

image of F  i s  c o f i n a l  i n  & ( X )  . - i s  t h e  cover ing 

f u n c t o r  whose subgroups a r e  t h e  pu l lbacks  of  

f o r  xi E A-C , C E & ( A )  . The existence of our n a t u r a l  

map y ( A :  - . -  - F  ) / y ( A ; X :  - -  " )  presupposes -F i s  

compat ible  w i t h  11 , but  t h i s  i s  always t h e  ca se  s i n c e  

i t h e  a p p r o p r i a t e  cover of ( A - c ) ~  i s  s i t t i n g  i n  (X-F(C)) . 
We denote  t h i s  n a t u r a l  map by T(A,X) . 

Notice  f i r s t  t h a t  T ( A , X )  i s  a  monmmrphism s i n c e  

each map i s .  Moreover, T ( A , X )  i s  n a t u r a l l y  s p l i t .  The 

s p l i t t i n g  map i s  induced a s  fo l l ows .  We need on ly  def in -?  

i t  on some c o f i n a l  s u b s e t  of &(X) , s o  we d e f i n e  i t  on 
.c?'-' 

A 

{ F ( C ) ~ C  E & ( A ) ]  . h,((R n ( x - ~ ( c ) )  ) u ( P i ) , x i )  goes - 
t o  0 i f  xi 6 A , and i t  goes t o  h,((A - c ) I , P i )  i f  

Xi E A , where i n  t h i s  l a s t  case  i s  t h e  cover g iven  

,--' 
by t h e  cover ing  f u n c t o r  - F  . 1 n (X - F ( c ) ) ~  i s  j u s t  

- i  s e v e r a l  d i s j o i n t  cop ies  of (A - C )  union covers  of 

o t h e r  components of A - C  . The map c o l l a p s e s  each of 

t h e s e  covers  of o t h e r  components of A - C t o  gi and on 

- i  t h e  cop ies  of  ( A  -C) i t  i s  j u s t  t h e  cover ing p r o j e c t i o n .  

A t  t h i s  p o i n t ,  t h i s  i s  a l l  we can s a y  abou t  T ( A  , X )  . 
This  map hownver has  many more p r o p e r t i e s  and we s h a l l  



r e t u r n  t o  i t  aga in .  

Now l e t  f : X  + Y be a  proper map between homo- 

gamous spaces .  We have t h e  mapping cy l inde r  Mf . 
(Mp,X)  i s  a n  homogamous p a i r  (Corol la ry  1 .1 .2) .  Let 

{xi)  be a  s e t  of base p3in ts  f o r  ( M f , X )  . We a l s o  

have t h e  homogamous p a i r  (Mf , Y )  . By Lemma 1.2 a  s e t  

of base po in t s  f o r  Y i s  a l s o  a  s e t  of base po in t s  f o r  

( M f , Y )  . If (yi} i s  such a s e t ,  z(Y,Mf) i s  a n  i s o -  

morphism. This i s  seen by showing t h e  s p l i t t i n g  map i s  

a  monom3rphism. But i f  we use the  l i f t  f u n c t o r  

F(C)  = I x f - ' ( ~ )  U C 5 Mf t h i s  i s  no t  hard t o  s e e .  

Given a  covering func to r  on Mf , i t  induces cover- 

ing func to r s  on X and Y , and these  a r e  the  covering 

func to r s  we s h a l l  use .  Given a covering func to r  on Y , 
we can g e t  a  covering func to r  on Mf a s  fo l lows .  The 

subgroups t o  a s s i g n  t o  T ~ ( M ~  - f - l ( c )  x I U C )  a r e  t h s  

subgroups f o r  nl(Y - C )  . One can then a s s i g n  subgroups 

t o  a l l  o the r  requi red  s e t s  i n  such a  way a s  t o  g e t  a  

covering func to r .  If we use the  obvious l i f t  f u n c t o r  f o r  

Y , t h e  induced cover i s  the  o r i g i n a l .  

By tak ing  the  c o f i n a l  c o l l e c t i o n  F(C) , it  i s  a l s o  

n3t  hard t o  s e e  y (Mf ,Y:  hn, ,-) = 0 . We def ine  
A 

f : y (X: hn , (x i )  ,-) + y ( Y  : h, , ( j i )  , -)  i f  no component 

of Y i s  compact by y(X:e tc . )  
T ( X , M ~ ) .  

/ y (X;Mf:  e t c .  ) 

w - - 
--+ Y ( ~ : ~ : h ~ ,  Gi1 , - I  , Y ( ~ ~ : h , , { ? ~ )  , - I 4  

y(Y:e tc . )  . Notice t h a t  t h i s  map may depend on the  



n 
paths used t o  jo in  {xi] t o  )  . I f  f  i s  proper ly  

1/2-connected, (i .  e .  f  induces isomorphisms on HO 

0 
and Hend : compare t h i s  d e f i n i t i o n  and the  one i n  [l . l])  

t h e r e  i s  a n a t u r a l  choice of pa ths .  

This choice i s  obtained a s  fo l lows .  Take a  s e t  of 

base po in t s  {xi)  f o r  X . By Lemma 1.1, [ f  ( x i ) }  i s  

a  s e t  of base po in t s  f o r  Y . Let { x i ]  {xi} be any 

subse t  obtained by picking p r e c i s e l y  one element of {xi] 

i n  each f - l f  (x i )  . By Lemma 1 below, [xl) i s  a  sst 

of base po in t s  f o r  X . Thus we can always f i n d  a s e t  

of base po in t s  f o r  X on which f  i s  1-1 and whose 

image under f  i s  a  s e t  of base poin ts  f o r  Y . Take 

such a  s e t  of po in ts  a s  a  s e t  of base po in t s  f o r  (Mf , X I .  

Take t h e i r  image i n  Y a s  a  s e t  of base po in t s  f o r  

(Mf ,Y) . The paths  joining these  two s e t s  a r e  j u s t  t he  

paths 

Given a  proper ly  1/2-connected map f  , we can g e t  

ano the r  d e f i n i t i o n  3f the  induced map. Pick a  s e t  of 

base po in t s  {xi} a s  i n  the l a s t  paragraph. Then we 

..- -.- 
have f ,  : y(X:h, ($i} ,-) + y ( y : h , { f ( x i ) }  , - )  def ined  

r'v u A- 

by tak ing  h - ,  ----+ h ( Y - F ( C ) ,  f ( x i ) )  by f  , 
where F i s  a  l i f t  func to r  which s p l i t s  A ( Y )  - + & ( X )  

and F ' i s  t h e  l i f t  func to r  used t o  g e t  the  covering 

func to r  f,or X from the  one over Y . One sees  e a s i l y  

the  two d e f i n i t i o n s  of f, ag ree .  



Now suppose i r~e consider  i : A 5 X f o r  a n  

homsgamous p a i r .  Then w s  can def i n s  i, a s  above. 

I t  i s  not  hard t o  s e e  

Y ( A ; X :  e t c . )  y ( X :  e t c . )  

commutes, where the paths wz use i n  d e f i n i n g  i, a r e  

I 

Lemma I: I f  f : X -+ Y i s  a  proper map which 
i) induces epimorphisms on H ' ~  and Hend , then ,  i f  {f ( p ) }  

i s  a  s e t  of base poin ts  f o r  Y , {p} i s  a  s e t  of base 

po in t s  f o r  X . 
Proof:  Since f  i s  a n  epimorphism on HO , each -- 

path component of X has a  po in t  of {p} i n  i t .  

Now def ine  a  cochain i n  s'(x) f o r  some c losed  

compact s e t  D 5 X , rpD , a s  fo l lows .  VD(q) = 1 i f  

q i s  i n  a pa th  component of X - D wi th  no poin t  of 

- 1 {p} i n  i t  and i s  3 otherwise.  6VD - 0 i n  Send . 
3 

Since f  i s  a n  epimorphism on Hend , t h e r e  must 

be a  cha in  i n  s'(Y), $ , such t h a t  f*$ = 9 i n  
0 

'end (X) . But t h i s  means t h e r e  i s  some c losed  compact 

s e t  C 5 X such t h a t  f*$ and ip agree  f o r  any poin t  

i n  X - C  . Hence t h e r e  i s  a  c losed ,  compact s e t  E 5 Y 

. such t h a t  f - ' ( ~ )  1 C U D . There i s  a l s i )  a  c losed ,  

compact F 5 Y such t h a t  t h e r e  i s  a n  f  ( p )  i n  each 



path component of Y - E which i s  n ~ t  contained i n  F . 
df r e s t r i c t e d  t o  Y - E  must be 0 s i n c e  some component 

of X - D which i s  not  contained i n  f - l ( ~ )  has a  po in t  

of {p] has a  po in t  of (p]  i n  i t .  Hence Y r e s t r i c t e d  

t o  X - f - l ( ~ )  i s  0 , s o  we a r e  done. Q.E.D. 

Def in i t ion :  An hom3gamou.s p a i r  ( X , A )  i s  proper ly  --- 
0-connec ted  i f  t he  i n c l u s i o n  induces monomxphisms on HO 

0 
and Hend . We have a l r e a d y  def ined  p rope r ly  1/2-connected. 

I f  ( X , A )  i s  proper ly  0-connected we can ch3ose a  s e t  

of base poin ts  f o r  tho p a i r  t o  be a  s e t  of base po in t s  

f o r  A . We say  (X,A) i s  proper ly  n-connected, n  2 1 

provided i t  i s  proper ly  1/2-connected, and,  w i th  base 

po in t s  chosen a s  above, A ( X , A  : nk, {x i ] ,  no cover)  = 0, 

15 k  ( n  . I t  i s  s a i d  t o  be proper ly  n-connected a t  oo 

provided i t  i s  proper ly  1/2-connected and E ( X , A  : 5, 
( x i ] ,  no cover)  = O ,  1 L k l n .  

P ropos i t ion  1: I f  ( X , A )  i s  proper ly  1/2-connected, - 

and i f  i, : A ( A :  nl,  (x i ] ,  no cover)  + A ( X :  nl, (x i} ,  n3 

cover)  i s  onto ,  (x ,A)  i s  proper ly  1-connected and 

conversely.  

Proof:  I f  (X,A) i s  proper ly  1-/2-conn?cted, 

A ( A :  n,, ( x i ] ,  no cover)  -+ A(X:  no,  {xi} ,  no covsr )  i s  

seen t o  be a n  i s~morphism by applying Theorem 2.4 t o  tha  

k e r n e l  and coksrnc l  o r  t h i s  map, toge ther  wi th  the  

d e f i - n i t i o n  of a  s e t  of base po in t s .  

Hence A ; :  v  - A X :  1 ) 7 A ( X , A :  nl) -0  



is exact. 

commutes, and i, is an epimorphism. Henze 

n(X,.4: r,) = 0 , so (X,A) is properly 1-connected. 

The converse follows trivially from Proposition 2 

and the definitions. n 

Proposition 2: Let ( X , A )  be a properly 1-connected 

pair. Then z(A,X) is an isomorphism if the base points 

for the pair are a set of base points for A . We may use 

any lift functor to induce the covering functor. 

Proof: If T is an isomorphism on the E objects, 
- h 

we need only shaw h(1,  Zi) = h(i n X, xi) . But 

i = n x if rl (A) -t rl (X) is onto, so if we can s h m  

the result for the E objects ws are done. 

We need only show T is onto. By Theorem 2.4 

applied to the cokernels of the maps inducing T , we 
need only show that for each C E O(X) , thsre is a 

D 2 C in O(X) such that 



s a t i s f i e s  Image i, 2 Image z, f o r  a l l  x .  d D . I 

/-----) i We saw fl ( X - F ( C ) )  was j u s t  some copies  of 

- i  (A - C) , t o g e t h s r  w i th  covers  of components o f  

A - C ( X  - F ( c ) ) ~  . Since  ( X , A )  i s  p r o p e r l y  1/2- 

connected,  we can f i n d  D so  t h a t  Image i, 5 h ( c o p i e s  

.?J i 
of (A-C)  ) ;  i . e .  we can f i n d  D s o  t h a t  

(x  - F ( D ) ) ~  n (A - c )  = ( x - F ( D ) ) ~  n ( ~  - c l i  . 
Since  ( X , A )  i s  p r o p e r l y  1-connected,  we can  f i n d  

Dl I D  so t h a t  

i s  ze ro  f o r  a l l  xi d DL . But t h i s  says  a l l  t h e  cop ies  

/---' A/ 

of i n  h fl ( x - B ( D ~ ) ) ~  go t o  t h e  same copy of - - 
(A - C )  i n  n (X - F ( C )  ) i  , . namsly t h e  one con ta in ing  

Theorem 2.4 can a l s o  be used t o  g e t  

The subspace p r i n c i p l e :  Let  (X,A) be a n  a r b i t r a r y  

homogarnous p a i r .  Then y(R;X : h ,  {x i ] , - )  = 0 i f f  

y ( A :  h ,  {Gi] ,-) = 0 provided ,  f o r  thc  i f  p a r t ,  

1 )  i f  A, i s  a  c o l l e c t i o n  of d i s j o i n t  s u b s e t s  of 
- 

A , h(U Â, U p , p )  @ h(A, U p , p )  
a .  a 

2 )  i f  E 5 B a r e  s u b s e t s  of A , and i f  t h e r e  i s  a  



- ,u 

q E E s ~ c h  t h a t  h (E ,q )  3 h ( f i , q )  i s  t h e  zero nap ,  

then h(f? il p ,p )  --th(B U p , p )  i s  t h e  zero map f o r  

any p  . h need only be n a t u r a l  on subse t s  of A . 
Proof:  Only i f  is c l e a r  a s  T ( A , X )  i s  n a t u r a l l y  

s p l i t ,  so  we concent ra te  on t h e  i f  p a r t .  

y(A:h, {;ri] ,-) = 0 implies  by Theorem 2.4 t h a t  

we can f i n d  a  c o f i n a l  sequlnce Co 5 C1 5 ... of c losed ,  
d i ~  

compact subse t s  of A such t h a t  h (  (A - c . )  ,x i )  - J 
) i  A h ( (A - C j - l  ,x i )  i s  the  zero a3p f o r  a l l  xi d C . I f  

y = A , h(A) i s  a l s o  .zero .  
,- 

We then cla im h ( ( i  fl ( x - F ( c ~ ) ) ~  U 2i ,z i )  

,., i 
h((A n ( X - F ( C j - l ) )  U x i ,x i )  i s  the  zero map, and,  i f  

This l a s t  i s  easy s ince  i fl X i s  t h e  d i s j o i n t  
w 

union 3f copies  of P . N3-d ( X - F ( C j ) ) i  = U U  %a 
B a $  B 

where B runs over the  pa th  components of A - C . 
J 

i n  ( x - F ( c ~ ) ) ~  , and a@ runs over the  pa th  components 

0 
,- - 1 

of n ( ( A  - C j )  where n : ( x - F ( c ~ ) ) ~  -+ ( x - F ( c . ) ) ~  
J 

i s  the  covering p r o j e c t i o n  and ( A  - c j  ) @  i s  t h e  component 

of A - C -  corresponding t o  0 . Za i s  the  t h  
J B 

-1 B 
component of n ( (A - C ) . 

we a r e  looking a t  i s  j u s t  t he  map induced on t h e  d i r e c t  



sum by the  maps h(Za U i  h a  U %i,?i) f o r  
8 b  

t h e  unique a b  such t h a t  
za b  

i s  mapped i n t o  by 
' 

A 

'a B = ( A - c ~ ) '  , s o  i f  xi 
B 

e .  Z, , t he  map i s  the  zero - A 

map s i n c e  i t  i s  then a  map of t h e  form h((A - C j )  ,xi)  * 
P 

)i  A 

h (  (A - C j - l  , xi)  , which we know t o  be zero.  

If gi d Za , t he  map i s  now a map of the  form 
B 

- B  .- P A &  h ( ( ~  -c.) u , )  A - U ni ,xi)  , which i s  
J 

s t i l l  zero by the  p r o p e r t i e s  of h  . n 
We now i n v e s t i g a t e  the  invar iance  of our cons t ruc-  

t i o n .  

Theorem 2: Let f , g  : X -+ Y be proper ly  homotopic 

maps between homogarnous spaces .  Then t h e r e  i s  a  s e t  of 

paths  such t h a t  

commutes. 

Proof:  Let F : X x I + Y be t h e  homotopy, and 

l e t  MF be i t s  napping cy l inde r .  Then i t  i s  poss ib l e  



commutes, where t h e  h o r i z o n t a l  maps a r e  t h e  maps induced 
* 

by t h e  p a t h s  j o in ing  {xi] x t t o  $ 1  ( t  = 0, 1 )  

and t h e  l e f t  hand v e r t i c a l  map i s  t h e  map induced by 
A 

t h e  c a n o n i c a l  p a t h  xi x 0 t o  $i x 1 i n  X x I 5 
M~ 

I t  i s  now a chase  o f  d e f i n i t i o n s  t o  show the  de- 

s i r e d  diagram commutes. n 

C o r o l l a r y  2.1: Le t  f : X -+ Y be a  p roper  homotopy 

equ iva l ence  betwsen fwo homogamous spaces .  Then f ,  i s  

a n  isomorphism. 

Proof :  There i s  a s t a n d a r d  d e r i v a t i o n  of t h e  

c o r o l l a r y  from t h e  theorem, [I 

C o r o l l a r y  2.2 : A p rope r  homotopy equ iva l ence  be- 

tween ho1nogan.m~ spaces  i s  p roper  n-connected f o r  

a l l  n  ( i . e .  i t s  mapping c y l i n d e r  modulo i t s  domain 

i s  a p r o p e r l y  n-connected p a i r ) .  

P roof :  ( M ~ ,  X) i s  c l e a r l y  p r o p e r l y  l /2-connec ted .  

i, : A(X: T T ~ )  -+ 
A :  i s  o n t o ,  s o  i t  i s  ea sy  t o  

show ( M ~  ,x) i s  p r o p e r l y  1-connected .  Then 

Y (x ;M-~ :  .rrk) Y (x: r k )  - ( ( M ~ : K ~ )  , S O  

Y(M.P, + x: rrk) = 0 . [I 



Corol la ry  2.3: I f  f : X + Y i s  a  proper homotopy 

equivalence,  y ( M f , X :  h , (2 i ] , - - )  = 0  . 
Proof:  Since f  i s  proper ly  I-connected,  

Y ( x ; M ~ : ~ ,  e t c . )  - y(X:h, e t c . )  by P ropos i t ion  2. 

y (x :h ,  e t c . )  2 y(Mf:h, e t c . )  by Corol la ry  2.1.  Hence 

~ ( M ~ , X : h , e t c . ) = O .  0 

In  t h e  o t h e r  d i r e c t i o n  we have 

Theorem 2:CProper Wnitehead) Let f  : X + Y be 

p rope r ly  n-connected. Then f o r  a  l o c a l l y  f i n i t e  CW 

complex, K , of dimsnsion j n  , f#: [K ,X]  + [K,Y] i s  

a n  epimorphism. I f  f  i s  p rope r ly  (n+l)-connected,  
f #  

i s  a  b i j e c t i o n .  

Remarks : [K,X] den3tes t h e  proper hwotopy  c l a s s e s  

of proper maps of K t o  X . For a  proof of t h i s  r e s u l t ,  

s e e  [ll] Theorem 3.4 and note  t h e  proof i s  v a l i d  f o r  X 

and Y homogamous. 

Def i n i t i a :  An homogamous space Z i s  s a i d  t o  

s a t i s f y  Dn provided the  s ta tement  of Theorem 3 holds  

f o r  Z i n  p lace  of K and f o r  each proper map f  be- 

tween homogamous spaces.  

P ropos i t ion  3: Let Z be proper ly  dominated by a  

space s a t i s f y i n g  Dn . Then Z s a t i s f i e s  Dn . 
Proof:  We leave  i t  t o  the  reader  t o  modify the  

proof of P ropos i t ion  1.1 t o  show Z i s  homogamous i f f  i t  

i s  p rope r ly  dominated by a n  homogamous space. Let K be 

a  space s a t i s f y i n g  Dn and proper ly  dominating Z . 



Then [z,X] i s  a  n a t u r a l  summand of [K,X]  f o r  any 

homogarnous X , s o  t h e  r e s a l t  fol lows.  0 

We f i n i s h  t h i s  s e c t i o n  by. proving a  proper Hurewicz 

and a  proper Namioka thsorem. 

Def in i t ion :  A ( a s  opposed t o  t h e )  u n i v e r s a l  covsring 

func to r  f o r  X i s  a  covering func to r  - such t h a t  

~ ( X : . r r ~ , - - )  = A(X:.rrl ,")  = 0 . Note t h a t  i f  t he  u n i v e r s a l  

covsr ing f u n c t o r  i s  compatible wi th  X , then i t  i s  a  

u n i v e r s a l  covering f u n c t o r  f o r  X . There a r e  o ther  

examples however. 

We s t a r t  towards a  proof of t he  Hurewicz theorem. 

The proof mimics Spanier [35] pages 391-393. We f i r s t  

prove 

Lemma 2: Suppose 3 = {G. . }  i s  a  system of s i n g u l a r  
1 J  

chain complexes on spaces  X i j  . S7~ppose the  p r o j e c t i o n  

maps Gi -+ Gi j-l a r e  induced by continuous maps of t h e  

spaces  X i j  + Xij - l  . Assum i L 0 , j  2 0 . 
Assume we a r e  given a  system C = {c i j ]  , where 

each C i j  i s  a  subcomplex of G i j  which i s  generated by 

the  s i n g u l a r  s impli ces of Gi  which accur i n  C i j  . 
Also assume t h a t  the  p r o j e c t i o n  G i j  + Gi j  t akes  

c i j  + cij-l 

L a s t l y  assume t h a t  t o  evs ry  s i n g u l a r  simplex 

0 : Aq -+ X i j  f o r  j L n  ( n  i s  given a t  t he  s t a r t  and 

he ld  f i x e d  throughaut)  t h e r e  i s  ass igned  a  map 

9 P . . ( o ) :  x I + X i j - n  which s a t i s f i e s  
1 J 



projection 
'ij ' 'ij-n 

b) Define ol: aq A Xij-n by "l(z) = 

Pij(b) (z,1) . Then we require that al c CijWn, an., 
- if 0 :: Cij, then dl = 6 . 

c > If e: : aq-l + aq omits the kth vsrten, then 

Then E(C) 5 E ( & )  is a n  homglogy equivalence. 

(Compare Spanier [35], page 392, Lemma 7 ) .  

Proof: Let a(i,k) : CiksGik be the inclusion, 

and let ~ ( i , k )  : Gik -+ Cik-n be defined by ~(i,k)(d) = dl 

and extend linearly. (Here we must assume k 2 n 1. 

Define Pr : Gik -e Gik-r to be projection. 

One easily checks that condition c) makes ~ ( i , k )  

into a chain map. ~ ( i , k )  O a(i,k) : Cik + Cik-, is just 

the map induced on the Cij by pn on the Gij This 

follows from condition b). 

We claim a(i,k-n) O ~ ( i , k )  : Gik -+ Gikvn is chain 

homotopic to pn . To show this, let Dg: ~ ( 6 ~ )  -+s(aq x 1) 

be a natural chain homotopy between a(hl) and ~(h,) , 
where ho,hl: aq + aq X I  are the obvious maps ( S  is 

the singular chain functor). 

Define a chain homotopy Dik : S(Xik) + S(Xik-,) by 

Di,(a) = S(Pik(d)) (D ( E  1)  (where Eq: aq 5 is the 
q q 

identity) where 6 is a q-simplex. One checks, using 



c) a n d  the naturality of Dq , that bDik+Dika = pn - 

u(i,k-n) O ~ ( i , k )  . 
By definiti~, E(&) = lim p(Gik) and 

'k 
E ( C )  = $&I p(Cik) . Since 

k 

c o m t e s ,  we get a chain n a p  a : E(C) + E(&) , which 

is just the in-lusion. 

Since z(i,k) O a(i,k) = pn , 

commutes along the outsids square. Unfortunately the 

right-hsnd square may not com~nute as we have made no 

stipulation as to the behavior of Pi with respect to 

p1 . Similarly 



may no t  commute. Hmaever, s i n c e  a ( i , k - n )  ~ ( i , k )  i s  

cha in  homotopic t o  pn , 

does commute. 

Define 3 ( i , k ) :  Gik -+ 'ik-2n f o r  k 2 2 n  by 

$ ( i , k )  = ~ ( i  ,k-n) 0 a (i ,k-n) ~ ( i , k )  . We claim 

commutes. To see t h i s ,  look a t  

The square I1 commutes s i n c e  i t  a l r e a d y  does on the  

cha in  l e v e l .  Similar l -y  the  square I1 + 111 commutes. 

The square I + I1 commutes on t he  homology l e v e l .  The 

des i.red commutativi t y  7.s now a diagram chase.  

Now d e f i n e  T : E (H* (.&) ) -+ E (H* ( C ) )  us ing the  



By Corol la ry  1.2.2 we have H(a) :  E(H,(C)) + E(H,(.&)) . 
T O H(a)  and ~ ( a )  0 '6 a r e  both induced from the  maps 

H ( ~ 2 n  ) , and hence a r e  the  i d e n t i t i e s  on the inve r se  

l imi t s .  Q.E.D. 

Lemma 3: Let X be a n  h~m~gamous  space. Then we 

can f i n d  a  countable ,  c a f i n a l  c o l l e c t i o n  of c losed ,  com- 

e4 
- i A G i j  - S ( ( X - C ~ )  ,xi )  , t he  s i n g u l a r  cha in  groups on 

,4 i c--Ji ... ,- i A  n 
( X - C j )  . Let c i j  = s ( ( x - c j )  , A n ( x - c . )  J ,x i )  

( see  Spanier  [35], page 391 f o r  a  d e f i n i t i o n ) .  

Suppose ( X , A )  i s  proper ly  1-connected and proper ly  

n-connected a t  a f o r  n 2 0 . Then the  i n c l u s i o n  map 

E(C) 5 E(&) i s  an  homglogy equivalence.  (NDtice t h a t  

i f  we pick a  s e t  of base pg in t s  xi f o r  A , t hey  a r e  a  

s e t  f o r  the  p a i r ,  and E(&)  = E ( X ; H * , C ~ ~ I , - - ) . )  

Proof:  L s t  r = min ( q , n )  . Then we produce f o r  

every a t: G~~ a  map p i j ( o )  : nq n I + ( ( x - c ~ - ,  U P  ,xi)  A 

which s a t i s f i e s  

6  
a )  P i j ( " ) (z ,O)  = 3 :  Pq - ((x- c . ) f )  p r o j e c t i o n  ;r J 



From such  a  P , i t  i s  easy t o  s e e  how t o  g e t  a  P  

a s  r e q u i r e d  by our f i r s t  l e m .  We remark t h a t  C i j  a n j  

P s a t i s f y  a l l  the  other  requirements t o  app ly  t h ?  l e n m .  i j  

Bmce Lemna 2 w i l l  then give us the  d e s i r e d  conclusion.  

We d e f i n e  Pi j  by induct ion on q  . Let  q  = 0 . 
Thrn 0 c Gi 

-i i s  a  map : do + ( ( X - C j )  ) . Since  t h e  
,---' 

po in t  d (dO)  l i e s  i n  the  same pa th  compsnent of ( X  - c ) ~  

a s  Pi , t h e r e  i s  a  path joining them, Let  P i j  ( a )  be 

such a  pa th .  I f  a (dO)  = fi  , P. 1 J . (0)  should be the  con- 

s t a n t  pa th .  This  def ines  Pij  f o r  q  = 0 , and P  i s  

e a s i l y  seen  t o  s a t i s f y  a )  - c ) .  

Now suppose P i j  i s  defined f o r  a l l  d 3f degree < q ,  

0 < q 5 n s o  t h a t  i t  has p rope r t i e s  a )  - c ) .  

If d E C i j  , b)  def inas  P ( 0 )  , and P  then 

de f ine  Pi j  on nq x 0 U iq x I ; i . e .  w e  g e t  a  map 

w ) i  
f  : n q X o  u b4 I ---+ ( x - c ~ - ~ + ~  . There i s  a  homeomor- 

phism h :  Eq X I  = A ' X I  such t h a t  h ( E q x O )  = a q x O  U i q x 1 ;  

h ( s q - l  x 0 )  = x 1 ; and h ( sq - l  x I U Eq x 1) = nq x 1 . 
.- -' 

Let g  : ( E ' , S ~ - ~ ) - + ( ( X - C ~ - ~ + ~  ) )  be 

def ined  by g  = f o h  



Because q  5 n and (X,A) i s  proper ly  n-connected 

a t  m ,  we could have chosen (and d i d )  t h e  C j  so t h a t  

n  ( x - c b Y  R n X - c ,  - - - t ~ ~ ( x - c ~ - ~ ,  A n ( X - C ~ - ~ ) , * )  
q 

i s  t h e  zero map f o r  q  5 n . Thus we g e t  a  homotopy 

,- .----.' 
H : ( ~ q , s q - l )  X I  -+ ( ( x - c  l i  , x n ( x - c  l i )  

J -9 j  -9 
between p1 0 g and a n  element of C i jWq  . 

Define P .  . ( 0 )  t o  be the  c m p o s i t e  
1 J 

h - l  x i d ,  ~ ' 1  I -.-- H .b 

A4 x I + ( x - c ~ - ~ ) ~  . P . .  c l e a r l y  
1 J 

s a t i s f i e s  a )  and b )  . Since h  was chosen c a r e f u l l y ,  

c )  i s  a l s o  s a t i s f i e d .  

I n  t h i s  way P i s  def ined  f o r  a l l  s i rnp l ic ies  of 

degree 5 n . Note t h a t  a  s i n g u l a r  simplex of degree > n 

i s  i n  C i j  i f f  every proper f ace  i s  i n  C i j  . 

Suppose t h a t  P has  been def ined  f o r  a l l  degrees 

< q where q  > n . I f  0 E C i j  , we de f ine  P . . ( o )  
1 J 

by b )  a s  usua l .  I t  s a t i s f i e s  a )  and c )  . So sup- 

pose o d C i j  . Then. a )  and c )  de f ine  a  map 

.A 
f : gq>cO U i q x I  --+ (X - C j  -n ) . By the  homotopgr 

ex tens ion  proper ty  we can extend f t o  some map 

.- 
P ( O )  : dq I --+ x - C j n i  . I t  c l e a r l y  s a t i s f i e s  a )  

and c )  . I t  a l s o  s a t i s f i e s  b )  s ince  every proper 

f a c e  of ol i s  i n  ' i j -n  . Hence we have def ined  our P. 

Q.E.D. 



Then there are natural maps 

E(~)(x,A : H ,-I + E (n-1) (X,*:H~, - )  -+ . . . 
4 

Lemma $: Assume (X,A)' is a properly 1-connected 

pair which is properly n-connscted at oo for some n 2 0. 

Then the natural map E(")(x,A: H ,-) + &(X,A: Hq,(Gi],-) 
4 

is an isomorphism for all q . 
Proof: We have the following commutative diagram 

- (the quotient complex) -F 0 

i -i --+ s((x-cj) , A n  tx-cj) o 

where (the quotient c~mplex) was used in defining E(") (X,h). 

Now, since (x,A) is properly 1-connected, the sub- 

space groups E(")(R;X : etc.) and E(A;X : etc. ) are 



t he  abso lu te  groups. Since (A&) i s  proper ly  1- 

connected and proper ly  n-connected a t  i n f i n i t e l y  

f o r  a l l  n , Lem111.2 3 says  &(a) i s  a n  isomorphism 

on h~ms logy .  S i m i l a r l y  Lemma 3 says  E ( @ )  i s  a n  

isomorphism on homology. T h u s  ~ ( y )  i s  a n  isomor- 

phism on homology a s  a s s e r t e d .  Q.E.D. 

Theorem 4: Suppose ( X , A )  i s  proper ly  1 - c o n ~ e c t e d  

and proper ly  (n-1)-conqected a t  oo f o r  some n 2 2 . 
Then the H-~rewicz map A :  T , {$i} , - )  9 

n 

E ( X , A  : H , ( x . } , - )  i s  a n  isomorphism, where n 1 

- . i A 

out  by t h e  a c t i o n  of 5 ( . A  n (X - c J . ) U k ,  xi) . 
Proof:  The usua l  Hurewicz theorem conta ins  the  - i - r - V  i A f a c t  t h a t  X - c .  J , -4 n (X  - c . )  J , xi) -% 

- i  f - V i  A 

( ( X - C . )  , A n ( X - C j )  , xi) i s  a n  isomorphism. 
J 

1 
~ h u s  E(X,A : rn, {Gi3,-) -+ E n l ( x , ~  : H -  i s  a n  

isomorphism. But Lemma 4 says  E ( n - 1 ) ( ~ , . 4 : ~  n ,-I -+ 
6 

E(X,A: Hn,  {x i} , - )  i s  a n  isomorphism. 0 

Th5orem 5: Suppose t h a t  & ( ~ : r ~ ,  (2i]  , -F)  = 0 

where -F i s  the  cover over A induced by t he  l i f t  

fuqc to r  F from a cover - over X . Then t h e  n a t u r a l  

s u r j e c t i o n  & ( x , a :  T ~ , { ~ } , -  E ( X , A  : T;, ($$I ,-) 

i s  a n  isomorphism. 



Ki j t o  be the ke rne l  of Gi .-+ Hi -+ 0 . Ki j i s  

generated by elements of t he  form x - a x  , where 

Since &(A : rl, , - = 0 , t he  subspace 

p r i n c i p l e  says  t h a t  ws can assume the  map 

i s  t h e  zero map. Then K .  . -+ Kij-l 
1 J 

t akes  x  - a x  t o  

i * (x )  - i * ( a x )  = i , ( x )  - i # ( a )  . i * ( x )  = i * ( x )  - 

i , ( x )  = 0 , so  t h i s  map i s  t he  zero map. 0 

Theorem 6: Let (x ,A)  be a p rope r ly  1-connected 

p a i r .  Then, f o r  any covering func to r  - on X , t he  

n a t u r a l  map E(X,A : , {xi} , - )  -7 E(X,A : rn,{Gi], 

no cover )  i s  a n  isomorphiam. 

Proof:  We have 

A ... -+ E (A: rky )no cover )+ E (X: e t c  . ) + E (x,A: e t c .  ) 

commutes. The f i r s t  two maps a r e  c l e a r l y  isomorphisms 

f o r  k  2 2 , so  the  t h i r d  i s  f o r  k  2 3 . M,x-eover 



~ ( . B : r ~ , n o  c o v e r )  -).. E(X: e t c . )  

i s  a  p u l l b a c k  s i n c e  i t  i s  o b t a i n e d  a s  t h e  E c o n s t r u z -  

t i o n  a p p l i e d  t o  p u l l b a c k s .  Hence t h e  theorem remains  

t r u e  f o r  k  = 2  . 0 

C o r o l l a r y  6.1: Suppose ( X , A )  i s  a  p r o p e r l y  1- -- - 
connec ted  p a i r  which i s  (n-1)-connected  a t  ~0 f o r  some 

n L 2 .  If n = 2 ,  assume ~ ( A : r ~ , n o c o v a r - +  

&(X:nl, no c o v e r )  i s  a n  i s o m ~ r p h i s m .  Then t h e  Hurewicz 

map E(X,A: TJ no c o v e r )  --+ E ( X , A :  H,,-) i s  a n  i s o -  n '  
morphism, where - i s  a n y  u n i v s r s a l  c o v e r i n g  f u n c t o r  

f o r  X . 

Theorem 7: Theorems )+ ,5, and 6 a r e  t r u e  ( a f t e r  - 
a p p r o p r i a t e  changes )  w i t h  A i n s t e a d  of  E . They a r e  

a l s o  t r u e  f o r  t h e  a b s o l u t e  g roups .  

P r o o f :  E a s y .  0 

Now suppose  (X,A) i s  a  l o c a l l y  compact CW p a i r .  

Then we might  hope t o  improve o u r  Hurewicz theorems bj 

g e t t i n g  i n f o r m a t i o n  a b o u t  t h e  second non-zero  map 

( s e e  [ 4 2 ] ) .  We do th is  f o l l o w i n g  W i l t o n  [ l 3 ] .  

D e f i n i t i o n :  Two p r o p e r  maps f ,g: X + Y a r e  s a i d  

t o  be p r o p e r l y  n - h m o t o p i c  i f  f o r  e v e r y  p r o p e r  map 

0 : K + X , where K i s  a l o c a l l y  compact CW complex 

of  d imension  L n  , f @  i s  p r o p e r l y  homotopic t o  g@ . 



X and Y a r e  of t he  sams proper n-homotopy type 

provided t h e r e  e x i s t  proper maps f : X + Y and 

g  : Y + X wi th  f o  g  and g  0 f  p roper ly  n-homotopic 

t o  t h e  i d e n t i t y .  Two loca l ly 'compact  CW complexes, K 

and L  , a r e  s a i d  t o  be of the  sane proper n-type i f f  

K~ and Ln have t h e  same proper (n-1)-type.  A proper 

c e l l u l a r  map f  : K + L i s  s a i d  t o  be a  proper n-equi- 

valence provided t h e r e  i s  a  proper map g :  Ln+l , Kn+l 

with  f / ~ " + l  0 g and g 0 ~ J K ~ + '  p roper ly  n-homo- 

t o p i c  t o  the  i d e n t i t y .  

A proper Jm-pa i r ,  (X,A) , i s  a  proper ly  1-connected,  

l o c a l l y  compact CW p a i r  such t h a t  the  maps 

d(xn-I  U A, 8: %, no cover )  + A ( X " U A ,  A :  , no cover )  

a r e  zero  f o r  2 n  L m . A proper Jm-pair  a t  oo i s  

the  obvious th ing .  

Lemma 5: The proper ty  of being a   air air i s  an  

i n v a r i a n t  of m-type. 

Proof:  See Hi l ton  [ l 3 ] .  Q.E.D. 

Theorem 8: Let (X,K) be a  proper Jm-pai r  a t  . 
Then t h e  Hurewicz map hn : E (X,L: mn, {2i], no cover)  

X , A :  H ,  , -  , where - i s  a  u n i v e r s a l  covering 

func to r  f o r  X , s a t i s f i e s  hn i.s a n  isomorphism f o r  

n L m , and i s  a n  epimorphism. 

Proof: See Hi l ton  [13]. n 
Corol la ry  8.1: Tha same conclusions hold f o r  a  
--, 

proper Jm-pai r  wi th  t h e  A groups.  



Corollary 8.2: Let (X,A) be a properly (n-1)- 

connected, locally compact CW pair, for n 2 2 . If 

n = 2 , let A(A: nl, no cover) + A(X: rl, no cover) 

be an isomorphism. Then the Hurewicz map 

hn : A(X,A: rn, no cover) + A(X,B: Hn,-) is an isomor- 

phism, where is a universal covering functor for X. 

hn+l is an epimorphism. 

Proof: In section 5 we will see there is a locally 

finite 1-complex T 5 A such that (A ,T) is a proper 

1/2-equivalence and A(T: rk, ng cover) = 0 for k 2 1. 

Then (T, T) is certainly a proper Jn-complex. 

(T, T) 5 (X,A) is a proper (n-1)-equivalence, so (X, A) 

is a Jn-complex by Lemma 5, 0 

Theorem 9: (Namioka [28] ) Let a : (X, A) + (Y, B) 

be a map of pairs of locally compact CW complexes. Let 

@]x and @]A be properly n-connected, n 2 1 ( @ I  x 
and @ I A  should induce isomorphisms on A (  : rl, no 

cover) if n = 1) Then the Hurewicz map 

hn+l: A((Mb : X) : rn+l, no covar) -+ 

A((M@ : Ma(*, XI: Hn+l,-), where - is a universal 

covering functor of Ma , is an epimorphis~. 

Proof: (Ma : MfllA, X) is a triad, and the groups 

in question are ths proper triad groups. The reader should 

have no trouble defining these groups. We can pick a set of 

base points for (x,A) , and it will also be a set for 
our triad. 



The t r i a d  groups f i t  i n t o  a long exac t  sequence 

A ( ( M ~ , ~ , A ) ;  M@) A ( ( M ~ , x ) )  -+ b((M@: M g l A , X ) )  -+ , 

where a g a i n  we g e t  subspace gr-oups. Since @ I A  and 

@ I  x a r e  proper ly  n-connected. hm f o r  (M@,X) i s  a n  

isomorphism m ( n  and a n  epimorphistn f o r  m = n + l  . 
By the  subgronp p r i n c i p l e ,  hm f o r  ( (Mf l IA ,4 ) ;  M@) i s  

a n  isomorphism f o r  m ( n  and a n  epimorphism f o r  m = n+l .  

The s t rong  ve r s ion  of the  5-lemma now sh3ws the  t r i a d  

h a n  isomorphism and the  t r i a d  hn+l n a n  epimorphisa. 

Notation: A * ( X , A :  - ) w i l l  h e r e a f t e r  denote 

A(X,A: H , , { $ ~ ] , - )  f o r  some s e t  of base po in t s  f o r  the  

p a i r  (X,A) . Simi la r  n o t a t i o n  w t l l  be employed f o r  

homology n-ad groups, subspace groups,  e t c .  

We conclude t h i s  s e c t i o n  wi th  some d e f i n i t i o n s  and 

computations . 
Def in i t ion :  An homogamous space X i s  s a i d  t o  havs 

monornorphic ends,  provided b(X: nl,no cover)  + X iil(x,xi) 
i~ I 

i s  a monomorphism (equ iva len t ly  E '11 i s  a monomorphism). 
i 

A space has epimorphic ends provided the  above map i s  onto,  

and isomwphic ends i f  t he  map i s  a n  isomorphism. 

A s  examples, i f  X i s  a n  homogamous space which i s  

not  compact, X x R has one, i s o l a t e d  end ( see  [ 3 2 ] )  

which i s  epimorphic. X x R~ has isomorphic ends. These 

r e s u l t s  use Mayer-Vietoris t o  compute the  n ~ m b e r  of ends 

of X x R and van-Kampen to  y i e l d  the nl in format ion ,  

using the  fol lowing pushout 



I n  f a c t ,  t h i s  diagram shows t h a t  i f  X and Y 

a r e  not  compact, X x Y  has  one end, which i s  seen t o  

be ep imxph ic  s i n z e  nl(X x Y - C x D )  + rl(X x Y) i s  

e a s i l y  seen  t o  be onto.  I f  X has epimorphic ends,  

nl(X -C ,p )  -+ r l(X,p) must always be onto ,  so  i f  X 

and Y have epimorphic ends,  X X Y  has  one-isomorphic 

end. 

Monomorphic ends a r e  n i ce  f o r  then the  t h i r d  

example of covering func to r  t h a t  we gave ( t h s  u n i v e r s a l  

cover of X but no more) becomes a  u n i v e r s a l  covering 

func to r .  F a r r e l l  and Wagonsr ([9] or  [ll] ) then showed 

t h a t  a proper map f : X -' Y ,  X ,  Y l o c a l l y  compact CW , 
with  X having monomorphic ends i s  a proper homotopy 

equivalence provided i t  i s  a  proper ly  1-connected map; 
* - * - a h~motopy equivalence;  and f* :  H c ( Y )  + Hn (X) i s  a n  

L. 

isomorphism where - denotes the  u n i v e r s a l  cover 

( c o e f f i c i e n t s  a r e  the  i n t e g e r s ) .  

Sec t ion  4 .  Proper cohomology, c o e f f i c i e n t s  and products  

I n  a t tempt ing  t o  understand o rd ina ry  homotopy theory ,  

cohomology theory  i s  an  ind ispensable  t o o l .  I n  grd inary  

compa-t su rge ry ,  the  r e l a t i o n s h i p  between homology and 

cohomology i n  ~ o i n c a r g  d u a l i t y  spaces forms the  b a s i s  of 

many of the  r e s u l t s ,  To extend surgery  t o  paracompact 
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o b j e c t s ,  we a r e  going t o  need a cohomology theory.  

I f  one g ran t s  t h a t  the  homology theory  t h a t  we 

cons t ruc ted  i n  s e c t i o n  3 i s  the  r i g h t  one, then the  

c o r r e c t  cohomology theory i s  no t  hard t o  i n t u i t .  To 

be loose  momentarily, i n  homology we a s s o c i a t e  t o  each 
rJ 

compact s e t  C the  group H , ( M - C )  . I f  M - C  i s  a 

manif o ld  wi th  boundary, Lef sche tz  d u a l i t y  t e l l s  us t h i s  - * rJ - 
i s  d u a l  t o  iIc ( M  - C , a C )  , where M - C i s  t h e  c losu re  

of M - C  . If C S D  , we have a map H,(M=) -+ 
so  we need a map .- * - 'Y 

A candidate  f o r  t h i s  map i s  Hc (M - D ,  a D )  

map induced by i n c l u s i o n ,  t r  i s  the t r a c e ,  and ex i s  

a n  e x c i s i o n  map. 

The f i r s t  problem t h a t  a r i s e s  i s  t h a t  ex  need n a t  

be a n  isom3rphisn. This problem i s  e a s i l y  overcome. We 

de f ine  8 (x) t o  be the ca tegory  whose o b j e c t s  a r e  open 

s u b s e t s  of X whose c losu re  ( i n  X) i s  compact. I f  

U , V  s 6 ( X )  , t h e r e  i s  a morphism U -+ V i f f  0 5 V o r  

U = V . 6 ( X )  w i l l  be our diagram scheme. Note w e  have 

a f u n c t o r  B(X) + D(X) which sends U + U . Since X 

i s  l o c a l l y  compact, t h i s  func to r  has a c o f i n a l  image 

(X i s  homogamous, hence l o c a l l y  compact). 

The second problem which a r i s e s  concerns covering 

functors. .  Since X - U  , U & 8 ( X )  i s  c losed ,  i t  i s  

hard t o  g e t  condi t ions  on X so t h a t  X - U  has  a r b i t r a r y  

covers.  Thsre a r e  two s o l u t i o n s  t o  t h i s  problem. We 



can r e s t r i c t  b (X) (e.g. i f  X i s  an  hom~gamous CW 

complex, and i f  we pick s e t s  U so t h a t  X - U i s  a  

subcomplex, then we always have c o v s r s ) ,  o r  we can 

ignore the  problem. We chaose the  l a t t e r  a l t e r n a t i v e ,  

and when wu w r i t e  - i s  a  covering func to r  f o r  X , we 

mean - i s  compatible with  X - U  f o r  each U E O(X) . 
I t  i s  not  hard t o  sne t h a t  i f  X i s  l o c a l l y  1-connected, 

then u n i v e r s a l  covering func to r s  e x i s t  d e s p i t e  the  f a c t  

t h a t  the  un ive r sa l  covering f u n c t o r  need n o t ,  

Now we could hsve de f insd  hom3logy and homotopy 

groups using 0 ( X )  i n s t e a d  of O ( X )  . Given a  cover- 

ing func to r  f o r  8 ( X )  t h e r e  i s  a n  ob;rio?ls one f o r  :Q(X). 

I t  i s  not  hard t o  show t h a t  the  homology and homotopy 

groups f o r  X a r e  the  same whether one uss s  0 (X) or 

&(XI . 
Def in i t ion :  n,(X;A1, ..., An:  -,r), where r i s  a -- 

l o c a l  system on X , denotes the  A-construction app l i ed  

where the homology group i s  t he  ord inary  ( s i n g u l a r )  n-ad 
* * 

homology group wi th  c o e f f i c i e n t s  i r , where i r i s  

the  l o c a l  system induced from r by the  composite 

* 
Def in i t ion :  A X :  - ,  i s  the  a-construc t i o n  appl ied  

(aU = f r o n t i e r  of U i n  X.)  



A * ( x , B :  -,r) is the A-construction applied to 

Caution: (X,A) must be'a proper pair (i.e. A 5 X 
* 

is proper) before Hc(X,A) makes sense, A similar 

remark applies for n-ads, 

* A (X;Al,. . . ,An: -,I') is defined similarly. 

In our definition we have not defined our maps - 
G i ~  + G i ~  if 6 5 V . If X - V  = ~-I(x-v) , where 

N .  

.rr : (X - u ) ~  -+ X -U , thsn the map is the composite 

rV - i 3U n (X - U) ; i *  where rl and are the obvious 

local systems. B similar definition gives the map in 

the pair and n-ad cases, 

Once again we get long exact sequences modulo the 
* 

usual subspace difficulties. We let a (A;X:-,r) denote 

the subspace group with a similar notation for sub-n-aii 

groups. Again we get a subspace principle. Lastly the 

cohom3logy groups are 'lir~dependent'l of base points 

(compare Theorem 3.2) and are invariant under proper 

homotopy equivalence. The proofs of these results should 

be easy after section 3, and hence they are omitted. 

One reason for the great power of cohom~logy is that 

we have various products. The first product we invsstigate 

is the cup product;. 



Theorem 1: There i s  a  n a t u r a l  b i l i n e a r  p a i r i n g ,  - 
t he  cup product 

If [ A , B ]  i s  a  proper ly-excis ive p a i r ,  t he  n a t u r a l  
* 

map A (x ,  K U B :  - , r l % r 2 )  -+ A*(X;K,B:-,r1SIr2) i s  a n  

i somrph i sm,  s o  we g e t  t he  "usual"  cup product. 

,- 
U E a ( ~ )  CPU i n x u ;  *  v ia  E Hm(X - u )  , 

v 
( -  i *  . One then  checks t h a t  i f  - /-J 

- i  ( X - T J ) ~ ,  i % n  ( u ) ~  i *  and 
G i ~  = H ~ ( ( x  - U) , 

,, b 

* 
if HiU = t he  group f o r  A (X;A,B: -,r2 B r 2 ) ,  then 

commutes. Hence t h e  maps U cpU g ive us a  m p  

An(X,B:-,r2) + A""(x;A ,B:-,r, 8 r2) One e a s i l y  checks 

t h i s  map gives  us a  n a t u r a l  b i l i n e a r  p a i r i n g .  

Now we have a n a t u r a l  map A* (X,4 U B) " A* (X i A , B  ) 

We g e t  a commutative diagram 



where the rows are exact, {A.,B] a properly-excisive 

pair implies A*(& u B,A) -+ A" (B,A n 3) is an isomorphism 

for a set of base points in A n 3  which is a set for 

A, B, and b U 3  . The subspace principle now shows,the 

right hand map is an isomorphism. The middle map is the 

identity, so ths left hand nap is an isomorphism, This 

establishes the last part of our claim. 0 

For completeness we give the dsfinition of a pro- 

perly-excisive pair. 

Definition: A pair {A,B] of homogamous spaces 

is said to be properly axcisive with respect to some 

covering functor - , pro~ided 

for any local system r . 
The pair is propsrly-excisive if it is properly 

excisive with respect to all covering functors compatible 

with A U B  . 
The other produot of great importance is the cap 

product. We get two versions of this (Theorems 2 and 3 ) .  

Theorem 2: There is a natural bilinear pairing, 

the cap product 

m Lf. a (x,A:-,~~) Hn+m (X;A,B;r2) '+ A,(x,B: -,rl B r2) 

If {A,B] is a properly-excisive pair, we can define 

thz "usual" cap product. 

&.f. 
Proof: Let C e Hn+m (X;.k,B;lY2) . Define 



&.f. 
from Htof. (x;R,B;~.~) i H, (x;A,B,u;~~) - 

One can chsck that n ZU satisfies the necessary 
m 

commutativity relations to define a map A (X,A:-,T1) -3 

An(X,B:-,T1%r2) . 
If {X,A) is properly excisive, H: (4 U 5;A ,B) = 0 

from A* = 0 . Universal coefficients shows Htaf (A U B; 

A,B) = 0 , so the standard exact sequence argument sho-~rs 

(X;A ,8;r2) 3 H $ ~  (X,A u B; 1 . o 
Theorem 3: There is a natural bilinear pairing, the 

cap product 

Hm(x,,4;1>) r An+m(~;~,~:-r2) -Z An(X,B:-,rl €3 r2) 

If [A,B) is a properly-excisive pair, we can 

define the "usual" cup product . 
Proof: Given ip c Hm(~,A;r1) , define 

.- ,---'I 
ipu 

H~((x -u)~, A" n (x-U) , i*rl) by 
h/ 

Hm(x,a;r1) -3lIm(X -u, A -U;T1) Hm((x -u)~, - 
i fl (x-~)~;i*r~) . One checks again that the nacessary 

diagrams commute. The statement about {A ,B) f ollovs 

from the 5-lemma an3 tha subspace principle. n 
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We w i l l  a l s o  need a ve r s ion  of the  s l a n t  product 

f o r  our theory. To g e t  t h i s  we need t o  de f ine  a  group 

f o r  the  product of two - ads .  A s  u s u a l  we apply  t h s  

A c o n s t r u c t i o n  t o  a p a r t i c u l a r  s i t u a t i o n .  Pick a s e t  

of base po in t s  f o r  X and a  s e t  f o r  Y . Our indexing 

s e t  i s  the  c a r t e s i a n  product  of thase  two s e t s .  O~lr 

The r e s u l t i n g  group w i l l  be denoted n*((X;A1,. . . ,-4 n  ) x 

( Y ; B ~ ,  ..., B,): -, --- , l?) (r i s  some l o c a l  system on 

X X Y ) .  

Theorem 4:  There i s  a  n a t u r a l  b i l i n e a r  p a i r i n g ,  

the  s l a n t  product 

Proof:  For rq E H ~ ( Y ; B ~ ,  . . . ,Bm;lT1), de f ine  IPV a s  

i n  Theorem 1. These give us the  necessary  maps. 0 

Corol la ry  4.1: I f  d  : X + X x X i s  the d iagonal ,  

and iI. C E nn+m(X;h,B: - , TI) ,  and i f  cp E H ~ ( x , A ;  r 2 ) ,  



Using our s l a n t  product,  we can de f ine  the  cap 

product of Theorem 3 "on the  cha in  l e v e l " .  There a r e  

two bas i c  chain groups we would l i k e  t o  use. For a n  

homogarnous CW conplex w s  would l i k e  t o  use the  c e l l u l a r  

cha ins ,  and when X i s  a  paracompact manifold wi th  a  

l o c a l l y  f i n i t e  handlebody decomposition, we want t o  use 

the  chains  based on the  handles .  Wo do the  former case 

and leave  the  reader  t o  check the theory s t i l l  holds  i n  

the  l a t t e r .  

I f  X i s  a n  h~mogamous CW complex, we de f ine  
* *-1 * * 

P*(X;A,B:- , r )  = A,(X ;X A B : -  (where A*  = A n x*) 

f o r  * - > 2 . I f  * = 0 o r  1, we must use subspace groups 

A*((x*;x*-~ ,A*,B*) ;  X : -,r) . A and B a r e  subcom- 

plexes .  S i m i l a r l y  de f ine  

The t r i p l e  ( x * , x * - ~ , x * - ~ )  g ivs s  us a  boundary map 

p, -+ p*-I, P* -+ P*+l,  e t c .  This boundary map mak2s the  

above o b j e c t s  i n t o  cha in  complexes (33 = 01, and by 

Corol la ry  2.2.2, t h e  hom3logy of these  complexes i s  j u s t  

what one expects  . 
A d iagonal  approximation h,: P,(X;A,B:-,I?) 3 

* 
A * ( ( ( x , A )  x (X,B)) : x i s  a  c e l l u l a r  approximation 

t o  d: X + X x X  wi th  a  homotopy H: X x  I-+ XxX such t h a t  



r1 D H and ir2 9 H a r e  proper. ( ( (x ,A) (x,B))* 

i s  j u s t  u ( x , A ) ~  x (x,B) *-k) . Any two such diagonal  
k 

approximations a r e  c e l l u l a r l y  homotopic s o  t h a t  t h e  

homotopy composed wi th  p r o j e c t i o n  i s  proper. 

Theorem 5: Given any diagonal  approximation h , 
t h e r e  i s  a  b i l i n e a r  pa i r ing .  

then  aa,(f , c )  = (-1) n+m Bh(Gf,c) + Bh( f , ac )  . Hence w e  

g e t  a n  induced p a i r i n g  on the  homology l e v e l .  Any two 

Bh(f ,  ) a r e  cha in  homotopic, s o  the  pa i r ing  on homology 

does no t  depend on the  d iagonal  approximation. This 

p a i r i n g  i s  the  cap product of Theorem 3. 

n+m Proof:  h,(c)  c A,+,(((X,A) x (X,B)) , e t c . ) .  -- 

'n+m ( ( x n ; x n - l , ~ " )  x ( X ~ ; X ~ - ' , B ~ )  : - ,r2 x r2) l i e s  a s  a  

n a t u r a l  summand of t h i s  f i r s t  group. Let p: be the  

- n 
p r o j e c t i o n .  Then %(f  , c )  - f  1 pm(h, (c ) )  . The r e s t  

of t h e  proof involves  checking t h i s  d e f i n i t i o n  has  a l l  

the  a s s e r t e d  p r o p e r t i e s .  0 

We a l s o  want t o  de f ine  the  cap product of Theorem 

2 on the  cha in  l e v e l .  Unfor tuna te ly ,  t h e r e  i s  no s l a n t  

product of the  needed type,  s o  we must use b r u t e  fo rce .  

Theorem 6: Given any d iagonal  approximation h , ---- 
t h e r e  i s  a  b i l i n e a r  p a i r i n g  

B ~ :  P"(x,A: - ,  c'of (x;A,B;%) -+ P ~ ( X , B : - , ~ ~  8 r2l0 
n+m 



m L.f.  I f  f  € P X , : ,  and c  e Cn+m (X;A,B;r2), 

Hence we g e t  an  induced pa i r ing  (independent of h )  

on the  homology l e v e l .  This pa i r ing  i s  the  cap product 

of Theorem 2. 

&.f, 
Proof:  Let c  E Cn+m ( X ; A , B ; ~ ~ ) "  Define 

iir2) by e x c i s i o n  and t r a c e  a s  i n  Theorem 2. We de f ine  
, , -~ ,~ - - . r c - - -  ;.- -----------/ 

m - 1  
B  , c )  from i;he maps ' H:( (X - u ) ~  fl xm; ( X  - u ) ~  n X , e t c . )  

I i s  the  s l a n t  product and b,, i s  tho homology c l a s s  
U 

/-----' h * 
given  v ia  H ( ( x  - u)' n xm; e t c . )  -- 

,---- - -- --_- --- A 
, 

H ( ( ( x  - n xm) x ( ( x  - u) i  n xn);  e t c .  

( s u p e r s c r i p t  i denotes a  component containing ?ii , 
and s u p e r s c r i p t s  n ,  m and n+m denote ske le tons .  

Note i n  passing t h a t  h , ( t r  f t r (h*bU)  , which 

i s  why we a r e  unable t o  de f ine  a  gene ra l  s l a n t  product 

l i k e  Theorem 4 t o  cover t h i s  case.  

The r e s t  of the  proof incolves  v e r i f y i n g  diagrams 

commute and v e r i f y i n g  our equat ion.  0 

L a s t l y  we prove the  Browder lemma, which w i l l  be 



essential in our study of Poincare duality. 

Theorem 7: Let (X,A) be a proper pair, and let 

c e Hn L'f.(~,A; r2) . Then - 

commutes. 

Proof: The usual Browder lemma (see section 1) 

says that the corresponding diagram commutes for ordinary 

homology and cohonology with compact supports. Commuta- 

tivity is then trivial for the above diagram. (While ws 

have not defined a cap product for subspaze groups, the 

reader should have no difficulty writing down the nec- 

essary maps. 0 

Section 5. Chain complexes and simple homotopy type. 

In our A-construction as applied to the homology or 

homotopy functors, we still have some structure that we 



have no t  u t i l i z e d .  

A s  a n  example of t h i s  e x t r a  s t r u c t u r e ,  l e t  us 

consider  E X :  ) . This i s - a n  inve r se  l i m i t  

1 -  X - C ,  xi ) . NOW many of the  rl ( X  - C ,  xi)  

a r e  isomorphic. (Unfortunately  t h i s  isomorphism i s  

no t  n a t u r a l  but depends on a  pa th  joining xi t o  x  .) 
j  

Our &-cons t ruc t ion  m k e s  no use of t h i s  f a c t .  I n  order  

t o  be a b l e  t o  make e f f e c t i v e  use of t h i s  e x t r a  s t r u c t u r e ,  

we need a  way t o  choose the  above isomorphis-ms. 

We w i l l  do t h i s  through tha  concept of a  t r e e .  

A t r e e  f o r  an  homogamous space X w i l l  be a  1-dimensional,  

l o c a l l y  f i n i t e ,  s i m p l i c i a 1  complex, T , such t h a t  

1) A ( T  : \)  = 0 f o r  k > 0 

2 )  I f  TI 5 T i s  a  subcomplex of T , T I  has 

the  proper homotopy type of T i f f  T = T I  . 
(This l a s t  cond i t ion  i s  t o  i n s u r e  t h a t  O- - 0 .  

7 
i s  no t  a  t r e e  f o r  R- , but r a t h e r  o - o  . . . i s . )  

We a l s 3  r e q u i r e  a  map f  : T -+ X which i s  proper ly  1/2- 

connscted. 

Two t r e e s  ( ~ , f )  and ( S , g )  a r e  equ iva len t  pro- 

vided t h s r e  i s  a  proper homotopy equivalence h: T + S  

wi th  ho g p rope r ly  homotopic t o  f  . 
A space X i s  s a i d  t o  havs a  t r e e  provided X i s  

homogamous and there  i s  a  t r e e  f o r  X . Any l o c a l l y  

path connected homogamous space has a  t r e e .  To see  t h i s ,  

l e t  {p] be a  s e t  of base po in t s  f o r  our ,space X . 



We claim H1(T;Z) = 0 , and i n  f a c t , .  i f  H1 i s  

computed from the  s i m p l i c i a 1  chains th sn  t h e r e  a r e  no 

1-cyc les ,  This i s  f a i r l y  c l e a r ,  so  i t  w i l l  be l e f t  t o  

the  rea3er .  Now any l o c a l l y  f i n i t e  1-complex wi th  

Y L ( T )  = 0 s a t i s f i e s  A(T: rk) = 0 f o r  k > 0 . One 

shows f i s  p roper ly  1/2-connected by showing t h a t  

0 0 C3 

'end (XI + Zend(T) i s  a n  isomorphism 
('end a r e  the  

o-cycles i n  0 
Send) But t h i s  fol lows from our con- 

s t r u c t i o n .  L a s t l y  suppose T '  5 T i s  a connected 

subcomplex, and suppose p e T - T '  . Now by d e f i n i t i o n  

p i s  i n  a n  e s s e n t i a l  comgonent of X - Ci f o r  a l l  i n 

f o r  some n . Since each e s s e n t i a l  component of X - C i  

has i n f i n i t e l y  many base po in t s  i n  i t ,  l e t  { q ]  be the  

s e t  o f  base po in t s  i n  the  component of X - Cn conta in-  

ing p . Thm {q} 5 T - T '  , a s  i s  e a s i l y  seen,  Hence 

0 o 
Hend(T) -+ H e n d ( T t  has a k e r n e l ,  and s o  T 1  5 T i s  no t  

a proper homotopy equivalence.  Hence X has a t r e e .  

From now on i n  t h i s  s e c t i o n  we r e s t r i c t  ourse lves  t o  

the  ca tegory  of homogamous CW complexes. We w i l l  denote 

t h i s  hCW complex. 

Given X , a n  hCW complex, we have t h e  ca tegory  

c ( X )  whose o b j e c t s  a r e  a l l  s e t s  A 5 X such t h a t  

1) A i s  a subcomplex 

2 )  A i s  connected 

3 )  There e x i s t s  an  element of 3 ( X )  , U , such t h a t  

A i s  a n  e s s e n t i a l .  component of X-U . 
The mornhi.sms a r e  - inc lus ions .  



Let C be a cofinal collection of compact subsets 

of X . We can assume X is path connected since we 

can do each path zomponent separately, We may assume 

{p} n Co # Ld . Pick a point po E {p} rl co . Look at 

the components of X - Co with a point of p in 

them. As Tfle showed in the proof of Proposition 1.2, 

there are only finitely many components of X - Co 
The components whose closure is not compact are called 

essential components. We may assume {p] n (each essen- 

tial component of X - Co) n C, Z 6 sin-e this is. true 
'2 'n for some compact set. Let pl , pl , o - * ,  pl be a sub- 

set of {p} n C, , one for each essential component of 
I 

'i X - Co . Join pl to po by a path A ,  . NOW look 

'1 'm 
at the essential components of X - C1 . Pick p2 

(which we may assume are in C2), one for each essential 
a, 
I 

component of X - C1 . Each p2 lies in an essential 

component of X - Co, so pick paths A2 ,i which join 

'i a 
p2 to the appropriate element in Epl] . These paths 

should lie in X - Co . Continue in this fashion to get 
a 

{ P ~ )  , one for each essential component of X - Cj-l o 

{p:} may be assumed to lie in C. . We can also get 
J 

'i a paths A .  which join p to the a2propriate pjql 
J ,ai j 

and which lie in X - C J - 1  
'i ' 4  is Now T has (p?} for vertices an3 (pj ,pk 

J 
a 1-simplex iff k = j-1 and A. joins to 

J >a: J 
' 4 ,  

L 

pk The map f :T -( X is the obvious one. 



Now given a  t r e e  ( T , f )  f o r  X , we g e t  a  

f u n c t o r  P ( X )  - C ( f )  7 C ( T )  ( f  i s  always assumed 

t o  be c e l l u l a r .  

Def in i t ion :  A l i f t  of c ( f )  i s  a  cova r i an t  func tor  - 

F  : c ; T )  -+ C(X) such t h a t  e ( f ) o F  i s  the  i d e n t i t y  

and such t h a t  t he  image of F  i s  c o f i n a l .  The s e t  of 

a l l  l i f t s  i s  a  diagram scheme bjr de f in ing  F  G i f f  

F (A)  c G(A) f o r  a l l  A E C(T)  . We denote t h i s  - 
diagram scheme by L ( f )  . 

Def in i t ion :  A t r e e  of r i n g s  i s  a  cova r i an t  func to r  

R : C ( T )  -+ R , where 62 i s  the  category of a l l  r i n g s  

( r i n g s  have u n i t s  and a l l  r i n g  homomorphisms preserve  

u n i t s ) .  A t r e e  of modules over R i s  a  c o l l e c t i o n  of 

modules MA , A E @(T) , where MA i s  a  u n i t a r y  R~ - 
module. A t r e e  of r i g h t  ( l e f t )  R-modules r e q u i r e s  each 

M~ t o  be a  r i g h t  ( l e f t )  RA-module. I f  A 5 B i n  e ( T ) ,  

t h e r e  i s  a  unique map pAB: M -+ MB , which i s  a n  -4 

R(A c - B ) - l i n e a r  map; i . e .  i f  f  : RA -+ RB i s  t h e  r i n g  

homomorphism a s s o c i a t e d  t o  A 5 B by R , 

An R-module homomorphicm f : M -+ M '  i s  a  s e t  of 

maps fA: MA -+ Mi f o r  each 4 E C ( T )  such t h a t  

1) fA i s  a n  RA-module homomorphism 



commutes, where the  v e r t i c a l  maps come from the t r e e  

s t r u c t u r e  on Y and M' . 
Example: Given an  hCW complex X wi th  a  t r e e  

( T , f )  and given F c e ( f )  , ' we g e t  a  t r e e  of r i n g s  

from RA = Zrl(F(A) , f  ( p ) )  where i f  A # T , p i s  t h e  

v e r t e x  ad , the  s e t  t h e o r e t i c  f r o n t i e r  of A . If 

A = T , pick a  v e r t e x  f o r  a  base poin t  and use i t .  This 

w i l l  be the  t r e e  of  r i n g s  we w i l l  consider  f o r  our 

geometry, and we w i l l  den3te i t  by Znl . 
The t r e e  of Zr1-modules we w i l l  consider  w i l l  be 

var ious  cha in  modules. The bas i c  idea i s  given by 

-i -1 MIL = Hi(F(A) , F ( A )  , f  ( p ) )  , where - denotes the  
F 

i -1 u n i v e r s a l  cover of F (A)  , and F ( A )  i s  n  of t h e  

Now given a n  R-mdule M , ws can form A ( M )  by 

applying the A-construction wi th  index s e t  t he  v e r t i c e s  

of T , and wi th  diagram scheme 8 (X) Given U e  8 (X), 

t h e r e  a r e  f i n i t e l y  many A c @(TI f o r  which A fl fi = 

a ve r t ex .  S e t  i- 

- - J *A. i f p E A  

Gpu L O  otherwise 



f o r  some A such t h a t  h fl = a  ver tex .  ' An R-module 

homomorphism f  : M -+ M 1  c l e a r l y  induces a  map 

A )  : 4 ( M )  + A ( M I  ) . An R-module hongmorphism, f  , 
which induces a n  isomorphism A ( f )  i s  s a i d  t o  be a  

s t rong  equivalence and the two modules a r e  s a i d  t o  be 

s t r o n g l y  equ iva len t .  Note t h a t  t h i s  r e l a t i o n  on R- 

modules seems n e i t h e r  symmetric nor t r a n s i t i v e .  Never- 

t h e l e s s  we can de f ine  t w 3  R-modules M and M 1  t o  be 

equ iva len t  i f f  t h e r e  i s  a  ( f i n i t e )  sequence of R-modules 

M = Mo, M1, ... , Mn = M I  such t h a t  e i t h e r  Mi i s  

s t r o n g l y  equ iva len t  t o  Mi+l Or Mi+l i s  s t r o n g l y  

equ iva len t  t o  Mi . 
We tend only t o  be r e a l l y  i n t e r e s t e d  i n  the  equi-  

valence c l a s s  of M ( indeed,  we a r e  o f t e n  i n t e r e s t e d  

merely i n  A(M)). The r e l a t i o n  of equivalence i s  not  

however very n i ce .  We would l i k e  M equ iva len t  t o  N 1  

i f f  t h e r e  were "maps" f  : M -+ M '  and g : M I  -+ M 

whose composites were the  i d e n t i t i e s .  To do t h i s  pro- 

p e r l y  we need a s h o r t  d ig res s ion .  

D e f i n i t i o n :  A funz to r  F  which a s s i g n s  t o  each 

A E C ( T )  a c o f i n i t e  subcomplex of A , F(A) , such 

t h a t  F ( A )  = F  (B) whenever B 2 A and such t h a t  

F ( T )  = T w i l l  be c a l l e d  a s h i f t  f u n c t o r ,  $(TI w i l l  

denote the  s e t  of a l l  s h i f t  func to r s  on T . d ( T )  

i s  p a r t i a l l y  ordered v ia  F  G i f f  F ( A )  5 G(A)  f o r  

f o r  al l_ A E c!(T) . (F fl G) (A)  = F ( A )  fl G(A) , and 

one checks i t  i s  a  s h i f t  func to r .  F fl G 1 F and Ffl G L G .  



Given a  t r e e  of R-modules and a  s h i f t  func to r  F , 
we g e t  a  t r e e  of R-modules , MF , i n  a n a t u r a l  way; i . e .  

F  i s  going t o  induce a func to r  from t h e  category of R- 

modules t o  i t s e l f .  MF i s  de f ines  a s  fol lows.  Let 
rn 
11 

A E C(T)  . Then F ( A )  = 9 Ai , wi th  Ai C C ( T )  . 
n i=l 

(MF)A = @ MA ,g~ RA , whsre the  tensor  product i s  
i=l i 

formed using the  homomorphisms RA4 -t RA . Note t h a t  

t h e r e  i s  a n  RA-module map 

i s  def ined a s  fol lows.  Sinze A 5 B , F(A)  5 F ( B )  , 
so  each A i s  contained i n  a  unique B j  . Let p i j  

be P ~ . ~  i f  A i  C - B .  J and 0 otherwise.  f i j  i s  the  
1 j  

map RA * R ~ j  if A i  5 B .  and 0 otherwise.  g i s  
i J 

- n m 
t he  map RA + RB . Then (pF lAR-  @ $ p i j  8 f i j  g  

i=1 j = 1  

Notice t h a t  ( M ~ ) ~  - M~i 
commutes. 

- n 
If f  : M - t M '  i s  a  map, (fF)* - @ fA  8 g A a A  , 

i=l i 1 

where gAiA : R ~ i  * R~ , def ines  a  map 

For t h e  n a t u r a l  map of MF i n t o  M we w r i t e  MF f M . 



If G 2 F there is a natural map MG -+ MF induced by 

th? inclusion 3f each component of G ( A )  in F(A) . 
Lemma 1: MF 2 M is a strong equivalence. 

Proof: We must show A(M~) -+ A(M) is an isomor- 

phism. Suppose B c C(T) and B 5 F (A) Then 

(MF)B + *a commutes and there is a map h : M3 ' 

1 
so that the resulting triangles commute. But then clearly 

As motivation for our next definition we prova 

Lemma 2: Let f : M + N be a strong equivalence. 

Then there is a shift functor F and a map NF -+ M such 

that commutes. 

Proof: By Theorem 2.4 applied to kernel and cokernal, 

f is a strong equivalence iff for any A c C(T) there is 

a U  E B(T) such that for any B € c(T) with B E A - U  

satisfies 



and 1 ker  f B  5 ker  pAB 

2 )  Image p:B 5 Image fA . 
For each A G @ (T) , pick  such an  element i n  0 ( T )  , 

UA. NOW l e t  F(A) = A - U UD % i s  e a s i l y  seen  t o  be 
ASD 

a  s h i f t  f u n z t o r ,  and f o r  any B G C ( T )  wi th  B c F ( K )  , 
1) and 2) hgld.  

Now look  a t  
M ~ 2  

___3 

N ~ 2  I - 

A2 5 F(A1) . Then t h e r e  e x i s t s  a  map h : NAn + MA def ined  

by h ( x )  = q(fA7 )'L p(x )  f o r  a l l  x c NA . By proper- 
r. 

t i e s  1) and 2), h  i s  wel l -def ined,  and i f  g : R A  -+ RA 
2 

i s  t h e  homomorphism given by the  t r e e ,  h  i s  e a s i l y  seen 

t o  be g - l i n e a r -  
n  

Define a  s h i f t  f u n c t o r  F  O G by F  0 G(A)  = U F ( A ~ ) ,  
n  i=l 

where G ( A )  = U Ai . Then one checks t h a t  t h s  h  def ined  
i=l 

abgve y i e l d s  a  map N F ~ F  '+ o Q.E.D. 

Def in i t ion :  A T-map f  : M + N i s  a  map M, + N , 
2 

where F G $ ( T I  . MF + N induces a n a t u r a l  map MG -+ 11 

f o r  a l l  G LF . We say  f i s  def ined  on MG f o r  a l l  

G 2 F . Two T-maps f , g  : M  + N a r e  equal  provided t h a t ,  

f o r  some F G J ( T )  such t h a t  f and g a r e  def ined  



on MF , t he  two maps MF -+ N a r e  equal.  

Remarks: I f  f  i s  def ined  on MF , and i f  g  

i s  def ined  on MG , f  and a r e  both def ined on 

M ~ f l ~  
With t h i s  remark i t  i s  easy t o  see  e q u a l i t y  of 

T-maps i s  an  equivalence r e l a t i o n .  i t  i s  a l s o  easy  t o  

see  how t o  add or s u b t r a c t  two T-maps, and i t  i s  easy 

- t o  check t h a t  i f  f l  = f 2  and gl - g2 , then 

f l t g l  = f 2 t g 2  ' 

Hence, i f  HomT(M,N) i s  the  s e t  of equivalence 

c l a s s e s  of T-maps from M t o  N , HomT(M,N) has  the  

s t r u c t u r e  of a n  a b e l i a n  group. An equivalence c l a s s  of  

T-maps i s  c a l l e d  a  map-germ. 

We can compose two T-maps f :  M + N and g: N -+ P 

a s  fol lows.  g  i s  ds f ined  on NF and f  i s  def ined on 

M . Hence f :  MF -+ N i s  a n  a c t u a l  map, and we d e f i n ?  

the T-map g 0 f  t o  be t h e  map g 0 fG:  (M ) 4 NG--) P . F G 

Note ( M ~ )  = MGoF . One can check t h a t  the  map-germ 
G 

g  0 f i s  wel l -def ined.  

Hence Lemma 2 becomes 

Lemma 1: M and N a r e  equiva len t  i f f  they a r e  

T-equivalent . 
Proof:  I f  M 2nd N a r e  equ iva len t ,  Lemma 2 shows 

how t o  g e t  T-maps M -+ N and N -+ M using the  sequence 

of s t rong equivalences .  

I f  M and N a r e  T-equivalent ,  we have T-mps 



f :  M -+ N and g: N -+ M su-h t h a t  fog = i d N  and 

gof = i dM . Now a  T-map f :  M -+ N induces a  unique 

where f  i s  def ined  on MF and inc :  MF 5 M . I t  i s  

c l e a r  t h a t  h ( f )  depends only on ths  map-garm of f . 
Hence i n  our c a s e ,  g  induces a n  equivalence of M a n d  

Also u s e f u l  i s  

Lemma 4: Let f  and g  be T-maps. Then f  = g  --- 

i f f  A( f )  = A(g) . 
Proof:  f  = g  i f f  f  - g  = 0  . O(f-g) = O ( f )  - O(g).  

Thus w e  need only  show h  = 0 i f f  n ( h )  = 0 . Since 

A(h) depends only  on the map-germ, and s i n c e  a ( 0 )  = 0 ,  

one way i s  easy. 

So assume w s  a r e  given a  T-map h: M -t N wi th  

O(h) = 0  . We may a s  w e l l  assum3 h  i s  a n  a c t u a l  map, 

s i n c e  otherwise s e t  M = MH and proceed. We have a sub- 

module ker  h  5 M def ined  i n  th? obvious way. Since 

ker  h  5 M i s  a  s t rong  equiva lence ,  Lemma 2 says  we 

can f i n d  F such t h a t  MF -+ ker  h  5 M . But then 

MF -+ N i s  the  zero map. Q.E.D. 

Def in i t ion :  I f  R i s  a t r e e  of r i n g s ,  l e t  f l ~  

be t h e  category o f  t r e e s  of R-modules and germs of maps. 

Let %(R)  be the  category of A (R) -modules. 



Proposition 1: qR is an abelian category. The 

natural functor A: 7% -f ,flA(R) is an exact, additive, 

faithful functor. 

Proof: The functor just takes M to A(M) and 

[f] to A(f) ([f] denotes the map-germ 3f f). A is 

additive moreorless by definition, and faithful by 

Lemma 4. 

[gl 
A preserves kernsls: Let M - N be a map- 

germ in pR . We can find G such that MG Sf N is 

a representative. Clearly any kernel for [g] is equi- 

valent to ker g 5 MG , where ker g is the obvious 

submodule. But A(ker g) is clearly a kernel for A(g). 

An entirely similar argument sh3ws A preserves 

cokernels, so A is exact. 

To see f lR  is normal an5 conormal, take representa- 

tives for the germs and construct the quotient or the 

kernel module. 

,RR has pullback and pushouts again by finding 

representatives and then constructing the desired modules. 

Now by [25], Thsorem 20.1 ( c )  , page 33, 7qR is abelian. 0 

We want to do stable algebra, and for this we need 

an analogue of finitely-generated projective. Projective 

is easy, we just insist that a projective R-module is 

projective in the category qH (see [25], page 69-71 for 

definitions and elementary properties). 



For the analogue of f i n i t e l y - g e n e r a t e d ,  we f i r s t  

produce the analogue of a  f  i n i t e l y - g e n e r a t e d ,  f r e e  

module. 

D e f i n i t i a :  Let T be a  t r e e  and l e t  S be a  s e t .  

A p a r t i t i o n  of S  i s  a func to r  F: C ( T )  -+ 2' (where 2' 

i s  the  category of subse t s  of S  and i n c l u s i o n  msps) 

s a t i s f y i n g :  

1) n(T) = S . 
2 )  ~ f  A n B = @ , ,(A) n a ( B )  = ~5 ( A , B ~  c ( T ) ) .  

n  
3 )  L s t  Ai E @(TI , = ,  n. I f  T -  II Ai  

i=l 
n .  

i s  compact, n(T) - IJ n(iii) i s  f i n i t e .  
i=l 

4 )  Let s e S . Then t h e r e  e x i s t  Ai e C?(T)  , 
n  

i = 1 , n  such t h a t  T - 9 A i  i s  compact and 
i =l 

s $ T ( A ~ )  f o r  any i = l , . o . , n  . 

Definj  t i o n :  Let R be a  t r e e  of r i n g s  over T . 
Let n  be a  p a r t i t i o n  of S . The f r e e  R-m~dule based 

on n  , F, , i s  the  t r e e  of R-modules def ined  by (F,) 
k 

i s  the  f r e e  RA-module based on n(A) , and if A G B , 
PAB : (F,) - (F ) 

B 
i s  induced by the  i n c l u s i o n  

A 

,(A) 5 n(B) . 
Def in i t ion :  A t r e e  of H-modules, M , i s  s a i d  t o  

be l o c a l l y - f i n i t e l y  generated i f f  t h e r e  i s  a  s e t  of 

g e n e r a t o r s ,  S , and a  p a r t i t i o n ,  n  , of S , such 

t h a t  t h e r e  i s  a n  epimorphism F, -+ M . 
Let us b r i e f l y  d i scuss  p a r t i t i o n s .  I f  n  and p 

a r e  two p a r t i t i o n s  of a  s e t  S , we say  7~ C _  p i f f  



n ( ~ )  C - n(p)  f o r  a l l  A c e ( ~ )  . ( ~ e n c e  we could 

t a l k  about  the  category of p a r t i t i o n s ,  but we s h a l l  

l a r g e l y  r e f r a i n . )  Two p a r t i t i o n s  a r e  equ iva len t  i f f  

- t h e r e  e x i s t s  a  f i n i t e  sequence n  = ro, nl,. . . ,  n  - p n  

of p a r t i t i o n s  wi th  ni ni+l 0' c - lr i (This 

i s  c l e a r l y  a n  equivalence r e l a t i o n . )  Given two s e t s  

X and Y , and p a r t i t i o n s  n  and p , n  U p i s  t he  

p a r t i t i o n  of X U Y given by ( n u p ) ( A )  = n(A) U p(A) . 
Lemma 5: Let R be a  t r e e  of r i n g s  over T -, and 

l e t  X and Y be s e t s .  Then i f  n  and IT' a r e  

equ iva len t  p a r t i t i o n s  of X , F, i s  isomorphic t o  F,, 

i n  . I f  p i s  a  p a r t i t i o n  of Y , FrUp = F  CBF, 
P 

(X and Y a r e  d i s j o i n t ) .  

Proof:  To show the f i r s t  s ta tement  we need only 

show i t  f o r  n  c - n '  . I n  t h i s  case t h e r e  i s  a  n a t u r a l  

map f :  F,-F,, . For each 'A E e ( T ) ,  (FTIIA + (FIII)* 

i s  i n j e c t i v e ,  s o  f  i s  a  monomorphism. I f  n  5 n '  , 
then n l ( A )  - n(A) has only f i n i t e l y  many elements.  

To s e e  t h i s  observe we can f i n d  Ai c @ ( T )  , 
i = 1 . .  n  such t h a t  A fl Ai  = @ , and T - !J Ai - A  

- i=l 
I1 

i s  compact. Then by 2 )  ( A  T - !J V ' ( A ~ )  , 
i =l 

u n(Ai) - n(A) , which i s  f i n i t e .  Sinee n ' ( ~ )  - r (A)  
i=l 

i s  f i n i t e ,  fA  ( F , ) ~  -+ (F,, has  f i n i t e l y .  generated 



cokerne l ,  s o  when the  A cons t ruc t ion  i s  app l i ed  t o  i t ,  

4 )  guarantees  t h a t  A ( f )  i s  onto ,  s o  f  i s  a n  equiva- 

lence.  The second s ta tement  i s  the  d e f i n i t i o n  of T U p 

and F, @ Fp . Q .  E.D. 

I t  i s  no t  hard t o  see  t h a t  i f  we have a p a r t i t i o n  

of S f o r  the  t r e e  T , then S has a t  most countably 

many elements i f  T i s  i n f i n i t e ,  and a t  most f i n i t e l y  

many i f  T i s  a po in t .  I n  the  case S i s  i n f i n i t e ,  we 

have a very  handy countably i n f i n i t e  s e t  l y i n g  arounfi, 

namely the  v e r t i c e s  of T , There i s  a n  obvious p a r t i -  

t i o n ,  .rr , where 

the  f r e e  module on 

above p a r t i t i o n  T 

Lemma 6: Let -- 
the  t r e e  T , and 

,(A)  = {pl p i s  a v e r t e x  of A ]  De- 

1f T = p o i n t ,  l e t  F (') denote 

one gene ra to r ;  i . e ,  s t i l l  F, f o r  the  

. ( )  = ( - 1 )  F )  f o r  n 2 2 . 
be any p a r t i t i o n  of a s e t  S f o r  

l e t  R be a t r e e  of r i n g s .  Then 

F @ F )  i s  equiva len t  t o  F(") f o r  soms n 2 1 . T Y  

T i s  i n f i n i t e ,  n can be chosen t o  be 1 . 
Proof:  I f  T = p o i n t ,  t h i s  i s  obvious,  so assume 

T i s  i n f i n i t e .  F, @ i s  j u s t  Fm:, , where p i s  

t h e  s tandard  p a r t i t i o n  on V , t he  v e r t i c e s  of T . 
Since V U S i s  i n f i n i t e ,  t h e r e  i s  a 1-1 correspondence 

a : V U S -+ V . Any such a induces a n  equivalence of 

c a t e g o r i e s  a : 2 v US -> 2v We show t h a t  we can pick 

a so  t h a t  a 0 (n U p )  i s  equ iva len t  t o  p . (we w i l l  

show i n  Lemma 7 t h a t  a 0 (T  U p )  i s  a p a r t i t i o n  f o r  any a . )  



Our a i s  def ined by picking a s t r i c t l y  inc reas ing  

- sequence of f i n i t e  subcomplexes, Co 5 C1 = ..., s o  
CO 

t h a t  l.J C i  = T . Let A k ( i >  be the  e s s e n t i a l  compo- 
i = o  

nents  of T - C.. . S e t  A1(-1) = T , and l e t  
1 

Kki  n K k t i =  @ and Kki fl K k , i + l  = @  by 2 ) ,  so 

Kki  "aj # @  i f f  k = &  and i =  j . 
Now Kki  i s  f i n i t e .  W e  de f ine  a on Kki by 

induct ion  on i . Let Lki = p ( ~ ~ ( i ) )  - l J p ( A t ( i + l ) )  , * 
and note  t h a t  the  c a r d i n a l i t y  of Kki i s  g r e a t e r  than 

or  equa l  t o  the  c a r d i n a l i t y  of Lki . Defin- a on 

Klml by mapping some subse t  of i t  t o  L1-l and mapping 

any l e f t  over elements t o  any elements of V (a shw.ld 

be i n j e c t i v e ) .  

Snppose a def ined on Kki-l s o  t h a t  

a (Kkj )  5 P ( ~ k ( j ) )  f o r  j 5 - 1  . We need only d e f i n s  

a on Kki s o  t h a t  a(Kki) 5 P ( A ~ ( ~ ) )  t o  be done. 

Look a t  M = Lki - U Image a(KL.) . M.3p some subse t  
a l l  * J 

of Kki t o  M . Map the  r e s t  of Kki t o  any elements 

a l l  i a l l  i 

( a s  d i s j o i n t  unions a s  w2 saw). Since a i s  onto each 

Lki , and s ince  i t  i n j e c t s  when r e s t r i c t e d  t o  each Kki , 
a i s  1-1. Furthermore,  7; = a 0 (TU p )  s a t i s f i e s  



~ ( l i ~ ( i ) )  c - p ( k k ( i ) )  by c o n s t r u c t i o n .  

S e t  h ( k )  = T ( A )  n p ( B )  . We c la im A i s  a  p a r t i -  

t i o n .  C l e a r l y  A i s  a  f u n c t o r  ( T )  + 2" . 1) and 

2 )  a r e  t r i v i a l  and h )  i s  n o t  much ha rde r  ( 1 1 ,  2 )  and 

4) h3ld  f o r  the i n t e r s e c t i o n  of any  two p a r t i t i o n s ,  i t  

i s  on ly  3 )  which might f a i l ) .  To show 3 ) ,  no te  
11 

A T ~ ) )  . I f  T - U Bj i s  compact, t h e r e  
j =1 

i s  a  minimal i such t h a t  Bj con ta in s  A b ( i )  f o r  some 

k (perhaps s e v e r a l ,  s a y  k  = l , . . , ) .  Then 

= T ( T )  - !J T ( A k ( i ) )  . The l a s t  twa unions  a r e  over a l l  

~ ~ ( i )  5 B f o r  j = , , n  . The l a s t  s e t  i s  f i n i t e ,  
j 

s o  3 )  ho lds .  Hence A i s  a  p a r t i t i o n  and thus  T i s  

e q u i v a l e n t  t o  p  . 
The map from F 

"UP 
+ FT induced by a i s  t h e  ob- 

v ious  map: (FTUp)* + (FT)* i s  t h e  isomorphism induced by 

t h e  equ iva lence  of bases  a : (T U p)(A)- T ( A )  . Lemma 5 

completes t h e  proof m3dulo t h e  proof of Lemma 7. 

Lemm.2 7: Let X and Y be two ( d i s j o i n t )  s e t s ,  

and l e t  .rr be a  p a r t i t i o n  of X f a r  t h e  t r e e  T . Any 

1-1 correspandence a : X + Y induces  a  p a r t i t i o n  a o  T 

of Y f o r  t h e  t r e e  T . 
Proof :  The easy  proof i s  omit ted .  

Lemaa 8: F, i s  p r o j e c t i v e .  -- 

Proof :  By Lemma 6 and s t anda rd  nonsense ,  i t  i s  -- 



enough to prove ths result for F(l) . B y  Mitchill [ 2 5 ]  

Proposition 14.2, page 70, we need only show 

[fl 
M i splits whenever [f] is a n  epimorphism 

(note pR is abelian by Proposition 1 so we may apply 

Mitchell). 

By taking a representative for [f], ws may as wsll 

assume that we hive a map f: M + F = F(') which is an 

epimorphism. Now there is a partition n with .rr 5 p 

(p thr standard partition for ~(l)), such that the 

inclusion of (FrrlA in FA lies in the image of MA 

under fa ; i.e. define n(A) = {x e p(A)lx e Image fA]. 

Since f is an epimorphism, one can easily check 

p(A) - T(A) is finite, and from this result one easily 

deduces .rr is a partition. 

Now pick a base point * e T . This choice immedi- 

ately orders all the vertices of T by saying p 2 q 

provided ths minimal path from p to * hits q 

A E @ ( T )  for each p a vertex of T , p # * , is 
P 
defined as the unique A c @(T) such that q C A im- 

plies q 2 p . 

Given a partition , define a new partition T by 

T(A) = U r(bp) (again, T(A) - T(A) is finite, 
A p5k 

,L(A) 5 T(A) , SO one can cli~~ck -c is a partition). 



N r ~ w  given any v e r t e x  v  of T , t he re  i s  a  unique 

p  such t h a t  v  E T(A ) and - v  M T ( A )  i f f  A S A  , 
P P 

un less  v d T ( A  .) f o r  any 
P 

( t h e r e  a r e  only f i n i t e l y  

many of the  l a t t e ~ ) ~  To s e e  t h i s ,  s e t  A = n 
VET(A ) A~ 0 

P 
Now A n A Z ld implies  A c A 

P 
(or  A 5 A p )  . By 

q P -  9 9 
4) t h e  i n t e r s e c t i o n  runs over f i n i t e l y  many o b j e c t s ,  so  

A = A f o r  some p  . This A has the  p r o p e r t i e s  we 
P  P 

claimed. 

Define xv t: MA t o  be any element such t h a t  
P 

fA  (xv)  h i t s  the  image of t h e  genera tor  i n  ( F , ) ~  
P P 

corresponding t o  v  . Define h  : F + M by 
7; 

hA: ( F ~ ) ~  + MA takes  the  genera tor  corresponding t o  v  

t o  pA A ( ~ v )  We extend l i n e a r l y .  Notice t h a t  i f  the  
P 

genera tor  corresponding t o  v  l i e s  i n  (FT)* 7 A p  5 A , 
S 3 PA p~ makes sense.  

I t  i s  no t  hard t o  check the  hA induce a  map 

h  : F -+ M , and f  oh : F -+ F i s  j u s t  t he  inc lus ion .  
T 7 

Q.E.D. 

I f  gR i s  the  category of l o c a l l y - f i n i t e l y  

generated t r e e s  of p r o j e c t i v e  R-m~dules ,  we have 

Lemma 2: Let 0 -+ M + N -+ Q + O be a  s h o r t  exac t  

sequence of R-modules. Then i f  N ,  Q E QR , M M QR . 
I f  M ,  Q c PR , N t:PR . L a s t l y ,  any P E PR i s  a  

summand of a l o c a l l y  -f i n i t e l y  generated f r e e  module. 



Proof:  The proof i s  easy.  

Remarks: QR i s  a  s u i t a b l e  category i n  which t o  do 

s t a b l e  a lgebra  ( see  Bass [ I ] ) ;  @R has  a  product ,  the  

d i r e c t  sum. @ i s  a l s o  a  f u l l  subcategory of q3 , 
which i s  a b e l i a n  by P ropos i t ion  1. Hence we may use 

e i t h e r  of Bass ' s  d e f i n i t i o n s  of the  K-groups. Note PR 

i s  semi-simple (Bass [ l ] )  so the  two d e f i n i t i o n s  agree .  

Notation: Ko(R) = ~ ~ ( 5 )  and K1(R) = ~ ~ ( e ~ )  f o r  

R a  t r e e  of r i n g s .  

Given a  map of t r e e s  of r i n g s  R + S (RA + SA t akes  

u n i t s  t o  w i t s )  we can de f ine  M mR S f o r  M a r i g h t  

R-module by tak ing  (M BR S )A = M @ SA . @ induces 
A R.4 

a  func to r  flR + RS . The only n o n - t r i v i a l  p a r t  of t h i s  

i s  t o  show @ i s  wel l -def ined on map-germs. But s in -e  

commutes, t h i s  i s  easy.  @ i s ,  a s  u s u a l ,  an a d d i t i v e ,  

r i g h t  exac t  func to r .  
R S 

Now given a  p a r t i  t i o n  T , F, BR S = F, , where 

R @ 
F, i s  the  f r e e  R-module based on r(F$ s i m i l a r l y ) ,  

Hence i t  i s  easy  t o  see  @ t akes  QR t o  5 . @ i s  

c o f i n n l  i n  the  sense of Bass [ l ] ,  sg we g e t  a  r e l a t i v e  

group K o ( f )  , where f  : R + S i s  the  map of t r e e s  



of r i n g s .  Thsre i s  an  exac t  sequence 

We? denote by K i ( T )  , i = 0 , 1 ,  the  r e s u l t  of 

applying the  K-groups t o  , where RJ i s  t h e  

category of l o c a l l y - f i n i t e l y  generated p r o j e c t i v e  

modules over the  t r e e  of r i n g s  "T" , where ( ' t T " ) A  = Z 

f o r  a l l  A , and pAB = i d  . There i s  always a  func to r  

-+ PR induced by the  u n i t  map "TIt + R . The r e l a -  
' J ~  

t i v e  KO of t h i s  map w i l l  be c a l l e d  t h e  reduced Kl of 
- 

R , w r i t t e n  K1(R) . 
Remarks: If t h e  t r e e  of r i n g s  i s  a  po in t  the  

func to r  QR + % ( R )  induces a  func to r  @R ' %(R) , 
where i s  t he  category of f i n i t e l y - g e n e r a t e d  pro- 

j e c t i v e  A(R)-modules. This func tor  induces an  isomor- 

phism on KO and K1 . For the  compact case ( T  = p t . ) ,  

t o r s i o n s  l i e  i n  q u o t i e n t s  of ~ ~ ( f l ~ ( ~ ) )  . This ,  t oge ths r  

w i th  P ropos i t ion  2 below i s  supposed t o  motivate our 

choice of gR a s  the  category i n  which t o  do s t a b l e  

a lgebra .  

Def in i t ion :  Let W be a n  hCW complex of f i n i t e  

dimension. Let X and Y be subcomplexes. Let ( ~ , f )  

be a  t r e e  f o r  W . L a s t l y  l e t  F &(l:') . Then 

znl(W,F,f) i s  the  t r e e  of r i n g s  we have e a r l i e r  a s  a n  

exampleo Pick a  l o c a l l y  f i n i t e  s e t  of p a t h s ,  A , from 

the  c e l l s  of W t o  the v e r t i c e s  of f ( ~ )  . ( t h e  paths  a l l  

begin a t  the  baracenter  of each c e l l ) .  



c*(W;X,Y:A,F) i s  t h s  t r e e  of ~ ~ ~ ( W , ~ , f ) - m o d u l e s  
,- TJ d --J "-I F(B)* n X ,  F ( R ) *  fl Y), g i v e n a t  A by H , ( F ( ! L ) * ; F ( ~ )  , 

where - i s  t h e  u n i v e r s a l  cover  of ~ ( k )  , s o ,  f o r  
,- . -1 ...... r 

example,  F ( A ) *  n Y i s  t h e  p a r t  of t h e  u n i v e r s a l  cover 

of F(A) l y i n g  over Y fl ( t h e  * - ske le ton  2f F ( A ) ) .  Tn 
,- 

each  F(A) p i c k  a  base p o i n t  cover ing t h e  v e r t e x  ad . - I-- 

These cho ices  g ive  us  maps F(A) -+ F(B) whenever A 5 B . 
C* ( w ; x , Y : ~  ,F) i s  de f i ned  from t h e  cohgm2logy groups 

P'- ,.---' fl- ------>- 
H:(F(A)*; F ( A ) * - ~ ,  u ( A ) * ,  F ( A ) *  n x , F ( A )  n Y) T ~ S  

maps a r e  t h?  ones we d e f i n e d  i n  s e c t i o n  4. 

P r o p o s i t i o n  2: c,(w;x,Y:A,F) (c*(w;x,Y:A,F))  i s  

a l o c a l l y - f i n i t e l y  g e n e r a t e d ,  f r e e ,  r i g h t  ( l e f t )  Z T ~ ( W , F  ,f  ) -  

module. If G c & ( f )  s a t i s f i e s  G F  , t h e r e  i s  a n  

induced map Zrl(W,F,f) -t z.rrl(W,G,f) . c,(W;X,Y:A,F) 8 

Znl(W,G,f) i s  e q u i v a l e n t  t o  C*(W;X,Y:n,G) . ZT1(W,G,f) 3 

c*(w;x,Y:A,F) i s  e q u i v a l e n t  t o  c*(w;x,Y:A,G)  . The 

A-functor a p p l i e d  t o  C,(W;X,Y:n,F) i s  P,(W;X,Y: - )  ; 

A ( c * ( w ; x , Y : ~ , F ) )  = P*(w;x,Y:- )  ( t h e  P  were d e f i n e d  i n  

s e c t i o n  4 ) ) .  

P roof :  The a s s e r t i o n s  a r e  a l l  f a i r l y  obvious .  Note 

i n  p a s s i n g  t h a t  t h e  s e t  S f o r  C, (c*)  i s  t h e  s e t  of 

a l l  * - c e l l s  i n  W-(X U Y) . 0 
P r o p o s i t i o n  3: The cho ice  of p a t h  I\ d e t e rmines  a  

b a s i s  f o r  C, ( c* )  . 
Proof :  Le t  S be t h e  s e t  of a l l  * - c e l l s  i n  

W - (X u Y )  . P a r t i t i o n  S by T ( A )  = t h e  s e t  of a l l  



+ - c e l l s  i n  W(X U Y) such t h a t  the  c e l l  and i t s  

a s s o c i a t e d  pa th  both l i e  i n  F(A) . i s  seen t o  

be a  p a r t i t i o n ,  and F, i s  equ iva len t  t o  C, . The 

path a l s o  determines a  l i f t  of t he  c e l l  i n t o  F(A) , 
so each i s  based. 0 

Apparently our t r e e  of r i n g s  and modules i s  going 

t o  depend on the  l i f t  f u n c t o r  we choose. This i s  n ~ t  

the  case ,  and we proceed t o  prove t h i s .  Given a s h i f t  

func to r  F  and a  t r e e  of r i n g s  R , RF i s  the  t r e e  of 
n  

- CB R* r i n g s  given by (RF)* - where the  Ai a r e  the  
i=l i 

e s s e n t i a l  components of F(A) . pAB i s  j u s t  @ pij  , 
where p i j  i s  the  p r o j e c t i o n  PAiBj where Ai 5 B . 

j  

We now r e d e f i n e  MI, . MF i s  going t o  be a n  RF- 

- n  
module. (MF)* - b MAki w i th  the  obvious RF-module 

i=l 
s t r u c t u r e .  Note MF BRFR i s  j u s t  our o ld  MF . 

Now a T-map of r i n g s  i s  j u s t  a  map RF+S . A s  i n  

the  case of modules, we can de f ine  a  map-germ between 

two r i n g s ,  and t h s  category of t r e e s  of r i n g s  and map- 

germs i s  a n  a d d i t i v e  category.  

Lemma 10: The maps Ki(RF) + Ki(R), i = 0 ,1 ,  a r e  

isomorphisms. 

Proof: M + MF , f  -+ f F  de f ines  

Using t h i s  f u n c t o r ,  one checks @ + 
R~ 

valence of ca t egor i e s .  Ths r e s u l t  i s  

Hence given a  map-germ f :  R -+ S 

a  f m c t o r  gR + 6' . 
RF eR i s  a n  equi-  

now easy.  Q.E.D. 

, we g e t  wel l -  

def ined  induced maps Ki(R) ' +  Ki (S)  , i = 0 , l  , and 



Lemma 11: Let f  : R -t S be a map such t h a t  

A ( f )  i s  a n  isomorphism. Then t h e r e  i s  a  s h i f t  

fuqc to r  F  and a  map g: SF -t R such t h a t  

commutes. 

Proof: The proof i s  j u s t  l i k e  t h a t  of Lemma 2 .  

Q.E.D. 

Lemma 12: Let [ f ] :  R -t S be a  map germ such t h a t  

A( f )  i s  a n  isomorphism. Then the  maps Ko(R) -+ Ko(S) ; 
- 

K1(R) + K1(S) ; and K1(R) -t F1(s) a r e  isomorphisms. 

Proof:  This proof i s  easy  and w i l l  be l e f t  t o  th?  

r eade r .  Q.E.D. 

Remarks: By Lemma 12 ,  t he  K-groups we g e t  w i l l  no t  

depend .an which l i f t  func to r  we use. Let 

Ki(x:f)  = li Ki (zrl(X,F , f )  ) . Since a l l  t he  maps 
F E 3 f  

i n  aur  d i r e c t  l i m i t  a r e  isomorphisms, Ki(X:f) i s  

computable i n  terms of Ki(Zrl(X,F,f))  f o r  any F  . 
- 
K1(X:f) i s  def ined  s i m i l a r l y .  

Def in i t ion :  A s t a b l y  f r e e  ( s - f r e e )  t r e e  of R- 

modules i s  a n  element,  P, of OR such t h a t  [PI i s  i n  

the  image of Ko(T) . Let P be a n  s - f r e e  R-module. 



An s -bas i s  f o r  P  i s  a n  element F  E p ,  and a n  i s o m r -  

phism b  : F BT R -+ P 63 F1 a Z T ' R  , where F1c f T  

Two s-bases b  : F BT R 4 P 63 FI 8,r R an2 

z : F2 BT R - +  P  3 F  8 R s r e  equiva len t  ( b - c )  i f f  3 T 

0 = (F B F 3 ,  ( b  @ i d  ) o t w  0 ( c  63 idF  )-I, F2 @ F l )  
F3 1 - 

i n  K1(R) , where t w :  (P 9 Fl BT R )  8 F O R I  3 T 

(P eB F 3 R )  @ F1 @T R i s  the  obvious map. 
3  r 

We can nov give a n  s x p o s i t i o n  of t o r s i o n  fol lowing 

Milnor [23]. Given a s h x t  exac t  sequence 
P  

0 -+ E A F  -+ G -+ 0 and s-bases b  f o r  E  and c  

f o r  G , def ine  an  s -bas i s  bc f o r  F  by picking a  

s p l i t t i n g  r : G -+ F f o r  p and thsn  tak ing  the  com- 
h  p o s i t i o n  F1 B F2 % (E B Fj )  @ (G @ F4) ---+ 

F b ( F ~  63 F ~ )  , where h ( e , r , g , z )  goes t o  ( i ( e )  + r ( g ) , x , s ) .  

I t  i s  not  hard t o  check t h a t  t h i s  s -bas i s  does not  depend 

on t h e  choice o f  s p l i t t i n g  map. 

We use Mi lnor ' s  formulat ion.  Let Fo S F 1  5 ... z F k  

and suppose each F ~ / F ~ - ~  has a n  s -bas i s  bi . Then 

blb2 ... bk i s  seen t o  be wel l -def ined;  i . e .  our con- 

s t r u z t i o n  i s  a s s o c i a t i v e .  

Let E and F  be su3modules of G . Then E + F  

i s  t h e  submodule of G generated by E and F . E n ?  

i s  t h e  pul lback of 



Lemma 13: (Noether) The n a t u r a l  map- - 

E / E ~ F  --+ E+F/F is  a n  isomorphism. 

Proof: Apply t h s  o rd ina ry  Noether isomorphism t o  

each term. Q.EoD. 

Now l e t  E/EnF have a n  s -bas i s  b , and l e t  

F/En F have a n  s -bas i s  c . Base E+F/F by b 

composed wi th  the  Noether map (ws w i l l  continue t o  denote 

i t  by b). S i m i l a r l y  base E+F/E by c . Then bc - c b  

a s  s-bases f o r  E + F / E n F  . 
Def in i t ion :  Let b and c be twos -bases  f o r  P.  

Then [b/c] c %(R) i s  def ined a s  fol lows:  i f  

b c - F - - + P 3 F 1  ; G I P  @ F 2  , then [b/c] - 

(F @ F2,h,G 8 F1) , where h : F @ F2 b33 id )  

(P $F1) @ F 2 )  --+ (P  @ F 2 )  @ F1 Id 2 G 6'3 F1 . Tws 

s -bas i s  a r e  equiva len t  i f f  [b/c] = 0 . The formulas 

[b/c] + [c/d] = [b/d] and [b/c] + [d/e] . = [bd/ce] a r e  

easy t o  de r ive  from the  r e l a t i o n s  i n  the  r e l a t i v e  KO . 
W e  next  de f ine  a t o r s i o n  f o r  chain complexes. A 

f r e e  cha in  complex i s  a s e t  of s - f r e e  modules, Pn , 
t oge the r  wi th  map-germs an  : Pn -+ Pn-l such t h a t  

an a n - l  = 0 . A f i n i t e  f r e e  cha in  complex i s  one wi th  

only f i n i t e l y  many non-zero Pn . A p o s i t i v e  f r e e  chain 

complex has  Pn = 0 f o r  n < 0 . 
Def in i t ion :  Let (Pn, an} be a f i n i t e  f r e e  cha in  

complex. Let Pn be s-based by cn , and suppose each 



h ~ m o l o g y  group I i s  s - f r e e  and s-based by hi . 
The sequences 0 -+ Bn+l - + Z n - + H n + O  and 

0 -+ Zn + Pn + Bn -f 0 , where ,  - Bn - Image (Pn -+ Pn-l 1 

and Zn = k e r n e l '  ( an )  , a r e  s h o r t  exac.t .  Let  bn be an  

s - b a s i s  f o r  Bn , which e x i s t  by a n  i n d u c t i v e  argument.  

I t  i s  e a s y  t o  show T ( P , )  d s e s  n o t  depend on t h e  

cho ice  of bn . Let  0 -+ Pi . -+  P, -+ P; -+ 0 be a s h o r t  

e x a c t  sequence of f i n i t e  cha in  complexes. There i s  a 

long sequ, 3nce 

Suppose each homology module i s  s-based. Then we have 

a t o r s i o n  a s s o c i a t e d  t o  W , where 

s i n c e  K i s  a c y c l i c .  

Theorem I: a(P, )  = T ( P ~ )  + T(P:) + T(X) . 
Proof :  See  Milnor [ 23 ] ,  Theorems 3.1 and 3.2. [1 

We n e x t  d e s c r i b e  t h e  a l g e b r a i c  S u b d i v i s i o n  Theorem 

of Milnor  [23] (Theorem 5 . 2 ) .  Given a c h a i n  complex C, , 
( 0 )  - ( 1 )  suppose i t  i s  f i l t e r e d  by C* 2 C* - ( n )  = ... 5 c *  c * 

such t h a t  t h e  homology group H ~ ( c ( ' ) / c ( ' - ~ ) )  = 0 f o r  

(-1) = 0 )  i # A . (C, 



- 
Then we havc a chain complex (C,, a*) given by 

- - - CA - HA(C ) and a is given by ths boundary 

( A )  C(w in the homology exact sequence of the triple (C , 9 

C("2)) . There is a well-known canonical isomorphism 
- 

8. ( )  H i  (see Milnor, Lemma 5.1). 
1 

Now suppose each C c has an s-basis c2 : 
i i - - 

each CA has an s-basis ck : each H~(C) has an s-basis 
- 

hi . Assume C, is a finite complex. Then so is C, . 
Each C has a torsion. If Ci is s-hased 

o 1 n by ci ci ... ci , and Hi(C) is based by hi compssed 

with the canonical isomorphism, then the torsion of C 
- 

is defined. Lastly the torsion of C is also defined. 

Theorem 2: (Algebraic Subdivision Theorem) --- 

Proof: The proof is the same as Milnor's [ 2 3 ] ,  

Theorem 5.2. One does the same induction, but one just 
k 

shows - c ( ~ ( ~ ) )  = T ( F ( ~ ) )  + c .~(c(~)/c(~-~)) (notation 
A =o 

is the same as Milnor's). 0 

Now let (K,L) be a pair of finite dimensional 

hCW complexes with L a proper deformation retract of 

K . We have the modules C*(K,L: A , F )  . The exact 

sequence of a triple makes C, into a chain complex, whose 

homology is zero since L is a proper deformation re- 

tract of K . Thz paths A gives us a basis for C, 

up to sign; i.e. we must orient each cell, which we can 



do a r b i t r a r i l y .  -r(K,L:A,F) %(znl ( K , F , ~ )  ) i s  the  

t o r s i o n  of t h i s  complex wi th  the  b a s i s  given by A . 
We proceed t o  show i t  does not  depend on the  choice 

of s igns .  

Let - r l  be the  t o r s i o n  wi th  a  d i f f e r e n t  choice of 
* 1 

s igns .  Then, by Lemma 14 below, T I - T  = C (-1) [c,/c,] , * 
1 where n,, and c, a r e  maps F,+ C, , one wi th  the  

s igns  f o r  -r and the  o ther  wi th  the  s igns  f o r  7' . But 

-1 1 
C * c*  : F, + P, l i e s  i n  the  image of PT -t PR , and 

so c  = o i n   el(^) . 
Lemma 14: Let C, be a  chain complex. Let c, 

1 
and c, : F,-t C, be two f r e e  bases f o r  C, . Suppose 

H,(C) i s  s-based. Let  T and T be the  t o r s i o n s  from 
1 

the  bases c, and c* r e s p e c t i v e l y .  Then 

Proof: This i s  a  f a i r l y  d u l l  computation. Q.E.D. 

Now suppose G i s  a d i f f e r e n t  l i f t  f u n c t o r  wi th  

F 5 G . Then by Propos i t ion  2 ,  t he  b a s i s  c,: F,+ C,( F )  

goes t o  c, : F, + C,( G )  under @zr1( F )  Zrl( G) . Let 

1 
c, : Fp -t C, ( G) be the  u s m l  bas i s .  Then n. 5 p , and 

1 
c * 

F, -+ F -7 C* i s  C* . The i n c l u s i o n  F, + F l i e s  
P P 

1 - 
i n  the  image of ZT i n  PR , S O  [c*/c*] - 0 c 

F l ( ~ n l ( ~ , G , f ) )  . Hence i, T(K,L:F,A) - T(K,L:G,A) = 0 

we can de f ine  T ( K , L : A )  c Tl(K:f) . 



z(K,L:A) depends strongly on A . We would like 
- 

this not to be the case, so we pass to a qwtient of Kl. 

Definition: Let G be a tree of groups with 

associated tree of rings ZG . The Whitehead group of 

G , Wh(G) = ~(zG)/(A(G)) , whcre (A(G)) is the sub- 

group generated by all objects of tho form ( F ' ( l ) ,  [g] , 
F(~)) where [g] is the map-germ of F (I) to itselr 

induced by any slement g A(G) as follows: g can be 

represented by a collection .{gp] , where gp ' G~(p) 
with p A(p) and {A(p)] cofinal and locally finite. 

Define a partition, n , of the vertices of T by 

n(A) = {p E T I A ( ~ )  5 A] . n is seen to be a partition 

and n 5 p , the standard partition. Define a map 

g :  F,+F, by gA : (F,)~+ ( ~ ~ 1 ~  takes e to e *f 
P P 

(gp) where fAB: (zG)~ -+ (ZG)B . It is not hard to show 

this is a well-defined map-germ. Wnat we have actually 

done is construct a homomorphism A (G) + ~ ( z G )  def ine6 

by g + (F(~),[~I,F (1)) . By definition, 

A(G) t X1(z~) i W(G) t o is exact. 

Given a homomorphism f : G -t H between two trees 

of groups, we clearly get a commutative square 

so we get a homomorphism b J h ( ~ )  + Wh(H) . 



Lemma 15: Let f  : G -t H be a  map between two 

t r e e s  of groups f o r  which A( f )  i s  an  isomorphism. 

Then Wh(G) -t Wh(H) i s  an  isomorphism. 

Proof: A( f )  : A ( z G )  + ~ ( z B )  i s  a l s o  an  isomorphism, 

s o  apply  Lemma 12  and the  5-lemmas. Q.E.D. 

We can now de f ine  Wh(X:f) a s  l i m  w ~ ( z ~ ~ ( x , F , ~ ) ) .  
F G T f )  

P ropos i t ion  4: Let (K,L) be a p a i r  of f i n i t e  

dimensional hCW complexes wi th  L a proper deforma- 

t i o n  r e t r a c t  of K . Then if A and A '  a r e  two choices 

of pa ths ,  then T ( K , L : A )  = T ( K , L : A ' )  i n  Wh(X:f) . 
Hence we can de f ine  T(K,L) e Wh(X:f) . 

Proof:  We can pick any l i f t  func to r  we l i k e ,  s ay  

F . C,(K,L:A,F) = C,(K,L:A1,F), and each i s  n a t u r a l l y  

based. Let r, be the  p a r t i t i o n  asoocia ted  t o  A ( see  
1 

Propos i t ion  3 )  and l e t  r be the  p a r t i t i o n  a s s o c i a t e d  

t o  A '  . Let p, be the  p a r t i t i o n  p(A) = { e l e  i s  a  

* - c e l l  i n  F(A) and the  path f o r  e  i n  l i e s  i n  F ( A )  

and t h e  pa th  f o r  e  i n  A '  a l s o  l i e s  i n  F(A 

- 1 
P* - r, n r *  

The b a s i s  F -+ C, i s  equ iva len t  t o  the  
P * 

F r *  
+ C . S i m i l a r l y  

F~ * + C: i s  equ iva len t  

3 

b a s i s  

t o  the  

b a s i s  F , + C k  (c, = c,(  . . . ,  A ) ;  C: = c * ( - , n l ) . )  
7, 

* I 
T '  - T  = T(K,L:A' )  - T(K,J , :A) = c (-1) [ I  , by * 

Lemma 14. I f  we can show [ r* / rk]  i s  i n  the  image of 

A(Znl) we a r e  done. But t h i s  i s  not  hard t o  see  ( ~ h (  ) 

was def ined  by f a c t o r i n g  out  by such t h i n g s ) .  n 



Having def ined  a  t o r s i o n ,  we prove it i n v a r i a n t  

under subdiv is ion .  We fo l low Milnor [ 2 3 ] .  

Theorem 3: The t o r s i o n  T(K,L) i s  i n v a r i a n t  

under subd iv i s ion  of the  p a i r  (K,L); (K,L) a  f i n i t e  

dimensional hCW p a i r .  

Proof:  Following Milnor [ 2 3 ]  we prove two lemmas. 

Lemna 16: Suppose t h a t  each compment of K - L 

has  compact c losure  and i s  simply connected. I f  L i s  

a  proper deformation r e t r a c t  of K , then T(K,L) = 0. 

Proof:  (Compare Milnor [ 2 3 ]  Lemma 7 .2) .  Let 

f  : T -+ K be the  t r e e .  We wish t o  f i n d  a s e t  of pa ths  

s o  t h a t  the  boundary map i n  c,(K,L:F,A) comes from 

TT 
Let  {Mi] be the  components of K - L  . Pick  a 

po in t  qi e Mi , and jo in  {qi] t o  T by a  l o c a l l y  

f i n i t e  s e t  of paths  A i  . Now jo in  each c e l l  i n  Mi t o  

qi by a  pa th  l y i n g  i n  Mi . Let fl be the  s e t  of  paths  

g o t t e n  by fol lowing the  pa th  from the  c e l l  t o  a  qi and 

then fo l lowing  the  pa th  X i  . Clea r ly  A i s  a  l o c a l l y  

f i n i t e  s e t  of paths  joining t h e  c e l l s  of K - L  t o  T . 
Let  e  be a  c e l l  of K - L  . Then i f  f  i s  a  c e l l  

of ae , t o  compute the  c o e f f i c i e n t  of f  i n  ae  we 

jo in  the  baracenter  of f  t o  the  baracenter  of e  by a  

path i n  e  and look a t  the  r e s u l t i n g  loop. The pa th  

from e and the  path from f  h i t  the  same qi , and 

s i n c e  M i  = 0 , the  c o e f f i c i e n t  is '  + 1, s o  the  
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boundary map comes from gT . Q.E.D. 

Lemma 17: Si~ppose t h a t  H,(c,(K,L: .A) ) i s  no t  ze ro ,  

but i s  a  f r e e  Zrl(K)-module wi th  a  p re fe r red  bas i s .  

Suppose each b a s i s  element can be represented  by a  cycle  

ly ing  over a  s i n g l e  component of K - L  . Asszme a s  be- 

f o r e  t h a t  each component of K - L  i s  compact and simply 

connected. Then T(K,L) = 0 . 
Proof: Pick a  s e t  of pa ths  a s  i n  Lemma 1 6  so  t h a t  

t he  boundary maps come from PT . Look a t  a  cycle  z  , 
r ep resen t ing  a  bas i s  element of H, . What t h i s  means 

i s  the  fol lowing.  Let C, 5 C1 5 ... be a n  inc reas ing  

sequence of compact subcomplexes wi th  u Ci = K and 
-v .---' 

Mi 5 Ci . Then z  H*(K-Ci, L - C i )  f o r  a  maximal Ci. 

Then z  i s  represented  by a  cyc le  l y i n g  i n  some comp~nent  

-1 - 
of T ( M i + l ) ,  where T : K - C i + K - C i .  A l l t h e  

l i f t e d  c e l l s  of l i e  i n  a  s i n g l e  component of 

-1 
T (Mi+l)  , SO l e t  g E r l ( K - C i )  be such t h a t  gx a l s o  

l i e s  i n  t h i s  d i s t ingu i shed  component. 

Then the t o r s i o n  computed wi th  t h i s  a l t e r e d  b a s i s  

i s  zero  s ince  i t  aga in  comes from Wh(T) = 0 . But 

the  new b a s i s  f o r  H, i s  c l e a r l y  equ iva len t  t o  the  o ld  

one i n  Wh(K) . Q.E.D. 

The proof of Theorem 3 now fol lows Mi lnor ' s  proof 

of Theorem 7.1 word f o r  word except f o r  a  renumbering of 

the  r e q u i s i t e  lemmas. n 
Lemma 18: I f  M 5 L 5 K , where both L and Irl 

a r e  proper deformation r e t r a c t s  of K , then 



T(K,L) = T(K,M) + i*a(L,M) , where i,: Wn(L:f) -+ 

Wh(K : i 0 f) is the map induced by i: L c_ K . (Note 

the tree must be in Lo) 

Proof: This is a simple application of Theorem 1. 

Q0E.D. 

Let f: X + Y be a proper, cellular map between 

two finite dimensional hCW complexes. Let Mf be the 

mapping cylinder. Y is a proper deformation retract of 

Mf and we have 

Lemma 19: T(M~, Y) = 0 in Wh(~~,t) , where 

t : T -t Y is a tree for Y c M f  . 
Proof: Word for word Milnor [ 2 3 ]  Lemma 7.5. Q.E.D. 

Definition: For any cellular proper homotopy 

equivalence f : X + Y , X and Y as above, there is 

a torsion, ~ ( f )  , defined as follows. Let t : T + Y 

be a tree for Y . Then, as in Lemma 19, t is also 

a tree for Mf under T + Y 5 Mf . ~ ( f )  = i*T(Mf ,X), 

where r, : Wh(Mf:t) -+ Wh(~:t) , where r is the 

retraction. 

Just as in Milnor we have 

Lemma 20: If i : L -+ K is an inclusion map 

~ ( i )  = T(K,L) iC either is defined. 

Lemma 21: If fo and fl are properly homotopic, 

qf,) = dfl) 



Lemma 22: If f : X -t Y and g : Y -+ Z are 

cellular proper homotopy equivalences, then 

~ ( g  0 f) = a(g) + g,T(f) , where t : T -t Y is a ... - - 
tree for Y and g, : Wh(~:t) j Wh(~:g ot) 

Remarks: It follows from Lemma 21 that we may 

define the torsion of any proper homotopy equivalence 

between finite dimensional hCW complexes, since we 

have a proper cellular approximation theorem [Ill . 
Now in [33], Siebenmann defined the notion of 

simple homotopy type geometrically. In particular, he 

got groups c(X) associated to any locally compact 

CW complex. If X is finite dimensional, we can define 

a map T : S(X) + Wh(~:f) by chgosing a tree f: T -+ X. 

If g: X -t Y is an element of 5 (X) , g goes to 

a(M -1,Y), where g-l: Y -+ X is a proper homotopy in- 
g 

verse for g . 
T is additive by Lemma 22 and depends only on the 

proper homotopy class of g by Lemma 21. That T is 

well-defined reduces therefore to showing that g a 

simple homotopy equivalence implies ~ ( g )  = 0 . We 

defer for the proof to Farrell-Wagoner [lo], where it is 

also proved a is an isomorphism. The inverse for T 

is easy to describe. Let a E Wh(X:f) be an auto- 

morphism of F(") for some n . Wedge n 2-spheres to 

each vertex of the tree. Attach 3-cells by a to get an 

~ c W  complex Y with Y - X 3-dimensional. Then 



i : X  5 Y i s  a n  element of c(X) and i = a . Again 

we d e f e r  t o  [ l o ]  f o r  the  proof t h a t  t h i s  map i s  w s l l -  

def ined .  

I n  [ 3 3 ]  Siebenmann a l s o  c o n s t r u c t s  a n  exac t  sequence 

0 - +  Whlrl(X) + C ( X )  -+ KO nlE(X) + KO r l ( X )  . We have 

commutes. F a r r e l l  and Wagoner descr ibe  a and ? and 

prove t h i s  diagram commutes. They they show the  bottom 

-1 row i s  exac t ,  so  T i s  an  isomorphism. 

Note now t h a t  i f  g: T + X i s  another  t r e e  f o r  X ,  

we have n a t u r a l  maps Wh(X:f) =W~(X:~) which take  

T ( X , Y )  computed wi th  f  t o  T(X,Y) computed wi th  g  an3 

v ice-versa .  This shows Wh(X:f) does no t  r e a l l y  depend 

on the choice of t r e e .  We conten t  ourse lves  wi th  r e -  

marking t h a t  t,he map Wh(X:f) + Wh(X:g) i s  not  easy  t o  

dzsc r ibe  a l g e b r a i c a l l y .  

I n  [331 Siebenmann de r ives  some u s e f u l  formulas 

which we name: 

1) Sum formula 

2 )  Product formula 

3 )  Transfer  formula. 

Note i f  r : Y -+ Y i s  a  coirer, TT induces 

* 
7 : c(Y) + 5 ( Y )  . Ws a r e  unable t o  say  much about t h i s  

map a l g e b r a i c a l l y .  The product formula i s  a l g e b r a i c a l l y  



describable however. 

Lemma 23: Let C, be an s-based, finite chain 

complex over the tree of rings, R . Let D, be an 

s-based, finite chain complex on the ring S (the tree 

of rings over a point). Then (C 8 D), is defined. If 

C, is acyclic with torsion T , (C 8 D), is acyclic with 

torsion X(D) i, T(C) E Wh(R x S) , where R x S is 

- the tree of rings (R x S)* - RA x S , and 
i, : Wh(R) + wn(R xS) is the obvious split monomorphism. 

If D, is acyclic, then so is (C 8 D), , and if 
T(D) = 0 , then z ( C  03 D) = 0 . 

Proof: The first formula is Siebenmann's product 

formula and is proved by inducting on the number of cells 

in D, . The second formula is new, but it is fairly 

easy. It basically requires the analysis of maps 

Wh(S) +Wh(R x S) of the form D, -+ P 03 D, for P an 

s-based R-module. These maps .are homomorphisms, and so, 

if T(D,) = 0 , T(P 8 D,) = 0 . But T((c@JD),)= C (-1) 
k 

k 
T(C~ 8 D,) . (There is evidence for conjecturing that 

the map Wh(S) -+ Wh(R x S) is always 0) . Q.E.D. 

We conclude this section by discussing the notion 

of duality. In particular, we would like a functor 
.e * : flR + nl, which generalizes the usual duality 

P + HomR (P,R) in the compact case. Up until now RR 
has denoted without prejudice either the category of 

right or left R-modules. We now fix it to be the cate- 
.e 

gory of right R-modules. tolR then denotes the category 
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of l e f t  R-modules. 

Ac tua l ly ,  we a r e  r e a l l y  only i n t e r e s t e d  i n  

C * : (PR +BR . Hence we begin by d i scuss ing  a  f u n c t o r  

,e * : 3R + ZR , where 3R i s  the  ca tegory  of l o c a l l y -  

f i n i t e l y  generated f r e e  modules. * w i l l  s a t i s f y  

1) * i s  a  c o n t r a v a r i a n t ,  a d d i t i v e ,  f u l l  f a i t h f u l  

f u n c t o r  

2 )  ** i s  n a t u r a l l y  equ iva len t  t o  the  i d e n t i t y .  

By t h i s  l a s t  s ta tement  we mean the fol lowing.  
.e 

Given * : SR -t SR t h e r e  w i l l  be another  obvious 
-. 

d u a l i t y  * : $ -+ 5 . The compasite of these  two i s  
'R 

n a t u r a l l y  equ iva len t  t o  the  i d e n t i t y .  

We proceed t o  de f ine  * . I f  FA i s  a  f r e e  r i g h t  

RA-module based on the s e t  A , t h e r e  i s  a l s o  a f r e e  

l e f t  RA-module based on the  same s e t ,  F . F: can be 
C 

descr ibed  a s  c om' (Fy,RA), where HomR i s  the  s e t  of 
R~ 

a l l  R - l i n e a r  homomorphisms which vanish  on a l l  but 

C 
f i n i t e l y  nany genera tors .  HomR (FA,RA) i s  e a s i l y  seen 

A 
t o  have the  s t r u c t u r e  of a  l e f t  RA-module. 

Let A 5 B , and l e t  f  : R -+ S be a  r i n g  homo- 

morphism. Then we have 

The map ex  i s  a n  isornwphism s ince  

0 -+ FA @ RB + FB + FBmA + 0 i s  s p l i t  exac t .  Thus we 



g e t  a  well-defined homomorphism 

Now given F, , l e t  F, be the  t r e e  of l e f t  

modules over the  t r e e  of r i n g s  R def ined  by 

* - C (F,,lA - HornR F R , and use the  map discussed 
A 

above t o  de f ine  pAB . 
* * * 

Given a  map f  : F,-+  F P de f ine  f  : Fp -+ F, 

z C c  
by ( f  = H3m(fA) : HornR R ) -t Horn (F, (A ) ,RA ) . 

a ( F p ( ~ )  Y * R~ 

We must check t h a t  ( f  i s  def ined  and t h a t  the  

r e q u i s i t e  diagrams commute. This l a s t  i s  t r i v i a l ,  so  we 

cancen t ra t e  on the  f i r s t  ob jec t ive .  To t h i s  end, l e t  

C a E HornR ( F p ( A ) ,  RA) . We must show Hom(fA) (a )  l i e s  
A 

c R ) . Since a has  
R ) 5 HornR @,(A) 3 A i n  HornR 1, A 

A A 

compact suppor t ,  a vanishes  on t h e  gene ra to r s  cor re-  

sponding t o  a  subse t  S 5 p(A) , wi th  p(-4) - S f i n i t e .  

Hence t h e r e  i s  a  B E @(TI so t h a t  p(B) 5 S ; i . e .  a 

vanishes  on genera tors  corresponding t o  p ( B )  . Let 
- - 
F 7 r ( ~ )  

- 
F n ( ~ )  'RB R~ let 'p (B)  = F p ( B )  @ R ~  'A A and 

l e t  TB = f B  @ i d  . Then 



a  i s  i n  the  ke rne l  of i , s o  Hom(fA) ( a )  E ker  j . 
But t h i s  means ~ o m ( f ~ )  ( a )  has compact support .  

* * There i s  a n a t u r a l  map F ;+  F induced by the  

n a t u r a l  i n c l u s i o n  of a  module i n  i t s  double dua l .  This 

map i s  a n  isomorphism and 

commutes. 

* i s  c l e a r l y  con t rava r i an t  and a  func to r .  I f  
* 

.rr 5 p , one s e e s  F; 1 F, i s  a n  equivalence.  Hence we 

* * 
can de f ine  * f o r  map-germs. ( f  + g ) *  = f  + g  i s  easy 

t o  s e e ,  so  * i s  a d d i t i v e .  Since **  i s  n a t u r a l l y  

equiva len t  t o  the  i d e n t i t y ,  * must be both f a i t h f u l  an3 

f u l l ,  so  1) i s  s a t i s f i e d .  

We next de f ine  the  subcategory on which we wish t o  

de f ine  * . Let ER be t h e  f u l l  subcategory of RR such 

t h a t  M s mI3 i f f  t he re  e x i s t s  f :  F + F, 
P 

wi th  coker 

8 
f Z M .  Note f R S c R .  We de f ine  * : - +  by 

M* = k e r ( f * )  . 
Given M ,  N E )(R , a  map g: M -+ N , and r e s o l u t i o n s  

Fp -+ FTr 
-+ M -t 0 and Fa -t Fp -t N -+ 0 , note  t h a t  we can 

compare r e s ~ l u t i o n s .  That i s ,  we can f i n d  h  and f so 

t h a t  f  commutes. 
Fp -'F a  



Define g*: N* + M* by 

We f i r s t  note  t h a t  t he  d e f i n i t i o n  of g* does mt 

depend on h  and f  , f o r  i f  we pick hl and fl such 

t h a t  A) commutes, t h e r e  i s .  a  comnutative t r i a n g l e  

Dualizing we? g e t  

Now t h i s  t r i a n g l e  shows t h a t  the  map we g e t  from f l ,  hl 

i s  the  same a s  we got  from f ,  h  . 
To show M* does not  depend on t h e  r e s o l u t i o n  i s  

now done by comparing two r e s o l u t i o n s  and not ing 

( i d ) *  = i d  . 
Unfor tuna te ly  (M*)* may not  even be def ined ,  s o  

we havs l i t t l e  hope of proving a r e s u l t  l i k e  2 ) .  One 

u s e f u l  r e s u l t  t h a t  we can g e t  however i s  



Lemma 24: Let f  : P -+ M be a n  epitnorphism wi th  

M E Ti(R and P  t fR . Then f* :  M* -r P* i s  a monomor- 

phism. 

Proof:  The proof i s  easy.  -- Q.E.D. 

If we r e s t r i c t  ourse lves  t o  TR , we can g e t  1) 
G 

and 2 )  t o  h3ld.  I t  i s  easy t o  s e e  P* c VR f o r  P E C R' 
Now the  equat ion  ( P  @ Q ) *  = P* @ Q* i s  e a s i l y  seen  

s i n c e  d i r e c t  sum preserves  ke rne l s .  Thus 

(P @ Q)** = P** @ Q** , so i t  i s  no t  hard t o  s e e  P + P** 

must be a n  isomorphism s ince  i f  P i s  f r e e  t h e  r e s u l t  i s  

known. L a s t l y ,  * i s  n a t u r a l ,  i . e .  i f  f  : R -+ S i s  

- 
qS fol lows s i n c e  8 i s  r i g h t  exac t .  

Def in i t ion :  Let {Mi,ai]. be a  cha in  complex wi th  
* * 

Mi E GR . Then {qi,ai] i s  a l s o  a  cha in  complex. The 

cohomology of {Mi,ai] i s  def ined  a s  t h e  homology of 

P r o ~ o s i t i o n  5: Let (X,Y) be a n  hCW p a i r ;  l e t  F 

be a  l i f t  f u n c t o r ;  and l e t  be a  s e t  of pa ths .  Then 

{c,(x,Y: F , A ) ,  a,] i s  a  cha in  complex a s  we saw. I t s  
* * 

dua l  i s  {C (X,Y: F,f l ) ,6  ) . Hence t h e  cohomology of a  

p a i r  i s  . the  same a s  the  cohomology of i t s  cha in  complex. 

Proof:  Ehsy. 



Notice t h a t  our geometric chain complexes l i e  i n  

eR . For such complexes we can prove 

Theorem 4: Let {Pr ,a r ]  be a  f i n i t e  chain complex 

i n  8 . Hk(p) = 0 f o r  k < n i f f  t h e r e  e x i s t  maps 

D r :  Pr -, 'r+l f o r  r n  wi th  D_-lar+3r+lDr l = i dp  . 
r 

Proof:  Standard.  0 

Corol la ry  4.1: (Universal  c o e f f i c i e n t s ) .  With 

{pr ,a r ]  a s  above, Hk(P) = 0 f o r  k i n  impl ies  

k  H (P)  = O  k i n .  Hk(p) = O  f o r  k , n  impl ies  

H ~ ( P )  = 0 f o r  k  n  . 
Proof:  Standard.  n 
Now suppose {Pr ,ar]  i s  a chain complex i n  PR . 

z 
Then coker a r  ?& . By Lemma 24, ker  6r+l  = (coker 3,) . 
Now 

commutes and i s  exact .  I f  H,(P) & , applying d u a l i t y  

t o  t h i s  diagram y i e l d s  

coker a = Hr(p) , p O a = 0 , s o  t h e r e  i s  a  unique,  

n a t u r a l  map H ' ( P ) + ( H ~ ( P ) ) *  . 



Corol la ry  4.2: With {Pr ,ar]  a s  above, i f  

H ~ ( P )  = 0  f o r  k < n  , Hn(P) E % . I f  Hn(P) PR , 
t he  n a t u r a l  map H"(P) t ( I ~ ( P )  ) *  i s  a n  isomorphism. 

Proof:  By induct ion  one shows Zn e gR , and 

s ince  'n+ 1 a n + l ,  'n d H ( P )  A 0  i s  e x a c t ,  n  

i t  i s  noL ha1.d t o  see  Hn(P) E 7/1R . I f  H,(P) E CR , 
0  H ~ P *  z P i s  e x a c t ,  so  

H"(P) 5 (H,(P))* . 0 
Theorem 5: With [P,, ar} a s  above, suppose 

k Hk(P) = 0  f o r  k  < n  and H (P)  = 0  f o r  k > n  . Then 

H n ( P )  E $ and the  n a t u r a l  map H"(P) + (H,(P))* i s  a n  

isomorphism. I n  Ko(R) , [H,(P)] = ( - ~ ) " x ( P )  , where 

Proof:  Since Hk(P) = 0 f o r  k < n  , t he  sequence 

+ Pn+l -+ Pn + Pn-l ' 0 - b  s p l i t s  up a s  

* . -  + Pn+l ---+zn,O 

The second sequence i s  e x a c t ,  and 

9 - - 4  P  n+ 1 4 Zn -- Hn ---to i s  exac t  s ince  Hk(P) = 0 

f o r  k  > n  by Corol la ry  4.1. 

By Corol la ry  4.2,  Hn zR . Dual iz ing ,  we g e t  

* 
0 . .  & p  

n+ 1 C z ~ C  ( H ~ ) *  + 0 i s  exac t  by 

Corol la ry  4 .1  and Lemma 24. As i n  the  proof of Theorem 4 ,  



* 
w3 g e t  a  c h a i n  r e t r a c t i o n  up t o  D : Pn+l -f Z: . Thi s  

* * 
shows (Hn) E eR . But * * *  + pEtl C Z: - (H,) + 0 

* * & ... 0 + z; i P  t Pn-l n  ' s p l i c e  t o g e t h e r  t o  g ive  

t h e  cocha in  complex. H" --t (H,)' i s  n3w e a s i l y  seen  

t o  Se a n  isomorphism. 

Now n-1 
( - l ) r [ ~ r ]  + (-l)"[zn] + (-1)  [Hn] = 0 

r&+l 

Bass [I] ,  P r o p o s i t i o n  4.1, Chapter  V I I I .  Summing t h e s e  

two e q u a t i o n s  s h ~ w s  x(P)  + ( - l ) n - l [ ~  ] = 0 . 0 n  

Now l e t  us r e t u r n  and d i s c u s s  t h e  p roduc t s  we 

d e f i n e d  i n  s e c t i o n  4. We d e f i n e d  two v e r s i o n s  of t h e  

cap p roduc t  on t h e  c h a i n  l e v e l  ( s e e  Theorems 4.5 and 4 . 6 ) .  

Not ice  t h a t  t h e  maps we d e f i n e d  on P,(X;A,B) and 
* 

P (X;A,B) a c t u a l l y  come from maps on t h e  t r e e  mDdules 

c,(x;A,B:A,F) and c*(x ; .~ ,B:A,F) .  Thus i f  f i s  a 

m cocyc le  i n  C (X,A:r) ,  and i f  h  i s  a  d i a g o n a l  app rox i -  

mat ion,  Theorem 4.5 y i e l d s  a  c h a i n  map 

C,+m(X;4 ,B) hf 
ZC, (x,B) . Note t h a t  i n  o r d e r  f o r  

t h i s  t o  l a n d  i n  t h e  a s s e r t e d  p l a c e ,  r p u l l e d  up t o  t h e  

u n i v e r s a l  cover of X must j u s t  be o r d i n a r y  i n t e g e r  

c o e f f i c i e n t s .  
* m+ * 

f nh d u a l i z e s  t o  f U h :  C (X,B) + C  (X;A.B) . 
Since  we d i d  n o t  d e f i n e  cup p roduc t s  on t h e  c h a i n  l e v e l ,  

we may t a k e  t h i s  a s  a  d e f i n i t i o n .  Neve r the l e s s  we a s s e r t  

t h a t  on homglogy, f U h  i nduces  t h e  cup p roduc t  o f  



 heo or em 4.1. This follows from the duality relations 

we wrote d3wn between ordinary cohomology and homology 

(see the discussion around the universal coefficient 

theorems in section 1). 

Now one easily sees * induces a map Wh(*): 

L c 
Wh(R) + W'n (R) , where Wh (R) is the group formed 

from left modules. If ffl (or Uf) is a chain equiva- 

lence, ws can compare 7;(Uf ) . We get 

W h ( * )  (~(f n) ) = (-l)m~ (f U) by definition. 

Next we study the cap product of Theorem 4.6. A 

cycle c e Cm (X;A,B;r) yields maps c*(x,A) + Om-+ (X,B) 

C* is a left module, while C, is a right module, so 

fl c is not a map of tree modules. If has all its h 

groups isomorphic to Z , which it must to yield the 

asserted product, we get a homomorphism w : rl(X) + Z2 - - 

Aut(Z) given by the local system. We can make C* into 

a right module (or C, into a left module) by defining 
- - 

MA*a = a*MA , where mA E (c*)~, a € (ZnlIA and is 

the involution on (Z-rrllA induced by g e (n-l)A goes 

to w(~)~-', where w(g) € Z2 = (1,-1) is the image of 

g under the composition + r1(x) 4 Z, . Let 

C; be C* with this right module structure. 
* 

Then nhc: Cw(X,A) + C,-* (X,B) is a chain map. If 
* m-* 

we dualize, we get a aap (nhc) :C (X,B)  - > 

(c;(x,a) dualized * w . Cw dualized is just C* , and 

(nhc) * = nh . 



The invo lu t ion  i s  seen t o  induce a n  isomorphism 

L 
Wh ( G )  - + W h ( G )  , and the  composition 

c 
Wn(G) wh(*) > Wh (G) -Whi~)  i s .  the  map induced by 

ZG -+ ZG v i a  - ( i t  i s  not  hard t o  s e e  t h i s  map induces 

a map on the Whitehead group l e v e l . )  We w i l l  denote the  

map on W ~ ( G )  a l s o  by - 

I f  nhc i s  a chain isomorphism, e i t h e r  from 
* 

C w ( X , A )  - Cm-* ( X , B )  o r  c:-*(x,B)' c,(x,A) , we can 

compare the two t o r s i o n s .  We g e t  the  confusing equat ion 

m 
'c(nhC) = (-1) ,r(nhc) where d e s p i t e  t h e i r  s i m i l a r  

appearance,  the  two n h c t s  a r e  not  the  same (which i s  

which i s  i r r e l e v a n t ) .  

We conclude by recording a n o t a t i o n a l  convention. 

We w i l l  sometimes have a map on homology such a s  

n z  : A*(M) -+ A*(M) . If t h i s  map i s  a n  h3mology i s o -  

morphism we w i l l  o f t e n  speak of t h e  t o r s i o n  of fl c (or  

U f ,  e t c . ) .  By t h i s  we mean t h a t  t he re  i s  a cha in  map 

(which i s  c l e a r  from the  con tex t )  and these  maps on the  

chain l e v e l  a r e  equivalences .  Note t h a t  by the  usua l  

nonsense, the  t o r s i o n s  of these  product maps do not 

depend 3n a choice of cyc le  (cocycle)  w i t h i n  the  homology 

(cohomology) c l a s s .  Nor do they depend on l i f t  func to r  

o r  choice of paths .  They a r e  dependent on th?  t r e e  a t  

t h i s  s t age  of our d i scuss ion ,  but t h i s  too  i s  l a r g e l y  

f i c t i t i o u s .  A b e t t e r  proof of independence i s  given a t  

the  end of s e c t i o n  6. Espec ia l ly  r e l e v a n t  f o r  t h i s  l a s t  



d i scuss ion  a r e  Theorem 2,1.2 and the  d i scuss ion  of the  

Thom isomorphism i n  the appendix t o  Chapter 2. 

Sec t ion  6: The r e a l i z a t i o n  of chain complexes. 

I n  [ 3 7 ]  and [38] ,  Wall d i scussed  the  problem of 

cons t ruc t ing  a  ChJ complex whose chain complex corresponds 

t o  a  given cha in  complex. We d i scuss  t h i s  same problem 

f o r  l o c a l l y  compact C N  complexes. Throughout t h i s  s e c t i o n ,  

complex w i l l  mean a  f i n i t e  dimensional,  l o c a l l y  compact 

CW complex. 

I f  we have a  chain complex A,  , t h e r e  a r e  many 

condi t ions  i t  must s a t i s f y  i f  i t  i s  t o  be the  chain complex of 

a  complex. Like Wall [38] we a r e  unable t o  f i n d  an  a l g e b r a i c  

d e s c r i p t i o n  of these  condi t ions  i n  low dimsnsions. We 

escape the  dilemma i n  much the  same way. 

Def in i t ion :  A geometric chain complex i s  a  p o s i t i v e ,  

f i n i t e ,  cha in  complex A, t oge the r  wi th  a  2-complex K , 
a  t r e e  f : T -+ K , and a l i f t  func to r  f E &(f) suzh 

t h a t  1) each Ak i s  a  l o c a l l y - f i n i t e l y  generated f r e e  

Z r l  (K ,F , f  ) -module 

2 )  each ak:  Ak 4 Ak-l i s  a  map (no t  a  map-germ) 

3 )  i n  dimensions L 2 ,  C,(K:F) = A, . 
For 3 )  t o  make sense ,  we must de f ine  e q u a l i t y  f o r  two 

f r e e  t r e e  modules. I f  A i s  f r e e  and based on (S,T)  

and i f  'B i s  f r e e  and based Dn (R ,p ) ,  A = B i f f  t h e r e  

e x i s t s  a  1-1 map a : S t+ R sach t h a t  a? r i s  



equivalent to p . One easily checks this is an equi- 

valence relation. 

Notice that if A, is going to be the chain com- 

plex of some complex, then all the above conditions are 

necessary. 

Given two geometric chain complexes A and B, , 
a map f,: A, -t B+ is a map (not a germ) on each Ak 

- and akfk - fk-13k as maps. 

Definition: A map f, : A, -+ B, between two 

geometric chain complexes is admissible provided 

1) if L is the 2-complex for B, , L = K wedged 

with some 2-spheres in a locally finite fashion 

2) fo and fl are the identity 

3) f2 is the identity on the 2-cells of K and 

takes any 2-sphere to its wedge point, (The tree for L 

is just the tree for K . The lift functor for L is 

just g-l(lift functor for K) , where g : L -t K is the 

collapse map). 

Remarks: It seems unlikely that we really need 

such strong conditions on a map before we could handle 

it, but in our own constructions we usually get this, 

and these assumptions save us much trouble. 

The chief geometric construction is the following. 

Theorem 1: Let X be a connected complex. Let A, 

be a geometric chain complex with an admissible map 

f, : A, -t C,(X) which is an equivalence. Then we can 



construct a complex Z and a proper, cellular map 

g : Z -t X so that c,(Z) = A* and 

commutes. g is a proper homotopy equivalence. 

Proof: We construct Z skeleton by skeleton. 

Since f, is admissible, z2 = x2 wedge 2 spheres. 

g2 : z2 -+ X is just the collapse map onto x2 . To 

induct, assume we have Z' and gr : Z' + X so that 

- c,(zr) =A. in dimensions (r and g - f in 

these dimensions. If we can show how to get Zr+l 
' gr+l 

we are done since A, is finite. 

NOw *r+l is free, so pick generators {ei} . Ws 
r have a map a : A + A and Cr(Z ) = A, . Hence 

each aei is an r-chain in Z' . We will show that these 
r-chains are locally finite and spherical (i.e. there is 

a locally finite collection of r-spheres U S: 5 Z' such 

r that aei is homologous to Si , and, if hi is an 

(r+l)-chain giving the homology, the {hi} may be picked 

to be 1ocal.l~ finite). We will then attach cells by 

these spheres and extend the map. 

Let us nwd proceed more carefully. For each Ai , 
ae. s Kr and aei E ( A ~ ) ~ ~  for some Wi € @ (TI with 

I 

(Mi) cafinal in the subcategory of &(T) consisting of 
1' 

all A such that ei E ( A ~ ) ~  . Since C,(Z = Ar , 



aei = ci E (cr(zr) for some Bi e C(T) with 
Bi 

Bi ( Wi (we write Bi 5 wi provided Bi 5 Wi and 

{B~] is cofinal in the subcategory of all A E: C(T) 

for which ei ( A ~ ) ~  . ci is now a real geometric 

chain. aci = 0 since a is actuallya map. Let 
/V 

[ci] be the homology class of ci in Hr (Fr (Bi) ) , 
where Fr is the lift functor for Z' . Now g,[ci] = 0 - 
in Hr(F(Ui)) , where F is the lift functor for X , 
and Ui L Bi . 

7 A 

'": Fr(Ui) -+ F(Ui)) Hence there is an fi ~,+~(g, 

with fi -+ [ci] . B U ~  gr: Z' -+ x is properly r-con- 

nected (it induces an isomorphism of A (  : S  and 

0 1 

Hend s by assumption, so it is always 1-1/2-connected. 

Hence the universal covering functor for X is a 

universal covering functor for z', so A (  :nk) = 0 iff 

A(Mg ,X: Hk,") = 0 for k ( r by the Hurewicz theorem. 
r 

But A ( M  ,X: Hk,") = 0 for k (r iff n(Hk(gr)) is 
gr 

an isomorphism for k < r and an epimorphism for k = r.  

But this is true if A(Hk(f) is an isomorphism for k r, 

which it is,) Hence the Hurewicx Theorem gives us ele- 
rz ments si e n r+l(& : Fr(Vi) -+ F(Vi)) where Vi "F-U ( Ui 

and si hits the image of fi in Hr+l(&r: Fr(vi) -+ 
- ,  

F(Vi)) under the Hurewicz map. 

Let Z = zr U a collection of (r+l)-cells,' (ei] 

attached by si . gr+l: zr+l -+ x is gr on zr . Since 

g, 0 Si : S' -+ zr + X are properly null homotopic, choose 

a locally finite collection ( Q ~ ]  of nu11 homotopies of 



o s t o  zero i n  J?(Vi) - gr+l: z r+ l  +. X i s  def ined  
g  r i 

by Qi on each ei gr+l i s  obviously s t i l l  proper .  

c , (zr)  + C , ( Z  ) induces an  -isomorphism f o r  * r . 
'r+l (zr+') = by tak ing  the  c e l l  ei t o  the  genera tor  

e  . Fr+l(B) = Fr(B) U ( a l l  c e l l s  ei f o r  which the  

genera tor  ei l i e s  i n  B l e s s  those f o r  which 

gr+l (e i )  F ( B ) )  

Then g-l F(B) 2 Fr+l r+l (B) . Notice t h a t  i f  a  c e l l  

e  does not  a t t a c h  t o t a l l y  i n  Fr(B) g ~ + ~ (  e) P - F(B), 

so Fr+l(B) i s  a  subcomplex. Fr+l (B) i s  c o f i n a l  i n  B ,  

F r + l  i s  a  l i f t  func to r .  

Look a t  the  chain map (gr+l).+ : Cr+l(Z r+ l )  
+ 'r+l ( X I .  

ei a s  a  c e l l  goes under (gr+l), t o  t h e  same element i n  

(Cr+l (X) IB a s  the  genera t o r  ei does under f ,  f o r  a l l  

B @(T) such t h a t  ei i s  a  c e l l  i n  Fr+l ( B )  . Hence 

I r+l  commutes. 0 

Def in i t ion :  A r e l a t i v e  geometric cha in  complex i s  a 

t r i p l e  (A,,K,L) c o n s i s t i n g  of a  f i n i t e ,  p o s i t i v e  cha in  

complex A, and a  p a i r  of complexes (K,L) . Understood 

i s  a  t r e e  and a  l i f t  func to r .  Then each Ak i s  a  l o c a l l y -  

f i n i t e l y  generated f r e e  Zrl(K) t r e e  module; each ak i s  

a  map; and i n  dimensions 5 2 ,  A, = C , ( K , L )  . 
hn admiss ib le  map i s  a  cha in  map, no t  a  germ 

f ,  : A, -+ l3, and K = K' wedge a  l o c a l l y  f i n i t e  c o l l e c t i o n  
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of 2-spheres. f o  and f l  a r e  the  i d e n t i t y ,  and f 2  

i s  the  map induced by the  co l l apse  K + K' . 
Corol la ry  1.1: Let (X,Y) be a  p a i r  of complexes, 

X connected. Let A, be a  r e l a t i v e  geometric cha in  

complex wi th  a n  admissible  map f ,  : A, 3 C, (X,Y) which 

i s  a n  equivalence.  Then we can cons t ruc t  a  complex Z 

wi th  Y a s  a  subcomplex and a  proper c e l l u l a r  map 

g: Z -t X which i s  the i d e n t i t y  on Y such t h a t  
C 

g i s  a  proper homotopy equivalence of p a i r s .  

Proaf :  The proof p a r a l l e l s t h e  proof of Thsorem 1, 

except we must now use Namioka t o  show our elements a r e  

s p h e r i c a l .  0 

Now l e t  f,: A, -t C,(X) be an  a r b i t r a r y  cha in  equi-  

valence.  A s  i n  Wall [38], we would l i k e  t o  r ep lace  A, 

by a n  admiss ib le  complex wi th  f ,  admiss ib le  while 

changing A, a s  l i t t l e  a s  poss ib l e .  Look a t  

... C - C2 '. C1 'C, I 0  
3 

3ne might l i k e  t o  t r y  the  complex 



r2 o a 
*-• --"3 c C2 'C1 ' Co - 0 

lid lid iid 

The top complex is clearly admissible, but unfortunately 

the map is no longer an equivalence. The cycles in A3 
are now bigger with no new boundaries, and the boundaries 

in C2 are smaller with no fever cycles. 

Note first that X is not of great importance. If 

we replace X by something in its proper homotopy class, 

we will not be greatly concerned. Let X' be X with 

2-spheres wedged on to give a basis for A2 and 3-cells 

attached to kill them. Then X I  has the same simple 

homotopy type as X , c~(x') = Ck(X) except for 

k = 2 ,3  , and Ck(xl) = Ck(X) @A2 for k = 2,3. Let 

I _ 
fk - fk , k # 2 , 3 ,  and let fj = (f3,a) and fi = (f2,id). 

f l 
Then A, - , C,(x1) is still an equivalence and now 

f$  is a monomorphism. Let A' be ths complex 

1 
Then h*: A, + C 1  has homology in only one dimension: * 

t 

0-H2(h) -H2(A1) -H~(c') +O . Since A,-?-A* 

I 
and since the composition A, +A: --+ C, is an equi- 

valence, H~(A' ) = H2(h) @ H~(c') . 
Now by Theorem 5.5, H2(h) is s-free, providsd we 

can sh3w Iik(h) = 0 for k 2 3 . But since wa have a 



I 
chain equivalence A, -+ C, we have a  cha in  hsmotopy 

inve r se  i n  each dimension. We then c l e a r l y  g e t  a chain 
I 

homotopy inverse  f o r  A c k 2 4  , and h3 O g j  

cha in  homotopic t o  i d  . But t h i s  impl ies  ~ ~ ( h )  = 0 ,  

k / 3  

Since H2(h) i s  p r o j e c t i v e ,  we g e t  a  map p = a p 1  , 
where p 1  : H2(h) + C i  i s  given a s  fol lows.  Both A3 

- I 
and C '  map i n t o  C2 - 

3 
C2 , and 0 + Image A  + 3 

Image C3 + H2(h) + 0  i s  exac t .  S p l i t  t h i s  map by 

6: ~ ~ ( h )  + Image C '  and note  Image A n Image d = { l ]  . 
3 3  

Now CI  + Image C '  + 0  i s  exac t ,  so we can l i f t  d t o  3 3  
p : H2 (h)  + C; . Since o i s  a  monomorphism, note  

Image p 1  n Image f  = { l )  . 3 

Form A: and h i  by 

Nate ke r (a  + p )  = (ker  a , 0 )  s i n c e  p  i s  a  monomorphism 

and i f  p(x )  E Image a, P ( x )  = (11 a s  Image B fl Image d = 
I 

3 
[ l }  . Likewise note  I m g e ( a  = Image C  s i n c e  3 
Image A 8 Image p = Image C '  . Hence h: i s  a n  equi-  3 3 
valence.  

I 
Note p : H2(h) + C2 i s  a  d i r e c t  summand. We s p l i t  

p a s  fol lows.  



i s  i n c l u s i o n  on the f i r s t  f a c t o r  commuteso These maps 

must de f ine  a  cha in  squiva lence ,  s o  t h s  dua l  s i t u a t i o n  

i s  a l s o  an  equivalence.  

- her  6 = her  6'; 3 (H2(h))*,  and Image ( a *  + P * )  - 3 

Image a* CB Image P* . H (Top complex) = 3 
ker  63/~rnage ( a *  + p*) = (ke r  6;/1mage a * )  @ ( (Hz ( j  ) )*/image P*) . 

K A 
K (Bottom complex) = ker  6 /Image b2  . H3 (a) :  H3 (TO?) -+ 3 3 

H (Bottom) i s  ker  6:/1mage a* K 
3 

her  6;/Image b 2  

A 
Hence, i f  H ( a )  i s  a n  isomorphism, Image a* = Image b 2  , 3 

and p*: (c;)* j (H2(h) )*  is. onto. (H2(h))* i s  
I 

p r o j e c t i v e  so  s p l i t  P* . Dualiz ing s p l i t s  P: H2(h) + C 2  . 
H2(h) may not  be f r e e  ( i t  i s  only  s - f r e e ) .  

A 63 ~ , ( h )  i s  o f t e n  f r e e ,  but we p r e f e r  t o  keep 3 
. A3 . 

S 
Hence form A and f: by 



where S  i s  a s h i f t  func to r  so  t h a t  t he  map germs p and 

p '  a r e  a c t u a l  maps. 

By wedging on n  2-spheres a t  each v e r t e x  of the  

t r e e ,  we see  8: , fz a r e  admissible .  Nat ice  t h a t  

e x a c t l y  the  same procedure makes a map f,: A, + C,(X,Y) 

admissible .  

I n  s e c t i o n  3 ,  P ropos i t ion  3 we def ined  what i t  meant 

by X s a t i s f i e s  Dn. Wa b r i e f l y  d i g r e s s  t o  prove 

Theorem 2: The fol lowing a r e  equiva len t  f o r  n  2 ,  

X a  complex. 

1) X s a t i s f i e s  Dn 

2 )  X i s  proper ly  dominated by a n  n-complex. 
k 3 )  A (X: u n i v e r s a l  covering f u n c t o r )  = 0 f o r  k > n. 

Proof:  1) impl ies  2 )  a s  xn 5 X i s  proper ly  n- 

connected and hence dominates X i f  X s a t i s f i e s  Dn . 
2 )  impl ies  3 )  by computing ilk from t h e  c e l l u l a r  cha in  

complex of the  dominating complex. 

k 3 )  impl ies  2 ) :  Since A (X: ) = 0 f o r  k  > n , 
by Theorem 5.4 dua l ized  t o  cohonology, we g e t  chain 

r e t r a c t s  

D D U 
a 

C where r = dim X < co . By a n  induct ion  



argwnent, Image an+l i s  s - f r e e ,  and Cn = Image an+19a n 

( d m l i z e  everything t o  g e t  t hese  r e s u l t s  i n  the  cochain 

complex and then dua l i ze  back) .  An i s  s - f r ee  and 

0 + An - Cn-l 4 * * *  + c 0  c o  r l  l i d  b d  

+ Cn+l i. Cn -j Cnql + .o. -4 c0 --ir O 

g ives  us a n  n-complex and a cha in  equivalence.  An i s  
.- 

only s - f r e e ,  so  form 0 - + A n  a F ( m )  c n-1 @ F F ( m )  + . . .  
which i s  now a f r e e  complex. I f  n 2 3 , t h e  complex 

and t h e  map a r e  c l e a r l y  admiss ib l e ,  so  by Theorem 1 we 

g e t  a n  n-complex Y and a proper homotopy equivalence 

g: Y + X , so  X s a t i s f i e s  2 ) .  

I n  n = 2, X has the  proper homotopy type of a 

3-complex by the above, s o  we assuae  X i s  a 3-complex. 

I t s  cha in  complex i s  then 0 + C -+ C2 -+ C1 -+ Co + 0 with 3 
HL(c) = 0 . Wedge 2-spheres t o  X a t  the  v e r t i c e s  of t he  

t r e e  t o  g e t  a chain com9lex 0 + C3 + C 2 @ C 3  + C1-+ Co -+ C). 

Since H ~ ( c )  = 0 , C2 = C @ kerne l  a 2  . Let j : C3 -+ C2 3 
be t h e  i n c l u s i o n .  Then we have 

where r : (c3 3 ker  a 2 )  -+(C3 3 ker  a2)  3 C3 by 

r ( x , y )  = (O,y,x) . This  i s  a cha in  equivalence between 

B and A .  
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Both A. and B are the complexes for a space. 

The chain map is easily realized on the 1-skeleton 
2 

as a map, and we show we can find a map g: x2 -+ X v .  S .  
J .I 

realizing the whole chain map. 

2 Let {ei3 be the two cells of X . Their attach- 

1 ing maps determine an element in A(X : r1,-) , where 

this group denotes the A-construction applied to the 
-1 1 A 

- 
group r1(p (X -c) ,xi) , where p: X -+ X is the pro- 

jection for the universal cover of X . (i.e. - denotes 

the covering functor over induced in the above manner 

from the universal covering functor on X .) Let 

2 - gl: x1 -+ X V  S be the natural inclusion. As in the proof 

of Theorem 1, the {ei} determine an element of 

A(gl: H2, - )  . The following diagram cormnutes, and the 

rows are exact 
2 7 A(X :r2,-) -+ A(gl:r2,-) -+ A(X':~~,-)+A(X-:T~,-)=: 

1 1 where A ( X  :H1,-) and A(X :Hz,-) are defined similarly to 

1 1 A X  : , - . X 5 is properly 1-connected, the subspice 

groups are the groups asserted. h is an isomorphism by 

the Hurewiez theorem, so a diagram cbse yields a unique 

elernent in L,(gl: n2,-) which hits our element in both 
1 A(X :rly-) and A(gl:H2,-) Use this element to extend 

the map to g2: X* -+ X Y s2 . By our choices g2 induces 
j j 



an isomorphism of AT 'so Hence g2 is a proper 
1 

homotopy equivalence. Thus 3) implies 2) for n 2 2 . 
2) implies 1) is trivial*. 

Corollary 2.1: If X satisfies Dn for n 3 , 
X has the proper homotopy type of an n-complex. a 

Combining our admissibility construction with 

Theorem 1 gives 

Theorem 3: Let f, : A, + C,(X) be a chain map 

for a complex X . Then there exists a complex Yo 

satisfying D2 ; a complex Y 1 Yo such that 

c,(Y,Yo) = A, in dimensions greater than or equal to 

3; and a proper, cellular homotopy equivalence g: Y + X 

such that g, = f, in dimensions greater than or equal 

may have any preassigned value. to 4. The torsion 3f g 

Proof: Make A,, f, 

is --+A4 *A 9 (? 3 
Construct a Y from this 

we pick a basis for *3 @ 

admissible. The new complex 

) 4 C 2 C B ( ? )  - C1 - " *  

complex as in Theorem 1. Wflen 

( ?  , pick a basis for A3 and 

one for ( ? )  and use their union. Then there is a sub- 

complex Yo = Y whose chain complex is 

0--+ ( ? )  --LC2$(?) -+C1 *Co -+O . The first ( ? )  is 

3 H2(h) @ F(~) . It is not hard to show A (Yo: - ) = 0 , 
so YO satisfies D2 . The remainder of the theorem is 

trivial.except the remark about torsion. But for soml 

m 2 0 , we can realize a given torsion by an automorphism 
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(m) a : F ( ~ )  + F ( ~ )  Hence by a l t e r i n g  the  bas i s  i n  F , 
we can cause our m p  t o  have any des i r ed  t o r s i o n  (we 

may have t o  take m b igger ,  a l though i n  the  i n f i n i t e  

case m = 1 w i l i  r e a l i z e  a l l  t o r s i o n s ) .  0 

Theorem 4: Let f ,  : A, + C, (X ,Z)  be a cha in  map 

f o r  a p a i r  (X,Z) . Then t h e r e  e x i s t s  a complex Yo 

such t h a t  Y 1 Yo 2 Z ; C,(Y,Yo) = A, i n  dimensions 

g r e a t e r  than o r  equal  t o  3;  a proper c e l l u l a r  homotopy 

equivalence g: Y + X which i s  the  i d e n t i t y  on Z such 

t h a t  g, = f ,  i n  dimensions g r e a t e r  than  o r  equal  t o  4, 

The t o r s i o n  of g may have any preassigned value.  

Proof:  Use Corol la ry  1.1, 

We conclude t h i s  chapter  by r e tu rn ing  b r i e f l y  t o  the  

ques t ion  of the  invar iance  of t o r s i o n  f o r  chain maps urder  

a change of t r e e ,  The n a t u r a l  map Wh(X:f) + Wh(X:g) i s  

a homomorphisn, so  the  p rope r ty  of being a simple chain 

equivalence i s  independent of t he  t r e e .  But now use 

Theorem 3 t o  g e t  a proper homotopy equivalence X + X, 
with t o r s i o n  T . Suppose given a cha in  map, s a y  f o r  

example, rlc : A*(x) -+ Am-*!X) wi th  t o r s i o n  T . Then 

the  composition A*(x) I \  :: ' Am- *('I - Am- *(x(-l)mT) 

i s  s imple ,  so a change of t r e e s  leaves  i t  simple. But 

the  second map i s  a proper homotopy equivalence of spaces ,  

. and hence i s  independent of t he  t r e e .  Hence so  must be 

rlc . (Note he re  we a r e  us ing  our convention of w r i t i n g  

chain equivalences  on the  homology l e v e l . )  



CHAPTER I1 

~ o i n c a r e '  Dua l i ty  Spaces 

Sec t ion  1. In t roduc t ion ,  d e f i n i t i o n s ,  and elementary 

p r o p e r t i e s  

I n  t h i s  chapter  we d i scuss  the  analogue of ~ m n i f o l d  

i n  the  proper homotopy ca tegary ,  We seek o b j e c t s ,  t o  be 

c a l l e d  Poincare'  d u a l i t y  spaces ,  which have the  proper 

homotopy a t t r i b u t e s  of paracompact manifolds. To t h i s  

end, we begin by d iscuss ing  these  a t t r i b u t e s .  

There i s  a w e l l  known Lefschetz  d w l i t y  between H, 

which i s  v a l i d  f o r  and HZ o r  between H* and H, 

any paracompact manifold wi th  boundary. ( s e e  f o r  in s t ance  

Wilder [ & I . )  This d u a l i t y  i s  given v ia  t h e  cap product 

&.f. w i th  a genera tor  of HN , perhaps wi th  tw i s t ed  co- 

e f f  i c i e n t s .  This genera tor  i s  c a l l e d  t h s  fundamental 

c l a s s .  

Given any paracompact handlebody M ,  M can be covered 

by a n  inc reas ing  sequence of compact subnanifolds  wi th  

boundary. Let {ci3 be such a c o l l e c t i o n .  If 

&.f. ' dim M ( M ; z ~ )  i s  the  fundamental c l a s s ,  i t s  image 

i n  H L f .  - t (M - Ci , a C i  ; Z  ) v ia  i n c l u s i o n  and exc i s ion  i s  
dim M 

the  fuxlamental  c l a s s  f o r  the p a i r  (M - C i , a C i )  . A word 

- about no ta t ion :  z L  occurr ing a s  a c o e f f i c i e n t  group w i l l  

always denote c o e f f i c i e n t s  t w i s t e d  by t h e  f i r s t  S t i e f e l -  

Whitney c l a s s  of t he  manifold. 



Theorem 1: The fundamental c l a s s  [ M I  i n  -. 

t Htwf  (M;Z ) induces v i a  cap product a n  isomorphism N 

where - i s  any covering func to r .  

I f  M h<as a boundary, we g e t  a fundamental c l a s s  

[ M I  e ewf ( M , ~ H ; z ~ )  and isomorphisms 

N-* n [ M ]  : A (M,aM:-) ---+ A*(M:-) 

A s i m i l a r  r e s u l t  holds f o r  a manif o ld  n-ad. 

Proof: The proof i s  easy.  On the  c o f i n a l  subse t  

of compact submanifolds wi th  boundary s f  M , [ M I  

induces ,  v ia  i n c l u s i o n  and exc i s ion ,  t h e  fundamental 
- 

c l a s s  f o r  the  p a i r  ( ( n + l )  -ad i n  gene ra l )  (M - Ci , a C i ) ,  

where Ci i s  a compact submanifold wi th  boundary of M , 
an3 M - Ci i s  t he  c losu re  of M - Ci i n  M . Xi i s  

equa l ly  t h e  boundary of Ci a s  a manifold o r  the  f r o n t i e r  

of Ci a s  a s e t .  By the  d e f i n i t i o n  ~f n [ M ]  , i t  induces 

a n  isomorphism f o r  each base p o i n t  and s e t  Ci . Hence 

i t  must on the  inve r se  l i m i t ,  0 

If one computes t h e  homology and cohomology from 

chain complexes based on a PL t r i a n g u l a t i o n ,  on a handle- 

body decomposition, o r  on a t r i a n g u l a t i o n  3f t h e  normal 

d i s c  bundle,  n[M] induces a cha in  isomorphism. We can 

a s k  f o r  the  t o r s i o n  of t h i s  map. We? have 



Theorem 2: I f  (M,aM) i s  a manifold wi th  

(M,aM;Zt) ( p o s s i b l y  empty) boundary, an? i f  [M] HN 

N-* i s  t h e  fundamental c l a s s ,  ~ [ M ] : A  ( M , ~ M : - )  *A*(M:-) 

and n [ M ]  : A * M :  + A M M : -  a r e  simple equi-  

valences  a s  cha in  equivalences ,  where - i s  t he  univer-  

s a l  covering funo to ro  

Proof: Given a handlebody decomposition, t he  proof 

i s  easy. The cap product w i th  the  f u ~ d a m e n t a l  c l a s s  

takes  the  cochain which i s  1 on a given handle and zero  

on a l l  t h e  o t h e r  handles t o  the  dua l  of t he  given handle.  

Hence n [ ~ ]  t akes  gene ra to r s  i n  cohomology t o  genera tors  

i n  homology (up t o  t r a n s l a t i o n  by the  fundamental group) .  

The f a c t  t h a t  t h e  simple homotopy type a s  def ined  by a 

PL t r i a n g u l a t i o n  o r  by a t r i a n g u l a t i o n  of the  normal d i s c  

bundle i s  the  same a s  t h a t  def ined  by a handlebody has  

been shown by Siebenmann [34]. 

We a r e  s t i l l  l e f t  w i th  manifolds which have no 
4 5 

handlebody decomposition. Let N = CP # s3 x s5 # s3 x S . 
Then x(N) = 1 . N x M has [N]  x [MI a s  a fundamental 

c l a s s .  For M we use t h e  simple hornotopy type def ined  

by a t r i a n g u l a t i o n  of t h e  normal d i s c  bundle. Then 

n [ N ]  x [ M I  i s  a simple equivalence i f f  n [M]  i s  by 

Lemma 1.5.23, s i n c e  n [ N ]  i s  known t o  induce a simple 

equivalence.  But n [ N ]  x [MI i s  a simple equivalence 

s i n c e  N x M  has a handlebody s t r u c t u r e  (Kirby-Siebenmann 

[18]). Note Theorems 1 and 2 now hold f o r  a r b i t r a r y  



paracompact manifolds. 

With these two theorems in mind, we make the 

following definition. 

Definition: A locally. finite, finite dimensional 

CW pair (X,aX) with orientation class wl e H'(x;z~) 

is said to satisfy ~oincarg duality with respect to [XI 

and the covering functor - provided there is a class 
W1 L"f*(X,aX;Z ) such that the maps [XI HN 

N-* n[xl : A (x,ax: -1  ----+ n,(x: -1 

are isomorphisms. Z W1 denotes coefficients twisted by 

the class W1 ' 

If X is an n-ad we require that all the duality 

products be isomorphisms. 

Remarks: The two maps above are dual to one another, 

so if one is an isom~rphism the other is also. 

Suppose - is a regular covering functor for X , 
and suppose --- is another regular covering functor with 
--- >> - . Then the chain and cochain groups have the 

I 
structure of Znl(X:F,f:-) modules, when f: T - X  is 

a tree and F € ~ ( f )  . The tree of groups T~(x:F,~:-) 
---- 

is the tree given by (";)A = rl(F(A) ,p)/rl(F(A) ,p) where 

p is the minimal vertex for A . There is a map of rings 
t I 

Zrrl(X:~,f:-) - Zy(X:F,f:---) , and the tensor product 
takes A(X: - )  to A :  - -  . Since n[X] is an isomor- 

phism for - , we.can get chain homotopy inverses, so uyder 



tensor product, 

- - - 
As we have 

patience we can 

n[X] still induces isom6rphisms for 

the Browder Lemma (Theorem l.4.7), with 

prove a variety of cutting and gluing 

thsorems. The following are typical. 

Theorem 3: Let (X: a,X,alX> be a triad. Then the 

following are equivalent. 

1) (X: a X , a x  satisfies ~oincarQ duality with 
W1 respect to V E gof* (x:~,x,~~x:z ) and - . (wl is 

the orientation class.) 

2 )  (aOx, a@ 11 X) satisfies ~oincar; duality with 

respect to av E ~i'f (aox,a W1 - C0,ll X:Z ) and - where - 
is induced from - over X and wl is the orientation 

class induced from wl over X . Moreover, one of the 
maps I ~ V  : A*(x,~~x:-) +aN-*(x,aox:-) 

is an isomorphism. (Hence they are both isomorphisms. ) 

3 )  The same conditions as 2') but considering 

Proof: The proof is fairly standard. We look at 

one of the sequences associated to a triple, say 



1) impl ies  both n B ' s  a r e  isomorphisms, so the  5-lemma 

shows flaw i s  a n  isomorphism. 2 )  impl ies  one of the  

n V '  s i s  a n  isomorphism and t h a t  

nav:n (aox,a 
C0,lI 

(a  x:-) X :  -AN-l-*  

i s  a n  isomorphism. Hence we must i n v e s t i g a t e  how the  

subspace groups depend on t h e  abso lu te  groups. Make 

su re  t h e  s e t  of base po in t s  f o r  X conta ins  a s e t  f o r  

aoX . Then we have a diagram 

which commutes. The h o r i z o n t a l  maps a r e  n a t u r a l l y  s p l i t ,  

s o  i f  f l aV  on the  subspace groups i s  a n  isomorphism, 

then  i t  i s  a l s o  a n  isomgrphism on the  a b s o l u t e  groups. 

Hence 1 )  impl ies  2 )  and 3 ) .  . 

Now i f  nbV on the  abso lu te  groups i s  a n  isomorphism, 

then  it i s  a l s o  a n  i s o m ~ r p h i s ~  on the  subspace groups by 

Theorem 1.3. Hence 2 )  o r  , 3 )  implies  1). 

Theorem 4: Let Z = Y U Y' and s e t  X = Y fl Y '  . 
Then any two of t h e  fol lowing imply t h e  t h i r d .  

1 )  Z s a t i s f i e s  ~ o i n c a r g  d u a l i t y  wi th  r e s p e c t  t o  

[Z]  and - . 
2) .  (Y,X) s a t i s f i e s  Poincare/ d u a l i t y  wi th  r e s p e c t  

t o  a [ Z ]  and - .  
3) (Y' ,X) s a t i s f i e s  Poimare '  d u a l i t y  wi th  r e s p e c t  

t o  a [ Z ]  and - 



where - is a covering functor over Z , ' which then 
induces - over Y and Y '  . An orientation class 
over Z which induces one over Y and Y' has been 

assmed in our statements. 

Proof: The reader should have no trouble proving 

this. 0 

A map cp:M -+ X , where M and X are locally 

compact CW n-ads which satisfy ~oincarg duality with 

respect to [MI and - , and [XI and --- respectively, 
is said to be degree 1 provided it is a map of n-ads and 

* 1) cp (---) = - , where - -  is the covering 

functor o-~er M induced by from --- over X . 
1 2) If wl e H (X;Z*) is the orientation class for 

* 
X , Y w1 is the orientation class for M . 

3 )  v,[MI = [XI 

Theorem 5: Let cp : M --+ X be a map of degree 1. 

Then the diagram 

commutes. ( over M is the covering functor induced 

from - over X .) Hence n[M] induces an isomorphism 

of the cokernel of cp* , K~(M:-) onto the kernel of 

' 9 Kn-r M : )  . Thus is k-connected, T, and 'P* 

are isomorphisms for r < k and r>n - k . 



Similarly let 9 : (N,M) -+ (Y,X) be.a degree 1 

map of pairs. Then gives split surjections of 

homology groups with kernels ,K, , and split injections 
of cohomology with cokernels K* . The duality map 

n:M] induces isomorphisms K* (N: -1 -+ Kn_, (N,M: -1 and 

K*(N,M: -)-+K~-,(N: - )  . 
Analogous results hold for n-ads. 

Proof: The results follow easily from the definitions 

and the naturality of the cap product, 0 

Section 2. The Spivak nsrml fibration 

One important attribute of paracompact manifolds 

is the existence of normal bundles. In [35] Spivak 

constructed an analogue for these bundles in the homotopy 

category. Although he was interested in compact spaces, 

he was often forced to consider paracompact ones. It is 

then not too surprising that his definition is perfectly 

adequate for our problem.   his is an example of a general 

principle in the theory of paracompact surgery, namely 

that all bundle problems encountered are exactly the same 

as in the compact case. One does not need a I1proper1l 

normal bundle or a "proper1' Spivak fibration. 

Definition: Let (X,aX) be a locally compact, 

n-1 finite dimensional CW pair. Embed (X,aX) in (H~,R 1, 

where Hn is the upper half plane and R~-' = a~~ ~ e t  

(N;N~,N~) be a regular neighbsrhood of X as a subcomplex 

of H"; i.e. X 5 N , ax 5 N2 and N(N2) . collapses to 

X(aX> Let @(N1,N,x) be the space of paths starting 



i n  N1 , l y i n g  i n  N , and ending i n  X 'en5owed wi th  

t h e  CO topology. ( I f  A,B,C a r e  spaces wi th  A,C c B , 
a s i m i l a r  d e f i n i t i o n  holds f o r  , B , C  There i s  the  

endpoint  map w: ? ( N ~ , N , x )  -+ X . w i s  a f i b r a t i o n  and 

i s  c a l l e d  t h e  Spivak n3rmal f i b r a t i o n .  I t s  f i b r e  i s  

c a l l e d  the  Spivak normal f i b r e .  

Spivak sliawed t h a t  a necessary  and s u f f i c i e n t  cond i t ion  

f o r  a f i n i t e  complex t o  s a t i s f y  Poincare d u a l i t y  wi th  

r e s p e c t  t o  t h e  un ive r sa l  covering f u n c t o r  was t h a t  t he  

Spivak normal f i b r e  of t he  complex should have t h e  homo- 

topy type of a sphere.  He a l s o  showed t h a t  i f  one 

s t a r t e d  wi th  a compact manifold then  t h e  normal sphere  

bundle had the  same f i b r e  homotopy type a s  the  Spivak 

normal f i b r a t i o n ,  a t  l e a s t  s t a b l y .  Before we can do t h i s  

f o r  paracompact manifolds,  we w i l l  need t o  do some w ~ r k .  

I n  p r a c t i c e ,  t he  f a c t  t h a t  t h e  Spivak normal f i b r a -  

t i o n  i s  cons t ruc ted  from a r e g u l a r  neighborhood i s  incon- 

venient .  More convenient f o r  our purposes i s  a semi- 

r e g u l a r  neighborhood. 

Def in i t ion :  Let (X,aX) be a p a i r  of f i n i t e  

dimensional,  l o c a l l y  compact CW complexes. A semi-regular 

neighbwhood ( s - r  neighborhood) i s  a manifold t r i a d  

(M: M1, M 2 )  and proper maps i :  X -+ M and j : a X  -+ M2 

such t h s  t X --"r M commutes, and such t h a t  i 

U I  u I 
ax - ? i ~ ~  

i and j a r e  simple homotopy equivalences.  L a s t l y  we 



r equ i re  t h a t  M be p a r a l l e l i z a b l e  (equiva.lent t o  being 

s t a b l y  p a r a l l e l i z a b l e .  ) 

Theorem 1: The f i b r a t i o n  w: ~ ( M ~ , M , x )  -t X i s  

s t a b l y  f i b r e  homotopy equiva len t  t o  the  Spivak normal 

f i b r a t i o n .  

Proof:  The proof needs 

Lemma 1: I f  ( ( M , M ~ , M ~ )  , i j  i s  a n  s - r  neigh- 

n-1 borhood of X , then so  i s  ((M,M1,M2) x (D\S ), 

i x c ,  j x c ) ,  when c denotes the  cons tan t  map. The 

t r i a d  s t r u c  t m e  on the product i s  (M x Dn; M1 x Dn U 

n M x snml, Mp x D ) . Let 5 be ( ? ( M ~ , M , x ) - +  x and l e t  

9 be 8(M1xDn U MxS n-1 , M x D n ,  X ) j X .  Then E * ( n )  

i s  f i b r e  hom~topy equ iva len t  t o  , where (n)  i s  the  

t r i v i a l  s p h e r i c a l  f i b r a t i o n  of dimension n-1 and * 
denotes the  f i b r e  join .  

Proof:  The f i r s t  statemen.t i s  t r i v i a l  and the  

second i s  Spivak [35], Lemma 4.3. Q.E.D. 

Now i f  (M: M1,M2) i s  a n  s-r neighborhood of X , 
then f o r  some n , ( M : M ~ , M ~ )  x (D",s n-1 i s  homeomor- 

phic t o  a r e g u l a r  neighborhood of X i n  R n+m , where 

m = dim M . I f  we can show t h i s ,  then t h e  lemma e a s i l y  

impl ies  t h a t  i s  s t a b l y  equ iva len t  t o  the  Spivak 

normal f i b r a t i o n  formed from t h i s  r e g u l a r  neighborhood. 

By c ross ing  wi th  Dn i f  necessary,  we may assume 

dim M 2 2 dim X + 1  , so  we may a s s m e  i and j a r e  

embeddings. Since M i s  p a r a l l e l i z a b l e ,  (M,aM) immerses 



in (H~,R'"-') . If m 2 2  dim X + 1  we can subject i 

and j to a homotopy so that i : X -+ M c H~ and 

j : ax + M2 c R~-') become embeddings on open neigh- 

borhoods U and U3 , where U is a neighborhood of 
L 

X and U2 = M2 fl U so it is a neighborhood of aX . 
In U sits a regular neighborhood of X , (N: N1, N2) . 
Hence (N: Nl,N2) 5 (M: M1,M2) and excision gives a 

- 
simple homotopy equivalence aN 5 M - N and aN2 5 M - N2 ) 
(this uses the fact that i and j are simple equi- 

valences.) By the s-cobordism theorem (see [33] or [lo] ) 

these are products (assume m 2 6) so (M: M1, M2) is 

homeomorphic to a regular neighborhood of X in R ~ .  0 

Corollary 1.1, The Spivak normal fibration is 

stably well defined. 

Remarks: By definition we have a Spivak normal 

fibration for any regular neighborhood, so we can not 

properly speak of "the" Spivak normal fibration. By the 

corollary however they are all stably equivalent, so we 

will continue to speak of the Spivak normal fibration 

when we really mean any fibration in this stable class. 

Now, for finite complexes we know that the complex 

satisfies paincar6 duality iff the Spivak normal fibre 

has the homology of a sphere. Unfortunately, this is not 

true for our case. In fact, Spivak has already shown 

what is needed to get the normal fibre a sphese. This 

information is contained in Theorems 2 and 3. 



Defin i t ion :  A l o c a l l y  compact, f i n i t e  dimensional 

CW complex i s  a  Spivak space provided the  normal f i b r e  

of any Spivak normal f i b r a t i o n  has t h e  homology of a  

sphere.  A Spivak p a i r  i s  a  p a i r ,  (X,aX) , of l o c a l l y  

compact, f i n i t e  dimensional CW complexes such t h a t  the  

normal f i b r e  of any Spivak normal f  i b r a t i o n  has t he  

homology of a  sphere ,  and such that t h e  Spivak normal 

f i b r a t i o n  f o r  X r e s t r i c t e d  t o  a X  i s  the  Spivak n 3 r m 1  

f i b r a t i o n  f o r  a X  . A Spivak n-ad i s  def ined  analogously,  

Theorem 2: The fol lowing a r e  equiva len t .  

1) X i s  a  Spivak space - 
* o ~ * ( x : z )  , when X i s  2 )  There i s  a  c l a s s  [XI € HN 

t h e  u n i v e r s a l  cover of X , such t h a t  

n[?]: H$) -+ H ~ - * ( ~ I  i s  a n  isomorphism 

( 2 )  i s  a n  isomorphisn . 3)  n[Tj: ~ * t f )  -H,-, 

Proof: 2)  impl ies  3 )  thanks t o  t h e  fol lowing com- 

mutat ive diagram 

3 )  impl ies  1 )  thanks t o  Spivak, P ropos i t ion  4.4, and 

t h e  observa t ion  t h a t  t he  Spivak normal f i b r a t i o n  f o r  X 
... 

pu l l ed  back over ? i s  the  Spivak normal f  i b r a t i o n  f o r  X. 

This observa t ion  i s  a n  easy  consequence of Theorem 1, the  

d e f i n i t i o n  of s-r neighborhood, and the  f a c t  t h a t  t he  



transfer map c(X) .+ ~(2) is a homomorphism, 

1) implies 2) as follows. Look at 
. 

where U is the Thom class for the normal disc fibra- 

tion D(X) with spherical fibration ~(f) . (N,aN) - 
is an s-r neighborhood for X . The horizontal maps are 

induced by the inclusion X 5 N and the homotopy equi- 

valence (N,~N) + ( ~ ( 2 )  ,S (2) ) . All horizontal maps are 
isomorphisms. The composite map HE (P)  to HN-* (ft) 

is essentially the cap product with U fl [N] , where 
U fl [N] should actually be written i, (U n j,[~] , 
where i, : H~*~*(D(%)) +H* ( and 

* (D (Z) ) is the j,: HLf*(N,aN) +H~*~*(D(?) ,S(?)) . H* 

homology group of the infinite singular chains on D(%) 

which project to give locally finite chains on 2 . 
(kItof (D (i) ,S (2) ) is similar. ) Now [t] = U n [N] shows 

2) is satisfied. [ 1) was used to get the Thom class U] 

Remarks: If wl is the first Stiefel-Whitney class 

of the Spivak normal fibration, [z] comes via transfer 
from a class in * of X with coefficients twisted 



by w1 . This c l a s s ,  denoted [XI , i s  c a l l e d  t h e  

fundamental c l a s s  of X . These same remarks a r e  v a l i d  

f o r  p a i r s  (and indeed f o r  n-ads) a f t e r  our next  theorem. 

Theorem 3: I f  a X  i s  a Spivak space wi th  funda- 

mental c l a s s  [ax] , then  the  fol lowing a r e  equiva len t .  

1) (X,aX) i s  a Spivak p a i r  

, when i[ 2) There i s  a c l a s s  [XI € HN 

i s  t h e  u n i v e r s a l  cover of ? (E i s  t h e  induced cover 

and such over ax)  such t h a t  a[?] = [El î  

t h a t  any one of the  fol lowing f o u r  maps i s  a n  isomorphism 

The equat ion a[?] = [z]. means t h e  fol lowing.  I n  
- , ax c o n s i s t s  of (many) copies of some cover of a X  . 

- 
t akes  the  c l a s s  [?I t o  a c l a s s  i n  each component of a X  . 
These c l a s s e s  a r e  a l l  equal.  There i s  a t r a n s f e r  map from 

"1 L.f. - (ax ;z  t o  H ~ - ~  
HN-1 

(ax;  some c o e f f i c i e n t s )  . W m t  

- 
a [X]  = [ax] means i s  t h a t  under t h i s  t r a n s f e r  map, [ax] 

* 

should go t o  a [X] .  Note t h i s  r e q u i r e s  t h a t  the  c o e f f i -  

W1 - 
c i e n t s  Z un twis t  i n  a X  . 



Proof: 2 )  implies  the  normal f i b r e  i s  a sphere  

a s  fo l lows .  By the  Bmwder l e w ,  the  5-lemma, and 

a diagram l i k e  t h e  one i n  the -p roof  of Theorem 2 ,  L ) ,  

B ) ,  o r  C )  implies  D) . D )  implies  t h a t  t h e  Spivak 

normal f i b r e  i s  a sphere by Spivak, P ropos i t ion  I t . ) + .  

The Spivak normal f i b r e  i s  a sphere  impl ies  A) - D )  

a s  fo l lows .  The Thom isonorphism and Lefsche tz  d u a l i t y  

imply 8) - D )  hold f o r  [%I = U n [ N ]  , where U i s  

the  Thom c l a s s  of t he  f i b r a t i o n  and [N] i s  the  funda- 

mental c l a s s  f o r  t he  r e g u l a r  neighborhood of X * 

I f  1) holds ,  then A ) - D )  hold f o r  [XI = U  n [IT].  

[ax] = U2 fl [N2] where U2 i s  the  Thom c l a s s  f o r  t h e  
- 

normal f i b r a t i o n  f o r  a X  and [N2] i s  the  fundamental 
- 

c l a s s  of the  r e g u l a r  nsighborhood f o r  a X  . Since the  
s - 

f i b r a t i o n  over X r e s t r i z t s  t o  the  one over a X  , 
i * ~  = U2 , where i * ~  i s  def ined  a s  fol lows.  The t o t a l  

space of t h e  normal f i b r a t i m ~ o r  2 i s  B ( N ~ , N , x )  

The t o t a l  space of t h i s  f i b r a t i o n  r e s t r i c t e d  t o  a X  i s  

@(yl,N,%) . The t o t a l  space of the  normal f i b r a t i o n  f o r  
- - .  
ax is @ (IT1 f l  N 2 , N 2 , Z )  . The inc lus ions  B ( N ~  fl 12,N2,ax) 5 

& N ~ , N , % )  C _  @ ( N ~ , N , ? )  a r e  a l l  f i b r e  maps. Let 

El 5 E2 5 E3 denote the  corresponding d i s c  f i b r a t i o n s .  

The Thom c l a s s  U l i v e s  i n  ~ l b ( ~ ~ , & ~ ; ~ * r ~ )  , where p 

i s  t h e  p r o j e c t i o n  and 1- i s  a system of l o c a l  c o e f f i -  3 
c i e n t s  on X . ( see  Spanier [35], page 283).  Let 1l1 be 

the  l o c a l  c o e f f i c i e n t s  f o r  El . Then ' + by t h e  3 



k 
f i b r e  m'3p0 Hescp U p u l l s  back t o  H ( E i , ~ ~ ; p * r ~ )  . 
U2 l i v e s  i3 H ~ ~ ( E ~ , ~ ~ ; ~ * ~ ~ )  , and hence goes over t o  

k 
a c l a s s  i n  H ( ~ ~ , k ~ ; ~ * r ~ )  where it must be 

+ (U pu l l ed  back).  To w r i t e  i * ~  = U2 means t h e  co- - 
e f f i c i e n t  systems rl and r3 a r e  the  same. Now 

a [ N ]  = [N2] , s a  one s e e s  a[x]  = [z] ., Hence 1) 

impl ies  2 ) ,  

Given 2 )  we know t h e  normal f i b r e  i s  a sphere 

and we must j u s t  check t h a t  the  f i b r a t i o n  r e s t r i c t s  

proper ly .  Note f i r s t  t h a t  t he  choice of [ I  i s  u n i ~ u e  

up t o  s i g n ,  s o  i f  2 )  ho lds ,  t h e  c l a s s  [X] = U fl [N]  . 
a [XI = i * ~  n [N2] always. NOW . [ax] = u2 n [N2] , S O  

i f  a[X]  = [ax] , U2 = i*U , a s  i s  n o t  hard t o  see .  

(By t h e  remark a t  t h e  end of 2 ) ,  t he  l o c a l  c o e f f i c i e n t s  

f o r  U and f o r  U2 have t o  be the  same. ) Hence the  
- 

i n c l u s i o n  (N1 fl N2,  N2 ,  ax )  E ( N ~ , N , ~ )  i s  a f i b r e  

homotopy equivalence.  This shows 2 )  impl ies  1). 0 

Now suppose i s  a n  a r b i t r a r y  s p h e r i c a l  f i b s a t i o n  

over a l o c a l l y  compact, f i n i t e  dimensional CW complex X,  

The t o t a l  space i s  n o t ,  i n  gene ra l ,  such a complex. Our 

techniques app ly  b e s t  t o  such spaces however, and we want 

t o  s tudy  these  t o t a l  spaces .  Hence we wish t o  r ep lace  

any such t o t a l  space by a space wi th  t h e  proper homotopy 

type of a l o c a l l y  compact, f i n i t e  dimensional CW complex. 

Def in i t ion :  Let S ( E )  be t h e  t o t a l  space of a 

s p h e r i c a l  f i b r a t i o n  over a l o c a l l y  compact, f i n i t e  

dimensional CW n-ad X . A cwation (cW-ation) of 



i s  a n  n-ad Y and a proper map f : Y -+ X such that 

the  fol lowing condi t ions  a r e  s a t i s f i e d .  Y has the  pro- 

per homotopy type of a l o c a l l y  compact, f i n i t e  dimen- 
g 

s i o n a l  CW n-ad. There a r e  maps S ( E ) a Y  such t h a t  
h 

hog i s  a f i b r e  map, f i b r e  homotopic t o  the  i f i e n t i t y  and 

such t h a t  goh i s  proper ly  homotopic t o  the  i d e n t i t y .  

( M ( ~ ) , Y )  i s  seen t o  s a t i s f y  the  Thom isomorphism f o r  

the  A* and A, t h e o r i e s .  ( s ee  the  appendix f o r  a 

d i scuss ion  of t h e  Thom isomorphism i n  t h e s e  t h e o r i e s , )  

The s i a p l e  homotopy type of Y i s  def ined  by any l o c a l l y  

compact, f i n i t e  dimensional complex having t h e  same proper 

homotopy typs  of Y and f o r  which the  Thom isomorphisms 

a r e  simple homatopy equivalences .  For a bundle E , 
(D(e) ,  C(E))  w i l l  denote the  p a i r  (M(f) ,  Y) wi th  t h i s  

simple homotopy type. Such a p a i r  i s  s a i d  t o  be a simple 

cwa t ion .  

Rsmarks: Any s p h e r i c a l  f i b r a t i o n  of dimension two 

o r  more has a cwation. The proof of t h i s  f a c t  i s  long 

and i s  t h e  appendix t o  this  chapter .  

Theorem 4: Let be any s p h s r i c a l  f i b r a t i o n  of 

dimension > 1 over a Spivak space X . Then (D(e),C(E)) 

i s  a Spivak space. I f  [el i s  t h e  fundamental c l a s s ,  and 

i f  U, i s  the  Thom c l a s s ,  we have t h e  formula UF fl [El =[XI. 
'> - 



is a Spivak triad. In general a cwation of a Spivak 

n-ad has an (n+l)-ad structure. We still have the formula 

ug "El = [XI 

Proof: The n-ad case follows by induction from 

the pairs case, so we concentrate on the latter. To show 

(D(E),C(E)? is a Spivak space look at 

d -  
UE whsn pushed into H*(D(E),c(E)) has integer 

coefficients. [XI denotes the image if the fundamental 
/IJ 

class of x inHtof*(D(~), -- C(E) U ~(Elbx)), which again has 
N 

integer coefficients as it factors through 

Let be the isomorphism g i v a  by ( U ~ U  )-lo (n [XI ) . We 
-3 - 

claim $(x) = x n $(I) , where 1 G HO(D(E)) is the 

= x fl [XI = UE fl J , ( x )  , , so we are done. Let A = +(l) 
-. 

Since E has dimension > 1 , D(E~.~x) U C(E) is 

- 
H~+k-* (D(E)) is also an isomorphism, so 

a ~ :  H*(c(E) u D(E~~x)) -+ HN+k-*-l (c(E> d D(E~ ax)) is 

also an isomorphism. Hence if X = , D ,  C is a 

Spivak pair by Theorem 1, Then (D([) : ~ ( 4 )  ,D(s~ ax)) can 

be shown to be a Spivak triad. 



We must still verify our equation, If we can show 

the local coefficients behave correctly, we will get a . 
diagraz like the one we used to define $ ,  only this 

time with local coefficients. Let be the local 4 
coefficients in X for the Thom class, Let r be the 

W1 
local coefficients in X for n[X] . Let r be the 

local coefficients in D(4) for [ I  Then if we could 

show I7 O p*(rE) = p*(r ) where p : D(E) + X , we 
W1 

would be done as one can easily check. To check that two 

local systems are equivalent it is enough to check that 

they agree for any g e nl(D(E),x) . But 

where g, : HN+k of*(~(~)y C ( S )  U D(E~~x)) is the map 

induced by the covering transformation g . 

Hence 

which is just p*(r ) (g) 0 
W1 

~oroll_ary 4.1: Let X be a locally compact, finite 

dimensional CW n-ad. Let be a spherical fibration ~f 

dimension 2 2 over X . Then if D(E) is a Spivak 



(n+l)-ad,  X i s  a Spivak n-ad. 

Proof: Let [x] = UF fl I[] . Then n [ ~ ]  induces 
e 7 d 

isomorphisms I~;(D(E) ; z )  -+ HN-, (~(E)  ,D(EI 3x1 ; Z )  , o r  

* - - - 
equ iva len t ly  Hc(X) H N  - *(X,aX;Z) Induct ing over 

the  n-ad s t r u c t u r e  of X and applying Theorems 1 and 

2 ,  we g e t  X i s  a Spivak n-ad. 0 

Theorem 5: X i s  a Spivak n-ad i f f  X i s  f o r  any 

cover of X . I f  X i s  a n  n-ad and Y i s  a n  m-ad, 

X x Y i s  a Spivak (n+m-1)-ad i f f  X i s  a Spivak n-ad and 

Y i s  a Spivak m-ad. 

Proof:  By induct ion ,  i f  we can prove the  r e s u l t  f o r  -- 
p a i r s  we a r e  done modulo the  easy r e s u l t  t h a t  i f  (Y,X) 

and Y ' , X )  a r e  Spivak a d s ,  then so  i s  Y U Y '  . This i s  

a l s o  shown by induct ion  using c u t t i n g  and g lu ing  argumants 

t o  deduce the  cap product isomorphisns of Theorems 2 and 3. 

A c a r e f u l  proof i s  l e f t  t o  the  reader .  

O w  f i r s t  s ta tement  i s  immediate from Theorem 1, 

s i n c e  i f  N i s  a n  s-r neighborhood f o r  X , N i s  one 

f o r  X . 
For the  second s ta tement  we prove 

Lemma 2: I f  v Z  i s  the  Spivak normal f i b r a t i o n  f o r  

any f i n i t e  dimensional n-ad Z , and i f  X and Y a r e  

- such complexes, vX * vy - v ~ x ~  ' 

Proof:  Let DZ be the  d i s c  f i b r a t i o n  of v Z  . Then 

- v X * v Y  - vX x Dy U DX x vY 5 DX x Dy . Let (N  : N1,N2) 

be t h e  s-r neighborhood f o r  X from which vX was formed. 



(M: Ml ,M2)  i s  the  corresponding o b j e c t  f o r  Y . Then 

V ~ x ~  
has  @ ( N X M ~ U N ~  x M ,  N x M ,  X x Y )  f o r  t o t a l  

space. v X  x Dy c o n s i s t s  of t r i p l e s  e E V X ,  f  e vy, and 

t e [0 ,1]  wi th  . ( f ,O)  = (g,O) i f  f ( l )  = g ( 1 )  e Y . 
Then vX x Dy + vXxy given by ( e , t , f )  goes t o  the  pa th  

( e ( s ) ,  f ( 1 - t + s t ) )  i s  a f i b r e  map. There i s  a s i m i l a r  

map f o r  DX x vy , which ag rees  wi th  t h e  f i r s t  on v X x v y .  

Hence we g e t  a f i b r e  map vX * v y  -t v XxY . Now vX 
I 1 

r e s t r i c t s  from a f i b r a t i o n  w '  over N . v and vXxy 
X Y 

a r e  def ined  s i m i l a r l y ,  and we have a f i b r e  map 

v i  * V; -+ GXY . There i s  a n  i n i t i a l  po in t  map 

V ~ X Y  
-t N xM1 U N1 X M  , which i s  a homotopy equivalence.  

I 1 vX * v Y  + N x M1 U N1 x M v i a  the  composition i s  l i kewise  a 

homotopy equivalence.  Hence by Dold [7 ] ,  vj( * v; + v '  X xY 

i s  a f i b r e  homotopy equivalence.  Hence so  i s  

Now X x Y  i s  a Spivak space i f f  v XxY i s  s p h e r i c a l  

and,  i f  Z 5 X x Y  i s  a p i ece  of the  t r i a d  s t r u c t u r e ,  

vXXyl Z ' v Z *  I f  X and Y a r e  both Spivak p a i r s ,  t h e  

lemma s h ~ w s  the  r e s u l t  e a s i l y .  I f  XxY i s  a Spivak t r i a d ,  

(X x a Y ,  ax x a Y )  i s  a Spivak p a i r .  By t h e  lemma, the  

normal f i b r a t i o n  i s  v X * v a y  . Since i t s  f i b r e  has  the  

homology of a sphere ,  the  f i b r e s  of both vX and w a y  

must have t h e  hom~logy of spheres .  Since vX * vayl x x p,  

. p e a Y  i s  equiva len t  t o  v X * ( n )  f o r  n = dim vay , 
and s i n c e  vX * v 1 a X  x a Y  = vaXxay,  a y. 

a s  (xxaY,aXxaY)  

i s  a Spivak p a i r ,  one s e e s  vX * ( n )  ( ax E vaX * (n )  , s o  

(X,aX) i s  a Spivak p a i r .  A s i m i l a r  argument shows ( Y , ~ Y )  



is a Spivak pair. 0 
Theorem 6: Let X be a Spivak n-ad, and let N 

be a regular neighborhood for X . If (D (XI ,C (X) ) is 

a simple cwation for this normal fibration, there is a 

proper n a p  of (n+l) - ads g:N -+ D ( X )  such that the 

composition N -+ D(X) -+ X is a proper homotopy inverse 

for X 5 N . If [N] and [D(X)] are the fundamental 

classes for N and D(X) respectively, g,[N] = [D(X)]. 

g is a homotopy equivalence of (n+l)-ads (not 

necessarily a proper homotopy equivalence). g is how- 

ever properly (dim N - dim X-l) connected. 

Remarks: If [x] lives in k-dimensional homology, 

then the normal fibration has a simple cwation if 

d i m N -  k 2 3  

Proof: To be momentarily sloppy, let D(X) denote 

the total space of the normal disc fibration for X . 
Since X 5 N is a proper homotopy equivalence, pick an 

inverss N -+ X . Pull D(X) back over N . It is also 

a disc fibration and so has a section (see Dold [7] 

Corollary 6.2). Map N -+ D(X) by the section followed 

by the map into D(X) . Under the composition 

N -+ D(X) -+ X , we just get our original map. But now 

we can take the map from the total space of the fibration 

to the cwation. Letting D(X) be the disc cwation again, 

we get a map N -+ D(X) -so that the composition N -+ D(x) -+ X 

is 3ur original map. The map N -+ D(X) is easily seen to 



be proper and is g . 
g is a homotopy equivalence of (n+l)-ads by 

construction. go. N -+ D(X) is alsa a proper homotopy 

equivalence (g: N -+ D ( X )  , the map of n-ads is n3t 

necessarily a proper homotopy equivalence). The fol- 

lowing diagram comutes 

fl[N], g* , and (go)* are all isomorphisms, so g,[N] is 

also an isomorphism. Therefore, g,[N] = 2 [ D ( x ) ] ,  and 

we may orient N so that g,[N] = [D(x)] 

The map C(X) -t X is properly q-connected, where 

normal sphsrical fibration has dimension q . This is 

easily seen frcm the f'j brdtion sequence sq -+ S(e) + X , 
where S(c) is the total space of the normal spherical 

fibration, by noticing that 

commutes, where a(s(F): nk) is formed from the groups 

T,(S(~)IX - ~ , f j > ~  where 6 c s(E) covers p E X (i,e. 

just pick one for each base point in XI. The 

horizontal map is an isomorphism since C(X) is a cw;itione 



The first vertical map is an isomorphism for k < q and 

an epimorphism for k = g, so we are done, 

The map N1c_ N -c X is properly r-connected, where 

r = (dim M-dim X-1). This is seen by showing that the nap 

N1 5 M is properly r-connected. But this is easy, 1 K 

is a locally compact complex with dim K ( r , any map 

of K + N deform properly by general position to a map 

whose image lies in N - X . Hence n(N1:nk) -+ n(N:nk) 

is onto for k ( r and 1-1 for k r-1 . 
Now go: N + D(X) is a proper equivalence so the map 

is properly r-connected. Since r ( q , g: N1 -t C(X) 

is properly r-connected, If X is a space, we are done. 

If (X,aX) is a pair, the regular neighborhood is 

(N: N1,N2) and ths cwation is (D(x): c(x), D(~x)). 
C(X) n  ax) = c(ax). g: N~ fl N~ + c(ax) is properly 

r-connected as it is an example of the absolute caser, 

N2 -+ D(aX) is a proper homotopy equivalence, hence pro- 

perly r-connected. g: N1 + C(X) and g: N + D(X) we 

saw were properly r-connected, so the case for pairs is 

done. For the n-ad case, just induct. 0 

We are now ready to define ~oincar& duality spaces. 

Definition: A Spivak n-ad X is a ~oincarg duality 

n-ad iff ths g of Theorem 6 is a proper homotopy equi- 

valence of (n+l)-ads for some regular neighborhood. 

Remarks: Apriori our definition depends on which 

regular neighborhood we have used in Theorem 6. In i 'ac t -  

this is not really the case, as our next theorem 



demonstrates . 
Theorem 7: Let X be a  l o c a l l y  compact, f i n i t e  

dimensional CW n-ad. Then X * i s  a  poinear: d u a l i t y  

space i f f  X s a t i s f i e s  Poinear; d u a l i t y  wi th  r e s p e c t  

* o ~ ' ( x ; Z )  and wi th  r e s p e c t  t o  a  u n i v e r s a l  t o  [%I € Hn 

covering func to r .  

A p a i r  (X,aX) i s  a  Poinear: d u a l i t y  p a i r  i f f  3X 

i s  a  Poincare' d u a l i t y  space and X s a t i s f i e s  Poincar; 

d u a l i t y  wi th  r e spec t  t o  a u n i v e r s a l  covering f u n c t o r  and - - 
*of*(x , .ax ;z )  such t h a t  a[%] = [Z] a  c l a s s  [XI  e Hn 

A s i m i l a r  r e s u l t  holds  f o r  n-ads. 

Proof:  Since n[%] : A4;(X,-) -+ An-, (X:-) a n  i s o -  

morphism implies  n[%] : H,(%) i Hn-, (2) i s  an  isomorphism, 

i f  X s a t i s f i e s  ~ o i n c a r 6  d u a l i t y  then,  by Thsorem 2,  X 

i s  a Spivak space.  S i m i l a r l y ,  by Theorem 3,  we may show 

(X,aX) i s  a Spivak space i f  a X  i s  a po inea r6  d u a l i t y  
/ 

space and i f  (x,aX) s a t i s f i e s  Poincare d u a l i t y .  I n  both 

cases ,  t he  fundamental c l a s s ,  [XI , t r a n s f e r s  up t o  give 

+ [z] . Now look a t  - 

where r:  (N,N2) -, ( X , a X )  i s  a proper homotopy i n v e r s e  



f o r  (X,aX) 5 (N,N2), and Uv i s  the  ~ h o m  c l a s s  f o r  

t he  normal f i b r a t i o n  v . By Theorem 4 ,  the  composition 

i s  j u s t  n [ X ] ,  and r * ,  f l [N]  ; and U !l a r e  a l l  isomor- v 
phisms. Hence (X,aX) s a t i s f i e s  ~ o i n c a r g  d u a l i t y  i f f  

g, i s  a n  isoinorphism. I f  g i s  a proper homotopy equi-  

valence,  g, i s  c l e a r l y  a n  isomorphism. I f  (X,aX) 
/ 

s a t i s f i e s  Poincare d u a l i t y ,  and i f  dim N-dim X 2 3 , g, 

-orem. i s  a proper homotopy equivalence by t h e  Wnitehead t h -  

To s e e  t h i s ,  f i r s t  note  - i s  a u n i v e r s a l  covering func- 

t o r  f o r  both N and D(X) . Since dim N-dim X 2 3 , 
N1 5 N and C (X) 5 D(X) a r e  a t  l e a s t  p roper ly  2-con- 

nected.  Since a X  i s  by hypothesis  s ~ o i n c a r g  d u a l i t y  

space,  g,: A,(N~:-)  -+ A*(C(X):-) i s  a n  isomorphism. 

- N and C(X) 5 D(X) , t hese  By t h s  connec t iv i ty  of N1 L_ 

groups a r e  a l r e a d y  the  subspace groups f o r  a wise choice 

of base poin ts .  By the  Browder lemma g,:d,(N:-) --+ 
A,(D(X):-) i s  a n  isomorphism, and g i s  a t  l e a s t  pro- 

p e r l y  2-connected, so  t h e  Whitehead theorem a p p l i e s  t o  

show t h a t  g i s  a proper homotopy equivalence.  0 

Remarks: Note t h a t  t h e  proof shows that g must 

be a proper homotopy equivalence whenever dim N-dim X 2 3. 

We have seen t h a t  manifolds s a t i s f y  ~ o i n c a r g  d u a l i t y  

wi th  r e s p e c t  t o  any covsr ing func tor .  The Thom isomor- 

phism a l s o  holds f o r  any covering func tor .  Hence i t  i s  

easy  t o  s e e  



Coro l l a ry  7.1: A poinear; d u a l i t y  n-ad s a t i s f i e s  --- 
~ o i n c a r d  d u a l i t y  wi th  r e s p e c t  t o  any covering func to r .  0 

Def in i t ion :  The t o r s i o n  of the  equivalence 
*  XI: A ( x , ~ x : - I . - +  X :  i s  def inod t o  be the  

t o r s i o n  of t h e  ~ o i n c a r g  d u a l i t y  space X - i s  t h e  

u n i v e r s a l  covering f u n c t o r ) ,  Since (D(X),C(X)) i s  a 

simple cwation, and s i n c e  n [ N ]  i s  a simple equivalence 

n+k  heor or em 2.1.2), X = - 1  T ( ~ )  , where T ( X )  i s  

t h e  t o r s i o n  of X and everything e l s e  comes from the  
I 

disgram i n  t h e  proof of Theorem 7. A simple Poincare 

n-ad i s  one f o r  which a l l  t he  d u a l i t y  maps a r e  simple 

isomorphisms. 

Examples: By Theorems 2.1.1. and 2.1.2, any para- 

compact manifold n-ad i s  a simple ~ o i n c a r g  n-ad. There 

a r e  a l s o  examples of Spivak spaces which a r e  no t  Poin- 
4 

 are 

d u a l i t y  spaces.  One such i s  t h e  fol lowing.  Let X be a 

f i n i t e  complex whose reduced homology wi th  i n t e g e r  c o e f f i -  

c i e n t s  i s  zero ,  but which i s  no t  con t rac t ab le .  co he dode- 

cahedra l  manifold minus a n  open d i s c  i s  such a n  example. ) 
0 2 Look a t  C (X v S ) , t he  open cone on X v s2 . The obvious 

map R~ = :(s2) -+ :(x v s2) i s  seen  t o  induce isomorphisms 

on H, and H,* . Since  R~ i s  a Spivak space ,  so i s  
0 2 

~ ( X V  s2) . C(XV S ) i s  no t  a ~ o i n c a r e '  d u a l i t y  space a s  

x v s2 i s  not  a ~ o i n c a r d  d u a l i t y  space.  

I n  the  o t h e r  d i r e c t i o n ,  we have a s  a n  a p p l i c a t i o n  3f 

a theorem of Farrell-Wagoner [ 9 ]  



Theorem 8: Let X be a l o c a l l y  compact complex 

wi th  monomorphic ends. Then X i s  a ~ o i n c a r g  d u a l i t y  

space i f f  X i s  a Spivak space. An analogous r e s u l t  

i s  t r u e  f o r  n-ads 

Coro l l a ry  8.1: Let X be a Spivak n-ad. Then 

2 
X x R i s  a Poincar: d u a l i t y  space. 

I 

Proof: Wa only  prove X Spivak implies  X Poincare.  

I f  X has monomorphic ends,  and i f  N i s  a n  s-r neigh- 

borhood wi th  dim N-dim X 2 3 , a N  has monomorphic ends. 

C(X) a l s o  has monomorphic ends. The g of Theorem 6 

i s  a t  l e a s t  p rope r ly  2-connected. Hence by [97 we need 

only prove g induces isomorphisms on H, and HZ . But 

g,[N] = [ D ( X ) ]  , and g on homology i s  a n  isomorphism 

s ince  it i s  a homotopy equivalence.  Since N and C(X) 

a r e  both Spivak spaces ,  Theorem 1 shows g induces i s o -  
* 

morphisms on Zc . 
To show the  c o r o l l a r y ,  observe t h a t  i f  X i s  no t  

compact, X X R ~  has monomorphic ends. I t  i s  a Spivak 

space by Theorem 5, s o ,  i n  t h i s  case ,  we a r e  done. I f  

X i s  compact, X i s  a l r e a d y  ~ o i n c a r k  d u a l i t y  space,  S O  

the  r e s u l t  w i l l  fo l low from the next  thsorem. 0 
Theorem 9: Let X be a ~ o i n c a r e '  d u a l i t y  n-ad, and 

l e t  Y be a ~ o i n c a r e /  d u a l i t y  m-ad. Then XxY i s  a 

Poincard  d u a l i t y  (n+m-1)-ad. If X o r  Y i s  compact, 

the  converse i s  t r u e .  

Proof:  From-Lemma 2 we have -- 



I f  N i s  a n  s-r neighborhood f o r  X and i f  M i s  one 

f o r  Y , N x M i s  one f o r  X x Y . Hence we have 

g x f :  N X M  -+ D(XxY) i s  a map on (n+m-1)-ads. I t  

i s  a proper homotopy equivalence i f  g and f a r e .  

Now suppose X i s  compact. By Theorem 5, X i s  a 

Spivak n-ad, and hence a ~ o i n c a r 6  d u a l i t y  n-ad. Since 

g x f  i s  a proper homotopy equivalence,  i t  induces i s o -  

morphisms on t h e  proper homotopy groups. We claim 

A(NxM : vk) = r k ( N ) x A ( ~ : r k )  f o r  N compact. This i s  

~ a s i l y  seen by using t h e  c o f i n a l  c o l l e c t i o n  of compact 

subse t s  of N x M of t he  form N x C , C 5 M compact. 

A s i m i l a r  r e s u l t  computes A ( D ( x x Y ) :  qK) . Since g x f  

and g induce isomorphisms, f,: A(M:nk) -+ A(D(Y) :rk) 

i s  a n  isomorphism. By induc t ing  t h i s  argument over t h e  

var ious  subspaces of D(Y) , f i s  seen  t o  be a proper 

equivalence of (m+l)-ads. Hence Y i s  a poincar6 d u a l i t y  

m-ad. 0 
,4 

Theorem 10: X a po inear6  d u a l i t y  11-ad implies  X 

i s  a ~ o i n c a r ;  d u a l i t y  n-ad f o r  any cover of X . If X 

i s  compact o r  i f  i s  a f i n i t e  shee ted  cover,  then  t h e  

converse i s  t r u e .  

Proof:  Let N be a n  s-r neighborhood f o r  X . 
- A. - w 

Then N i s  a n  s-r neighborhood f o r  X , s o  D(X) = D ( X )  . 
X a Poincarg d u a l i t y  n-ad impl ies  N -+ D(X) i s  a proper 

," r----. 
homotopy equivalence of n-ads. But then  s o  i s  N -+ D(X) , - 
so  X i s  a ~ o i n c a r e '  d u a l i t y  n-ad. 



I f  X i s  a ~ o i n z a r 4  d u a l i t y  n-ad, X i s  a Spivak 

n-ad by the  n-ad analogue of Theorems 1 and 2. Hence 

if X i s  compact, i t  i s  a ~ o i n c a r 6  d u a l i t y  n-ad. 

Now i f  f + . X  i s  f i n i t e  sheeted and we know - 
N -+ D(X) i s  a proper homotopy equivalence,  we must show 

N -+ D(X) i s  a proper homotopy equivalence.  But i f  

dim N-dim X 2 3 (which we may f r e e l y  assume), t h i s  map 

i s  proper ly  2-connected. Since ~ ( f i :  .%) + A ( N : ~  ) i s  k 

a n  isomorphism f o r  k 2 when N i s  a f i n i t e  sheeted 

cover ,  N + D(X) i s  seen t o  be a proper homotopy equi-  

valence.  Induct ing the  argument shows N + D(X) a proper 

homotopy equivalence of (n+l ) -ads ,  s o  X i s  a po incar6  

d u a l i t y  n-ad. 0 

Remarks: The f u l l  converses t o  Theorems 9 and 1 0  a r e  

f a l s e .  Let X be any Spivak space which i s  no t  a Poincare  d'uzli- 

space. Then X x R2 i s  a counterexample t o  the converse 

of Theorem 9 a s  i t  i s  a ~ o i n c a r g  d u a l i t y  space by Coro l l a ry  

8.1. X x T~ i s  a counterexample t o  Theorem 10 ,  s i n c e  

X x T~ i s  not  a ~ o i n c a r e /  d u a l i t y  space by Theorem 9 ,  but 

i t s  cover X x R2 i s  

Theorem 11: Let be any s p h e r i c a l  f i b r a t i o n  of --- 
dimension 1 2 over a l o c a l l y  compact, f i n i t e  dimensional 

CW n-ad X . Then X i s  a Poincar; d u a l i t y  n-ad i f f  D(E) 

- i s  a ~ o i n c a r g  d m l i t y  (n+l)-ad.  

Proof:  By Theorem 4 o r  Corol la ry  4.1, we may assume 

X and D(E) a r e  Spivak a d s ,  and we have the  formula 



UE M E ]  = [XI  . Since the  Thom isomorphism i s  v a l i d  

f o r  t h e  A theory  ( see  the  appendix) ,  n[X] i s  a n  

isomorphism i f f  n[E]  i s  a n  isomorphism. Since 

dim E 2 2 , a u n i v e r s a l  covering f u n c t o r  f o r  X induces 

one f o r  D(E) . Theorem 7 nDw gives  t h e  d e s i r e d  con- 

c lus ions .  0 

Remarks: The t o r s i o n s  of t h e  Poincare d u a l i t y  

spaces occur r ing  i n  Theorems 9 ,  10 ,  and 11 can be l1com- 

putedtl .  I n  p a r t i c u l a r ,  T(X x Y)  =A(T(x)  , T ( Y ) )  where A 

i s  t h e  p a i r i n g  S(X) x S(Y) -t S(X xY) ( see  Lemma 1.5.23 

and t h e  preceding d i s c u s s i o n ) .  ~ ( i )  = tr  ~ ( x )  , where 

tr: C(X) -+ 6(?) . D = - 1  D , where n 

i s  the  dimension of the  fundamental c l a s s  of X , and t 

. i s  t h e  t ranspose  ope ra t ion  on C(X) . These formulas 

a r e  no t  very  hard t o  deduce and w i l l  be l e f t  t o  the  reader .  

We conclude t h i s  s e c t i o n  by i n v e s t i g a t i n g  t h e  

l luniquenesstl  of t he  Spivak normal f  i b r a t i o n .  We f i r s t ' '  prove 

Lemma 3: Let D(c) be a cwation f o r  some s p h e r i c a l  

f i b r a t i o n  over a Poincare d u a l i t y  n-ad, I f  t h e r e  i s  

a s t a b l y  p a r a l l e l i z a b l e  manifold (n+l)-ad N and a pro- 

per ,  degree one, homotopy equivalence N -+ D ( E )  , then  

i s  s t a b l y  equ iva len t  t o  t h e  Spivak normal f i b r a t i o n .  

Remarks: Given a l l  t he  s p h e r i c a l  f i b r a t i o n s  over a 

Poincare d u a l i t y  n-ad X , we wish t o  determine which of 

these  could be the  n ~ r m a l  f i b r a t i o n  of some complex hav- 

ing t h e  proper homotopy type a s  X . I n  t h e  compact case ,  



Spivak [36] showed t h a t  t h e r e  was only  one, the  one with  

the  r educ ib le  Thorn space. Lemma 3 shows t h a t  i f  D(E) 

has the  degree on2 proper homotopy type of a s t a b l y  

p a r a l l e l i z a b l e  manifold,  then i s  the  normal f i b r a t i o n  

f o r  X . I f  i s  the  n3rmal f i b r a t i o n  f o r  some complex 

Y , D(E) has t h e  degree one proper homotopy of a p a r a l l e l -  

i z a b l e  manifold,  s o  aga in  t h e r e  i s  one and only  one candi- 

d a t e  f o r  a normal f i b r a t i o n .  

Proof: I f  t he  equivalence were simple, .  N would be 

a n  s-r neighborhood and t h i s  would fo l low from Theorem 1. 

1 Now by Siebenmann [33] ,  N x S t D(E) x S' i s  a simple 

equivalence.  D(E) x s1 i s  a simple cwation f o r  5 x S 1 

1 over X x s1 . N x s1 i s  a n  s-r neighborhood f o r  X x S . 
1 Q ( N ~ , N , N )  x s1 - N x s1 makes t h e  map Nl x S 5 N x s1 i n t o  

a f i b r a t i o n ,  s o  vX x S' i s  f i b r e  homotopy equ iva len t  t o  
7 

v But E x SI i s  s t a b l y  f i b r e  homotopy equ iva len t  
xxsl ' 

t o  v by Theorem 1. Hence vX i s  s t a b l y  . 
xxsl 

Theorem 12: I f  f  : X + Y i s  a proper homotopy 
* - 

equivalence between Poincare d u a l i t y  n-ads, then f  vy = v X .  

Proof:  Let E = f  *(vy) . Then 

commutes'. The top  h o r i z o n t a l  row i s  a proper homotopy 

equivalence,  a s  one can e a s i l y  check by apply ing  A (  :vk) 



t o  everything.  Since D ( V ~ )  has  the  degree 1 proper 

homotopy type of a p a r a l l e l i z a b l e  manifold,  so  does 

D(E) . Hence bjr Lemma 3, E 5 vX 0 

S p i v a k l s  i d e n t i f i c a t i o n  of t h e  normal f i b r a t i o n  

a c t u a l l y  proves a s t ronge r  theorem. We can a l s o  prove 

t h i s  r e s u l t  a s  

Theorem 13: Let f  : X -+ Y be a degree one map of 

Poincare  d u a l i t y  n-ads* I f  t h e r e  i s  a s p h e r i c a l  f i b r a t i o n  
* 

over Y such t h a t  f  (E) n vX , then  E r vy . 
Proof:  D(V,) --+ vX ---+ E D(E) 

commutes, so  i t  i s  no t  hard t o  show the  top  row i s  a degree 

one map. 
uvx 

fl [D(vx)l = [XI ; Ug fl [D(E 11 = [Yl ; and 

f * ~ ~  = 
UvX 

and f  [XI  = [Y] Hence the  top  row must 

t ake  [D(vX)] t o  [D(E)]. D ( V ~ )  has  the  proper homotopy 

type of a p a r a l l e l i z a b l e  manifold (n+l ) -ad ,  N , so  t h e r e  

i s  a degree 1 map g: N + D(E) . Since N i s  p a r a l l e l -  

i z a b l e ,  t h e r e  i s  a t o p o l o g i c a l  microbundle over D(E) 

which p u l l s  back t o  t h e  normal bundle of N (namely t h s  

t r i v i a l  bundle).  I f  dim E 2 2 (which we may always 

assume) then  any p a i r  ( D ( < ( z ) ,  C(E(Z)) , f o r  Z 5 Y a s  

p a r t  of t he  n-ad s t r u c t u r e  on Y , i s  p rope r ly  2-connectedo 

Hence by the  remarks fol lowing Theorem 3.1.2, we can f i n d  

a p a r a l l e l i z a b l e  M and a degree one proper homotopy 

equivalence M -+ D ( E )  . By Lemma 3, E vy 9 0 
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Remarks: Logica l ly  Theorem 13 should. fo l low Theorem 

2 i n  Chapter 3. We do no t  use  the  r e s u l t  u n t i l  we a r e  

p a s t  t h a t  p o i n t ,  so  i t  does no harm t o  inc lude  i t  here .  

The ch ie f  purpose of Theorem 13 i s  t o  s e v e r e l y  l i m i t  

t he  bundles which can occur i n  a su rge ry  problem. 

Sec t ion  3. The normal form f o r  ~ o i n c a r d  d u a l i t y  spaces .  

I n  order  t o  g e t  a good theory  of su rge ry ,  one needs 

t o  be a b l e  t o  do surgery  on ~ o i n c a r k  d u a l i t y  spaces ;  a t  

l e a s t  one must be a b l e  t o  modify fundamental groups. The 

r e s u l t s  of t h i s  s e c t i o n  show t h a t  Poincard d u a l i t y  spaces  

look l i k e  manifolds through cadimension 1. These r e s u l t s  

a r e  a d i r e c t  g e n e r a l i z a t i o n  of Wall [39] Sec t ion  2 ,  

e x p e c i a l l y  pages 220-221. 

D e f i n i t i o n :  Let X be a ~ o i n c a r g  d u a l i t y  n-ad. 
Lf. 

Then, i f  [XI C Y, , X i s  sa'id t o  have formal  dimen- 

s i o n  n . (X i s  o f t e n  s a i d  t o  be of dimension n .) 

Theoremk: Let X be a ~ o i n c a r k  d u a l i t y  space of 

dimension n 2 2 . Then X s a t i s f i e s  Dn . I f  X i s  a 

connected Poincare' d u a l i t y  m-ad, m 2 ,  of dimension n 3 ,  

then  X s a t i s f i e s  D h - 1 ) .  

P roaf :  This fol lows e a s i l y  from d e f i n i t i o n s  and 

Theorem 1.6.2. 0 

Theorem 2: Let X be a Po inca rd  d u a l i t y  space of 

dimension n , n 2 4 . Then X has the  proper homotopy 

type of Y , where Y i s  a ~ o i n c a r k  d u a l i t y  space which 



i s  t h e  union of two Poincare d u a l i t y  p a i r s ' ( Z , a H )  

and ( H , ~ H ) ,  where H i s  a smooth manifold of dimen- 

s i o n  n formed from a regular -  neighborhood i n  R~ of 

a g iven  t r e e  f o r  Y by adding 1 handles a long the  

b o u ~ d a r y ,  and where Z i s  a subcomplex s a t i s f y i n g  D(n-2). 

The t o r s i o n  of t h i s  equivalence may be made t o  assume any 

preassigned value.  The map induced by i n c l u s i o n  

A :  + A Y  i s  s u r j e c t i v e .  

.. 
Proof:  Let C, be t h e  dua l  cha in  complex X . 

There i s  a cha in  map n[X] : ?, - c,(x) . By Theorem 1.6.3, 

we can f i n d  a complex Y wi th  c,(Y) =-  E j  i n  dimensions 

g r e a t e r  than  3.  C (Y) = e3 @ junk, and t h e  complex 
3 

y2 U junk s a t i s f i e s  D2 . 
NOW we could have arranged th ings  s o  t h a t  t h e  only 

v e r t i c e s  oP X were the  v e r t i c e s  of t h e  t r e e .  This i s  

seen a s  fol lows.  F i r s t  we cla im we can f i n d  a subcomplex 

V 5 X which conta ins  a l l  t h e  v e r t i c e s  and such t h a t  T 5 V 

a s  a proper  deformation r e t r a c t .  We do t h i s  a s  fol lows.  

Let d = {uI U i s  a 1-dimensional subcomplex of X , 
T 5 U , and U conta ins  a l l  t he  v e r t i c e s  of X) . d # % 

a s  x € 2 . d i s  ordered by i n c l u s i o n .  Let U1 3 U2 2 

be a t o t a l l y  ordered sequence i n  d . Then fl Ui i s  a l s o  

i n  4 . Let V be a minimal element of 2 , which 

e x i s t s  by Zorn. We claim H1(V) = 0 , s o  i f  n o t  look a t  

a cyc le  i n  V . Pit l e a s t  one of t h e  1-simplexes of t h e  

cyc le  i s  no t  i n  T f o r  T has no 1-cycles .  Let Vl V 



be all of V less Dne of the 1-simplexes in the cycle 

which is not in T . Then V1 is a subcomplex, T 5 V1, 

and V1 contains all the vertices. This contradiction . 
shows H1(V) = 0 . The inclusion T V is a proper 

0-equivalence, and A(T:~T~) = A(V:rk) = 0 for k 2 1 . 
Hence T 5 V is a proper deformation retract. 

Set K = V-T , and look at X/K . The collapse 

map X -+ x/K is a proper homotopy equivalence. For a 

proof see [6] Proposition 2-11, page 220. Note that all 

the maps there may be taken to be proper. X/K has only 

the vertices of the tree for 0-cells. 

NOW, to return to our proof, we may assume en = Co(X) 
n 

has a generator for each vertex of the tree. Cn,l has 

a generator for each one cell of X . As in Wall [39] 

Corollary 2.3.2, each (n-1)-cell is incident to either 

two n-cells, or to the same n-cell twice. Look at an 

,p-1 n-1 attaching map 4 X for an n-cell. This can be 

normalized to take a finite, disjoint, collection of discs, 

onto the (n-1)-cells homeomorphically and to take the 

rest of s"-l into the (n-2)-skeleton. Each (n-1)-cell 

eventually gets just two such discs mapped m t o  it. The 

n-discs together with the (n-1)-cells corresponding to 

the 1-cells of the tree are seen to form a regular neigh- 

borhood in R~ of the tree, and H is obtained from this 

by attaching 1-handles . 
If Z is the part of Y in dimensions ( n-2 (or is 

yL U junk if n = 4) Y = Z UaH H where H is formed from 



n-discs corresponding to the n-cells by attaching 

1-handles as indicated by the (n-1)-cells. Actually, 

we want to form the mapping cylinder of aH -t Z and 

then take the union along aH . Since H is a manifold, 

ths result clearly is homeom3rphic to Y . We denote by 

Z the mapping cylinder, so Y = Z Uag H , and a H  is 

a subcomplex of Z . Note that Z still satisfies D(n-2). 

Now Z 5 Y is at least properly 2-connected, for Z 

always contains the 2-skeleton of Y. Since (H,aH) is 

a ~oincark duality space, Theorem 2.1.4 says (Z,aH) 

satisfies ~oincar6 duality with respect to the covering 

functor induced from the universal covering functor for Y. 

But this is just the universal covering for Z as Z 5 Y 

is properly 2-connected. aH is a ~oincar; duality space, 

so Theorem 2.2.7 says (Z,aH) is a ~oincar6 duality pair. 

The statement about the torsion is contained in 

Theorem 1.6.3, so we finish by showing A(H:nl) + A(Y:.rrl) 

is onto. Our proof is basically Wall [39] Addendum 

2.3.3, but is more complicated. We too will use the con- 

struction of Z and H via dual cell decomposition. In 

our original complex, there were 0-cells eg , one for 
i each p a vertex of T . There were 1-cells el satis- 

P fying a e; = gieo - e: , where gi is a loop at p . The 

g i which occur generated A(Y:nl) . In the dual complex 

with we have n-cells, ei , and (n-1)-cells en-l 

i aez = (2 gi en-l ) -  z e g l  , where the sign is given by 
1 j 



the local coefficients on Y , and where the sums run 
over all (n-1)-cells incident to e: . The core 1-disc 

i of the handle corresponding to. en-1 followed by the 

unique minimal path in T from the endpoint of the 

1-disc to its initial point has homotopy class gi . 
Hence a(H:nl) is onto A(X:r1) . 0 

Corollary 2.1: Let X be a ~oincar; duality space 

of dimension 3. Then X has the proper homotopy type 

of Y , where Y is the union of two ~oincar; duality 

pairs (Z,aH) and (H,aH) , where H is a regular 

neighborhood in R~ of a given tree for X , and is a 
subcomplex of Y satisfying D2 . The torsion of this 

equivalence can be arbitrary. 

Proof: Using the dual cell decomposition as before, 

let Z be the subcomplex of Y such that e3 = C3 (Y,Z) 

and such that Z satisfies D2 . ?3 has one 3-cell for 

each vertex of the tree. Now'there is a locally finite 

collection of paths from each n-cell to the vertex of 

the tree it represents. 

Given H , a regular neighborhood of the tree in 
R~ , we describe a nap a H  + Z which extends to a map 

H -+ Y such that the induced map C(H,aH) -+ C(Y,Z) is an 

isomorphism. Hence Z UaHH has the proper h~motopy of 

Y and we will be done. The map is the following. H can 

be viewed as the connected sum of a collection of n-discs, 

one for each vertex of the tree, by tubes corresponding 



to the 1-cells of the tree, H can then be properly 

deformed to the subcomplex consisting of n-discs joined 

by the cores of the connecting tubes. ail under this 

deformation goes to a collection on (n-1)-spheres joined 

by arcs. Map the (n-1)-sphere to Z by the attaching 

map of the corresponding n-cell in Y . Map an arc be- 

tween two such spheres to the pathsto the tree, and then 

along the unique minimal path in the tree between the 

two vertices. This map clearly has the necessary pro- 

perties. 0 

Theorem 3: Let (X,aX) be a Poincarg duality pair 

of dimension n , n 4 . Then (X,aX) has the praper 

homotopy type of a ~oincare'dualit~ pair (Y,aY) which is 

the union of a Poincare/ duality pair (Z, aH U aY) and 

a Poincar; duality pair (H,aH) , where H is a regular 

neighborhood in R~ of any given tree for Y by adding 

1-handles along the boundary, and Z is a subcomplex of 

Y satisfying D(n-1). The torsion of this equivalence 

may be given any preassigned value. n(H:7r1) -+ a(Y:7r1) 

is onto. 

Proof: By Theorem 2 or Corollary 2.1, we may assume 

aX already looks like K U M , where M is a regular 

neighborhood for a tree of aX in R n-1 , and K satis- 

fies D(n-2) . 
A 

Let C, be the dual complex for Cn-, (X) . Then 

there is a chain map  XI: t ,  -+ c,(x,ax) . We apply 



Theorem 1.6.4 to find a complex Y with .c,(Y) = C, 

in dimensions greater than 3 and with a X  5 Y . 
C (Y) = C U junk, Set L to be Y 3 3 

(n-l) . Then 

M 5 L . Nwmalize the attaching maps for the n-cells as 

before. If Z = Y (n-2) u M (8 u junk u M if n = 41, 

then Y = Z U H where H has the advertised description, 

Notice aH il aX can be M if one likes. As before, 

(H,aH) is a paincar4 duality pair, so one shows 

(Z, aH U ax) is a poinear: duality pair. aH fl a X  = M , 
so aH = (aH-M,aM) U (M,aM) and aX = (K,aM) U (M,aM) . 
The rest of the theorem proceeds as in Theorem 2. 0 

Appendix: The cwation of a spherical fibration. 

We recall the definition. Let be a spherical 

fibration over a finite dimensional, locally finite CW 

n-ad. Assume dim 2 2 . Let S(E)  be the total space. 

We seek an n-ad Y , a proper map f : Y + X , and maps 

g s ( E ) ~ Y  which commute with the two projections. We 
h 

also require that Y have the proper homotopy type of a 

locally compact, finite dimensional CW n-ad. go h must 

be properly holnotopic to the identity, and h o  g must 

be fibre homotopic to the identity. We give Y a simple 

homotopy type by finding an equivalent CW complex for 

which the T h m  isomorphism is simple. 

We digress briefly to include a discussion of the 

Thom isomorphism. If D ( c )  is the total space of the 



disc fibration associated to E , we define A(D(E):h:-) 
and D , S : h : -  to be the groups one gets by 

applying thG A construction to the groups 

D , S ,  where p is a vertex of X , X - C  is a 

cofinal subcomplex of X , is a lift of p into 
,-.2 /-'- - /J TV 

D(E)c , and 1~ : D(ElC + X - C  and P: S(E)c + X - C  are 
/-.2 

the projections for the fibrations induced over X - C  

by restriction and pull back from D(E) and S(E) 

respectively. 

Now the Thom class for , UE goes under 
#-- - 
X - C  + X - C  + X to the Thom class for S(f,)c . If h 

is cohomalogy we modify the group above in the obvious 

manner. We will denate by A*(D(E):-) the *-th homology 
* 

group with covering functor - . A is the cohomology 

theory. Then we have maps UF U : dt~te):-) + 
2 

A * + ~ D , S :  and uE n : (DW,S(E):-) --+ 

( D ( : -  . They are easily seen to be isomorphisms. 

The maps h and g induce isomorphisms of 

A*(S(E):-) and A*(Y:-1, with a similar result for 

cohomology (the reader should have no trouble defining 

A, (S (4) : - )  or its cohomology analogue). We also get 

isomorphisms of A D S : -  and A,(Mf,Y:-) , again 
with a similar result in cohom9logy. Hence we can speak 

of a Thom isomorphism for the cwation. 

We first prove that if we can find a cwation, we can 

give it a unique simple homotopy type. Let C be a CW 

n-ad the proper homo.t;opy type of the cwation Y ( C  locally 



compact, finite dimensional). C ? Y  

fop\, X /f 
. 

where p is a proper homotopy equivalence with fop 

cellular. (It is easy to find such p .) Let T P 
denote the torsion of the corresponding Thom homology 

isomorphism. If A: K -+ C is a proper homotopy equi- 

valence, the Thom isomorphism associated to poA has 

torsion T + P*T(h) by Lemma 1.5.22. Since we may 
P 

pick ~ ( 1 )  arbitrarily, we can find a p with 1; = 0 . 
P 

Suppose now we have h :K -+ Y with T~ = 0 , foX 

cellular. Let a : Y + K be a proper homotopy inverse 

to A . Then 

C a0 P ?. K 

properly homotopy commutes. We get a proper homotopy 

equivalence of pairs F: (Mf 
0 P ' C) -+ (Mfo A ,K) such that 

By Lemma 1.5.19, Mfop -+ X and MfoA -+ X are simple, 

so F :  Mfop -4 Mfo A is a simple equivalence. The 

torsion of F from (Mfop,C) to (M~,~,K) is T -T = 0, 
P A 

so by Theorem 1.5.1, the torsion of aop on the subspace 

groups is zero. But as dim [ 2 2 , fop and foA are 

at least properly 2-connected. Hence the ,subspace groups 



with the induced covering functor are the absolute groups 

with the universal covering functor. Hence a o p is a 

simple homotopy equivalence, so the simple homotopy type 

of a cwation is unique. 

We now construct the promised Y . Notice first that 
we can replace X by any locally compact, finite dimen- 

sional CW complex of the same proper homotopy type. Hence 

we may as well assume X is a locally finite simplicial 

complex of finite dimension. This is seen as follows. By 

[ll] Theorem 4.1 and Lemma 5.1, X is the union of B and B 

where A and B are the disjoint union of finite complexes. 

Each finite complex has the homotopy type of a finite sim- 

plicial complex, and if a subcomplex is already simplicial, 

we need not disturb it. Hence we get a locally finite 

simplicial complex Y and a map P: X -+ Y by making sub- 

complexes of the form C n D ,  C E A ,  D E  B simplicial, and 

then making C and D simplicial. Then Y = A ' U B '  where 

f : A -+ A' and f: B + B' are proper homotopy equivalences. 

Also f: E -+ El is a proper homotopy equivalence where 

E = {C n D I  C E: A, D E B} . The proper Whitehead Theorem shows 
f is a proper homotopy equivalence. X being what it is, 

we can subdivide X until we find open sets Ci such that 
- - 

X - Ci and Ci are subcomplexes, each Ci is compact, 

and ~ l c ~  is trivial. Furthermore, U Ci = X , the 

Ci are locally finite, and the Ci are indexed by the 

positive integers. We set Vi = U Cj . We can also 
j i 



f i n d  a n  inc reas ing  c o l l e c t i o n  of open s e t s '  Ui such 
- 

t h a t  U i s  Vi - Ci, Ui i s  compact, and !J Ui = X . 
i 

We f i r s t  cons t ruc t  spaces  Yi and maps gi and f i  

induc t i v e l y  so  t h a t  

commutes. 
- 

Let Y1 = V  X S "  , k = dim E L 2  . gl and f l  1 

e x i s t  s ince  ~ I v ~  i s  t r i v i a l .  f l  i s  j u s t  p r o j e c t i o n .  

We now induc t ;  i . e .  we have 

1) A space Yi and maps gi and f i  such t h a t  

A) commutes. 

- - 
5) Let 2 = {  mi n ". l i l< i2<o*-  <I r ]*  

1 2 l r  

I f  C G Jr , gi r e s t r i c t e d  t o  f y l ( c  n Ti) i s  a  homotopy 

equivalence.  

Notice t h a t  Y1, gl, and f l  s a t i s f y  (1-5).  (Let 

Yo = IZI. 

I f  we can v e r i f y  1) - 5)  , we can cons t ruc t  Y a s  

the  inc reas ing  u ~ i o n  of  Yi w i th  i d e n t i f i c a t i o n s .  g  and 

f can be def ined  from the  gi and f i  r e s p e c t i v e l y  by 4 ) .  



Intuitively, Y has the proper homotopy type of 

a locally compact, finite dimensional complex, since 
- 

it is covered by finite complexes, Ci x S' , of 

bounded dimension in a locally finite fashion. For a 

better proof, see Proposition 1. 

Now given Yi-,, fi-17 and g i-1' we construct Yi, 

fi, and gi . 
- 

By Dold [8], EITi can be gotten from EI v ~ - ~  and 

E(Ci as follows. Over Ci n Vim, , we have an equivalence 
k 

TJ : (E1Ti-,)lci n viml -3 (ci n X~ . Let 

- 
- 
- 

- H1 - E I v ~ - ~ ,  H2 - CiysK , and let H 3 ={(x7w)lx~H1( 

ci n vir1 , w c ((ci M 1)' , x = t for all i-1 - 
t E I , ~ ( x )  = w(l)] . Then zIVi & H1 U H U H3, where 3 - 

H ~ ~ c ~  n vi - , is embedded in H via x * (x, constant 3 
path at rp(x)). The embedding of H ~ I  Ci fl Vi - .l is harder 

to describe. Let be the inverse to TJ . Then TJOTJ' 

is fibre homotopic to the identity. Let $ be a fibre 

homotopy between these two maps, with $( ,0) = id. Then 

I321 Ci n Vi-1 is embedded in H3 via x --+ (Y' (x), $(x,t) 1. 

We must now define the p in 3). We are given 



We would like to fill in the dotted arrow,with p so 

that the diagram actually commutes. To do this, we may 

h a m  to alter V within its fibre homotopy class, but 

this will nat change our bundle. 

Since gi-l is a homotopy equivalence, it has an 

inverse, h . h may be assumed to be a fibre map, so 

h gi-1 is a fibre homotopy equivalence. Let G be 

its fibre hamotopy inverse. Then GO h o  g i-1 is fibre 

homotopic to the identity. gi-l o (G o h) is homotopic 

to the identity. 

Set p = (id) 0 ep (G 0 h) . Then p is a fibre map 

so the bottom square commutes. Set V1 = (id)-lop gi-l . 
Then V1 is fibre homotopic to V ,and B) commutes 

with V1 in place of . p is a homotopy equivalence, 

so 3) is satisfied. 

From now on, we assume V chosen so that B) com- 

mutes with the p along the dotted arrow. Set 
k - Y. = Yi-l 

1 U P E i x S  . fi icdefined by fil~i-l - i-1 
- k and f il Ci x S = pro j . B) assures this is well defined 

on the intersection. 
- 

g i is unfortunately harder to define. ~1 V. Z 
1 

HI U H2 U H3 , so let a: E(T~ +HI U H2 U H3 be an 

equivalence. a may be chosen to be the identity on 

ui -1 . We define a map h : H1 U H2 U H 3 + Yi as 

follows.. gl H1 = gi-l . To define g on the other two 

pieces, look at $ , the fibre h3motopy between V O V' 



and id. This can be extended to a fibre ,map of 
- k k 
(Ci x S ) x I -k (Fi x S ) since id: (Ci r l  iJi - 1) sK -f 

(Ci mi - 1) x sk can clearly be extended. Let F be 

the fibre map which extends 9 0 c P '  Note F is fibre 

homotopic to the identity. 

Now define (glH3) (x,w) = gi-l(x) Note our two 

definitions agree on H1 fl 9 3 O  We could have defined 

(gl H ) (x,w) = w(1) equally well. We define 3 
(glH2)(x) = F(X) . If x e  H2 fl H3 , then (glH3)(x) = 

(~~H~)('P'(X), $(x,t)) = jr(x,l) = 9 O ~'(x). (glH2)(x) = 

~ ( x )  = rp 0 9'' (x) by the definition of F . Hence g is 

well defined, and we set gi = g O a  . 
Now 4 )  clearly h ~ l d s  since a1 f ~ i ~ ( ~ ~ - ~ )  is the 

identity. 1) holds as g: H1 U H U H2 --) Yi preserves 3 
fibres by construction. Hence we are left with showing 

2) and 5). 

For r sufficiently large, C e Jr implies 

C fl Tii= 0 , since the csllection {Ci] is locally finite. 

We show 5') by downward induction on r , since if 

C fl Fi = !8 , 5) is obvious. Assume we have established 

the result for r = k+l . Let C & + . If C fl Ei =@, 

then C fl = C fl and we are done since 5)  holds 

for gi-1 and a is a fibre homotopy equivalence. If 
- - 

C fl Ti = Ci fl Vi we are done since F is a fibre map. 

S1 let L = C n Ti - , and let K = C fl Ti with both 
- 1 K and L non-empty. gil fi (L) is a homotopy equivalence, 



again since a is a fibre homotopy equivalence and 

-1 - 1 gimll fi (L) is. gi/ fi (K) is also a homotopy equi- 

valence, again since F is a fibre homotopy equivalence. 

- 1 K fl L cyi - , and K il L E pPiZfl . Hence gilfi (KilL) 

is a homotopy equivalence. Therefore gilf~l(~) is a 

hom~topy equivalence and we are done with 5) .  

For 21, note that gi-l is a homotopy equivalence, 

-1 - 
SO gihi-l is. gil fi (Ci) is since F is fibre 

- 1 homotopic to the identity. gil f. (Ci fl Vi-l) is a 
1 

homotopy equivalence by 5). Hence gi is a homotopy 

equivalence. 

Therefore we have a space Y and maps S(E) --b Y . 
.\,A 

A 

We claim g is a homotopy equivalence. Since by Milnor 

[22], S(t) has the homotopy type of a CW complex, this 

is equivalent to showing g induces isomorphisms in 

homotopyo But $(g) = lim nk(gi) , and since 
i--r 
1 

n,(g> = 0 

Let h : Y --+ S(6) be a hom~topy inverse 

By an easy argument like the one after diagram 

assume h preserves fibres and that h o  g is 

for g . 
B , we may 
fibre , 

homotopic to the identity. Notice that by construction 

f-l(x) is homeomorphic to a sphere of dimension dim 6 . 
- 1 n (x) has the homotopy type of such a sphere. Since 

-1 h o g  is fibre homotopic to the identity, gx: -rr (x) + 
fml(x) has a left inverse. As both spaces are spheres of 

dimension 2 or rnorc, gx is a homotopy equivalence. 



Now in the terminology of Bredon [ 2 ] , '  f is $- 

closed, and f-l(x) is $-taut, where is the family 

of compact supports. (Note Y is locally compact, so $ 

is paracompactifying, and then apply (d) on page 52 

to show f-'(x) is $-taut. f is +-closed easily from 

the definition, which is on page 53, since X is 

Hausdorff.) Hence we have a Leray spectral sequence for 

the map f : Y + X . We have the Serre sequence for 
T: S ( e )  + X , and g induces a map between these two, 

g induces an isomorphism on the E2 terms since it is 

a homotopy equivalence on each fibre. Hence 

g : H:(Y) ----f H:(s(E)) is an isomorphism, where C 

is the set of supports whose image in X is compact. 

As dim E 2 2 , ii*: H:(x) --)~(s(E)) is an iso- 

morphism for * < 2 . Hence f *: H:(x) -+ HZ (Y) is an 

isomorphism for * < 2 , so f*: HEn,(x) -+ H&~(Y) is 

an isomorphism, so f is a proper 0-equivalence. 

We claim f is a proper 1-equivalence. To see this, 

note f( C is a 1-equivalence for C c dr all r 2 1 . 
Now an easy van-Kampen induction shows f is a 1-equivalence 

- 
when restricted to any union of Ci's . Hence f is a 

proper 1-equivalence. 

Thus g A S :  + A(Y:T~) is an isomorphism 
#I 

as both groups are isomorphic, via -rr# and f# , to 

A(X:n,) . 
Now we still have maps 



h - s(~1x-K~) where Ki = X -  u ci 
1 i >i 

g restricted to each fibre is still a homotopy equi- 

valence with inverse induced from h . For any cover, 

- , of X - Ki, we get 

where the covers on the top row are the induced covers 
u 

from - over X - Ki . S)c;T- Ki) is the same as - 
- .  

s (E I  x - Ki) , the spherical fibration induced from 
6- F I X  -Ki over X -Ki . i likewise induces a homotopy 

equivalence of fibres, so as before we get 

61---/ 
h*:~*(s(~lx CP -L), L-)) * H:(ai),a-)> 

is an isomorphism. A word about the existence of these 

covering spaces is in order. Since X -Ki is a CW 

complex, its cover exists. The cover for s (el x - Ki) 
then also clearly exists. We claim Y - fml(Ki) is 

semi-locally 1-connected, from which it follows that its 

cover also exists. To see our claim, observe 

f : Y - f-'(Ki) --+ X - Ki is a 1-equivalence. Given any 

point y E Y - T-~(K~) , let N 5 X -Ki be a neighborhood 

of f (y)  such that vl(N) k 1 (X -Ki) is the zero map. 



Since X - Ki is semi-locally 1-connected, such an 

N exists. Now f-l(N) is a neighborhood for y , 
and r1(f-l(N) 4 rl(Y - f-l(~;) ) is also zero. Hence 

Y - f-'(~~) is semi-locally 1-connected. 

Therefore, h*: A*(s(E):-) -+ A*(Y:-) is an 

isomorphism for any covering functor induced from one over 

X . Since f is a proper 1-equivalence, if we take a 

universal covering functor for X , we get one for Y . 
(The actual covering functor on Y is the followingo 

Any A c C (Y) is contained in a uqique minimal 

f-l(~ -Ki), so let the cover over A. be in3uced from the 

cover over this space. ) 

g*: A* (Y: - )  -+ A* (S ( E )  : ---) is defined where --- 
is the covering functor indiced by g from - over Y. 

g* 0 h* = ( g  o h)*: A*(S(~):-) -+ A*(S(E):---) is an is3- 

morphism as - and --- are equivalent covering func- 

tors. Hence h o g = (h 0 g)* : A*(Y: -19 is an iso- 
morphism, so h o  g is a proper homotopy equivalence. 

g h is already a fibre homotopy equivalence, and it is 

not hard to change h until h o g  is properly homotopic 

to the identity and go h is fibre homotopic to the 

identity. 

To finish we need only show Proposition 1 below. 

We first need 

Theorem 1: Let Y be a locally compact, separable 

ANR . Then Y is properly dominated by a locally-finite 

simplicia1 complex.. 



Proof: Let a be an open covering of Y by sets 

where closure is compact. Since Y is metrizable, Y 

is paracompact, so we can assume a is locally finite, 

We now apply Hu [15], Theorem 6.1, page 138, to 

get a locally finite simplicia1 complex X and maps 

O.': X -t Y and 7.: Y -t X with 9 0  a-homotopic to the 

identity, i.e. if H is the homotopy, for each y E Y, 

there exists U e a such that H(y,t) E U for all 

t E [0,1]. By our choice of a , 'P O $  is properly 

homotopic to the identity. 

Now X is actually the nerve of some cover 6 in 

the pro3f of Hu, Theorem 6.1. In the proof, we may 

take 6 to be star-finite and locally finite. Then the 

nerve X is a locally finite simplicia1 complex, and the 

map Y: X -t Y is proper. To see this last statement, it 

is enough to show yt(u) is contained in a compact sub- 

set of X for any U c a . Recall is defined by 

picking a point in each V E 6 and sending the vertex of 

the nerve which corresponds to V to our chosen point 

and then extending. Our extension satisfies the property 

that any simplex lies entirely in some element of a . So 
let U1 be the union of all elements of a intersecting 

- 
U . U1 is compact as a is locally finite, so let U2 

- - 
be the union of all elements of a intersecting U1 . U2 
is again compact, so there are only finitely many elements 

of 6 which intersect U2 . Let K 5 X be the subcomplex 



generated by these elements of 6 . K is'finite, 

Corollary 1.1: Let Y be a locally compact, 

separable ANR , and suppose the covering dimension 
of Y , dim Y , is finite (see Hurewicz and Wallman 
[16] for a definition). Then Y is properly domi- 

nated by 2 locally finite simplicia1 complex of dimen- 

sion dim Y . 
Proof: Make the same changes in Hu [15] Theorem --- 

6.1, page 164 thtt we made to the proof of Theorem 6.1, 

page 138. We get a simplicia1 complex P and a proper 

map q : P -t Y such that for any map f : X -+ Y with 

X a metric space of dimension ( dim Y , there exists 
a map $ : X -t P with y o $  a-homotopic to f . More- 
over, P has no simplices of dimension > dim Y . Apply 
this for X = Y ,  f = i d .  0 

Corollary 1.2. A locally compact, separable ANR of 

dimension ( n satisfies Dn . 
Proof: By Corollary 1.1 and nonsense, it remains to 

show Y is homogamous. But an BNR is locally contractible 

(Hu [l5], Theorem 7.1, page 96), and any metric space is 

paracompact, so Corollary 1,1.2.1 applies. 0 

Proposition 1: The space Y which we constructed 

has the proper homotopy type of a locally compact, finite 

dimensional CW complex. 



Proof: We first show Y is a finite dimensional, 

locally compact, separable KNR . We then find a finite 
dimensional simplicia1 complex Z and a proper map 

h: Z + Y which is properly n-connected for any finite n. 

Since Y and Z both satisfy Dn for some finite n , 
h is a proper homotopy equivalence. 

Step 1: Y is a finite dimensional, locally conpact, 

separable ANR. 

By Hu [15] Lemma 1.1, page 177, Theorem 1.2, page 

178, and induction, each Yi is an ANR. The induction 

is complicated by the necessity of showing 

-1 - " fi-l (vi-l il Ei) is an ANR. Hence our indue tion 

hypothesis must be 

alk Yk is an ANR 

-1 - Y fl fk (V, fl C) is an ANR for all C € dr . b)k,r k 

One then shows that for some finite r , b)k,r 

holds vacuously. b)k,s, s > r, and b)k-l,r b)k,r Y 

sc we get b)k,r for all r . b)k,l and imply 

a ) k  , SO we are done. 

Since each Yi is an ANR, each Yi is a local ANR 

(Hu, Proposition 7.9, page 97). If Y is metrizable, 

Y is an ANR by Hu, Theorem 8.1, page 98. Now Y is TI 

and regular. To see this observe each Yi is TI and 

regular since it is metrizable. Now if U 5 Y is any 



compact set, there is a Yi with V 5 Yi ,and V homeo- 

morphic to U . With this result and the observation that 

Y is locally compact, it is easy to show Y is T1 and .. 
regular. Y is locally compact because it has a proper 

map to the locally compact space X . Y is 0-compact 

since X is, so Y is second countable. Hence Y is 

metrizable (see Kelley [17] page 125) and separable. 

We are left with showing Y has finite covering 

dimension. By Nagami [27] (36-15 Corollary, page 2061, 

we need only show the small cohomological dimension with 

respect to the integers (Nagami, page 199) is finite 

(Y is paracompact since it is 6-compact and regular (see 

Kelley [l7], page 172, exercise Y , a) and b)) ). 

To compute d(Y: Z) , look at the map f: Y -t X . f 

is a closed, onto map. f is onto by construction, and 

f is closed since Y is the increasing union of compact 

sets EDi], F C _  Y is closed iff F fl Di is closed for 

all i , and f(F n Di) is closed since F fl Di is 

compact and X is Hausdorff. We can find an increasing 
- 

sequence of compact sets Vi such that E 5 X is closed 
-1 - iff E fl Ti is closed. Since f is proper, Di = f (Vi) 

has the expected properties. But f(E' n Di) = 

-1 - f (F) r l  Ti if Di = f (Vi) , SO f is closed. Hence 

by Nagani [27] (38-4 Theorem, page 2l6), d(Y:Z) ( Ind X + k, 

where k is the dimension of the bundle . To see this, 

note ( x  is homeomorphic to sk for all x X , 
so d(f-'(x):~) = k . Since X is paracompact and 



metrizable, Ind X = dim X = d(X:Z) = dimension of X 

as a CW complex (see Nagami 8-2 Theorem for the first 

equality; Naga~i 36-15 Corollary shows the second; 

Nagami 37-12 Theorem and subdivision shows the third 

[this uses the fact that X is a regular complex]). 

Step 2: There is a locally compact, finite dimen- 

sional CW colnplex Z and a proper map h : Z -+ Y which 

is properly n-connected for all n . 
We define Z and h by induction; i.e. we have 

1) a finite CW complex Zi and a map hi: Zi + Yi 

2) hi is a homotopy equivalence 

3) hi restricted to (fi 0 h. )-I 
1 (C n Ti) is a 

homotopy equivalence for all C E 84, , r 2 1 . 

5 Zi = Zi - Uh Ci x sk where h : Zi-l II 

homotopy equivalence. 

If we can find such Zi and hi , we can find Z 

and h : Z + Y . h is clearly proper, 

equivalence by 3 )  for all C s Jr r 1 , so 

hl (f 0 h)-l(~~) is a homotopy equivalence where 
- 

Di = U Ci . Thlls h induces isomorphisms on H" and 
j - >i 

0 

Hend , and A(h: ns) = 0 for s 2 1 . Hence we are done 

if we can produce Z. and hi . 
I 



- k 
We proceed by induction on i . Z1 = V1xS and 

hl = id . 1) - 5) are trivial, so suppose we have 

'i-1 and h i  . We have 

Let p '  be this composition.. Deform p '  to a cellular 

map as follows. For some r 0 , C E Jr implies 

C fl ci = cp . Now deform p  ' to a cellular map over each 

c n T i n Y i l  - for C dr , all r 2 1 and finally to 
- - 

a cellular map over Ci n ViWl . Denote this map by A . 
- k Let Zi = Z. - Uh (Ci x S ) . We can extend hi-l 1-1 to 

a homotopy equivalence hi: Zi -t Yi which leaves himl 

-1 fixed on (fi-l 0 hi-l) U . hi in fact can be 

chosen to be a homotopy equivalence on each (fiohi)'l(c nvi) 
by extending inductively over the various C € Jr . 
1) - 5) hold and we are done. 



CHAPTER 3 

The Geometric Surgery Groups 

Section 1: The fundamental theorems of surgery 

In this section we will prove three results which 

may be called the fundamental theorems of surgery. They 

constitute all the geometry needed to define surgery 

groups and to prove these groups depend only on the proper 

1-type of the spaces in question. These results together 

with the s-cobordism theorem constitute the geometry nec- 

essary to give a classification of paracompact manifolds 

in a given proper homotopy class 2 la Wall [hl], Chapter 

10. 

Let denote either TOP, PL, or DIFF. If X is 

a locally finite, finite dimensional CW n-ad, and if v 

is a e-bundle over X , then %(X,v) is the space of 

cobordism classes of the following triples: a C manifold 

n-ad M, dim M = m ; a proper map of n-ads f: M + X; 

a stable bundle map F: vM -+ v , where vM is the normal 

bundle of M and F covers f . Such a triple is called 
a normal map, and the cobordisms are called normal cobor- 

disms. 

Theorem 1: Given a %(x,v), there is a represen- --- 
tative (M,f,F) of a with f properly [f]-connected 

if X .is a space. ([ 1)  = greatest integer.) 

For a pair (X,~X) , we have a representative 



( (M,~M) ,f ,F) with f: M -+ X properly [$]-connected; 

m-1 f: a M  -+ ax properly [T]-connected; and the pair map 

f: (M,aM) .+ (X,aX) properly - [$I -connected. If a X  5 X 

is properly 0-connected, the map of pairs may be made 

m+l properly homologically [?]-connected provided m 3 . 
Proof: The proof follows Wall [40] , Theorem 1.4. 

(See the remark following his proof. ) Wa first remark 

that his Lemma 1.1 is equally valid in our case. 

Lemma 1: Suppose M and X locally compact, finite 

dimensional CW complexes, $ : M -+ X a map. Then we can 

attach cells of dimension ( k to M so that the result- 

ing complex is locally finite and so that the map is pro- 

perly k-connected. 

Proof: We may assume $ cellular by the cellular 

approximtion theorem. Then the mapping cylinder of $ 

is n locally compact, finite dimensional complex, and 

k (b$,,M) is a CW pair. Set MI = I U M . Note then that 4f 
MI is obtained from M by adding cells of dimension ( k 

and that the M' -+ is properly k-connected. Q.E,D. 

Now given a representative (N,g,G) for a , attach 
handles of dimension ( k to N to get $ : W --+ X with 

aW = N U M , $IN = g , and with $ covered by a bundle 

map which is G over N , and $ is properly k-connected. 

The argument that we can do this is the same as for the 

compact case. Wall [41] Theorem 1.1 generalizes immedi- 

ately to 



Lemma 2: Given o E %(x,v) with any representa- 

tive (M,f ,F) , any element of A(f: rk) determines a 

proper regular homotopy class-of immersions of a disjoint 

collection of sk x D m-k into M for k 5 m-2 = dim M-2, 

Proof: Precisely as in Wall, Theorem 1.1, we get 

a stable trivialization of the tangent bundle of M over 
k 

each sphere sk in our collection. Given any sphere S , 
we see in fact that there is an open submanifold U 5 M 

such that we get a trivialization of the tangent bundle 

of U which agrees with the one for zM . 1n fact u = f-I 

k (the disc bounding f(S 1 )  will do (we have momentarily 

confused sk with its image in M). Notice that we can 

pick such a collection of U 1 s  to be locally finite. Now 

apply Hirsch [lh], Haefliger [12], or Lees [19] to immerse 

each sk in its U with trivial normal bundle. This is 

a proper homotopy, so each a determines a proper map 

which immerses each sphere. 

It is not hard to show any two such immersions which 

are properly homotopic are regularly properly homotopic. 

Q.E.D. 

If there is an embedding in the proper regular homotopy 

class of a , we can attach a collection of handles by a 

and extend our map and bundle map over resulting trace of 

the surgeries. Notice that in an embedding, all the spheres 

have disjoint images, so we can certainly do the surgery. 

The map can be extended properly by construction, an? one 



shows the  bundle map extends p r e c i s e l y  a s  ' i n  the  compact 

case  (Wall [41] Theorem 1 .1) .  

Lemma 3: Given a E % ( X , V )  wi th  any r ep resen ta -  

t i v e  ( ~ , f  ,F) , we can do su rge ry  on any element 

a c: A(f:rk)  f o r  m > 2k . 
Proof: General p o s i t i o n  s u p p l i e s  us wi th  a n  embed- 

ding.  Q.E.D. 

We now r e t u r n  t o  the  proof of Theorem 1. By our 

lemmas, we s e e  t h a t  i f  m > 2k , we can g e t  W a s  

adve r t i zed .  Now W i s  obtained from M by adding 

handles  of dimension 2 (m+l)-k > k+l  , s o  M 5 W i s  

p rope r ly  k-connected, Hence the  map M -t X i s  p rope r ly  

k-connected. 

I n  the  p a i r s  case ,  given a r e p r e s e n t a t i v e ,  we f i r s t  

f i x  up the  boundary a s  above. Then we can a t t a c h  handles 

away from the  boundary t o  g e t  the  abso lu te  map f i x e d  up. 

The long exac t  homotopy sequence shows that the  p a i r  

m map i s  proper ly  [-i.]-connected. If m i s  even, w e  a r e  

done. The case  f o r  m = 2k+l fol lows Wall [41] Theorem 

1.4. 

We may assume t h a t  we have f :  (M,aM) + (X,aX) con- 

nected up t o  t h e  middle dimension on each p iece .  Let E 

be t h e  d i s j o i n t  union of t h e  ( k + l ) - c e l l s  of Mf-M . Then 

we have a  proper may aE -t Mf . Since a E  i s  k-dimen- 

s i o n a l ,  and s i n c e  (Mf,M) i s  p rope r ly  k-connected, t h e r e  i s  

a  proper homotopy of t h e  a t t a c h i n g  maps i n t o  M . 



aE = U sk so embed these spheres in M with trivial 
P p '  

normal bundle by Lemmas 2 and 3. Join each sphere to aN 

by a locally finite collection of tubes, one for each sphere 

0 (Since Hend (X,aX) = 0 by hypothesis, and since M -+ X 

is properly 1-connected (at least), and since aM -+ aX 
0 

is properly 0-connected, Hend(M,aM) = 0 so we can do thiso 

Note in fact that we need only disturb aM in a (pre- 

assigned) neighborhood of a set of base points.) By 

general position wa may assume all these tubes disjoint 

(m 2 3). Hence we get framed embeddings of a collection 

of disjoint D ~ ~ S  . We may assume (by adding trivial discs 
if necessary) t b t  the centers of our discs form a set of 

base points for M . 
We claim that if we do these relative surgeries we 

will have killed Kk (M,aM) without affecting our other 

conditions. Our proof of this claim is the same as Wall's. 

Let H denote the union of the handles, No the constructed 

manifold, fo: (No,aNo) + (X,aX) the resulting map. Note 

that (No,aNo) -+ (M, H U aNo) is a proper excision map. 

We can pick a set of base points for aM away from alY II B. 

As usual we can pick them so that they are a set of base 

points for f : aM -+ a X  . They are then also seen to be a 

set of base points for M, No, aN,, and H U aNo . With 
these base points and the above excision map we get an 

(f : - ) +  exact sequence Ak(H U aNo,aM:M: - )  -+ Ak+l(f: - )  -+ Ak+l 

(H U aNo,aM:M:-) . 



Clearly the lower relative proper homotopy groups 

of fo vanish. Notice (H, H fl aM) -+ (H U aNo,aM) is 

also a proper excision .nap. Since (H, H f l  aM) is a 

collection of copies of (Dk Dk+l, Sk-l Dk+l) 
9 

A,(H,H n 3M) is 0 except in dimension k . If we pick 

base points in H , A,(H U aNo,aM:-) = 0 also except in 

dimension k(-here is sny covering functor). Hence 

Ak-l(H U &No, aM:M:-) = 0 . 
Let g : M -+ X denote f' on M to distinguish it from 

f on (M,aM) . The collection of elements above generates 

A(g: rk+l) Clearly the composite A(~:T~+~) + + 

Ak+l(f:-) -$ Ak+l(fo:-) is the zero nap. But by Hurewicz, 

the first map is an isomorphism, and the second map is 

onto since aM -+ 3X is properly k-connected. Hence 

Ak+l(f: - )  -+ Ak+l(fo: - )  is ths zero map. 

NOW the last two paragraphs and our exact sequence 

show Ak+l(fo) = 0 as claimed. 0 

Remarks: Note throughout the proof that should 

ax = alX U a2X and aM = alM U a2M , and if a2M -+ a2X 

is already properly r-connected, then we need attach no 

cells of dimension less than r to a2M in our construc- 

0 tion (provided Hend(X,alX) = 0 , otherwise to get this 
part of the result we must attach some k-cells in a2M). 

In particular, if a2M -+ a2X is a proper homotopy equi- 

valence, we can do our construction away from a2M (except 

possibly for the last step). 



Theorem 2: Let f: (M,~M) + (X,aX) be a degree 1 

normal map; i.e. a bundle over X and a bundle map over 

f are understood. Let (X, ax) be a Poincare duality 

pair of formal dimension at least 6. Suppose aX X 

is a proper 1-equivalenoe, Then f is normally cobordant 

to g: (N,~N) + (X,aX) with g a proper homotopy equi- 

valence, The torsion of g: N + X may have any pre- 

assigned value. The torsions of g: a N  + aX and of g 

as a map of pairs is then determinedo 

Proof: The proof of the theorem divides into two casas. 

Case 1: dim(X) = 2k . 
By Theorem 1, we can do surgery on f to make th? 

map f: M -f X k-connected, and to make the map af: aM-+ aX 

(k-1)-connected (properly connected actually, but we shall 

be sloppy), Since k 2 3 , f, af , and aM 5 M are all 

(proper) 1-equivalences. 

Now subdivide (M,aM) until the chain map 

C*(M,aM) +c,(x,ax) is onto. c,(x,ax) is c,(x,~x:A,F) 

for a collection ~f paths A and a lift functor F . The 

tree for X should come from a tree for aM , which we 
can clearly assume. C,(M, aM) is defined in the same 

way only with lift functor f - l ~  . Let ~ , ( f )  be the 

kerns1 complex. 

Then Hr (D*(f)) = 0 for r < k and H'(D*(~)) = 0 

for r > k . Now Theorem 1.5.5 shows H~(D,(~)) is an 

s-free tree module. Doing surgery on trivial (k-1)-spheres 

in aM replaces M by its boundary connected sum 



with a collection of (sk x Dk)'s Hence we may as wall 

assume Hk(D,(f 1)  is free and based. Let [ei] be a 

preferred basis for this module. 

By the Namioka Theorem, A(f: k+l) + H (D (f ) )  is an k * 
isomorphism. Thus the ei determine classes in A(~:T~+~). 

These in turn determin3 a proper regular homotopy class of 

immersions ei: (CX x D ~ ,  3~~ x D ~ )  + (M , aM) . We claim the 

ei are properly regularly hmotopic to disjoint embeddings, 

It is clearly enough to show this for the restricted im- 

mersions ei: ( D ~ , ~ D ~ )  + (M,aM) , for then we just use 
- 

small neighborhoods of the ei to get the ei . 
- 

The proof for tha ei proceeds as follows. Let C. 
J 

be an increasing sequance of compact subsets of M with 

u Cj = M . Let C be such that any element of 
.I j - 
rl(M - Cj) , when pushed into nl(M - C. ) , lies in J -1 
the image of ?(aM I l  (M - Cij)) (compatible base 

points are understood). We can d3 this as aM 5 M is a 

proper 1-equivalence. 
- 

We now proceed. Only a finite number of the ei d3 

not lie in M -C2 . Embed these disjointly by tha standard 

piping argument. 
- 

Again, only finitely many ei which do lie in M-C2 

do not lie in M-C3 . Put these in general position. 

The intersections and self-intersections can be piped into 
- 

aM fl (M.-cl) without disturbing the ei we embedded in 

the previous step. This follows from Milnor [24], Theorem 

6.6, where we see that, to do the Whitney 'trick, we need 



only move one of the protagonists. Hence'we can always 
- 

leave the ei from previous steps fixed. 

Continuing in this fashion, we can always embed an 
- 
e which lies in M - C  i j ' but not in M-Cj,l , in 

M-Cj - 1 . This gives us a proper regular homotopy and 

establishes our claim. 

We next perform handle subtraction. Let N be ob- 

tained from M by deleting the interiors of the images 

of the ei . Let U be the union of the images of the 

e i o  Let aN = N r l  aM . 
By our construction, there is a chain map 

C (U U aM, aM) + ~,(f) such that * 

chain homotopy commutes. C, (U U aM,aM) has homology 

only in dimension k where it is Hk(Dk(D,(f)) . The 

map C,(U U aM, aM) + D,(f) gives this isomorphism in 

homology by construction. 

Hence C,(M,U U aM) -+ C,(X,aX) is a chain equivalence. 

Now (N,aN) 5 (M, U U aM) is a proper excision map, so 

g: (N,~N) + (x,~x) is a proper homotopy equivalence from 
N to X . It induces proper homology isomorphisms on 

aN + ax and is thus a proper equivalence there since 

ax c_ X is 1-connected. Hence g is a proper homotopy 

equivalence of pairs. By adding an h-cobordism to aN , 



we can achieve any torsion we like for the map g: N -+ X. 

To compute the other two torsions is now a standard exer- 

cise. We record merely the result. Let g': (N,aN)'(X,aX) . 
and ag: aN + aX be the other two maps. 

~ ( g ' )  = (-lldim Xz(g)t and (ag) =T(~) - (-l)dimX~(g)t * 

Case 2: dim (X) = 2k+1 . 
This time, Theorem 1 permits us to suppose that f 

induces k-connected maps M -+ X and aM -+ a X  , and more- 

over we may assume Kk(M,aM) = 0 . Hence we get a short 
exact sequence of the modules 0 -+ Kk+l (M,aM) -+ Kk(aM) -+ 

Kk(M) -+ 0 . (K,(M) is the tree of modules which is the 

kernel of the map H,(c(M:A,~-l~)) -+H,(c(X:A1,F)) . The 

other K-groups are defined similarly).) Theorem 1.5.5 

now tells us each of these modules is s-free. As before 

we can perform surgery on trivial (k+l)-spheres in aM to 

convert all of the above 

can get a locally finite 

- ei: (D~+',~D~+') -+ (M,aM 

Kk+l(M,aM) * 

modules to free modules. Again we 

collection of immersions 

) representing a basis of 

- 
We can no longer modify the ei by a proper regular 

homotopy to get disjoint embeddings (we could do this if 

aM 5 M were properly 2-connected) but by the same sort 
- 

of argument as in the first part, we can modify the ei 

until eil a~ k+ 1 is a collection of disjoint embeddings. 

The rest of the proof is the same as ldall's. We 

have represented a basis of Kk+l(M,aM) by framed, 



disjoint embeddings Sk -+ aM . Attach corresponding 
(k+l)-handles to M , thus performing surgery. Let 

U be the union 3f the added handles, and let (N,aN) 

be the new pair: Since our spheres are null homotopic 

in M , M is just replaced (up to proper hoaotopy type) 

by M with (k+l)-spheres wedged on in a locally finite 

fashion. Hence Kk(~) is free, with a basis given by 

these spheres. 

Dually, the exact sequsnce of the triple 

aN 5 aN U U 5 N , reduces, using excision, to 

The map Kk+l(M,aM) -+ Kk(U,U f l  aN:N) is seen to be zero 

since it factors as Kk+l(M,aM) 3 Kk(aM) + Kk(U:M) + 

Kk(U,U f l  3N:M), and Kk(U:M) is zero. (Note that in this 

composition, Kk(aM) should be a subspace group, but suzh 

a group is isomsrphic to the absolute group in our case.) 

Since Kk(U,U fl aN:M) is free, so is Kk(N,aN) and 

Kk+l(N,aN) Kk+l(M,aM) . 
The attached handles correspond to a basis of 

Kk+l(M,aM), so the map Kk+l(N) + Kk+l(M,aM) is an epi- 

morphism, since Kk+l(~) is free and based on a set of 

generators for Kk+l(M,aM) and the map takes each basis 

element to the corresponding generator. But Kk+l(M,aM) 

is free on these generators, so-this map is an isomorphismo 

Hence Kk+l(~) + Kk+l(~,a~) is an isomorphism. 

Now, by ~oincard duality, K~(N,~N) -+ $(N) is an 



isomorphism. The natural maps K~(N,BN) ; (K~(N,BN) ) *  

and K~(N) -* (K~(N) ) * are isomorphisms by Corollary 

1.5.4.2 since all the modules are free. Hence the map 

Kk(~) + Kk(N,aN) is an isomorphism. Thus Kk(aN) = 0, 

so f restricted to aN is a proper homotopy equivalence. 

Next choose a basis for Kk(N) and perform surgery 

on it. Write P for the cobordisa so obtained of N to 

N t  say . Consider the induced map of degree 1 and ~oincarg 

triads (P: N U  (aNxI) , N') -+ (XxI: X x O  U aXxI, Xxl). 

We will identify N U (aN x I) with N . In the exact 

sequence 

o-+K~+~(N) -+K~+~(P) +K~+~(P,N) r K~(N) -K~(P) o 

the map d is by construction an isomorphism. Hence 

Kk(p) = 0 and Kk+l(N) -+ Kktl(P) is an isomorphism. 

The dual of d is Kk+l(~,aN) -+ K~+~(P,N' ) , so it 

is an isomorphism (the map is the map induced by the 

inclusion). Now, since f on aN is a proper homotopy 

equivalence, Kk+l(N) -+ Kk+l(N,aN) is an isomorphism. 

Kk+l(N) --+ Kk+l(P) is an isomorphism, so Kk+l(P) + 

K~+~(P,N' is an isomorphism. 

Thus in the sequence 

we have Kk+l (N1) =Kk(N1) = O ,  so N' + X  is a proper 

homotopy equivalence. aNt + a X  is the same as aX  + aX 

(i.e. we did nothing to aN as all our additions were 



i n  t h e  i n t e r i o r  of N) and t h e r e f o r e  i s  a proper homotopy 

equivalence.  Hence we have a n  equivalence of p a i r s .  The 

s ta tement  about t o r s i o n s  i s  ppoved the  same way a s  f o r  

Case 1. C] 

Remarks: Note t h a t  our proof i s  s t i l l  v a l i d  i n  the  

case a X  = alX U a3X provided a l M  -+ alX i s  a proper - 
homotopy equivalence (of p a i r s  i f  alX fi a2X # @) and 

a2X 5 X i s  a proper 1-equivalence ((X:a1X,a2X) should 

be a Poincare t r i a d ) .  The proof i s  word f o r  word the  same 

a f t e r  we note  t h a t  Ki(a2M) -+ Ki(aM) i s  always a n  i s o -  

morphism and t h a t  we may a t t a c h  a l l  our handles away from 

alM . By induc t ion ,  we can prove a s i m i l a r  theorem f o r  

n-ads, which i s  t h e  r e s u l t  we needed t o  prove Theorem 

202.13. 

Our approach t o  su rge ry  i s  t o  cons ider  t h e  surgery  

groups a s  bordism groups of surgery  maps. To make t h i s  

approach work wel l ,  one needs a theorem l i k e  Theorem 3 

below. 

D e f i n i t i o n :  Given a Poincare  d u a l i t y  n-ad X , a 

su rge ry  map i s  a map f :  M -+ X where M i s  a @-manifold 

n-ad, f i s  a degree 1 map of n-ads, and t h e r e  i s  a 

bundle v over X and a bundle map F: vM + v which 

covers f . 
Given a l o c a l l y  f i n i t e  CW n-ad K 

W1 E H' (K;Z~)  , we say  M-SXJ+K 
over ( K , W ~ )  provided g i s  a map of 

wi th  a c l a s s  

i s  a su rge ry  map 

* n-ads wi th  g wl 
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equal to the first Stiefel-Whitney class 05 X , and 
provided f is a surgery map. 

Two surgery maps over (K,wl) 

bordant (over (K,wl)) if there is 

F G W Y --+(KxI, wl) which is one 

on K x O  and the other on K x l  . 
Theorem 3: Let M~'x-&,K 

are said to be 

a surgery (n+l) -a3 

of the surgery maps 

be a surgery map over 

(K, wI) , a 3-ad. Suppose the formal dimension of X is 

at least 6. Then, if fl alM is a proper homotopy equi- 

valence, and if a2K 5 - K  is a proper 1-equivalence, we 
h can find another surgery map N -+ Z 4 K over (K,W~) 

with h a proper homotopy equivalence of 3-ads, and with 

i bordant over (K,wl) to g so that over alK x I ths 

bordism map is alK + alX crossed with I . 
Proof: If a2X 5 X were a proper 1-equivalence we 

could finish easily using Theorem 2. The proof then con- 

sists of modifying X and a2X to get this condition. 

The idea is to do surgery first on a2X (and then on X) 

to get a2X + a2K a proper 1-equivalence (similarly for 

X + K) and then show that we can cover these surgeries 

on alM (and M) . 
Look at the map g: a2X + a2K . By Theorem 2.3,2, 

a2X can be replaced by L U H , where H is a manifold 

and L satisfies D(n-3), where n is the formal dimension 

of X . This replacement does not alter the bordism 

class in which we are working. Let wl also denote the 



1 restriction of wl E H (K;ZZ) to a2K . Let v be 

the line bundle over a2K classified by wl . Let 

g: H -+ a2K denote the induced-map. 

Then sH €B g*v is trivial, for H has the homotopy 

type of a l-complex so the bundle is trivial iff its first 

Stiefel-Waitney class vanishes (and wl(sH @ g*v) = 0 by 

construction). Hence we can find a bundle map F: v + v  . H 
By Theorem 1, we can add 1 and 2 handles to H to 

get W with aW = H U HI U a H x I  and a map G: W + a2K 

with G(H = h and G I H I  a proper l-equivalence. Let 

Y = L x I  U W by gluing aH x I to L x I via the map 

aH -+ L crossed with I . (Y:L UaHH,LUdHH1 U L x I )  is 

a Poincare duality triad. This follows since (L,a9) is 

a Poincare duality pair and Y is (L,aH) x I glued to 

the manifold triad (W: H,aH x I ,HI ) along aH x I . 
(L,aH) X I  is a Poincare duality triad by Theorem 2.2.9, 

and we can glue by Theorem 2.1.3 and Theorem 2.2.7. 

Let Z = L UaH HI . We have a map of Y + K x I  given 

by L + K crossed with I on L x I  and by W -+ K x I  

on W . We claim the restriction Z -+ a2Kx1 is a proper 

l-equivalence. 

To this, note first that 3.3 5 HI is a push out. 

n l n l 
L 5 Z 

aH 5 L ,is properly l-connected by construction (see 

Theorem 2.3.2). It follows from a Mayer-Vietoris argument 
0 

that HI 5 Z induces isomorphisms on Hend and HO . 



Since a(aH:7rl) + a(L:7r1) is onto, it follows from 

a van-Kampen argument that a(H1:7rl) -+ A(Z:nl) is onto. 
.. 

Now consider H 1  5 Z -+ a3K . The composite is a 

proper 1-equivalence by construction. The first map 

is properly 1-connected, as we saw in the last paragraph. 

It then follows that Z + a2K is a proper 1-equivalence. 

It is easy to extend our bundle v over all of Y 

Wall [41] pages 89-90 shows how to cover our surgeries 

back in a2M . One changes f: a2M + a2X through a pro- 

per homotopy until it is transverse regular to all our 

core spheres in H 5 a2X . The inverse image of a core 
sphere back in a2M will be a collection of disjoint 

spheres, and Wall shows that, if we do surgery correctly 

on these spheres, then we can extend all our maps and 

bundles. Hence we get F: P + Y and a bundle map 

v + v , where v is the extended v over Y . 
P 

Thus our original problem M + X + K is normally 

cobordant over (K, wl) to a problem for which a2X + a2K 

is a proper 1-equivalence. We have not touched alM+alX , 
so we still have that this map is a proper homotopy equi- 

valence. In fact the part of aP over alM is just a 

produc to 

Now use Theorem 2.3.3 on X and proceed as above 

to get a problem for which X + K is a proper 1-equivalence. 

Note that we need never touch aX so alX -+ alK is still 

a proper homotopy equivalence and a2X + d2K is still a 

proper 1-equivalence. 0 



Section 2: Paracompact surgery-patterns of application. 

It has been noted by several people (see especially 

Quinn [29] or [30] that the theorems in section 1, the 

s-cobordism theorem, and transverse regularity are all 

the geometry one needs to develop a great deal of the 

theory of surgery. 

We define surgery groups as in Wall [bl] Chapter 9. 
1 

Let K be a locally compact CW n-ad, and let w e H (K;z~) 

be an orientation. Bn object of type n over (K,w) is 

a surgery map (see section 1) over snK for which, if 

M -+ X --tsnK is the surgery map. @: anM + anX is a 

proper homotopy equivalence of n-adso 

We write (@, f )  - 0 to denote the existence of a 

surgery map over (snK,w) such that an+l is (@,f); 

i .e. if W --* Z + snclsnK is the surgery map, 

a~+lW a ~ + l  Z -+ snK is our.origina1 problem; and such 

that an is a proper homotopy equivalence of (n+l)-ads. 

f - , provided (@,f) + - , f  - 0 , where 
+ denotes disjoint union, and - f )  denotes the 

same object but with the reverse orientation. Write 

h L (K,w) for the group of objects of type n and dimen- m 
sion m (i.e. m is the dimension of M) modulo the 

relation - . One checks - is an equivalence relation 

and that disjoint union makes these sets into abelian 

groups. 



If we require the torsions of all the homotopy 

equivalences in the above definitions to be 0 , 
we get groups L;(K,W) . If -c 5 b(K) is a subgroup 

closed under the involution induced by the orientation 

w , then we get groups L:(K,w) by requiring all tor- 

sions to lie in c(b(K) is Siebenmann's group of simple 

homotopy types; see Chapter 1, section 5, or [33]). 

Theorem 1: Let a € L;(K,W) , n + m  2 6 . Then if 

rp f M+X-+K is a representative of a with f a proper l-equi- 

valence, a = O  iff there is a normal cobordism W+Xxl with 

3-W -+ X x 0 our original map cp, and a+W+X x 1 a proper homotopy 

equivalence of n-ads with torsion lying in c . 
Proof: Standard from Theorem 1.2, by doing surgery 

on the boundary object. 0 
C C Theorem 2: + Lm(anK,w) -+ L;(~~K,W) +L,(K,w) + 

C L ~ - ~ ( ~ ~ K , w )  -+ * * *  is exact. 

Proof: A standard argument. 0 

Theorem 3: If f: K1+ K2 is a proper map of n-ads 
1 

we get an induced map L:(K~,~ W) + $ (K2,w) where 

f#(c) 5 c 1  , f#: b (K1) + 6(K2) . If f is a proper 1- 

equivalence, the induced map is an isomorphism for 

Proof: The induced map is easily defined by M + X -+ KI 
f goes to M + X * K1 -+K2 . For the last statement, if 

m 2 5 this is just Theorem 1.3 if K1 and K2 are 1-ads. 



If Kl and K2 are n-ads, an induction argument 

shows the result for 1-1 + m 2 6 . 
The result is actually true in all dimensions 

, 

and a proof can be given following Quinn's proof in 

the compact case (see [ 2 9 ]  or [ 3 O ]  ). We will not carry 

it out here. 0 
9 Theorem 4: Let K be a 1-ad, and let bfm---tX&K 

be a surgery map over (K,w) with rp a proper homotopy equi- 

valence and with f a proper 1-equivalence. Suppose given 
C 

a E Lm+l(K,w) , m 2 5 , and suppose the torsion of rp lies 

in c . Then there is an ib ject of type 1 ,- W -+ X x I + K ,  

over (K,w) with aW = M U N, N - + X x l  a proper homotopy 

equivalence whose torsion also lies in c , and such that 

the surgery obstruction for this problem is a 

Proof: The proof is basically Quinn's (see [ 2 9 ] ) .  

Given a , there is always an object of type 1, P-+Z'Ky 
whose obstruction is a .  (We may always assume aP 

and aZ are non-empty by removing a disc from Z and its 

inverse image from P , which we can modify to be a disc.) 
M x I  -+ X X I  + K is also an object of type 1 over K . 

Take the boundary connected sum of Z and X x I  by 

extending aZ # X X O  (we may always assume X and Z 

are in normal form so we may take this sun in their discs), 

Similarly we may extend aP # M x O  . We get a new object 

of type 1, P ffPlxO M x I  + Z #XxO X X I  -+K . 
By the proof of Theorem 1.3, we may do surgery on 



Z #XxO X r I  until the map of it to K is a proper 

1-equivalence, and we may cover this by a normal cobordisn 

of P #MxO M x I . In doing tGis, we need never touch 
M x l  or X x l  . Let P '  + Z '  + K  denote this new object 

of type 1. Note that it still has surgery obstruction 

( - a )  

- Now using Theorem 1.2, we can do surgery on (21: P'-+Zt 

where Z 1  is considered to be a triad (z '  ;X x 1, any other 

boundary components ) . restricted to the other boundary 

components is a proper homotopy equivalence, so we may do 

surgery leaving them fixed ( X x l s  Z' is a proper 1- 

equivalence). Let W be the normal cobordism obtained 

over M x l  . Then W -+ X x l x I  is a surgery map, 

a - M -+ X x l x O  is our old map, and a+M -+ X x l x l  is a 

proper homotopy equivalence. We can make all our torsions 

lie in c , and then the surgery obstruction for 
W + X x I  + K  must be a  . 0 

Definition: Let d C ( X )  , for X a ~oincir: duality 

space of dimension n, be the set of all simple, degree 1, 

homotopy equivalences % : ITn -+ X (N a C -manifold) 

modulo the relation (21 " $ iff there is a c-homeomorphism 

h such that properly homotopy 

M 

commutes. 

K similar definition holds for X a Poincarg n-ad. 



Theorem 5: There is an exact structure sequence 

S 
-+ [ C  X, F/G] -+ Lm+l(X,w) -+ 2- (x) -+ [X,F/ &] L~(x,w), 

< 

where w is the first Stiefel-Whitney class of the Poinzare 

duality space X with the dimension of X 2 5 . We also 

insist that the Spivak normal fibration 3f X lift to a 

C- bundle. By exactness we mean the following. First of 

all, dG(X) may be empty, but in any case, 0-'(0) is 

the image of dC(X) . If d&(X) is not empty, then 
S L,+l(X,w) acts on it, and two elements of J&x) which 

agree in [x,F/C] differ by an element of this action. 

The sequence continues infinitely to the left. (CX is 

the ordinary suspension of X .) 

Proof: See Wall [hl], Chapter 10. 0 

Theorem 6: Let - be the involution defined on C(K) 

in Chapter 1, section 5. Define A,(K,w) = H~(Z~,C (K)), 

where C(K) is made into a Z2-module by the involution - . 
If K is an n-ad, then -+ Hm+,(K,w) + G(K,w) + 

h 
L,(K,w) -+ A~(K,W) + " *  is exact for m +  n 2 6. 

Proof: Th2 map L~ + Lh is just the forgetful map. 

The map L~ + A just takes the torsion of the part of 

the boundary that was a homotopy equivalence and maps it 

into A (if the homotopy equivalence is over more than 

one component, sun the torsions). The map B + L' takes 

a proper homotopy equivalence fl -+ X whose torsion hits 

an element in , and maps it to the obstruction to 
surgering the map to a simple homotopy eqaivalence. See 



Shaneson [31] for the details of proving these maps 

well-defined and the sequence exact. 0 
Corollary 6.1: If G(K ,-W) = H~(Z~,C) , 

is exact for m + n 2 6 .  

We now produce our major computation.. 

Theorem 7:l Let K have a finite number of stable - 

ends, . . E  , and let T~ of each end and r1(L) be n 

finitely generated, finitely presented. Then K2 has the 
I1 

proper 2-type of a finite (n+l)-ad L U ( U aiL x [O,W) ) , 
i=l 

and L;(K,w) = L;(L,W) , where, if K is an $-ad, L addition- 
ally is an (bn)-ad. c denotes simple homotopy equivalence . . 

over L , with any permissible torsion over each aiL ; 

i.e. we have an exact sequence 

Proof: The map L;(L,W) -+ L;(K,W) is given by 

M -+ X + L goes to 

Siebenmann7s thesis [32] shows this map is a monomor- 

phism. ,To shgw that the map is onto we can assume 

l ~ o t e  added in proof: Compare Maunary, The.open surgery 
obstruction in odd dimensions. Notices Amer, Math. Soc. 
17 (number 5) Px848. 



W -% Z -+ K is a surgery map and that Z is a mani- 

fold using Theorem 4 (this representation theorem is 

also needed to show injectivity), By Siebenmann [ 3 2 ] ,  we 
n 

can assume Z is collared; i.e. Z = N U ( U aiNx[O,m)). 
i=l 

By making @ transverse regular to the aiN, we get a 

problem over L , say V + N + L . We claim 
n n 

V U ( U aiV x [O,m)) + N U ( U 3.N x [O,m)) has the same 
i =l i=l 1 

surgery obstruction as W +  Z . But this is seen by 

actually constructing the normal cobordism using 

Siebenmann's concept of a 1-neighborhood and some compact 

surgery. 0 

Corollary 7.1: We can improve 8 + m 2 7 to 

4 + m 2 6 .  

Proof: Using recent work of Cappell-Shaneson [5], 

one can get a modified version of Siebenmann's main 

theorem. One can not collar a 5-manifold, but one can 
at least get an increasing sequence of cobordisms whose 

2 2 ends are aiN # S x S  # # s2 xs2 . This is 

sufficient. 0 

Actually, one would hope that these surgery groups 

would be periodic, just as the compact ones are. This 

is actually ths case, but the only proof I know involves 

describing surgery in terms of algebra. This can be done, 

but the result is long and will be omitted. 

We briefly consider splitting theorems. The two- 

sided codimension 1 splitting theorem holds; i.e. if W 



has the  simple homotopy type of Z = (X,aX) U (Y,aX) 

with ax 5 X a proper 1-equivalence, then the map 

W + Z can be s p l i t .  The proqf i s  the  same a s  f o r  the  

compact case. Hence we a l s o  ge t  codimension grea te r  

than o r  equal t o  3 s p l i t t i n g  theorems f o r  proper sub- 

manifolds. I n  f a c t ,  most of Wall [41] Chapter 11 goes 

over with minor modifications, 

We a r e  unable t o  obtain a  one-sided s p l i t t i n g  

theorem i n  general ,  due t o  a  l ack  of a F a r r e l l  f ibe r ing  

theorem i n  the non-compact case. 

We a l s o  note i n  passing t h a t  one could define sur-  

gery spaces a s  i n  [29] and [30]. W= then ge t  the  same 

basic geometric construct ions;  e.g. assembly maps and 

pullback maps. We have nothing' new t o  add t o  the theory, 

so we leave the  reader the  exercise of r e s t a t i n g  [ 2 9 ]  so 

t h a t  i t  i s  va l id  fo r  paracompact surgery spaces. 
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