2-LOCAL COBORDISM THEORIES

LAURENCE R. TAYLOR

1. Introduction

We give new proofs of the principal results of Thom [11], Wall [12], and Browder-Liulevicius-Peterson [3] on the structure of various cobordism theories at the prime 2. We improve the principal results of Browder-Liulevicius-Peterson by removing their hypothesis that certain cohomology groups are finite. The proofs use classical facts about $H_*(BO)$, $H_*(BSO)$ and the Steenrod algebra, together with an idea of J. Cohen [6]. Cohen's idea was to observe that for an homology theory E and certain spectra X, $E_*(X)$ may be quite easy to calculate. We can then use the Atiyah-Hirzebruch spectral sequence to try to calculate $E_*(pt.)$, which appears in E^2 of the AHss.

2. Unoriented cobordism

We need the following three facts.

1. $H_*(MO)$ is a polynomial algebra with one generator in each positive dimension. This follows from the Thom isomorphism theorem and Borel's calculation of $H^*(BO)$ [2]. All homology and cohomology groups without indicated coefficients are with Z_2 coefficients.

2. $H_*(MO) = MO_*(HZ_2)$ since both are the homotopy of $MO \wedge HZ_2$. We use Adams's notation for spectra [1].

3.
$$H_*(HZ_2) = Z_2[\xi_1, \xi_2, ...]$$
 where dim $\xi_k = 2^k - 1$ [9].

Consider the Atiyah-Hirzebruch spectral sequence for $MO_*(HZ_2)$.

$$E^2_{p,q} = MO_q \otimes H_p(HZ_2)$$

and the edge homomorphism $MO_p(HZ_2) \rightarrow H_p(HZ_2)$ is the map

$$MO \wedge HZ_2 \xrightarrow{u \wedge id} HZ_2 \wedge HZ_2$$

where $u: MO \to HZ_2$ is the Thom class in $H^{\circ}(MO)$, [1]. The map $u \wedge id$ is onto in homotopy which is verified by using the lemma below to show that $id \wedge u$ is onto in homotopy.

The AHss is multiplicative since both MO and HZ_2 are ring spectra. Since all the differentials vanish on $E_{0,q}^r$ and on $E_{p,0}^r$, the spectral sequence collapses.

Since $H_*(HZ_2)$ is polynomial, the map $MO_*(HZ_2) \rightarrow H_*(HZ_2)$ is split as a ring map. Hence there is a map of rings extending the splitting

$$\psi: MO_* \otimes H_*(HZ_2) \to MO_*(HZ_2).$$

The ring $MO_*(HZ_2)$ is filtered to produce the AHss and $MO_{*-p} \otimes H_p(HZ_2)$ lands in the *p*th filtration under ψ . With the obvious filtration on the left, ψ induces an isomorphism of associated grades and is therefore an isomorphism. We have proved

Received 4 February, 1976; revised 20 May, 1976.

Partially supported by NSF Grant GP-34143

[[]J. LONDON MATH. SOC. (2), 14 (1976), 303-308]

THEOREM 1. MO_* is a polynomial algebra with one generator in each dimension not equal to $2^k - 1$.

 $MO_* \rightarrow H_*(MO)$ is monic since it is the other edge homomorphism in the AHss. $H_*(MO)$ is a \mathbb{Z}_2 -vector space, so this map is split monic. It factors through

$$MO_* \rightarrow H_*(MO; Z)$$

which must also be split monic.

THEOREM 2. MO is a product of HZ_2 's.

Proof. Homotopy is a summand of integral homology if and only if all the k-invariants are trivial, [8; Corollary 1.3].

To state our lemma, consider sequences $I = (i_1, ..., i_r, 0, ...)$ such that

$$i_1 \ge \ldots \ge i_r > 0.$$

We can order such sequences by $(i_1, ...) > (j_1, ...)$ if and only if $i_1 > j_1$; or $i_1 = j_1$ and $i_2 > j_2$; or $i_1 = j_1$, $i_2 = j_2$ and $i_3 > j_3$; etc. To $I = (i_1, ..., i_r, 0, ...)$ we can associate the monomial $w_I = w_{i_1} ... w_{i_r}$ in $H^*(BO)$ and the element

$$Sq^{I} = Sq^{i_{1}} \dots Sq^{i_{r}}$$

in the Steenrod algebra. We say w_I is bigger than w_J if and only if I > J. Let $U \in H^{\circ}(MO)$ be the Thom class and $\Phi : H^{*}(MO) \to H^{*}(BO)$ the Thom isomorphism.

LEMMA. If I is admissible (i.e. if $i_k > 2i_{k+1}$, all k)

 $\Phi(Sq^{I} U) = w_{I} + smaller monomials.$

Proof. The proof is an easy induction on r using admissibility, the Cartan formula, and the Wu relations [7]. It is done in [11].

The lemma proves $H^*(HZ_2) \to H^*(MO)$ monic since $H^*(HZ_2)$ has a vector space basis Sq^I , I admissible [5]. We used the dual statement.

3. Oriented cobordism

 $H_*(MSO)$ is a polynomial algebra with one generator in each dimension greater than 1, [2].

 $H_*(HZ) \cong Z_2[x, y_2, y_3, ...]$ where dim x = 2, dim $y_k = 2^k - 1$. To see this, recall that $H_*(HZ)$ is the kernel of the derivation, d, on $H_*(HZ_2)$ defined by $d(\xi_k) = \xi_{k-1}^2$. This kernel is generated as a polynomial algebra by b_1^2 and b_k , k > 1, where b_k is the conjugate of ξ_k .

 $H_*(MSO) \to H_*(HZ)$ is onto where $MSO \to HZ$ is the Thom class. This follows from the lemma as before.

 $MSOZ_2$ is the ring spectrum for the cobordism theory of manifolds whose w_1 is

the mod 2 reduction of an integral class. We can use the AHss to calculate

$$(MSOZ_2)_*(HZ) = H_*(MSOZ_2;Z) = H_*(MSO) = \pi_*(MSO \wedge HZ \wedge M_2)$$

where M_2 is the Moore spectrum of type Z_2 . Mimicking Section 2, we have

THEOREM 3. $(MSOZ_2)_*$ is a polynomial algebra over Z_2 with one generator in each dimension not equal to $2^k - 1$ or to 2.

 $H_*(MSO, Z)$ has no elements of order 4, [2]. $\tilde{H}_*(HZ; Z_4)$ has no elements of order 4, [5]. This can be seen directly if we observe that the Bockstein, β , satisfies $\beta(b_k) = b_{k-1}^2$. E^2 of the Bockstein spectral sequence is generated by the b_k^2 , so the higher Bocksteins vanish for dimensional reasons.

Let $E'_{p,q}$ be the E' term of the AHss for $(MSOZ_4)_*$ (HZ). Let $F'_{p,q}$ be the E' term of the AHss for $(MSOZ_2)_*$ (HZ).

If G is an abelian group, define $\rho(G) = \dim_{Z_2} G \otimes Z_2$. One can see that

$$\rho(E^{2}_{p, q}) = \rho(F^{2}_{p, q}),$$

which in turn equals $\rho(F_{p,q}^{\infty})$ since $E^2 = E^{\infty}$ for $(MSOZ_2)_*$ (HZ), as the reader who has actually carried out the proof of Theorem 3 has seen.

$$\rho(H_i(MSO)) = \sum_{k=0}^{i} \rho(F^{\infty}_{k, i-k})$$

since all the extensions are split. $\rho(E_{p,q}^{\infty}) \leq \rho(E_{p,q}^{2})$ and

$$\rho(H_i(MSO;Z_4)) \leq \sum_{k=0}^i \rho(E^{\infty}_{k,d-k}).$$

Since $\rho(H_i(MSO)) = \rho(H_i(MSO; Z_4))$, $\rho(E_{p,q}^2) = \rho(E_{p,q}^{\infty})$. Since $E_{p,q}^2$ has no elements of order 4 for p > 0, there can be no differentials. Hence

$$(MSOZ_4)_* \rightarrow H_*(MSO;Z_4)$$

is monic and therefore, by the universal coefficient theorem [1; Prop. 6.6, p. 200], so is $MSO_* \otimes Z_4$. But this implies that MSO_* has no elements of order 4 and, if $Z_{(2)}$ denotes rationals with odd denominators, $(MSOZ_{(2)})_*$ is a direct summand of $H_*(MSOZ_{(2)}; Z)$. Hence we have

THEOREM 4. All the k-invariants of $MSOZ_{(2)}$ are trivial.

4. Super cobordism theories

Definition. A graded ring R_* is an l-r Hopf algebra if R_* is a left and a right coalgebra comodule over the dual of the Steenrod algebra. We require that the dual algebra, which is both a left and a right module over the Steenrod algebra, be a right-left algebra as in [4; page 50]. Moreover, the coalgebra structure should make R_* into a cocommutative Hopf algebra.

 $H_*(MO)$ and $M_*(MSO)$ are two examples.

A super O theory is a connective ring spectrum MH, whose homology is an l-rHopf algebra, and a map of ring spectra $MO \rightarrow MH$ which induces an l-r Hopf algebra map on homology. The only examples we know come from Thom spectra associated to various "bundle" theories. We have spaces BH(n) and maps $g_n: BO(n) \to BH(n)$ and $h_n: BH(n) \to BF_{(2)}(n)$, which is the classifying space for *n*-dimensional, 2-local, spherical fibrations with cross section. $h_n g_n$ should be the usual map. The h_n give Thom spaces MH(n) and Thom isomorphisms with Z_2 coefficients. We have a stabilization map $BH(n) \to BH(n+1)$. The two obvious squares involving BO(n) and $BF_{(2)}(n)$ should commute up to weak homotopy. We further postulate a Whitney sum $BH(n) \times BH(m) \to BH(n+m)$ so that the obvious squares involving the BO(n) or the $BF_{(2)}(n)$ commute up to weak homotopy. Finally we require that (1) should commute up to weak homotopy.

(1) guarantees that the MH(n) fit together to form a ring spectrum, MH, and that the BH(n) fit together to form a weak H-space, BH. We assume that BH is weakly homotopy associative. $H_*(MH) \cong H_*(BH)$ as algebras. $H_*(BH)$ is a Hopf algebra and a left comodule over the dual of the Steenrod algebra, so $H_*(MH)$ is also. The usual left comodule structure of $H_*(MH)$ becomes a right one by using the conjugation in the dual of the Steenrod algebra. $H^*(MH)$ is a right-left algebra by Theorem 8.5 of [4] and the proof of the principal result of [7]. Hence $H_*(MH)$ is an 1-r Hopf algebra.

Since $h_n g_n$ is the standard map, we get a map of ring spectra $MO \rightarrow MH$ which is easily seen to induce an l-r Hopf algebra map. Thus MH is a super O theory.

For any super O theory we have

THEOREM 5. MH is a product of HZ_2 's. There exists a Z_2 -vector space C_* and isomorphisms $MH_* \to MO_* \otimes C_*$ and $H_*(MH) \to H_*(MO) \otimes C_*$. If the image of $H_*(MO)$ in $H_*(MH)$ commutes with all of $H_*(MH)$, then C_* becomes a ring and the above maps are ring isomorphisms.

Notice that we have required no finiteness hypothesis on $H_*(MH)$ and so we can apply Theorem 5 to some of the "bundle" theories of Quinn [10]. If BH is weakly homotopy commutative, $H_*(MH)$ is commutative.

Proof. Brown and Peterson [4] produce a map $H^*(MO) \to H^*(MH)$ which can be de-dualed to get a map $r: H_*(MH) \to H_*(MO)$. We can do this since $H_*(MO)$ is finite in each dimension. The needed result from linear algebra is that, if

 $T: \operatorname{Hom}_{F}(F^{n}, F) \to V^{*}$

is a linear map, then there exists a linear map $S: V \to F^n$ with $T = S^*$. S is defined by the equation $\pi_i \circ S = T(\pi_i)$, where $\pi_i: F^n \to S$ is the *i*th co-ordinate projection. r is a map of coalgebras and left and right comodules. To see that it is a ring map, note that both ways of going from $H_*(MH) \otimes H_*(MH)$ to $H_*(MO)$ are maps of coalgebras and left and right comodules. Since there is only one such map from $H_*(MH) \otimes H_*(MH) \to H_*(MO)$ [4; Corollary 8.6], r is a ring map. This uniqueness also shows that r splits $H_*(MO) \to H_*(MH)$.

Just as in part 2, $MH_* \otimes H_*(HZ_2) \cong H_*(MH)$, but now only as abelian groups. Still, MH is a product of HZ_2 's. Let C_* be $H_*(MH)$ modulo the subgroup R_* , where R_* is the subgroup generated by all elements of the form $m \cdot h$, where $h \in H_*(MH)$ and $m \in H_i(MO)$ with i > 0. The map $\phi : H_*(MH) \to H_*(MO) \otimes C_*$ is given by $H_*(MH) \to H_*(MH) \otimes H_*(MH) \to H_*(MO) \otimes C_*$. Split the projection to C_* so that $C_* \to H_*(MH) \to \tilde{H}_*(MO)$ is zero. The structure map $H_*(MO) \to H_*(MH)$ and the product give a map $H_*(MO) \otimes C_* \to H_*(MH)$ and the composite with ϕ can be checked to be an isomorphism.

Any element in $H_*(MH)$ can be written as $c + \sum_i m_i h_i$ where c is something from the splitting of C_* , m_i is from $H_*(MO)$ with * > 0. Since $H_0(MH) = C_0$, induction on the grading proves that the image of C_* generates $H_*(MH)$ as an $H_*(MO)$ module. Hence ϕ is an isomorphism. If the image of $H_*(MO)$ in $H_*(MH)$ commutes with $H_*(MH)$, R_* becomes a two-sided ideal. Hence C_* is a ring and ϕ becomes a ring isomorphism.

The reader can check that C_* is always a coalgebra and a right and left comodule over the dual of the Steenrod algebra. ϕ can be seen to be a map of l-r Hopf algebras. This recovers all of the Browder-Liulevicius-Peterson results on the structure of C_* .

The map $MH_* \to H_*(MH) \to C_*$ is also onto since $H_*(HZ_2) \to H_*(MH)$ can be picked to factor through $H_*(MO)$. Splitting this gives a map $MO_* \otimes C_* \to MH_*$ and, as before, the image of C_* generates over MO_* . The map $MH_* \to MO_* \otimes C_*$ is given by $MH_* \to H_*(MH) \to H_*(MO) \otimes C_* \to MO_* \otimes C_*$. The composite $MO_* \otimes C_* \to MH_* \to MO_* \otimes C_*$ is again checked to be an isomorphism, and the rest of the proof follows easily.

A super SO theory is a connective ring spectrum MSH, whose homology is an l-r Hopf algebra, and a map of ring spectra $MSO \rightarrow MSH$ which induces an l-r Hopf algebra map on homology. Further we require that Sq^1 is zero on $H^{\circ}(MSH)$.

This last condition guarantees that the map $H_*(MSH) \rightarrow H_*(MO)$ factors through $H_*(MSO)$. We can now analyse $MSHZ_2$ as above. We leave the details to the reader. We finish with

THEOREM 6. All the k-invariants of $MSHZ_{(2)}$ are 0.

Proof. The sphere spectrum S is the unit for the ring spectra $MSOZ_{(2)}$ and $MSHZ_{(2)}$. The map $S \rightarrow MSOZ_{(2)}$ factors through $HZ_{(2)}$ by Theorem 4.

$$MSH \land S \rightarrow MSH \land HZ_{(2)} \rightarrow MSH \land MSOZ_{(2)} \rightarrow MSH \land MSHZ_{(2)} \rightarrow MSHZ_{(2)}$$

shows that $(MSHZ_{(2)})_*$ is a summand of $H_*(MSH:Z_{(2)})$. But

$$H_*(MSH; Z_{(2)}) = H_*(MSHZ_{(2)}; Z)$$

since both are the homotopy of $MSH \wedge M_{(2)}$, where $M_{(2)}$ is the Moore spectrum of type $Z_{(2)}$.

2-LOCAL COBORDISM THEORIES

References

- 1. J. Adams, "Stable homotopy and generalized homology", Mathematics Lecture Notes (University of Chicago, Ill., 1971).
- 2. A. Borel, "Topics in the homology theory of fibre bundles", Lecture Notes in Math. 36 (1967), Springer-Verlag.
- 3. W. Browder, A. Liulevicius, and F. Peterson, "Cobordism theories", Ann. of Math., 84 (1966), 91-101.
- 4. E. Brown and F. Peterson, "Relations among characteristic classes: I", Topology 3, Supplement I (1964), 39-52.
- 5. H. Cartan, Séminaire Henri Cartan, 7e année 1954/1955, 2e éd. (Secrétariat mathématique, Paris, 1956).
- 6. J. Cohen, "The decomposition of stable homotopy", Ann. of Math., 87 (1968), 305-320.
- 7. W. C. Hsiang, "On Wu's formula of Steenrod squares on Stiefel-Whitney classes", Bol. Soc. Math. Mexicana, 8 (1963), 20-25.

- 8. J. P. Meyer, "Whitehead products and Postnikov systems", Amer. J. Math., 82 (1960), 271-279.
 9. J. Milnor, "The Steenrod algebra and its dual", Ann. of Math., 67 (1958), 150-171.
 10. F. Quinn, "Semifree group actions and surgery on PL homology manifolds", in Geometric Topology, Lectures Notes in Math. 438 (1975), Springer-Verlag.
- 11. R. Thom, "Quelques propriétés globales des variétés différentiables", Comment. Math. Helv., 28 (1954), 17-86.
- 12. C. T. C. Wall, "Determination of the cobordism ring", Ann. of Math., 72 (1960), 292-311.

Department of Mathematics University of Notre Dame Notre Dame, Indiana 46556 U.S.A.