
2-LOCAL COBORDISM THEORIES

LAURENCE R. TAYLOR

1. Introduction

We give new proofs of the principal results of Thorn [11], Wall [12], and Browder-
Liulevicius-Peterson [3] on the structure of various cobordism theories at the prime 2.
We improve the principal results of Browder-Liulevicius-Peterson by removing their
hypothesis that certain cohomology groups are finite. The proofs use classical facts
about H*(BO), H*(BSO) and the Steenrod algebra, together with an idea of J. Cohen
[6]. Cohen's idea was to observe that for an homology theory E and certain spectra
X, E*(X) may be quite easy to calculate. We can then use the Atiyah-Hirzebruch
spectral sequence to try to calculate £*(pt.), which appears in E2 of the AHss.

2. Unoriented cobordism

We need the following three facts.

1. H*(MO) is a polynomial algebra with one generator in each positive dimension.
This follows from the Thorn isomorphism theorem and Borel's calculation ofH*(BO)
[2]. All homology and cohomology groups without indicated coefficients are with
Z2 coefficients.

2. H*(MO) = MO*(HZ2) since both are the homotopy of MO AHZ2. We use
Adams's notation for spectra [1].

3. H*(HZ2) = Z2[Z1,Z2,...] where dim£k = 2 k - l [9].

Consider the Atiyah-Hirzebruch spectral sequence for MO*(HZ2).

and the edge homomorphism MOp(HZ2) -> Hp(HZ2) is the map

MOAHZ2 - ^ i - HZ2 AHZ2

where u : MO -> HZ2 is the Thorn class in H°(MO), [1]. The map uAid is onto in
homotopy which is verified by using the lemma below to show that id A U is onto in
homotopy.

The AHss is multiplicative since both MO and HZ2 are ring spectra. Since all the
differentials vanish on £r

0> q and on Er
p> 0, the spectral sequence collapses.

Since H*(HZ2) is polynomial, the map MO*(HZ2) -> H#(HZ2) is split as a ring
map. Hence there is a map of rings extending the splitting

ijj : MO* ®H*(HZ2) -• MO*(HZ2).

The ring MO*(HZ2) is filtered to produce the AHss and MO*_p ® Hp(HZ2) lands in
the pth filtration under i]/. With the obvious filtration on the left, \j/ induces an iso-
morphism of associated grades and is therefore an isomorphism. We have proved
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THEOREM 1. MO% is a polynomial algebra with one generator in each dimension
not equal to 2k — 1.

MO* -»H*{M0) is monic since it is the other edge homomorphism in the AHss.
H*(M0) is a Z2-vector space, so this map is split monic. It factors through

which must also be split monic.

THEOREM 2. MO is a product ofHZ2s.

Proof. Homotopy is a summand of integral homology if and only if all the
/c-invariants are trivial, [8; Corollary 1.3].

To state our lemma, consider sequences I = (tl5 ..., ir, 0, ...) such that

We can order such sequences by (/1} ...) > (Jlf...) if and only if ij > j 1 ; or il = j t

and ?2 >j2; or ii =jls i2 = j 2 and i3 >j3; etc. To / = (ilt..., ir, 0,...) we can
associate the monomial wt = wit ... wir in H*(BO) and the element

Sq1 = Sqlt ...Sqir

in the Steenrod algebra. We say wt is bigger than Wj if and only if / > J. Let
UeH°(M0) be the Thorn class and O : H*(M0) -• H*(BO) the Thorn isomorphism.

LEMMA. / / / is admissible (i.e. ifik > 2ik+l, all k)

1 U) = Wj +smaller monomials.

Proof. The proof is an easy induction on r using admissibility, the Cartan formula,
and the Wu relations [7]. It is done in [11].

The lemma proves H*(HZ2) -* H*(M0) monic since H*(HZ2) has a vector space
basis Sqr, I admissible [5]. We used the dual statement.

3. Oriented cobordism

H*(MS0) is a polynomial algebra with one generator in each dimension greater
than 1, 12].

H+(HZ) = Z2[x,y2,y3,...] where dimx = 2, dim}>fc = 2k — 1. To see this, recall
that H*(HZ) is the kernel of the derivation, d, on H*(HZ2) denned by d(£k) = £,2k-x.
This kernel is generated as a polynomial algebra by bv

2 and bk, k > 1, where bk is the
conjugate of £k.

H*(MS0) -* H*(HZ) is onto where MSO -> HZ is the Thorn class. This follows
from the lemma as before.

MSOZ2 is the ring spectrum for the cobordism theory of manifolds whose wt is
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the mod 2 reduction of an integral class. We can use the AHss to calculate

(MSOZ2)* (HZ) = H*(MS0Z2;Z) = H*(MS0) = n*(MS0 AHZAM2)

where M2 is the Moore spectrum of type Z2. Mimicking Section 2, we have

THEOREM 3. (MSOZ2)* is a polynomial algebra over Z2 with one generator in each
dimension not equal to 2k — 1 or to 2.

H*(MS0,Z) has no elements of order 4, [2]. H^(HZ;Z4) has no elements of
order 4, [5]. This can be seen directly if we observe that the Bockstein, /?, satisfies
fl(bk) = b2

k-i. E2 of the Bockstein spectral sequence is generated by the b2, so the
higher Bocksteins vanish for dimensional reasons.

Let Er
p> q be the Er term of the AHss for (MSOZ^* {HZ). Let Fr

Piq be the Er

term of theAHss for (MS0Z2)* (HZ).
If G is an abelian group, define p(G) = dimZz G ® Z2. One can see that

which in turn equals p(F™q) since E2 = £°° for (MS0Z2)* (HZ), as the reader who
has actually carried out the proof of Theorem 3 has seen.

piHJMSO)) = £ p(F»k> ,-_k)
fc = 0

since all the extensions are split. p(Eco
Pt q) < p(E2

Pi q) and

i p(E°>ktd_k).
fc=0

Since p(Hi(MSO))^p(Ht(MSO;Zj)9 p(E2
p<q) = p(Em

Piq). Since E2
p,q has no

elements of order 4 for p > 0, there can be no differentials. Hence

is monic and therefore, by the universal coefficient theorem [1; Prop. 6.6, p. 200],
so is MSO* ® Z4. But this implies that MSO* has no elements of order 4 and, if
Z(2) denotes rationals with odd denominators, (MS0Zi2))* is a direct summand of
H*(MS0Z(2); Z). Hence we have

THEOREM 4. All the k-invariants ofMSOZ{2) are trivial.

4. Super cobordism theories

Definition. A graded ring R* is an / — r Hopf algebra if /*„« is a left and a right
coalgebra comodule over the dual of the Steenrod algebra. We require that the dual
algebra, which is both a left and a right module over the Steenrod algebra, be a right-
left algebra as in [4; page 50]. Moreover, the coalgebra structure should make R*
into a cocommutative Hopf algebra.

H*(M0) and M%(MS0) are two examples.

A super O theory is a connective ring spectrum MH, whose homology is an /—r
Hopf algebra, and a map of ring spectra MO -*• MH which induces an / — r Hopf
algebra map on homology.

H
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The only examples we know come from Thorn spectra associated to various
" bundle " theories. We have spaces BH(n) and maps gn: BO(ri) -* BH(n) and
hn: BH(ri) -* BF(2)(n), which is the classifying space for /z-dimensional, 2-local,
spherical fibrations with cross section. h,,gn should be the usual map. The hn give
Thorn spaces MH(ri) and Thorn isomorphisms with Z2 coefficients. We have a
stabilization map BH(n) -*• BH(n + l). The two obvious squares involving BO(ri) and
BF(2)(n) should commute up to weak homotopy. We further postulate a Whitney
sum BH(ri)x.BH(m)-+BH(n + m) so that the obvious squares involving the BO(ri)
or the JBF(2)(«) commute up to weak homotopy. Finally we require that (1) should
commute up to weak homotopy.

BH(n+l)XBH(m)

BH(n)XBH(m) * BH(n + m) **BH(n + m + l) (1)

BH(n)XBH(m+l)

(1) guarantees that the MH{n) fit together to form a ring spectrum, MH, and that
the BH(n) fit together to form a weak H-space, BH. We assume that BH is weakly
homotopy associative. H*(MH) = H*(BH) as algebras. H*(BH) is a Hopf algebra
and a left comodule over the dual of the Steenrod algebra, so H*(MH) is also. The
usual left comodule structure of H*(MH) becomes a right one by using the conjugation
in the dual of the Steenrod algebra. H*(MH) is a right-left algebra by Theorem 8.5
of [4] and the proof of the principal result of [7]. Hence H*{MH) is an 1 — r Hopf
algebra.

Since hn gn is the standard map, we get a map of ring spectra MO -> MH which is
easily seen to induce an / — r Hopf algebra map. Thus MH is a super 0 theory.

For any super 0 theory we have

THEOREM 5. MH is a product of HZ2s. There exists a Z2-vector space C* and
isomorphisms MH* -» MO* ® C* and H*(MH) -+ H*(M0) ® C*. / / the image of
H*(M0) in H*(MH) commutes with all of H*(MH), then C* becomes a ring and the
above maps are ring isomorphisms.

Notice that we have required no finiteness hypothesis on H*(MH) and so we can
apply Theorem 5 to some of the " bundle " theories of Quinn [10]. If BH is weakly
homotopy commutative, Ht(MH) is commutative.

Proof. Brown and Peterson [4] produce a map H*(M0) -> H*(MH) which can be
de-dualed to get a map r : H*(MH) -* H*(M0). We can do this since H*(M0) is
finite in each dimension. The needed result from linear algebra is that, if

T:HomF(F", F)-*V*

is a linear map, then there exists a linear map S : V -* F" with T = S*. S is defined
by the equation n^S = T(7i(), where nt: F" -* S is the ith co-ordinate projection.
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r is a map of coalgebras and left and right comodules. To see that it is a ring map,
note that both ways of going from H*(MH) ®H*(MH) to H*(M0) are maps of
coalgebras and left and right comodules. Since there is only one such map from
H*(MH) ® H*(MH) -> H*(M0) [4; Corollary 8.6], /• is a ring map. This uniqueness
also shows that r splitsH*(MO) -» H*(MH).

Just as in part 2, MH* ®H*{HZ2) ^ H*(MH), but now only as abelian groups.
Still, MH is a product of JfZ2's. Let C* be H*(MH) modulo the subgroup R*, where
R* is the subgroup generated by all elements of the form m • h, where heH*(MH)
and meHi(M0) with i > 0. The map (j>: H*(MH) -• H*(M0) ® C* is given by
H*{MH) -> H*{MH) ® Ht(MH) -> tf *(M0) ® C*. Split the projection to C* so
that C* -> if *(M/f)->#*(MO) is zero. The structure map H*{MO) ^ H*{MH)
and the product give a map H*(M0) ® C* -+ H*(MH) and the composite with 0
can be checked to be an isomorphism.

Any element in H*(MH) can be written as c + Y,i w« hi where c is something from
the splitting of C*, m; is from H*(M0) with * > 0. Since H0(MH) = Co, induction
on the grading proves that the image of C* generates H*(MH) as an H^MO) module.
Hence 0 is an isomorphism. If the image of H*{MO) in H*(MH) commutes with
H*(MH), R* becomes a two-sided ideal. Hence C* is a ring and 0 becomes a ring
isomorphism.

The reader can check that C* is always a coalgebra and a right and left comodule
over the dual of the Steenrod algebra. 0 can be seen to be a map ofl — r Hopf algebras.
This recovers all of the Browder-Liulevicius-Peterson results on the structure of C*.

The map MH % -» H*(MH) -> C* is also onto since H*{HZ2) -* H*(MH) can be
picked to factor through H*(M0). Splitting this gives a map MO* ® C* -> Mif *
and, as before, the image of C% generates over MO*. The map MH * -> MO* ®C*
is given by MH * -* H*(MH) -> H*(M0) ® C* -»• MO* ® C*. The composite
MO* ® C* -> Mff * -*• MO* ® C* is again checked to be an isomorphism, and the
rest of the proof follows easily.

A super SO theory is a connective ring spectrum MSH, whose homology is an
l — r Hopf algebra, and a map of ring spectra MSO -» MSH which induces an / — r
Hopf algebra map on homology. Further we require that Sql is zero on H°(MSH).

This last condition guarantees that the map H*(MSH) -*• H*(M0) factors through
H*(MS0). We can now analyse MSHZ2 as above. We leave the details to the reader.

We finish with

THEOREM 6. All the k-invariants of MSHZ(2) are 0.

Proof. The sphere spectrum S is the unit for the ring spectra MS0Z{2) and
MSHZ(2). The map S -• MS0Z(2) factors through HZ{2) by Theorem 4.

MSH A S -> MSHAHZ(2) -* MSH A MS0Z(2) -+ MS/f A MSHZ{2) -> MSHZ(2)

shows that (MSHZ(2))* is a summand of//*(MS/f: Z(2)). But

H*(MSH;Z(2)) = H*(MSHZi2);Z)

since both are the homotopy of MSif A M ( 2 ) , where M(2) is the Moore spectrum of
type Z(2).
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