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Abstract. Farrell and Hsiang [2, p. 102] noticed that [5] implies that the geometric surgery
groups defined in [6, Chapter 9] do not have the naturality Wall claims for them. Augmenting
Wall’s definitions using spaces over RPy and line bundles they fixed the problem.
The definition of geometric Wall groups involves homology with local coe‰cients and these

also lack Wall’s claimed naturality.
One would hope that a geometric bordism theory involving non-orientable manifolds would

enjoy the same naturality as that enjoyed by homology with local Z coe‰cients. A setting for
this naturality entirely in terms of local Z coe‰cients is presented in this paper.
Applying this theory to the example of non-orientable Wall groups restores much of the ele-

gance of Wall’s original approach. Furthermore, a geometric determination of the map in-
duced by conjugation by a group element is given as well as a discussion of further cases be-
yond the reach of [5].

2000 Mathematics Subject Classification: 55N25, 55N20.

1 A review of local coe‰cients

A local coe‰cient system is a functor from the path groupoid, PðX Þ, of a space X to
some category, [4, page 58]. Two coe‰cient systems are equivalent if there is a natural
transformation between the two functors. In the case of interest here the category has
one object, the group Z, and the morphisms are AutðZÞ ¼ fG1g. Such a local coef-
ficient system will be called a Z t-system.

Definition 1.1. For any space X , let Z tðXÞ denote the category whose objects are Z t-
systems on X and whose morphisms are the natural transformations between them.

The data for such a system on a space X can be packaged as a function L : PðX Þ !
fG1g which is a homomorphism of groupoids. One such system is the trivial Z t-
system which assigns þ1 to every path. A natural transformation, or morphism, or
just map, between L0 and L1 is a function z : X ! fG1g such that for every path
l A PðXÞ,
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L0ðlÞ �L1ðlÞ ¼ zðlð0ÞÞ � zðlð1ÞÞ:

Given any Z t-system L on X check that for any based loop L in X , LðLÞ is inde-
pendent of the base point and defines a homomorphism H1ðX ;Z=2ZÞ ! fG1g. De-
fine the twist of L to be the corresponding element oðLÞ A H 1ðX ;Z=2ZÞ. Further-
more, check that two Z t-systems L0 and L1 on X are equivalent if and only if
oðL0Þ ¼ oðL1Þ. If oðLÞ is trivial, L is said to be untwisted.

Here is a description of all Z t-systems on a space X . Pick a set of base points fbig,
one in each path component of X . For each point x A X there is a unique i such that
x and bi can be joined by a path. For each x pick one path lx joining x to bi. Use the
constant path to join bi to bi. This choice is called a polarization of PðXÞ and can
be characterized as a function s : X ! PðX Þ such that sðxÞð0Þ ¼ x, sðxÞð1Þ ¼ bi and
sðbiÞ is constant.

Lemma 1.2. Fix any o A H 1ðX ;Z=2ZÞ and any polarization s of PðXÞ. Then any

function f : X ! fG1g such that f ðbiÞ ¼ 1 for all i can be uniquely extended to a

Z t-system L such that oðLÞ ¼ o and f ¼ L � s.

Proof. Given a path l from x0 to x1, both points lie in a path component with base
point bi. There exists a unique g A p1ðX ; biÞ such that g is equivalent to sðx0Þ � g �
sðx1Þ�1. Define LðlÞ ¼ f ðx0Þ � oðgÞ � f ðx1Þ. r

Given a subspace AHX and a polarization sA : A ! PðAÞ, construct a polarization
sX ; sA : X ! PðX Þ as follows. Pick base points fbjg A X . If ai A A is one of the base
points in A, let sX ; sAðaiÞ be any path from ai to the appropriate bj. If x A A, define
sX ; sAðxÞ ¼ sAðxÞ � sX ; sAðaiÞ where x is joined in A to ai. If x A X � A then choose any
path from x to the appropriate bj using the constant path whenever possible.

Proposition 1.3. Let AHX and suppose LA is a Z t-system on A. If there exists a class

o A H 1ðX ;Z=2ZÞ which restricts to oðLAÞ, then there exists LX on X which restricts

to LA and which satisfies oðLX Þ ¼ o.

Proof. Fix a polarization sA of A and a polarization sX ; sA of X . Define f : X ! fG1g
as follows. If x A A, define f ðxÞ ¼ LAðsAðxÞÞ and if x A X � A let f ðxÞ ¼ 1. Let LX

be the Z t-system constructed by Lemma 1.2 using o for the twist. r

Note that if z is a morphism, so is �z. Indeed the sign can be switched or not on
each path component so the set of morphisms between two Z t-systems on X is an
H 0ðX ;Z=2ZÞ-torsor. An element c A H 0ðX ;Z=2ZÞ is equivalent to a homomorphism
H0ðX ;Z=2ZÞ ! fG1g and hence to a function X ! fG1g which is constant on path
components. If z is a morphism, let c � z be defined by c � zðxÞ ¼ cðxÞ � zðxÞ for all
x A X .

Proposition 1.4. Let i : AHX and suppose L0 and L1 are Z t-systems on X

with oðL0Þ ¼ oðL1Þ. Suppose zA : i�ðL0Þ ! i�ðL1Þ is given. Then zA extends to

zX : L0 ! L1 provided one of the properties below holds.
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(1) H 0ðX ;Z=2ZÞ !i
�
H 0ðA;Z=2ZÞ is onto.

(2) Pick base points faig for A and for each path component of X pick a base point bj
to be one of the ai. Pick paths li from ai to the appropriate bj. For each i require

L0ðliÞ �L1ðliÞ ¼ zAðlið0ÞÞ � zAðlið1ÞÞ.

Proof. Since the twists are the same, there exists z 0X : L0 ! L1 which restricts
to z 0A : i�ðL0Þ ! i�ðL1Þ. Let cA A H 0ðA;Z=2ZÞ denote the element such that zA ¼
cA � z 0A. If (1) holds, pick cX A H 0ðX ;Z=2ZÞ which restricts to cA and check
zX ¼ cX � z 0X .

For case (2), pick base points fbjg for X so that each bj ¼ aij . Since oðL0Þ ¼
oðL1Þ choose an equivalence zX : L0 ! L1. With a bit of care, further require that
zX ðaij Þ ¼ zAðaij Þ for all j. It follows from the hypotheses that zX jA ¼ zA. r

Proposition 1.5. Let L0 be a Z t-system on X and let LA be a Z t-system on A

where i : A ! X is the inclusion. Let z : LA ! i�ðL0Þ be a map. Then there exists a

Z t-system L1 on X such that L1 restricted to A is equal to LA and z extends to a map

z : L1 ! L0.

Proof. Pick a polarization sX : X ! PðXÞ and let f0 : X ! fG1g be L0 � sX . Define
f1 : X ! fG1g by f1ðxÞ ¼ f0ðxÞ � zðxÞ if x A A and 1 otherwise. Then L1 is the
Z t-system from Lemma 1.2. r

2 The category Z t(Top)

A map f : X0 ! X1 induces a functor PðX0Þ ! PðX1Þ and hence a functor
f � : Z tðX1Þ ! Z tðX0Þ. Composition and identity behave correctly, so there is a
functor from the category of topological spaces and continuous functions to the cat-
egory of categories which takes X to the category Z tðX Þ and f to the functor f �.

Define a category Z tðTopÞ whose objects are all pairs ðX ;LX Þ for X a topo-
logical space and LX A Z tðX Þ. A morphism ðX0;LX0

Þ ! ðX1;LX1
Þ is a pair ð f ; zÞ

where f : X0 ! X1 is any map and z : LX0
! f �ðLX1

Þ is any natural transforma-
tion.

Composition is given by ðg;cÞ � ð f ; zÞ ¼ ðg � f ; f �ðcÞ � zÞ. The identity for ðX ;LÞ
is given by ð1X ; 1LÞ.

Definition 2.1. The category Z tðTopÞ has a pairing resembling a product. Given
ðXi;LXi

Þ A ObjðZ tðTopÞÞ, i ¼ 0; 1, define a new object

ðX0 � X1;LX0
�LX1

Þ:

Recall PðX0 � X1Þ ¼ PðX0Þ �PðX1Þ so define

LX0
�LX1

ðl0 � l1Þ ¼ LX0
ðl0Þ �LX1

ðl1Þ:
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This construction is not a categorical product since there is no projection onto X0

unless LX1
is untwisted. But if ðgi; ziÞ : ðY ;LY Þ ! ðXi;LXi

Þ are given, there is a
morphism

ðg0 � g1; z0 � z1Þ : ðY ;LY Þ ! ðX0 � X1;LX0
�LX1

Þ

Definition 2.2. The category Z tðTopÞ has an involution: it is the identity on objects
and sends ð f ; zÞ to ð f ;�zÞ.

Remarks 2.3. Given a bundle over X orient each fibre and associate a Z t-system as
follows. Given a path in X , use the homotopy lifting property to get a map from the
fibre over the initial point to the fibre over the terminal point of the path. Assign þ1 to
this path if the map is orientation preserving, �1 otherwise. This is a Z t-system and
the twist is the first Stiefel-Whitney class of the bundle. There is no preferred choice
of orientations if the bundle is non-orientable and even if it is, there are two choices
over each path component of X . Similar remarks work for spherical fibrations.

3 Homotopy functors

The remaining sections describe functors out of subcategories of Z tðTopÞ or its op-
posite. Many of these functors have a homotopy invariance which is described next.

Definition 3.1. Let Z tðT Þ be a subcategory of Z tðTopÞ and let y½0;1� denote the trivial
system on ½0; 1�. Say Z tðT Þ has homotopies provided the following properties hold.

(1) If ðX ;LÞ A ObjðZ tðT ÞÞ then

ðX � ½0; 1�;L � y½0;1�Þ A ObjðZ tðT ÞÞ:

(2) For i ¼ 0 and i ¼ 1 the morphisms

ðii; 1LÞ : ðX ;LÞ ! ðX � ½0; 1�;L � y½0;1�Þ

are in Z tðT Þ where ii is the evident inclusion. Since i�i ðL � y½0;1�Þ is identical to L, 1L
is a morphism between the relevant Z t-systems.

(3) Let ð fi; ziÞ : ðX ;LX Þ ! ðY ;LY Þ, i ¼ 0; 1 be two maps in Z tðT Þ whose fi are
homotopic. For any homotopy F : X � ½0; 1� ! Y require the existence of a map
zF : LX � y½0;1� ! F �ðLY Þ such that ðF ; zF Þ is a map in Z tðT Þ and the composition
ðF ; zF Þ � ði0; 1zX Þ is ð f0; z0Þ.

(4) If ð f ; ziÞ : ðX ;LX Þ ! ðY ;LY Þ i ¼ 0; 1 are two morphisms with the same f , then
there exists c A H 0ðX ;Z=2ZÞ such that z0 ¼ c � z1. Require that ð1X ; c � 1LX

Þ is a map
in Z tðT Þ.

Remarks 3.2. The category Z tðTopÞ has homotopies. The map zF required by (3) is
unique. If r : X � ½0; 1� ! X denotes the evident projection, r is a homotopy from 1X
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to itself. The Z t-system r�ðLÞ ¼ L � y½0;1� so if zr is the identity, ðr; 1L�y½0; 1� Þ � ðii; 1LÞ ¼
ð1X ; 1LÞ for both i ¼ 0 and i ¼ 1.

Definition 3.3. A functor W� defined on Z tðT Þ is a homotopy functor provided Z tðT Þ
has homotopies and

W�ði0; 1LÞ �W�ðr; 1L�y½0; 1� Þ ¼ 1W�ðX�½0;1�;L�y½0; 1�Þ

There is a similar definition for functors out of Z tðT Þop.

Lemma 3.4. If W is a homotopy functor the two maps

W�ðii; 1zÞ : W�ðX ;LÞ ! W�ðX � ½0; 1�;L � y½0;1�Þ

i ¼ 0; 1 are equal.

Proof. The map W�ðr; 1L�y½0; 1� Þ is an isomorphism inverse to both the maps W�ði0; 1LÞ
and W�ði1; 1LÞ. By uniqueness of inverse, W�ði0; 1LÞ ¼ W�ði1; 1LÞ. r

Even for a homotopy functor homotopic maps need not induce the same map. To
see the problem, let F : X � ½0; 1� ! Y be a homotopy between fi : X ! Y so
fi ¼ F � ii. Let zF : LX � y½0;1� ! F �ðLY Þ be the map such that ðF ; zF Þ � ði0; 1LX

Þ is
ð f0; z0Þ. Then let ðF ; zF Þ � ði1; 1LX

Þ ¼ ð f1; z 0Þ so by 3.4 W�ð f0; z0Þ ¼ W�ð f1; z 0Þ.
The problem is that z 0 may not be z1. Since z 0 and z1 are maps between the same

two Z t-systems, there exists a cF A H 0ðX ;Z=2ZÞ such that z 0 ¼ cF � z1. Then by (4),

W�ð f0; z0Þ ¼ W�ð f1; z1Þ �W�ð1X ; cF � 1LX
Þ:

It remains to identify cF .

Theorem 3.5. For all x A X

cF ðxÞ ¼ LY ðFðx� tÞÞ � z0ðxÞ � z1ðxÞ

Proof. By definition cF ðxÞ ¼ z1ðxÞ � z 0ðxÞ. Moreover z 0ðxÞ ¼ zF ðx� 1Þ and z0ðxÞ ¼
zF ðx� 0Þ. Also by definition,

zF ðx� 0Þ � zF ðx� 1Þ ¼ F �ðLY Þðx� tÞ � ðLX � y½0;1�Þðx� tÞ:

But ðLX � y½0;1�Þðx� tÞ ¼ r�ðLX Þðx� tÞ ¼ LX ðrðx� tÞÞ ¼ 1 since rðx� tÞ is a con-
stant path. Similarly F �ðLY Þðx� tÞ ¼ LY ðFðx� tÞÞ. r

Corollary 3.6. Suppose X is path connected and there exists a point x A X such that

f0ðxÞ ¼ f1ðxÞ. Then Fðx� tÞ is a loop L in Y and LY ðF ðx� tÞÞ ¼ oðLÞ.

If X is path connected, then cF ¼G1 and W�ð1X ; cF � 1LX
Þ is the identity if cF ¼ þ1

and is the map induced by the involution on Z tðTopÞ if cF ¼ �1 (2.2).
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Definition 3.7. Any additive category A has an involution which is the identity on
objects and sends f to �f in the abelian group of morphisms between any two ob-
jects. If W� takes values in A, say W� preserves the involution provided W�ð f ;�zÞ ¼
�W�ð f ; zÞ, provided both ð f ;GzÞ A Z tðT Þ. There is a similar definition if W� is a
functor out of Z tðT Þop.

4 Twisted homology and twisted cohomology

There is a detailed treatment of this material in [7, Chapter VI] but here is a quick
review. Twisted homology and cohomology come from modifying the singular chain
complex S�ðXÞ. The chain groups are the same, but the boundary is changed. Recall
that q ¼

P
ið�1Þ iqi. If L is a Z t-system, qL ¼

P
ið�1Þ iqL

i where qL
i is defined as

follows. Given a singular r-simplex s ! X , qis is a ðr� 1Þ-simplex. Define qL
i s to be

qis multiplied by L applied to the path obtained by applying s to the straight line
from the barycenter of s to the barycenter of qis. This can be checked to be a chain
complex SL

� ðXÞ. Homology and cohomology with twisted coe‰cients is defined as
the homology or cohomology of SL

� .
Given a natural transformation z : L0 ! L1, define a chain map SðzÞ� : SL0

� ðXÞ !
SL1
� ðXÞ by sending s to Gs where G1 is the value of the natural transformation

applied to the barycenter of s. This chain map induces an isomorphism on twisted
homology and cohomology groups.
It follows that SL

� and the twisted homology and cohomology groups are functors
out of Z tðTopÞ or Z tðTopÞop. The twisted homology and cohomology are homotopy
functors. Furthermore SL

� , H� and H � all preserve involution (2.2).

The Alexander-Whitney diagonal map induces a chain map

S
LX0� ðX0ÞnS

LX1� ðX1Þ ! S
LX0

�LX1� ðX0 � X1Þ

so the usual products have twisted versions: given two systems, L0 and L1, there is a
bilinear cap product

X : HrðX ;ZL0ÞnHrþsðX ;ZL1Þ ! HsðX ;ZL0�L1Þ:

5 Poincaré duality spaces

A remark that the author has found helpful is that non-orientable manifolds can not

be oriented. Without paying enough attention to naturality one can come away with a
vague feeling that they can: see the remarks at the end of this section.
If X is path-connected, there can be at most one class of local coe‰cients L and

one integer m such that HmðX ;ZLÞGZ and such that, if ½X � is a generator,

X½X � : HrðX ;ZL0
Þ ! Hm�rðX ;ZL�L0

Þð5:1Þ

is an isomorphism for all r and all L0.
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If the first Stiefel-Whitney class w1ðMÞ A H 1ðM;Z=2ZÞ of a connected, closed,
compact manifold or Poincaré duality space is used as the twist, (5.1) holds. When
w1ðMÞ ¼ 0 write H�ðM;ZÞ for homology with trivial Z t-system. The choice of a
generator in HmðM;ZÞ is often called an orientation and M is said to be oriented.
Given two oriented connected, closed, compact manifolds Mm

1 and Mm
2 and a map

f : M1 ! M2, f has a degree.
In the non-orientable case the Z t-system is non-trivial and even in the orientable

case untwisted but non-trivial systems can appear. Whenever the Z t-system is non-
trivial, the class ½M � A HmðM;ZLÞ will be called a fundamental class. Given a map
f : M0 ! M1 which preserves the first Stiefel-Whitney class, there is an induced map

ð f ; zÞ� : HmðM0;ZLM0 Þ ! HmðM1;ZLM1 Þ

and ð f ; zÞ� has a degree, but if z is replaced by �z, the degree switches sign.

Remarks 5.2. The Farrell-Hsiang repair of Wall’s problem can be viewed as checking
that one can fix a Z t-system over RPy and always use the pull-back local system.
Whitehead [7, Chapter VI] also discusses naturality using pull-back systems. This
results in the following conundrum. Consider the projection p : S2n ! RP2n and the
antipodal map a on S2n: a commutes with p so there is a commutative triangle of
twisted homology groups starting with any L on RP2n with non-trivial twist. The
induced system on S2n is untwisted, but not trivial and a ends up having degree þ1.
This is all correct but unsettling.

In the approach taken here, one can work with the trivial system on S2n, in which
case a has degree �1 but now one must choose an isomorphism between the system
induced by p and the trivial one, say z. Then the projection maps are ðp; zÞ and
ðp;�zÞ, a has degree �1 and commutativity still holds. But this shows that RP2n can
not be ‘‘oriented’’ by orienting S2n and using ‘‘p�’’ to pick out a fundamental class.

Remarks 5.3. Here is another approach to ‘‘orientation’’. Twisted homology sat-
isfies excision, so HmðM;M � p;ZLÞ ¼ HmðDm;Sm�1;ZLjDmÞ. Since Dm is simply-
connected, HmðDm;Sm�1;ZLjDmÞGZ.

There is always a map HmðM;ZLÞ ! HmðM;M � p;ZLÞ and if oðLÞ ¼ w1ðMÞ, a
fundamental class ½M � A HmðM;ZLÞ picks out a generator in HmðDm;Sm�1;ZLjDmÞ.
Pick the unique morphism from the trivial system to ZLjDm which is þ1 at the point
p. This gives an orientation on Dm.
However, whenever L is not trivial, given any cover of M by disks there will be

disks in the cover for which the selected orientation depends on p.

6 Geometric bordism

As a warm up exercise, consider unoriented bordism. For the spaces in the category
Z tðT Þ take BO� ½0; 1�k for all integers kb 0. For the Z t-systems take all the ones
with non-trivial twist and all their morphisms, and for the maps of spaces take all
homotopy equivalences. Fix a Z t-system LBO on BO� ½0; 1�k with non-trivial twist.
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Hence an object in this ‘‘enhanced’’ bordism theory is a manifold M with a Z t-
coe‰cient system LM , a generator ½M � A HmðM;ZLM Þ, a map n : M ! BO� ½0; 1�k
classifying the stable normal bundle and a natural isomorphism z : LM ! n�ðLBOÞ.
The definitions for a manifold with boundary present no problems, but manifolds

should bound which are not actually equal to a boundary but merely ‘‘equivalent’’ to
one. This involves a di¤eomorphism of M with an actual boundary and an identifica-
tion of fundamental classes. Since there is no natural choice of z, this requires making
ðM; n; c � ½M �; c � zÞ equal to ðM; n;�½M �;�zÞ. Alternatively one can use Proposition
1.5 to put a Z t-system on M � ½0; 1� which alters the sign of z at the two ends.
Bordism defines a homotopy functor on Z tðT Þ to abelian groups which preserves

orientation.

Remark 6.1. These definitions can be repeated with BSO. Oriented bordism has ele-
ments of infinite order, so why are not similar elements present in the unoriented case?

To answer this last question, recall that BO has a homotopy F : BO� ½0; 1� ! BO

which is the identity at both ends and such that for each b A BO, Fðb� ½0; 1�Þ is a
loop which is not null homotopic. Corollary 3.6 implies that the identity map has
order 2 so every element in the bordism group has order 2.
In the oriented case no such homotopy exists.
The case of PinG structures is interesting from this point of view as well. The

bundles are not orientable, but BPinG ¼ BSpin� KðZ=2Z; 1Þ so there is a homotopy
like that for BO. However the PinG bordism groups are not always of exponent 2.
Here the problem is that the homotopy is not a homotopy of lifts over BO.

7 Geometric surgery

The definition of Wall’s geometric surgery groups mimic the unoriented bordism
example. Start with a reference n-ad K and fix a Z t-coe‰cient system, LK . An object
in the bordism theory is a Poincaré ðnþ 1Þ-ad X , a manifold ðnþ 1Þ-ad M, Z t-
coe‰cient systems LX on X and LM on M, classes ½M � A HmðM;ZLM Þ and ½X � A
HmðX ;ZLX Þ, maps g : M ! X and f : X ! K , and finally, isomorphisms z : LX !
f �ðLKÞ and c : LM ! g�ðLX Þ such that ðg;cÞ� has degree 1. The map g should be
covered by a normal map and should have some sort of equivalence on part of the
boundary depending on exactly which variant of the Wall group is being constructed.
It is better to denote the resulting bordism groups by L�ðK ;LKÞ instead of just

recording the twist as Wall does. Since the torsion is irrelevant to these discussions it
is suppressed.
With these minor alterations in the definition, the material in Wall’s Chapter 9

goes through with no di‰culty, except for one caveat: the resulting bordism groups
are homotopy functors on the full subcategory of Z tðTopÞ whose spaces are the ho-
motopy type of CW complexes with a finite 2-skeleton.
Similar results hold for many other variations of surgery theory in the non-

orientable case including the LS groups of [6, Chapter 11], the Cappel-Shaneson G
groups [1], and many others.
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8 Surgery groups

The philosophical import of Wall’s Chapter 9 is that any ‘‘geometric bordism theory’’
which has a p-p theorem depends only on the fundamental group.

More explicitly, if K is path-connected, let u : K ! Kðp1ðKÞ; 1Þ be a classifying
map for the universal cover. The map u induces an isomorphism

H 1ðKðp1ðKÞ; 1Þ;Z=2ZÞ ! H 1ðK ;Z=2ZÞ

so the set of twists for the two spaces coincide. There is an explicit model for
Kðp; 1Þ due to Segal [3] denoted Bp and there is a particular Z t-system Lo with twist
o A H 1ðBp;Z=2ZÞ.

The explicit model is Segal’s classifying space of a small category where the cate-
gory is the group in question. There is one 0-simplex which will be the base point.
Each k-simplex for k > 0 is a sequence of k group elements. If G is the group, let BG
denote the classifying space. Recall that BG is a CW complex and it has the homo-
topy type of a CW complex with finite 2 skeleton if and only if G is finitely generated
and finitely presented.

The space BG has an explicit polarization, sG, defined as follows. Each point
x A BG lies in the interior of a unique simplex and there is always the straight line
path to the initial vertex of this simplex. This gives a path from x A BG to the base
point. Denote the path by sGðxÞ.

Given a twist o A H 1ðBG;Z=2ZÞ define Lo to be the Z t-system on BG from
Lemma 1.2 with polarization sG, function f : BG ! fG1g identically 1 and twist o.

If c : H ! G is a group homomorphism then the induced map Bc : BH ! BG is
piecewise linear on each simplex so

BH ���!sH
PðBHÞ

Bc

???y

???yPðBcÞ

BG ���!sG
PðBGÞ

commutes. It follows that ðBcÞ�ðLoÞ ¼ LBc �ðoÞ so

ðBc; 1LðBcÞ �ðoÞ Þ : ðBH;LðBcÞ�ðoÞÞ ! ðBG;LoÞ A Z tðTopÞ:

Since LðBcÞ�ðoÞ is just the identity map, write Bðc;oÞ for the map ðBc; 1LðBcÞ �ðoÞ Þ.
Note that for group homomorphisms, c0 : G0 ! G1 and c1 : G1 ! G2,
Bððc1 � c0Þ;oÞ ¼ Bðc1; ðBc0Þ

�ðoÞÞ � Bðc0;oÞ.
Segal’s construction has an additional property. Any g A G gives an automorphism

of G, cg : G ! G defined by cgðhÞ ¼ g�1hg. This inner automorphism is homotopic to
the identity since there is a natural transformation between the two functors, namely
multiplication by g A G. Let Cg : BG � ½0; 1� ! BG be the homotopy from 1BG at 0 to
cg at 1. The homotopy is not base point preserving unless g is the identity: in fact the
path CgðtÞ is just the 1-simplex g.
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Definition 8.1. A surgery theory is a homotopy functor W on a subcategory Z tðT Þ
of Z tðTopÞ with the following closure property. Whenever ðK ;LÞ is an object in
Z tðT Þ, then for any u : K ! Bp1ðKÞ which induces an isomorphism on p1 the pair
ðBp1ðKÞ;Lðu �Þ�1ðoðLÞÞÞ is in Z tðT Þ and for at least one map z : L ! u�ðLðu �Þ�1ðoðLÞÞÞ
the pair ðu; zÞ is a map in Z tðT Þ. A surgery theory only depends on p1 provided

W�ðu; zÞ : W�ðK ;LÞ ! W�ðBp1ðKÞ;Lðu �Þ�1ðoðLÞÞÞ

an isomorphism.

Remark 8.2. Wall’s geometric surgery groups are a surgery theory on the full sub-
category of Z tðTopÞ whose spaces have the homotopy type of CW complexes with
finite 2-skeleton. They preserve the involution. If � > 4, then the Wall geometric
surgery groups only depend on p1.

Theorem 8.3. Suppose W� is a surgery theory on Z tðT Þ and that G is a group such that

ðBG;LoÞ A Z tðT Þ. Then

W�ðBðcg;oÞÞ : W�ðBG;LoÞ ! W�ðBG;LoÞ

is the identity if oðgÞ ¼ þ1 and is W�ð1BG;�1Lo
Þ if oðgÞ ¼ �1. If W� preserves invo-

lution, then W�ðBðcg;oÞÞ is minus the identity if oðgÞ ¼ �1.

Proof. Apply Theorem 3.5 and Corollary 3.6: note z0ðxÞ ¼ z1ðxÞ. r

Remark 8.4. Theorem 8.3 is the analogue of the main result in [5] for the geo-
metric Wall groups: it implies that the surgery obstruction map [6, Cor. 9.4.1, p. 90] is
natural.

Remark 8.5. This material also implies the geometric version of the conjecture in [5]
concerning the map induced by conjugation. Without hypotheses the conjecture is
false so some explanation may be helpful. Consider the pair case, i : HHG. Then
BH is a subspace of BG and i�ðLoÞ ¼ Li�ðoÞ. Let z : Li �ðoÞ ! i�ðLoÞ be the identity.
The data for the pair should be written W�ððBG;LoÞ; ðBH;Li�ðoÞÞ; zÞ.

(1) Any homomorphism of pairs c : ðG0;H0Þ ! ðG1;H1Þ induces a map of long exact
sequences.

(2) If g A H then conjugation by g induces an automorphism of the entire long exact
sequence of the pair and is multiplication by oðgÞ.

(3) If g A G �H, then g�1Hg must be H before cg is even a map of pairs. Fix
c : H ! H. Then there are examples of groups G with elements g such that
g�1Hg ¼ H and the induced map on H is c. Hence nothing can be said in general
about the map induced by conjugation on a pair if g B H.
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