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We wish to study knots, i1.e. PL locally-flat embeddings k :S n-1 ¢ S nl

and more specifically, their genera.

To define these genera we must first define a class of pairs of manifolds,

say 8(k), depending on k. (M,W) ¢ 8§(k) iff

(a) M 1is a compact orientable PL manifold with M = S2n+1

(b)Y W 1is a compact, PL, orientable, locally-flat submanifold of M
2n-1

with W n M = 3W = § : W c M is the knot k.
(¢) the fundamental class of W determines, via the embedding, a class

in qu(M,aM,Z) : this class is 0.

Define g (k) = Pomin (B_(M) + B (M) + |sign(M)|) where (M,W) runs
over all elements of §(k) : Betti numbers are denoted by B8 and Sign(M)

is the signature of M.

Define another genus, gs(k), to be % min Sq(w) where W runs over
all PL manifolds such that ﬂi(W) = 0 for 0 <1i<n and there is an

embedding W » D272 such that (D°7Y2,W) ¢ §(K).

Clearly gY(k) < gS(k). Equally clearly these genera depend only on the
concordance class of k.

For any knot, Levine [Le 1] defines a set of Seifert matrices. Let A

be any one of them. If a 1is the dimension of A, A induces a bilinear

form » on 2% by the formula X{x,y) = xAy* where * denotes transpose.

t Partially supported by NSF Grant GP-34143
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Let z(A) be the maximal dimension of a null-space of X: a null-space of

A is a subspace N c© AN such that A(x,y) = 0 for all x, y € N. Define
m(k) to be Z(a-z(A)). Lemma 1, stated at the end of section 2, shows mn(k)
to be well-defined and to depend only on the concordance class of k. Notice
that a Seifert matrix for k 1is null-cobordant in Levine's sense [Le 1] iff
m(k) = 0.

OQur first result is

Theorem 1 : m(k) = gY(k).
Levine's techniques in [Le 1] and theorem 1 suffice to prove
Theorem 2 : If n22, nmk) =g/ (k)= gY(k).

A great deal can be said even if n = 1. An immersion of a surface into
S3 will be called a Seifert ribbon if the immersion has only disjoint, simple,
ribbon singularities (Fox [Fo 2] p. 72)}. The ribbon genus of a knot, gr(k),
is the minimal genus of an orientable, compact, Seifert ribbon whose boundary
is k. Fox's proof [Fo 1] that a ribbon knot is slice generalizes to show

gs(k) < gr(k). With these preliminaries completed we have

Theorem 3 : Let k : S! ¢ 83 be a knot which has A for a Seifert matrix.
Then there exists a knot k1 such that
(a) k; has A for a Seifert matrix

() m(ky) = g (k).

Theorem 3 could be proved by using the ideas in Fox [Fo 2], but we prefer

to give a proof using a method of some independent interest,

Note that if n = 2 we have calculated any reasonable candidate for the
special genus, and, if n = 1, we have given the best possible lower bound that
one can get from a Seifert matrix. The results of Casson-Gordon [CG 1] show

that the inequality m(k) < gs(k) can be strict.

m(k) 1is not easy to compute but lower bounds for it are available. For any
complex number of norm one, &, Levine [Le 1] defines a signature og(k).
It is easy to see %|05(k)| < m(k), This, together with theorem 1, gives all
the lower bounds for g (k) to be found in [Mu 1], [Tr 1] or [KT 1].

The author would like to thank both M. Freedman and L. Kauffman for

numerous useful conversations.
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§ 2. The proofs of Theorem 1 and Lemma 1.

We recall the classical construction of the double branched cover of M
along W. W 1is a proper (W n 3M = 3W), orientable, locally-flat,
codimension-two, PL submanifold of the orientable PL manifold M™.

If Hm_z(w,aw;Z) > Hm,z[M’aM;Z) is zero we can find X ¢ M with X n M = 3 X;
3X =9 XUW; 3 XnW=23W; and X 1is a locally-flat, orientable, codimension-

one submanifold of M.

M), the double branched cover of M along W, 1is obtained by splitting
M along X and glueing two copies of the resulting manifold together. This
split manifold is the closure of M minus a regular neighborhood of X. It has
the same homotopy type as M - X, so we denote it by M - X, With this abuse
of notation firmly fixed we continue. The interesting part of the boundary of
M - X 1is just two copies of X glued along their copies of W. The involution
on M(W) just flips the two copies of M - X and interchanges the two copies

of X 1in the interesting part of the boundary.

. ?n-1 n+1 .
Now given a knot k : S c S as a special case of the above
n-1 2n+2
n being the knot k. In D

1

H

. . 2n+1 .
discussion we get F < S with 93F = S
let F x I be embedded in a collar of 23D so that f x 0 ¢ g2m*

A
original copy of F. Let F"  denote F x 1 u F x1I., D(F) denotes the
?

is our

double branched cover of DT along F.

Recall the following construction due to Kauffman [Ka 1]. Given any

2n+2

A
element in Hn(FA;Z) it comes from a unique element in H (D - (FxI),F ;Z).

n+1
Since D[FA) is just two copies of pn+2 - (FxI) glued together, we can glue

n+2

two chains for our element in Hn+ (b -(FXI),FA) together so0 as to get an

1
element in Hn+1(D(FA);Z). Kauffman shows this construction defines a
homomorphism «: Hn(FA) - Hn+1(D(FA)) which is an isomorphism when homology

is taken with rational coefficients.

The intersection form on Hn+1(D(FA);Q) defines, via i, a symmetric
(if n 1is odd: skew-symmetric if n is even) form on Hn(F ;Q). Intersection
defines a non-singular, skew-symmetric (if n is odd: symmetric if n 1is even)
form on Hn(FA). If we pick a basis for Hn(FA) and get a Seifert matrix A,
Kauffman further shows that A - A* is the skew-symmetric form and A + A*
is the symmetric form. Hence the intersection form on Hn+1(D(FA);Q) is non-
singular so BD(FA) is a rational homology sphere. We conclude this paragraph

with an important remark. Notice that z({A)}) is the maximal dimension of a
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subspace on which both of our forms vanish: as it were, a simultaneous

null-space.

To prove theorem 1 we show that for any (M,W) e 8§(k),

m(k) < 3B (W) + 3(8_,, 00 + |Sign(M)|). To show this, consider N = M u p2n*2
glued along their boundary sl Let K=F U ¥ and notice K is a
codimension-two, locally-flat, orientable submanifold of N. Since

Hzn(w,aw;Z) > Hzn(M,aM,Z) is 0, Hzn(K;Z) > HZH(N;Z) is also 0.
Transversality gives us an X c N with 3X = K and all other properties
needed to form the double branched cover, M(K), by splitting M along X.

It is possible to find an X such that X n p?™*2 - F x I, and we do so.

If A(X) denotes the double of X, Kauffman's construction produces a

homomorphism ¢ : Hn+1(M-X,A(X)) > Hn+1(M(K)). There are maps

2n+2 A . . A
n+1(D - (FxI),F™) ~ Hn+1(M-X,A{X)) and 1, : Hn+1(D(F )Yy > Hn+1[M(K))
which are both induced by the obvious inclusions. We have an isomorphism
Hn(FA) <—§——-Hn+1(02n+2 -(FXI),FA) and the following diagram commutes
A ¥ A
H (F;Q) H ., (D(F3;:Q)
i*
§
- . - .
H o, (1-X,80005Q) H o, (MK);5Q)

Since BD(PA) is a rational homology sphere, i, is a monomorphism which

*

preserves the intersection form. Also note that Hn(FA) > Hn+1(M-X, (X))———§—9

Hn(A(X)) is the map induced by the inclusion F* c K c A(X).

Our remark of three paragraphs above suggests that we hunt for a
simultaneous null-space. A null-space for the intersection form on Hn[FA;Q)
is just given by ker s, where s : Hn(FA;Q) > Hn(X;Q) is the map induced by
inclusion. Note ker s goes to (0 under the map Hn(FA;Q) > Hn(A(X);Q)

and so we can construct a cummutative diagram

Al
ker s — Hn(F ;Q)

Ho (GQ) e H | (-X,8005Q)
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Our goal is to locate a null-space for our other form on Hn(FA;Q)

inside of ker s. The map

§
ker s - Hn+1(M-X;Q) - Hn+1(M-X,A(X);W) ~— H (M(K);Q)

n+1

preserves this second form and also admits a nice description. To wit, let
i ¢ M- X~ MK) denote one of the inclusion maps and let T : M({(K) = M(K)
denote the involution associated with the double branched cover.

tj : M - X » M(K) then is the other inclusion. The map
ot Ho(M-GQ) > L (M-X,8005Q) B (MIK)5Q)

is j, + t,i, . From this description it follows that if V < Hn+1(M—X;Q)

is a null-space for the intersection form on Hn+1(M—X;Q) then a(V) is a
null-space for the intersection form on Hn+1{M(K);Q). Moreover, if

R : Hn+1(M—X;Q) - Hn+1(M;Q) is the map induced by the inclusion, V 1is a
null-space iff B(V) 1is a null space for the intersection form on Hn+1(M;Q)

Let the composite ker s = Hn+1(M—X;Q) . Hn+1(M;Q) be denoted by wv.
Let N be a maximal null-space for v(ker s). Then for a Seifert matrix, A,
associated to the spanning surface F we have z(A) = dim v_l(N) = dim(ker v) +
dim N. We leave to the reader the task of demonstrating theorem 1 from the

above facts plus the two estimates
+ 1 —_ 1 -
(a) dim ker s = B,(F) - 2B (K) = 3 (8, (F) Bn(w))
(b) dim N > dimv(kers) - #(s_, (M) + [Sign(M) D).

To see (a) note Image {Hn(FA;Q) > Hn(X)} c Image {Hn(K) > Hn(X)} and

this latter vector space has dimension %BH(K). The result follows.

To see (b) consider N < v(kers) c© Hn+1(M;Q). We can take a maximal null-
space of Hn+1(M;Q) containing N, say B. Then elementary quadratic form
theory shows

dim B = $(8 (M) - lsign) Y.

Moreover dim B < dim N + Bn+1(M) - dim v(ker s) since B n v(kers) 1is a
null-space containing N and hence is N. The estimate in (b) now follows

easily,

We begin the proof and statement of lemma 1. The notion of cobordism of

matrices was defined by Levine [Le 1] and we insist that all matrices have
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property € ([Le 1] p.231) before we speak of them as being cobordant.
If A is a matrix with property ¢, define m(A) = 3 dim A - z(A}. Then
m{k) = m{A) for A a Seifert matrix for k. Since any two Seifert matrices

are cobordant ([Le 1]), lemma 1 shows m(k} 1is a well-defined concordance

invariant of k.

We now prove

Lemma 1 : Let A and B be cobordant matrices. Then m(A) = m(B).

Proof : If (® denotes block sum, it is easy to prove
MX®Y) < m(X) + m(Y). Since it is enough to prove m{A(®HN} = m(A)
if N is null-cobordant, it is enough to prove m(A) £ m(AM®N).

Lemma 1 of [Le 1] is just a proof of this for the case

m(A®N) = 0 . The proof there adapts easily to cover this

generalization.
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§ 3. The proofs of Theorems 2 and 3

The proof of theorem 2 follows Levine [Le 1], lemmas 4 and 5. First

replace k by a simple knot with an (n-1)-connected spanning surface F.

We then get a Seifert matrix corresponding to a choice of basis for
Hn(F;Z). By lemma 1 we can find a basis for Hn(F;Z) so that, if Xiseees X,
are the first r = %Bn(F) - m{(k) basis elements, then the X, span a

null-space for our form A,

If n =2, Levine's argument in lemma 5 of [Le 1] shows that we can
2n+2 . . .
produce W < D w with boundary k, where W 1is obtained from F by surgery
O Xyseee; X Hence n, (W) = 0, 7* < n, and Hn(W;Z) is the free abelian

group of rank 2m(k). This proves theorem 2.

If n =1, the first two paragraphs of this section are still correct.
Moreover, we can complete Xx,..., X, to a basis for HI[F;Z) which is a
symplectic basis for the intersection form. It is therefore possible to

represent X,,..., X_ by disjoint embedded circles in F. To see this last

statement observe cht we can find some symplectic basis for Hl(F;Z) in
which the first r <}8;(F) basis elements are represented by disjoint
embedded circles. There is a symplectic matrix taking these r generators to
Xpseees X But every symplectic matrix is induced by a homeomorphism of F
(see e.g. p. 178 [MKS 1]) so Xiseees X, are represented by disjoint embedded

circles.

Since F c 83, these circles give rise to an r-component link, Lr c Sa,

such that each component of Lr links every other component with linking
number 0. If Lr is a slice link in the strong sense then we can finish just

as in the case n =z 2.

Let us pause to improve this last statement a bit. Lr is called a ribbon
link in the strong sense if each component of L, bounds an immersed disc so

that the singular set consists of disjoint simple ribbon singularities.

Claim : If Lr is a ribbon link in the strong sense then the ribbon genus

of k 1is mn(k).

Proof : By theorem 1, gr(k) > m(k) so if we can just construct a Seifert
ribbon with SI(W) = 2m(k) we are done, Our goal is to do the

surgery on the x, .
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It is easy to embed L x [0,1] < S3 so that L, [0,1] n F=1_xo0.
Since Lr is a ribbon link in the strong sense we can find a collection of
r immersed discs, say Dr c s3 s.t. aDr = Lr x 1 and Dr has only disjoint
simple ribbon singularities. We next improve Dr n F which, at the moment,

may be terrible. Note first we can assume Dr n Lr x [0,1] = Lr < 1,

Since F 1s a 2 manifold with boundary, F has a 1 dimensional spine.
We can move Dr just a little so that Dr is transverse to the spine.
Dr N spine is a finite number of points which we can assume miss all the
singularities of Dr' Moreover, we do not move SDT and Dr n Lr % [0,1]

is still L_x 1.
T

Now by shrinking F toward its spine if necessary we can assume that
b.nF consists of disjoint simple ribbon singularities and
Dr n Lr x [0,1] = Lr x 1,

It is easy to see that the normal bundle of Dr U Lr x [0,1] in S3,
when restricted to Lr x 0, 1is just the normal bundle to Lr x 0 in F.
Use this normal bundle to push off another copy of Dr u Lr x [0,1] and call
3 T T
it Dr U Lr x [0,1].

Let B ¢ F be the band between Lr x 0 and Lr' x 0. Then
(F-B) U(Dr U Lr x [0,1]) v (Dr' u Lr‘ x [6,1]) is our surface. It clearly
has the correct genus and it is easy to see that it is immersed with simple

ribbon singularities. This proves the claim.

Qur last major hurdle is to describe an operation we call tying a link
into the bands of k. This operation is not well-defined but it is useful.
To begin, we choose a spanning surface F for k and represent a symplectic
basis for HI(F;Z) by a set of canonical curves, i.e. embedded circles
representing the basis which are disjoint unless the two elements in Hl(F;Z)

have intersection * 1. In this case the two circles intersect in one point.

We have represented F as a disc with g;(F) bands, If we order this
basis for H (F;Z) we have a Seifert matrix, A. Call the ith band the band

through which the circle representing the ith basis element passes.

In the ith band choose an arc, ;s cutting the band. Think of the knot
and its spanning surface as lying in the lower hemisphere of s3. It is easy

to find an isotopy of S3 so that each a, 1s brought up into the upper
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hemisphere, D+3. Each a, has a neighborhood in F? that looks like DZ,
If we write D+3 as D? x [0,1] it is easy to arrange things so that

) 5 BI[F)
after our isotopy D+ nF = L_, B

2 -i— , where, if D2 = [-1,1] x [0,1],
it1

B2 = [-%,%] x [0,1]. 1In D+3 we just have g,;(F) wunlinked, unknotted,

untwisted bands.

We wish to replace these bands by some twisted, knotted, and linked bands.
To describe this, we consider a framed link in D+3. Such a link consists of
an ordered set of disjoint embedded arcs in D+3 with
8D+3 n [ith arc) = a(ith arc) = (0 x 0 % %—) u (0 x 1 x %—) € D+3 and we have
an integer associated to each arc. Such a link has a matrix, B, defined by
bij = linking number of ith arc with jth arc if 1 # j and b.s = integer

associated to ith arc.

Given such a link, we get a collection of bands by thickening up the arcs.
.th

It is possible to do this so that, if Bi denotes the image of the 1
thickened arc, Bi is homeomorphic to Dz; B. n B, = ¢ unless i = j,

1 J
1 1 .
BD+3 n Bi = aBi = ([-%,%] x 0 x If) U ([-%,%] % I'); B.1 twists bii

o=

times (i.e. % x [0,1] x %- links 0 x [0,1] x with linking number bi-)-

1

Suppose our framed link had BI(F) components, In D+3 we can replace

our unlinked, unknotted, untwisted bands by

By (F)
Bi . This gives a new knot k. k1 has a spanning surface, F,, with
i=1

B;(F;) =B, (F)., On F, we have an embedded symplectic basis which is ordered.
With respect to this basis and ordering, the Seifert matrix for k; is just

A+ B.

If we have a framed 1link with r < BI(F) components we still do the
operation by bringing only the first r of the bands into D+3. If B
denotes the Bl(F) X BI(F) matrix with bij = bij if 1, j < r__and bij =0
if i >r or j >r, then the Seifert matrix for k; is A + B.

We describe a special case of the above which is the only case we need.
As before we have our knot, k, with spanning surface F and canonical curves

Suppose the first r of these curves span a null space of the Seifert form.
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As above, isotope the @, i=1,..., r, into D+3. Qur embedded circles
in F now become a link in D"3 which we frame by requiring each arc to have
0 twist. Reflect this link through S$? to get a framed link in D+3. Doing

our operation as above we get a new knot k;. We say k, is obtained from k

by isotropic reflection.

We now have:

Theorem 3 : Let k be a knot with spanning surface F. Suppose
m(k) = %BI(F) - r. Then we can find r disjoint embedded
circles in F representing a null-space for the Seifert form.
If we do an isotropic reflection using these r circles, the

resulting knot k1 satisfies
(i) g.(k)) = m(k,)

(ii) kl and k have a common Seifert matrix.

Proof : Complete our r circles to an embedded sympletic basis for
H, (F;Z). Look at k;, the knot obtained by the isotropic reflection.
k; and k have the same Seifert matrix and if Lr is the link of
interest for k, Lr # -Lr is the link for k;. Lr # —Lr is the 1ink
obtained from Lr by mirror reflection and then joining each component
in Lr to the corresponding component in (-Lr) by a straight band.

Lr # —Lr is a ribbon link in the strong sense so we are done.

We conclude with the following observation.

Suppose k; and k, have cobordant Seifert matrices. Then there exist
knots k,; and k, such that k; # -kq and k, # -k, are ribbon knots and

such that k, 1is obtained from k,; by isotropic reflection.

Proof : Let kg = k; # (-k, # k,) = (k; # -k,) # k,. Since m(k, #-k;) =0,
we can do an isotropic reflection so that it becomes a ribbon knot.
Hence we can do an isotropic reflection on (k; # -k,} # k, to get

k, with %k, = (ribbon knot) #k, . Hence k, # -k, is a ribbon knot.



154

References

[CG 1] Casson, A. and Gordon, C. Cobordism of classical knots, preprint,
Orsay, 1975.

[Fo 1] Fox, R.H. A quick trip through knot theory, Topology of Three-
Manifolds and Related Topics (Edited by M.K. Fort),
Prentice-Hall, New Jersey, 1962, 120-167.

[Fo 2] Fox, R.H. Some problems in knot thecry, Topology of Three-Manifolds
and Related Topics (Edited by M.X. Fort), Prentice-Hall,
New Jersey, 168-176.

[Fo 3] Fox, R.H. Characterization of slices and ribbons, Osaka, J. Math
10 (1973}, 69-76.

[Ka 1] Kauffman, L. Branched coverings, open books, and knot periodicity,
Topology 13 (1974), 143-160.

[KT 1] Kauffman L. and Taylor, L. Signature of links, Trans. Amer. Math.
Soc. 21e (1976), 351-365.

[Le 1] Levine, J. Knot cobordism in codimension two, Comment. Math. Helv.
44 (1969}, 229-244.

[MKS 1] Magnus, Karass, and Solitar, Combinatorial group theory, Interscience,
division of John Wiley and Sons, New York, 1966.

MU 1] Murasugi, K. oOn a certain numerical invariant of link types, Trans.
Amer. Math. Soc. 117 (1965), 387-422.

[Tr 1] Tristram, A. Some cobordism invariants for links, Proc. Cambridge
Philos. Soc. 66 (1969), 251-264.



