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Modern computer-aided design methods in combination
with sophisticated technology can deliver a diverse range
of textiles for a number of various applications which
include clothing, domestic, medical and technical textiles,
and composite materials.

Throughout the history of textiles, their development pro-
gressed along two main paths: one was the production of fib-
ers, natural or synthesized, as primary building blocks; the
other was design and manufacture of new textile structures.
Both of these paths obviously relied on the development of
new technologies and appropriate machinery. The perform-
ance characteristics of textiles depend on the properties of
the constituting material and the properties of the struc-
ture. Well-known examples of this dependence are the dif-
ferences in the mechanical behavior of the single jersey and
1 × 1 rib, leno weave and plain weave [1–3].

Ultimately, the aim of the design procedure for the tex-
tile material is to find an optimal combination of fiber/yarn
properties and structure that would provide the best per-
formance characteristics of the end-use product.

Structure is the most essential characteristic that enables
different textile materials to be distinguished. In the context
of this study, the term ‘structure’ refers to binding patterns

of interlacing threads in knitted and woven fabrics without
considering any internal structural features of the threads
involved. Structural characteristics of fabrics depend on the
mutual position of constituting threads where the geometry
is a derivative of position. For example, no continuous
change in the geometrical parameters such as curvature,
diameter or distance between the threads, made without
breaking and self-intersection of the threads can ever trans-
form a plain weave fabric into sateen (Figure 1(a), (b))
because the mutual position of the threads has been set in
weaving.1

There are many well-developed numerical characteris-
tics of geometrical, physical and mechanical properties of
fibers, yarns and fabrics and appropriate testing methods
for measuring such properties. This makes it possible to
establish quantitative relationships between properties of
fibers/yarns on one hand and properties of fabrics on the
other. Another factor that often plays a very significant

Abstract This paper proposes a new systematic
approach for the description and classification of
textile structures based on topological principles.
It is shown that textile structures can be consid-
ered as a specific case of knots or links and can be
represented by diagrams on a torus. This enables
modern methods of knot theory to be applied to
the study of the topology of textiles. The basics of
knot theory are briefly introduced. Some specific
matters relating to the application of these meth-
ods to textiles are discussed, including enumera-
tion of textile structures and topological invariants
of doubly-periodic structures.
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role in defining a fabric’s properties is its structure. For
example, plain woven fabric, single jersey and 1 × 1 rib all
made from the same yarn obviously have different struc-
ture and they display different properties in tensile tests.
At the present state of art in the research of structure-
properties relationship this structure-related difference in
behavior can be explained at a qualitative level, but not
quantitatively because there is no universal numerical
parameter that can be used to describe structural charac-
teristics of all fabrics.

The very first step that should be made towards estab-
lishing quantitative structure-properties relationship of tex-
tiles is to generate a universal mathematical method and
criteria that will be able to classify textile fabrics into classes
according to their structure, i.e. to distinguish whether in
mathematical terms two fabrics are structurally different or
not. The same method may then be used for producing a
universal numerical parameter that will be able to charac-
terize structure of all fabrics.

In mathematical terms, structural properties of textile
fabrics are nothing else but their topological properties. It is
therefore reasonable to use topology as a specific branch
of mathematics for description of structural features of tex-
tiles and classification of textile structures.

There have been many publications in textile and com-
posite materials science studies which, in one way or
another, mentioned topology of textiles [4–13], but the term
‘topology’ has been used mostly just as a synonym of the
term ‘structure’. There have been very few real attempts to
apply topological methods to textiles. For example, results
presented by Liebscher and Weber [14, 15] were limited by
the generation of specific structural elements which can be
used for the coding of structures such as weft knitted fabrics
and wire netting. A series of papers by the members of the
Itoh Laboratory [16–18] used elements of knot theory for
the computer representation of knitted fabrics. Papers on
combinatorial analysis of woven fabrics mainly concerned

the enumeration of weaves using conditions defining the
integrity of the fabric [19, 20].

Textile structures are extremely diverse [21–24], which
is why it would not be possible to compose an exhaustive
‘list’ of all possible structures; on the other hand, there are
relatively few basic textile structures. There have been many
attempts to classify basic textiles according to the methods
of their manufacture and structural features; one of the
remarkable examples of such classification is presented in
monograph by Emery [23]. It is important to note that all
textiles were either discovered empirically or were the
products of advanced technology like triaxial woven fabric
(Figure 1(f)) [25]. There have been no attempts to describe
all possible textile structures in a systematic way starting
from the simplest.

The main aim of this series is to show that the topologi-
cal classification of textiles can be built using methods
which are employed in knot theory.

Knot theory, which is a part of modern topology, studies
position-related properties of idealized objects which are
similar to the textile structures, i.e. knots, links, and braids.
These properties do not change by continuous deforma-
tions of the objects and it is these properties that, in appli-
cation to textiles, can be called structural properties. Knot
theory has at its disposal powerful mathematical tools
which have been used in numerous applications in theoret-
ical physics and pure mathematics [26]. However, despite
an obvious similarity between textile structures and knots,
links, and braids, textile structures have never been the
subject of systematic topological studies.

This series will concentrate on the application of topology,
in particular the theory of knots and links, to the problem of
description and technology-independent classification of tex-
tile structures. Part I considers existing methods of descrip-
tion of textile materials and introduces new methods of
representation based on knot theory. In Part II, topological
invariants in application to textiles will be developed.

Figure 1 Examples of textile struc-
tures: plain weave (a); sateen (b);
multi-layered woven fabric (c); sin-
gle jersey (d); warp knit (e); triaxial
woven fabric (f).
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Classification and Description of 
Textile Structures
The majority of textile materials have regular structures pro-
duced by a pattern (unit cell) of interlaced threads repeating
at regular intervals in two transversal directions. It is these
regular structures that will be the main focus of this study.

There are four main industrial methods of manufactur-
ing textile materials with regular structure from yarns and
threads which provide fabric integrity by the mechanical
interlocking of the threads:

• interweaving – used for manufacturing of woven fab-
rics;

• interlooping or intermeshing – used for knitted fab-
rics, fishing nets and machine-made laces;

• intertwining and twisting – a specific method used
for making bobbinet fabrics and braids;

• combination of methods used for woven and knitted
fabrics, for example, Malimo knitting-through sys-
tem [27], which has been designed for production of
‘nonwoven’ materials. 

In addition to these methods, there are many manual
techniques used in creative crafts, such as macrame, plaits,
and lace making [28–30].

Classification of woven and knitted fabrics is generally
based on the idea of ‘complexity’ of the repeated part of the
fabric; this often (but not necessarily always) implies that
greater complexity refers to larger repeats. At the same
time, this classification inevitably depends on the technique
of manufacture of a given material and/or the use of spe-
cific machinery.

Traditionally, different textile structures are defined by
specific terms where each one refers to a structure of certain
kind. For example, in weaving the term ‘sateen’ means a
‘weft-faced weave in which the binding places are arranged
with a view to producing a smooth fabric surface, free from
twill’ (Figure 1(b)), whereas definition of a ‘single jersey’
refers to a ‘fabric consisting entirely of loops which are all
meshed in the same direction’ (Figure 1(d)) [31].

The woven fabrics are classified in terms of mutual
location of threads in space. This classification includes:

• basic weaves which include plain weave, twill, satin
(sateen), hopsack, and leno weaves;

• derivatives of the basic weaves that can be obtained
either by introducing additional warp and/or weft
intersections or by combining several basic patterns;

• complex weaves which include jacquard and multi-
layered fabrics.

Recent developments in weaving technology made it
possible to produce new woven structures such as 3D fab-
rics [32, 33].

Classification of the knitted fabrics also recognizes
patterns in order of increasing complexity and takes into
account the technology of knitting. Thus, according to the
technology used, knitted fabrics are classified into two
distinctive groups as follows:

• weft or warp knitted;
• single or double faced.

On the other hand, knitted structures are classified on
the basis of the shape of elementary parts which are loops
and their derivatives. These fabrics, similar to the woven
fabrics, are divided into basic and derivative patterns as fol-
lows:

• basic structures which in weft knitting are plain (or
single jersey), rib, interlock, and purl; in warp knitting
they are chain, tricot, and atlas;

• derivatives of the basic structures produced by com-
bining loops, floats, tucks, and transferred loops;

• derivatives of the basic structures using additional
threads (laying-in technique).

Nonwoven materials are classified by their method of
manufacture. These structures may be based on a combi-
nation of weft or warp knitted fabrics with reinforcing
threads in warp, weft, and bias directions [34] or produced
directly from layers of bonded fibers; the latter structures
will not be considered in this study.

Methods of mathematical description of the structure
of woven and knitted fabrics are mainly based on the rep-
resentation of their topology by a matrix where each indi-
vidual element corresponds to a structural element of the
fabric. For example, single-layered woven fabrics are coded
using binary matrices [35, 36], where individual matrix entries
represent warp and weft intersections. Conventionally, if the
warp is above the weft then such intersection is coded as 1,
and 0 otherwise. For more complicated fabrics based on
multi-layered weaves, a non-binary coding system has been
used [37]. It has been shown that even in the case of multi-
layered woven fabrics (see Figure 1(c)), it is possible to
represent their structure by binary matrices [38].

Obviously, in the case of knitted fabrics it is not possible
to use binary coding because it is necessary to represent at
least four different elements of knitted structure which are
loop, float, tuck, and transferred loop. All four of these
basic elements may be situated on the face or on the back
of the fabric which requires at least eight different coding
symbols. The coding of complex structures would require a
more extended system [22, 24]. An attempt to create a
generic description of weft knitted fabrics using such a sys-
tem has been made by Grishanov et al. [39], where the fab-
ric was considered as a ‘text’ in which ‘letters’ of a specific
alphabet represented individual structural elements. This
made it possible to use a formal grammar approach for the
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formulation of rules which define structurally coherent and
technologically feasible combinations of loops and their
derivatives. In a similar way, other workers have used a set
of ‘stitch symbols’ each representing a basic simple pattern
of knitting [16–18]. Using these symbols arranged into a
matrix, it is possible to describe the structure of fairly large
and complex knitted patterns.

The above-mentioned methods of description and clas-
sification of textiles have their own advantages, but their
application is limited to the given class of structures pro-
duced by appropriate technology. For example, in the case
of woven fabrics, they can be classified in a simple way by
enumerating all binary matrices which satisfy specific con-
ditions corresponding to the fabric integrity [19, 20].

Thus, it can be seen that, at present, there is no system-
atic classification of textiles based on a universal principle.
General technology-independent methods of representa-
tion and classification of textile structures can be built using
topological methods, in particular, those employed in knot
theory. A universal method of characterisation of all textile
structures based on topological invariants will pave the way
for a systematic study of structure-properties relationship
of textiles.

Basics of Knot Theory

The following sections introduce basic topological objects
and methods that will be used in application to textiles.
Terms and definitions discussed below generally follow the
lines of those presented, for example, in studies by Prasdov
and Sossinsky, Cromwell, and Adams [40–42].

Knots, links, braids, and tangles
Knot theory studies topological properties of one-dimen-
sional objects in space, such as knots, links, braids, and tan-
gles. All these objects can be thought of as made up of
infinitely thin threads which can be continuously deformed
without breaking and without having self-intersections.
Thus, knot theory does not consider the physical properties

of such objects but only those that relate to the mutual
position of constituting ‘threads’ in space.

In mathematics, a knot, unlike its common understanding,
is a closed smooth curve (Figure 2(a)), which is impossible to
untie without cutting. Formally a knot K ⊂ R3 is an embed-
ding of the circle S1 into R3. Several knots K1, K2, …, usually
inter-chained together, create a link L = K1 ∪ K2 ∪ …
(Figure 2(b)); each knot is called a component of the link.

A braid is a set of strictly ascending threads with end points
fixed on two parallel lines a and b (Figure 2(c)); the points on
the lines should be positioned exactly one under the other.

A tangle is a generalization of knots, links, and braids. A
tangle is an arbitrary set of threads in space with fixed end
points [41, 43]. Different types of tangles can be considered,
for example, tangles with end points fixed on a sphere (Fig-
ure 2(d)).

All components of a link (knot, tangle) can be given a
direction which is identified by arrows; this defines orienta-
tion of the link (Figure 2(a), (b)).

Isotopy
From the topological point of view, two knots K1 and K2 are
equivalent (K1 ~ K2) if one of them can be transformed into
the other in space by a continuous deformation without self-
intersections and breaking. Such a deformation is called an
isotopic deformation or simply an isotopy. All knots (or links)
which are isotopic to one given knot (or link) form an iso-
topic class.

A knot that is isotopic to a circle is called a trivial knot or
unknot (Figure 3). Similar to this, a link is called trivial if it

Figure 2 Basic objects studied in
knot theory: knots (a); links (b);
braids (c); tangles (d).

Figure 3 An isotopy of the unknot.
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can be split into disjoined circles. Sometimes it is not easy to
understand that two knots are isotopic (see Figure 3).

Link diagrams and Reidemeister theorem
Graphically knots and links are represented by means of
diagrams which are projections on a plane with additional
information at each crossing about which ‘thread’ is on the
top (Figure 2). Any projection should have a finite set of
crossings and satisfy conditions which are known as the
conditions of general position:

• neither of the tangents to the link must be parallel to
the projection direction (Figure 4(a));

• not more than two different points of the link must
be projected onto the same point on the plane (Fig-
ure 4(b));

• projections of tangents to two arcs at each crossing
point must be different (Figure 4(c)).

These conditions can always be achieved by a small iso-
topic deformation of relevant parts of the link. A projec-
tion that satisfies all these conditions is called a regular
projection of the link.

Double points of regular projections are called cross-
ings. Each double point is associated with two different
parts of the link in space. By labeling mutual positions of

the arcs at each crossing point as over-pass and under-pass,
a diagram of the link can be obtained (see Figure 2 for
example).

In an oriented diagram, all crossings are identified as pos-
itive (the crossing sign ε = 1) or negative (ε = –1), according
to Figure 5. 

An isotopic transformation of a link and the corre-
sponding continuous transformation of its diagram at
some point may lead to the violation of the conditions of
general position described above. These singularities can
be overcome by elementary moves Ω1, Ω2, and Ω3, known
as Reidemeister moves; they are shown in Figure 6. Reide-
meister proved that two diagrams represent equivalent
links if and only if they can be transformed into each other
by a finite sequence of Reidemeister moves and plane iso-
topies; this statement is known as the Reidemeister Theo-
rem.

For example, the first knot in Figure 7 and the ‘figure-
eight’ knot (last in Figure 7) are isotopic (belong to the
same isotopic class) because they can be deformed into
each other using Reidemeister moves Ω1 and Ω2. 

Topological invariants
There are two fundamental problems in knot theory. First
is to answer the question of whether two knots or links are
different or are the same; the second is triviality, i.e.
whether or not a link is equivalent to a collection of dis-
joined circles (unknots). The answers to these questions
may be found with the aid of topological invariants.

A knot invariant, f, is a function from the set of knots to
some other set whose value depends only on the equiva-
lence class of a knot:

K1 ~ K2 ⇒ f(K1) = f(K2).

Figure 4 Prohibited projections.

Figure 5 The crossing sign definition.

Figure 6 Reidemeister moves.

Figure 7 An isotopy of the figure-
eight knot.
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The target set can be, for example, the set of integers, Z,
or a set of polynomials. Invariants for links and tangles are
defined in the same way.

The Reidemeister Theorem enables invariants to be cal-
culated using link diagrams. Any isotopic invariant obvi-
ously should take the same value for all diagrams which
can be transformed into one another by Reidemeister
moves.

A number of invariants has been proposed which include
basic numerical, polynomial and finite type invariants (or
Vassiliev invariants) [40, 41, 43], but none of these has been
proven to distinguish between all knots or links. The ques-
tion of whether Vassiliev invariants are able to distinguish
between all possible knots remains an open problem in knot
theory.

Classification and tabulation of knots and 
links
Classification of knots and links is based on the crossing
number, which is the minimum possible number of crossings
in any diagram of a knot K; this is denoted as cn(K). This
classification includes only prime knots, i.e. those that cannot
be obtained by a composition (so called connected sum) of
other knots, as illustrated in Figure 8.

All prime knots and links with the crossing numbers up
to six are presented in Figure 9. Knots and links are
denoted as Mn and Mn

k, respectively, where M is the
crossing number, n is the ordinal number of knot (or link)
within the group with M crossings, and k is the number of
components.

The number of knots and links grows exponentially with
the increase of cn. Currently, all knots with up to 16 crossings
have been tabulated; this ‘table’ includes 1,701,936 prime
knots [44].

If there is a diagram of a given knot in which over-passes
and under-passes alternate, then such a knot is called alter-
nating. Alternating knots and links form an important sub-
class of all knots and links. In Figure 9, all knots and links
are alternating except for link 63

3, but it is known [45] that
the fraction of alternating knots dramatically decreases as
the crossing number increases. Nevertheless, diagrams of
alternating knots are used as a basis for construction of all
possible knots with a given crossing number.

The general algorithm for enumeration of knots and
links includes the following steps:

1. Generate all possible non-equivalent alternating dia-
grams.

2. For each diagram generated at Step 1, consider all
2cn possible diagrams which can be obtained from
the diagram in question by assigning over-passes and
under-passes to its crossings in all possible combina-
tions.

3. Select non-isotopic knots from the set obtained at
Step 2 using knot invariants. 

Modern enumeration methods are discussed in more
detail by Hoste [45].

Topological Representation of 
Textile Structures

Let us now consider regular textile structures from the top-
ological point of view using approaches proposed by Grish-
anov et al. [46]. For this it is necessary to assume that the
constituting threads are smooth spatial curves and can be
deformed without breaking or passing through each other,
or themselves, during deformation. In this case, textiles
become similar to the objects studied in knot theory.

Figure 8 Connected sum operation for knots.

Figure 9 Table of prime knots and
links with up to 6 crossings.
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At the same time textile structures are specific because
they can be considered as structures that extend infinitely
in two perpendicular directions in a periodic manner.
Thus, textile structures can be defined as particular case of
doubly-periodic structures; they will be further referred to
for short as 2-structures. It will be shown that 2-structures
can be considered as specific types of knots and links.

Isotopy
First of all it is necessary to define an isotopy notion for 2-
structures. Let isotopy for 2-structures be any continuous
deformation that preserves their main property which is
double periodicity. These deformations include homogene-
ous extensions, shear deformations, translations, rotations in
space and, in addition to this, periodical deformations with
the period equal to that of the structure.

Planar diagrams and torus diagrams of 
2-structures
Similar to diagrams of knots and links, it is possible to define
diagrams of 2-structures as planar projections which satisfy
the conditions of general position described previously (see
Link Diagrams and Reidemeister Theorem section). In fact,
textile scientists have been using such diagrams for repre-
sentation of fabrics (see, for example, Figure 10(a)).

A planar diagram inherits its properties from the struc-
ture, i.e. a planar diagram of a 2-structure is also doubly-
periodic. Using planar isotopy, it is always possible to trans-
form a planar diagram so that its period (unit cell) will be
the unit square [46].

A unit cell of a given planar diagram completely defines
the topology of the 2-structure. Therefore, instead of an infi-
nite planar diagram containing an infinite number of cross-
ings, it is convenient to consider a torus diagram, which can be
obtained by joining the opposite sides of the unit cell of the
planar diagram, as shown in Figure 11.

In this way, a diagram with a finite number of crossings
can be constructed which is similar to ordinary link dia-
grams but ‘drawn’ on the standard torus T2. Formally, it is
possible to consider a torus diagram as a diagram of a link
embedded into the space defined as T2 × R1, where T2 is
the standard torus. Alternative ways for representing such
links will be considered later (see Alterative Representa-
tions of Textile Structures section).

Let us define Reidemeister moves on the torus in the
conventional way, as shown in Figure 6. It is possible to
state that two 2-structures S1 and S2 are isotopic (S1 ~ S2)
if their torus diagrams D1 and D2 can be transformed into
each other by means of Reidemeister moves Ω1, Ω2, and Ω3
and isotopies on the surface of the torus.

However, if two torus diagrams D1 and D2 are not
equivalent in the above-mentioned sense, then this does
not necessarily mean that two corresponding structures S1
and S2 are different. The problem is that the unit cell can
be chosen in an infinite number of ways. Let us consider
this in more detail.

Unit cells and torus diagram twists
A point lattice can be associated with any planar diagram
of a 2-structure (Figure 12(a)). Without loss of generality,
it can be assumed that the lattice is the integer point lattice
Z2. In this case, a unit square can be considered as a unit
cell of the structure. But in fact it can be seen that any lat-
tice parallelogram of unit area or its parallel translated
copy can be taken as a unit cell (Figure 12(b)). Such a par-

Figure 10 An isotopic deformation of single jersey.

Figure 11 On construction of torus diagram.
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allelogram contains the same number of crossings as the
original unit square; the original doubly-periodic planar
diagram can be re-constructed from this parallelogram.

Let us consider a lattice parallelogram of unit area
with its opposite vertices at (0, 0) and (±p, q), p, q ≥ 1 (Fig-
ure 13(a)). It is known from the theory of numbers that any
pair of co-primes (p, q) corresponds to a unique lattice par-
allelogram of unit area with the opposite vertices at (0, 0)
and (p, q). The opposite is also true, i.e. if a lattice parallel-
ogram of unit area has its vertices at (0, 0) and (±p, q), then
p and q are co-primes (see, for example, the study by Hardy
and Wright [47]).

Since any pair of co-primes p and q defines exactly two
unit cells with the origin at (0, 0) and the opposite vertex
either at (p, q) or (–p, q), there is an infinite number of
torus diagrams corresponding to the same 2-structure;
these diagrams should be considered as equivalent to one
another.

It can be shown [46] that any torus diagram of a 2-structure
can be obtained from an arbitrarily chosen torus diagram by a
sequence of full revolution twists of the torus along its merid-
ians and longitudes (Figure 14); these twists are known in
geometric topology as Dehn twists [41]. Let us cut the torus
along one of the meridians, twist one of the cut edges by
360°and then rejoin the edges again. This procedure will be
further referred to as meridional twist (Figure 14(b)). Lon-
gitudinal twist can be defined in a similar way this time cut-
ting, twisting and joining the torus along one of its
longitudes (Figure 14(c)). 

Figure 13 illustrates the correspondence between torus
twists and transitions from one unit cell to another. Let v1
= (p1, q1) and v2 = (p2, q2) be the basic vectors of the unit
cell with the opposite vertices at (0, 0) and (p, q). One
meridional twist (see Figure 13(b)) translates the unit cell
vertex (p, q) by the vector +v1; the vertices of this new cell
will be (0, 0), (p1, q1), (p + p1, q + q1), and (p, q). Numbers
p + p1 and q + q1 are again co-primes and thus define a
parallelogram of unit area, i.e. a unit cell. In the same way,
a longitudinal twist results in a unit cell with its vertex
translated by the vector +v2 (Figure 13(c)).

Thus, the equivalence of torus diagrams of 2-structures
should be considered up to torus twists, or in other words,
the equivalence of planar diagrams of 2-structures should
be considered up to linear transformations of the plane
that map the integer lattice Z2 into itself. It is now possible
to formulate a statement which is similar to the Reide-
meister Theorem as follows:

Two doubly-periodic structures S1 and S2 are isotopic if and
only if their torus diagrams D1 and D2 can be obtained
from each other by a sequence of Reidemeister moves Ω1,
Ω2, and Ω3, isotopies on the torus surface, and torus twists.

Figure 12 A planar diagram with the associated point lat-
tice and two equivalent unit cells, (a) and (b).

Figure 13 Unit cell transformation
in torus twists: original unit cell (a);
meridional twist (b); longitudinal
twist (c).

Figure 14 Torus twists: original
torus (a); meridional twist (b); lon-
gitudinal twist (c).
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The proof of this proposition follows the proof of the
classic theorem with respect to Reidemeister moves and uses
the above-mentioned correspondence between twists and the
unit cell choices.

Alternative representations of textile 
structures
It has been shown above that a three-dimensional unit cell
of a 2-structure can be associated with a link in the space
T2 × R1 (Figure 15). This link can be imagined as enclosed
between two nested tori (Figure 15(b)). This imposes
restrictions on isotopic deformations of the link because it
cannot intersect the surfaces of the tori. It can be seen that
these topological restrictions are exactly the same as those
that are created by a system of two chained circles, known
as the Hopf link (Figure 15(c)). Thus, it is possible to rep-
resent a unit cell of a 2-structure as a composite link which
includes the two components of the Hopf link; examples
for some simple 2-structures are shown in Figure 16.

Another representation is based on one-to-one trans-
formation of the unit cell into a tangle of special type with
one marked point (Figure 17).

The advantage of representations described above is that
in this way conventional topological objects, such as links and
tangles, can be obtained and then studied by standard meth-
ods of knot theory. The composite link mentioned above,
however, has a number of extra crossings, and, furthermore,
the type of the link very much depends on the choice of the
unit cell. The representation by a tangle also suffers from
the latter disadvantage. For this reason, further analysis of
textile structures will be represented by torus diagrams as
described earlier (see Planar Diagrams and Torus Diagrams

of 2-Structures section) although, for simplification, only
planar diagrams of the minimum repeat (unit cell) will be
shown.

Invariants
It is not difficult to propose some simple topological invar-
iants for 2-structures which are similar to those used for
the conventional knots and links. Crossing number, cn(S),
of a 2-structure S which is the minimum possible number
of crossings in any torus diagram of the 2-structure S, or
the number of torus diagram components, µ(S), can be
considered as examples of such basic invariants.

It is important to note that any invariant of 2-structures
must be held not only in Reidemeister moves applied to the
torus diagram, but also in twists as described in the section
above. This implies that any invariant of a 2-structure does
not depend on the choice of the unit cell. The functions
cn(S) and µ(S), obviously, comply with this requirement.

Since doubly-periodic structures have never been the
subject of topological studies, it is necessary to construct

Figure 15 Representation of the
single jersey by a composite link.

Figure 16 Composite link repre-
sentation for some 2-structures:
single jersey (a); plain weave (b);
simple linking (c); simple looping
(d) [23].

Figure 17 Representation of unit cell by a tangle with a
marked point.
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invariants which would be able to discriminate between
such structures. Latest advances in topology have led to the
development of methods which can be used for the gener-
ation of polynomial and finite type invariants for knots
and links in arbitrary three-dimensional manifolds. Some
of these methods can be adapted for the case of 2-struc-
tures.

Some numerical and polynomial invariants for 2-struc-
tures and, in particular, for textile structures, will be dis-
cussed in Part II.

Enumeration of 2-structures
It is known that there are millions of knots and links which
have up to 16 crossings. It should be expected that the
number of different 2-structures of the same complexity will
be of similar order of magnitude. Not all 2-structures, how-
ever, belong to the set of textile structures, for example,
structures which cannot be produced by known technology
must be excluded. Even in this case, the number of remain-
ing structures will be much greater than the number of basic
structures which are known and commonly used in the tex-
tile industry. It is anticipated that exhaustive enumera-
tion of 2-structures will enable new types of textiles to be
found.

The problem of classification of 2-structures in terms of
torus diagrams can be solved for a given value of crossing
number, by enumerating all torus diagrams which are non-
equivalent with respect to Reidemeister moves and torus
twists.

Similar to knots and links, it is necessary to limit this
enumeration by prime 2-structures, i.e. such that meet the
following conditions:

• structures must be non-trivially doubly-periodical; one-
periodic structures which are similar to Figure 18(a)
will not be considered;

• similar to knot theory, 2-structures of connected-
sum-type (Figure 18(b)) will not be considered;

• structures must not be a multi-layered disjoined
combination of several structures such as that shown
in Figure 18(c);

• unit cells of 2-structure(s) must be elementary: multi-
ple unit cells will not be considered (Figure 18(d)). 

The problem of identification of an elementary unit cell
is not trivial. It should be noted that the unit cell definition
given in conventional textile terms may be different from
the topological definition. The definition of the unit cell
used by specialists in textiles is technology-dependent and
reflects the periodic manner of operation of the textile
machinery. In topological terms, an elementary unit cell is
defined as a periodic part of the structure that contains a
minimum possible number of crossings. Figure 19 shows
examples of some repeats in their traditional representa-
tion and corresponding elementary unit cells. The problem
of the identification of the minimum unit cell requires spe-
cific mathematical tools to be developed.

Since doubly-periodic textiles are our prime area of
interest, it is possible to limit the number of structures in
question even further. For example, it is possible to reject
2-structures which contain closed components (e.g. Figure
18(e)) or those that can only be produced by manual tech-
niques (e.g. Figure 18(f)).

It is obvious that there are no coherent 2-structures
with one crossing. Preliminary analysis has shown that
there are exactly two non-trivial 2-structures with two
crossings; they are presented in Figure 20.

Figure 18 Examples of non-prime
(a), (b), (c), (d) and non-textile (e),
(f) 2-structures.

Figure 19 Traditional repeats and 
their equivalent minimal unit cells: 
plain weave (a); chain-mail (b); twill 
(c).
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Discussion and Conclusion
This paper establishes a new principle of description and
classification of 2-structures and, in particular, regular tex-
tile structures. The proposed methods are based on the
application of modern mathematical tools of low-dimen-
sional topology. Textile structures are considered as special
‘knots’ or ‘links’ under the assumption that the constituting
threads are smooth spatial curves. The periodic nature of
textiles enables a unit cell to be identified for which it is
possible to construct a torus diagram. The unit cell can be
chosen in an infinite number of ways; for this reason the
equivalence of torus diagrams must be considered up to
longitudinal and meridional twists of the torus.

The proposed approach to the description of textile
structures is completely new and goes hand in hand with
the recent developments of low-dimensional topology
which made it possible to use topological methods in prac-
tical applications [26]. Textile structures have not been the
subject of systematic topological studies. An attempt to
apply knot theory to textiles requires a number of mathe-
matical problems to be formulated and resolved.

The main problem is enumeration and topological clas-
sification of 2-structures and, in particular, textile struc-
tures. Textile structures are much more complex than
general knots and links because they usually contain a
large number of crossings; their analysis requires a more
complex space than the usual R3 to be used.

It would be unreasonable to expect that the exhaustive
enumeration of textile structures will ever be completed.
However, two important problems can be resolved. First of
all, it is possible to generate an algorithm which, in princi-
ple, can enumerate all possible textile structures and then
use it for the classification of basic patterns with a limited
number of crossings. Secondly, it should be possible to
develop methods for constructing arbitrary complex struc-
tures with specified topological properties. This will estab-
lish a universal approach to the investigation of ‘structure-
properties’ relationship of textiles.

It is necessary to formulate a set of additional rules
which define a 2-structure as a textile structure, i.e. one
that can be produced using one of the known technological
methods. The application of these rules will enable a sub-
set of all different textile structures to be enumerated. This
enumeration may help towards finding new textile struc-
tures with specific properties.

The enumeration problem cannot be successfully resol-
ved without the construction of invariants for 2-structures.

The fundamental problems outlined in this paper will
be considered in more detail in Part II of this series.

Literature Cited

1. Grosberg, P., Shape and Structure in Textiles, J. Textile Inst. 57,
T383–T394 (1966).

2. Grosberg, P., Study of Fabric Geometry as an Aid to the
Understanding of Fabric Properties, Contributions of Science
to the Development of the Textile Industry, Institut Textile de
France and Textile Institute Joint Conference, pp.179–190
(1975).

3. Wahhoud, A., New Production Concept for the Manufac-
ture of Woven Fabrics, Melliand Engl. 86(7–8), E110–E111
(2005).

4. Zhuo, N. J., Leaf, G. A. V., and Harlock, S. C., Geometry of
Weft-inserted Warp-knitted Fabrics. Part I: Models of the
Structures, J. Textile Inst. 82, 361–371 (1991).

5. Groller, E., Rau, R., and Strasser, W., Modelling and Visuali-
sation of Knitwear, IEEE Trans. Vis. Comput. Graph. 1(4),
302–310 (1995).

6. Wang, Y.-Q., and Wang, A. S. D., Microstructure/Property
Relationships in Three-dimensionally Braided Fiber Compos-
ites, Compos. Sci. Technol. 53, 213–222 (1995).

7. Kuo, W.-S., Topology of Three-dimensionally Braided Fabrics
Using Pultruded Rods as Axial Reinforcements, Textile Res. J.
67(9), 623–634 (1997).

8. Meissner, M., and Eberhardt, B., The Art of Knitted Fabrics,
Realistic & Physically Based Modelling of Knitted Patterns,
Comput. Graph. Forum 17(3), 355–362 (1998).

9. Huysmans, G., Savci, S., Luo, Y., Lomov, S. V., and Verpoest, I.,
Topology of Weft Knitted Fabrics: a Coding and Visualisation
Algorithm, In “Proceedings of the 5th International Conference
on Textile Composites (TexComp-5),” Leuven, Belgium (2000).

10. Lomov, S. V., Gusakov, A. V., Huysmans, G., Prodromou, A.,
and Verpoest, I., Textile Geometry Preprocessor for Meso-
mechanical Models of Woven Composites, Compos. Sci. Tech-
nol. 60, 2083–2095 (2000).

11. Lomov, S. V., and Verpoest, I., WiseTex – Virtual Textile Rein-
forcement Software, In “Proceedings of the 48th Interna-
tional SAMPE Symposium,” Long Beach, USA, pp.1320–
1334 (2003).

12. Moesen, M., Lomov, S. V., and Verpoest, I., Modelling of the
Geometry of Weft-knit Fabrics, TechTextil Symposium, Frank-
furt, Germany (2003).

13. Bonfiglio, A., De Rossi, D., Kirstein, T., Locher, I. R.,
Mameli, F., Paradiso, R., and Vozzi, G., Organic Field Effect
Transistors for Textile Applications, IEEE Trans. Inf. Technol.
Biomed. 9(3), 319–324 (2005).

14. Liebscher, U., and Weber, M., Topological Studies of Textiles
I. Fundamentals, Textiltechnik 30(1), 58–61 (1980).

15. Liebscher, U., and Weber, M., Topological Studies of Tex-
tiles II. Applications and Examples, Textiltechnik 30(3), 176–
178 (1980).

16. Miyazaki, T., Shimajiri, Y., Yamada, M., Seki, H., and Itoh, H.,
A Knitting Pattern Recognition and Stitch Symbol Generating

Figure 20 The two-crossing 2-structures: 21 – simple
linking [23]; 21

2 – plain weave.

 by Andrew Ranicki on October 11, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com


A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods  S. Grishanov et al. 713 TRJ

System for Knit Designing, Comput. Ind. Eng. 29(1–4), 669–
673 (1995).

17. Itoh, Y., Yamada, M., Miyazaki, T., Seki, H., and Itoh, H.,
Processing for Knitting Patterns Using a Representation
Method for 3D String Diagrams, Trans. IPSJ 37, 249–258
(1996).

18. Funahashi, T., Yamada, M., Seki, H., and Itoh, H., A Technique
for Representing Cloth Shapes and Generating 3-Dimensional
Knitting Shapes, Forma 14, 239–248 (1999).

19. Clapham, C. R. J., When a Fabric Hangs Together, Bull. Lon-
don Math. Soc. 12, 161–164 (1980).

20. Dowson, R. M., Enumeration and Identification by Elimina-
tion of Weave Families of Given Repeat Size, Textile Res. J. 70,
304–310 (2000).

21. Oelsner, G. H., “A Handbook of Weaves,” Dover Publications
Inc., New York, USA (1952).

22. Hollingsworth, S., “A Compendium of Knitted Stitch Pat-
terns,” Batsford, London, UK (1985).

23. Emery, I., “The Primary Structures of Fabrics: an Illustrated
Classification,” Thames and Hudson, London, UK (1994).

24. Spencer, D. J., “Knitting Technology: a Comprehensive Hand-
book and Practical Guide,” (3rd Edn.), Woodhead Publishing,
Cambridge, UK (2001).

25. Dow, N. F., and Tranfield, G., Preliminary Investigations of
Feasibility of Weaving Triaxial Fabrics, Textile Res. J. 40, 986–
998 (1970).

26. Kauffman, L. H., “Knots and Physics,” (2nd Edn.), World Sci-
entific, London, UK (1993).

27. Zeisberg, P., Stitch-bonding Technology for the Production
of Innovative Composites, Melliand Textilber. 71(11), 872–874
(1990).

28. Willsmore, H., “Macrame. A Comprehensive Guide,” Faber
and Faber, London, UK (1979).

29. Barker, J., “Making Plaits and Braids,” Batsford, London, UK
(1973).

30. Earnshaw, P., “Lace Machines and Machine Laces,” (Vol. 1),
Gorse, Guildford, UK (1994).

31. “Textile Terms and Definitions,” McIntyre, J. E., and Daniels,
P. N., Eds., (10th Edn.), The Textile Institute, Manchester, UK
(1995).

32. Hearle, J. W. S., and Du, G. W., Forming Rigid Fibre Assem-
blies: the Interaction of Textile Technology and Composite
Engineering, J. Textile Inst. 81, 360–383 (1990).

33. Khokar, N., 3D Fabric Forming Process: Distinguishing
Between 2D-weaving, 3D-weaving and Unspecified Non-
interlacing Process, J. Textile Inst. 87(Part I), 97–106 (1996).

34. “Textile Structural Composites,” Chou, T.-W., and Ko, F. K.,
Eds., Elsevier, Amsterdam, Netherlands (1989).

35. Newton, A., and Sarkar, B. P., An Analysis of Compound
Weaves, J. Textile Inst. 70, 427–438 (1979).

36. Milashus, V. M., and Rektailis, V. K., The Principles of Weave-
coding, J. Textile Inst. 79, 598–605 (1988).

37. Ping, G., and Lixin, D., Algorithms for Computer-aided Con-
struction of Double Weaves: Application of the Kronecker
Product, J. Textile Inst. 90(1), 158–176 (1999).

38. Koltisheva, N. G., and Grishanov, S. A., A Systematic
Approach Towards the Design of a Multi-layered Fabric:
Modelling the Structure of a Multi-layered Fabric, J. Textile
Inst. 97(1), 57–69 (2006).

39. Grishanov, S. A., Cassidy, T., and Spencer, D. J., A Syntactic
Method of Description and Analysis of Weft Knitted Fabric
Structure, Knitting Int. 1227, 60–62 (1996).

40. Prasolov, V. V., and Sossinsky, A. B., “Knots, Links, Braids
and 3-Manifolds: an Introduction to the New Invariants in
Low-dimensional Topology,” American Mathematical Society,
Providence, Rhode Island (1997).

41. Cromwell, P. R., “Knots and Links,” Cambridge University
Press, Cambridge, UK (2004).

42. Adams, C. C., “The Knot Book: an Elementary Introduction
to the Mathematical Theory of Knots,” American Mathemati-
cal Society (2004).

43. Chmutov, S., and Duzhin, S., CD Book, “Introduction to Vas-
siliev Knot Invariants: Draft Version,” (monograph on the
internet) (2006) http://www.pdmi.ras.ru/\textasciitilde duzhin/
papers/.

44. Hoste, J., Thistlethwaite, M., and Weeks, J., The First
1,701,936 Knots, Math. Intelligencer 20(4), 33–48 (1998).

45. Hoste, J., The Enumeration and Classification of Knots and
Links, In “Handbook of Knot Theory,” Menasco, W., and
Thistlethwaite, M., Eds., Elsevier, Amsterdam, Netherlands,
pp. 209–232 (2005).

46. Grishanov, S. A., Meshkov, V. R., and Omel’chenko, A. V.,
Kauffman-type Polynomial Invariants for Doubly Periodic
Structures, J. Knot Theory Ramifications 16(6), 779–788 (2007).

47. Hardy, G. H., and Wright, E. M., “An Introduction to the The-
ory of Numbers,” Clarendon Press, Oxford, UK (1975).

 by Andrew Ranicki on October 11, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com

