
http://trj.sagepub.com

Textile Research Journal 

DOI: 10.1177/0040517508096221 
 2009; 79; 822 Textile Research Journal

S. Grishanov, V. Meshkov and A. Omelchenko 
 Structures

A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile

http://trj.sagepub.com/cgi/content/abstract/79/9/822
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:Textile Research Journal Additional services and information for 

 http://trj.sagepub.com/cgi/alerts Email Alerts:

 http://trj.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://trj.sagepub.com/cgi/content/refs/79/9/822 Citations

 by Andrew Ranicki on October 11, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com/cgi/alerts
http://trj.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://trj.sagepub.com/cgi/content/refs/79/9/822
http://trj.sagepub.com


 Textile Research Journal Article

Textile Research Journal Vol 79(9): 822–836 DOI: 10.1177/0040517508096221 www.trj.sagepub.com © 2009 SAGE Publications
Los Angeles, London, New Delhi and Singapore

A Topological Study of Textile Structures. Part II: Topological 
Invariants in Application to Textile Structures

S. Grishanov1

TEAM Research Group, De Montfort University, Leicester, 
UK

V. Meshkov and A. Omelchenko
St Petersburg State Polytechnical University, St 
Petersburg, Russia

The main aim of this series of papers is to establish a new
technology-independent classification of textile structures
based on topological principles. Part I of the series [1]
introduced a new approach to the analysis of structural
characteristics of textiles based on modern methods of
knot theory. It has been shown that textile structures as a
special case of doubly-periodic interlaced structures can be
considered as specific knots or links which are different
from those studied in classical knot theory. A doubly-peri-
odic structure can be represented as a diagram drawn on
the surface of the torus, whereas knots usually are repre-
sented by diagrams on the plane.

In knot theory [2–4] knots and links are classified using
diagrams; the main classification criterion is the number of
crossings in the diagram. In this way, the first step in the
classification of textiles is enumeration of different torus
diagrams starting from the simplest. This is the prime prob-
lem of this study. Thus, the intention is to produce a catalog
of doubly-periodic structures similar to the catalog of knots
and links (see, e.g., [3]).

Algorithms of knot diagram classification usually
include two stages – (1) generation, and (2) selection. The
main objective of the generation stage is to obtain a set of
diagrams that represents all knots with a given number of

crossings. As a rule, the set obtained is redundant, because
there are many different diagrams of the same knot. Dupli-
cates must be found and eliminated at the selection stage.
Classification of doubly-periodic structures follows the
same scheme.

For the selection procedure a mathematical tool is
needed to determine whether, from the topological point
of view, two different diagrams correspond to the same
knot (doubly-periodic structure) or different knots; this is
not always an easy task (see Figure 1). In knot theory this
question is known as the equivalence problem.

The topological equivalence problem can be resolved
using ‘invariants’. In simple words, an invariant is some
property that holds for all different diagrams of the same
knot.1

This paper considers some of the knot invariants in
application to textile structures and also introduces a spe-
cific polynomial invariant that can be used for classification
of textile structures.

Abstract This paper is the second in the series
on topological classification of textile structures.
The classification problem can be resolved with
the aid of invariants used in knot theory for classi-
fication of knots and links. Various numerical and
polynomial invariants are considered in application
to textile structures. A new Kauffman-type polyno-
mial invariant is constructed for doubly-periodic
textile structures. The values of the numerical and
polynomial invariants are calculated for some sim-
plest doubly-periodic interlaced structures and for
some woven and knitted textiles.

Key words topology of textiles, knot theory, knot
invariant, Kauffman polynomial, doubly-periodic
interlaced structure
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Basic Notions and Definitions
Let us briefly outline some definitions [2–4] and assump-
tions introduced in Part I of this series of papers [1].

Textile structures are considered exclusively from the
topological point of view, without taking into account the
manufacturing method or the physical properties of threads
from which they may be made. For example, in the case of
woven structures, no consideration is given to the differ-
ences between the warp and the weft.

In the context of this study, the term ‘structure’ refers to
binding patterns of interlacing threads in knitted and woven
fabrics without considering any internal structural features
of the threads involved.

This study focuses on regular textile structures which have
a pattern of interlaced threads infinitely repeating in two
transversal directions. In this way, the textile structures are
considered as a specific case of doubly-periodic structures.

We give the name 2-structure to any doubly-periodic inter-
laced structure that is non-trivial, i.e. the structure cannot
be divided into separate parts without breaking the consti-
tuting threads. 2-structures are called textile structures if they
can be produced using one of the known methods of textile
technology.

Term unit cell is used to refer to a minimal repeating
part of the structure. The unit cell can be chosen in an infi-
nite number of ways, i.e., if an integer lattice is associated
with a 2-structure, then an arbitrary parallelogram of unit
area such that its sides are integer vectors is a unit cell (see

Figure 2(a)). Note that a unit cell is not always equal to
what is considered as a repeat in textile technology (see [1,
Section 3.6], also Figure 14).

A planar diagram of a 2-structure is a non-singular pro-
jection of 2-structure onto the plane with additional infor-
mation at each crossing point about which thread is on the
top (Figure 2(a)). Along with diagrams, projections of 2-
structures are also considered that do not distinguish the
position of threads in crossings (Figure 2(b)).

The periodic nature of 2-structures is modelled using a
torus diagram, which is a diagram of a unit cell drawn on
the surface of the standard torus (Figure 2(c)). For the sim-
plification of drawings, torus diagrams are presented in an
unfolded form as a unit square (Figure 1(b)). A torus dia-
gram consists of several closed smooth curves drawn on the
torus surface; each curve is a ‘component’ of the diagram.

For torus diagrams important twisting operations along
longitude and meridian lines are defined (see [1, Figure 14]).
Full revolution twists of the torus correspond to the selec-
tion of a different unit cell on the planar diagram of 2-
structure (Figure 2(a)).

Knot Invariants

In knot theory two knots, K1 and K2, are considered as
equivalent (K1 ~ K2) if they can be continuously trans-
formed into each other in space without breaks and self-
intersections. Such a transformation is called an isotopy.

Figure 1 Two different diagrams
of a knot (Perko pair) (a), two dia-
grams of single jersey (b).

Figure 2 A planar diagram and two different unit cells (a); an unfolded torus diagram –projection in a unit square (b); a
torus diagram (c).
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During an isotopy, the corresponding knot diagram
goes through deformations which can be decomposed into
a series of elementary transformations known as Reide-
meister moves (Figure 3). It is clear that any knot or link
can be represented by infinite number of different dia-
grams.

One of the main problems of knot theory is the equiva-
lence problem, i.e. how it can be decided whether two given
knots are equivalent or not. The standard way of resolving
this problem is to construct invariants.

A knot invariant is a function defined on the set of all
knots that assumes the same value on knots from the same
equivalence class:

K1~ K2 ⇒ X(K1) = X(K2) (1)

The most used invariants are associated with knot dia-
grams. A function defined on diagrams is a knot invariant
if and only if it does not change in Reidemeister moves Ω1,
Ω2, and Ω3.

Many different invariants are known. The value set of
an invariant can be a numerical set, a set of matrices, a set
of polynomials, and so on. Respectively, there are numeri-
cal invariants, matrix invariants, or polynomial invariants.
The reason to use various invariants simultaneously is that
no one of them can discriminate all different knots: the
statement opposite to Equation 1

X(K1) = X(K2) ⇒ K1~ K2

can only be true if the invariant X(·) is complete.

Recently, a new type of knot invariant has been pro-
posed [5], which was called finite type invariant or Vassiliev
invariant. A Vassiliev invariant is, in fact, an infinite series
of numerical invariants where each next invariant is more
powerful than the previous one. On the basis of this prop-
erty it has been suggested that the system of Vassiliev
invariants is a complete knot invariant. This proposition
has not yet been proved or disproved but it is known that
the system of Vassiliev invariants is more powerful than
any of the other known invariants.

It has been shown in Part I [1] that textile structures can
be represented as diagrams on the torus. An invariant of
double-periodic structures may be defined as a function on
the set of torus diagrams that does not change under Rei-
demeister moves (on the torus surface). However, this con-
dition is not sufficient because it has been shown that the
same planar diagram can be represented by an infinite
number of torus diagrams. For this reason the equivalence
of torus diagrams must be considered up to longitudinal and
meridional twists of the torus; in other words, any invariant
of 2-structures must be independent of torus twists.

The following sections consider some of the invariants
that can be used for classification of 2-structures. Figure 4
shows examples of 2-structures (unit cells) that will be used
to illustrate the discussion that follows.

Basic Numerical Invariants
In this section the simplest and the most basic invariants are
introduced and their application to 2-structures is analysed.

Figure 3 Reidemeister moves.

Figure 4 Examples of 2-struc-
tures: wire netting (a); plain weave
(b); single jersey (c); simple loop-
ing (d); triaxial weaving (e); deriva-
tive of single jersey (f); 4-axial
structure (g); single jersey with
inlay threads (h); tricot with
opened loops (i); chain-mail (j).
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Some of the invariants are defined for oriented links [2–
4] (2-structures). In this case oriented diagrams are consid-
ered (see, for example, Figure 8), and crossing sign ε = ±1
can be associated with every crossing according to Figure 5.

Crossing Number
Crossing number is the main classification criterion for
knots and links. All existing knot tables enumerate knots
and links in order of increasing crossing number. We will
classify 2-structures in the same manner. In the case of 2-
structures, ‘number of crossings’ means the number of
crossings contained in a torus diagram (in a unit cell).

The number of crossings in a given diagram, D, of a link
(2-structure), L, is denoted as cn(D). The number of cross-
ings may change when Reidemeister moves are applied to
the diagram (see, e.g., Figure 1(b)). The crossing number
of a link (2-structure) L is defined as the minimum number
of crossings in any diagram of the link (2-structure) L:

cn(L) = min{ cn(D) : D is diagram of L}.

Any diagram of the link L which has exactly cn(L)
crossings is called minimal.

Construction of a minimal diagram is not a simple task;
the following straightforward algorithm usually achieves
the goal.

1. While (Ω1 and Ω2 are applicable) 
reduce cn(D); end;

2. Find all possible sequences 
of Ω3 moves;

3. Do the next possible sequence 
of Ω3 moves;
If (Ω1 and Ω2 are applicable) goto 1;
else goto 4; end;

4. If (all possible sequences of Ω3 moves 
already tried) exit;

5. else goto 3; end.

The algorithm uses Reidemeister moves Ω1 and Ω2 to
reduce the number of crossings; Ω3 move is used to trans-
form the diagram into a form that may make it possible to
apply Ω1 or Ω2. However, this simple idea does not work in
the general case. For example, it is known [2, 3] that there
are diagrams for which it is necessary to increase the number
of crossings before it can be reduced. Although theoretically
this difficulty can be overcome using, in addition to Reide-
meister moves, some special diagram transformations (so
called flypes [3]), but in practical terms the algorithm based
on this approach is very time-consuming even for modern
computers.

It can be proven that every diagram in Figure 4 is min-
imal because neither Reidemeister moves (Ω1, Ω2 and Ω3)
nor flypes can reduce the number of crossings. The cross-
ing numbers for 2-structures in Figure 4 are listed in
Table 1.

Component Number and Related 
Invariants
Component number µ(L) of a link (2-structure) L is
another basic invariant that, unlike crossing number, can
be easily calculated and may be useful for the classification
of textiles.

Figure 5 Crossing sign definition for oriented diagrams.

Table 1 Numerical invariants for structures in Figure 4.

L cn µ lks ax dis spl tu vec

(a) 2 1 2 1 1 1 1 {(1, 0)}

(b) 2 2 0 2 1 1 1 {(1, 1), (–1, 1)}

(c) 4 1 0 1 2 2 2 {(1, 0)}

(d) 3 1 1 1 1 1 1 {(2, 0)}

(e) 3 3 3 3 1 1 1 {(1, 0), (1, 1), (0, 1)}

(f) 6 1 0 1 2 2 2 {(1, 0)}

(g) 7 4 7 4 1 1 1 {(1, 0), (1, 1), (0, 1), (–1, 1)}

(h) 8 3 2 2 1 1 3 {(1, 0), (0, 1), (0, 1)}

(i) 8 1 0 1 2 2 2 {(1, 0)}

(j) 4 1 0 1 1 2 2 {(1, 0)}

 by Andrew Ranicki on October 11, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com


826 Textile Research Journal 79(9)TRJTRJ

Let us recall that for 2-structures the component number
is the number of smooth closed curves which form the torus
diagram. The value of µ(L) of a 2-structure L, obviously,
does not depend on torus twists (the unit cell choice); thus,
µ(L) is an invariant of 2-structures. For the 2-structures in
Figure 4 the component numbers vary from 1 to 4 (see
Table 1).

The number of components should not be confused
with the number of threads passing through the unit cell on
the planar projection. The latter depends on the unit cell
definition and thus is not an invariant.

In the case of 2-structures it is possible to construct spe-
cific invariants related to µ, because each component of 2-
structure can be associated with an individual characteristic
that shows how the component is embedded in the torus.
Any component of a 2-structure planar diagram either
forms a closed loop (cycle) or infinitely repeats with some
period in some direction on the plane (Figure 6). In the lat-

ter case it is possible to define the axis, along which the
component runs, and the periodicity vector of the compo-
nent. For example, in Figure 6 the periodicity vector for
one of the threads of the 2-structure Figure 4(f) is shown.

Note that any periodicity vector v has integer coordinates:
v = (m, n), m, n ∈ Z. It is always possible to assume that ordi-
nate n ≥ 0, and m ≥ 0 if n = 0. This assumption means that
components of the 2-structure are considered as ascend-
ing, or directed, from left to right.

The number of different axes of a 2-structure L is an
important invariant. This invariant will be called the axis
number and denoted as ax(L). Structures (a), (b), (e), and
(g) in Figure 4 give examples of 1-, 2-, 3-, and 4-axis 2-struc-
tures respectively. The axis number invariant is related to
technological feasibility of 2-structures, for example, most
woven fabrics have two axes (ax = 2) whereas knitted struc-
tures usually have only one axis (ax = 1). An example of a
knitted structure with inlay threads for which ax = 2 is
shown in Figure 4(h).

Another invariant associated with technological feasibil-
ity of 2-structures is cycle number, cycl(L), which is the
number of cyclic components in the 2-structure L. Note that
any cyclic component corresponds to a contractible cycle in
the torus diagram (a cycle that does not coil the torus). The
chain-mail-type structure (j) in Figure 4 is the only example
of a 2-structure with cycl ≠ 0. Chain-mail-type structures
cannot be manufactured using any of the known production
methods of textile technology.

A more powerful invariant can be obtained which com-
bines the properties of µ, ax, and cycl invariants by taking
into account the directions of all axes of a 2-structure and
the number of components along each axis.

Let us assume that the periodicity vectors of compo-
nents of 2-structure L are:

{v1, v2, …, vN}, where vi = (mi, ni), mi ∈ Z, ni ∈ Z + .

We will suppose that vectors are listed in counter-clock-
wise order starting from the left–right direction. For exam-
ple, the set of vectors in Figure 7(a) is:

{(–5, 4), (–7, 5), (–6, 4), (–6, 3), (–3, 1)}.

The set of vectors V = {vi} by itself is not an invariant
because it depends on torus twists; therefore in order to

Figure 6 On the definition of periodicity vector of a 2-
structure component.

Figure 7 A set of vectors (a) and its
canonical form (b).
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define an invariant, it is necessary to transform the set V to
a canonical form using twists in some way.

Transformation of a vector v by a sequence of torus twists
can be represented as a product of the vector v by a unitary
matrix U with integer elements (U ∈ SL2(Z)):

or

ad – bc = 1, a, b, c, d ∈ Z,

where SL2(Z) is the special linear group of all integer
matrices with determinant one.

For example, single positive meridional twist, single
negative meridional twist, single positive longitudinal, and
single negative longitudinal twists (see [1, Section 3]) are
represented, respectively, by matrices

M + = , M– = , 

L + = , L– = .

The canonical form of a set of vectors V = {vi} can be
defined in the following way.

Let us associate a quadratic functional Q with the set V =
{vi} = (mi, ni):

Q(V) = = .

A twist sequence defined by a unitary matrix U converts
the vectors {vi} to a set = { }, = viU and the value of
the functional changes to

Q( ) =  =  = viUUTvi
T.

We can now set the problem as follows: for a given set of
vectors V = {vi} find a twist sequence (a unitary matrix U)
that minimizes the value of the functional Q:

Q( ) = = viUUTvi
T → min, U ∈ SL2(Z). (2)

It can be shown (given some additional conditions) that the
Equation 2 always has a unique non-trivial solution U0.

The canonical form of a set of vectors V = {vi} is the set
V0 = {viU0} where the matrix U0 is the solution of equation

(2). For example, the canonical form of the set in Figure 7(a)
is the set

{(0, 2), (2, 1), (1, 2), (–2, 3), (–3, 3)}

shown in Figure 7(b); the values of the functional Q are
222 and 45, respectively.

The canonical form of the set of periodicity vectors of a
2-structure L is an invariant which will be denoted as
vec(L). For the 2-structures in Figure 4 the corresponding
values of the vec invariant are presented in Table 1.

Linking Number
In knot theory one of the important characteristics of a link
with several components is the pair-wise linking number.

Let us consider an oriented link L = K1 ∪ K2 ∪ … con-
sisting of components K1, K2, … and let D be an arbitrary
diagram of the link, and Di be the part of D corresponding
to the component Ki.

Linking number, lk(Ki, Kj), of two components, Ki and Kj,
i ≠ j, is defined as the sum of crossing signs (see Figure 5)
over all crossings in which sub-diagrams Di and Dj cross
each other:

lk(Ki, Kj) = .

For the general links the value of lk(Ki, Kj) is always
even whereas for 2-structures that is not always the case.

A (symmetric) N × N matrix, LK, of linking numbers
lk(Ki, Kj) can be associated with a link (2-structure) L with
N components. Matrix LK, if it is considered up to simulta-
neous permutations of its rows and columns, is an invariant
of oriented links.

It is also possible to define total linking number for a
non-oriented link (2-structure) L as follows:

lks(L) = 

The values of the lks invariant for the 2-structures in
Figure 4 are presented in Table 1.

Note that invariants related to linking number are rela-
tively weak. A good example is that for both the Bor-
romean link and a trivial three-component link matrix LK
is a null matrix and thus does not discriminate between
these two links (Figure 8(a)). Similar examples can be
given for 2-structures (see Figure 8(b)). 

Unknotting Number
Switching one of the crossings in a knot diagram, Figure 5,
may change the topological type of the knot. The question

ṽ vU= m̃ ñ,( ) m n,( )
a b
c d 
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is, how many crossings should be switched to untangle the
knot?

The unknotting number, u(K), of a knot K is the least
number of crossings in a diagram of knot K, which must be
switched, for the knot to be transformed into an unknot.

Similar to crossing number, this numerical invariant
appears to be simple but it is difficult to calculate. The
unknotting number is a weak invariant; the value of u may
be the same for very different knots. Thus, it cannot be reli-
ably used for the identification of different knots. However,
for 2-structures it is possible to introduce several invariants
similar to the unknotting number that can be used to char-
acterize structural stability of textiles.

Let us define disintegrating number, dis(L), of 2-structure
L as a minimum number of crossings in a diagram of the
structure L which must be switched for the structure to lose
integrity as a doubly-periodic structure, or to disjoin at
least one component from the structure.

Let splitting number, spl(L), of 2-structure L be a mini-
mum number of crossings which must be switched in order
to disjoin all components of the structure whilst the compo-
nents themselves may remain knotted.

Finally, the total unknotting number, tu(L), is the mini-
mal number of crossings which must be switched in order
to disjoin all components of the structure and to unknot all
of them.

All these invariants are very difficult to calculate in the
general case. However, for the simplest structures such cal-
culations can be done manually. For example, it is easy to
calculate the invariants defined above for the 2-structures
in Figure 4 (see Table 1).

Numerical invariants considered in this section do not
resolve the classification problem for 2-structures because
they do not characterize structures in a unique way, even if
they are used together. For example, it can be shown that
the values of all the numerical invariants described above
derived for all 1/n and n/1 twills will be equal to those for
satins/sateens with (n + 1) × (n + 1) repeat (n ≥ 4), i.e.,

cn = n + 1, µ = 2, lks = n – 1, ax = 2, dis = 1, spl = 1, and
tu = 1. Some of numeric invariants, such as unknotting
number and crossing number, are very difficult to compute
and this is another disadvantage.

In the next section we consider a more powerful class of
invariants.

Polynomial Invariants

Polynomial invariants are quite simple and yet sufficiently
powerful. They play an important role in knot theory and
its applications; see, for example, [2–4, 6]. Unlike numeri-
cal invariants for which their value is a number, a polyno-
mial invariant is a function that associates a (Laurent)
polynomial with each individual knot or link (Figure 10).

The first polynomial invariant for knots was introduced
in 1928 by Alexander [2–4]. The Alexander polynomial
remained the only invariant of this kind until 1985 when
Vaughan Jones introduced his famous invariant, which in
some cases is more powerful than the Alexander polynomial.
Jones’ polynomial discriminates all knots with a crossing
number up to nine. Since then, using Jones’ ‘skein-rela-
tions’ approach, many more polynomial invariants have
been discovered; the most famous are the Conway, Kauff-
man, and HOMFLY polynomials (see [2, 3]).

Figure 8 Borromean link (a) and a
2-structure (b) that cannot be dis-
criminated from trivial link using
linking numbers

Figure 9 Unknotting number of this knot is 1.

Figure 10 Jones polynomials of
some knots and links.
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A very simple and pictorial interpretation of the con-
struction procedure for Jones-type polynomials was pro-
posed by Louis Kauffman in terms of diagram states [3].

The next section outlines Kauffman’s method of con-
structing the polynomial invariant [2] and proposes a new
polynomial invariant for 2-structures based on Kauffman’s
ideas.

State-sum Model of Diagrams for Links and 
2-structures
Let us consider an arbitrary diagram D of a link (2-struc-
ture) with n crossings. Splitting of a crossing is a local opera-
tion (surgery) which is applied within a small neighbourhood
of the crossing (Figure 11). A splitting results in one of two
diagrams which are different from the original diagram
only within the neighbourhood of the given crossing.

Let us denote two different splitting operations as A and
B. It is essential in the splitting definition that the crossings
are considered to be oriented in such a way that the upper
strand passes from bottom left to top right.

We shall number the crossings of the diagram in an arbi-
trary way and apply one of the splittings, A or B, to each
crossing. The overall operation can be defined by a binary
string σ of length n consisting of letters A and B:

.

This string can be interpreted as an instruction to apply
splitting A to crossing No 1, splitting B to crossing No 2 and
so on.

It can be said that string σ defines a state of the diagram
D; this will be denoted as Dσ. Obviously, there are 2n dif-
ferent states of a diagram D with n crossings.

It can be seen from Figure 12(a) that the diagram of a
link in a state σ is a disjoint union of a number of non-
knotted and non-intersecting closed curves (a trivial link);
each of the components is isotopic to a circle O:

Dσ =  = (3)

Here Dσ is the diagram D in state σ; γσ is the number of
components of diagram Dσ.

In the case of 2-structures, any state of a torus diagram
corresponds to a set of non-intersecting curves on the
torus. But, in contrast to plane diagrams, a trivial torus dia-
gram, together with circles, may also contain a set of non-
intersecting closed coils (components) wound around the
torus. Such a set will be referred to as a winding and
denoted as (m, n), where m and n are the number of inter-
sections of the windings with a torus meridian and longi-
tude, respectively. For example, the state of the structure
presented in Figure 12(b) contains two circles and a (0, 1)-
winding.

The windings have simple properties, as below [7]:

1. No winding can contain components which have dif-
ferent ‘slope’.

2. If g = gcd(m, n) then there are exactly g identical
components in the winding.

3. The number of winding components does not
change in torus twists.

Similar to equation (3), the state σ of a torus diagram D
can be represented as follows:

Dσ = (4)

where γσ may be equal to 0 if there are no circles in the dia-
gram Dσ .

If there are no windings in a given state of the diagram,
then we can assume that one of the circles is a ‘null wind-
ing’ denoted as (0, 0). In this way, equation (4) will have
the same form for all possible states of a torus diagram.

Figure 11 Two types of splitting.

σ
ABABB…BA

n
=       

Figure 12 On the definition of the
state of a diagram.

OOO…O

γσ

    

O
γσ

∪
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γσ

∪     

 by Andrew Ranicki on October 11, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com


830 Textile Research Journal 79(9)TRJTRJ

Kauffman Bracket
Kauffman’s approach is based on the idea of a successive
reduction of the number of crossings in the original diagram
of a link (2-structure) using splitting operations (Figure 11).

Let us associate a polynomial , the Kauffman bracket,
of three variables a, b, and c, to every diagram D according
to the relations

 = c . (6)

Equation (5), which is known as the Kauffman skein-rela-
tion, relates the values of the Kauffman bracket  on three
diagrams which are different only within the neighbourhood
of one crossing. It follows from equation (6) that adding an
isolated circle O to a diagram D results in multiplying the
value of the bracket by a variable c.

Let us assume that the value of the Kauffman bracket
for an isolated circle  is equal to unity:

 = 1 (7)

Then, according to equation (6), if diagram D in state σ
contains γσ circles, then the value of the bracket is:

= . (8)

Skein-relation in equation (5) enables the value of the
Kauffman bracket for a diagram with n crossings to be
expressed through its values on diagrams with n – 1 crossings.
Therefore, using equation (5) recursively the value of 
can be expressed through the bracket values on all 2n states
of the original diagram D:

 = , (9)

where wσ is a “weight” of the state σ. The summation is
carried out over all 2n states of D.

It can be seen that the weight wσ of the state σ depends
only on the number of times the bracket  has been
multiplied by the variable a or b during the recursion, i.e.
on the number of times the letter A or B appears in the
string σ. Taking into account equations (8) and (9), the fol-
lowing explicit formula for  can be obtained:

 = , (10)

where ασ and βσ are the number of splits of type A and B,
respectively, in the state σ.

It has been shown in the section State-sum Model of
Diagrams for Links and 2-structures above that in the case
of 2-structures a torus diagram D in a state σ  may contain
a winding (mσ, nσ). Thus, it is necessary to define the val-
ues of the Kauffman brackets for windings.

Denoting  =  and applying the same
method as has been used above for general links, we obtain
an explicit formula for the Kauffman bracket for torus dia-
grams:

 = , (11)

Equation (11) may contain equal multipliers ;
collecting similar terms yields

 = , (12)

where Qk(a, b, c) are polynomials.
Note that multipliers  in equation (12) can be

considered as additional variables.

Polynomial Invariant of 2-structures
For the polynomials defined by equations (10) and (11) to
be invariants for links and 2-structures respectively it is
necessary that they be invariants with respect to Reide-
meister moves Ω1, Ω2, and Ω3 and, in the case of 2-struc-
tures, also with respect to torus twists.

It can be shown that using freedom in choosing varia-
bles a, b, and c, the invariance of the Kauffman bracket
with respect to Ω2 and Ω3 can be provided by assuming that
(see, for example, [2])

b = a–1, c = –(a2 + a–2). (13)

However, the application of Ω1 to diagram D results in
multiplying the polynomial  by :

and, in the same way,

In order to define an isotopy invariant it is necessary to
introduce the self-writhe number sw(D) of diagram D. Let a
link (2-structure) L consist of several components Ki which

D〈 〉

(5)

D O∪〈 〉 D〈 〉

⋅〈 〉

O〈 〉

O〈 〉

Dσ〈 〉 c
γσ 1–

D〈 〉

D〈 〉 wσ Dσ〈 〉
n
∑

Dσ〈 〉

D〈 〉

D〈 〉 a
ασb

βσc
γσ 1–

σ
∑

mσ nσ,〈 〉 mσ nσ,( )〈 〉

D〈 〉 a
ασb

βσc
γσ 1–

σ
∑ mσ nσ,〈 〉

mσ nσ,〈 〉

D〈 〉 Qk a b c, ,( ) mk nk,〈 〉
k
∑

mk nk,〈 〉

D〈 〉 a 3±–

(14)

(15)
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can be oriented in an arbitrary way and let Di be the part of
diagram D that corresponds to the component Ki. The self-
writhe number for the sub-diagram Di can be defined as
the sum of crossing signs over all self-intersections of the
sub-diagram:

sw(Di) = .

For the whole diagram D the self-writhe number is
defined by the formula:

sw(D) = .

Note that the self-writhe number sw(D) is not an invari-
ant of the link L (it changes in Ω1); the value of sw(D) does
not depend on the orientation of the diagram components.

Substituting equation (13) into equations (10) and (11),
and multiplying the resultant polynomial of variable a by
the coefficient , a normalized Kauffman polyno-
mial of the link L [3] can be obtained:

X(L) = . (16)

In the same way, from equations (11) and (12) a Kauff-
man-type polynomial for 2-structures can be obtained in
the form:

X(L) = , (17)

X(L) = (18)

where  (see equa-
tion (12)) are some polynomials of variable a.

Equations (17) and (18) define a polynomial invariant
with respect to Reidemeister moves. Therefore, it is an
isotopy invariant for 2-structures. But equations (17) and
(18) still depend on the choice of the unit cell because mul-
tipliers , associated with windings, depend on torus
twists.

There are various ways to obtain an invariant with
respect to torus twists from equations (17) and (18). Paper
[7] suggested introducing an additional variable t by assum-
ing that for any winding (m, n) the bracket  = tg,
where g = gcd (m, n) is the number of winding compo-
nents, which obviously does not depend on torus twists.
However, this approach leads to loss of important informa-
tion about windings as it does not discriminate windings
with different slope (e.g. a torus meridian and a longitude
are considered to be identical).

The most powerful invariant based on equation (18)
can be constructed by considering the set of windings
{(mk, nk)} as a set of integer vectors {vk}, similar to peri-
odic vectors in the section Component Number and Related
Invariants, above (see Figure 7). Then all that is necessary
is to transform the set {vk} to canonical form by using torus
twists as described under Component Number and Related
Invariants.

Thus, equation (18), where the set of windings {(mk,
nk)} is in canonical form, defines a Kauffman-type invari-
ant of 2-structures.

Examples
This section gives examples of the calculating procedure of
X(·) invariant for some simple structures in Figure 4;
“winding multipliers” are highlighted in bold.

The formulae required for the calculations are as fol-
lows:

 = (20)

 = (µ j, vj), (21)

X(L) = (22)

Here D is an arbitrary diagram of the 2-structure L; the
set {(µj, νj)} is the canonical form of the set of windings
{(mi, ni)}.

The following formulae are also useful for simplifying
the computation:

Example 1
Let us calculate the value of polynomial invariant X(·) for
the plain weave (2-structure in Figure 4(b)), which has two
crossings. First of all, let us number the crossings in the
diagram of the plain weave in Figure 4(b) in an arbitrary
way and then use Kauffman skein relations in order to cal-
culate the polynomial invariant for the plain weave. Let us
apply splittings A and B described under State-sum Model
of Diagrams for Links and 2-structures above to crossing
No 1. This, according to equation (19), enables the value of
Kauffman bracket for a plain weave diagram to be expressed
through its values on two new diagrams containing one
crossing each:

εc

c Di∈
∑

sw Di( )
i
∑

a–( ) 3sw D( )–

a–( ) 3sw D( )– a
ασ βσ–

a2– a 2––( )
γσ 1–

σ
∑

a–( ) 3sw D( )– a
ασ βσ–

a2– a 2––( )
γσ

mσ nσ,〈 〉
σ
∑

Pk a( ) mk nk,〈 〉
k
∑

Pk a( ) a–( ) 3sw D( )– Qk a a 1– a2– a 2––, ,( )=

mk nk,〈 〉

m n,〈 〉

(19)

D O∪〈 〉 a2 a 2–+( ) D〈 〉,–

mi ni,( )〈 〉

a–( ) 3sw D( )– D〈 〉 .

(23)
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The application of splittings A and B to crossing No 2 in
these new diagrams leads to four new diagrams with no
crossings and the formula as follows:

It can be seen that the first and the fourth patterns on
the right in equation (24) are equivalent to an isolated cir-
cle and thus they can be considered as null windings intro-
duced in the section State-sum Model of Diagrams for Links
and 2-structures; the winding multiplier for these diagrams
is (0, 0). In a similar way, the second pattern is equivalent
to two torus meridians whereas the third pattern is equiva-
lent to two torus parallels; their winding multipliers are (0,
2) and (2, 0), respectively.

Substituting this into equation (24) yields:

The two components of this structure have no self-intersec-
tions, so sw(D) = 0; the set of windings {(0, 0), (2, 0), (0, 2)} is
already in canonical form. Thus, the value of the invariant is

X = (a – 2 + a2)(0, 0) + (2, 0) + (0, 2).

Example 2
The second example considers double wire netting, Figure 13
(2-structure 31

2). This example illustrates the case where
calculations can be simplified by using equation (23):

= a7(1, 1) – a3(1, 1) + a–1(1, 1) + a–3(–1, 1).

The self-writhe number for this structure also is equal
to zero. The winding set {(1, 1), (–1, 1)} does not require
transformation to canonical form. The polynomial is:

X = (a–1 – a3 + a7)(1, 1) + a – 3(–1, 1).

Example 3
Finally, let us calculate polynomial invariant for single jer-
sey fabric (Figure 4(c)).

= –a6(1, 2) – a4(1, 0) + a2(1, 2) + (1, 0) + (1, 0) + a–2(–1, 2) + (1, 0) – a–4 (1, 0) – a–6 (–1, 2).

(24)

Figure 13 2-structures with 2 and
3 crossings.
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Although in this case there are self-intersection points the
self-writhe number of the whole diagram is 0.

We again do not need transformation to canonical
form. The polynomial of single jersey is:

X = –(a–4 – 3 + a4)(1, 0) + (a2 – a6)(1, 2)

 – (a–6 – a–2)(–1, 2).

Note that the above computations did not require the
application of the ‘complicated’ equation (20) due to the
simplifications of the diagram achieved by using equation
(23).

Topological Invariants of Textile 
Structures

This section provides tables of invariants considered above
for some simple 2-structures and also for some basic woven
and knitted textiles.

As was emphasised above, the main purpose of invari-
ants is topological classification of 2-structures.

Let us begin with the full table of 2-structures with
crossing number 2 and 3 (Figure 13). It is necessary to
emphasize that this table contains all topologically differ-
ent structures with cn ≤ 3; it can be proven that there are
no other structures of the given complexity.

The first row in Figure 13 shows one-component struc-
tures; the second row presents multi-component 2-struc-
tures. The denotation of 2-structures in Figure 13 follows a
commonly accepted system for knots and links, i.e., knots
are denoted as Mn and links as Mn

k, where M is crossing
number, n is the ordinal number of knot (or link) within the
group with M crossings, and k is the component number.

It can be seen that most patterns in Figure 13 represent
commonly known structures that can be manufactured
using one of the methods employed in the textile industry.
For example, 21 is wire netting, 21

2 is plain weave, 31
3 is tri-

axial fabric, and 33
2 is 1/2 twill. Structures 31, 32, and 31

2

have been considered by Emery as examples of primary
structures (see [8], pages 31, 30, and 62, respectively).

Table 2 gives the values of polynomial invariant for the
structures in Figure 13.

It can be seen that all the structures in Figure 13 are dis-
criminated by the polynomial invariant constructed under
Polynomial Invariant of 2-structures above.

Table 3 contains numerical invariants introduced under
Basic Numerical Invariants above for 2-structures in Figure 13.

Now let us use invariants for the analysis of some conven-
tional textile fabrics. Figure 14 shows some of the simplest
woven structures; for each structure we give a commonly-
used representation of the weaving repeat and also select a

Table 2 Polynomial invariants for structures in Figure 13.

L X(L)

21 a–4 (1, 1) – (a–10 – a–6)(– 1, 1)

21
2 (a–2 + a2)(0, 0) + (2, 0) + (0, 2)

31 – (a4 – a8)(1, 1) + (a–2 – a2)(–1, 1)

32 (a–8 – a–4 – 1)(0, 0) + (a–6 – a–2(2, 0) – a–2)(0, 2)

33 (a–12 – 2a–8)(0, 0) – a–6(2, 0) + (a–14 – a–10)(0, 2)

31
2 (a–1 – a3 + a7)(11 + a–3)(–1, 1)

32
2 –a2(2, 1) – (a4 – a8)(0, 1) – a2(–2, 1)

33
2 a(3, 0) – (a–3 + a + a5)(1, 0) + a–1(1, 2)

31
3 (a–3 + 2a – a5)(0, 0) + a–1(2, 0) + a–1(2, 2) + a–1(0, 2)

Table 3 Numerical invariants for structures in Figure 13.

L cn µ lks ax dis spl tu vec

21 2 1 2 1 1 1 1 {(1, 0)}

21
2 2 2 0 2 1 1 1 {(1, 1), (–1, 1)}

31 3 1 3 1 1 1 1 {(1, 0)}

32 3 1 1 1 1 1 1 {(2, 0)}

33 3 1 1 1 1 1 1 {(2, 0)}

31
2 3 2 3 2 1 1 1 {(1, 0), (0, 1)}

32
2 3 2 1 2 1 1 1 {(2, 0), (0, 1)}

33
2 3 3 1 2 1 1 1 {(2, 1), (–1, 1)}

31
3 3 3 3 3 1 1 1 {(1, 0), (1, 1), (0, 1)}

 by Andrew Ranicki on October 11, 2009 http://trj.sagepub.comDownloaded from 

http://trj.sagepub.com


834 Textile Research Journal 79(9)TRJTRJ

unit cell. It is evident that in all cases the traditional repre-
sentation is not minimal.

Table 4 gives values of polynomial invariants for the
woven fabrics represented in Figure 14. It can be noticed
that the complexity of the polynomial is related to the
crossing number of the 2-structure. Numerical invariants
calculated for the structures in Figure 14 are presented in
Table 6 below.

Let us consider some knitted structures presented in
Figure 15; the corresponding polynomials are tabulated in
Table 5.

It is interesting to note that the structures (d) and (e) in
Figure 15 have identical polynomials and identical numeri-
cal invariants (see Table 6). To the best of our knowledge,
this is the only example of different structures with identi-
cal values of this polynomial invariant. Thus, even using
numerical and polynomial invariants together it cannot be
proved that these structures are topologically different.
This illustrates the case when more powerful invariants are
needed than those considered in this paper.

Finite-type invariants are the most powerful at present.
The application of finite-type invariants to 2-structures has

Table 4 Polynomial invariants for woven fabrics (a) to (e) in Figure 14.

L X(L)

(a) (a–2 + a2)(0, 0) + (2, 0) + (0, 2)

(b) a(3, 0) – (a–3 + a + a5)(1, 0) + a–1(1, 2)

(c) (4, 0) – (a–4 + 2 + a4)(2, 0) + (0, 2)

(d) – (a–10 + a–6 – 2a–2 – 2a2 + a6 + a10)(0, 0) + (4, 0) – (a–8 + 2 + a8)(2, 0) + 2(2, 2) + (0, 4) – (a–8 + 2 + a8)(0, 2) + 2(–2, 2)

(e) a–3(3, 1) – (a–5 – 2a–1 + a3)(1, 1) + a3(–1, 3) – (a–3 – 2a + a5)(–1, 1)

Table 5 Polynomial invariants for knitted fabrics in Figure 15.

L X(L)

(a) –(a–4 – 3 + a4)(1, 0) + (a2 – a6)(1, 2) – (a– 6 – a–2)(–1, 2)

(b) (a–12 – a–8 – 5a–4 + 11 – 5a4 – a8 + a12)(1, 0) – (a–4 – 2 + a4)(1, 4) + (a–10 – 4a–6 + 3a–2 + 3a2 – 4a6 + a10)(1, 2) 
– (a–4 – 2 + a4)(–1, 4) + (a–10 – 4a–6 + 3a–2 + 3a2 – 4a6 + a10)(–1, 2)

(c) (2a–10 – 6a–6 + 4a–2 + 4a2 – 6a6 + 2a10)(0, 0) + (a–12 – 2a–8 + a–4 + a4 – 2a8 + a12)(2, 0) – (a–4 – 2 + a4)(2, 2) 
+ (a–8 – 4a–4 + 7 – 4a4 + a8)(2, 0) – (a–4 – 2 + a4)(–2, 2)

(d) – (a–4 – 2 + a4)(3, 0) + (a–8 – 2a–4 + 3 – 2a4 + a8)(1, 0) – (a–6 – a–2 – a2 + a6)(1, 2) – (a–6 – a–2 – a2 + a6)(–1, 2)

(e) – (a–4 – 2 + a4)(3, 0) + (a–8 – 2a–4 + 3 – 2a4 + a8)(1, 0) – (a–6 – a–2 – a2 + a6)(1, 2) – (a–6 – a–2 – a2 + a6)(–1, 2)

Figure 14 Woven fabrics: weave
diagram, weave repeat, unit cell.
Plain weave (a), 1/2 twill (b), 2/2
twill (c), hopsack weave 2/2 (d), 5/3
sateen (e).
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been suggested in [9], where it has been shown that tricot
with opened loops and tricot with closed loops can be dis-
criminated by finite-type invariants.

Conclusion

This paper introduced numerical and polynomial invari-
ants which can be applied to doubly-periodic structures, in
particular to textile structures, for their topological classifi-
cation. It has been shown that the numerical invariants,
such as crossing number, linking number, the number of
components, and unknotting number, cannot unambigu-
ously distinguish structurally different textiles even if used
in combination. It has been noticed that there are no gen-
eral methods for calculating some numerical invariants
despite their apparent simplicity. This in particular con-
cerns crossing number and unknotting number, which are
very difficult to compute. However, numerical invariants
such as the number of cyclic components and disintegra-
tion number may be useful for the analysis of technological
feasibility and structural stability of textiles.

A new Kauffman-type polynomial invariant for 2-struc-
tures has been suggested which is more powerful than ear-
lier invariants [7]. The construction of the polynomial
invariant is based on Kauffman’s “state-sum’ approach,
which is extended to the case of torus diagrams. The inde-
pendence of the invariant with respect to the choice of the

unit cell (torus twists) can be achieved by transforming the
set of windings to a canonical form.

Values of the proposed polynomial invariant have been
calculated for a set of typical textile structures and have
shown its ability to recognize different structures. This pol-
ynomial can be used for the classification of topologically
different textile structures, which will be based on crossing
number as the main criterion. It can be noticed that the
conventional classification of weaves is indirectly based on
crossing number because it takes into account the number
of warp and weft threads in the repeat, see for example
[10], although weave repeats considered in this classifica-
tion are not always minimal unit cells. In this respect it is
interesting to note that many textile structures which tradi-
tionally have been considered as completely different will
fall in the same class of structures because they have the
same crossing number. For example, it can be seen from
Table 4 that cn = 4 for 2/2 twill and for single jersey, cn = 8
for 2/2 hopsack, 1 × 1 rib, purl, and tricot with opened
loops.
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