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Introduction.
The quadratic L-groups Ln(A) (n ≥ 0) of Wall [10] are defined for any ring with involution
A, and are 4-periodic. An n-dimensional normal map (f, b) : M −−→ X determines its
quadratic signature

σ∗(f, b) ∈ Ln(Z[π])

for any oriented covering X̃ with group of covering translations π. If X̃ is the universal
cover, σ∗(f, b) is the surgery obstruction, and σ∗(f, b) = 0 if (and for n ≥ 5 only if) (f, b) is
normally bordant to a homotopy equivalence. The n-dimensional quadratic L-group Ln(A)
was expressed in Ranicki [4,6] as the cobordism group of n-dimensional quadratic Poincaré
complexes over A, which are chain complexes C of finitely generated free A-modules with
an n-dimensional quadratic structure ψ inducing Poincaré duality isomorphisms (1+T )ψ0 :
Hn−∗(C) ∼= H∗(C).

The symmetric L-groups Ln(A) (n ≥ 0) were introduced by Mishchenko [1] to de-
scribe the symmetric part of the surgery obstruction, and are not 4-periodic in general.
The n-dimensional symmetric L-group Ln(A) is the cobordism group of n-dimensional
symmetric Poincaré complexes over A, which are chain complexes C of finitely generated
free A-modules with an n-dimensional symmetric structure φ inducing Poincaré duality
isomorphisms φ0 : Hn−∗(C) ∼= H∗(C). A geometric Poincaré complex X determines its
symmetric signature (or “higher signature”)

σ∗(X) ∈ Ln(Z[π])

for any oriented covering X̃ with group of covering translations π. If n is a multiple of 4
and if we do not take the cover, then

σ∗(X) ∈ Ln(Z) = Z

is the usual signature of X.

In this note we show that the symmetric signatures of PL manifolds and the quadratic
signatures of normal maps between PL manifolds are equipped with geometric control.
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More precisely we construct controlled symmetric/quadratic signatures, which are geo-
metric module symmetric/quadratic Poincaré complexes. They give rise to the ordinary
symmetric and quadratic signatures, respectively, by the forget-control assembly process.
We can get a better control by using finer triangulations of the manifolds.

We closely follow the original construction, making some necessary modifications to
get control. The systematic approach to controlled algebraic Poincaré complexes of Ranicki
[7, Chapter 5] is more powerful when more general spaces than PL manifolds are concerned,
but the method in this note is considerably simpler.

The controlled signatures are closely related to the rational Pontrjagin classes. In [9]
we shall prove that if the control is good enough then the controlled symmetric signature
determines the L-theoretic orientation of a manifold, which is both topologically invariant
and rationally equivalent to the Hirzebruch L-genus. This will involve a refinement of the
splitting construction of [11]. The controlled signatures will thus give a new proof of the
topological invariance of rational Pontrjagin classes originally due to Novikov [2]. (See [7,
Appendix C] for a proof using bounded surgery theory.)

1. Block systems and diagonal subcomplexes.
The symmetric and the quadratic constructions of Ranicki [5] are both based on the method
of acyclic models, so they have an implicit geometric control. For our purposes, we need
to make the geometric control more explicit. In this section we introduce the notion of
block systems and diagonal subcomplexes to give the desired explicit control in the con-
structions. For the convenience of the reader, basic definitions concerning chain complexes
are summarized in the appendix A1.

In geometric topology, “controls” are defined using covers of spaces. The “block
systems” defined below have the corresponding role in a combinatorial setting.

Definition. A block system for a CW complex X is a covering κ = {Kα}α∈A of X by
subcomplexes. Each Kα is called a block. A block system κ = {Kα} is said to satisfy the

contractibility condition if, whenever Kα and Kβ have non-empty intersection, their union
Kα ∪Kβ is contractible. (In particular, each non-empty block has to be contractible.)

When we use the contractibility condition on block systems in the next section, only the
contractibility of the blocks are used. The contractibility of unions will be used in §3 to
prove the well-definedness of a certain chain map.

Examples. (1) Let X be a polyhedron with a triangulation K. Then κ = {σ}σ∈K is a
block system for K and it satisfies the contractibility condition. This block system will be
called the standard block system.
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(2) Suppose the triangulation K of a polyhedron X is the second derived subdivision L′′

of another simplicial complex L. For each simplex ∆ ∈ L, let N(∆, K) be the simplicial
neighbourhood of ∆ with respect to K, i.e., the union of all the simplices of K that
intersect ∆. Then {N(∆, K)}∆∈L is a block system for X, and it satisfies the contractibility
condition. This block system will be called the regular block system for X with respect to
L.
(3) Let X be a CW complex with a block system κ = {Kα}. Adjoin a point to X to get
a pointed CW complex X+ = X t {pt.}. Let Σ denote the reduced suspension operation
on pointed spaces. Define the suspension Σκ by {Σ(Kα)+}, then it is a block system for
ΣX+ with respect to the CW structure induced from that of X.

Next we consider chain complexes. Let C be a based free Z-module chain complex.

Definition. A subcomplex D of C ⊗Z C is diagonal if x⊗ x belongs to D for every basis
element x of C. Such a D is symmetric if x⊗ y ∈ D implies y ⊗ x ∈ D.

Examples. (1) Let κ = {Kα} be a block system for a CW complex X, and let C(X)
denote the cellular Z-module chain complex of X. C(X) is freely generated by the cells of
K. Then the set

{ σ ⊗ τ ∈ C(X)⊗Z C(X) | σ, τ are the cells of Kα for some α }

generates a symmetric diagonal subcomplex of C(X)⊗Z C(X). This subcomplex will be
denoted Dκ(C(X)). If X is pointed, the set

{ σ ⊗ τ ∈ C̃(X)⊗Z C̃(X) | σ, τ are the cells of Kα for some α }

generates a symmetric diagonal subcomplex of C̃(X)⊗Z C̃(X). This subcomplex will be
denoted Dκ(C̃(X)). Here C̃(X) denotes the cellular Z-module chain complex C(X, pt.).
(2) If D is a diagonal subcomplex of C⊗Z C, then 2p-th suspension S2pD can be viewed as
a diagonal subcomplex of SpC ⊗Z SpC for any positive integer p. See A1 for suspensions
of chain complexes. If D = Dκ(C(X)), then S2pD = DΣpκ(C̃(ΣX+)).

The chain complex Dκ(C(X)) given above is isomorphic to the chain complex Homκ
Z(

C(X)∗, C(X)) defined below.

Definition. Let D be a diagonal subcomplex of a based free chain complex C. Let x

and y be basis elements of Cp and Cq respectively. We define a Z-module homomorphism
fx,y : Cp → Cq by:

fx,y(z∗) =
{

y if z = x,
0 if z 6= x,
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for a basis element z of Cp. Here z∗ denotes the dual of z. Define HomD
Z (Cp, Cq) to be the

submodule of HomZ(Cp, Cq) generated by fx,y’s, where x ∈ Cp and y ∈ Cq are the basis
elements such that x ⊗ y ∈ D. These form a subcomplex of HomZ(C∗, C), and it will be
denoted HomD

Z (C∗, C). If κ is a block system for a polyhedron X, HomDκ(C(X))
Z (C(X)∗,

C(X)) is denoted Homκ
Z(C(X)∗, C(X)), and HomSpDκ(C(X))

Z ((SpC(X))∗, SpC(X)) is de-
noted Homκ

Z((SpC(X))∗, SpC(X)).

An isomorphism D → HomD
Z (C∗, C) is given by the slant product chain map

x⊗ y 7−→ (f 7→ f(x)y).

If D is symmetric, the generator T ∈ Z2 acts on D by the transposition involution x⊗y 7→
(−)pqy ⊗ x (x ∈ Cp, y ∈ Cq, x ⊗ y ∈ Dp+q), and it acts on HomD

Z (C∗, C) by the duality
involution φ 7→ (−)pqφ∗ (φ ∈ HomD

Z (Cp, Cq)). With respect to these actions, the map
above is an isomorphism of Z[Z2]-module chain complexes.

Let X and Y be CW complexes, f : X → Y be a cellular map, and κ and λ be block
systems for X and Y , respectively. Assume that f preserves the block system in the sense
that, for any block Kα ∈ κ, f maps Kα to some block Lβ ∈ λ. (This is the case if f is a
simplicial map between polyhedra and κ and λ are both standard.) Let g : C(X)→ C(Y )
be the induced Z-module chain map. Then g induces Z[Z2]-module chain maps:

g ⊗ g : Dκ(C(X))→ Dλ(C(Y ))

Hom(g∗, g) : Homκ
Z(C(X)∗, C(X)) −−→ Homλ

Z(C(Y )∗, C(Y )).

2. Symmetric and quadratic constructions.
In this section we review the symmetric and quadratic constructions of Ranicki. We restrict
ourselves to rather simple situations. See [5] for a fuller treatment. On the other hand
we incorporate explicit controls into the constructions, using the tools from the previous
section.

Let X be a polyhedron. Suppose κ is a block system for X. Then the method of
acyclic models gives a Z-module chain map (“diagonal approximation”)

∆X : C(X) −−−−→ HomZ[Z2](W, Dκ(C(X))),

where W denotes the standard free Z[Z2]-resolution of Z

W : . . . −−→ Z[Z2]
1−T
−−−→ Z[Z2]

1+T
−−−→ Z[Z2]

1−T
−−−→ Z[Z2] −−→ 0.
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Using the identification of Dκ(C(X)) and Homκ
Z(C(X)∗, C(X)), we obtain a Z-module

chain map
φX : C(X) −−−−→ HomZ[Z2](W, Homκ

Z(C(X)∗, C(X))).

This is the symmetric construction on X. If we assume that κ satisfies the contractibility
condition, then φX is well defined up to chain homotopy.

There are also symmetric constructions on the iterated suspensions ΣpX+, with the
CW structure induced from the triangulation of X. First we have the diagonal approxi-
mation:

∆̃ΣpX+ : SpC(X) = C̃(ΣpX+) −−−−→ HomZ[Z2](W, S2pDκ(C(X))),

for each p ≥ 0. Using the identification S2pDκ(C(X)) = Homκ
Z((SpC(X))∗, SpC(X)), we

obtain the symmetric construction on ΣpX+:

φ̃ΣpX+ : SpC(X) = C̃(ΣpX+) −−−−→ HomZ[Z2](W, Homκ
Z((SpC(X))∗, SpC(X))).

This is well-defined if κ satisfies the contractibility condition.
Let us use the following notation:

W%
κ (SpC(X)) = HomZ[Z2](W, Homκ

Z((SpC(X))∗, SpC(X))).

W%
κ (SpC(X))n is isomorphic to

∑
s≥0 Homκ

Z((SpC(X))∗, SpC(X))n+s, and an n-chain
φ ∈W%

κ (SpC(X))n is a collection (φs ∈ Homκ
Z((SpC(X))∗, SpC(X))n+s)s≥0.

There are suspension maps between these:

S : SW%
κ (SpC(X)) −−−−→ W%

κ (Sp+1C(X)).

To avoid sign complications we define only the double suspension S2 here. For an n-chain
φ = (φs)s≥0 of S2W%

κ (SpC(K)), define its double suspension S2φ ∈W%
κ (Sp+2C(X))n by

(S2φ)s = φs−2. (Here φs = 0 if s < 0.) If κ satisfies the contractibility condition, the
method of acyclic models gives a chain homotopy

φ̃Σ2pX+ ' S2pφX : S2pC(X)→W%
κ (S2pC(X))

for each p ≥ 0, as we mentioned before.

Now we discuss the quadratic construction. Let X, Y be polyhedra equipped with
block systems κ, λ respectively, and let G : ΣpX+ → ΣpY+ be a cellular map which
preserves the block system, with p(� dimY ) even.
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Define a Z-module chain complex Wλ
%(C(Y )) by:

Wλ
%(C(Y )) = W ⊗Z[Z2] Homλ

Z(C(Y )∗, C(Y ))

= HomZ[Z2](W ∗, Homλ
Z(C(Y )∗, C(Y ))).

Wλ
%(C(Y ))n is isomorphic to

∑
s≥0 Homλ

Z(C(Y )∗, C(Y ))n−s, and an n-chain ψ ∈Wκ
%(C(Y

))n is a collection (ψs ∈ Homλ
Z(C(Y )∗, C(Y ))n−s)s≥0. There is a Z-module chain map

1 + T : Wλ
%(C(Y ))→W%

λ ((C(Y )) defined by:

((1 + T )ψ)s =
{

(1 + T )ψ0 if s = 0,
0 if s ≥ 1.

Assume that λ satisfies the contractibility condition. The quadratic construction
associates to G a Z-module chain map

ψG : C(X) −−→ Wλ
%(C(Y ))

such that
(1 + T )ψG ' φY g − g%φX : C(X) −−→ W%

λ (C(Y ))

with g : C(X) = ΩpC̃(ΣpX+) −−→ ΩpC̃(ΣpY+) = C(Y ) the Z-module chain map induced
by G and g% : W%

κ (C(X))→W%
λ (C(Y )) the Z-module chain map induced by Hom(g∗, g).

The composite Z-module chain map

Sp(φY g − g%φX) : C(X)
φY g−g%φX
−−−−−−−→W%

λ (C(Y ))
Sp

−→ ΩpW%
λ (C(ΣpY+))

is chain homotopic to φ̃ΣpY+g − g%φ̃ΣpX+ ;

Sp(φY g − g%φX) = SpφY g − g%SpφX ' φ̃ΣpY+g − g%φ̃ΣpX+ .

And there is a chain homotopy

φ̃ΣpY+g − g%φ̃ΣpX+ ' 0 : C(X) = ΩpC̃(ΣpX+) −−−−→ ΩpW%
λ (C(ΣpY+))

by the naturality of symmetric construction applied to the map G : ΣpX+ → ΣpY+. (The
contractibility condition on λ is used here.) Thus we obtain a Z-module chain homotopy

ψ̂G : Sp(φY g − g%φX) ' 0 :

C(X) −−−−→ ΩpW%
λ (C(ΣpY+)) = HomZ[Z2](ΩpW, Homλ

Z(C(Y )∗, C(Y ))).

For each σ ∈ C(X)n, ψ̂G(σ) is a collection

( ψ̂G(σ)s ∈ Homλ
Z(C(Y )∗, C(Y ))n+1+s )s≥−p.

When p is sufficiently large, the negative part (ψ̂G(-)s)−p≤s≤−1 can be interpreted as a
Z-module chain map ψG : C(X) −−→ Wλ

%(C(Y )), and the non-negative part (ψ̂G(-)s)s≥0

can be interpreted as the desired chain homotopy.
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Exercise. Work out the relative versions of these constructions.

3. Geometric module chain complexes.
In this section we relate the “block system” control used in the previous sections with a
different type of control which uses the geometric algebra of Quinn [3]. As an analogue
of Homκ

Z(C∗, C), we shall introduce a Z[Z2]-module chain complex GMorε(C∗, C), where
ε is a positive number and C is a geometric module chain complex on a metric space. A
good reference for geometric algebra is [8]. See A2 for a summary.

Suppose X is a topological space equipped with a control map p : X → Z to a metric
space Z. Let C and D be geometric module chain complexes on X, and ε be a positive
number.

Definition. GMorp−1(ε)(C, D)(r, s) is the set of all geometric morphisms f : Cr −−→ Ds

that satisfy
1. diDfdjC has radius ε for every i, j ≥ 0, and
2. diDfdjC ∼ε 0 for every i, j ≥ 2.

Note that this is not an empty set, because it contains the zero geometric morphism. Also
note that it depends not only on Cr and Ds but also on the boundary morphisms of C

and D. This is the reason why we do not employ the notation GMorp−1(ε)(Cr, Ds). The ε

homotopy ∼ε is certainly an equivalence relation on the set GMorp−1(ε)(C, D)(r, s). The
following is a finer relation.

Definition. Let f , f ′ be two geometric morphisms in GMorp−1(ε)(C, D)(r, s). f , f ′ are
said to be equivalent if diDfdjC ∼ε diDf ′djC for every i, j ≥ 0. This is an equivalence
relation, and the set of the equivalence classes is denoted by GMorp−1(ε)(C, D)(r, s). The
equivalence class of f is denoted [f ].

GMorp−1(ε)(C, D)(r, s) is an abelian group with respect to the sum [f ] + [g] = [f + g].

Definition. GMorp−1(ε)(C, D) is a Z-module chain complex defined by

d : GMorp−1(ε)(C, D)n =
∑

s−r=n
GMorp−1(ε)(C, D)(r, s) −−→ GMorp−1(ε)(C, D)n−1;

[f ] ∈ GMorp−1(ε)(C, D)(r, s) 7−→ d[f ] = [dDf ] + (−)s[fdC ]

(If we use ∼ε as the equivalence relation, then d is not necessarily well-defined.) When
p : X → Z is the identity map, we use the notation GMorε(C, D).

T ∈ Z2 acts on GMorp−1(ε)(C∗, C)n by

T [f ] = (−)rs[f∗] for [f ] ∈ GMorp−1(ε)(C∗, C)(r, s).

With respect to this action, GMorp−1(ε)(C∗, C) is a Z[Z2]-module chain complex.
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The following relates the block-system control with the ε control.

Proposition 3.1. Let X be a polyhedron, κ be a block system for X satisfying the con-

tractibility condition. Suppose p : X → Z is a control map, and assume that the diameter

of the image in Z of each block in κ is at most ε. Then there is a Z[Z2]-module chain map

from Homκ
Z(C(X)∗, C(X)) to GMorp−1(2ε)(G(X)∗, G(X)) ( or GMorp−1(ε)(G(X)∗, G(X))

if κ is standard ) which sends fσ,τ to the class of any path connecting the representing

points of σ and τ inside a block containing both σ and τ . Here C(X) denotes the ordinary

Z-module chain complex of X, and G(X) denotes the geometric module chain complex of

X.

Proof: Immediate from the contractibility condition.

4. Geometric symmetric/quadratic complexes.
In this section we associate to a PL manifold a geometric symmetric complex, and to a
degree 1 normal map between PL manifolds a geometric quadratic complex.

Definition. Let X be a topological space equipped with a control map p : X → Z. An

n-dimensional geometric

{
symmetric complex (G, φ)
quadratic complex (G, ψ) of radius ε is an n-dimensional ε

chain complex G on X together with a representative
{

φ
ψ

of an n-cycle{
[φ] ∈ HomZ[Z2](W, GMorε(G∗, G)).

[ψ] ∈W ⊗Z[Z2] GMorε(G∗, G).

It is ε Poincaré if {
φ0 : Gn−∗ −−−−→ G

(1 + T )ψ0 : Gn−∗ −−−−→ G

is an ε chain equivalence.

Let X be an oriented PL manifold of dimension n, and fix a PL triangulation of
X and a metric on X. As before C(X) will denote the cellular Z-module chain com-
plex of X, and G(X) will denote the geometric module chain complex of X. Let φX :
C(X) −−→ W%

κ (C(X)) be the symmetric construction on X with respect to the standard
block system κ. If the diameter of each simplex of X is at most ε, we have a Z[Z2]-module
chain map

Homκ
Z(C(X)∗, C(X)) −−−−→ GMorε(G(X)∗, G(X))

by 3.1, and it induces a Z-module chain map

ι : W%
κ (C(X)) −−−−→ HomZ[Z2](W, GMorε(G(X)∗, G(X))).
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Let [X] ∈ C(X)n denote the n-cycle representing the fundamental class. We define the
geometric module symmetric complex σ∗(X) by

σ∗(X) = (G(X), φ),

where [φ] = ιφX [X].
We shall show that σ∗(X) is ε Poincaré. (If ε is sufficiently small, this defines the

“controlled symmetric signature” σ∗(X) ∈ Lnc (X) in the “controlled symmetric L-group”
of X).

To calculate φ0, fix an order on the set of the vertices of X, give each simplex the
orientation induced from this order, and use the Alexander-Whitney-Steenrod diagonal
approximation. If [X] =

∑
nσσ (nσ = ±1), then

(∆X [X])0 =
∑
σ

∑
i+j=n

nσ(iσ ⊗ σj),

where iσ and σj denote the front i-face and the back j-face of the n-simplex σ, respectively.
Therefore (φX [X])0 : C(X)n−∗ −−→ C(X) is given by

τ∗ 7−→
∑

(n−j)σ=τ

nσσj

for τ ∈ C(X)n−j . If we denote the geometric module chain complex of the dual cell
complex of X by D(X), then φ0 : D(X) = G(X)n−∗ −−→ G(X) can be identified with the
ε chain equivalence D(X) −−→ G(X) induced by a cellular approximation of the identity
map from X (with the dual cell structure) to X (with the original triangulation) which
sends the barycenter τ̂ of a simplex τ of X to the largest vertex of τ (with respect to the
given order). Thus σ∗(X) is ε Poincaré.

Next let M , X be oriented PL manifolds of dimension n, and let (f, b) : M −−→ X be
a degree 1 normal map. Assume that f is simplicial with respect to some PL triangulations
and assume that the diameter of each simplex of X is at most ε.

One can form the geometric Umkehr map

G : ΣpX+ −−−−→ ΣpM+

with p even and large. Let κ be the standard block system for X, and λ be the regular
block system for M . ΣpX+, ΣpM+ are given the corresponding suspension block systems.
We may assume that G is cellular and preserves the block system. Let

ψG : C(X) −−−−→ Wλ
%(C(M))
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be the quadratic construction on G.
Next define the Umkehr chain map f ! : G(X) −−→ f]G(M) by:

f ! : G(X) 'ε G(X)n−∗
f∗%−−→ (f]G(M))n−∗ 'ε f]G(M),

where f% : f]G(M) −−→ G(X) is the chain map induced by f . Let e : f]G(M) → C(f !)
denote the inclusion map.

Let [ψ] ∈W⊗Z[Z2]GMor6ε(C(f !)∗, C(f !))) be the image of [X] ∈ C(X) by the following
composite chain map

C(X)
ψG
−−→Wλ

%(C(M)) = W ⊗Z[Z2] Homλ
Z(C(M)∗, C(M))

3.1
−−−→W ⊗Z[Z2] GMorf−1(6ε)(G(M)∗, G(M)) −−→ W ⊗Z[Z2] GMor6ε(f]G(M)∗, f]G(M))

e%
−−−→W ⊗Z[Z2] GMor6ε(C(f !)∗, C(f !)),

where e% denotes the map induced by the map h 7→ ehe∗. Now define a 6ε Poincaré
quadratic complex σ∗(f, b) of radius 6ε by (C(f !), ψ). This ends the construction.

APPENDIX

A1. Summary of chain complexes.
Let A be a ring. In this paper we only deal with the cases A = Z and A = Z[Z2], so
assume that A is commutative.

• The algebraic mapping cone C(f) of an A-module chain map f : C → D is the
A-module chain complex defined by

dC(f) =
(

dD (−)r−1f
0 dC

)
: C(f)r = Dr ⊕Cr−1 → C(f)r−1 = Dr−1 ⊕ Cr−2.

• Given A-module chain complexes C and D, C⊗AD and HomA(C, D) are the Z-module
chain complexes defined by

dC⊗AD : (C ⊗A D)n =
∑

p+q=n

Cp ⊗A Dq → (C ⊗A D)n−1;

x⊗ y 7→ x⊗ dD(y) + (−)qdC(x)⊗ y,

dHomA(C,D) : HomA(C, D)n =
∑

q−p=n
HomA(Cp, Dq)→ HomA(C, D)n−1;

f 7→ dDf + (−)qfdC (: Cq−n+1 → Cq).
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• C∗ is the A-module chain complex defined by

dC∗ = (dC)∗ : (C∗)r = C−r → (C∗)r−1 = C−r+1,

and Cn−∗ (n ∈ Z) is the A-module chain complex defined by

dCn−∗ = (−)r(dC)∗ : (Cn−∗)r = Cn−r → (Cn−∗)r−1 = Cn−r+1.

• The suspension SC and desuspension ΩC of an A-module chain complex C are the
A-module chain complexes defined by{

dSC = dC : (SC)r = Cr−1 −→ (SC)r−1 = Cr−2

dΩC = dC : (ΩC)r = Cr+1 −→ (ΩC)r+1 = Cr

A2. Summary of geometric algebra.
In this section X, Y denote topological spaces, and ε denotes a positive number.

• Let S : |S| −−→ X (|s| 7→ [s]) be a function. We identify a function with its graph;
thus, S represents also a subset of |S| × X. The free Z-module on the graph S is
called the geometric module on X generated by S, and is denoted Z[S].

• Let Z[S] and Z[T ] be geometric modules on X. Consider triples (s, ρ, t) consisting
of elements s ∈ S, t ∈ T and a path ρ : [0, τ ] → X (τ ≥ 0) such that ρ(0) = [s]
and ρ(τ) = [t]. Such a triple (s, ρ, t) will be called a path from s to t. A geometric

morphism f : Z[S]→ Z[T ] is a formal linear combination
∑
λ∈Λ mλ(sλ, ρλ : [0, τλ]→

X, tλ) of paths from generators of Z[S] to generators of Z[T ], with integer coefficients.
Here Λ is some index set, and the number of paths starting from each generator
is required to be finite. Two geometric morphisms f =

∑
λ∈Λ mλ(sλ, ρλ, tλ) and

f ′ =
∑

γ∈Γ m′γ(s
′
γ, ρ
′
γ, t
′
γ) from Z[S] to Z[T ] are the same (f = f ′) if there exists a

bijection ϕ : Λ→ Γ such that

m′ϕ(λ) = mλ and (s′ϕ(λ), ρ
′
ϕ(λ), t

′
ϕ(λ)) = (sλ, ρλ, tλ) (for all λ ∈ Λ),

after deleting terms with zero coefficient.

• The sum of two geometric morphisms is defined by formally combining the two lin-
ear combinations. The integer multiplication of a geometric morphism is defined by
termwise integer multiplication. The difference f−g of f and g is defined by f+(−1)g.
The composition gf of two consecutive geometric morphisms

f =
∑
λ∈Λ

mλ(sλ, ρλ, tλ) : Z[S] −−→ Z[T ], g =
∑
γ∈Γ

nγ(t′γ , σγ, uγ) : Z[T ] −−→ Z[U ]
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is defined to be ∑
λ∈Λ,γ∈Γ,tλ=t′γ

nγmλ(sλ, σγρλ, uγ),

where σγρλ : [0, τλ + τ ′γ ]→ X is the composite path

σγρλ(x) =
{

ρλ(x) if 0 ≤ x ≤ τλ,
σγ(x− τλ) if τλ ≤ x ≤ τλ + τ ′γ ,

of two paths ρλ : [0, τλ]→ X, σγ : [0, τ ′γ]→ X with ρλ(τλ) = σγ(0).

• A geometric morphism with no term is called the zero geometric morphism, and is
denoted 0.

• Let Z[S] be a geometric module on X and define a “one-point” path cs : {0} → X by
cs(0) = [s], for s ∈ S. The geometric morphism∑

s∈S
1(s, cs, s) : Z[S] −−−−→ Z[S]

is called the identity geometric morphism on Z[S], and is denoted 1Z[S] or simply 1.

• A homotopy of a path (s, ρ, t) is a homotopy of the path ρ with both ends fixed.
Here a homotopy is allowed to change continuously the interval on which the path is
defined. A homotopy (∼) of a geometric morphism is a finite sequence of the following
operations:

1. homotopies of the paths,
2. combining two terms m(s, ρ, t) + n(s, ρ, t) into (m + n)(s, ρ, t), and its inverse.

• Let ϕ : X → Y be a continuous map. For a geometric module A = Z[S] on X, its
direct image ϕ]A is defined to be the geometric module Z[ϕS : |S| → X → Y ] on
Y . If s = (|s|, [s]) is an element of the graph S, ϕs will denote the element (|s|, ϕ[s])
of the graph of ϕS : |S| → Y . If f =

∑
mλ(sλ, ρλ, tλ) : A → B is a geometric

morphism between geometric modules A, B on X, then ϕ]f : ϕ]A→ ϕ]B will denote
the geometric morphism∑

mλ(ϕsλ, ϕρλ : [0, τλ]
ρλ−→ X

ϕ
−→ Y, ϕtλ).

If f ∼ g, then ϕ]f ∼ ϕ]g.

• A map p : X −−→ Z to a metric space is called a control map.

In the following we assume that X is equipped with a control map p : X −−→ Z.
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• A geometric morphism f has radius ε if, for each path (s, ρ, t) appearing with non-
zero coefficient in f , the image of the path pρ in Z is contained in the closed ε

neighbourhoods of p[s] and p[t]. A homotopy of geometric morphisms of radius ε is
an ε homotopy (∼ε) if

1. each homotopy of a path (s, ρ, t) has image via p in the closed ε neighbourhoods
of p[s] and p[t] in operation 1, and

2. each path (s, ρ, t) in the combined terms (or split term) has image via p in the
closed ε neighbourhoods of p[s] and p[t].

• A sequence of morphisms of geometric modules on X

{C, d} : . . .→ Cr+1

dr+1

−−−→ Cr
dr−−→ Cr−1 → . . .

is called an ε chain complex on X if all dr’s have radius ε and drdr+1 ∼2ε 0.

• An ε chain map f : C → D between chain complexes on X is a collection f = {fr} of
geometric morphisms fr : (Cr, pr)→ (Dr, qr) of radius ε such that drfr ∼ε fr−1dr.

• An ε chain homotopy h : f 'ε g between chain maps f, g : C → D of radius ε is a
collection h = {hr} of geometric morphisms hr : Cr → Dr+1 of radius ε such that
dr+1hr + hr−1dr ∼2ε gr − fr.

• An ε chain map f : C → D is an ε chain equivalence if there exists an ε chain map
g : D → C such that gf 'ε 1 and fg 'ε 1.

• The dual Z[S]∗ of Z[S] is defined to be Z[S] itself.

• The dual f∗ : Z[T ]∗ −−→ Z[S]∗ of a geometric morphism f : Z[S] −−→ Z[T ] is obtained
by reversing the paths. (f∗ may not satisfy the finiteness condition when T is an
infinite set.) f and f∗ have the same radius.

• If X is a CW complex and satisfies a certain technical condition, then one can form
a cellular geometric module chain complex G(X) on X. (This condition is satisfied if
X is a polyhedron.)

• If a cellular map f : Y −−→ X satisfies a certain technical condition, then one can
construct a chain map f% : f]G(Y ) −−→ G(X). (This condition is satisfied if f is a
simplicial map between polyhedra.)
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