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Foreword 

These notes are divided into seven sections. The material in 

the first five was given as a series of informal lectures at 

Berkeley in the Summer of 1964. The material in the last two was 

discussed in Professor Eckmann's seminar in Zurich during the 

Spring of 1965. 

Mr. J.F. Mc Clendon took my lecture notes from the Berkeley 

lectures and wrote them up in a presentable form. In particular 

the formulation of Theorem 5 in section five is due to him. 

The first five lectures develop the theory of the Postnikov 

resolution of a map. In particular the main results of Mahowald's 

paper [3] are covered. Section six applies the theory to a specific 

example - the universal fibration with fiber the Stiefel manifold 

V The last section deals with the problem of computing 
n,2" 

Postnikov invariants. A method for doing this is outlined and a 

theorem proved that implies that every (4k+3)-spin manifold has 

a tangent 2-field [12]. 

I would like to take this opportunity to thank Professor 

Eckmann for making possible my visit to the Mathematics Research 

Institute, E.T.H., Zurich. 

14 September, 1965 

E. Thomas 
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I. Introduction 

We consider three classical problems concerning the following dia- 

gram of spaces and maps: 

(I) 

X 

E 

f 
p B 

i) (Existence problem) Does there exist a map g: X ~ E such 

that pg = f ? 

ii) (Enumeration problem) How many homotopy classes* of such 

g's are there ? 

iii) (Classification problem) Given two such g's, can we dis- 

tinguish between them by algebraic invariants ? 

An example of (I) is: 

BO(n-k) 

N n f ,  BO(n) 

where M n is a smooth n-dimensional manifold, BO(n) is the class- 

ifying space for the orthogonal group, i: BO(n-k) ~ BO(n), I(M~, 

is the natural inclusion, and f is the map inducing the tangent 

bundle over M. In this example a lifting of f corresponds to a 

field of tangent orthonormal k-frames and questions (i), (ii), and 

(iii), can be reformulated as familiar questions about such fields. 

Other problems in differential topology can be stated in a 

similar fashion. 

One method of getting a negative answer to the Existence 

* There are two possible meanings for "homotopy" in question (ii) ~ 

"free homotopy" or "homotopy relative to f." 
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question (i) is to derive an algebraic diagram from (I) and show 

that it cannot be commutative. Affirmative answers to question (i) 

have been obtained via obstruction theory. That is, if E ~ B is 

a fiber bundle and q: Y ~ X is the bundle induced by f, then a 

lifting of f corresponds to a cross-section of q. Obstruction 

theory for bundles and the theory of characteristic classes are 

then applicable. For example, if X(M) is the Euler class of the 

manifold M, then X(M) = 0 if and only if M has an everywhere 

continuous non-zero vector field. (i.e. the Euler class is the only 

obstruction to lifting f to BO(n-1).) 

These lectures will discuss the elaboration of this positive 

method due initially to Postnikov, with important contributions by 

Moore, Hermann, and Mahowald. Mahowald's paper [3] will be discussed 

in some detail. 

General description of the method 

We hope to factor the map p of (I) into a diagram 

(2) 

E 

S 
qn !p 

: n 

E 2 

E lp 2 

B 

where (plP2... pn)qn = p (n >~ 1) and: 
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A) At each stage, the obstruction to lifting a map from 

to E is given in terms of "computable" algebraic invari- Eq q+l 

ants (e.g., a finite set of cohomology classes.) 

B) There exists a sequence [rn} of integers such that 

l(rl<r2<'''<rn "'" and such that the morphism qrn.: ~i(E) ~ ~i(Ern ) 

is bijective for O(i<n and surjective for i = n. 

Let X be a complex and consider the morphism I) qrn.: [X,E] 

[X, Ern ]. It follows from B) that if dim X<n, then qr n. is biject- 

ive, while if dim X = n, then qrn. is surjective. Thus if X has 

dim ( n, then a map f: X ~ B lifts to E iff it lifts to Ern. 

In order to achieve the fach~rization given in (2) we will use 

the following key construction: 

(3) 

X 

~C - -  ~C 

i 1 
E w- - -~ PC 

j 
f ~ w 
~ B ,C 

Here PC is the space of paths of C beginning at . and ~C 

is the space of loops of C at .. Thus PC ~ C, given by ~ ~ ~(i), 

is a Hurewicz fibration with fiber ~C [8] and PC is contractible. 

E w ~ B is the fibration induced by w, 

w(b) = ~(i)}. It is easily seen that 

An important special case is when 

MacLane space of type (~,n). Since 

so E w = {(b,a)~ B x PC: 

f lifts to E w iff wf = *. 

C = K(~,n), an Eilenberg- 

= H n Hn(B;~) [B,C] and w r (B,~), 

i) We work in the category of spaces with base point (which is 
always denoted by ~). [X,Y] denotes the set of homotopy classes 

of base point preserving maps from X to Y. 
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it follows that wf ~, iff f*w = O (provided that B is a com- 

plex). 

We now apply (3) to (1) taking 

rain the following diagram 

C i = K(~i,ni) , i>~l, and ob- 

(4) 

E 2 
I 

qi ~E I 

E/ 
I 

B 

= Ew 2 

w 2 

= Ewl 

w I 

..... + C 2 

+ C 1 

The w's could be chosen as follows. First, consider ker p* 
l 

n I n I 
where p*: H (B;~ I) ~ H (E;~), choose a w I there and use it 

to construct the fibration E l ~ B. Since p*w i = O we can 

lift p to ql" Then we look in ker ql for a w2, etc. 

We have constructed a diagram (2) satisfying condition A. Our 

plan is to re-examine, under certain restrictions, construction (4) 

with condition B in mind. Assume that p: E ~ B is a fibration 

with an (n-l)-connected fiber F. It follows that p,: ~r(E) ~ ~r(B) 

is bijective for O(r4n-I and surjective for r = n and that 

H r H r p*: (B,~) ~ (E,~) is bijective for l~r~n-i and injective for 

Hn+1 
r = n. Now assume that C = K(~,n+l) and choose w e (B,~) N 

ker p*. The situation after rearranging (4) slightly is: 

(5) 

F 
V 

~ F---------~ E 

f2C ~ Ew 

%,? 
B - , C 
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where p = pq and p*w = O. Note that q(F) r QC; set v = qlF. 

Both the maps v and q are homotopically equivalent to fiber 

maps [7], and moreover the fibers themselves are homotopically 

equivalent [2]. Let F denote the fiber of v. Then one obtains 
V 

the commutative diagram given in (5), such that the triples 

F ' F 
V 

V 
:~C , 

F , E q,E w i 
V 

are homotopically equivalent to fibrations. 

If F were n-connected it would follow from the exact se- 
V 

quence for q: E ~ E w that q*: xi (E) ~ ~i (Ew) is bijective for 

O(i(n, and surjective for i = n+l. Thus we would have gained a 

dimension in the passage to the second stage of the construction. 

This is a step in the direction of (B) - so we seek conditions under 

which F is n-connected. 
V 

From the exact sequence for v: F ~ ~C we see that 

~. (F v) ~ ~. (F) is bijective for i / n, n-I and that 
1 1 

(F v) = 0 ~ v, is injective in dimension n, 
n 

~n_l(Fv) = O ~-~ v, is surjective in dimension n. 

The question as to whether or not the construction (4) will 

satisfy B) now can be rephrased as: 

Hn+1 i) Take ~ = ~ i=~,. Can we choose w ~ '=~,~j such that 
n 

the resulting v gives v,. ~n(F)" ~ ? 

2) If so, can we repeat the process - i.e., can we (a) com- 

pute H*(E ) and ker q*; (b) determine which classes in ker q* 
W 
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"kill" the higher homotopy groups of F (in the sense that in going 

from F to F we kill 
v 

the n' th homotopy group of F) ? 

In order to gain some insight into the problem let us consider 

part of (5) separately 

(6) 

F , F F is (n-1)-connected, 
v 

Iv ~n (F) = ~. 

~C = K(x,n) 

Since [F,~C] = ~(F;~) = Hom(~,~), taking v = 1 r Hom(~,~) gives 

v. an isomorphism. The question is whether or not (6) can be fit- 

ted into (5) - that is, can we choose w to produce such a v. 

The answers to these questions are, more or less, yes, as we 

shall see later. 
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II. Principal Fiber Spaces 

If w: (B,Bo) ~ (C,Co) is a (base point preserving) map then 

we have the diagram 

(nc.~c o) = (ec.~c o) 

w 
(E,E O) > (PC,PC O) 

[ 1 w 
(B,B o) ' (C,C o) 

where E = {(b,~) ~ B x PC: w(b) = a(i)} 

E o = {(b,~) ~B o x PCo: w(b) = ~(i)} 

Definition: (~C,~C O) i ~ (E,Eo) P, (B,Bo) is the principal fibra- 

tion induced by w# with principal fibre space (E,Eo). 

Lemma i. Let g: (X,X O) ~ (B,B O) be a map. Then g lifts to (E,E O) 

iff wg ~ *. 

Lemma 2. Let (X,Xo) be a pair of spaces. Then the following se- 

quence of sets is exact: 

(7) 
[ (X,Xo) ; (nB,~Bo) ] (~w).: [ (X,Xo) ; (~C,~Co) ] i~. [ (X'Xo) ; (E'Eo) ] 

p.. [ (X,Xo) ; (B,BO) ] w.. [ (X,Xo) ; (C,Co) ]. 

Proof: Exactness at [(X,Xo);(B,Bo) ] follows from the first lemma. 

The rest is not hard to verify (see [5]). 

If ~ and ~ are paths such that a(1) = ~(O), denote their 

product by a v ~. There is a natural product 
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(nc, nc o) • (nc, nc o) , (nc, nc o) 

(~, 9) , ~ v 

and a natural action 

(~C,flC O) • (E,E O) ' (E,E O) 

(~, (b, ~)) , (b,a v~) �9 

They induce a product (denoted by V) and an action (denoted by " ) 

[ (x,x o) ; (~,~o) ] • [ (x,x o) ; (nc, nc o) ] , [ (x,x o) ; (nc, nc o) ] 

[ (x,x O) ; (~c,~c O) ] x [ (X,Xo) ; (E,Eo) ] , [ (X,Xo) ; (E,Eo) ]. 

For any pairs (with base point) (X,Xo), (Y,Yo) let 

O ~ [ (X,Xo) , (YoYo)] denote the class of the constant map. 

Lemma 3: (a) 

(b) 

(c) 

(d) 

O q = q for q E [ (X,X O) ; (E,Eo) ] 

u - 0 = i.u for u E [ (X,X O) ; (~C,~C O) ] 

Let q,q'~ [ (X,Xo) ; (E,Eo) ]. Then p.q = p.q' iff 

there is a u E[ (X,X O) ; (~C,nC O) ] such that q' = u - q. 

The sequence (7) and the operations defined above are 

natural in the obvious ways. 

Proof: For the proof in the absolute case see [6]. 

Transgression in Fiber Spaces 

Suppose that F ~ E ~ B is a fibration and B is path 

connected. Take cohomology with coefficients in a fixed group G. 

Denote reduced homology by H(). H*(B) will sometimes be identi- 

fied with H*(B,.) and sometimes with a subgroup of H*(B). Denote 
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by p: (E,F) ~ (B,,) the map defined by p. 

Define T*(F) c H*(F) , S*(B) c H*(B) 

T* (F) = 6-1~*~* (B) 

S* (B) = p*-16H* (F) 

where 6: H*(F) ~ H*(E,F). Note that 

T*(F) ~ image i*, S*(B) ) ker p*. 

Define T: T*(F) ~ S*(B)/ker p* 

~: S*(B) -~ T*(F)/ im i* 

by T(U) = [U'], where 6u = p*u' 

m 

~(v) = [v'], where p*v = 6v' . 

by 

S*(B) = kernel p*, 

Clearly, kernel T = image i*, kernel a = kernel p* 

induce inverse isomorphisms 

SO T, 

T*(F)/im i* = S*(B)/ker p*. 

T is called the transgression in the fiber space, ~, the 

suspension. (We can define u: S*(B) ~ H*(F), and then its values 

are cosets of i'H* (E); similarly for T.) 

The Lifting Problem 

Suppose F ~ E ~ B is a fibration, B path connected, and E, 

B have the homotopy type of complexes. We form the diagram 

F 
i 
! 

IVq 

n c  

i 
, E 

i 

I 

~,q 
' N  

W 
) C �9 

(PlOq = p) 
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Suppose that wp ~.. By lemma i, p lifts to q: (E,F) ~ (Ew,~C). 

Let v = qlF: F ~ ~C. 
q 

Definition:'~v is (geometrically) realized by the pair (w,q). A 
q 

reasonable question is: which maps v can be realized? 
q 

To answer this question we consider the sequence 

(~,~) ~ (Ew,~) Pl (B,.) w (C,C), 

where Pl is the principal fibration induced by w (see page 7). 

Mapping the pair (E,F) into the sequence we obtain the commutative 

diagram shown below: 

[E,~C] J* " [ (E,F), (Ew, nC) ] 

li* li* 

[F, ~C] = [F, ~C] . 

Pl. w. 
, [ (E,F) , (B,*) ] ~ [E,C] 

Define Zw = i*Pl.l[p]-- r [F,~C]. Using Lemma 3(d), one easily shows 

that Zw is a coset of i*[E,~C]. Furthermore, Zw = all homotopy 

classes that can be geometrically realized by (w,q) for some lift- 

ing q of p. 

If C = K(G,n), n>O, this can be translated into cohomology. 

We have w~Hn(B;G) and Xw is a coset of i*Hn-I(E,G) in Hn-I(F;G). 

Now p*w = O, so for the fibration F i E ~P B, ~(w) is defined 

( = the suspension of w, see page 9) and is a coset of 

i*H n-I(E;G) in H n-I(F;G) 

Theorem I. -ow = Zw. 
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Proof: It suffices to prove that -r and Xw have a common re- 

presentative. Suppose that v G Zw, so that v: F ~ ~C is the 

restriction of some q: (E,F) ~ (Ew,~C) and pl q = p. 

1 
If ~ denotes suspension in ~C ~ E w ~ B then it is easily 

checked that ul(-w) is represented by tn_ 1 = the characteristic 

class of ~-I(~C;G). By the naturality of the suspension for 

the commutative diagram 

~C ~ , B E w 

F 'E ~B 

we have 

V ---- V*t 
n-I 

v*ai(-w) c 4'w), 

which completes the proof. 

We now can carry out the program of the first lecture. 
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III. The "classical" (Moore-Postnikov) method of decomposin~ a 

fibration 

Suppose that F i E ~P B is a fibration, that ~i (B) acts 

trivially on H, (F;G)2! and that F has non-zero homotopy groups 

~. = ~ (F) in dimension nl,n 2 .... with O<nl<n2< ... (if n I = 1 
l n i 

n 1 
assume ~i is abelian). Let v I ~ H (F,~ I) be the fundamental 

class of F. That is, v I corresponds to the Hurewicz map under 

HnI(F, ~I ) =Hom (HnI(F) , ~I). It follows from the spectral sequence 

of the fibration that v I is transgressive. Let w I =-T(Vl). We 

have, as before, the diagram 

! 

I v  1 
J. 

nC 1 

F ------~ E 
\ 

\ 

\ .q 1 
P 

i 

B ~  I C 1 = K(~I, nl+l) 

By Theorem 1 we can choose ql: (E,F) ~ (EI,~C I) such that vql = v I. 

Let F I = the fiber of v I. Then in the homotopy sequence for 

the fibration F 1 ~ F ~CI, vl*: ~n (F) ~ ~n(nCl ) = ~I is an iso- 

morphism, implying ~r(Fl) = O, r<n, Wr(Fl)~ ~r(F), r>n. 

n 2 
Now let v2~ H (FI;~ 2) be the fundamental class of F I. Again it 

is transgressive (in the fibration F 1 ~ E ~ El). 

 2+i Let w 2 =-T(V 2) ~ (E 1 , ~2 ) induce E 2 over El, etc. 

2) Henceforth, "F ~ E -~ B is a fibration" will include this 
condition. 
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Some questions about this construction are: 

I) How can we compute the transgression? 

2) Can we relate the classes w2,w 3 .... to the cohomology of 

F, E, B ? In particular, how do the Steenrod operations 

behave on the w's ? 

3) If f: X ~ B, f*w I = O, and fl,f2: X ~ El, are two lift- 

ings of f, what is f[w 2 - f~w 2 ? 

The answers to these questions will depend on I) knowing 

.'s and 2) knowing the action of tiC the cohomology of the E l l 

on E vis-a-vis cohomology. 
1 

Relative Transgression 

Suppose F ~ E ~ B a fiber space, . ~ BOr B, 

Po: (E'Eo) ~ (B'Bo)" In short: 

EO = p-I (Bo) r E, 

E 0 ~ B 0 

P F ~E ~ B 

Define U = U(B,Bo,E O) = all pairs 

such that 6v = p~u. 

(U,V) ~ H*(B,B O) ~ H*(E O) 

U ' 

H* (B, B O) 

1I 2 

H* (E) 

~ H* (E O) 

, H* (E, E o) 

~I,K2 are the 

projections 
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Define S*(B,B O) = El U, T*(E O) = H2 U, 

-i 
~0: S* (B,B O) , T* (Eo)/Im i~ induced by H2HI 

-I 
TO: T*(Eo) , S*(B,Bo)/ker p~ induced by HiE 2 

~O is the r@lative suspension, T O the relative trans~ressiqn 

(We can think of T O as mapping T*(Eo) to H*(B,Bo) ; its values 

are then cosets of ker p~; similarly for ~0.) 

Properties of the relative transgression T O 

Property i. 

where T 

obvious.) 

Let j: B ~ (B,Bo) , k: F ~ E O. Then Tk* = j*T 0 

is the absolute transgression of the last lecture. (Proof 

Consider: 
i 

F *E O O' E 

* ~ B O ~- B 

where 

over 

u " v = u u r*v. 

ker p~ is stable under 

Property 2. T O is an 

r = pi O. Using r* we can make H* (E O) into an algebra 

H*(B). That is, given u ~ H*(E 0), v E H*(B), define 

H* (B) and Also, H*(B,B O) is an algebra over 

H* (B). 

v E H*(B) , then 

H* (B)-morphism. That is, if 

u " v E T*(E O) and 

u E T* (E O) , 

T O(u "V) = T O(u)'v . 

Proof: u ~ T*(E O) implies there is a u'E H*(B,B O) such that 

6u = p~ u'. Then 6(u -v) = 6(uur*v) = 6(uui~p*v) = 6u u p*v = 

p u' u p*v = pg(u'u v). 
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Next, suppose that ~ is a primary cohomology operation, 

its suspension, then: 

Property 3: ~T O = TO~ 

Proof: Use the fact: ~6 = 6~ . 

For the next property we will need the following theorem of 

Serre [9]: 

Theorem 

fiber F 

,~ BO~ B 

Let p: E-~ B be a fiber space with arcwise connected 

and base B. Suppose ~I(B) acts trivially on H,(F;Z).Let 

-i 
and set E O = p (B O). Assume that Hi(B,Bo;Z) = O for 

O(i<a, Hj(F;Z) = O, O<j<b. Then the homomorphism p*: Hk(B,Bo;G)~ 

Hk(E,Eo;G) is injective for k (a+b and surjective for 

where G is any abelian group. 

k ~ a+b-l, 

Proof: Apply the universal coefficient theorem to the homology 

version [9, p.268]. 

Property 4. Under the hypotheses of the above theorem, the follow- 

ing sequence is exact: 

TO Hi+l i* Hi+l 10 Hi+l 
: H i (E O) ; (B,B O) , (E) , (E O) 

Ha+b- I EO ~. ( ), where 1 = jp. 

Proof: Start with the sequence for (E,E O) and insert (B,Bo) by 

the theorem. Notice that i* can be obtained from the commutative 

diagram 
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H i+I(B,B O) , H i+l(B) 

i+l , N Hi+l 
H (E,E O) ' (E) 

* to be the composite Define TI: T*(E O) ~ H*(B)/j* Ker Po 

homomorphism shown below: 

T* (E O) 
T O j* 

, H*(B,Bo)/Ker p~ , H*r Ker p~ 

Notice that Property 1 can now be written 

T 1 continues to enjoy Properties 2 and 3. 

Tk* = T 1 , and that 

Property 5. Let ko: BoC B denote the inclusion. Let t be an 

integer such that O ( t 4 a+b-i , and suppose that 

Kernel p*) Kernel k8 in dim t, 

k8 is surjective in dim t. 

Then the following sequence is exact: 

t H tC O ~ H (E) 
I* t+i 

H (B). 

Proof: By exactness, Image j* = Kernel k~ o Thus, 

Image i* = p*(Image j*) = p*(Kernel k~) = O , 

in dim t. Hence by the exactness of the sequence given in Property 

4, 

Kernel i~ = Image i* = 0 in dim t , 

as claimed. 

If k~ is surjective in dim t, then j* is injective in 

dim t+l (using the cohomology sequence of the pair (B,Bo)), and so 
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Kernel T O = Kernel T 1 in dim t, 

which completes the proof. 

Property 6: Given any fiber space commutative diagram: 

F F 

E 0 ~ E 

f 
B O ~ B 

such that Hj(F;Z) = O, O<j<b, and f.: Hr(Bo;Z) 

H (B;Z) is isomorphic for 0 < r < a-l, and epic 
r 

for r = a-l, then the sequence in (4) is still 

defined and exact with i8 = f* and (B,B O) 

thought of as (Mf,Bo) where Mf is the mapping 

cylinder of f. 

The proof follows from usual argument using the mapping cylin- 

der. 

Application 

Consider the usual diagram with w ~ ker p*. 

~C 

E 

lql P = Plql 

E 1 = E w 

B w ~ C = K(~,n+l) 

Lemma 4: There is a commutative diagram of fiber spaces 

nc nc 

~C x E , ~C • E l ;E i 

E P ~ B 
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where E is the projection and ~ is the action of ~C in the 

principal fiber space E 1 . 

Proof: Recall that ql is defined by ql(e) = (p(e),~e ) 

is a path from . to wp(e). If A ~ ~C we have 
e 

where 

plP(1 x ql ) (k,e) = plp(k, (p(e),~e )) = pl(P(e),Ava e) = p(e) 

= pE(k,e) . 

Corollary I: 

fiber and let 

sequence 

-- Hi(~c x E) 

Let 

C 

F ~ E ~P B be a fibration with (n-l)-connected 

and E 1 be as above. Then there is an exact 

TO , Hi+I(B,E) 

�9 - ~ H 2n(~c x E) where 

thought of as (Mp,E)). 

, Hi+I(E1) v* , Hi+l(nc x E) 

= p" (1 x ql ) . ((B,E) should be 

For future use define s: E-~ ~C x E by s (e) = (. ,e) and 

note that 

v - s = ~ "(1 x ql)" s = ql: E ~ E 1 

since p(.,e 1) = e 1,e I ~ E I . 
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IV. We will now illustrate the method by considering the classi- 

fying space for oriented (n-l)-sphere bundles sn-I i BSO(n-I) 

BSO(n). Abbreviate BSO(q) = B . Note that p is homotopically 
q 

equivalent to the natural inclusion Bn_iC Bn; upon occasion it 

will be thought of as that inclusion. 

We will use the scheme described in the last lecture in order 

to factor p. Let O < n I < n 2 r �9 be the dimensions in which 

S n-I has non-zero homotopy groups and let K i = ~ni(S n-l) . So 

n I = n-l, n 2 = n, n 3 = n+l, E 1 = Z, E 2 = E3 = Z2" Let Sn_l be a 

generator for the group ~-I(sn-I;z). We know that Sn_ 1 is trans- 

gressive and we are interested in T(Sn_I). The Serre exact sequence 

[8;p.468] in this case is: 

,~ P* : - -  Hn-l(Bn_l) ~-I(sn-I)-~-~T ~(Bn) ~(Bn_l )----~ ~(sn-l), 

so that in dimension n, im T = ker p*. Now it follows from the 

Gysin sequence for the oriented sphere bundle S n-I c Bn_ 1 ~ Bn 

that ker p* N ~(B n) is cyclic infinite generated by the Euler 

class X n. Hence we can choose Sn_l so that T(S n_l ) = -Xn. As 

in the general situation (see p.12) we can find qn-I such that 

the following diagram is commutative 

F 
n 

i 
n 

~ S n-i 

l S n _  

K ( z , n - 1 )  

~- B 
n - 1  

l qn- 1 
; E 

n-I 

IPn-i X 

n 
B 
n 

; K ( z , n )  
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where F n is the fiber of qn-l' Fn is (n-l!-connected, and the 

morphism qn_~,-~r(Bn_l) ~ ~r(En_l) is bijective for O(r(n-l, and 

surjective for r = n. Moreover, i : ~r(Fn)~ ~r(sn-l), r>~n. 
n, 

Let v 2 = characteristic class of FnE Hn(Fn , H2 ) = Hn(Fn,Z2 ). 

We know that v 2 is transgressive and we are interested in T (v 2) 

r H n+l" ,Z 2) N ker * 
(En- i qn- i " 

We digress for a while to discuss H*(En_I,Z2). Now for q~2, 

H*(Bq;Z2) is a polynomial algebra on the Stiefel-Whitney classes 

w 2 .... ,Wq. Consequently, 

i) The morphism p*: H*(Bn;Z2) ~ H*(Bn_I;Z2) is surjective. 

ii) The kernel of p* is the ideal in H* (Bn;Z 2) generated by 

W - n 

Since Wn = Xn mod 2, it follows that Kernel Pn-i* = Kernel p* in 

all dimensions. Therefore, by Property 5, we have the following exact 

sequence (with mod 2 coefficients) for O(r<2n-2. 

0 ~ Hr(En_l) v* Hr((z,n_l) x Bn_l) Ti~ Hr+l(Bn ) . 

Let t 

(Z,n-l) ; thus 

2 we have 

iii) 

denote the mod 2 reduction of the fundamental class of 

H n- i ~ (Z,n-I;Z2) and T (t) = Wn. Therefore by Property 

H i where b ~ (Bn), i<n-2. Furthermore, by exactness of the above se- 

quence we have 

iv) Hq(En_i)~ Kernel TI, for q(2n-2. 

TI(L ~ b) = w n b, 
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Let s: Bn_ 1 ~ (Z,n-l) x Bn_ 1 denote the inclusion. Since 

(see page 18), our attention is shifted from 

q -~ 
n-I voS 

H*(En_I,Z2) N ker qn-l* to ker 

Thr~e facts of note are 

Fact i. Let I ~ HO(z, (n-l)). Then 

H*((Z,n-i) x Bn_ I) any term of the form 

ker T I . 

Fact 2. By a formula of Wu [14], Sq~W 
n 

Property 3, and iii) above, 

and so 

TiN ker s*. 

T(1) = 0 and thus in 

1 ~ b, b ~ H*(Bn_I) , is in 

= w "w O(i(n Thus by 
n i' 

7 l(sq i, ~ i) SqiTl(t ~ i) = Sq i = w n = w n'w i = T l(t ~ w i) , 

T l(Sq ~ | 1 + t ~ w i) = O for i ~ n-2 

Fact 3. Let u ~ H*(En_ I), set v*(u) = i ~ b + ~3 aj ~ cj where 

* u = s*v*u = s*(l | b + a.3 E H*(Z,n-i) , b~cj ~ H*(B n_l). Then qn-i 

cj) * Z a. | = I ~ b (since s*H*((Z,n-l)) = O ). So u ~ ker qn-i ~-~ 
3 

v*u E ker s* ~-. v*u = Z aj ~ cj , deg aj > O. 

Using the above facts one can easily calculate Hq(En_ i) for 

q (2n-2. For example, ker TiN ker s* is O in dimension 4 n while in 

2 
dimension n+l it is Sq ~ ~ i + I ~ w 2. 

Let kn+ic Hn+l(En_ I) be the unique element such that ~*(k n+l) 

2 
= Sq , ~ I + i ~ w 2. 

We now can proceed with the factorization of p. Since 

T(V 2) = kn+ I we have 
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Fn+• ~F ~ B 
n n-I 

Iv2 lq2 

K (Z2, n) ~ E n 

E 
n - 1  

k 
n+:l. 

K (Z 2 , n + t )  

where Fn+ 1 is the fiber of q2' Fn+l 

q~: ~r(Bn_l) ~ ~r(En) is bijective for 

r = n+l, and in+l.: ~r(Fn+i)~ ~r(S n-l) 

more stage. 

An unresolved question is: by altering the method somewhat, 

can we kill several homotopy groups of F at once instead of only 
n 

one? 

is n-connected, the morphism 

O(r4n and surjective for 

r > n+l. We have gained one 
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V. Killing Homotopy Groups 

H n Suppose that v r (Y,J) where 

and Y is a complex. 

J = Z or Zp, p prime, 

We have 

J E v 

1 
Y v : K(J,n) = K 

and we can ask: when does v kill a factor J of ~n(Y) - i.e. 

when does ~n(Ev) have one less factor J than ~n(Y) ? 

We know [7] that any map is homotopically equivalent to a fibra- 

tion and it is easy to check that if v is changed to a fibration 

. ~ Y ~ K to be a the fiber will be E v Hence we may consider E v 

fibration. The homotopy sequence of that fibration shows that if 

v. is surjective in dim n then ~i(Ev) ~ ~i(Y), i ~ n, and the se- 

quence 0 ~ ~n(Ev) ~ ~n(Y) ~ J ~ O is exact. In particular, if 

~n(Y) is finite and J = Zp we have: order ~n (Ev) = order ~n(Y)/p. 

Theorem 2. v. is surjective in dim n if and only if there exists 

a map f: S n ~ Y such that f*(v) = a generator of Hn(sn;j). 

Proof: We have 

V.. 
~n(Y) = [sn,y] 

S n f v f* , Y , K and [Y,K] ; [Sn,K], 

V.. 
[Sn,K] = ~n(K), so that f*v = vf = v.f. Also 

Hn (y;j) = 

H n ( s n ; j )  _- 

[Y,K] 

[Sn,K] = ~ (K) 
n 
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so f*(v) = generator Hn(sn,j) = En(K), iff v,(f) = generator ~n(K), 

iff v, is surjective. 

Definition A class v ~ Hn(y;J) is spherical if there exists 

S n f: ~ Y such that f*(v) = generator of Hn(sn;j).l) 

We are interested in finding spherical classes. In particular 

P 
we are interested in spherical classes of F where F ~ E ~ B is 

a fibration and in finding spherical classes of the spaces F I, F2,--- 

etc. which arise in the factorization of p. 

Irreducible Cohomology Operations 

Suppose that ~ is a cohomology operation of type (J, Zp,n,n+q+l) 

H n+q+• (x; Zp) with q~ O, i.e., for each space X, 9: Hn(x; J) ~ 

Definition [see 3.13 of 3] ~ is irreducible relative to (X,w,q) 

if X is a space, w ~ Hn(X,J), ~: sn+q ~ X and 

(i) ~*(w) = O, ~(w) = O, ~*Hn+q(X;Zp) = 0 

(2) ~ (w) = generator Hn+q(sn+q;Zp) (i.e. ~ (w) / O) where 

is the functional cohomology operation (see [IO]). 

~a 

Theorem 3. [see 3.14 of 3]. Suppose ~ is irreducible relative to 

(X,w,~). Consider the fiber space E ~ X w K(J,n) = K and think of 
w 

as an element of Hn+q+l(K;Zp). Then ,p 

(i) w*(~) = O, i.e. ~ ~ S*(K) (see p.9, w = p) 

If y e Hn+q(Ew,Zp) n a(9~, then y is spherical. (2) 

I) Notice that if v is spherical, then so is -v 



- 25- 

Proof: E 
/ /~l w 

/ 

/ 

sn+q a "- X w * K(J,n) 

Since ~*(w) = 0, 

the functional operation 

Moreover, ~*~i(w) = e (w) (naturality of the functional operation) 

= generator of Hn+q(sn+q;Zp). Hence each element of ~i(w) is 

spherical and (since ~(e) c ~i(w)) the proof is complete. 

This property of irreducibility is natural in the following 

sense. Suppose that ~ is irreducible relative to (X,w,a) and let 

n 
f: X ~ Y, v ~ H (Y,J) , f*v = w, and ~(v) = O. Then ~ is irre- 

ducible relative to (Y,v, fa). 

This naturality is particularly useful when, for a given 9, 

a simple X (i.e., having few cells) can be found. For example, if 

is irreducible relative to (sn,s,a), where s ~ Hn(sn,j) is the 

generator, and if v~Hn(y,J) is spherical, then the map f is avail- 

able and we need only check the condition: ~(v) = 0, to insure that 

is irreducible relative to (Y,v,fa). If e is irreducible relat- 

, S n ive to (S n ~ eq, s a) and v is spherical via y: ~ Y then 

if (i) 7~ ~ *, we can find an f, and if (2) ~(v) = 0 we then 

have that ~ is irreducible relative to (Y,v,fa). 

Suppose a cohomology operation ~ is irreducible relative to 

(X,w,a) and X is a CW-complex formed by attaching i- cells to a 

sphere. Call ~ irreducible of type (i+l). 

lifts to ~. Since wi ~ * and ew ~ *, 

is defined as a coset in Hn+q(E'Zp ) ' w  ~i(w) 

Theorem 4. The following operations are irreducible of type I: 
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2 i I 
Sq , i = 0,1,2,3, ~p,P= p = prime > 2. The following are irre- 

_ 2 i_ 2i+I 2i+I 2 i ducible of type 2: ~q sq ,Sq Sq , i = 0,1,2, Sq 16. The at- 

taching maps for the type 2 operations are Hopf maps - except for 

Sq2Sq I where it is a map of degree 2. 

Proof: The type 1 results are well known. For example, if ~ = Sq 2 

, S n+l S n use X = S n w = generator of Hn(sn;j), ~: ~ the suspen- 

sion of the Hopf map. For Sq2Sq I see [3, p.323]. The others can 

be done similarly or by using a lemma of Toda [13; pp.84,190]. For 

16 
Sq see [13; p.86]. 

n i 
Definition [cf 2.1.1 of 3] Let w i ~ H (X;Ji)' Ji cyclic, i = 

n. 
i, --,l. {wi} is a spherical set if there exist ai: S i ~ X, 

i = I, --,i, such that ~*w. = generator of Hni(sni;j i) and 
i 1 

~* w. = 0 if i ~ j. 
3 

n0 

Let w i ~ H l(X;J i) , Ji cyclic, i = I, --,i, and let 

1 
C = X K(J. , w -- ~,n i) = (Wl, ,Wl) : X ~ C. It is easy to check that 

i=l 

w,: ~m(X) ~ ~m(C) is surjective for each m iff {wi} is a spher- 

ical set. 

Let each Ji = Z or Z , and suppose that �9 E Hm(C;Zp) 
P 

where m < 2 min {ni}. Then we may write 

(*) T = X ~i(ti ) where ~i is a primary operation of type 

(ni,Ji,m,Zp). Suppose also that for some t, 0 ( t 4 i, et (in the 

representation (*) of T) is either: 

(a) irreducible of type 1 

or 

(b) irreducible of type 2 relative to M = sntu e n such that 
Y 

~-Yt- -~ *" (Here n is an integer with n t < n (m) 
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Theorem 5. [see 3.1.4 and 3.1.7 of 3] Let [wi} be a spherical 

set and let �9 be given as above. If w*(~) = O, then ~(T) c 

Hm-l(Ew;Zp) consists of spherical classes, where ~ is calculated 

in the fibration E ~ X ~ C. 
w 

Proof: (a) The proof of (a) is similar to, and easier than that 

of (b) 

(b) Since atu ~ * we can extend s t to ~: M ~ X so that 

n t 
~*w t = s where s e H (M;Zp) corresponds to the generator of 

n t n t 
H (S ;Zp). It can be checked that a can be chosen so that 

~*w. = O, i / t. (Using a Puppe sequence, alter a by means of 
1 

al,...,~t_l,at+ 1 ..... al, if necessary). We have a commutative dia- 

gram 

E J M s Jt - -  , K( ,nt) 
s 

t4  
E ~X *C 
w 

where p is the natural inclusion. Denote by o' suspension in 

E s ~ M ~ K(J t,nt). Then r*~(~) c a' (p'V) = ~'(~t ) , r*~(~) con- 

sists of spherical classes ~ ~(~) consists of spherical classes. 

The above theorem gives a method of finding spherical classes. 

We are interested in spherical sets. Using the above notation, call 

H n V r (C;Zp) allowable if ~(~) consists of spherical classes. Sup- 

Hn(C;Zp) and v.l ~ ~(~i ) . Then we have the follow- pose {~1, "',Ya} c 

ing criterion [see 3.4.2 of 3]: {vi} is a spherical set if every 

non-trivial linear combination of ~l,'',~a is allowable. This is 

just a statement in terms of the T's of a fact about a collection 
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of mod p cohomology classes of any space - namely, the collection 

forms a spherical set iff every non-trivial linear combination of 

its elements is a spherical class. Or, to put it somewhat differ- 

ently, let ZpC H,(X;Zp) denote the mod p reduction of the image 

of the Hurewicz homomorphism, and let Tc H*(X;Zp) denote any 

subspace such that 

T n Annihilator Z = O. 
P 

Then any finite set of linearly independent elements in T is a 

spherical set. 
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VI. An illustration 

We give an example that will illustrate the use of Theorem 5, 

page 27. Again let B = BSO(q), q>l, and consider the fibration 
q 

i p 
, B B , n)2 Vn+2,2 n n+2 

where Vn+2, 2 denotes the Stiefel manifold of orthonormal 2 

frames in R n+2. Given a complex A, a map ~: A ~ Bn+ 2 can be 

regarded as an orientable (n+2)-plane bundle over A. Moreover, 

lifts to B iff ~ has two linearly independent (global) 
n 

cross sections. In particular if A is an (n+2)-dimensional ori- 

entable manifold 

lifts to B iff 
n 

fields. 

M and if ~ = tangent bundle of M, then 

M has 2 linearly independent tangent vector 

We take the case n = 4s+l, s>l, and construct the first three 

stages in a Postnikov resolution of the map p. 

Set V = V4s+3,2. By [4], V is 4s-connected and 

~4s+l(V) ~ ~4s+2(V) = Z 2 , ~4s+3(V) ~ Z 4 . 

Take cohomology with mod 2 coefficients and consider the 

homomorphism 

p*: H* ~ H* (B4s+3) (B4s+l) - 

Now Kernel p* is the ideal in H*(B4s+3 ) generated by W4s+2 

and W4s+3. Thus if u~H4S+l(V) denotes the fundamental class, 

it follows by the Serre exact sequence [8] that TU = W4S+2- 
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Following the method given in lecture III we construct the 

diagram shown below. 

i 
V1------* V ~ i4s+ 1 

K(Z2,4s+I ) J , E l 

B4s+3 
W4s+2 

; K(Z2,4s+2) 

Here Plql = P 'ql is chosen so that v = u (see pages 10,12), 
ql 

and V 1 is the fiber of the map ql (~ fiber of the map u; see page 

5). Because u is spherical, the space V 1 is (4s+l)-connected. 

(See Theorem 2, page 23). Since p~ W4s+2 = O and p~ W4s+3 = 

p~ sqlw4s+2 = O, it follows that Kernel p* = Kernel p~ in all dimen- 

sions. Also, p* is surjective in all dimensions. Thus by Property 5 

and Corollary 1 we have an exact sequence 

(*) O ~ H r (El) ~* H r (FXB4s+l) ~1 Hr +I (B4s+3) , 

for all O(r(8s-1, where F = K(Z2,4s+I ) . Moreover, by Property 1, 

T 1(~1) = W4s+2 , 

where t denotes the fundamental class of F. Recall (see page 

18) that if s: B4s+l ~ FXB4s+l denotes the canonical injection, 

�9 H r then ~oS ~ ql Thus to compute Kernel q~ c (El) it suffices to 

compute Kernel s*n Kernel T I in Hr(FxB4s+l). Using Properties 
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2 and 3 (as they apply to T I) we obtain the following chart: 

dimension 

4s+2 

4s+3 

4s+4 

Kernel s* n Kernel T ! spanned by: 

0 

(Sq 2t~l + t~w2) = A 

sqlA, (Sq2sqlt~l + sqlt~ w 2) = B 

Moreover, one easily calculates that 

Sq I B = Sq 2 A + A'w 2 

By sequence (*) there are classes kicH4s+i(E I) , 

such that 

~k 3 = A, ~k 4 = B , 

sqlk4 + Sq2k3 + k3-w 2 = O. 

i = 3,4, 

Since q~ = s*~ it follows that Kernel q[ in dimension 

( 4s+4 looks as follows. 

dimension Kernel q~ spanned by: 

4s+2 0 

4s+3 k 3 , 

4s+4 Sqlk3 , k 4 
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Let ~ denote t~ suspension in the fibration given by ql" 

Since k ~ Kernel q~ each k. is in domain $ . Choose any non- 
1 1 

H4s+i 
zero classes aiE~(ki+l) c (VI) , i = 2,3. By naturality, 

aie~l(J*ki+l), where ~I denotes the suspension in the fibration 

(**) V I -~ V u K(Z2,4s+I) " 

By definition of k. we have 
1 

j*k 3 Sq2t, j*k 4 = Sq2Sq I 

Now apply Theorem 5 to (**), taking C = K(Z2,4s+I), X = VI, w = u, 

E u = V. By the theorem it follows that {~2,=3} is a spherical set. 

(Since Sq2Sq I is an irreducible operation of type 2, we need to 

remark that 2~4s+l(V) = O.) Therefore by Theorem I we can con- 

struct the following diagram: 

V2- -* V l - -  

I (~2' a3) 
K(Z2,4S+2) xK(Z2,4S+3) 

> B4s+l 

IP2 k3xk4 

E I , K(Z2,4s+3)• K(Z2,4s+4). 

Here ql = P2q2 ' q2 is chosen so that 

denotes the fiber of q2" Since ~2 and 

Vq2 = (~2,~3) and 

~3 are spherical, 

V 2 
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and since V 2 can also be regarded as the fiber of the map 

(~2,~3), it follows by Theorem 2 (page 23) that V 2 is 

(4s+2)-connected and that ~4s+3(V2) ~ Z 2. We seek an in- 

variant in H4s+4(E2 ) to kill this group. Notice that 

Kernel p~ = Kernel q[ through dimension 4s+4, and that 

q[ is surjective in all dimensions since p* is. Thus by 

Property 5 and Corollary I we have the following exact sequence 

for O(r44s+4. 

T1 Hr+l 
(***) 0 ~ H r(E 2) ~ ~(FlXB4s+I) ~ (E 1) o 

where F 1 = K(Z2,4s+2) xK(Z2,4s+3). Let Yi' i = 2,3, denote 

the fundamental class of the factor K(Z2,4s+i) in the fiber 

F I. Then by construction of the fibration P2 it follows 

that 

TYi = ki+ 1 (i = 2,3) 

and so by Property 1, 

Tl(Yi| = ki+ 1 , i = 2,3. 

Let st: B4s+l ~ FI• denote the injection. Using 

sequence (***) and the calculations given above for k3, k 4 

one finds that 

Kernel s~ n Kernel T 1 = 0 in dim.~4s+3, while in dim. 

4s+4, Kernel s~ n Kernel T I is spanned by 

(Sq2y2| + Y2~W2 + SqIY3~I) = C 
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Let 2 ~H4S+4(E2 )~ be the class such that ~(~) = C. Then in the 

fibration 

q2 
V 2 ~ B4s+l ~ E 2 , 

q~ = 0 and G(~) consists of spherical classes, as is seen 

by applying Theorem 5 to the fibration 

~2xa3 V 2 ~ V 1 ~ K(Z2,4s+2) xK(Z2,4s+3). 

Thus ~ can be used as the invariant for constructing the 

next fibration P3:E3 ~ E 2 , and since a(~) consists of 

spherical classes there will be a map q3: B4s+l ~ E3 such 

that P3q3 = q2 and such that the fiber of q3 w~l be (4s+3)- 

connected. 
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VII. Computing Postnikov invariants 

Theorem 5 provides a satisfactory criterion for deciding at 

each stage which classes in H*(E i) can be used as invariants for 

constructing the next fibration Pi: Ei+l ~ E. However, we are 
l 

still left with the problem of "computing" these invariants. For 

example, take the case i = i and let kEH*(E I) be such an in- 

variant. Let A be a complex and let ~: A ~ B be a map that 

lifts to E 1 . Define 

k(~) = u ~*k , 

where the union is taken over all maps D: A ~ E l such that 

= , H t pl ~ ~ where Pl: E1 ~ B. Thus if deg k = t, then k(~) c (A). 

We consider the problem: compute the set k(~). Only if a satis- 

factory method for solving this problem can be found is the theory 

of Postnikov invariants of more than limited use. In this section 

we consider a method that works in some situations. 

We modify slightly the example given in lecture VI. Let 

Spin (n), n~2, denote the universal covering group for SO(n). 

Since Z 2 is the fiber of the covering homomorphism Spin (n) 

SO(n), there is a principal fibration 

K(Z2,1) -~ B Spin (n) ~ BSO(n) , n>~3 , 

induced by w2~H2(BSO(n)), where we regard w 2 as a map 

BSO(n) ~ K(Z2,2). Thus given a complex A and an orientable 

bundle ~: A ~ BSO(n), ~ lifts to B Spin(n) iff w2(~) = O. 

Since the inclusion SO(n) c SO(n+l) induces an isomorphism 

on the fundamental group, it follows that 
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SO (n+k) Spin (n+k) 
SO(n) = Spin(n) = Vn+k, k 

for n)3 , k~l. In particular taking k = 2, we obtain the follow- 

ing commutative diagram of fiber spaces: 

Vn+2,2 = Vn+2,2 

B Spin (n) ~ BSO (n) 
n 
n 

B Spin (n+2) , BSO (n+2) . 

nn+2 

(Here ~ and p are induced by inclusions). Thus if we have a 

Spin(n+2)-bundle on A (i.e., a map ~: A ~ B Spin(n+2)), then 

has 2 linearly independent cross-sections iff there exists a 

map ~: A ~ B Spin(n) such that Pn = ~- 

We take the case n = 4s+l, s>O, dim A~4s+3. Set % = 

B Spin(q). Since the fiber map p can be regarded as the fibration 

induced from p by ~n+2' so can the Postnikov resolution for p 

be induced by ~n+2 from the resolution for p, constructed in 

lecture VI. In particular we obtain the following commutative 

diagram: 
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B4s+i ~4s+I~--~B4s+I 

lql 

' E I 

Pi 

B4s+3 ~ B4s+3 ~ K(Z2,4s+2) 
K4s+3 W4s+2 

Here pl,q I have the same meaning as in VI (so p = plql ) , and 

Pl is induced from Pl by ~4s+3" Since points in E1 are pairs 

(b,e), with bEB4s+3, eEEI, such that Pl(e) = ~4s+3(b), we define 

by 

(b,e) = e , qi(x) = (px, qlII4s+iX), 

for x~B4s+l. Then the diagram is commutative, p = plql , and the 

fundamental class of V4s+3,2 is geometrically realized by ql" 

(See pages 10, 11). 

Set "k = ~*k3eH4S+3(El). Then k is the only obstruction to 

lifting a map ~: A ~ El into B4s+1' provided that dim A(4s+3. 

Recall that k 3 is characterized by the fact that 

v~(k3 ) = Sq2t~l + t~w2~H4S+3(K(Z2,4s+i )xB4s+l) �9 
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naturality that 
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E* w 2 = 0 it follows by 
4s+l 

~Ik) = Sq2tO 1 ~ H4s+3(K(Z2 ,4s+l)• ) , 

where ~denotes the operator ~# in the fibration Pl" Con- 

sequently, the invariant ~ is characterized uniquely by the 

properties 

(1) E[ ~ 0 ~* E sq 2 

where ~: K(Z2,4s+l)c ~1 denotes the inclusion of the fiber. 

Now Pl is a principal fibration with fiber K(Z2,4s+I). 

Let 

m: K(Z2,4s+l) x~ 1 -* ~1 

denote the action in this fibration (see lecture II). Then by 

Lemma ~(a),(b), and (1) above, since E1 is 3-connected, we have 

(2) m*k = Sq2L~I + 1~. 

Given 6: A ~ B4s+3 ' define as above, 

H4S+3 (~) = u n*~ c (a), 
n 

where the union is over all maps n: A ~ El such that pl D = ~. 

By Lemma 3(c) and (2) above we see that k(~) is a coset of the 
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Sq2H 4s+l (A) c H 4s+3 (A) . 

Summarizing, we have proved: 

(3) Let ~: A ~ B4s+3' where A is a complex of dim ~ 4s+3. Sup- 

pose that W4s+2(~) = O. Then ~ lifts to B4s+l , iff 

H4S+3 0~k(~) c (A). Moreover, k(~) is a coset of the subgroup 

Sq2H4S+I(A). 

We seek a way to compute k(~). Our method uses the secondary 

cohomology operations of Adams. (See Chapter 3 of [ ~ ]). Let 

denote the operation associated with the Adem relation 

(4) Sq 2 Sq 2 + Sql(Sq 2 Sq I) = O. 

Thus #is defined on those classes u~H*(A) 

Sq 2(u) = Sq 2 Sq l(u) = O. 

And #(u) is then a coset of the subgroup 

Sq 2 H n+1(A) + Sq I H n+2(A) 

in H n+3 (A), assuming dim u = n. 

We prove 

Theorem 6. Let A and ~ be as in (3), with 

Sq I H 4s+2(A) c Sq 2 H 4s+l(A), then 

such that 

s>O. If 

~(~) = #(W4s(~)) , 
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as cosets of Sq2H 4s+l(A) in H 4s+3(A) . Thus, by (3), 

2 linearly independent cross-sections, iff O~(W4s(~)) ~ 

has 

Notice that ~ is indeed defined on W4s(~). For by the 

formulae of Wu, 

Sq2w4s(~) = w 2(~) -W4s(~) + W4s+2(~) = O, 

since W4s+2(6) = 0 by hypothesis and w 2(~) = O since 

a Spin (4s+3)-bundle. Similarly, 

Sq 2 Sq I W4s(~) = w 2(~) -W4s+i(~) = O. 

is 

The point of the theorem is that there are several good 

techniques for computing secondary operations, especially if 

A is a manifold. As an example we state (without proof) an 

important consequence of the theorem. 

Theorem 7. Let M be a closed , connected, smooth manifold of 

dim 4s+3, s~O. Suppose that wl(M) = w2(M) = O. Then M has 2 

linearly independent tangent vector fields. 

Hi .th Here w. (M) ~ (M), i~O, denotes the i Stiefel-Whitney 
l 

class of the tangent bundle of M. Recall that by the classical 

theorem of H.Hopf, one knows that M has at least one non-zero 

vector field since dim M is odd. The proof of Theorem 7 consists 

in applying 6 to the tangent bundle of M and showing that 

O~(W4s(M)). For details see [12]~ 

Proof of Theorem 6. The case s = I is somewhat anomalous, and 

so we assume that s>l. We begin by constructing the universal 
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example for the operation r Consider the following (commutative) 

diagram of spaces and maps: 

i 
K(Z2,4S+I ) ---~ K(Z2,4s+I ) xK(Z2,4s+2) 

1~ 
J 
: Z 

ig 

K(Z2,4s+2 ) - ~ y Sq 2~ ~ K(Z2,4s+2 ) 

f 

K (Z2,4s) - --Sq2Sci!~ K (Z 2, 4s+3) . 

Here f is the principal fibration induced by Sq2Sq I, and g 

is the principal fibration induced by Sq2~ Thus the composite 

fibration fog: Z ~ K(Z2,4s) has K(Z2,4s+I)• ) as fiber. 

The map j denotes the inclusion of this fiber into the total 

space Z. The maps Q and i denote, respectively, the projection 

and inclusion. By construction the fiber of g is K(Z2,4s+l) , im- 

bedded by the composite map joi. Because of the Adem relation (4) 

and the Serre exact sequence, there is a (unique) class @~H4S+3(Z) 

such that 

j*@ Sq2tl@l + i~Sq I 
= t2, 

where 
l 

i = 1,2. 

t denotes the fundamental class of the factor K(Z2,4s+i) , 

Let A be a complex and 

Sq2Sql(u) = O. If we regard u 

ucH 4s(A) a class such that Sq 2(u) = 

as a map A -~ K(Z2,4s) , then u 

lifts to Z and by definition 
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| = u v* 
v 

where the union is taken over all maps v: A ~ Z such that 

fgv = u. 

We consider again the Postnikov resolution for the Spin- 

W4s~H4S ~ fibration p. Regard (B4s+3) as a map B4s+3 ~ K(Z2,4s). 

Since 

Sq2Sqlw4s = Sq2w4s+l = w2-W4s+l = 0 , 

there is a map h: B4s+3 ~ Y such that fh = W4s. (Here Y and 

f refer to the above diagram). But 

Sq2ofoh Sq 2 
= W4s = W4s+2 - 

Since Pi: El -~ B4s+3 was defined as the fibration induced by 

W4s+2, we can regard Pl as the fibration induced by h from the 

fibration g: Z ~ Y, since g is induced by the map Sq2of and 

Sq2~176 = W4s+2. Consequently, we obtain the commutative diagram 

below: 

B4S+I �9 _ _  

K(Z2,4s+I) = K(Z2,4s+I) 

L [ j~ 
E l ~ Z 

~ h 
B4s+3 -- , Y . 
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Set k I = h*~H4S+3(El). Then, 

~*k I = ~*h*@ = j'i*@ = Sq2LI 

Furthermore, by definition, 

since 

k I ~ ~(P[ W4s) , 

fhPl = W4sPl , and so by naturality 

(2) q[ k i ~ #(~* W4s) �9 

since P = Pl ql " 

For convenience we define for any space 

Iq(X) = Sq 2 H q-2(X) + Sq I H q-l(x), 

X 

q)3. 

Thus Iq(X) is the indeterminacy subgroup of the operation 

defined on classes of degree q-3. 

We now need a fact whose proof is given in [ /~ ]. 

| ~*i 4s+3 ~ = (B4s+3). 

0, 

Assuming this we see by (5) that there is a class 

14s+3 (B4s+3) such that 

Set 

k 2 = k i - ~[~ , H4s+3c~• 

C~E 



Then, 

Therefore by 
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~*k 2 = ~*kl-~*~[a 

~k 2 = ~*k -~*~*a =I-i =i=i - 

~*k 1 = = ~*k , 

q[h 

(I), k 2 = k, and so we have shown that 

, W4s) , 

since, k differs from k I by an element of 14s+3 (~I) . 

Now let ~: A ~ B4s+3 be a bundle as in (3) and let 

~: A ~ El be a map such that pl ~ = ~. Then, by definition, 

But by naturality, 

~*~ ~ ~ ( ~ * ~ W 4 s )  = ~ ( W 4 s ( ~ ) )  , 

which completes the proo~ since by hypothesis k(~) and 

#(W4s(~)) are cosets of the same subgroup. 

The method of proof given for Theorem 6 is generalized in 

[ ~] to a method that handles other sorts of fibrations. In 

particular the method applies to give results on cross-sections 

of complex vector bundles, on immersions of certain manifolds in 

Euclidean space, and on the existence of almost-complex structures 

on certain 8-manifolds. Also, it is shown in [ i~] that by using 

"twisted" cohomology operations, one can remove the hypothesis 

w2(~) = 0 in Theorem 6 (and hence remove the hypothesis w2(M) = 0 

in Theorem 7). For a resumd of these results, see [ ~ ]. 
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