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INTRODUCTION

This paper concerns a generalization of the Pontrjaglp square cohomo-
logy operation. This cohomology operation was defined originally by
Pontrjagin in 1942 (see [5]), and was then studied in detall by J. H. C.
Whitehead [17], [19], [20]. Additional research on the operation has been
done by Eilenberg and MacLane [2], [3]; Wu [21]; Nakaoka [4]; and Yamano-
shita [22].

In i1ts simplest form the Pontrjagin square is a function

b #(2/2%2) —— (k5227 2),

) cohomology group of a complex K with coeffi-

where HY(K;G) denotes the q
clents in a group G, and 2 1s the integers. The cohomology operations
defined in this paper generalize the PontrJjagin square in two ways:
first, an entire sequence of operations will be defined, ﬁt (t =0, 1,

«-+), Buch that when t 18 a prime number p,
_ﬁp: EM(K;2/p2) ——> HP(K;2/p712).

In particular, the function .ﬁa i1s the Pontrjagin square. Secondly, the
coefficlents will consist of groups which are summands of a certaln type
of graded ring. This special kind of ring 1s a ring with divided powers,
a concept recently defined by H. Cartan (see [1]).

Rings with divided powers may be viewed as generalizations of the
following example: consider a commutative, graded algebra over the field
of the ratlionals. For each integer t denote by - the mapping x —> xt/t!
It is precisely the properties of the functions gy which we take as a defi-
nition for a ring with divided powers (see §1).
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We will consilder as coefficient domain only those rings with divided
powers where each summand of the graded ring 1s a ecyclic group of infinite
or prime power order; such rings will be called p-cyclic. The main result
of the paper may then be stated roughly (see theorem I):

let X be a space and consider its cohomology with coefficients
in a p-cyclic ring with divided powers. Then, the cohomology
ring of the space is itself a (bi-graded) ring with divided
powers.

In fact, the generalized PontrJjagin operations, ﬁt’ will play the role of
the divided power functions, By s mentioned above.

The significance of rings with divided powers is underlined by the
fact that the integral homology ring of an Ellenberg - MacLane space is a
ring with divided powers (see [1]). An important class of these rings is
provided by a construction of Eilenberg - MacLane ([3]): for each abelian
group 7 they construct a ring with divided powers, ['(w) (see §1). orf
particular importance 1s the fact that Iﬂ(w) appears as a direct summand
of the homology ring H,(w,n) (n even).

The present definition of the functions #t 1s based upon an earlier
definition, glven without details in [15). In that paper the ring f1(w)
was used as coefficients, but it was not regarded as a ring with divided
powers. I would like to thank Professors H. Cartan and S. Eilenberg for
suggesting to me the idea of using rings with divided powers. This gene-
ralization seems to indicate the underlying algebraic nature of the coho-
mology operations £t‘ It should be emphasized that these are cohomology
operatlons whose definition requires the specifying of an entire graded
ring as a coefficient domain, and not Jjust a pair of groups.

In as much as these operations generalize the Pontrjagin square, it
1s reasonable to expect that applications of the new operations will arise
in situations which generalize the applications of the Pontrjagin square.
At present the applicatlons of that operation are: computing the second
obstruction in the low dimensional case, expressing the Pontrjagin charac-
teristic classes (mod 4) in terms of the Stiefel - Whitney classes, and
calculating certain cohomology classes in the symmetric products of com-
plexes. These toplics indicate the direction in which application of the
operations ﬁt should be sought.
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The plan of the paper 1s this: 1in section 1 the two main results are
stated. The firat of these 1s the one glven above; the second gilves some
speclal properties of the operations.ft when we restrict the coefficients
to a certain category. The two main theorems are proved by first defining
a set of subsidiary functions Py (called "model operations"), and ob-
taining properties of these. The operations #t are then defined using
the functions Pes and their properties follow from the properties of the
functions Pt' Thus, section 2 states the properties of these model opera-
tions, section 3 defines the operations #%’ and section 4 gives the
proofs of the two main theorems. The remainder of the paper 1s then de-
voted to proving the properties of the model operations Pt' In the appen-
dix an example 1is given of a computation of the operations £t: namely,
for the infinite complex projective space. Furthermore, a theorem is
stated there to the effect that the operations #t glve information not
obtained by other known cohomology invarients.

The method used here to define the operations ﬁt 1s that developed
by Professor N. Steenrod (see [10], [11], [13]). I would like to express
to him my sincere gratitude and warm thanks for the advice and encourage-
ment he has extended to me throughout the preparation of this paper.

1. THE MAIN THEOREMS

We denote by R the category whose obJects are commutative, graded
rings with unit, and whose maps are all functions between such rings. If

@«
Risaring in R and R = 3 Rk, we will in general assign degree k to the
k=0

elements of the subgroup Rk (1).

Let R be a ring in . We will say that R 18 a ring with divided
powers (see H. Cartan [1; chapter 71), 1f to each element x€R of even de-
gree > 2, there 1s assigned a sequence of elements g.(x) eR (r=0,1,
2, ...), such that the functions By have the following properties:

(1.1) Bpt Ry ——>
(1.2)
(1.3)

Rzrk’

g,(x) = unit of R; gy (x) = x,

& (x)gg (x) = (r,8)e,, (%),



4 EMERY THOMAS
(1.4) g (x+y) = 2. ¢ 8.(x)gg(5),

(1.5) gg(en(x)) =€ . g.5(x)s (r> 0)
(1.6) g.(xy) = rig.(x)e.(y) (r>2)
if x and y have even degree > 2,

(1.7) gn(xy) =0 (r > 2)

if x and y have odd degree,

where (r,s) denotes the binomial coefficient (r+s)!/(r!)(s!), and €0 ™
(r,r-1)}(2r,r-1) ... ((s-1)r,r-1).

Let R and R! be rings with divided powers. By a map a from R to R'
we will mean the following:

(1.8) (1) @ is a ring homomorphism of degree zero; that 1s, if x € Ry,
then a(x) € Ry, (1 =0,1, ...).

(11) If g, gi (1 =0, 1, ...) are the divided power functions
for R and R' respectively, then

agi = gicz.

We denote by /1(ﬁL) the category whose obJects are rings with divided
powers and whose maps are the functions defined in 1.8. A ring R in ['(R)
will be called a f"-zigg, and the divided power functions g4 (L1 =0, 1,...)
will be called the Y-functions for R.

Let # be an abelilan group; following Ellenberg-MacLane we willl say
that 7 is p-cyclic 1if 1t 1s a cyclic group whose order 1s infinite or a
power of some prime. Let R be a ring in . We will say that R is a
p-cyclic ring if each summand Rk of R 18 a p-cyclic group, where R = 2 Rk'
We denote by p[ﬂ(ﬁi) the subcategory of [ (®) which consists of all p-
cyclic f’-ringa. It 1s this category which 1s the basic coefficlient do-
main for the remainder of the paper. Examples of such rings will be given
later in this section.

Suppose that X 1s a topologlcal space and that G 1s an abelian group.
As usual we denote the qbh (singular) cohomology group of X with coeffi-
clents in G by HI(X;G). If we are given a ring R € 7, then we define the
cohomology ring of X with coefficients in R, written H (x,R), to be the
bi-graded ring zm,n Hm(x,Rn). The multiplication in H (x R) 1s the cup-
product defined using the natural pairing given by multiplication in the
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ring R. That is, if u € Hm(x;Ri) and v € Hn(x;RJ), then
A +n -
uwv e H" (x,R1+J)-
If ue Hm(x Hn) we define the base degree of u to be m, the coeffi-

clent degree of u to be n, and the total deEree of uto bem+ n., If m,
n > 1 and at least one of them is odd, we will say that u has semi-odd

degree. We now can state the first main result of the paper.

THEOREM I: Let X be a space, and let A be a p-cyclic /" -ring.
Then, the cohomology ring H (x,A) 1s a bi-graded ring with di-
vided powers. That 1s, to each element u e H (x,A) with
bagse degree and coefficient degree even > 2, there 1s assigned
2 sequence of elements $.(u) (r=o0, 1, 2, ...), such that

the functions #r have the following properties:
1) b EP(xa,)

(2) fo(u) = unit of H*(X;A);
*l(u) = u,

(3) Fn(u) > fg(u) = (rae) b (w),
@) Pl vy =z, F() R (),

— (XA,

(5) By (Fpw) =<, . B (u), (r>0)
(6) . (uvuw)=rt p(u) v $ (u) (r2)

if u and u' have even base and coefficient degree g 2,
(M $luvu) =0 (r>2)

if u ggg u* each have semi-odd degree,
(8) AT =¥ E (),
(9) fr a*(u) = Qy é (u))

where f 1s induced by a map f of a space Y to X, and g is
induced by a homomorphism a of A to a p-cyclic flring A'




() EMERY THOMAS

The proof of theorem I is given in section 4. We now construct two
examples of p-cyclle I"-rings, which will play important roles in what 1s
to follow.

Let I be an abelian group. We define a commutative, graded ring
["(IL) as follows (see Eilenberg-MacLane [3; p. 107]): ["(IL) has as
generators the elements Yt(x) for each x e 1L (gl;d non-negative integer t.
These generators have the following relations H

(1.9) Yo(x) =1,
(1.10) Yo(x) Yg(x) = (r,8) Y o(x),
(1.11) Vel +y) =2, .0 To(x) Yg(¥).

1
We assign degree 2t to the generator )’t(x), and set ( ),
(1.12) rt(U) = subgroup of [ (IL) of elements of degree 2t.

Then, (L) = FO(IX) + ["1(11) + ... (direct sum). Eilenberg-MacLane
show that f'O(U_) = Z, and that r'l([[) 1s naturally isomorphic to 1L by
the map Yl(x) —> x.° We make ['(I) into a [-ring by defining the
Y-functions g; (8 =0, 1, ...) as (see [11):

(1.13) g Yi(x) = & ¢ Vgi(x) (t > 0)

where €, . = (t,t-1)(2t,t-1) ... ((s-1)t,t-1). The functions are defined
s
on a proéuct by means of 1.6 and 1.7. Notice that

gs Yi(x) = Yg(x).

Let TI' be a second abelian group and ¢ a homomorphism from T to T'. we
define a ring homomorphism [*(a) mapping I'(IL) to ["( IL') by

(1.14) Ma) Y (x) = ¥ (ax),
M@) [Yu(x) Vo)1 = Y. (ax) ¥ (a¥),

where Yé(x') denotes a generator of [ (1I') (3). The function ["(a) is
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in fact a map in the category ["(R); for,
F(G)Es(rt(x)) = F(“)es,t Yst(x) = Es,t r;t (ax)
= &) Ma) Yylx),

which satisfies 1.8. Thus, assigning ["(Il) to II and M(a) to a gives us

a functor from the category of abelian groups to the category reRy.
Suppose now that I is a cyclic group of order © (where ® = O means

that I 1s infinite cyclic). Let r be any non-negative integer, and set

common value of G. C. D. [r,8%] for large e, r > O
(1.15) (r,8"] =

0, r=20
Then, Ellenberg-MacLane show that
(1.16) [.(I) = cyclic group of order 6[r,8"]. (r>0)

For example,
r'pr(z/PsZ) = z/p 8z, (p prime)
Fe(z) = 2 (t>0)

where Z denotes the integers.
It follows that if Il 1s a p-cyclic group, then [(IL) 1s a p-cyclic
r'—ring. Thus, as an immediate corollary to theorem I we have:

COROLLARY A: Let X be a space, and let [I be a p-cyelic group.

Then, H¥(X; (1)) 1s a bi-graded ring with divided powers.

To construct a second example of r'-rings, we begin with a particular
category of cyclic groups. Let r be any non-negative integer, and set
Zr = integers mod r, where Zo = Z. Define a category & as follows: an
object of G is a group ze, where © 1s zero or a power of a prime. The
maps of G are all homomorphisms between such groups. Thus, each group of
G 1s a p-cyclic group. We define a functor G from G to the category
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plﬂ(fi) by setting
G(zg) = G,(2g) + G,(2g) + ... (dilrect sum),
where

(1.17) cr(ze) = inr,eml (r =0,1,2,...)
and 6[r,6"] 1s the integer defined in 1.15. We assign degree 2k to the
elements of Gk(ze). Thus, G(Ze) is a graded group in which Gl(ze) = Zg;
unless stated otherwise, we will always regard the group ze as the summand
Gl(ze) of G(Ze). We introduce a multiplication into the group G(Ze) by
observing first that

order G,(Zg) = order Fr(ze). (r =0,1,...)
Thus, we set up a canonlcal isomorphism
(1.18) Pr = P: 6, (2g) =~ r‘k(ze)

by defining

PQerc,e®)) = Villg)s

where 1, =1mod r €2, (r=0,1, ...). 1If e, € Gr(ze) and ¢, € Gs(ze),
we define the product c,c, in Gr+s(ze) by

(1.19) cpeg = PHLP(e,) Pleg)le

Hence, G(Ze) is a graded ring. To make G(ze) a [-ring we define Y -func-
tions g, (r=0,1, ...) by

(1.20) g. = plelp,

where g; are the Y-functions in F(Ze). In particular, 1.18 and 1.20
imply:
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(1.21) g.(a) = p71 Y. (a), g.(na) = nTg (a),
g.(1g) = 1 mod 6[r,8"],

where a € 2g (= gy(a) € Gy(Zg)) and n is any integer. It is easily veri-
fied that the functions &, defined in 1.20 satisfy the properties 1.1
through 1.7, since the Y-functions g; do. Thus, G(Ze) is a p-cyelle
[*-ring.

Let Zg be a group in G; then, for each integer r > O, G.(2g) 1s 1t-
self a group in G. Hence, we can apply the functor G to the group Gr(ze)‘
From definition 1.17 one has:

(1.22) Gg(G.(2g)) = Gsr(ze),
that 1s, from the standpoint of groups. Of course, considered as summands
of graded rings the two groups in general have different degrees.

Finally, suppose that Ze and Z, are two groups in G, and that a is a
homomorphism of Zg to Zy. With a we associate a map G(a) of G(Ze) to G(z,)

by
(1.23) Gla) = ,0'1 Fa)p
where F 18 defined in 1.18 and ['(a) in 1.14. 1In particular,

(1.24) G(e)e, = g0 (r =0,1,...)
as mappings of Zg to G,(Z ). Thus, assigning G(2g) to Zy and G(a) to a
defines a covariant functor from the category G to the category pl"(ﬁl).
Therefore, as a second corollary to theorem I we have:

COROLLARY B: Let X be a space, and let ze be a group in the

category & . Then, H*(X;G(Ze)) 1is a bi-graded ring with divided
powers.

If we restrict ourselves to the ring G(Ze) as coefficlents, then the
functions #t have certain special properties. Suppose that Ze is any
group in (. Then there is a canonical way of introducing a multiplication
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into the group, since ze 1s the factor group of the ring Z by the ideal
6Z. Using this multiplication as a pairing we define a second cup-product,
written “'. That is, if u € H'(X;Zg) and v € H'(X;2Zg), then

u “'v ¢ Hm+n(x;ze).

Since Gr(ze) € C forr=0,1, ..., we clearly have the same pairing de-
fined in each such group.
Let us compare the groups Ze and Gr(ze), using 1.15 and 1.17: namely,

(1) if 6 =0, then Z_ =2 = cr(zo);
(11) if r = 0, then Go(Ze) =2,

(111) if r, © > 0, then the order of Gr(ze) is a multiple of the
order of ze.

Thus, in all cases a well-defined (group) homomorphism 7zr mapping Gr(z
to Ze is given by:

o)

(1.25) M 8a(1g) = 1g-

Now, Gr(Ze) is itself a group in G. Hence, using the functor G we have:
a(7.,): G(Gr(ze)) R c(ze).

In particular, for any integer s > O, Gs(ﬁ7r) maps Gs(Gr(ze)) to GB(Ze).

But from the group standpoint, Gs(Gr(Ze)) = Gsr(ze)’ as remarked in 1.22.

Thus, if we continue to denote 08(77r) by 'Qr, we have for r,s > 0 a well-
defined (group) homomorphism 7 » mapping Gsr(ze) to Gs(ze) given by

(1.26) Nr Bsp (1g) = 85(1g)-

Using the «'-product defined above and the functions ‘ﬁr given by
1.26, we have the following result.

THEOREM II: Let X be a space, and let Zg be a group in G. Let
G(ze) be the p-cyclic ["-ring defined in 1.17. Then, for
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u e Hzn(x;ze) and integers r, s, t > 1, we have:

(1) Mpwbog(u) = B (u)IF, (r-fold “'-product)

(11) ft(u) = ub, if © 18 zero or is prime to t.

2
Suppose further that u € H ni(x;ze) (1 =1, ..., r),
and that t is a positive integer. Then,

(111) 1f t 1s odd,
B~ o)

(iv) 1f t is even

Folu) &0 v fi(u),

#t(ul) R ‘ét.(“r)

Tt(ul, v ur)

ét(ul “e o wtua)

4

where

(2) ‘ft(ul, ceesu ) e Hztn(x;Gt(Ze)), (n = I nr)

(b) CEt(ul, <ess u) = 0, 1f © 1s odd or equals zero,
(¢) Py(u, ..., u) =0, (u = «o0 = u, =u)

(d) 2‘¥t(u1, eees u,) =0.

The proof of this theorem 18 given in section 4.

2. THE MODEL OPERATIONS, Py (t=0,1, ...)

Suppose that we have proved theorems I and II for the category of re-
gular cell complexes (see [9; §2]). We indicate here how to extend the
proofs of the theorems to arblitrary topological spaces.

Let A be a p-cyclic ring with divided powers (see §1), and let Ay, be
any summand of A of even degree (k > 0). Let n be any positive integer.
Since Aak is a finitely generated abelian group, there exists a regular
cell complex . with the following properties:
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(1) K, 1s an Ellenberg-MacLane space of .type (Aak’ 2n); 1.e.,
Ton (Kn) = Aoy Trr(Kn) =0, r # 2n;

(11) the r-skeleton of K, 1s a finite regular cell complex for each
r=0,1, ... .

The existence of such a complex is remarked by Thom in [14; §6]. Let us
assume for the moment that we have proved theorems I and II for the cate-
gory of regular cell complexes; in particular, the functions ﬁt are then
defined for the cohomology ring H*(Kn;A). Now, let M be any CW-complex
(see [18; §5]). We define the functions ,ﬁt for the complex M in the usual
way: that 1s, 1f u e Hzn(M;Aak), we define

Bow) =17 By,

where L 1s the fundamental class of Hzn(Kn;Agk), and f: is induced by a
map £ : M —> K, such that fs (Ln) = u. One easily verifies that the
functions defined in this way continue to satisfy theorems I and IT.

Finally, let X be an arbitrary space; denote by K(X) the geometric
realization of the singular complex of X (see [19; §19, 20]). Then, K(X)
is a CW-complex and there is a natural map k : K(X) —> X such that
k* H*(X;G) = H*(K(x);G), for any coefficient group G. Let u €
Han(x;Azk); we set

Bou) = k*1 B k).

Once again the functions so defined satisfy theorems I and II, as 1s easily
verified. Thus, we need prove I and II only for the category of regular
cell complexes. For the remainder of the paper, "complex" will mean "regu-
lar cell complex" unless otherwise noted.

Theorems I and II are proved for the category of complexes in the fol-
lowing way. We define a set of cohomology operations P, (r=0,1, ...)
which take coefficients only in the category G (see §1). fThen the Y-
functions #r (see theorem I) are defined by means of the functions P
and theorems I and II are proved using the properties of the functions Pr
stated in this section.
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(2.1) PROPOSITION: Let K be a complex, and let Zg be a group
in the category G. Then, there is a sequence of functions Pr
(r=0,1, ...) with the following properties:

(1) Pt ENGZe) —> E(K50,(2,)), (n> 0)
(11) Po(u) =1 € H(K;6,(24)),
Py(u) = u,
(111) Pp(u) ~ Pg(u) = (r,s) P (u),
(1v) Pi(u+v) = Zhpgat Pp(i) v~ P (v),
(v) Pg(P(u)) = P g(u), (x> 0)
(v1) Pt =t¥p,
(vit) P, = G(a), P.,

where a, 1s induced by a homomorphism a of Zg to 2, (Zr e G),
and G(a) 1s the homomorphism defined in 1.23.

The proof of this theorem is glven in sections 10 through 12. We call
the functions P, model operations, because their only use will be to define
the functions f,.

Let 24 € G, and let My be the homomorphism from Gsr(ze) to GB(Ze)
defined in 1.26. We have

(2.2) PROPOSITION: Let u € H°P(K;Z,). Then,

(1) N psPpg(u) = [Ps(u)]r, (r-fold '-product)
(11) Py(u) = u®, if © 13 zero or is prime to t.

2n
(2.3) PROPOSITION: Let w, € H 1(K;Zg) (L =1, ..., r), and
let t be a positive integer. Then

(1) 1f ¢ is oud,

Polup ~' o ot = p(w) ot vt op(u)
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(11) if t is even,
Po(u;) &' oo v P(u)) + ‘i’t(ul,...,ur),

Pl ©' .o V7 ou)

where
2t |
(a) \Pt(u 2 eeey ur) € H n(KSGt(ZQ)): (n = N+ oo+ nr) '
(b) ﬁ%(ul, ceesu) =0, if © 1s odd or equals zero .

(C) \Pt(u’ seay u)'=0: (ul-...=u =u)

r

(d) 2Tt0ﬁ""’uﬁ = 0,

2ni+1
(111) Let v, ¢ H (K32Zg) (1 =1, 2). Then, for t > 2,

2Pt(v1 ot v2) = 0.

The proofs for these propositions are given in section 13.

3. THE DEFINITION OF THE OPERATIONS #%

We use the model operations P, (t =0, 1, ...) defined in the pre-
ceding section to define the ¥ ~functions ﬁt described in theorem I.
Throughout this section let A be a fixed p-cyclic P-ring, where A = = Ai'
Let A2k (1 <k« ©) be a fixed summand of A. For a given complex K we
wish to define the functions £r mapping Hzn(K;Agk) to Hzrn(K;Aark)

(n > 0). Since each summand of A 1s a p-cyclic group (see $1), there
exists an integer ©, either zero or a power of a prime, such that

order A2k = order Ze.

Let u be an isomorphism from A2k to ze. We define first a function
#15 , which depends upon the isomorphism p; and we then show that in fact
our definition 1s independent of the particular choice of p.
Let g: A —> A, & G(Z2g) —> G(Zg) (r=0,1, ...) be the
Y -functions in A and G(Zg) -
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(3.1) LEMMA: For each integer r, there is a homomorphism
Cr: Gr(ze) —> A2rk Buch that

s,';z'l

= (.8

in the following diagram:

CI‘
A A
& g,
-1

Zg > Ay

PROOF: Since A is a ['-ring, we can define homomorphisms

(3.2) f FI‘(AEK) > A2rk

r

(r =0, 1,...)

by setting
£r Tp(a) = gp(a)
Trasl V2(38) Yg(b)] = g/ (a)g)(b),

for a, b € A2k' Relatlons 1.1 through 1.7 and 1.9 through 1.11 imply that
each function fr 18 well-defined. We define the homomorphism Cr by

(3.3) Lo =1, Fr(u"l)lo;

that 1s, as the following sequence of homomorphisms:

M) .

6,.(Zg) > f;(ze)

r;(AEK) > Aark'
Here, is the isomorphism defined in 1.18; and f;(u'l) is the isomor-
phism corresponding to u'l using the functor r; (see 1.14).

To prove 3.1, let a € ze. Then, by 3.3 and 1.21,

trep(a) = 1, r}(“-l) P epa) =1, r;(“-l) To(2).
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But, from 1.14 and 3.2 we have
£ Mw™) Yo(a) = £ ¥ (@) = gmHa).

Thus, (.g.(a) = g;,p.'l(a), which completes the proof.
n rn
We define the function £r,u mapping W (K;AEk) to H° (K;A.ark) by

(3.4) ‘*{r,u. = Lo Proitye
That 1is, _fﬁr n 1s the composition of the following functions:
s

CI‘*

> Hzrn(K;Aark) .

(K Ay) —5  HP(K:Z,) r, B2 (K;6,.(2) )

We proceed to show that the function ﬁr,u 1s independent of the
choice of u. Let B be a second p-cyclic ["-ring, where B = 21 Bi’ Then,
order By, = order ZT for some integer T. Choose an isomorphism v from By
to Z.. We have:

(3.5) Let a be any (group) homomorphism from A, to B, .
Then,

] -1 ) -1
Fe(v™)y fa PrVuSy = Fpla), Mole )*/D* Proty-
PROOF: Deflne a homomorphism B of Ze to ZT by
1

B= vap .

Then, va =B p. Since pu, v are isomorphisms and Fr 1s a functor, we
have:

Mea) Mo™) = T [L(8)-
From 2.1 (vii) we have:
P By = GP(B)* Pps

when G (B) = /J"l r.@e) P - Hence,
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r‘r(v—l)*ﬂ* Prvy oy Fr("-l)* f PBay

Fo™ )y o 6p(B) ooty

I_'r(v'l)* [P(B)y Py Epity

Fe(@)e To®™y p oy Pty

as was to be proved.
Now, let ® and o be any two isomorphisms from A2k to Ze.

(3.6) PROPOSITION: $. =4 . .
k] 2

17

PROOF: Define an isomorphism a from A, to Ay by a = 0 lo. This

implies
(3.7) M) = Neh M.

Using 3.4, 3.7, and the definition of a we have

-1
#’r,m = L P, =L Fr(w )M /o % Pp 08y

= Lo Fr(“-l)* " ( G_l)* P Pro,2, -

Let us now apply 3.5 by setting Bak = Aek’ =0, Vvag , and Ze = z,r.

Then,
Mol o™ )y P PnO 0, = [La), M(c™) P
r *f*r** p'®y 1 p80 )y P oy P Oy
Hence, combining this with the previous equation we have
Bro =T ML), M), Mla™ PO
r,w r¢ 'r *r*ra'-u-f«u-r*
-1
=t Tlo™), PuFrs

Cow Pp O, = ﬁr,c

This proves the proposition and shows that we can now uniquely define the



18 EMERY THOMAS

functions A mapping Ho"(K;Ay ) to B (K3 Agry) by

(3.8) DEFINITION:
isomorphism of A2k to ze.

fr vy (P =0,1, ...) where v 18 any
s where V 1s any

To emphasize the difference between the V-functions ﬁt and the mo-
del operations Py, we show the relation between the two in the case where
the coefficlent ring 1s G(Zg), for Zg € G.

(3.9) THEOREM: Let Zg be a group in the category G, and
let G(Z ) be the [“-ring defined in 1.17. Let u be an element
of of KD (K,G (Ze)) (r> 1), and set e, ., = (r,r-1)(2r,r-1)
((s-1)r,r-1). Then,

Bo(u) =, P (u),

(s =0,1, ...)

1n PR (K;6,,(Z5)) -

(3.10) COROLLARY: Let u € H-"(K;Zg). Then,

£4(u) = P, (u), (s =0, 1, ...)
1n H57(K;64(2)) -

PROOF: 1In order to use definition 3.4 we must find a group in C
whose order is equal to the order of G (Ze) But @ (Z ) 1s 1itself a cyc-
lic group of order 6([r,8"] (see 1.15) generated by gr(le) = 1 mod 8lr,8"].
Set 1 = 6[r,0"]. Then, G (Ze) =2 € G . In addition we must choose an
isomorphism v from Gr(ze) to Z.. set vgr(le) = 1 . Then, as a mapping of
groups, v = identity; but as a mapping from a summand of one /’—ring into
a summand of another, v maps elements of degree 2r in c(ze) into elements
of degree 2 in G(2.). From 3.4 we have

is = LouPgVs = Cgu Pgs

since V, = ldentity, as a coefficient group homomorphism. Recall that
4 s is the composition of the following functionsa:

I -1
Gg(2,) )

> f;(z,)

> g(6.(2g)) > Ggn(2Zg)-
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Thus, by 3.3, 1.21, 1.14, 3.2, and 1.5 we have

teB(ly) = £y (v )peg(ly)

r, Myovrh v,

it

fs Ysgr(le)

Ss(gr(le)) = es,rgrs(le)'
But considered simply as cyclic groups with generators, we know that
GS(Z‘I,') = GSI‘(ZG)’ 83(11) = gBI‘(le)'
Thus, ({g(a) = es’r(a), for each element a of Gg,(Zg). Hence,
Fo(u) = P (u) = ¢y P(u),

which completes the proof. The corollary follows immediately from the

fact that Gl(ze) = 2g, and €5,1 = 1.

4. THE PROOF OF THE MAIN THEOREMS

With the Y-functions 'ér (r =0, 1, ...) now defined (see 3.4 and
3.8), we show that these functlons satisfy theorems I and II. Throughout
the section let A denote a fixed p-cyclic rLring, and Aak a fixed summand
of even degree. Suppose that A2k has order 6, and let v be a fixed iso-
morphism from A2k to ze.

PROOF OF I(1): This follows at once from definitions 3.4 and 3.8.

PROOF OF I(2): 1In 3.3 we defined a homomorphism £, mapping Gr(ze)
to A, such that g;v'l = g, where g, g; denote the Y-functions in
G(Ze) and A respectively. Let t € A, denote the unit of A. Then, using
1.2 and 3.3 1t is easily verified that 4 (1) = L, where 1 e G (Ze) = 2.
This implies that if 1', 1" are the units of H (K,G(Ze)), ! (K,A) respec-
tively, then
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Lol = 2"
But from 3.4 and 2.1(i1) we have

Fo(w) = CouPoviulu) = £ (1) =17,

for any class u € Hzn(K;Aek). This proves part one of I(2).
For the second part of I(2), we observe that the function 51 =y,
by 1.2, 3.2, and 3.3. Hence,

Bo(u) = g Pv,(u) = (V) v(u) =y,

by 2.1(11). This completes the proof.

PROOF OF I(3): We need a preliminary result. Let A denote the mul-

tiplication in both the ring A and G(Ze). Then

(4.1) In the following diagram,

Al ® L) = L g A

Gr(ze) @ Gs(ze) —_—é—"> Gr+s(ze)
.® L Cres
Ropy ® Axgy I A2(r+s)k‘

PROOF: It is sufficient to verify commutativity on a generator of
6.(2g) ® GB(Ze); namely, on the element g,(lg) ® gy (1 Then, by 1.3
and 3.1, we have

o)

Crps MBp(lg) © 84(1g)) = (7.8) €y, Bps(le)

= (r.8) gl v (1)

= gn(v1g)es (vi1g)
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= AL ® 8)(8.(1g) ® g,(15)),

which completes the proof.
We use the lemma to prove I(3):

Fow) v B(u) = C P v (u) v g PV, (u)
= Al ® ) [Py, (u) ® B v (w)],

by 3.4 and the definition of the w-product. However, using 4.1, 2.1(111),
and 3.4 we have

Aglle ® L) [PV (u) ® Py, (u)]

(%mhkd%u@)®PﬂJW]

(£:8) Cnpgn Prog¥s(®)

(r,8) f. o),

completing the proof.

PROOF OF I(4): This follows at once from 4.1 and 2.1(1v), by a proof
entirely simllar to the one used for I(3).

PROOF OF I(5): Set 7 = order Asp» and choose isomorphisms v from
A2k to Ze and u from Ay to Z - Let {, be the function defined in 3.3
mapping G (Ze) to A, ., and let G(n ¢, ) be the mapping from G(G (Ze)) to
G(z.), defined using the functor G (eee 1.23). fThen,

(4.2) LEMMA: L8 (1 £.) = €5, p Lgpe 1n the following diagram.
L (TR 8
G5(0,(25)) ———> 64(2,)
| %
8r g
Gsr(ze) > AZsrk
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PROOF: Let @ = ©[r,8"] (see 1.15).- Then,
6.(zg) = 2,, and g.(lg) = 1,-
Since all the functions involved in 4.2 are homomorphisms, we may verify

commutativity by applying the functions to a generator for GB(Zm), say
gs(lm). Then, by 1.24 and 3.1,

E0g(n §)Eg(10) = L8yl &y 1)

gy whn L(1y)

g; Cr(lm) 3

roo-1
But, 1(“ = gr(le); and crgr(le) = gr 1% (19), by 3.1. Hence,
-1 1 -1
S; Cr(lm) = S; gp (W 71g) = €3,rBsr ® (16)
= ,r ;srgsr(le)’

by 1.6 and 3.1. This proves the lemma.
We use 4.2 to prove I(5):

Pl Bo(u) = CouPote (£, ()
= cs%Ga(u Cr)* PsPrV*(u),

by definition 3.4 and 2.1(vii). But PP, = Py, by 2.1(v). Hence, from
4.2, we have

Couls (ke L1)uPgPrvy(u) = € o LoruParvs(v) = Es,rﬂsr(u)’

as was to be proved.

We consider together the proofs of I(6) and I(7). Suppose that u €
Hm(K;AZr)’ u' € Hn(K;Aas) where m + n is even. If A, ., Ay, are both
finite groups with relatively prime orders, then A2r [ A25 = 0. There-

his
fore, u v ut = 0, ﬁt(u) v ﬁt(u') = 0, and I(6), I(7) are trivial in ¢
instance. Thus, from now on we assume the contrary; that 1s, that there
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is an integer ©, either zero or a power of a prime, such that A,ar@ A’ZS

>~ .

Let us denote by e1 the order of the summand A1 of A (1 =0,1, vee)e.
i Y ol
Set 27 = zeai, and choose isomorphisms vy A21 = Z°. Set a5, =

-1
vy (1921). Then, a,, 1s a generator for Ayy-

Let © be the integer referred to above. If 8 = 0, then Zr, Zs and
Zg are all equal to Z. If @ > O, then the orders of zZ¥ and Z8 are multi-

ples of the order of Zgs since A, ® Aoy = Ze. In all cases if we denote
by €. and € g the natural homomorphisms

€

r 8

Zr > Ze, Zs > Ze,

we see that Er ® ¥, 18 an isomorphism of Z" ® Zz° onto 2 ® Zg (= Ze).

Let A: Ap® A, — Ao(pyg) BNd 02 Zg ® Zg —> Z, be the multipli-
cation in the rings A and Ze respectively (see §1). We then have:

(4.3) LEMMA: In the following diagram,

Yo(€E, ® (v, ® v,) = VipsA o

where
\P(le) = Vris(32p805)
Vres ™48
Aor ® Ayq > A2(r+s) >z
"N
v,® v, Y
v
r 8
Z®2 —_—_—) 2. ® 2 —_— 2
gra Es (-] ] @ (]

The proof 1s immediate, since Vs Yo ® Vg 'ﬁr ® ‘ES, and w are all iso-
morphisms.
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r LI s

Now, let ’;1':’ 6 (Z7) —> Aypys G " G(Z7) —> Aygy and

ct’ Gt:(zz'+s
@' ct(ze) ® G.(2g) —> G.(2g) be the multiplication in the ring Gt(ze)

) — A2(r+s)t be the maps defined 1n 3.3. Let

(see §1). We then have:

(4.4) LEMMA: In the following diagram,

(E1) AL, ® &) = §.6, (W) [0,(E,) ® ()]

[L® L8 A
64(2") ® 6y (2°) - Porg ® gy — > Aa(ris)t
Gt(tr) ®Gt( EB) 1
v I —_—s e (ZI'+B)
G, (2g) ® Gy (2Zg) = > G, (2g) T ¢

The proof 1is purely mechanical, and 1s omitted.
Since o' and G.(€.) ® G.(€,) are both isomorphisms, as an immedlate
consequence of 4.4 we have:

(4.5) tt = g0 (V)

where

A= AL ® g6, (8 ® 6 (€)1 oL,

PROOF OF I(6): Let u e H-"(KiAy,), u' ¢ H'(KiAy,) (r, 8> 1). We
first need a lemma.

(4.6) Poluvw) = et AR L8 v (u) “' ¥ v, (0)],

where /\.1_5 the homomorphism defined in 4.5.

PROOF: PFrom 3.4 and the definition of the w-product, we have
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Folu ) = LPvaye A wlu @),
But by 4.3, 2.1(vii), and 4.5, it follows that
ct*Ptv(r-o-s)-z:-A*(u ®u') = Ct*Pt‘{J*m*[Er*v*(u) ® Es*vs-u-(u')]
= Ceule (W) P [E v (u) Eguvgs(u')]

= t!A*Pt[Er*vr-x-(u) Vg g Van(ut) ]

Thus, the lemma follows from these two equations.
In order to prove I(6), set

nt = ‘Pt[ Erwvra(u), Egvg.(un)l, (t even)

=0, (t odd)

where Yt is the functlon described in 2.3(11). Then zﬂt = 0, using
2.3(11 d) in case t is even. Hence,

Feluvun) - BEALP(E ) ' PL(E uve,u') + g
= “'A'*""-;z-[Pt(E raVpu(1)) ® PL(€ guvg,(ur))]
= 8 A6, (€.) ® Gy(E )1 [Pyv,(u) @ Py, (u'))

= t1A (8 ® £0),[Pev,,(u) @ Ppvy,(u)]

' ]

& /\*[ct-:eptvr-u-(u) ® Ly Prvgu(u’)]

t! ﬁt(u) v ﬁt(u'),

which completes the proof. Here we have used 4.6, 2.3(11), 2.1(vi1), 4.5,

3.4, and the fact that t! = 0 mod 2, when t > 2.

PROOF OF I(7): Let u ¢ Hm(K;Ai), u' ¢ Hn(K;A ), where u and u' have
seml-odd degree. That 1s, either m and n are odd, or 1 and J are odd, or
both pair are odd. Let us suppose first that 1, j are even and m, n are
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odd; set 1 =2r, J =28 (r, s > 1). Then, from 4.6 and 2.3(1i1), we have:

Foluvur) = etARTE v (u) v By (u)] =0,

m
(o)

since the base degrees of ‘Er*vr*(u) and Es*vs*(u') are odd, and t!
mod 2, for t > 2.

Suppose now that 1 and J are both odd, say i = 2r+1, J = 2s+l. For
this case we need a preliminary lemma: let G be any finitely generated
abelian group and K a complex. Then, there 1s a natural identification
of X*® G and Hom (K,G), where k¥ = Hom (K,Z) (see §5). In particular,
suppose that G is a cyclic group, and that U € Hm(K;G). Then, a represent-
ative cocycle can be chosen for U of the form u = {u ® n}, where u € Cm(K),
n € G, and { } denotes cohomology class.

14.7) LEMMA: Let U ¢ H:(K;Ze), where Zg € G. Suppose that
U= {u®n}, where u e C (K), and n € Ze. Denote the Y-functions
in G(Ze) by g (1t =0, 1, ...). Then, there is a cochain

z e Ctm(K) such that
Pe(T) = {z ® ge(n)}.

The proof of the lemma depends only upon the properties of the func-
tions P, and will be given in section 8.

Using 4.7 we complete the proof of I(7). By hypothesis, we have
u e Hm(K;A2r+1), u' € Hn(K;A28+1). Since A, .., and A, . are cyclle
groups generated respectively by 5.1 and 855417 there are integer co-
chains u,, ui such that

1
uea {ul ® a2r+1}, u' = {ul ® a28+1}.

Then, u v u' = {w ® (32r+1323+1)}’ where w = d¥ (u1® u]'_), and d¥ 1s in-

duced by the diagonal map d of K into K x K. Let v be the isomorphism

r+8+1
v2(r+s+1) from Ae(”s+1) to 2 , defined at the beginning of the proof

of I(6). Then, by 4.7 we have,

Povy(uvut) = Polw @ v(ay, 185591 = (2@ gevia, 855,01
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for some cochain z € CZt(r+s)+2(K). Thus

#t(u vu') = L PV (uvut)

= Leulz ® gyV(ay,5850,,))

{z ® ctgtv(32r+1323+1)}

Iv-l
{z ® g v v(ag,1855,)}

]
{z ® ge(a;,,1354,,)) = 0,

by 3.1 and 1.7. This completes the proof of (7).

PROOF OF I(8): This follows at once from 3.4, 2.1(v1), and the fact

that % commutes with all cohomology homomorphisms induced by coefficient
group homomorphisms.

PROOF OF I(9): Since a 18 a ring homomorphism of A to A', 1t induces
a group homomorphism ay of A1 to Aj'_ for each 4 = 0, 1, .., . Let
£, : B — ' !
ig . zrt::gk])_ : > Aelft; e r't(Aek) —_ A2'kt be the functions defined
2, et g;, g; be the Y-functions in A and A' res e
onan S pectively. Wwe

(4.8) LEMMA: In the following diagram:

fo Tiloge) = opfy.
Fetay,) r;;(“ak)> Fe(ady)

£, £l
A2:c et > Ach

PROOF: By 1.14, 3.2, and 1.8,
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£y Mylagy) Ye(@) = 17 (ag8)

gé (agka)

SptEe(2)

ogefy Ve(a)s

where Yt(a) is any element of r;(Aek). Now, let v: Ay —> Zg,
M Aé —_— Z be isomorphisms. We then are in a position to use 3.5,
k T

Namely,
-1
(4.9) Pt(l*-l)*f-x?c Hyloles = Felag ) TV )*f*Ptv*.

Using this we have at once the proof of I(9): for

_ﬁta*(u) = LPoas . (1) (3.4)
= i [ 0™, P yPete®aie(®) (3.3)
= i [lan), r’t(v-l)*lp* P, v, (u) (4.9)
= Gppuler [e(V )y PuBrve(®) (4.8)
= a*Ct*Ptv*(u) (3.3)
-a, f(v), (3.4)

which gives the desired result.
This concludes the proof of theorem I. The proof of theorem II fol-

lows at once from 2.2 and 2.3, using 3.10. Thus, the two main theorems
are proved, and we are left now with proving 2.1, 2.2, and 2.3.

5. DEFINITION OF THE MODEL OPERATIONS P, (p prime).

We define the model operations P_ (p a prime number) using the method
developed by N. E. Steenrod (see [11]8. Since we will make constant use
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uge of the techniques developed in [11], in the following paragraphs we
summarize briefly the contents of §2 of that paper.

Let K be a regular cell complex, and let K* denote the assoclated co-
chain complex with integer coefficients: i.e., K* = Hom (K,2). If uis a
q-cochain of K, and ¢ 1s a (finite) q-chain of K, then u.c € Z denotes the
value of u on c.

Let 6 > O be an integer, and suppose that T ¢ Hq(K,Ze) 1s a cohomo-
logy class mod © of K. 1In order to define a cochain representative for wu,
we first define an elementary cochain complex M = M(8,q) as follows: the
cochain groups cT(M) = 0 1f r ¥ qor q+ 1; c3(M) 18 an infinite cyclic
group with generator u; c3+! (M) 1s zero if @ = 0, and otherwise is infi-
nite cyclic with generator v. The coboundary in M 1s defined by bu = 6v.
Suppose now that £f: M —> K* is a cochain mapping (i.e., f6 = 6f); then
fu 1s a cocycle mod © and determines a cohomology class U ¢ Hq(K;Ze).
Conversely, starting with U, there 1s an integral cochain uy which 1s a
cocycle mod & (i.e., 6uy = evl) and whose cohomology class is u; hence,
setting fu = v, fv = v, we define a cochain map M —> K*¥. Such a map f
we will call a cochain representation of ©. It is easlly shown that homo-
topic cochain maps M —> K% represent the same U; and hence the cohomology
class U may be regarded as a homotopy class of cochain maps M —> K* , any
one of which 1s a representation of T.

Let ¥ denote a permutation group of degree n. We shall regard ¥ as a
group of permutations of the factors of any n-fold tensor product such as

a k¥ ® ... 8 K¥ (n factors). Let W be an acyclic complex on which w
operates freely. Also denote by W the chain complex 1t determines; its
chain groups are free abelian.

The construction of cohomology operations applled to u (called the
w-reduced powers of E in {11]) is based on the following diagram:

(5.1) WM T 5 oy ® K" _C__) W @ K™ —-"—> K*.

The undefined terms in 5.1 are explained as follows:

If W is a chain complex, and A 1s a cochain complex, their tensor
product W @ A 1s the cochain complex whose cochailn groups are

(5.2) c(Ww®a) =327 ¢, (W) ® c™*i(a),

and whose coboundary operator 1s defined by
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(5.3) f(w®a) =w®a + (-1)1 w® ba,

where 1 = dim w. In case T operates on both W and A, we define operations
In W® A by

(5.4) x(w®a) = xw®xa, x € 7.

Then, W ®_ A is the factor complex by the subcomplex generated by co-

? T
chains of the form x(w ® a) - (w ® a). . w

The map ¥ of 5.1 1s induced by a map f: M ——> K representing u;
1., Y=1 @ . : = ]

,The map Zf 5.1 is induced by a natural map {': K ——> K™ (see
2.5 in [11]). 1In case K is a finite complex, (' i& an 1s:morphism. Fur-
thermore, the action of v in K" yields a dual action in ™ with respect
to which (' is equivariant. Thus, { =1 ® gr. 5

The map ¢ 1s defined as the dual of an equivariant chain map
called a diagonal approximation:

(5.5) g': WOK ——> K.

For the detalls of ¢', see 2.7 in [11]. Once we are given ¢', the
map ¢ dual to g' is defined by

1
zt(1-1) vy weo),

(5.6) gwdy)-o = (-1)

where 1 = dim w, y 1s a cochain of K*, and O 1s an oriented cell of K

with dim 0 = dim y - 1. PFrom the equivariance of g' we deduce that #x =

3

g for every x e w; hence, ¢ is defined on W ®_ k¥, L
Having defined completely the terms of 5.1, we come to the final step

in defining cchomology operations. Let G be an abelian group of coeffi-

clents. There is a natural transformation

o: K¥® G ——> Hom (K,G)
given by w(y ® g)-0 = (y-0 )g, where y € K*, g € G, and O 1s an oriented

cell of K. 1In case K is finitely generated in each dimension, @ 1s an
isomorphism. In any case bw = wd, so that o induces a homomorphism
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(5.7) o: H (" g ) > H(K;G).

Now tensor the diagram 5.1 with G and pass to the derived diagram of
cohomology groups and induced homomorphisms. The composition of the three
induced homomorphisms and the homomorphism w of 5

.7 1s a homomorphism de-
noted by

(5.8) d: (v @ M ® o)

> H(K;G).

The image of $ for all dimensions r 1s called the set of 7-

reduced powers
of the cohomology class T of K.

To make the notation somewhat less unwieldy, in practise we will sup-
press the homomorphisms { and ®; namely, we let ¢ denote henceforth the

composition gf of 5.1, and ignore . Thus, on the level of cochains we
have mappings

Ve M ec h AN v © K"® ¢ > k¥ e g,
which induce cohomology homomorphisms
Iy H
(5.9) (W o "o o) > H'(Ww ® K" ®a0) > H(K;@),

whose composition is &.

It should be emphasized that the map \P* is induced by the represen-
tation M —> K of U. The other homomorphism of 5.9, ¢*, 1s induced by
the dlagonal approximation g' of 5.5 and is independent of W.

This, then, 1s a summary of Steenrod's general method of obtaining
cohomology operations. We proceed to specialize this method to obtain
the function P, mapping Hzn(K;Ze) to Hzrn(K;Gr(Ze)).

Let p be a prime number, and let 7 be the cyclic group of permutations
of K*p with generator T, where T moves each factor of K%p one place to the
right and moves the last factor to the first position.

In the group ring z(r) set

p-1
(5.10) A=T-1,3=5__ 1

Construct a w-complex W having one cell ey and its transforms Tk ey in
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each dimension 1 2> 0. Define a boundary homomorphism, 3, by

(5.11) Oepy 1 = Bepys Jepy = €5y 5.
Then, W 1s a w-free, acyclic complex (see [10; §41).

Suppose that C is a group in the category G (see §1); i.e., C = Zg
where © = 0 or a power of a prime. Let K be a fixed complex, and let

e Hzn(K;ze). Construct an elementary cochain complex M = M(©,2n), as

described earlier in this section: in order to define the map Pp, we

first define a cochain function:
R = R, (M) —> Py ®, ¥).
Namely,
(5.12) R(u) = e, ® P + (%) @p WP oy,
where u 1s the generator for Can(M), and
% Pl

== 2, 0 kT € Z(m).

For any integer r > O, let e[r,6"] be the integer defined in 1.15.
We then have

(5.13) PROPOSITION: BRp(u) = 0 mod e[p,e"'].
For proof we need the following easily verifiled facts:

Let 4, =, and =¥ be the elements of Z(w) defined in 5.10 and 5.12.
Then

(5.14) ¥ = pel -3 =3% 4,
(5.15) 8(wP) = = (wP~lou),

where u;u,...u denotes the tensor product u; ® ... ®y, € K™ (m > 2).
Using (5.14) and (5.15), we have
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6R(u) =56(e, .®, WPy + 6[(z*e1) ®, uP~1 bul

P 35 -1 3 -
e, ®, 8(u) + (=73e,) @, vt sy - (z e;) @ 6 (uP lﬁu)

e, .2 (up"l Bu) + (Az*el) ®, w1 5y

]

- (z*el) ®, B(up'1 6u)

-1 2, 3%
pée; ® Wt v - 8%(z ey) ®, 2,
where 6u = v, and b(up'l Bu) = 6%z. We have used here the coboundary
formula 5.3 and the fact that (Se) @ Y =e ® Zy, forye M, e e W.

Now, 1f @ = O, then p® = 6° = 0 = 6[p,8"]. If @ > 0, it is clear
from 1.15 that e[p,e"“] divides both p6 and 82. Hence, in elther case
BRp(u) = O mod 6[p,6”], proving the proposition.

From 1.17 we see that Gp(ze) = ze[p,e"’]' Thus, we can define a coho-

mology class ¥ in H2pn(w e, M ® G _(z.)) by setting
p'’e
5'16 =
( ) € = {Ry(u) ® L},
where { } denotes cohomology class and
L, =1 mod 6[r,0"] = g8.(1g),

(r=0,1, ...).

We define the function Pp by

(5.17) P,(M =B(g) € P(K;6,(2)),

where U ¢ Hzn(K;ze) and ® 1s the function defined in 6.8. Since & 18 in
fact the composition ;f"‘l’* (see 5.9), we have

(5.18) (8 = £ YTE) = FvR(w e L)

(5.19) PROPOSITION: The cohomology class Pp('i) 1s independent
of the choice of cochain representation f: M —> K*

PROOF: This 1s simply a particular case of theorem 3.1 in [11].

—n

e
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In the introduction we remarked that the functions f:r generalize the
Pontrjagin square cohomology operation: this 1s Justified by the fol-
lowing:

(5.20) PROPOSITION: The class PZ(E) coincides with the
Pontrjagin square of U.

PROOF: The Pontrjagin square of U is represented by the following
cochain in W er

@vuz + e Qn.u Bu.
Since p = 2, in this case z* = T. Also, since dim u 1is even,
A(Buu) = ubu - duu.
Hence, 1t 18 easily verified that the cochain ey Qu,uz + (z*el) @ruau
(1.e., Ry(u)) 1s cohomologous mod e[2,6"] to e, ®1ru2 + e, ®u bu. Thus,
the class P,(U) defined in 5.18 coincides with the Pontrjagin square of 1.
We state the naturality properties of the functions Pp before pro-

ceeding.

(5.21) PROPOSITION: Let L be a second complex, and f: L —> K
a map. Then,

— 3¢ —
ppr*(u) = £p,(0),
where U € Hzn(l(;ze).
PROOF: This 1s an immediate consequence of theorem 3.6 of [11].
(5.22) Let Z € G and let a be a homomorphism from Zg to Z.

Let Gp(a): Gp(Ze) —> Gp(z,‘) be the homomorphism defined in
1.23. Then,

a,(d) = Gp(a)*Pp(E),

where U ¢ Hzn(K;Ze).
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PROOF: Let M = M(e 2n), N = N(7,2n) be elementary cochain complexes,
where u generates C° (M) and w generates c°" (N). Let £: M —> K" be a
cochaln representation for U. We define a cochain representation for

a,(T), say g2 N —> K*, as follows: suppose that the homomorphism a of
Ze to ZT is given by

a(le) = s(l_r). (s an integer)

Define the representation g by

g(w) = sf(u).

Let ‘{—‘f, Y be the homomorphisms in 5.1 induced respectively by £ and g.
Set kp = %p,'r ]l = gp(l_r). Then, from 5.18 and 5.12 we have:

Poag(@) = # (W (e, @w® + (2%;) & wP) 5w) o ko)
= f e, @e()® + (z%;) o &P sg(w)] ® Ky}
= #{sPle, ®,£(u)P + (z%;) ® £(w)PLsr(u)] ® Ko}
= ,f*{wfnp(u) ® sP kyte
But it 18 clear that sP ky = Go(e)(Lp), where Lp = &,(1g); for,

%p(a)(Lp) = Gy (@), (1) = gy(alg) = g (s1) = Pe (1) = o2k .

Flby Ry(0) ® &P k) = g1, R (w) @ Gy(a)(1,)}
= 6y(a), 1, R (u) @ 1}
= Gp(a)*Pp(ﬁ),

where we use the fact that ;f‘ commutes with all coefficlent group homomor-
phisms. This completes the proof.

e = — = - — = — =

——
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6. REMARKS ON CUP-PRODUCTS

We are left with two things to do: first, define the functions Pr
for any non-negative integer r; and then prove theorems 2.1, 2.2, and 2.3.
The definition of the functlons P, involves the behaviour of Pp (p prime)
on cup-products. Hence, in this sectlon we digress to make some general

remarks on cup-products. ” .
Let Al, ceey Ar‘ and A be abelian groups, and A a homomorphism from

A, ©® ... ® Ar to A. We call A a pairing, and define a cup-prx;:duc.:t

(written ‘) ) relative to A as follows: suppose that u € H (K,Ai)

(1 =1 , ). Let d: K ——> K* be the dlagonal map X —> (X,...,X).
3 eee

We define

#*
(6.1) U YA eee Moy = )\*d (uy x ... % u.),

where d© 1s induced by d, )\* by A, and up X ... Xu, e (K ; A®@...04,)

("="1+"‘+"r)’ ;
Our first concern is to compare the cup-products given by differen

pairings. Suppose we also have abellan groups Bl’ reey Br’ B, ar;g athomo-

- uc
morphism o of Bl D ... D Br to B. Then, by 6.1 we ha:e a cuplplar : »
« , relative to the pairing w. We compare 4 and w 88 follows:
w

(6.2) LEMMA: Let M,: Ay —> B; (1 =1, ..., r) and
p: B—> A be homomorphisms such that Fm(’ql ® ... ® 7,
= A in the following diagrams:

A
A ® .o ®A, ——> A

N

7, ® ...® 7, P

v
B,® ... ®B, ———> B

Then,

= ~ see ~ u,
f*('nl*ulumne*ua Vot Ve Teelp) =Y VA A Yy
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ny
where u, € H (K;Ai).

The proof follows at once from 6.1 and the fact that a% commutes with
coefficient homomorphisms.

As an application of 6.2, suppose that (r, s, ..., t) 1s any finite
set of non-negative integers (say q in number) whose sum 18 positive. Let
2 be a group in G (see §1), and let G(Ze) be the [-ring defined in 1.17.
Denote by A the ring multiplication in G(ZB); that 1s, the homomorphism

from Gr(ze) ® Gs(ze) ® ... ® Gt(ze) to G(r+s+...+t)(ze)' In particular
we have

)‘[gr(le) ® ... ® gt(le)] = (ar,s,...,t)gr+s+...+t(16)

where @, . ¢ denotes the multinomlal coefficlent (r+s...+t)!/(r!) ...
28500,
(t!). We factor the homomorphism A as follows: set

1, i1Irfr 8 =0
(6.3) b= {

[r, 8, «o., t, 8], 1£ 6> 0

where (r, 8, ..., e‘”] = common value of G. C. D. (r, 8, t, ..., ee) for
large e (see 1.15). Then, from 1.17 one readlly concludes that

6r(2g) ® G4(Zg) ® ... ® G.(zg) = Gy (Zg).

From 6.3 we see that there are non-negative integers c, d, ..., e such
that

r="mbe, 8 =bd, ..., t = be.

Hence, using 1.26, we define an isomorphism N = 7]c [ 7Zd ® ... ® 7Ze
mapping Gr(ze) ® ... ® Gt(Ze) to Gy(25) ® ... ® G,(Zg) (a factors).
Now, let w be the isomorphism of the q-fold tensor product Gb(ze) D ...
® cb(ze) to Gb(ze) given by the natural multiplication in the ring Gy (2

o)
(see §1). Then, the following diagram 1s commutative
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A

Go(Zg) ® ... ® G(2g) ———> Gp. .., 4(Zg)

n W

v

Gy(Zg) ® .o ® Gy (Zg) —2 > ey(2Zg)s

where p.gb(le) =[(r+8+ ... 4 t)/(r!) ... (t!)]gr+...+t(le)‘

Thus, as a special case of 6.2 we have:

n
(6.4) LEMMA: Let u, € H 1(K;Gy(Zg)) (L =7, 8, ..., t).
Then

u, v u, Y. Yy o= “'-z:-[nc*ur (U ’Tle*ut].

In 6.1 we gave a general definition of the cup-product. We now show

that in certain cases the cup-product can be obtalned using the complex

W @K (see §5). Let #*: H'(W ® K" ®6) —> H'(K;G) be the homomor-

phism described in 5.6. Let ' denote the cup-product defined in 81; we
then have:

n
- 1,5
(6.5) PROPOSITION: Let Zg € G, and let T, € H ~(K;24)
(1 =1, ..., q). choose cochains u, € C 1(k) which are in-
tegral cochains representing each 'Gi. Then

- 2
u, vt L. u, = ;f{eodb_n,ul ®,... @uq@)le},
where 1e = 1 mod ©.

PROOF: Define a chain map B of K into W® K by (0 ) = e, ® 0,

q
where O € K and e, 1s the basic vertex of W. Let g': W® K —> K" be a
diagonal approximation chain map (see S5.5). Set d = g'B mapping K to K",
Clearly, d 1s a chain map carried by the diagonal carrier. Thus, by 6.1,

T 'aq -w*d*{(u]_@ e ®u)® (1g ® ... ®1,)}

3
= d {(u1® ®uq)® 19},

GENERALIZED PONTRJAGIN COHOMOLOGY OPERATIONS

39

where ® 18 the multiplication of Zg ® ... ® Zg (q factors) to Zg. Define

a m-equlvariant cochain map B# mapping K*q into W ® *q by

=} (v1® ®vq) =e, &V, ®...® v_, where v, € K. If we denote the

cochain dual to g' by ¢ (see 5.6), it is easily verified that
go* = at,

where d¥ 1s the cochain map dual to d. Hence

— - #
U VoW U, =d {(ul ® ... @uq) ®le}

{d#(ul Q ... ® uq) ® 1.}

{#pt(u; ® ... ®u ) ® 1.}

ge, @ (u ® ... ®u) 8 1},

which proves the lemma.
Finally, we use 6.5 to prove a special case of 2.2,

(6.6) PROPOSITION: Let U e HZ"(K;ze). Let 7,: G,(2Zg) —> 2z,
be the homomorphism defined in 1.25. Then,

‘qp*Pp(ﬁ) = TP, (p-fold -'-product)

PROOF: Let P: M —> K* be a cochain representative for T. Set
W =1 ®fP, as 1n 5.1. Then, from 5.12 and 5.18 we have:

P (T) = ﬂf*{‘*P[eo ®uP 4 e(z*el) owup'lv] ® g,(1g)}.
Now, 7’p<x» and yf“' commute. Hence,
NosPp () = ' {¥Ie, ® v + o(z%;) @ P lv) @ 1o},

= #{W(e, @) ® 1},

by 1.25 and the fact that 6 lg = 0. But from 6.5,
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B (e, o) ® 19} = ghe, Of(W)F ® 1} = TP,

since f£(u) is an integral cochain representing U. Thus, qp*Pp(ﬁ) =P,
which completes the proof.

7. THE CASE OF DIMENSION U ODD

Before defining the functions P, (r > 0), we must consider the case
of a cohomology class U whose dimension is odd. Let M = M(8,2n+l) be an
elementary cochain complex (see §5). Then, equation 5.12 still defines a
cochain function R, mapping c2n+1(M) to C(2n+1)p(w G%Mp), and proposition
5.13 1s still valid; i.e., BRp(u) = 0 mod 8[p,6”]. If p is an odd prime,
the proof given for 5.13 is still valid. If p = 2, the proof must be
changed slightly, as 5.15 is not true in this case. However, we easlly
verify that

(7.1) 6Ry(u) = -62(e1 @Fva),

®,u” + e, ®buu. But 6% = 0 mod 6[2,67]; hence, 5.13

where Ra(u) = e o

8till holds.

Thus, we can continue to use 5.18 to define P_(u) =
d*{\\ihp(u) ® gp(le)}, where U € H2n+l(K;Ze) and ¥ is defined using a co-
chain representation for u, say f: M —> K*.

[o]

(7.2) THEOREM: Let Zg € G, where 8 = pi, p an odd prime
(£ > 0). Then,

Pp(-ﬁ) = 0,
for U e 52n+1(x;ze).(4)

The proof of this theorem will be given in a forthcoming paper by
N. E. Steenrod and the author [13].

Let p now be any prime number, and let ZT be a group in G. Suppose
that ¢+ = 0 or qJ, where q 18 a prime different from p. Then, from 1.15
and 1.17 one has that Gp(z-r) = Z_; and from 1.25 1t follows that
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(7.3) 7]p = identity: Gp(z_r) —_—> Z..
Now 6.6 1is still valid even if dim T is odd; thus, we have at once:
(7.4) PROPOSITION: Let W € H'(K;Z_). Then,

= =P
Pp(u) =T, (p-fold ~'-product)
However, the “'-product is anti-commutative. Thus, if dim U is odd, 2 '62
= 0. Since the “'-product is also assoclative, this implies that 2 T =
0 (n> 2).
Combining this with 7.2 and 7.4 we obtain:

17.5) nEgROLLARY: Let Z, Dbe any group in G, and let
u e H2 (K;Zg ). (Then,
(1) ep (v) = o, if p odd

(11) 2p,(u) = 0, 1f © 18 odd or zero.
We now look at the function P2 defined on an odd-dimensional class

U, where the coefficients are the integers mod a power of 2. Consider the
following exact coefficlent sequences (8 = 2K),

(%) 0 T

a
> 6(2 > Ga(Zg) > 7, > 0,

o)

(%) 0 >

> 292

Ze > Ze —> 0,

where -rge(le) = 232(126), Z, 1s identified with the factor group
Ga(zze)/image T, and a 18 the factor map. Let 6,5 6,, be the Bockstein
coboundary operators associated with (%) and (##) (see [12; 38.5]). Let
u € Hq(K;Ze); we define a cohomology operation

Sq,: Hq(K;Ze)

> qu’i(x;za) (t=0,1, ...)

by

(7.6) 59, (T) = #*{Y(e, &%) ® 1.},
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where u is a generator for the elementary cochain complex M = M(e,q) and
VY 1s induced by a cochain map M > K" representing U (see §5). Fi-
nally, let B be the homomorphism of Z, to G2(Ze) given by 5(12) =
(62/2)g,(1g), where © = 2X. Notice that if k > 1, then B = 0. In any
case, 28 = O. The operation P, can now be characterized as follows:

k —_
(7.7) PROPOSITION: Let Zg € G (6=2"), and let U €
HEQ+1(K;ZG). Then,

P, (T) = 6,8q; (W) + By Sap Byy(V),
1n W2 (g;0,(24)) -
COROLLARY: 1If Ze = Zak, where k > 1, then
Po(W) = B, Sq,(%).
PROOF: Now 2 Sql(ﬁ) = 0. Hence,
— — 2
(7.8) Sq, (T) = -5q,(T) = #*¥¥{-(e; ®u°) ® 15}
2
= f*‘i‘*{(-el ®u" + e, ®uv) ® 1,1,
since 912 = 0. However
6 @+ 6 ®_uv) = 2 (u)+92e ®_v°
(-ey @pu° + 62y @y Ra 2 &V,

where R2 is the function defined in 5.12. This implies that

6,(-e; &u,ua + 8e, ®uuv) ®1,} = {Ry(u) ® g,(15)} + B, {e; ®1r"2® 1;}.

Now 6, commutes with ¢* and V¥, Therefore, applying 6* to both sides of
7.8 we have

8,50, (1) = Po(T) + B A"V (e, @ v% @ 1,}

= Pa(ﬁ) + B,Sq, (V)
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= P, (1) + B,Saq, 6,, (7).

The theorem then follows from the fact that 2ﬁ* = 0.
As an immediate consequence of 7.7 we have:

(7.9) PROPOSITION: Let Zg e G (8 = 2¥), and let

u € H2Q+1(K;Ze). Then,
2P, (u) = 0.

PROOF: The result follows at once from 7.7 when we observe that
2 Sq1 =0 = 2B,.

Notice from 7.2, 7.3, and 7.7 the fact that Pp(u) is always given in
terms of other known operations, when dim u is odd. Thus, no new infor-
mation is obtained by considering the functions P_ in the odd-dimensional
case. In the following section, however, we will need to make use of the
results of this section; for we will study the function Pp applied to the
cup-product of two odd-dimensional classes.

8. THE DEFINITION OF THE OPERATIONS P.

We define the functions P, (r > 0) as follows: first, suppose that
r =0 or l. Now for any group Ze in G, we know that Go(ze) = Z1 and
Gl(Ze) = Ze. Thus, the coefficient groups are correct if we simply use
2.1(11) as a definition: that is, for u € H"(K;Zg), set

32
(8.1) P (u) = unit of H (K36(2g)),
Py(u) = u.
Suppose now that r > 2. Then, r = Py ee¢ Py where each Py is a

prime number. From 1.22 we know that Gi(GJ(ze)) = Gij(ze)’ for any pair

£ int s 1 . 8 = .ot o) i
o egers 1, J. Thus, G,(Zg) ka(ka-l( (Gpl(ze) ). Again our
coefficient group is correct if we define

(8.2) P.(u) = Ppk(Ppk_l(...(Ppl(u)...)),
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in Hzrn(K;Gr(Ze)). ]
We must show that definition 8.2 is independent of the order of the
primes Pys eoes Py This follows at once from the following lemma:

(8.3) LEMMA: Let p and q be any two primes, and let
u e H?n(K;Ze). Then,
P (Pg(u)) = (P (u))
PAN e,
in W2 (K36, (Zg)) -

The proof of 8.3 will occupy the remainder of this section. It de-
pends upon analysing the behaviour of the function Pp on the “'-product
of classes. We turn first to a study of these. The results needed are:

2n
(8.4) THEOREM: Let W, €H T(KiZg) (1 =1, ..., r), and let
p be an odd prime. Then,

Pp('ﬁlu' ceemt ) = Pp('ﬁl) vt ot Pp('ﬁr).
2n,
(8.5) THEOREM: Let uy €H (K;Ze) (=1, ..., r). Then,
Pp(Ty V' oo v T) = Bp(y) Vol v By(T) + Yo (E), les T,

where

(n = ny + ... +n )

(2) (@, ..., W) e H(K;6,(2,)), -

() 29, ..., T) =0,

() ¥o(@, ..., W) =0, if © 18 odd or is zero

(@) ¥, ..., W) =0, (@ = ... =T, =7).
We consider first the proof of 8.4. Suppose we have proved 8.4 for
the case of 2 factors; that is, when r = 2, Then, the theorem for more
than 2 factors is a simple induction on r, using the fact that the cup-
product is associative. Hence, we assume r = 2. Also, the cup-product is
defined in terms of the X-product (see 6.1). Thus we prove 8.4 first for
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the case of the “'-product replaced by the x-product.

We recall that the cohomology homomorphism ¢*: Hr(WQ%geq)Q G) —
Hr(K;G) is independent of the particular choice of w-equivariant chain map,
#', used to define it (see §5). Let K,, K, be any two complexes, and form
the product complex K, x K,. Define a chain map g' mapping W 8)(K1 ® K2)
to (Kl G)Kz)p as the composition of the chain maps in the diagram below:

(8.6) = A © gy 4,

He K BK) —F 5 Wowe (koK) —

-

o8 o A 5

Wek)e (Wok) =—2> KoK — > (k@ K)P.

Here, d;, = dy®1 @ 1, where dy 1s a chain map representing the diagonal
homomorphism d: 7 —> m X 7w, p and A are the natural chain maps per-
muting factors, and ¢i is a w-equivariant chain map for the diagonal map

d4: W XK —> Kﬁ (1 = 1, 2). Then, as remarked in [10; §5], &' is
carried by the diagonal carrier and is w-equivariant. Hence, we can de-
fine the dual to ¢',

3 ™
g: W @(K ®K,)P > (K ® K,),
by 5.6. Combining ¢ with the map { of 5.1, we obtain a map, which we
st1ll denote by ¢, mapping W @,(K, ® K,)*® to &, ® K,)*.
Now let F be the cochain map defined as the composition of the fol-
lowing homomorphisms: |

(8.7) p = (#8 Ht (o NF),
o N
V@ (K ® K,)*P L> wewe, , . (K e KP)
u 7 @ g

— (W RKP) ® (Vg KP) > (K ® Ky)¥.

Here, Ajﬁis the natural shuffle cochain map permuting the factors, d#.is
the map defined above, ¢1, g, are cochain duals to ¢i, ¢5 (see 5.6), and
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u.# is the shuffle cochain map given by

(u®v)

(e, ® &) ®

1 TR > (-1)km(el ®,u) ® (e, ®.v),

3
where €y, €y € W, ue K"{p, v € sz, dim ey = k, dim u = m.

Let # be the cochain dual to g', and let r

F=p: W Qe K)? — 5 (x ®K,)*.

The proof is a lengthy and mechanical verification of the fact that
# and f have the same value on a cell C ® < € K1® K5. It 1s omitted
here.

Now, let M, = M1(9,2n1) be an elementary cochain complex with genera-
tors Uy, vy in dimensions 2"1’ 2n1+1 respectively (1 = 1, 2). PFor shor-
tened notation set Si =W ®1r MI; Let

as= (z*eo &u.ul;.'l ) ® (e, &, ug),

p-1
o Oy Vo),

3
d=(e; & w)e (7'
be elements in Sl [ Sa. For future use we prove:

(8.9) LEMMA:
such that

There exist elements A, B, C, D, E, F ¢ Sl® 82

& = pA + 6B + 6C,

d = pD + 6E + 6F.

PROOF: Observe that z(x” - [p(p-l)/2])ull:’_lvl =0 1in M. But 7 oper-
ates freely on Ml; in dimensions r where 2pn+l < r < (2n+l)p-1. Thus, if
x 18 any element in Mg in this range of dimensions, then Xx = O 1inp11es
there exists an element y e MI; such that x = Ay. Set A* - Tp'l -1 €

Z(w). Then, A* and = still generate the annihilator of each other in z(rw).
Thus, £ x = O also implies that there exists y' e Mi’ such that x = A*y'.
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In particular, then, there is an element v, € C2pn+1(M1;) such that

: -1
8% gy = (5* - In(p-1) /21y,

Set Byl = ezl. Then, since A*ug = 0, we obtain the expression for a by
setting

A = [(p-1)/2](e, ®,u‘1"1v1) ® (e, ®u7),
B= (e @7)®(e; &)+ (e, @) ®(ze ®Tug-lv2),
C=(e;, ®Y)® (e ®vu§).

The coefficient (p-1)/2 is an integer, since p is an odd prime by hypothe-
8is. The expression for d is obtained in an entirely similar way.

We now are in a position to prove 8.4, making use of the complexes
M = Mi(9,2ni) (t =1, 2) defined above. Form the product complex
Ml ) M2’ and conslder the subcomplex M C Ml ®M2 defined by

2(ny+n,)
c (M) generated by Uy ®uY, = u,

2(nl+n2)+l
c (M) generated by Vi@u +uy, By, = v,

Then, du = 6v, and M is an elementary cochain complex of type
M(G,2(n1+n2)). Let £fy: M, —> K: be a cochain representation for 'ﬁi
(1 =1, 2). Then, I = £,® falld: M—> K*{ ® Kg is a cochain representa-

2(n1-&-n2

)
tion for ﬁl X W, eH (K:'& KZ; Zg). Hence, from 5.18 and 8.8,

(8.10) P (T xT,) = p*{\PRp(ula w)® L} - {FLPRp(ulobua) ® L},

where W =1 @ P, and L = 8p(lg). Set x; = £y(uy), vy = £;(vy) 1n K;f
(t =1, 2), and x = x, ® x, 1in K.f ® K;. Then, from 8.7,
(8.11)  pW¥R (4 @) = (Fok)i* (4 ® Ne, 0x°

-1
+ 6(Z*e1) Q"_xp (y1® X5 + x,9¥,)].

|
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Now, dye = e ®e , dye) =e ®e) + e,®Te , (see [10; 5.2]). Thus, one
has

(8.12)  wHap® AYR (4, @u,) = (e, @ x0) @ (e, &D)

ol(z",) &) ¥;) ® (o) Bx2)]
+ ol (e, @) ® (s*e; ® B y,)]

2% -1
+ 8[(z", Qﬂ.xli ¥} ® (e ‘319‘2)

+

(e; ®x0) ® (zFTe, @ B 7Yy,)]
= ViR, (u;) @ WoR, (1)

+ ol-(zFe @0 y)) @ (o) @ 10)

v (e, 82F) ® (571 0,8 y,)1

- ¢%(z%, %"g-lyl) ® (Ve Q#g-lye)
= iR, () ® Yor,(uy)

+ol-(W,8W¥y)a + (Y, @¥,)al - 6,

where a and d are defined in 8.9, LPi =1 Q%IP, and G =

3 -1 % -1
(= e) ®x; yl) ® (= e1.®vxg ya). Now, let A, B, ..., F be the elements
defined in 8.10, and set

H= Y19 Y- a+D), 1=Y,@¥,(-B+E)-gq,
J = \PJ.@sz(- ec + GF)-
Then,

w¥a, © X)WRy (@) = ‘P1R,(u) @ WoR, (w) + p © H + 6°1 + 57 .
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Therefore, from 8.11,
PYR, (@ uy) = (F @ Fp) [ W4R, (uy) @ PR () + p @ H + e°1 + 671,
and by 8.10,
Pp(T x Tp) = () WyRy(u)) ® ¢ WoR (w) ® L}
= (g YRy (1)) ® Lo} x {dy WoR (uy) @ L}
= B (T;) x B,(T,)-

This completes the proof of 8.4 for the case of the x-product. The the-
orem for the “'-product follows at once from the fact that P d* = d*Pp,
shere d* 1s the homomorphism induced by the diagonal map (see 6.1).

In §7 we defined the functions Pp on odd dimensional cohomology

2n,+1
classes. Let W, € H 1 (K;Ze) (1 =1, 2). Applying the preceding
proof to the element P (Ei ot ﬁé) we have, in an entirely similar way,
Pp('ﬁl V') = ipp('ﬁl) ! Pp(ﬁz). But from 1.5 ang the fact that the
wl-product is bilinear, it follows that 2Pp(u1 it u2) = 0. Therefore,

(8.13) Pp(ﬁ1 ! ﬁa) = Pp('ﬁl) ! Pp(_ﬁa),

a result we will need in the next section.

We turn now to the proof of 8.5. In order to study P, on the v'-
product, we need to introduce a new cohomology operation. Let u €
Hq(K;Ze) (6 = 0 or 2J), and suppose that f: M —> K° is a cochain re-
presentation for U, where M = M(8,q). Let 1, =1modr (r=o,1, see)s
and let 52(19) be a generator for G,(Zg). Let d: H(w G’MZQ G) —
HY(K;G) be the homomorphism defined in 5.8 (G any coefficient group). De-
fine

(8.14) w(T) =Ble, @ uvel}l e K (k7).

Denote by v the homomorphism of Zg to Ga(ze) given by v(le) = 652(19)'
Define
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(8.15) PE) = v,u(@ ¢ B (k;6,(z4)).

The operation P is the Postnikov square; we note here some well-known
properties of this operation (see [7], [20]).

(8.16) (1) Py +u) = ply) + )
(11) 2p() =0

(111) F(u) = 0, if © 1is zero.

Consider now the exact coefficient sequence

T a
(8.17) 0 —> Gy(25) — G5(2Z5g) > Z, > 0,

which was denoted by (#) in §7; again let 6, be the coboundary assoclated
with the exact sequence. Define an operation (see [4;&§4, 5]),

a: HY(K;2Zg) ——> qu'l(x;ca(ze))

by the composition
Sq, - 6 -

(8.18)  HUKizg) —2— HVP(K5z) —E KV (x;e,(z)),

where Sq2 is defined in 7.6. The following result is due to Nakaoka,
[4; §51:

2n
(8.19) THEOREM: Let u; € H 1(K;Zg) (1 =1, 2), where
Zg € G. Then,

Paluy V' wp) = Pp(uy) V' Pp(up) + Puy) ' a(wy)
+ a(wy) v p(w); ir e = 2J;

= Pg(ul) ! P2(u2),

The result can be obtained by applying the method of 8.12 to the case p =
2. Using 8.19 we now can prove 8.5. We give a proof by induction: to

if 8 is zero or odd.
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8implify the notation, in 8.5 replace ﬁi by u, (1 =1, ..., r). Suppose
first that r = 2. Define

(8:20)  Fplupup) = Plup) “ Alwy) + 8uwy) v pluy) (e =2d)

= 0, if @ 18 zero or odd.
Then, by 8.19
Poluy V') = Ppluy) V' Bp(wp) + Fp(up,up).
Properties (a) and (b) of 8.5 follow at once from 8.16; 8.5(c) follows

from 8.20; and 8.5(d) follows from 8.20 and the fact that the ! -product
is anti-commutative.

Thus, 8.5 1s proved for the case r = 2. Let r be an integer > 2,
and suppose by induction that we have proved 8.5 for all integers k < r.
We prove it now for k = r, and hence for all integers.
Because the cup-product 1s associative, uy R L u, =
(u1 ot u2) ! (u3 R ur). Therefore,
Po(uy v oo vt u) = Pol{uy V' uy) o (ug v ous ot u, )i
= Py(u) V' ) v Po(ug w' ... u,)
+ ‘I’a(ul ! u2,(u3 Vo))
= P2(u1) VL Pe(ur) + ‘i’a(ul, cees uy),
where,
k],Jz(u 2 eess, uy) = ‘{’2(u1,u2) ! Pa(u3 “eee )
+ Poluy) v Bylup) ' Fp(ug, .ony uy)

+ Potun) o oy, ..o, u,)

+ \Pa(“l ! Uy, uz Lt ur).
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From the inductive hypothesis and the fact that the cup-product is bi-
linear, we see that 8.5(a), (b), and (c) are all verified for this defini-
tion of ‘?2(u1, eses W,). When u; = u; = ... = u, = u, we have by induc-
tion that \I{a(u,u) =0 = L}:’2(1.1, eess u). Thus, to prove 8.5(d), it re-
mains to show that q%(u\au, uv' ... v u) =0. But this is simply a
speclal case of the following lemma:
(8.21) Let u € Hzn(K;Ze), v € Hzm(K;Ze) (6 = 2J). Then
Tz(u “t u, v) = 0.
PROOF: From 8.20 we see that
Potuvt v, v) = pu~r u) v A(v) + A(u vt u) vt op ().
Now in [4; §5], it is shown that
plug ¥ ) = Aluy) V' Py(up) + Bp(w) ' Plw),
for cohomology classes u,, u,. Thus, f’(“ ' u) = 0, since 2 p(u) = 0,
and the cup-product is anti-commutative. Therefore, 8.21 follows at once
when we show
(8.22) Let u e H™(K;Zpk); then,

A(u ' u) = 0.

PROOF: By definition 8.18, A(u “' u) = B*ng(u ' u). However, from
[10; §51, we have

Sap(u vt u) = Sq (u) V' Sap(u) + Say(u) V' Say(u) + Sap(u) v' Sa,(u)-

Now the “!'-product is anti-commutative, and 2 Sq, = 0. Therefore,
Sqg(u “' u) = 8qy(u) V' Sq;(u). However, it is known that

Sql(u) = By SQQ(U):

where By i3 the coboundary associated with the exact sequence
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(22) 0

> Zy > Z4 > ZQ > 0.

Thus,
Sqp(u ' u) =6, Sgy(u) v' 8,,8q;(u) = 8., (Sqy(u) ' By Sqy(u)).

But 6** = a*ﬁ', where 6' is the coboundary assoclated with the exact se-
quence

(o}

> Ga(zae) > (}2(249) > 2, > 0,

and a is the natural map Gz(zze) —> Zy. Hence,
A(u V' u) = B,Sqy(u V' u) = 8,5,,[Sq,(u) V' 5,,8q,(u)]
- B*Q*B'ISQ2(U) ! 5**SQQ(U)] = 0,
since 6,a, = O by exactness of the sequence 8.17. This proves 8.22 and
hence 8.21.
We turn now to the proof of 8.3. That is, we are to show that

Pp(Pq(u)) = Pq(Pp(u)), where p, q are primes and u € Han(K;Ze). Ir
p = q, the statement 1is trivially true. Also, if © = 0, then

Pp(Pg(w)) = w9 = P (P (),

by 7.4, since Gp(Gq(Zo)) = Z = Gq(Gp(Zo)). Thus, we assume that p # q,

and 6 = tk where t is a prime. Since p # q, one of these is prime to t;
say p ¥ t. Then, by 7.4,

Pp(u) =P,
Thus, by 8.4 or 8.5(d), and 7.4,
Po(Bp()) = By () = [P (u)IP = P (P, (u)).

This completes the proof and shows that definition 8.2 is independent of
the order in which we take the primes. Notice that we have used here the

e
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hypothesis that Ze € G ; for if & were a caqmposite integer, say pq,
then in general

Po(u) # WP, P(u) £ u,

and the proof of 8.3 would break down.
As an immediate consequence of 8.2 and 8.3 we have:

(8.23) PROPOSITION: Let u € H(K;Zg); then,
Pr(Ps(“)) = PB(Pr(u)) = Prs(u). (r, 8> 0)
Combining 8.23 with 6.6 we have,
(8.24) PROPOSITION: Let u e H-"(K;Zg), and let r, s be two

non-negative integers., Let Ny be the homomorphism from Grs(ze)
to Ga(ze) defined in 1.26. Then,

nrurra(u) = [Ps(u)]r (r-fold v'-product).

We conclude this section with the proof of 4.7. Let us first suppose
that t = p, p @ prime. Since U = {u ® n} = {nu ® le}, we have by 5.18,

Pp(u) = {ﬁ‘\‘hp(nu) ® Lp} = {¢‘+'Rp(nu) ® gp(le)}.
From 5.12 one easily verifies that Rp(nu) = nP Rp(u). Hence,
. = p
Pp(U) = (g YR (u) ® g, (1)} = {#YR,(u) ® g, (n)},
by 1.21. Setting z = ¢\¥Rp(u), 4.7 follows. Now let t = Py «ee Py (pi
prime), and suppose that we have proved 4.7 for all integers t such that k,
the number of primes, is < r. Let t' = Py .+« P,; We prove 4,7 for t',

and hence for all integers. Set t = Py ess Ppe Then, 4.7 holds for t, by
the inductive hypothesis., That is,

P.(0) = {z, ® g (n)],
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for some cochain z, € C™(K). But, g, (n) = n'g,(1y). Hence,
Py() = {n°2z, ® g.(1g)} = (n'2, @ 1.3,
where 7 = 8[t,8”]. Set p = p;; then, by 8.3 and 5.18,
Pyo(0) = Py(Py(W) = {FWR (n'2,) @ g (1)}
But Ry(n%z) = nPR (2,), and g (1) = g, (1g) = gyi(1g). Thus,
Pyo(T) = {(FWR(2,)®@nPl (1)} = (BWR (2,) ® gy (n)].

Setting z = YR (z,), completes the proof of 4.7.
t

9. THE OPERATION Pp ON A SUM

The functions Pr are now defined for all integers r > 0, and we are
ready to begin the proofs of theorems 2.1, 2.2, and 2.3. These proofs
are based entirely on the formal properties of the functions Pr’ However,
there remains one such formal property which must be obtained directly
from the definition of the functions Pp, P a prime. Namely, a specilal
case of 2.1(iv):

(9.1) THEOREM: Let U, W, € Hzn(K;Ze), where Zg e G .
Let p be a prime number. Then,

Pp('ﬁl + ) = 244 3mp P, (uy) v Py(%;).
(9.2) COROLLARY: Let W, ..., §, € H(K;Zg). Then,
Pp('ﬁo + .o+ T) =2 Pto(ﬁo) .. uPtm(ﬁm),

where the summation is taken over all distinct sets of non-
negative integers (to, vees tm) such that t + ... + t =p.

We begin the proof of 9.1 by analysing the behaviour of the cochain
function Rp (see 5.12) on the sum of two cochains.
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Let My = Mi(e,2n) (1 =1, 2) be an elementary cochain complex with
generators u; and v,, and bu, = @v, (see §5). Define the cochain complex
M; + M, (direct sum) in the natural way.

(9.3) LEMMA: (®) There is a cochain Q = Q(u;,uy) in (M, + M,)P
such that,

(o + ) = + g + g,

p-1
where = =3, _ ™ e Z2(wr).

To see this, note that each p-fold product of u, and u, occurs Jjust once
in the expansion of (u1 + u,)P.  Since p is a prime, the periodicity of
such a product under cyclic permutations is either p or 1. But ug and ug
are the only products of period 1. Hence, Q 1s formed by choosing one
product from each equivalence class of products under cyclic permutations.
Also, since uy and uy have even dimension, no change of sign oecurs from
permutations by T. This completes the proof.

Now in.the cochain complex Ml + M, set us= U+ Uy, V= V) + Vo, and
define an elementary cochain complex M = M(6,2n) as the subcomplex of

M1 + M, with cochain groups generated respectively by u and v. Let ﬁi €

Hzn(K;Ze) (1 =1, 2) be the classes given in 9.1. Choose a cochain re-
presentation f,: My, —> K for each ﬁi (see $5). Then, r = £+ f, is
a cochain map of Ml + M2 to K*, and fIM is a cochain representation for
u = U, + ﬁé. Set

qu =1 avfi’ W @%’ﬁ

p, P
Y, = 1@,P: we (M + M)

> K (1 =1, 2),

> K.

Using the function 4&2 and the cochain Q defined in 9.3, we have:
(9:4)  Pp(E + B) = A(E) + P(T,) + AW p(e, ®,Q) @ pg,, (1)},

where & 1s the cochain map defined in 5.6.

Thus, theorem 9.1 follows at once from 9.4 when we show:
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p-1 _ _
(9.5) Zyer Pic(Uy) v Py (%) = f{wlz(eoavm@pgp(le)}'

The remainder of this section 1s devoted to the proofs of 9.4 and 9.5.

The proof of 9.4 is based on the following two lemmas: set A* = Tp'1
-1 e 2Z(r) (see 8.9). It is clear that A and 3 generate the annihi-
lator of each other in Z(w). We use this fact to prove the following
lemma:

(9.6) LEMMA: Let Q be the cochain defined in 9.3, and let y
be a cochain in (M1 + Ma)P such that 6Q = 6y. Then, there is
@ cochain z in (M; + M,)P such that

(v, + uz)p"l(v1 +v,) - (ul;_lv1 + ug-lv2 +y) = &%z,
PROOF: From 5.15 we see that
5L(uy+up)PT = =l (uy+u, )P 7% (uy+uy) 1 = © = [ (uy+,)P 2 (v +v,)]1.

But from 9.3 and 5.15 we have:

0 (u+ w,)P1 = B(ug + ug +2Q) =632 (ug"lv1 + ug-lv2 +7¥).

Hence,
-1 p-1 p-1
z [(uJ + u2)p (vq + vy) - (u1 Vi + Uy vy + y)l=o.
The lemma then follows from the same argument as that used in proving 8.9.
(9.7) LEMMA: Let Q and z be the cochains given respectively
iﬂ 9.3 and 9.6. Suppose that 6z = 6w, for some cochain w €

(M) + My)P. Let R, be the cochain function defined in 5.12.
Then,

Rp(uy + up) = Ry(uy) + Ry(uy) + pe, @,Q + poey @,z + 0%, @ w
- 5[(z*e1) ®,Q + 8e, B z)].

The proof 18 a mechanical verification using 5.11, 5.12, 5.14, 9.3, 9.6
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and the fact that

e, QF §= (z eo) Qe QVA*z = (Ael) ® 2.

The result of 9.7 enables us to prove 9.4. For let \P (1 =1, 2)
and LP12 be the cochain representation maps defined prior to 9.4, Then,
12Rp(ui) = iRp(ui) (1 =1, 2), where u, is the generator of C n(Mi).
Hence, by 5.12 and 9.7,

BTy + 0) = AUV R () + w) ® g (1))

= # (PR () + Ry(uy) + pe, @,Q] @ g, (1)}

= FUPR,(u)) ® 8, (16)} + #¥ 1Y R, (1) @8, (1)}

+ yf*{ le(peo ®_ Q)® Ep(le)}

= Py(W) + B (0) + £ (W) 5(pe, @, Q)0 g (1)}

which completes the proof of 9.4.
We turn to the proof of 9.5. Define a homomorphism Bi of Ze to Gp(z

by

(9.8) Bi(le) = (1, p-i)gp(le), (1 =1, ..., p-1)

where (r,s) is the binomial coefficient (r+s)!/(r)!(s)!, and gp(le) =

1 mod 6[p,e”] (see 1.15). Then, 9.5 follows at once from the following

two results:

(9.9) Py(E) “ B, (D) = By (T v B (1=1, ..., p-1)
. -1 -
(9.10) A1 Yp(e, @,Q) ® b, (14)) = :fl Ba(® v BT,

PROOF OF 9.9: Let 1 be any positive integer < p. Then, i and p-1
are relatively prime. Thus, 9.9 follows at once from 6.3, 6.4, and 6.6,

o)

GENERALIZED PONTRJAGIN COHOMOLOGY OPERATIONS 59

where we take r = 1, 8 = p-1, b = 1 and By =u in 6.4.(7)

PROOF OF 9.10: We begin by analysing the cochain element Q =
Q(ul,uz) From the proof of 9.3 we see that Q may be written as the sum
of generators of C pn((M + M2) ), one generator for each equivalence
class under cyclic permutations. A typical generator w of Q will have the
form

!
Weu”® u2 D .0 B u - u2 »

where m1 >0, n, > 0, and Dys My, eee, nr—l’ m, > 0. Define the weight of
the generator w to be the integer m = m o+ m, 4.l 4 m,. From the defi-
nition of Q we see that 1 <m< p-1l, and N+ ...+ n, = p-m. Using the
generator w we have:

(9.11) LEMMA: yf*{‘-Ple(eo ®H) ® 1} =T ﬁzp_m'

PROOF: Set x; = f (ui), where f,: M —> k¥ 1s a cochain represen-
tation of ﬁi (1= 1 2) Then, x; 18 an integral cochain in k¥ repre-

senting Gi. Therefore, from 6.5, it follows that

F{W (e, ®,w) ® 1g} = #*i(e, @vx':l@ e ® xgr) ® 1}

m n m n
=gt Bl o CAVR

But Ei, Eé have even dimension and the cup-product is anti-commutative.
Hence

m n m n _p-m
=1 =1 = r =1 S0
uy V'u2 [ Uty -u1V B o
since m = m o+ .. +my, and p -m = Ny + ..o + 0. This proves the lemma.

From the definition of Q we see that Q = Wy e+ wp 12 where Wy is
a sum of generators of (M1 + M2)p each one of which has weight 1 (i =1,
2, ..., p-1). But since each generator in Q is a representative of an
equivalence class under cyclic permutations, there are precisely (1,p-1i)/p
generators in the term w;. Thus, as a consequence of 9.11, we have at
once

(9.12) 1l Yiale, &) ® 15} = [(1:P-1)/P]'ﬁi' (ol 612)'1,
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for (1 =1, 2, ..., p-1).
Let By be the homomorphism defined in 9.8. Notice that ﬁl(le) =

pgp(le), and ﬁi(le) = (1,p-1)gp(1e) = [(1,p-1)/p]ﬁl(le). Using this fact
and 9.12, we have

’{*{L\le(eo ®,Q) ® pg,(1g)} = fﬂl*{kpla(eo Q”_(W1+-.-+Wp_1)) ® 1}

p-1 .
20 Brad (Wple, pw)) @ 1}

p-1 -
=245 [(1:P'1)/b151*(ﬁi e Eg 1)
e e
. 21=1 ﬁi*(ul - ‘12 )'

This completes the proof of 9.10, and hence of theorem 9.1.

10. PROOF OF THEOREM 2.1(1), (11), AND (i11).

The firat two parts of theorem 2.1 are concerned with the definition
of the functions Pt' These definitions have already been given: namely.
in 5.17, 8.1, and 8.2.

The proof of 2.1(iii) is based upon the following lemma, which also
will be used in a later section. Let r, s be non-negative integers such
that r + 8 > 0; let Ze € G. Denote by b the integer defined in 6.3; from
the definition it 1s clear that there are integers ¢ and d such that r =
be, 8 = bd, et p = Kp,s be the homomorphism from Gb(Ze) to Gr+s(ze) de-
fined in 6.4; 1i.e.,
(10.1) usb(le) = (r:5)3r+s(le):
where (r,s) is the binomial coefficient. Let Gp(u): pr(Ze) —>
G (Ze) be the function obtained from p by using the functor G (see

p(r+s)
1.23). We then have: |

(10.2) LEMMA: Let u, v ¢ Han(K;Ze). Let p be a prime, and
let r, s be non-negative integers such that r + s > 0. Ifp=
2, assume that (r,s) = O mod 2. Let b, ¢, d, be the integers
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defined above. Then,

Pp(Pp(u) = Pg(u)) = G (k) ([P (w)]° [Ppb(V)]d},

where [ J™ denotes the m-fold ! -product (m > 1).

PROOF: From 6.4 and 8.24 we have, for any value of p,
(10.3) P (u) - P (v) = R[] ouPp(u) N axPs (V)]
= n ([P (u)1% o [P (v)1%.
Suppose that p # 2, Then
Po(Pr(u) « Pg(v)) = Gy (k)yP ([P, (u)]° ot [P, (v)1%)
= G, (1), ([P P, (0)1° w [P_p. (v)1%}
PYiET T pTD p°b
= G (), ([P (0)1% < [P (v)]%)
P 3* pb pb ?
by 10.3, 8.4, and 8.23. This proves 10.2 for the case of an odd prime p.
Suppose now that p = 2. In this case we need a short lemma to com-
plete the proof. Let Zgs 2. € G, where 6 = 21, =23, Let A 2Zq
—_— Z_r be a homomorphism of the form
(10.4) )\(19) =2m1,
for some integer m. oOf course, 2m6 = O mod T, since A 18 assumed to be
well-defined. Let Ga()\ ): Ga(ze) _ GZ(ZT) be the homomorphism defined

using the functor G. We then have:

(10.5) Let u be an element of Hq(K;Gz(Zg)) such that 2 u = 0,
Then,

Go( N )y(u) = 0,

in HY(K;0,(2,)).

L ————————————
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To prove 10.5 we define homomorphisms

a:  Gy(Zg) > 05(2)), B: Gy(2y) > Gy(Zg)s
by
agy(lg) = 2mgy(1,), Pey(1g) = 2mg,(1g).
It 1s clear that G,(A) = af: Gy(2g) —> G,(Z.), since
02(A)ea(1g) = B3(A1g) = gy(2mly) = 4n’g,(15) = ab,(2y)-
Hence, ua(x)* =ap.. But, B,(u) = 2mu = 0, by the hypothesis on u.

Thus, GQ(A)*(u) = a,B,(u) = 0, and the lemma is proved.
We now can prove 10.2 for the case P = 2., From 10.3 and 8.5 we have,

Po(Pn(u) ~ Pg(u)) = G, (1) Po{ [P (w)1® ' [P, (v)1%
= G (), [Py (w)1® ot [Py ()19 + P
where q?Z = gEé(Pb(u), eses Pp(v)). If © 18 zero or 1s odd, SE% = 0 and

the lemma 1s proved. Thus, suppose that 6 = 2k. Then, there are integers
i, J > k such that

Gy (2g) = 2,1, CryslZg) = 23.
Also,
ugb(le) = (r:s)gr+3(le) bl zmgr"_s(le):
for some integer m, since (r,s) = 0 mod 2 by hypothesis. Now by 8.5(b),
2‘}:’2 = 0. Therefore, from 10.5, Gy 1)y ‘{Ja = 0. Hence,
d
Pa(Prlu) = Py(v)) = Gy () ([ Py (w)1® < [Py (v)1%,

in all cases, and the lemma is proved.
We now turn to the proof of 2.1(1i1). Suppose first that r + 8 > 0.
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Then, from 10.3, we have

Pr(u) uPs(u) = u*{[Pb(u)]c ot [Pb(u)]d} = u*{[Pb(u)]c+d}-

But from 8.23 and 8.24,

[Py (w)]°* = Movar PosalPo(W)] = M g P (u),

since (c+d)b = r+s. Also,

u-'7)c+d gI‘+B(16) = (I‘:B)Sms(le):

as 1s easily verified from the definitions of p and 7 . Thus,

Pr(u) v Pg(u) = M Mesar Pryg(u) = (ro8)P,  (u),

as was to be proved.

If r =8 =0, then 2.1(111) 1s simply a consequence of 2.1(11) and
the fact that 1 -1 = 1, where 1 denotes the unit of the ring H*(K;G(ze)).
Thus, 2.1(111) 18 proved in all cases.

11. PROOF OF THEOREM 2.1(1v).

We are to prove that
(=) Pe(u+v) =2 4 P o(u) wP (v),

where u, v ¢ Hzn(K;ze), and Zg € G . We prove this by induction on the
number of primes which occur in the integer t. By 9.1, we have proved (%)
for the case t = p, p a prime. Suppose that we have proved (#) for all
integers t which are a product of less than q primes (a> 1). Let k be
an integer which is the product of q primes; say k = p_ ... Py, where
Py 2 Py (=1, ..., a-1). We now prove (%) for the function P, and
hence by induction, for the function Pt for all integers t.

Set p = pq and m = pq-l e+« Py+ Notice that p is the largest prime
which occurs in k. By 8.23 and the inductive hypothesis, we have
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(11.1) Plu+v) = Pp[Pm(u +v)] = Pp[21+3ﬁm P, (u) \/PJ(V)].
Set ¢y =P, (u) — m_1(v) (t=0,1, ..., m). Then, by 9.2 we have
(11.2) Pk(u +Vv) =3 Pto(co)‘J . ~'Ptm(cm),
where the summation is taken over all distinct sets of non-negative inte-
gers (to, cees tm) such that ¢t + ... + ty = p.

We prove (#) by examining in more detail the sum on the right hand

side of 11.2. To condense the notation, define the following sets of in-
tegers:

m
(11.3) ™= T; = {tlt = (t,, ..., 1), £ > 0, Zi.o ty =}

m
™r) = Tp(r) = {t|t € Tp, 24m0 JtJ = r},
forr =0, 1, ..., k.
Thus, (11.2) can be stated more suceinctly:
) zk = P, (e )~ ... =P, (c ).
(11.4) P(u+v) = r=o “t € T(r) "t '% t,' m
The proof of this follows at once from the two easily verified facts:
k
3
r
(@) T = U 7(x)
() Ty(r) N1 (8) = (r % 8)
Thus, we will have proved (#) when we show:
(11.5) P (u) ~ P _n(u) = Ze e o(r) Pto(co) (O Ptm(cm),
forr=0,1, ..., k.

But 11.5 is itself an immediate consequence of the following lemma:

(11.6) LEMMA: ILet r be a fixed integer, 0 < r < k. For each
t e T(r), let Gt, € be the integers defined in 1].11 and 11.12,
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¢t the homomorphism defined in 11.14, and U, vy the cohomology
classes defined in 11.16. Then,

b
(8) Py (g) v v Py (og) = g [(u,) o (,,t)et]

b
) Pl “ B (1) = 2y ¢ gy B L) Ot (v,

where ( )2 denotes the a-fold “'~-product (q > 1).

Thus, to prove (#) we need only prove 11.6., We begin by defining the
elements at, €5 ete. involved in the statement of the lemma. Let t =
(to, seoh tm) € Tb(r). We call the integers Eos eees t, the factors of t,
and distinguish between two types of elements in Tp(r) as follows: define

(11.7) T'(r) = {t|t ¢ Tp(r), G.c.p. (t,, ..., tys ©) =1},
(r) = {t|t ¢ Tb(r), G.C.D. (t_, ..., t,s ©) = pl,

where © 18 the order of the coefficient group of the cohomology classes u
and v. From 11.3 we know that to + oo + tm = p. Therefore, since p is a
prime i1t follows that

Tp(r) =7'(r) Ur"(r).

Suppose that t € T"(r). Then each factor tgof t (1 =0, ..., m) 18
divisible by P, and the integer © is divisible by p. But to + cee + tm =
P; hence, in this case, t has only one non-zero factor, say ti’ and t1 = p,
Also, since Ze e G, 8 either equals zero or is a power of p.

Let t € T(r), and suppose that tJO, cvey tJa are the non-zero factors

of t (0 <a<m Jo € Jq 1f ¢ < d). Define

(11.8) Ty = tJig Xy = 445 ¥y = m-g,. (1 =0, ..., a)

Set

1, ife=0
(11.9) b, =

G.C.D.(xo, ters Xas Vor eees ¥, ™), irf e > o.
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Then, there are integers di’ ey (L =0, ..., a) such that
(11.10) Xy = dibt’ ¥y = eibt'

We define the non-negative integers at’ € by

a 1
2120 T1d1s weewin
11.11 5, =
( ) ) if t e T"(r).
[o]
a 1
Z10 1810 i temin)
11.12 € =
( ) t 1f t e ™(r).
eo;

Define a cyclic group Ht with generator ht by
1]
Gy, (Z0)> Dy = &, (L), if t e T'(r)

(11.13) Hy =

= if t € T'(r)
prt(ze)’ hy gpbt(lﬁ)' (

and define the homomorphism ¢t mapping Hy to Gk(Ze) by

(11.14) gy(hy) = Pig(lg),
where

'l.'o Ta
(11.15) IDt = (Tgr wees T) (X0 ¥) © eee (x5 ¥,) 5,

1al coefficient
and (al, +++, a_) denotes the multinom
-defined 1s shown
(a1 + eee + an)!/all «-- a;l. The fact that g, is well
in 11.19. PFinally, set T'( )
r
Pbt(w), if t ¢
11.16 W, =
( ) ¢ P (w) if t e T"(r)
pb, 702
where w 18 either u or v in Hzn(K;Ze).
We proceed to prove 11.6(a). Since Po(w) =1, and 1 ~vz = z, for any i
cohomology classes w and z, it follows that l
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Py () w .o ~P, (c ) =P (e, ) ~eiov P (e, )
t° o tm m T Xg Ty X4 ’

where To? *++s T, are the non-zero factors of t (see 11.8). Again let r
be a fixed integer, 0 L£r<k; and let t € T(r). Suppose that t ™(r).
Then, as remarked after 11.7, t has only one non-zero factor, Ty = Pe
Thus, to prove 11.6(a) for this case we need only show that

5¢ €
(11.17) PolPe (4 By (V)] = gy, l(uy) o (v,) 01

To prove 11.17 notice first that dt = Gp(u) mapping prt(ze) to Gpm(ze),
where p (= p ) 1s the homomorphism of G (2g) to G (2.) defined 1in 6.4.
xo,yo bt (] m*~e

This follows from the fact that (1% (19) = (xo,yo)gm(le);Thence,
Op(k)epp, (Lg) = (x,.7,)Pe,,(1g). But, (xg5¥)P = (x,55,) © = po, vy
11.12; and gpbt(le) =h,, by 11.13. Therefore, ¢tgpbt(le) = Gp(u.)gpb (19),
as was asserted. Since t e T"(r), we have from 11.11 and 11.12 that 6, =
d,s €y = e, where Xg =dgbe, ¥y, = e by Finally, u, = Ppbt(u), vy =
Ppb (v), from 11.16. Thus, 11.17 is simply a special case of 10.2. In

t

particular, the case P = 2 18 also covered. For suppose p = 2; then k =
2m. But by definition, p = pq = 2 13 the largest prime occuring in k.
Hence, m = 21 fop 1 > 1. Since Xo + ¥, =m = 21, it 1s clear that (xo,yo)
= 0 mod 2, thus satisfying the hypotheses of 10.2. If either of Xgs Yo
is zero, the proof follows at once from the definitions.

Thus, we have proved 11.6(a) in the case t e ™ (r). Now suppose that

t e T'(r). Then, by definition 11.7, G.C.D.(To, cees Ty, 8) = 1. Hence,
from 6,4 we have

T T
(12.18) P (e, ) w oo v B, (e )= lle, ) v il ot (e ) 3]
T % Ty Xy LalRe Xy ’
where p is the homomorphism of Gm(Ze) to Gk(Ze) glven in 6.4. We now use

lemma 6.2 as follows: define integers oy (1t =0, ..., a) by @, =0, a

J
=T+ ees 4 Tyl (=1, ..., a). In lemma 6.2 set r = 2p, and

f2ge1 = Ox (Zg)s Ay = Gy, (%)

A ——
e e et e o
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Maj-1 = '7d1: Gxi(ze) > th(ze),

7?23 = '761: Gyi(ze) > th(ze)’

for 2a1+1 < 23-1 < 2°1+l (1 =0, ..., a-1). Define the remaining groups
in 6.2 by

B = ... = B2p =B = prt(ze), A= Gm(ze).

T
Let A = o' [(\ ) a], where )\xi maps

T
[}
xO"yO) ®...® (X xa:ya "yi
]
Gxi(ze) ® Gyi(ze) to Gm(ze) by multiplication in the ring G(Ze), and o

maps Gm(Ze) ® ... Q>Gm(ze) (p factors) to Gm(Ze) by multiplication in
the ring Gm(ze) (see §1). Similarly, let @ be the mapping. from B, ® ...

® B2p to B glven by the multiplication in the ring th(ze). Finally, de-

fine a map F from B (= th(ze)) to A (= Gm(ze)) by
T T
f’gbt(le) = [(xo’yo) ° ... (xa’ya) a] gm(le)'

One easily verifies that

Fm(”?1® <-® Mpp) =\;

hence, from 6.2 we have

Ta

T
(cx°) O L. (cxa)

d : d e T

= Pullug) © o (vt)e°]T° e w(ug) @ or(vy) 2178,
B¢ €

= F*[(ut ! (Vt) 1,

since Ups Ve have even dimension and the cup-product is anti-commutative.
If we now observe that

(11.19) B =up

then 11.6(a) follows from 11.18.
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Before considering the proof of 11.6(b), we must first obtain several

lemmas. Throughout the remainder of the section, let r be a fixed integer
such that 0 Lr<k.

(11.20) LEMMA: Let t ¢ Tp(r), and let b, be the integer defined
in 11.9:

(1) if t e T'(r), then b, divides r and k-r;

(11) if t € T"(r), then pb, divides r and k-r.

PROOF: Let t = (to, vy tm) € Tp(r). Suppose that t € T'(r). Then,
by 11.3 and 11.7, we have

m a a a
TR Bgao Iy =By XyTy = By, BydyTy = b(2, o dy).
a
Similarly, k - r = bt(zi-o eiri), which proves (1). Now let t e T"(r).

Then, T, is the only non-zero factor of t and To = P. Hence, by 11.3 and
11.10,

r=X T, = btdo-ro = btdop
k-r =y, = bie Ty = byegPs
which completes the proof of the lemma.
Thus, by 11.20 we know that for every t e T(r), there are non-nega-

tive integers ft and 8¢ such that

(11.21)

r=bfy, k-r=b.g t e T'(r)
r=pbl,, kers= pb.g, t e T'(r).
Hence, for each t € T(r) we have homomorphisms (see 1.26)
Te= e, ® Mg, Cnl(Zg) @0y . (2) > Hp ®Hy,

where the group Ht is defined in 11.13. Let o, mapping HtQD Ht to Ht be
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the multiplication in the ring Ht’ and let kr k-1 mapping
k-
Gr(Ze) ® Gk-r(ze) to Gk(Ze) be the multiplication in the ring G(Ze). Fi-
nally, let ¢t be the map of H, to Gk(ze) defined in 11.14. Then,
(11.22) 1In the following diagram,
(z F‘t) e (z ‘Dt) ° (Z ')It) = Xr,k-r’

where the summation sign indicates direct sum of groups and
homomorphisms and the summation ig over all t € T(r).

G,(2g) @0y _(2) —ZET 5 g (z,)
2 M z 7
H @ Hy z o, > i

PROOF: Let (r,k-r) be the binomial coefficient, and let Ft be the
integer defined in 11.15. fThen,

(rok=r) = Z¢ ¢ p(r) Lo

as may be seen by comparing coefficients in (x+y)k = [(x+y)p]m. The lemma

then follows immediately from the definitions of the groups and homomor-
phisms involved.
Using 11.22 and a mild extension of 6.2, we have at once:

£, . g
t t
(11.23) P(u)~ P (u) = 2 e o(r) ¢;[(ut) ~' (v.) "L,
Involved in the proof is the faet that H*(K;GI+G2) 1s isomorphic in a na-
tural way to H*(K;Gl) + H*(K;Gz), for any coefficient groups G, and Gy.

Thus, 11.6(b) will follow from 11.23 when we show that

(11.24) ft =5t, gt =€t.

GENERALIZED PONTRJAGIN COHOMOLOGY OPERATIONS 71

PROOF: Let t € T'(r). fThen,

a a
T2y XyTy = bt(zJ=° TJdJ) = b5, .

But by 11.21, r = btft' Bence, since bt > 0, 5t = ft. On the other hand,

if t € T'(r), then
r=XT, = btdop = tht.

But, by 11.21, r = pbtft’ and again Bt = ft‘ Similarly, € = B¢ and the
lemma is proved. Thus, we have proved 11.6(b); and in fact 2.1(iv).

12. PROOF OF THEOREM 2.1(v), (vi), AND (vii).

The proof of theorem 2.1(v) has already been given in 8.23.

PROOF OF 2.1(vi): Prf* = f*Pr. The case r = p, p a prime, has al-
ready been proved in 5.21. Assume then that r = Dys =+<s Pys Py prime.
From 8.2 we have

P,=P o

P © +eo 0 P_ .
r P Py b

1

Then, 2.1(vi) follows by induction on k, using the fact that Pp il
i

f*pp for each 1 = 1, 2, ..., k.

PROOF OF 2.1(vii): Pa, = Gr(a)*Pr. Again the case r = p, p &
prime, has been covered in 5.22. Let p be a prime, and q be any positive
integer; let a be a homomorphism from Zg to Z, (Ze, Z, € G). Let Gr(a)
be the homomorphism of Gr(ze) to 6.(z,) defined in 1.23 (r =0, 1, ...).

(:2.1) LEMMA: Let ag = Gq(a), mapping cq(ze) to Gq(ZT).
Then,

Gpq(@) = 6 (ay),

mapping qu(ze) to qu(zT), where we identify Gp(Gq(Ze)) =
qu(ze).

L
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PROOF: Set L, =1 mod 0[r,6%], k, =1 mod 7lr,7™] (r=o0, 1, ...).
Then, 1, and kr are generators respectively for Gr(ze) and Gr(ZT). Also,
set 1g = 1mod 6, 1. =1 mod 7. Then, L, = gr(le), kr = g.(1.). Suppose
that the homomorphism a from Ze to Z; 1s given by

Cxle = 311-:

for some integer a. Let us compute the homomorphism Gq(a) = ag, mapping
Gq(Ze) to Gq(ZT):

Gq(a)(Lq) = Gq(“)gq(le) = gq(ale) = ang(lT) = a? kq.

Now regard the group Gq(ze), generated by Lq, as itself a group in G;
and apply the functor Gp to the homomorphism aq. Then,

- - q - aPa = gPa .
Oplag)ep(ty) = gylagly) =gy (a ky) =2 By(Kg) = a"T kg
Since kq =1 mod t[q,7"], it 1s clear from 1.15 and 1.17 that
gy( kq) = 1 mod 1lpq,t”] = kpq.
On the other hang,
= = = Pq .
Opq(®)(1pq) = Gpq(a)Epq(1g) = Byqlalg) = &Pk
Thus, since | __ = 1 mod 6[pq,8”] = gp(Lq), the homomorphisms G

P
Gp(aq) are equal, completing the proof of 12.1.
Then, from 13.1, 8.23, and 5.22, we have:

q(a) and

Pp®% = PplPgey) = Pplgla)p, = 6p(Gy(a))ypy e Py

= qu(a)* qu ¢

Thus, the proof of 2.1(vii) 1s now completed by a simple inductlon based
on the number of primes which occur in the integer r.
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13. PROOF OF THEOREMS 2.2 AND 2.3.
The first part of pro
Position 2.2 hag alread
a8 we have needed to use the res v iy feee 8.24)1

Gt(Ze) = Zg, and "71; = identity,

PROOF OF 2.3:
using induction on
t.

Part (1) of 2.3 follows at once from 8.4 and 8.2
LY
the number of odd primes which occur ip the odd Integer

To prove part (11), Buppose first that t =
then part (11) 1s simply a restatement of 8.5,
2.3(11) for a1} integers t = oT where 1 < pr ¢ g

t = 2%, 8-1
Set k=2 - From 8.5, 8.23, anga 2.1(4iv

s
2" (8>1). If g m 1,
Suppose we have proved
We now prove it for
) we have:
Pos(u, '
28 (uy see b w) = P (P (u et

r 2 (P (u) - V')

=PalP (u)) v L., Pe(u.) + @y (u,, ..., u )]

= PalP(u)) v ... o Pe(u.)]

+ [Pk(ul) SN Pk(ur)] ~'q?k(u1, ey u )
p

+ Palng(ul, e u )l

But,

PalPe(u, o .. Pe(u.)] = Pas(u)) v L, Pys(u,)

+ Yare(u, ..., Pe(u,)).
Set,
Fotu, ooy - Faru), ..., P (u))

+ [Pe(yy) o L, o Pk(ur)]V"Pk(ul,...,ur) * BplWup, e iu ),
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We must show that the function '{;s satisfies properties (a), (b),
(c), and (d) of 2.3(11). Parts (a), (v), and (c) are immediate from 8.5
and the inductive hypothesis. Thus, to prove 2.3(11) for the case t = 2%,
we need only show that

(13.1) 2By, ..., u) =o.
But from the inductive hypothesis we have at once:

2Bp(pe(w)s oons Blu)) = 0, 2F (0, ooes u) =0
therefore, since the cup-product is bilinear, to prove 13.1 we need only
show

(13.2) 2P2(Tk(u1, ceesul)) = 0.
From 2.3(11) (b) we know that ﬂ?k(ul, ++-» W) = 0 unless 6 is a power of

2. Suppose, therefore, that 6 = 2J. Then, qu(ul, ey ur) €
0o, = B -
H (K’22J+8-1)’ where n = n) + ... + n_. Since J > 1 and s-1 > 1, it fol

lows that J+s-1 2 2. Thus, 13.2 follows at once from the following lemma,
whose proof we give at the end of this section.

(13.3) LEMMA: Let u e qu(x;zzr), where r > 2. Suppose that
2u = 0. Then,

2P,(u) = 0.
Having proved 2.3(11) for integers of the form t = 28, we now let t be any
even integer; say, t = kas, where k is odd. fThen, by 2.3(1), 8.23, and
what we have Just proved, it follows that
Pt(ul “eevu) = Pas[Pk(“l e ~tug)]

= P25[Pk(u1) ' eee et Pp(u))]

= Pt(ul) et Pt(ur) + 9325[pk(u1), cees Pk(“r)]‘
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If we set
Feus oo u) = Yoarelu)s cons p(u)),

the funection ‘{% clearly satisfles parts (a), (b), (c), and (d) of 2.3(i1).
This completes the proof.
PROOF OF 2.3(1i1): We begin by proving a speclal case:

(13.4) 2P2(v1 ' vy) =0,

2n1+1
where vy € H

(K32g) -
There are two cases to consider: first, suppose that 6 1s zero or
odd. Then, from 7.4, it follows that

2 2
Palvy ¥ ) = (v) V' vp) < (v v wp) = -(v] ot VD),
since the cup-product 1s associative and anti-commutative. Hence,
2 2 2 2
2Py(vy vp) = -2(v1 S v2) = -(2v1 ! v2) =0,

again, because the cup-product is bilinear and anti-commutative.
Now, suppose that © 1s even. Then, from equation 8.12 one obtains
in this case (see also Wu [21; theorem 21):

P2(v1 ' vy) = Py(vy) V! Py(vy) + vJSql(vl) ot u*w(vz)
+ pgw(vy) o Sql(vz)].

Here, Sq1 and w are the operations defined respectively in 7.6 and 8.14,
w is the natural homomorphism of Ze to Za, and v 1is the homomorphism of
Z, to Gz(ze) glven by V(12) = ega(le). Clearly, 2v, = 0; also, 2P2(v1) =
2P2(v2) =0, from 7.9. Therefore, 2P2(v1 ! v2) = 0, completing the proof
of 13.4.

Suppose now that t = 2° (s > 1). It then follows at once from 8.2,
13.3 and 13.4 by induction on 8 that




76 EMERY THOMAS

(13.5) 2P28(v1 ~' vy) = 0.
Consider next the case of an odd integer t. Then,
Pe(vy = V) = Pp(vy) V' P(vy),
by 8.2 and 8.13. Therefore,
2Pt(v1 <) = [2Pt(v1)] it Pt(va) =0,
by 7.5 and induction on the number of odd primes in t.

Finally, suppose that t = 25m, where m is odd and s 2 1. Then, by
8.23 and 8.13, we have

Pe(vy v vy) = Paa(By(vy V' v,)) = Pos(Py(vy) P (v,)).

Thus, 2Pt(v1 ~vy) = 2P28(Pm(v1) ! Pm(vz)) = 0, by 13.5, since Pm(vl)
and Pm(va) still have odd dimension. This completes the proof of 2.3(1ii),
and hence of 2.3.

PROOF OF 13.3: Consider the following commutative diagram:

2
v

— N {—~0O

v
ZQI' 2
“
(*) 0 —> 22;_1 >
|

v

0

v
[N

v

Zor 0,

where p is the factor map, v(12) = 2r'112r, and 0(121'-1) = 21,5, Then,
both the vertical and horizontal sequences are exact. Let 6, denote the
coboundary operator associated with the horizontal sequence (#). Since
2u = 0 by hypothesis, we have a*y.*(u) = 0, by commutativity. Therefore,

because the sequence (#) 1s exact, there exists a class v € HZQ-I(K;ZQ)
such that
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By (u) = 6,(v).

But, 6, =p A 6**, where 6*,‘ 1s the coboundary assoclated with the exact
i - 3¢ 3 3
sequence
2
> > > 0
(3+¢) 0 > Z > 2 > 2y s

and A 1s the factor map 2 —> Zor- Hence,
dg (u - )\*B**V) = 0.

Consequently, since the vertical sequence 1s also exact, there is a class
W e qu(K;Zz) such that

u = A*G**(v) + v, (w).
Therefore, it follows from 2.1(1iv) that
: (v, w)
Pa(u) = 2., Pr()\*BM_V) ~ Fo_p (VW)
We will show that 2P2(u) = 0, by showing this for each term in the above

sum.
First, let r = 1 or 2. Then,

2P (N ,5,,V) QGI,()\ JuPr(byyv)

26, (X ), [8,, V17

r-1
G (A ) [ (28,,v) ' (8, V)77
e 0,
since 26, = O by exactness of the sequence (3#*). Here we have used
2.1(vi1) and the fact that P,(6,,V) = (6,,v)", since b,,v has integer co-

efficlents. Thus, by bilinearity,

2[Pr()\*5**v) ! Pa_r(v*w)] = 0,
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for r =1, 2,
We now show that 2P2(v*w) = 0. This follows at once from the obser-
vation that 2G,(v) = 0. To show this, notice that g2(12) is a generator

for 62(22), and ga(lar) = lynyl 18 a generator for Gy(2

ar) = Zorsl .
Hence,

2Gz(v)gz(12) = 282(VI2)

2r-l

2g,( 1or)

2.(2P-1)2 52(1

or)
22r-1

121'+l = O_'

since r > 2, and 2r-1 2 ™1 when r 2 2. This completes the proof of 13,3,

APPENDIX: COMPUTATION OF THE OPERATIONS ;ﬁt

We will give an example of a complex in which the operations #t are
non-trivial. Let Man be the complex projective space of 2n real dimensions
(n > 0). We regara M, as a subcomplex of My, and define

U

that is, M, 18 the infinite complex proJjective 8pace. It is well-known
that the cohomology ring of M, with integer coefficients 18 a polynomial
ring in a single generator u, where u is a generator for the cyclic infi-
nite group H2(MD;Z).

In order to compute the operations._#t in the cohomology ring of M.
we first compute the model operations Pt' For each r 2 0 let ’7r: Z
—> Z, be reduction mod r. If K is any complex, and v ¢ Hq(K;Z), let

vmod r = 7 (v),

in Hq(x;zr) .

L4
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(1) LEMMA: Let Zg be a group in the category G (see 81), and
let u be a generator for E (M_5Z). Then, for t > O,

Pe(u mod ©) = u® mod 6[t,67],

where 0[t,8"] is the integer defined by 1.15.

PROOF: Using 2.1(vii) and 2.2(11i) we have:
P, (u mod 8) = Py Mg,(u)
= Gg( o)y Pylu)
= Gy (Ng)s (u°).

Lol
= : —> Z , where T = 8[t,0 ]. Thus,
But, Gt(Ze) =2, and Gt('qe) 7’1' 4 .
the lemma 1s proved.
ummand of
We use (1) together with 2.3 to compute P, on any 8

" (M,5Zg) -

g T(mM_; . n
(2) LEMMA: Let uf be a generator for H (M_Z) (r > 1). Then,

for t » O,
P, (W mod 6) = u"® moa elt,6”].
PROOF:
r
P, (u” mod ©) = P [(u mod 0)7]
= [P, (u mod e)I”
= (ut mod e[t,e“])r

= ut mod e[t,8"].

Here we have used either 2.3(1) or 2.3(i1i c), depending on whether t is

odd or even.
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Lemma (2) enables us to compute the opération #t in H*(MQ;G(ZG)).

(3) THEOREM: Let Zg be a group in the category G, and let
:(ze) be the -cyclicr I-ring defined in 1.17. Let u’ mod 6ls,6™]
be a generator for (Mm;GS(Ze)) (r, s> 0). fThen, for t >0,

r ©
:ﬁt(u med 8[8,6"]) = et,surt med ©fts,s™],
where €,8 = (s,8-1)(2s,s-1) ... ((t-1)s,s-1).

PROOF: The theorem follows at once from 3.9 and lemma (2) above,
since Gt(Gs(ze)) = Gts(ze) = cyclic group of order 6[ts,e%].

4 H 1
é z gOROLLAgY. Let ZQH;I'G, where 6 = p=, p a prime number.
et u” mod p~ generate (MQ;ZQ). Then,

r 1 J
.ﬁpJ(u mod p7) = u'P" med p1+J. (1, 3> 1)
Hence (u* 1 g .

R #&J u” mod p~) is a generator for HoLP (M_sG J(ZG))’
which is a cyclic group of order p1+J. P

We are interested not only in showing that the functions #
trivial, but also in finding examples whe :
formation.

are non-

re these operations give new in-
We indicate here such an example,

(5) DEFINITION:( Let C be a cohomology operation relative to
[nl, Ng, Ay, AE] » and let K and L be two complexes. We ;;i
that C distinguishes K and L if the follow;gg conditions obtain:

n
(a) Hi(k:a)) = Hni(L;Ai): (1 =1, 2)

(b) for any pair of isomorphisms A= (AJR Az) where
n
. mi "
Ajs H (K540) ~ H Y(1;a,),

n
there exists an element wye H 1(K;A1) such that
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cAi(uy) # Age(uy ).

An immediate consequence of (5) is:

(1]
(2]

(3]
[4]
[s]
[61
(7]

(8]
[9]
[10]

(11]

(6) Let K and L be two complexes. If there is a cohomology
operation C, which distinguishes K and L, then the two com-
plexes do not have the same homotopy type.

Our result is this:

(7) THEOREM: There exist finite complexes K. and L. which
the operation -&t distinguishes (t > 2), but which other known
cohomology invariants fail ‘to distinguish.

We omit the proof; a sketch is given in [16].
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FOOTNOTES

(#) Part of this research was done while the author was a pre-doctoral
National Science Foundation fellow at Princeton University. The lat-

ter portion of the work has been partly supported by U.S. Air Force
Contract AF 49(638)-79.

(1) 1In some later, specific cases (see 1.12, 1.17) the ring R will have
only elements of even degree. In this case Ry will denote the sub-
group of elements of degree 2k.

(2) It is easily shown that relation 18.2 in [3; p. 107], nameliy Yi(rx)
= rt t(x), is a consequence of the other three relations.
(3) See J. H. C. Whitehead [19].

(4) This corrects an omission in [15]; namely, equation (2.5) of that
paper is valid only if the integer m is odd.

(5) see N. E. Steenrod [8], [13].

(6) This lemma 1s due to N. E. Steenrod.

(7) If p=2, theni = P~1=1; hence, res=sb=i.

(8) wWe define C to be a cohomology operation relative to [nl, Ny A, A5)
if, for any complex K, C 18 a natural function mapping Hnl(K;Al) to
HnE(K;Ag) (see sSteenrod [9; §171).
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