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By algebraic K-theory I understand the study of the following 

process: one takes a small category S provided with a "direct sum" 

operation, ~; "group completes" the monoid structure induced by 

on the classifying space B=S; and then takes the homotopy groups of 

the resulting space. For R a ring, this process applied to the 

category of finitely generated projective R-modules yields Quillen's 

K,(R). Karoubi's L-theory is also a special case of this generalized 

algebraic K-theory. 

My aim in this paper is to show how K-theory may be axiomatized 

as a generalized homology theory on the category of such categories 

S, and to give a construction that yields the K-theoretic analogues 

of mapping cones, mapping telescopes and the like. Even if one is 

interested only in the K-theory of rings, these results for generalized 

K-theory should be useful technical tools. In particular the mapping 

cone construction of §6 may be useful in situations where appeal to 
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Quillen's Theorem B fails. 

this point. 
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Two examples are given in §6 to illustrate 

§i. Definitions of some algebraic structures on categories. 

K-theory assigns a graded abelian group to each small symmetric 

monoidal category. Recall this is a category S together with a 

selected object 0 e S, a bifunctor 8 : S x S --~S, and natural 

isomorphisms 

e : (A 8 B) • C ~ P B 8 A 

y:A~B ~pB@A 

I:A ~,OeA 

These natural isomorphisms are subject to "coherence conditions;" we 

require a certain five diagrams to commute, and these imply all 

(generic) diagrams made up of ~'s, y's, and l's commute. Check [2], 

II, §i, III, §i; or [6], 3.3; or [9], VII, §i, VII, §7; for details. 

The word "small" means only that S has a set of objects, rather 

than a proper class of them; this is a technicality required so the 

classifying space [14] BS exists. 

The standard example of a symmetric monoidal category is any 

additive category with ~ given by direct sum. The subcategory of 

isomorphisms in an additive category has an induced symmetric monoidal 

structure. 

A permutative category is a symmetric monoidal one where the e's 

and l's are required to be identity natural transformations: thus • 

is strictly associative and unital. Every symmetric monoidal category 
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is equivalent to a permutative one ([7], 1.2; [ii], 4.2), so we may 

assume things are permutative whenever convenient. 

Let 2, ~ be symmetric monoidal categories. A lax symmetric 

monoidal functor F : S ~T is a functor together with natural 

transformations 

: 0 T ~ FO S f - FA $ FB • F(A ~ B) 

such that the following diagrams commute 

FA $ FB • 

FB ~ FA 

~F(A $ B) 

, F (B ~ A) 

(FA • FB) 8 FC 

FA • (FB • FC) 

~el 

lef 

F (A ~ B) • FC 

FA • F(B $ C) 

~F((A • B) 8 C) 

P F(A ~ (B ® C ) 

O T 

FA 

FA 

F~ 

~®i 

• F(O S • A) 

FO S • FA 

F is a strong symmetric monoidal functor (the usual notion in 

infinite loop space theory) if in addition f and f are isomorphisms. 

F is a strict syr~netric monoidal functor if f and f are the 

identity natural transformation. F is a lax (strong, strict) 
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permutative functor if its source and target are permutative. 

If F, G are lax symmetric monoidal functors, a symmetric 

monoidal natural transformation n : F ~ G is a natural transforma- 

tion making the following diagrams commute: 

FO S < 0 rl 

GOs 

FA 8 FB • F(A ~) B) 

GA q) GB ~ , G(A ~) B) 

As an example, any additive functor between two additive 

categories is a strong symmetric monoidal functor. Any natural 

transformation between two additive functors is a symmetric monoidal 

natural transformation. 

For any of the above concepts, we have a corresponding nonunital 

version obtained by dropping any condition relating to the unit O. 

§2. Passage to the associated spectrum and definition of algebraic 

K-theory. 

Let Sym Mon be the category of small symmetric monoidal 

categories and lax symmetric monoidal functors. By [17], 4.2.1, there 

is a functor, Spt : Sym Mon • Spectra, into the category of 

(connective) spectra, and a natural transformation B~ ~ Spto(S), 

which exhibits the zeroth space of the spectrum Spt(S) as the group 

completion of the classifying space of the category S. This extends 

the usual functors defined on the subcategory of strong symmetric 

monoidal functors by [II], [15]. The proof of [13] is easily adapted 
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to show Spt is uniquely determined up to natural equivalence by 

the above properties. 

A symmetric monoidal natural transformation ~ : F ~ G induces 

a homotopy of maps of spectra from Spt F to Spt G. Thus one may 

construct a homotopy theory of symmetric monoidal categories which is 

related via Spt to the homotopy theory of spectra, just as in [14] 

a homotopy theory of categories is constructed which is related by 

the classifying space functor B to the homotopy theory of spaces. 

The key thing to keep in mind is that a symmetric monoidal natural 

transform is like a homotopy; this motivates the construction of §3 

and its relation to the homotopy colimit constructions of §4. 

I define K-theory as a functor from Sym Mon to graded abelian 

S 
groups by K,(2) = ~,(Spt 2), the reduced stable homotopy groups of 

the spectrum Spt 2" As by spectrum I mean what used to be called 

an a-spectrum, this is equivalent to ~,(Spt 0 2), the homotopy groups 

of the group completion of BS. Thus if S is the subcategory of 

isomorphisms in an additive category ~, my K,(2) is K,(~) as 

defined by Quillen's plus construction or group completion method. 

I prefer to think of K, as z~ Spt rather than in terms of 

homotopy groups, as the former is more "homological." 

§3. The fundamental construction and its first quadrant K-theory 

spectral sequence. 

I will now present a construction on diagrams in Sym Mon, show 

it has a reasonable universal mapping property (so it is not an 

ad hoc construction), and then give a spectral sequence for its 

K-groups. 

Let ~ be a small category. For simplicity, consider a diagram 
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of permutative categories; i.e., a functor F : ~ --~Perm into the 

category of permutative categories. 

Let Perm-hocolim F be the permutative category with objects 

n[(LI,X I) ..... (Ln,Xn)] where n = 0,1,2 .... ; 

L, and X i is an object of F(Li). A morphism 

n[ (LI,X I) ..... (Ln,Xn)] --~k[ (LI,X I) ..... (Lk,Xk)] 

(~;Zi;xi) 

i) a surjection of sets ~ : {i ..... n} >> {I ..... k} 

2) maps h i : L i ---~ L~ (i) in L 

3) maps xj : ~i- F(i i) (X i) ,X:3 in L:3 

i£~ (j) 

L. is an object of 
l 

consists of data 

There is a straightforward rule giving the composition of morphisms. 

I will not explicitly give it, but it is implicitly determined by the 

universal mapping property below. 

The unit of Perm-hocolim F is O[ ], and ~ is given by 

n[(LI,X I) ..... (Ln,Xn)] e m[(Ln+l,Xn+ I) ..... (Ln+m, Xn+m)] = 

n+m[(Ll,X I) ..... (Ln+m,Xn+m)]. 

The universal mapping property is given by 

Lemma: Strict permutative functors G : Perm hocolim F --~T 

correspond bijectively with systems consisting of non-unital lax 

permutative functors G L : F(L) --~ for each L e 2, and non-unital 

permutative natural transformations G£ : G L ~ G L- • F(i) for each 

i : L --* L in 2; which must satisfy the conditions G 1 = id and 

G Z • G£~ = G£~-. 

Proof: Let JL : F(L) --~ Perm hocolim F be given by 

JL(X) = I[(L,X)]. This JL is a non-unital lax permutative functor 

in an obvious way, and for £ : L --~L" there is an obvious choice 

of JR : JL ~ JL" • F(Z). 
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Given this system, the bijective correspondence sends G to the 

system G L = G'JL, G£ = G.J£. It is tedious but easy to see this 

works. 

Given a diagram F : ~ --~ Sym Mon, there is an analogous Sym-Mon- 

hocolim F with the corresponding universal mapping property. All I 

say below about Perm-hocolim F applies to it as well, The explicit 

description of the objects and morphisms of Sym-Mon-hocolim F differs 

slightly from that given above. 

This construction turns out to have good properties with respect 

to K-theory. 

Theorem: Let F : ~ --~Perm be a diagram. 

first quadrant spectral sequence 

Then there is a natural 

E 2 P,q = Hp(L;KqF) ~ Kp+q(Perm-hocolim F) 

Here H,(~;KqF) is the homology of the category ~ with 

coefficients in the functor L ~-~ K F(L). A convenient source for 
q 

information on this is [5], IX §6 or [14], §i. I'll identify the E 2 

term with more familiar objects for the examples of §4. 

This theorem is an immediate corollary of the theorem of §5 

and the proposition of §4. 

§4. Facts about and examples of homotopy colimits. 

To prepare the way for the statement of the fundamental theorem 

of §5, and to explain the strange-looking name Perm-hocolim, I will 

review the homotopy colimit (homotopy direct limit) construction of 

Bousfield and Kan [i] . Some version of this exists for every category 
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admitting a reasonable homotopy theory, e.g., Sym Mon and Spectra; 

but [i] concentrates on the category of simplicial sets. I'll give 

some of their results translated for the category of topological 

spaces, Top. One can also read Vogt [20] for this material. 

Let F : ~ --~Top be a diagram. Associated naturally to F is 

a space Top-hocolim F, the homotopy colimit of F. It is characterized 

by a universal mapping property ([i], XII, 2.3) establishing a bijective 

correspondence between maps g : Top-hocolim F --~X and a system of 

maps gL : F(L) --~X and homotopies relating them. With the 

philosophy of §2 that symmetric monoidal natural transforms are like 

homotopies, this universal mapping property of Top-hocolim F is much 

like that of Perm-hocolim F given in the lenuna of §3 (cf. [18], 

1.3.2). 

For any generalized homology theory E, on Top, there is a 

first quadrant spectral sequence [i], XII, 5.7 

E 2p,q = Hp(~;EqF) ~ Ep+q(TOp-hocolim F) 

This construction subsumes many well-known constructions. 

Example I: Let F : ~ ---~Top be the diagram 

A l. B 

I 
C 

Then Top-hocolim F is the double mapping cyclinder on A ~ B and 

A --~ C. In this case the spectral sequence collapses to the long 

exact Mayer-Vietoris sequence 
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(A) • E (B) @ Eq(C) • • .---~ Eq q • E (double mapping cylinder) 8-- ... 
q 

For C a point, the Top-hocolim is the mapping cone of A --~B; and 

for B and C points, it is the suspension of A. 

Example 2: Let L be the category of the positive integers as a 

partially ordered set. Then F : L ----Top is a diagram: 

F(1) --~ F(2) --~F(3) .... , and Top-hocolim F is the mapping 

telescope. In the spectral sequence Hp(L;EqF) = 0 if p > 0, and 

H0(L;EqF)= = limn" EqF(n). 

Example 3: Let L be a group G considered as a category with one 

object *, and morphisms being the elements of G. A functor 

F : L ---~Top is a homomorphism G --~Aut(F(*)); that is, an action 

of G on F(*). If EG is a free acyclic G-complex, Top-hocolim F 

is EG ×G F(*). The spectral sequence is identified to the usual 

one 

Hp(G,EqF(*)) ~ Ep+q(EG ×G F(*)) 

Example 4: Let ~ be A °p. Then F : A °p ---.,'Top is just a 

simplicial space. It follows from [1], XII, 3.4 that Top-hocolim F 

is the "thickened" geometric realization "ll li" of Segal [15], which 

is homotopy equivalent to the geometric realization of F for "good" 

F. To interpret the E 2 term of the spectral sequence, recall that 

for any functor E from A °p into the category of abelian groups, 

i.e., for E a simplicial abelian group, H,(A°P;E) is the homology 

of the chain complex which in degree p is Ep, and has differential 

8 = [(-l)id . This follows from [i] XII 5.6 and [12] 22.1 
1 ' ' ' " 

One has analogous results in many categories admitting a homotopy 



341 

theory. In particular, consider a functor F : ~ ~Spectra. One 

: L --~Top may define Spectra-hocolim F as follows. Let F n = 

be the diagram of n t-~h spaces of the spectra. Form Top-hocolim F . 
n 

As homotopy colimits in Tqp commute with suspensions, we get maps 

Top-hocolim F n & , Top-hocolim IF n -Top-hocolim Fn+ 1 

induced by the maps IF n --~Fn+ 1 adjoint to the structure maps 

F n --~ ~Fn+l. Passing to the adjoints again, we get maps 

Top-hocolim F n --~ ~Top-hocolim Fn+ I. These maps are not in general 

equivalences; so the sequence of spaces Top-hocolim F n is not a 

spectrum, but only a prespectrum. To this prespectrum one canonically 

associates an equivalent spectrum [10]; this spectrum is our Spectra- 

hocolim F. As above, we have 

Proposition: For any connective generalized homology theory E, on 

Spectra, there is a first quadrant spectral sequence natural in 

F : ~ ~Spectra 

E 2 P,q = Hp(~;EqF) ~ Ep+q(Spectra-hocolim F). 

Proof: Use the fact E,(Spectra-hocolim F) = li~ Ek+n(TOp-hocolim F n) 
n 

and the spectral sequences for Top-hocolim F n. Here one regards E, 

as a generalized homology theory on spaces in the usual way, via the 

suspension spectrum functor. 

For special diagrams, we may identify the E 2 term as in the 

examples above. In particular, for a diagram of spectra 
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A • B 

1 
the Spectra-hocolim is the mapping cone or cofibre spectrum of 

A --~B, and the spectral sequence degenerates into the long exact 

cofibre sequence. 

One may also consider homotopy colimits in Cat, the category of 

small categories. This is treated in [17], [18]. It is shown there 

that the classifying space functor B : Cat --~Top commutes with 

homotopy colimits up to homotopy equivalence. This is an essential 

ingredient at several points in the proof of the theorem of §5. 

§5. Homotopy colimits are preserved by Spt. 

Theorem: Let F : ~ --~Perm be a functor. There is a natural 

equivalence of spectra 

Spectra-hocolim (Spt F) = Spt (Perm-hocolim F) 

Sketch of proof: The universal mapping property of a homotopy colimit 

gives a natural map Spectra-hocolim (Spt F) --~ Spt (Perm-hocolim F). 

This map will be the equivalence. The proof uses the resolution 

technique of [19]. 

Use the monad T on Cat which sends a category to the free 

permutative category over it to construct a Kliesli standard simplicial 

resolution of F. This is a simplicial object in the category of 

diagrams of permutative categories, n ~-~ Tn+IF, with face and 

degeneracy operators induced by the action of T on F, the 
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multiplication of T, and the unit of T. This simplicial object is 

augmented to F via the action TF --~F. 

Applying Spectra-hocolim (Spt ?) --~ Spt (Perm-hocolim ?), one gets 

a map of simplicial objects in Spectra. One may "geometrically 

realize" such simplicial spectra. The augmentation induces a map from 

the realization of n ~-~ Spectra-hocolim (Spt Tn+IF) to 

Spectra-hocolim (Spt F), and one from the realization of 

n ~--~ Spt (Perm-hocolim Tn+IF) to Spt (Perm-hocolim F). The first 

map is a homotopy equivalence by general nonsense; the second, by a 

calculation given below. Granted this, one is reduced to showing that 

Spectra-hocolim (Spt Tn+IF) --~Spt (Perm-hocolim Tn+IF) is an 

equivalence, using the usual fact that a simplicial map which is an 

equivalence in each degree has a geometric realization which is an 

equivalence. 

One next reduces to the theorem [18], 1.2 relating homotopy 

colimits in Top and Cat. Recall if T~ is the free permutative 

category on ~, Spt T~ is equivalent to Z~B~, the suspension 

spectrum on the classifying space of the category C. Thus for 

G : ~ ,Cat, one has equivalences: Spectra-hocolim (Spt TG) = 

Spectra-hocolim Z~BG = Z~ Top-hocolim BG. On the other hand, recall 

from [18] that Cat has homotopy colimits given by the Grothendieck 

construction RIG on G : ~ --~Cat, and that there is a natural 

equivalence Top-hocolim BG = B(LIG). One finds functors and natural 

transforms giving inverse homotopy equivalences between 

Perm-hocolim TG and T(~/G), so there are equivalences 

Spt (Perm-hocolim TG) = Spt (T(~/G) = Z (L/G) = Z (Top-hocollm BG). 

Combining the two series of equivalences, we get 

Spectra-hocolim (Spt Tn+IF) = Spt (Perm-hocolim Tn+IF) as required. 

It remains only to indicate why the map of the realization of 

n ~-bSpt (Perm-hocolim Tn+IF) to Spt (Perm-hocolim F) is an 

equivalence. The functor Spt factors as the composite of an 
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infinite loop space machine and a functor which regards the classify- 

ing space of a permutative category as an E -space, as in [ii]. As 

the machine commutes with geometric realization, it suffices to show 

the realization of the simplicial E~-space n F PB(Perm-hocolim Tn+IF) 

is equivalent as a space to B(Perm-hocolim F). But by the preceding 

paragraph, this simplicial space is equivalent to n ~--bB(T(LITnF)), 

and so by [18] its realization is equivalent to the classifying space 

of A°Pfn --~T(~ITnF), or even [A°Pf n --~ [T(~ITnF)] °p ]op. There is 

a functor from this last category to Perm-hocolim F which induces a 

homotopy equivalence of classifying spaces by an argument similar to 

the proofs of [17], VI, 2.3, VI, 3.4, This completes the sketch. 

To produce an honest proof, a few technical tricks must be 

applied. For example, at various points there are problems with 

basepoints of spaces and with units of permutative categories. One 

deals with this by noting that if one adds a new disjoint unit O to 

a permutative category, the associated spectrum doesn't change up to 

homotopy. Also, the above proof works only in the case where 

F : L ~Perm is such that for each morphism £ in L, F(~) is a 

strict permutative functor. The general case is deduced from this 

special case. Finally, to avoid trouble with the universal mapping 

property of Spectra-hocolim, part of the argument must be done in 

the category of prespectra. A fully detailed honest proof will 

appear elsewhere, someday. 
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§6. A simplified mapping cone and how to use it. 

The category Perm-hocolim F is generally somewhat complicated, 

although not impossibly so. In certain situations of interest it may 

be replaced by a simpler homotopy equivalent construction. I will 

indicate how to do this in the case of mapping cones. This construc- 

tion should be useful for producing exact sequences in the K-theory of 

rings. It can be employed in place of Quillen's Theorem B ([14], §i) 

for this purpose. It has the advantage that its hypotheses are easier 

to satisfy in practice than those of Theorem B. As with Quillen's 

theorem, it leaves one with the problem of identifying what it gives 

as the third terms in a long exact sequence of K-groups with what one 

wants there. This problem is generally that of showing some functor 

induces a homotopy equivalence of classifying spaces; and may be 

attacked by the methods of [14], essentially by cleverness and the use 

of Quillen's Theorem A. These points should become clear in the two 

examples below. 

To make the simplified double mapping cylinder consider a 

diagram of symmetric monoidal categories and strong symmetric monoidal 

functors 

V 
A ~ S 

U 

C 

Suppose every morphism of A is an isomorphism. Let P be the 

category with objects (C,A,B) where C is an object of C; A, 

of A; and B, of B. A morphism in P, (C,A,B) --~ (C',A',B') 

given by an equivalence class of data: 

is 
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i) 9 : A --~A 1 • A • A 2 an isomorphism in A; 

2) ~i : C e UA L ---~C ~ a morphism in 

3) 92 : VA 2 • B ---~B ~ a morphism in B . 

Equivalent data are obtained by changing A 1 and A 2 up to 

isomorphism; thus if a : A 1 ~ A~, b : A 2 ---~A~ are isomorphisms, 

the above data (~,~i,92) is equivalent to 

(a • A ~ • b • 9, ~i " C • Ua -I 92 • Vb -I 8 B) , • 

This ~ is the simplified double mapping cylinder of the diagram. 

It has the obvious syn~netric monoidal structure with 

(C,A,B) ~ (C',A~,B ") = (C • C ", A ~ A', B ~ B'). There are strong 

symmetric monoidal functors B --~P, C --~P, and ~ has a simple 

universal mapping property. In the special case where C = O is 

a point, the construction of P yields the simplified mapping cone 

on A --~ B. 

One uses Theorem A of [14] to show the canonical map from the 

double mapping cylinder in the sense of §3 to the simplified version 

is a homotopy equivalence. This justifies the name "double 

mapping cylinder" for P and yields: 

Proposition: In the situation above, there is a long exact Mayer- 

Vietoris sequence 

--~ Ki+ I(P) ~ ~ K i(A) * K i(B) • K i(C) • K i(P) ~-~ ..- 

As an example of how to use this construction, I will give a 

quick proof of Quillen's theorem that his two definitions of K-theory 

agree [3]. Let ~ be an additive category, and A = Iso ~ the 

category of isomorphisms in ~. As remarked above, A is symmetric 

monoidal with • given by direct sum. For ~ the category of 

finitely generated projective R-modules, ~GLn(R) is cofinal in A, 
n 
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so Ki(~) = n~ Spt(A) = z i Spto(~) ~ ~i(BGL(R) +) for i > 0. Thus 

K,(A) coincides with Quillen's "plus construction" or group comple- 

tion definition of K-theory. 

Consider now the suspension of A, ZA = ~ obtained as the 

simplified double mapping cylinder from the diagram where both B and 

are points. By the Proposition above we have an isomorphism 

S 
: Ki+I(Z ~) a Ki(A), and Ki+I(Z~) = ~i+l SPt(Z~) ~ ~i+l Spto(Z~) ~ 

zi+ 1 BZA, the last isomorphism being due to the fact BZA is connected, 

hence group complete. 

Now ZA has objects (O,A,O), which I abbreviate to A. A 

morphism A --~A" in ZA consists of an equivalence class of data, 

which reduces to giving an isomorphism ~ : A & ~ A 1 • A" $ A 2, up to 

isomorphism in A 1 and A 2 . From ~, one constructs a diagram of 

epimorphisms and monomorphisms in ~, with choices of splittings 

A a A1 $ A" ~ A2 __~c~_~ • A 2 ~--~-~A'. In fact, EA is easily seen 

to be isomorphic to the category QS~ ([16], §3) whose objects 

are those of ~; and whose morphisms A --~A" are equivalence classes 

of data A ~--~gE ~-----~>A', where the indicated arrows are splittable 

mono- and epimorphisms, together with a choice of splitting (shown 

as dotted arrows). Changing E and all arrows by the same iso- 

morphism E & E" gives the equivalence relation. Composition is 

induced by taking pullbacks as in Quillen's Q~ [14], and there is 

a functor ZA ~ QS~ __~ Q~ that forgets the choice of splittings. 

(Actually, this Q~ is the opposite category of the one in [14].) 

As Ki(~) a ~i+iBQS~ by the above, to show Ki(A) = ~i+IBQ~; i.e., 

that the group completion definition of K-theory agrees with the Q- 

construction definition, it remains only to show QS~ __~Q~ is a 

homotopy equivalence. 

To see this, consider the category Qse~ defined like QSO~ 

but where the morphisms are classes of A 4--<E ~--~A', with a choice 

of splitting made only for the epimorphism. The functor 
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QS~ __~Q~ factors as QS~ __~ Qse~ __+Q~. I'll show p : Qse~ ---bQ~ 

is a homotopy equivalence; the proof that QS~ __,Qse~ is, is similar. 

To show p is a homotopy equivalence, by Theorem A I need only show 

the categories p/A are contractible for each A in Q~ [14]. 

But p/A contains as a reflexive subcategory, and so as a deforma- 

tion retract, the full subcategory whose objects are splittable 

epimorphisms j : B >) A, and whose morphisms from j : B >> A to 

j" : B ~ m A are epimorphisms g : B ~ ---Z~-- B ~ with a choice of 

splitting, and such that j'g = j. This subcategory has a symmetric 

monoidal structure induced by pullback over A, so 

(B ~ A) ® (B" ~ A) = B ×A B ~ A. Using this structure, the 

proof of [3], p. 227 that "For any C in P, <S,Ec> is contractible" 

applies to show this subcategory, and so p/A, is contractible, as 

required. This argument is the clever part of Quillen's proof given 

in [3]; the virtue of my machinery here is merely that it gets one 

down to this crux very quickly. 

As a second example, I will indicate how one can approach the 

Lichtenbaum conjecture. I will reduce the problem to showing that 

a certain functor is a homotopy equivalence, but I have been unable 

to complete the proof by showing this is so. 

Recall that the conjecture states that if ~ is an algebraically 

closed field in characteristic p, and ~ is the algebraic closure 
P 

of the prime field, there is a short exact sequence 

O i- K, (G) • K, ([) • K.(~) ® @ ~ O 

Proof of this is crucial to understanding K-theory in characteristic 

p. By the work of Howard Hiller [4], this conjecture is equivalent 

to the conjecture of Quillen: Let ~q : ~ , ~ be the Frobenius 

map x I ~ x q, then BGL(~q) + is the homotopy fibre of 

i-~ q : BGL(~) + --~BGL(~) +. Equivalently, there should be a fibre 
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sequence of infinite loop spaces, or cofibre sequence of spectra. 

I'll produce the cofibre of BGL(Fq) + + --~BGL(~) ; to prove the 

conjecture one then wants to show it's BGL(~) + 

Let ~ = ~GL n(Fq), ~ = ~ GL n(~), with symmetric monoidal 
n n 

+ 
structure induced by direct sum. Thus Spt0(~) = ~ × BGL(~q) , 

Spt0(B) ~ ~ x BGL(~) +. Consider the simplified mapping cone =P on 

the functor ~ O F : A--~ B. This P has objects (A,B), with A 
q 

a vector space over F and B a vector space over ~. A morphism 
q 

(A,B) --p (A',B') is a class of data: 4 : A & A 1 e A" • A 2, 

42 : B ~ (~ ® A2) & ~ B" . 

Let B-IB be Quillen's group completed category, as described 

in [3]. Then Spt0(B-IB)= = = ~ x BGL(~) +, and as ~0(B-IB)_ _ is a 

group, Spt0(B-IB) = B(B-IB)._ _ Let (B-IB) 0 be the connected 

component of (0,0). Then B(B-IB) 0 = BGL(~) + 

There is a symmetric monoidal functor p : ~ --* (B-IB) 0 given 

on objects by p(A,B) = (B,~qB) , where ~qB is the ~ vector space 

B with the T-module structure changed by ~q : ~ --~. On a 

morphism (A,B) --~ (A',B') of ~ given by data as above, p is 

given by the morphism in (B-IB) 0 =  = determined ([3]) by the object 

0 A2, and the pair of isomorphisms 

B • (~ ~I~ A2) 
q 

42 

~q(42 ) 
~qB • (~ O F A 2) ~ ~qB • ~q(~ O F A 2) , ~qB" 

q q 

where one uses the canonical isomorphism ~ @F A2 ~ ~q~ OFq A2 
q 

which is the identity on the subgroup Fq ®F A2" 
q 

The diagram 
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× BGL(]Fq) + • ~ × BGL(~) + 

Spt 0 (A) • Spt 0 (B) 

II u 
S p t  0 (A) ~ S p t  0 (__B) 

i-~ q 

D BGL (k) + 

• Spt 0 (B-IB)= _ 0 ) 

Spt 0 ( P ) 

Spt 0 (P) 

commutes, and the bottom row is a fibre sequence, as the sequence of 

zeroth spaces of a cofihre sequence of spectra. Thus Quillen's 

conjecture is equivalent to the statement that Spt0(P) is an 

and (B-IB) 0 are connected and so equivalence. As both 

group complete, this is in fact equivalent to the functor 

p : P --~ (B-IB) 0 being a homotopy equivalence. 

So far, I have been unable to show this, but there are signs 

that it is true. One could try to appeal to Quillen's Theorem A. 

I know the fibre (0,0)/p is contractible by Lang's Theorem [8] 

that all torsors for the Frobenius action on GL (~) are trivial 
n 

with trivialization unique up to GLn(~ q) . Unfortunately, (B,B)/p 

is in general disconnected, although I suspect each component is 

contractible. One could hope to show H*(p) is an isomorphism by 

considering the Grothendieck spectral sequence 

HP((~-IB) 0, Hq(/p)) ~ HP+q(P) and proving it collapses by 

analysis of H*(/p) and the action of the GL (~) on it. Some- 
n 

thing like Tits buildings seems to play a role here. The interested 

reader is invited to try to make sense of this. 
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§7. Axiomitization of K-theory as a generalized homology theory on 

SymMon. 

I will give an axiomatiziation characterizing the functor K.. 

The axioms are reminiscent of the usual axioms for a generalized 

homology theory on Top if one accepts the idea that the appropriate 

Sym-Mon-hocolim is the analogue of the mapping cone. This gives a 

reassuring picture of K-theory as a generalized homology theory on 

Sym Mon, and suggests that analogues of the usual theorems about 

homology theories on S~ectra ought to be true for K-theory. 

I do not see how to characterize K-theory restricted to rings 

or exact categories in any similar fashion. 

Consider the following four axioms on a functor K, from Sym Mon 

to the category of non-negatively graded abelian groups. 

I. (Homotopy axiom). If F : A--~ B is a morphism that induces an 

isomorphism on homology with ~-coefficients after group completion, 

~01H,(F) : z01H,(A) ~ ~01H,(B); then K,(F) is an isomorphism. 

Here H,(A) is homology of the category A, as in [5], IX, §6, 

or [14]. By [14], H,(A) is isomorphic to H,(B__A), the homology of 

classifying space. By ~01H,(A), I mean the homology the localized 

with respect to the multiplicative subset ~0A C H0(A). As is well 

known, ~01H,(A) is isomorphic to H.(Spt 0 A), so this axiom is 

equivalent to the statement that K,(F) is an isomorphism if 

Spt0(F) is a homotopy equivalence. 

II. (Cofibre sequence axiom). For F : A --~B a morphism, let 
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--~P be the mapping cone on 

sequence 

F. Then there is a long exact 

--~ Ki+ 1 (P) ~ ~ K i (A) • K i (B) zi (P) ~ .... z o (~) ---, o 

Here the mapping cone 

as in §4, Example i. 

is the Sym Mon-hocolim of a diagram 

III (Continuity axiom). If A., 
E 1 

symmetric monoidal categories, 

i e I is a directed system of 

li~ K,(Ai ) & K,(li~ ~i ) . 

IV (Normalization axiom). Let 2Z be the category whose objects are 

integers n, and whose morphisms are all identity morphisms. Let 2Z 

have the symmetric monoidal structure n • m = n+m. Then 

K 0 (2Z) = ~, K i(zZ) = 0 for i > 0. 

Theorem: If K. is any functor from S[m Mon to non-negatively 

graded abelian groups satisfying the above four axioms, then K, is 

naturally isomorphic to algebraic K-theory, ~ Spt. 

Idea of Proof: Because of the homotopy axiom, K. induces a functor 

out of the homotopy category of Sym Mon (obtained by formally 

inverting all F : ~ bB such that Spt(F) is an equivalence) into 

the homotopy category of SPectra. suppose first one knew the induced 

map of homotopy categories was an equivalenoe. Then one shows K. is stable 

homotopy. Using axiom II and the tower of higher connected coverings 

of a system, which is a sort of upside-down Postnikov tower, one can 

reduce to checking K. is ~ on Eilenberg-MacLane spectra. Using 

aximm II again, one can shift dimensions until one is dealing w~th 
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K(z,0)-spectra. By axiom III, reduce to the case z is finitely 

generated; by axiom II, to the case ~ is cyclic; and by axiom II 

again to the case ~ = ~; which holds by axiom IV. 

While I do not know the two homotopy categories are the same, 

I can show the homotopy category of Sym Mon is a retract of that of 

Spectra, and that the retraction does not change the homotopy type of 

Spt 0. Proof of this involves 2-category theory, and a generalization 

of the theorem of §5, so I'll say no more about it. This relation 

between the homotopy categories is strong enough to make possible an 

argument along the lines of the first paragraph. 
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