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1

Introduction

Tilting theory arises as a universal method for constructing equivalences

between categories. Originally introduced in the context of module cat-

egories over finite dimensional algebras, tilting theory is now considered

an essential tool in the study of many areas of mathematics, including

finite and algebraic group theory, commutative and non-commutative

algebraic geometry, and algebraic topology. In particular, tilting com-

plexes were shown by Rickard to be the necessary ingredient in devel-

oping a Morita theory for derived categories. The aim of this handbook

is to present both the basic concepts of tilting theory together with a

variety of applications.

Tilting theory can trace its history back to 1973 and two articles by Bern-

stein, Gelfand and Ponomarev. It had recently been shown by Gabriel

(1972) that the path algebra k∆ of a finite quiver ∆ over an algebraically

closed field k admits only finitely many isomorphism classes of indecom-

posable modules precisely when the underlying graph of ∆ is a disjoint

union of Dynkin diagrams of type An, Dn, E6, E7 or E8. In this case,

the isomorphism classes are in bijection with the positive roots of the

corresponding semisimple Lie algebra. The insight provided by Bern-

stein, Gelfand and Ponomarev was that these indecomposable modules

can be constructed recursively from the simple modules via reflection

functors in the same manner as the positive roots are constructed from

the simple roots via the action of the Weyl group. As a consequence it

was noted that changing the orientation of the quiver does not greatly

change the module category.

It is known that any finite dimensional hereditary k-algebra is Morita

equivalent to such a path algebra k∆, and that by the Krull-Remak-

1
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Schmidt Theorem, every finite dimensional module decomposes in an

essentially unique way into a direct sum of indecomposable modules.

The above theorems therefore provide a partial answer to the central

problem in the representation theory of finite dimensional algebras: to

describe the category mod Λ of finite dimensional Λ-modules for a finite

dimensional algebra Λ as completely as possible.

This procedure of constructing indecomposable modules via reflection

functors was generalised in a paper by Auslander, Platzeck and Re-

iten (1979), in which the first tilting modules were considered, although

not under that name. Suppose that Λ admits a simple projective non-

injective module S � Λe for some primitive idempotent e. Define the

Λ-module T � τ
�
S

�
Λ � 1 � e � and its endomorphism algebra Γ � EndT ,

where τ
�

denotes the inverse of the Auslander-Reiten translation. Then

the functor Hom � T, � � can be used to compare the two module cate-

gories mod Λ and mod Γ.

The major milestone in the development of tilting theory was the ar-

ticle by Brenner and Butler (1979). It was here that the notion of a

tilting module T for Λ was axiomatised, and the equivalence induced

by Hom � T, � � between certain subcategories of mod Λ and mod Γ for

Γ � EndT proved in general. Central results like the Brenner-Butler

Theorem and the behaviour of the associated quadratic forms are con-

tained in this article. In fact it is due to the latter considerations that

we have the name tilting, for in passing from Λ to Γ, the coordinate

axes in the two Grothendieck groups are tilted. The approach to tilting

presented there is still the approach taken up in the various forms of

generalisations considered today. For details of the beginning of tilting

theory and its use in determining the representation type of an algebra

we refer to the first article and to the subsequent article of Brüstle in

this volume.

The set of axioms was relaxed and simplified by Happel and Ringel

(1982). They considered additional functors such as Ext1 � T, � � in order

to obtain a much more complete picture. This was further generalised

by Miyashita (1986) and Happel (1987), who also introduced a new

concept to the subject of tilting theory. Let T be a tilting module for

Λ and let Γ � EndT . Then, whereas the categories mod Λ and mod Γ

are similar but equivalent only in trivial situations, Happel showed that

the bounded derived categories of both algebras are always equivalent

as triangulated categories. Derived categories were introduced in the
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1960s by Grothendieck and Verdier in the study of derived functors

and spectral sequences, and have since proved to be of fundamental

importance in mathematics. In particular, they have been shown to be

the correct setting for tilting theory, for not only do they allow the main

results to be easily formulated and proved, they also offer new insights

concerning homological properties shared by the algebras involved. The

general use of derived categories and tilting is explained in the article

by Keller. The article by Butler contains a spectral sequence approach

to tilting theory.

It was soon realised by Rickard (1989) that a Morita theory for derived

categories was possible using tilting complexes. Besides giving a beauti-

ful answer to the problem of deciding when two algebras have equivalent

derived categories, Rickard’s approach opened the way to applications

of tilting theory to selfinjective algebras, in particular to applications in

the modular representation theory of finite groups. For details we refer

to the article of Chuang and Rickard in this volume.

Another important point of view in tilting theory was introduced by Aus-

lander and Reiten (1991). Usually tilting theory deals with the problem

of comparing a fixed module category with the category of modules over

some endomorphism algebra. Auslander and Reiten instead used tilting

theory to investigate subcategories of the initial category and showed

that there is a bijection between certain subcategories and isomorphism

classes of multiplicity-free tilting modules. This approach is discussed in

the article by Reiten in this volume. The correspondence between tilting

modules and subcategories initiated several important developments in

representation theory: it was realised by Ringel (1991) that this can be

successfully applied in the theory of quasi-hereditary algebras, which in

turn inspired Donkin (1993) to translate the theory into the language of

algebraic groups and Lie theory. We refer to the articles by Donkin and

Reiten.

The correspondence above naturally led to a combinatorial study of the

set of isomorphism classes of multiplicity-free tilting modules, an ap-

proach first taken up by Riedtmann and Schofield (1991), and then by

Unger (1993), who investigated a partial order on the set of all tilting

modules together with an associated simplicial complex. The combina-

torial aspect of tilting theory is contained in the article by Unger in this

volume.

The work of Auslander and Reiten also opened the way to generalising
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tilting theory to infinite dimensions. Various approaches have been pro-

posed in order to apply the theory to arbitrary rings on one side and

to infinite dimensional modules over finite dimensional algebras on the

other. Both points of view and their developments are covered by the

articles of Trlifaj and Solberg in this volume.

Another aspect of tilting theory is the study of cotilting modules and the

dualities which they induce. In this way the classical concept of Morita

duality is generalised. This theory is of interest for modules over general

rings; it is discussed in the article by Colpi and Fuller.

Tilting theory also appears in both commutative and non-commutative

algebraic geometry as a means of relating different categories of coherent

sheaves, as well as comparing these to module categories over finite

dimensional algebras. As an example we mention the work of Beilinson

(1978), which established a derived equivalence between the category

of coherent sheaves over projective n-space and the category of finite

dimensional modules over a non-commutative algebra. This approach is

explained in the article of Hille and van den Bergh.

The category of finite dimensional modules over a finite dimensional

hereditary algebra and the category of coherent sheaves on a weighted

projective line are standard examples of hereditary categories with a

tilting object. In fact, up to derived equivalence, these are the only two

examples of such categories. The article by Lenzing is devoted to this

topic.

The article by Shipley discusses some of the occurrences of tilting theory

in algebraic topology. More specifically, the Morita theory for derived

categories is extended from associative rings to ring spectra, which arise

as basic structures in stable homotopy theory.

Further aspects of tilting theory and historical references are contained in

the individual articles in this handbook. Finally, the appendix by Ringel

provides a guideline to the various features of tilting theory, focusing on

the historical development of the subject as well as on new perspectives

opened up by the recent important results in cluster tilting theory.

The idea of publishing this collection of articles emerged during the

meeting Twenty Years of Tilting Theory, which took place in November

2002 on the island Fraueninsel in the South of Germany. We are most

grateful for the substantial support provided by the Stiftung Volkswa-

genwerk for this conference. We also wish to express our thanks to the
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authors and referees of the articles in this volume, to our TeXpert Marc

Jesse and to the staff of the Cambridge University Press for their help

in preparing this handbook for publication.

Varese, Chemnitz, and Paderborn, April 2006

Lidia Angeleri Hügel, Dieter Happel, and Henning Krause
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Basic results of classical tilting theory

Lidia Angeleri Hügel, Dieter Happel, and Henning Krause

The aim of this introductory note is to present the main features of

classical tilting theory, as originally developed in the early 1980s. We

will state here the main definitions and properties, but refer for the

proofs to the original articles, or leave it as an exercise to obtain those

from the later developments on derived equivalences. We will follow here

the account given in [3] or [4].

Let Λ be a finite dimensional algebra over a field k and let mod Λ

be the category of finitely generated left Λ-modules. We denote by

D � Homk � � , k � the duality between left and right Λ-modules.

Definition 1. A module T � mod Λ is called a tilting module provided

the following three conditions are satisfied:

(T1) the projective dimension of T is at most one,

(T2) Ext 1
Λ � T, T � � 0, and

(T3) there exists an exact sequence 0 � ΛΛ � T 0 � T 1 � 0 such

that each T i is a direct summand of a direct sum of copies of T .

Note that cotilting modules are defined dually. Given a tilting module

T � mod Λ, we can consider the endomorphism algebra Γ � EndΛ � T � .

One of the main objectives of tilting theory is to compare mod Λ with

mod Γ.

The basic general properties are summarized in the Theorem of Brenner

and Butler. Before stating this explicitely we need some further notation

and terminology. Given a tilting module T � mod Λ with Γ � EndΛ � T � ,

9
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we consider the following torsion pairs in mod Λ and mod Γ. We de-

note by T the full subcategory of mod Λ whose objects are generated

by T and by F the full subcateory of mod Λ whose objects X satisfy

HomΛ � T,X � � 0. Then the pair � T ,F � is a torsion pair in mod Λ. It

follows easily that T coincides with the full subcategory of mod Λ whose

objects X satisfy Ext1Λ � T,X � � 0. We denote by X the full subcategory

of mod Γ whose objects Y satisfy T � Γ Y � 0 and by Y the full subcat-

egory of mod Γ whose objects Y satisfy TorΓ1 � T, Y � � 0. Then the pair

� X ,Y � is a torsion pair in mod Γ.

Given a tilting module T � mod Λ with Γ � EndΛ � T � , we have two pairs

of adjoint funcors between mod Λ and mod Γ. The first pair is given

by F � HomΛ � T, � � and G � T � Γ � while the second is given by

F � � Ext1Λ � T, � � and G � � TorΓ1 � T, � � .

Theorem 1 (Brenner-Butler). Let T � mod Λ be a tilting module

with Γ � EndΛ � T � . Then the following holds.

(1) ΓD � T � is a cotilting module and Λ � EndΓ � D � T � � .
(2) The restriction of F and G to T and Y is a pair of inverse equiv-

alences.

(3) The restriction of F � and G � to F and X is a pair of inverse

equivalences.

Further properties of the tilting situation can be obtained if additional

assumptions are imposed. The first result we are going to discuss is

related to the name ‘tilting’. Recall that for an algebra Λ of finite global

dimension the Grothendieck group K0 � Λ � is endowed with a bilinear

form. Viewing modules X,Y � mod Λ as elements in K0 � Λ � , we set
�
X,Y 	 � 


i � 0

� � 1 � i dimk Exti
Λ � X,Y � .

Given a tilting module T � mod Λ with Γ � EndΛ � T � , we obtain a map

f : K0 � Λ � � K0 � Γ � given by

f � X � � dimk HomΛ � T,X � � dimk Ext1Λ � T,X � .

Theorem 2. Let T � mod Λ be a tilting module with Γ � EndΛ � T � . If

Λ has finite global dimension, then the following holds.
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(1) The global dimension of Γ is finite.

(2) The map f is an isometry.

In fact it can be shown that the absolute difference between the global

dimensions of Λ and Γ is at most one.

As already mentioned in the introduction to this volume, the name ‘tilt-

ing’ comes from this observation. The positivity cone in the Grothendieck

group K0 � Λ � given by the standard coordinate axes is tilted when pass-

ing to K0 � Γ � by the isometry given above.

The most important applications of tilting theory to the representation

theory of finite dimensional algebras are obtained when assuming that

Λ is a finite dimensional hereditary algebra. In this case, given a tilting

module T � mod Λ with Γ � EndΛ � T � , we call Γ a tilted algebra.

Theorem 3. Let T be a tilting module over a finite dimensional hered-

itary algebra Λ and Γ � EndΛ � T � . Then the following holds.

(1) The global dimension of Γ is at most two.

(2) The torsion pair � X ,Y � on mod Γ is a split pair.

Let T be a tilting module over a finite dimensional hereditary algebra

Λ with Γ � EndΛ � T � . We consider the injective cogenerator D � ΛΛ � .

Clearly it is contained in T . It follows that F � D � ΛΛ � � is a complete slice

in mod Γ. We refer to [4] or to [2, Section 3] for a definition. But also

the converse holds.

Theorem 4. Let Γ be a finite dimensional algebra and let Σ be a

complete slice in mod Γ, then there exists a finite dimensional hered-

itary algebra Λ and a tilting module T such that Γ � EndΛ � T � and

Σ � F � D � ΛΛ � � .

Particular examples of tilted algebras can be obtained from the last

theorem. We first recall some terminology. For a finite dimensional al-

gebra Λ, a path in mod Λ is a finite sequence of morphisms X0 � X1 �

. . . � Xm between indecomposable Λ-modules X0, . . . , Xm such that

each morphism is non-zero and not invertible. Further, an oriented cy-

cle is a path X0 � X1 � . . . � Xm where X0 � Xm. If mod Λ does

not contain an oriented cycle, then the algebra Λ is called representation

directed. Note that such an algebra is necessarily representation finite
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[4]. Moreover, a Λ-module X is called sincere provided each simple Λ-

module occurs as a composition factor of X. As an application of the

characterization theorem above, one obtains the following.

Corollary 1. Let Γ be a representation directed algebra with an inde-

composable sincere Λ-module X. Then Γ is a tilted algebra.

As a consequence, we see that the support algebra of an indecomposable

module over a representation directed algebra is tilted.

Further applications of tilting theory to the representation theory of

finite dimensional algebras are obtained for critical algebras with a pre-

projective component. It turns out that these are precisely the tame

concealed algebras, that is, the tilted algebras which arise by consid-

ering endomorphism algebras of preprojective or of preinjective tilting

modules over tame hereditary algebras. For more details and further

applications we refer to [2].
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Classification of representation-finite
algebras and their modules

Thomas Brüstle

Abstract

We describe how tilting modules are used to classify the representation-

finite algebras and their indecomposable modules.

1 Introduction

Probably the first appearance of tilting modules in representation theory

of finite-dimensional algebras was in 1973 the use of reflection functors

when Bernstein, Gelfand and Ponomarev [5] reproved Gabriel’s classifi-

cation of the representation-finite hereditary quiver algebras. Dlab and

Ringel [18] extended in 1976 the use of reflection functors to arbitrary

representation-finite hereditary algebras. Next, the concept of reflec-

tion functors has been generalized in 1979 by Auslander, Platzeck and

Reiten [2] (they called it ”Coxeter functors without diagrams”), and fi-

nally in 1980 by Brenner and Butler [13], who coined the term tilting

and gave the first general definition of a tilting module, together with

basic properties of tilting functors.

In a time where most people working with representation-finite algebras

were knitting Auslander-Reiten sequences, this was a new approach:

To study a class of modules which are given by abstract properties.

Tilting modules have then been used very successfully by Bongartz [9]

and by Happel and Vossieck [26] to find a far-reaching generalization of

Gabriel’s Theorem to representation-directed algebras, see Theorems 6

and 7 below.

15
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The aim of these notes is to describe this powerful application of tilting

theory in the classification of representation-finite algebras, and to add

some more details on the representation-infinite case and the classifica-

tion of tame algebras. These notes arose from two lectures which I gave

at the meeting on ’Tilting Theory’ at the Fraueninsel near Munich. I

would like to thank the organizers of this conference for the opportunity

to present these lectures.

2 Notation

Throughout, we fix an algebraically closed field k. We deal with finite-

dimensional, associative algebras A over k and study the category modA

of finitely generated left A � modules. By a fundamental observation due

to Gabriel, it is sufficient (up to Morita-equivalence) to consider algebras

presented in the form A � kQ � I, where Q is a finite quiver, that is, an

oriented graph, and I is an admissible ideal in the path algebra kQ.

Here, an ideal I of kQ is said to be admissible if there is some number

m such that kQm
1 � I � kQ2

1 where kQ1 denotes the ideal generated by

the arrows of Q.

We freely use the language of quivers and admissible ideals (generated

by certain relations) here and refer to the textbooks [3, 24, 28] for more

details. The set of vertices of Q is denoted by Q0, and the set of ar-

rows by Q1. The vertices of Q are in bijection with the isomorphism

classes of simple A � modules, and we denote by Si a simple A � module

corresponding to the vertex i � Q0. The arrows of Q encode extensions

between the simple modules, in the way that dimk Ext 1
A � Si, Sj � is the

number of arrows in Q from i to j.

We consider in this note only algebras of the form A � kQ � I with an

admissible ideal I. These algebras are hereditary precisely when the

ideal I is zero, thus A is the path algebra of a quiver Q. Each module

M in mod A is given by a family � Mi � i � Q0
of vector spaces and a family

� Mα � α � Q1
of linear maps such that the relations generating the ideal I

of A � kQ � I are satisfied. We recall from [10] that the Tits form of A

is the quadratic form qA : ZQ0 � Z defined by the following formula:

qA � x � � 	
i � Q0

x2
i � 	



i � j � � Q1

xixj 
 	


i,j � � Q0

r � i, j � xixj ,
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where r � i, j � � � R � I � i, j � � for a minimal set of generators R ��
i,j � Q0

I � i, j � of the ideal I. Note that these numbers can also be inter-

preted as r � i, j � � dimk Ext 2
A � Si, Sj � . A positive root of qA is a vector

x � NQ0 such that qA � x � � 1. An algebra A is said to be representation-

finite if it admits only finitely many indecomposable modules up to

isomorphism. The relation between the representation type of A and

properties of qA has been studied intensively in representation theory of

finite-dimensional algebras. One of the starting points was the class of

hereditary algebras.

We say that the quiver Q is a Dynkin quiver if the underlying graph

of Q is a Dynkin graph, likewise for extended Dynkin quivers. In our

context (working over an algebraically closed field), only the simply

laced Dynkin diagrams of type An, Dn and E6, E7 and E8 occur.

The following theorem of Gabriel determines the precise relationship

between the representation type of a quiver and its quadratic form:

Theorem 2.1 ([22]). Let H be a hereditary algebra of the form H � kQ

where Q is a connected quiver. Then the following are equivalent:

(i) H is representation-finite.

(ii) The quiver Q is a Dynkin quiver of type An, Dn, E6, E7 or E8.

(iii) The Tits form qH is positive definite.

Moreover, if H is representation-finite, then there is a bijection between

the isomorphism classes of the indecomposable H 	 modules and the pos-

itive roots of the quadratic form qH .

This result motivated Bernstein, Gelfand and Ponomarev [5] to use ideas

from Lie theory: the Weyl group W associated to the Dynkin diagram

is generated by the simple reflections. The roots may be viewed as the

union of the W 	 orbits of the simple roots. With their reflection func-

tors, they copied this behavior for representations. Auslander, Platzeck

and Reiten [2] showed that these reflection functors are of the form

Hom A � T, 	 � where the A 	 module T is a direct sum T � 

i � Q0

Ti where

all but one Ti are indecomposable projective (and non-isomorphic), and

the remaining summand Tj is obtained from the remaining indecompos-

able projective by a shift with the inverse Auslander-Reiten translation.
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This fits into the general concept of a tilting functor Hom A � T, � � where

T is a tilting module. Among various versions of the notion of a tilting

module, we are using here the original definition from [25]: a finitely

generated A � module T is a tilting module if it satisfies the following

conditions:

(i) pdT � 1

(ii) Ext 1
A � T, T � � 0

(iii) There is an exact sequence 0 � A � X0 � � � � � Xn � 0 with

Xi � addT .

If A � kQ is a hereditary algebra with a tilting module T , then the en-

domorphism ring End A � T � is called a tilted algebra (of type Q). We will

see below that the tilted algebras play a major role in the classification

of representation-finite algebras.

We recall the definition of the Auslander-Reiten quiver ΓA of the cate-

gory mod A (see [3, 24, 28] for more details): It has as set of vertices the

isoclasses � X 	 of indecomposable modules X in modA. The number of

arrows from � X 	 to � Y 	 is defined as dimk rad � X,Y � 
 rad 2 � X,Y � , where

rad denotes the radical of the category mod A (i.e., the ideal generated

by the non-invertible maps between indecomposables). Note that ΓA is

a translation quiver with Auslander-Reiten translation τ .

3 Representation-finite algebras

Let A � kQ 
 I be a representation-finite algebra. We are aiming at a

generalization of Gabriel’s theorem to algebras of arbitrary global dimen-

sion. An argument of Tits (see [10]) shows that for every representation-

finite algebra A, the form qA is weakly positive, that is, positive when

evaluated on positive vectors.

The converse, however, is not true in general. Consider for example the

algebra A � kQ 
 I given by the quiver Q below and the ideal I which is

generated by the relation ξη � 0 :

� � ��

� �

η

ξ
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Then the algebra A has the same Tits form as a tilted algebra of type

D6, thus qA is weakly positive. But the universal covering of A con-

tains a critical subcategory of type �E6, therefore A is known to be

representation-infinite.

So the representation-finite algebras are not characterized by the weak

positivity of the Tits form, and it needs considerable effort to detect the

representation-finite algebras. The main technique one uses to determine

the representation type of a general algebra is covering theory. As this

note is mainly concerned with tilting, we do not recall the concept of

coverings and its use in representation theory here, but rather refer to

[23, 7] for the details. We do however describe the effect that the use of

covering spaces has to our question:

An A � module M is said to be sincere when Mi � 0 for all i � Q0. And

the algebra A is called sincere if it admits a sincere indecomposable

module. Moreover, a representation-finite algebra A is said to be

representation-directed if there is no cycle X1 � � � � � Xn � X1 in the

Auslander-Reiten quiver of A (see [28, 2.4(6) and (9)] for a more general

definition). The main result which we need from covering theory is the

following:

Theorem 3.1. Each indecomposable module over every representation-

finite algebra is obtained as a push-down of an indecomposable module

over some sincere representation-directed algebra.

The major part of this result is shown in the work of Bautista, Gabriel,

Roiter and Salmeron [4] on multiplicative bases. They show there that

a representation-finite algebra admits a universal covering �A � A by

a simply connected algebra �A (see [1, 30] for a discussion of simply

connected algebras) except when char k � 2 and A contains a so-called

penny-farthing. These are algebras whose quiver P has the following

shape:

�

�

��

αn

α1

α2

αn � 1

ρ�

The ideal J of a penny-farthing kP � J is generated by one of the following
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two systems of relations (see also [8]) :

0 � αn � � � α2α1 � ρ2 � α1αn
� αf

�
i � � � � α1ραn � � � αi � 1 or

0 � αn � � � α2α1 � ρ2 � α1αn � α1ραn
� αf

�
i � � � � α1ραn � � � αi � 1,

where f : � 1, 2, . . . , n � 1 � � � 1, 2, . . . , n � is a non-decreasing function.

However, a penny-farthing is not sincere: Every indecomposable module

vanishes at some vertex. When studying indecomposable modules over

an algebra A � kQ 	 I, however, it is sufficient to consider the case when

A is sincere: Given any indecomposable module M , we may replace A by

the algebra B � eAe where e � 

Mi � 0 ei (remember that ei denotes the

primitive idempotent of the algebra A associated to the vertex i � Q0).

This algebra B is also called the support of the A � module M . By

construction, the module M is non-zero at all vertices from B, hence

sincere when considered as a B � module.

Thus, when studying indecomposable modules, one does not need to

consider the penny-farthing. In fact, refining the methods from [4],

Bongartz could show in [11] that no representation-finite algebra which

contains a penny-farthing is sincere, so one can avoid any possible

problem with covering theory. As a consequence, when studying inde-

composable modules over representation-finite algebras, up to covering

techniques it is sufficient to study modules over sincere representation-

directed algebras. This is the point where tilting modules come into play:

Theorem 3.2 ([25]). Let A be a sincere representation-directed algebra.

Then A � End H 
 T � where T is a tilting module over a hereditary algebra

H � kQ whose quiver Q is a tree.

This theorem is one of the main contributions of tilting theory to the

classification of representation-finite algebras, and we would like to recall

the major steps of its proof: Denote by ΓA the Auslander-Reiten quiver

of A. By assumption, there exists a sincere indecomposable A � module

M . We consider the set Σ of all vertices X � ΓA such that there exists a

path X � � � � � M in ΓA and such that there is no path X � � � � Xi �
Xi � 1 � Xi � 2 � � � � � M in ΓA with τXi � 2

� Xi (remember that τ

denotes the Auslander-Reiten translation). A typical example of such a

set Σ � � X1, . . . , X5,M � is depicted below:
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�

�

�
�

�

MX4

X3

X5

X1

X2

ΓA

It is clear from the construction that Σ satisfies the properties of a slice

in ΓA, that is to say:

(a) T �
�

X � ΣX is a sincere module

(b) Σ is path-closed: Given any path Xi � � � � � Y � � � � � Xj in

ΓA with Xi and Xj in Σ, then also Y belongs to Σ.

(c) Let 0 � X � Y � Z � 0 be an Auslander-Reiten sequence. If

Y has an indecomposable direct summand in Σ, then one of X

and Z, but not both, belong to Σ.

Note that there exist different versions of the definition of a slice in

the literature, and various names such as (complete) slice or (complete)

section. The definition we are using here is equivalent to the one in [28,

4.2], and the last condition underlines the symmetry of the concept. If Σ

is any slice in ΓA, then T � �
X � ΣX is a tilting module, and the algebra

H � End A � T � is hereditary where the quiver Q of the algebra H � kQ

is a tree. In the example for the set Σ above, the quiver of H is of type

E6, its vertices correspond to the summands of Σ and all the arrows

are reversed. For the rest of the proof we refer to [28, 4.2 (3)] where it

is shown that every slice can be realized as the set of indecomposable

injective modules over a hereditray algebra as above, thus the given

algebra A is tilted.

The results discussed so far open the door to a classification of all sincere

representation-directed algebras: Take a hereditary algebra H � kQ (it

is sufficient to consider the cases where Q is a tree), compute all tilting

modules T of H and decide if A � End H � T � is representation-finite.

Of course, it is very difficult in general to compute all tilting modules.

Moreover, to determine the representation type, we distinguish several

cases: If H is representation-finite, then A is so as well ([28, 4.2 (1)]).
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Consider now the algebras H � kQ where Q is one of the extended

Dynkin quivers �An, �Dn, �E6, �E7 or �E8. Then the Auslander-Reiten ΓH is

well understood (see [28, 3.6]): It consists of a preprojective component

P, a preinjective component I and a P1 � k � � family T � � Tλ � λ � k � � of

tubes Tλ of rank nλ. Here a component of ΓH is called preprojective if it

contains no cyclic paths, has only a finite number of τ � orbits and each

of those orbits contains one projective module. Preinjective components

are defined likewise, requiring an injective instead of a projective module

in every τ � orbit. Note that we are considering only finite-dimensional

algebras here, so the cyclic orientation is excluded in case Q � �An. As

a concrete example we sketch here the Auslander-Reiten quiver of the

algebra A � kQ where Q is an extended Dynkin diagram of type �D4 (it

is the four subspace quiver). Then ΓH has the following form:

P T I

Proposition 3.3. Let H � kQ where Q is an extended Dynkin

quiver, and let T be a tilting module of H. Then A � End H � T � is

representation-finite if and only if the module T contains at least one

summand from P and at least one summand from I.

Unfortunately, the situation is rather complicated for quivers Q which

are neither Dynkin nor extended Dynkin. Bongartz [8] showed that

every sincere representation-directed algebra with more than a certain

number nv of vertices occurs in a list of 24 infinite families of sincere

representation-directed algebras (such as the families An, Dn for n � N).

In fact, the optimal bound for nv is 13, see [28]. The small sincere

representation-directed algebras with at most 13 vertices were then

classified by computer (see [19]), there are 16344 of them (sorted in
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2242 diagrams) which do not belong to one of the 24 infinite families.

The list of the 16344 exceptional algebras is quite impossible to

read, of course, even if they are presented very well in graphical

form in [29]. The production of this list seems to be one of the

starting points of the use of computers in representation theory, and

Bongartz’s first list has been checked and verified by Dräxler and others.

One should note that, even if the production of all sincere directing

algebras is an almost impossible task, it follows at least a systematic

approach given by tilting theory. Through Theorem 3.2 one also

obtains information about the sincere representation-directed algebras

which would be difficult to show directly, for instance the global di-

mension for all these algebras is bounded by 2 (as for all tilted algebras).

We illustrate by another example how useful the concept of Theorem

3.2 is: An algebra A � kQ � I is called a tree algebra if the underlying

graph of the quiver Q is a tree. A module M over a tree algebra is

said to have a peak if there exists some vertex i of Q such that every

arrow of Q pointing towards i is represented in M by an injective map,

and every arrow of Q pointing away from i is represented in M by a

surjection. Bongartz and Ringel show in [6] the following result:

Theorem 3.4. Let A � kQ � I be a representation-finite tree algebra.

Then every indecomposable A � module has a peak.

Of course, this theorem is proven using the approach of writing A as

endomorphism ring of a tilting module over a hereditary algebra (while

assuming that A is sincere). In fact, Bongartz was first working with

lengthy lists of tree algebras, or as the authors say in their paper about

their result: ”This ... was conjectured and partially proved by the first

author using a quite technical inductive argument”, and later on in the

paper: ”The original proof of the theorem used this list. To convince

the reader of the arising combinatorial difficulties, we give the list of all

representation-finite tree algebras kT � R, such that dimU � x � � 4 for all

x � T and U indecomposable, and such there exists at least one sincere

indecomposable V.” What follows is a list of tree algebras which is longer

than the proof of the above theorem. We believe this convinces every

reader how useful tilting modules are.
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4 Critical algebras

We did not discuss so far how one can test if a given algebra is representa-

tion-finite. The lengthy list of sincere representation-directed algebras is

clearly not useful. It turns out that a good test is established by the min-

imal representation-infinite algebras: these are representation-infinite

algebras such that every ”smaller” algebra is representation-finite (we

specify below how the term ”small” is defined in this context). Sur-

prisingly, tilting modules play an important role again: Let Q be an

extended Dynkin quiver of type �An, �Dn, �E6, �E7 or �E8, and let T be a

tilting module over the algebra H � kQ. The algebra A � End H � T � is

called tame concealed (or critical) if all summands of T belong to the

preprojective component P of ΓH . The tame concealed algebras have

been classified by Happel and Vossieck [26]. Their list is rather handy,

there are 5 infinite families (such as �An and �Dn, n � N) and a number

of exceptional algebras, sorted in 134 frames.

In the representation-infinite situation, many algebras do not admit

a simply connected covering, thus one has to restrict to certain well-

behaved classes of algebras. The first apprach is to consider those alge-

bras which admit a preprojective component. The hereditary algebras

given by an extended Dynkin quiver admit a preprojective component,

as we discussed above, and also all tame concealed algebras enjoy this

property.

Furthermore, we need to make precise which kind of minimality we

are using: An algebra A � kQ � I can also be viewed as a k � category

whose set of objects is the set of idempotents ei where i runs through

the vertices of the quiver Q. The morphism spaces are identified with

ejAei. A (full) subcategory of A is then of the form C � eAe where

e � �
i � J ei for some subset J of the vertices of Q. The following

theorem explains why the tame concealed algebras are also called critical:

Theorem 4.1 ([26]). Let A be an algebra which admits a preprojective

component. Then A is representation-finite if and only if A does not

contain a subcategory C which is a tame concealed algebra.

The subcategory C � eAe is said to be convex if the set of vertices J is

path-closed (as in part (b) in the definition of a slice above). It is much

easier in practice to search for subcategories of a given quiver algebra

which are convex. The following theorem provides a criterion for
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representation-finiteness using this kind of minimality (while working

with a slightly smaller class of algebras which excludes the algebras of

the form �An):

Theorem 4.2 ([9]). Let A be an algebra which admits a simply con-

nected preprojective component. Then A is representation-finite if and

only if A does not contain a critical algebra C as convex subcategory.

The two theorems above were obtained independently, and it turned

out a posteriori that the corresponding lists of minimal representation-

infinite algebras coincide (excluding �An). Thus, it turns out that Bon-

gartz’s critical algebras are tame concealed (hence tilted), and that the

tame concealed algebras classified by Happel and Vossieck are minimal

representation-infinite with respect to convex subcategories.

It is this criterion together with covering theory which is mostly used

when one likes to decide if a given algebra is representation-finite or not.

In fact, the restriction of working with algebras that admit a preprojec-

tive component is justified by the previous use of covering theory: Given

an algebra A, one tries to find a covering with directed quiver Q. If this

does not exist, then either A is not sincere, or representation-infinite

(see our previous discussions). If such a covering exists, one restricts

to finite subcategories of the covering and continues as follows: In [20]

there is an algorithm to decide if the given algebra admits a preprojec-

tive component. If not, the algebra is representation-infinite, if yes, the

theorems above can be applied.

Besides the algorithmic method described in [20], several sufficient con-

ditions have been found when an algebra admits a preprojective com-

ponent. For instance, every directed, Schurian algebra admits a pre-

projective component if it satisfies a certain separation property (an

algebra A � kQ � I is said to be directed if Q has no oriented cycles, and

it is said to be Schurian provided dimk Hom A � P � x � , P � y � � � 1 for all

x, y � Q0 where P � x � denotes the indecomposable projective A � module

associated to the vertex x � Q0).

Unfortunately, most of these concepts are motivated by techniques

developed for studying representation-finite algebras. We consider

finally a smaller class of algebras which is intensively studied in

the representation-infinite cases: An algebra A � kQ � I is strongly
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simply connected if it is directed and the first Hochschild cohomology

HH1 � C,C � vanishes for every convex subcategory C of A (see [30]).

For instance, all tree algebras are strongly simply connected. One

can show that every strongly simply connected algebra admits a

preprojective component, thus the minimality criterion above applies

to it, as well as the following generalization of Gabriels theorem on the

representation-finite hereditary algebras:

Theorem 4.3 ([10]). Let A be an algebra which admits a preprojective

component. Then A is representation-finite precisely when the Tits form

qA is weakly positive and in this case, there is a bijection between the

isomorphism classes of the indecomposable A � modules and the positive

roots of qA.

5 Tame algebras

We finally discuss which of the previous results can be generalized

to representation-infinite algebras. By Drozd’s fundamental theorem,

these algebras are divided into two disjoint classes, called tame and wild.

Theorem 5.1 ([21], [14]). Every finite-dimensional algebra is either

tame or wild, but not both.

Here, an algebra A is called tame if there exists, for each dimension d, a

parametrization of the indecomposable d � dimensional A � modules by a

finite number of one-parameter families. The module category of a wild

algebra, on the other hand, contains information about all indecompos-

able modules over all finite-dimensional algebras. Consequently, wild

algebras admit families of indecomposable A � modules of a fixed dimen-

sion which depend on an arbitrarily high number of parameters. One of

the main aims in representation theory of finite-dimensional algebras is

to determine the borderline between the tame and wild algebras.

In contrast to the representation-finite case, it is no longer sufficient

to apply covering theory and to study modules which are obtained via

tilting from hereditary algebras: At first, the covering theory is much

less applicable, and secondly, the sincere directed tame algebras are far

from tilted. Consider, for instance, the algebras ∆n (named ”dancing



Classification of representation-finite algebras and their modules 27

girls” by S. Brenner) which are given by the quiver Q below, modulo

the ideal I generated by all products αi � 1αi :

� � � � �� � � � �

� � ��
α1 α2 αn

These algebras ∆n are tree algebras, thus covering theory does not apply

to them and they also admit a preprojective component. Moreover, they

are tame and sincere (they belong to a class called clannish algebras

which is studied in [15]). But, the algebra ∆n is of global dimension

n � 1, whereas tilted algebras have global dimension at most two.

However, one result still holds under certain restrictive conditions which

are dictated by the weakness of covering theory: The minimal non-tame

algebras are tilted. Consider the minimal wild hereditary tree algebras,

given in the following figure, where in case ��Dn, the graph has n � 2

vertices and 4 � n � 8.

T5
� ��Dn

�

��E6
� ��E7

�

��E8
�

Analogous to the definition of the critical algebras, an algebra A is

said to be hypercritical if it is of the form A � End H � T � where H is

a minimal wild hereditary tree algebra and T is a tilting H � module

such that all summands of T belong to the preprojective component

P of ΓH . The hypercritical algebras have been completely classified

([27, 32, 31]), they are given by a list of 176 frames. Up to now, only for

some narrow clases of algebras it could be shown that the hypercritical
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algebras serve as the minimal wild algebras. The theorem below is

one of these results (it will be generalized in a forthcoming paper with

Skowronski to the class of strongly simply connected algebras):

Theorem 5.2 ([12]). Let A be a tree algebra. Then A is tame if and

only if A contains no hypercritical convex subalgebra.

The corresponding property for the Tits form of an algebra is the

following: The quadratic form qA : ZQ0 � Z is called weakly non-

negative if qA � x � � 0 for all x � NQ0 . Just as weak positivity in

the representation-finite case, the weak non-negativity is a necessary

condition for tameness, but it does not characterize the tame algebras:

Theorem 5.3 ([16]). Let A be a tame algebra. Then the Tits form of

A is weakly non-negative.

For the class of strongly simply connected algebras, however, de la Peña

[17] showed that weak non-negativity of qA is characterized by the fact

that the algebra A contains no hypercritical algebra. This is where

tilting theory comes into play again.
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A spectral sequence analysis of classical
tilting functors

Sheila Brenner1 and M. C. R. Butler

1 Introduction

Let A be a ring, T � TA be a tilting module of finite projective dimen-

sion, t, in the sense of [5] and [9] - spelt out in detail in Section 2, below -

and B � EndA � T � . This article contains some spectral sequences which

provide a systematic framework for studying the tilting functors

F � HomA � T, � � and G � � � B T,

their derived functors RnF � Extn
A � T, � � and LnG � TorB

n � � , T � , and

the associated filtrations of finite length t � 1 on A- and B-modules. The

context is strictly that of classical homological algebra of modules. For

a far more general construction covering, for example, equivalences of

derived categories given by tilting complexes, see Section 7 of Bernhard

Keller’s article [7] in this volume.

The spectral sequences in question seem first to have been written down,

but nowhere published, by Dieter Vossieck in the mid-1980’s, and were

re-discovered by the authors during the summer of 2002 whilst preparing

the talk for the conference ‘Twenty Years of Tilting Theory’ at Chiemsee

in November 2002 on which this article is based. After that talk, Helmut

Lenzing mentioned Vossieck’s work, and kindly supplied a copy of his

notes of a lecture in July 1986 by Vossieck at the University of Paderborn

entitled Tilting theory, derived categories and spectral sequences. The

main part of this lecture gave an account of the then recently proved

theorem of Happel, [5], and Cline-Parshall-Scott, [4], that F and G

1 Sheila Brenner sadly died on October 10, 2002, so the composition of this article
has been the responsibility of the second author.
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induce inverse equivalences of the derived categories of A and B, but

in the last two sections Vossieck briefly described the spectral sequences

and filtration formulae which are stated and proved in the main part,

Section 3, of this article.

Section 3 is preceded by a brief derivation in Section 2 of the main

properties of tilting modules, and followed by two short sections of older

and newer applications.

Conventions Throughout this note, rings are associative and have

identities and modules are unital. For a ring A, the notations Mod-A,

mod-A, Proj-A and proj-A denote the categories of all right A-modules,

all finitely presented right A-modules, all projective right A-modules

and all finitely generated projective right A-modules, respectively; the

corresponding categories of left A-modules have A as a prefix. For a

right A-module X (left A-module Y ), we write add-X (Y -add) for the

category of all modules isomorphic to direct summands of finite direct

sums of copies of X (Y ). Finally, for any category X of modules, we say

that a bounded complex

X � : � � � � Xn � Xn � 1 � � � � ,

which has terms in X and is acyclic except at n � 0, is a finite resolution

of H0 � X � � in X if Xn � 0 for all n � 0, and a finite coresolution of

H0 � X � � in X if Xn � 0 for all n � 0.

2 Tilting modules

This section contains the definition and basic properties of the tilting

modules to be used throughout this article for the construction of

spectral sequences. For a fuller more analytic discussion, we refer to

the original papers [4, 5, 9].

Definition 2.1. Let A be a ring. The right A-module, T , is called a

tilting module if it satisfies the following tilting conditions:

TC1 there is a finite resolution, P � , of TA in proj-A;

TC2 there is a finite coresolution, T � , of AA in add-T ;

TC3 TA has no self-extensions, that is,

Extn
A � T, T � � 0 for all n 	 1.
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Given such a tilting module, T � TA, let

B � EndA � T � .

Then T �
B TA is a B,A-bimodule, which may be used to define, for

each right A-module X, a left B-module � X � HomA � X,T � , and for

each left B-module Y , a right A-module Y � � HomB � Y, T � . We call � X

and Y � the T -duals of X and Y , respectively, and shall make use of the

usual double duality map

eX : X � � � X � � � HomB � HomA � X,TA � , BT �

in Mod-A. Clearly eT is an isomorphism, and so also then is eX for

every X in add-T . The following proposition asserts interalia that eX

is an isomorphism for every X in proj-A.

Proposition 2.2. Let the right A-module TA be a tilting module, with

finite resolution P � in proj-A and finite coresolution T � in add-T . Then:

(1) The left B-module BT is a tilting module, the T -dual complexes

� � T � � and � � P � � being, respectively, a finite resolution of BT in

B-proj and a finite coresolution of BB in T -add.

(2) The duality map eX : X � � � X � � is an isomorphism for modules

X in add- � T �
A � A. In particular, the complex morphisms eT �

and eP � are isomorphisms, as also is the natural ring homomor-

phism of A into EndB � T � .

The proof makes use of the following easy lemma.

Lemma 2.3. Let X � be an acyclic bounded above complex and Y be a

module such that, for all m � 1, Extm � X � , Y � � 0. Then Hom � X � , Y �
is acyclic.

Proof the lemma. We may assume that Xn 	 0 implies n 
 0. Let

Zn � Im � Xn � 1 � Xn � , so that Z0 � X0. For all m � 1 and n 
 0,

we have Extm � Zn � 1, Y � � Extm 
 1 � Zn, Y � , from which it follows that

Extm � Zn, Y � � 0 for all such m and n. Hence, for each n 
 0, the

sequence 0 � Hom � Zn, Y � � Hom � Xn � 1, Y � � Hom � Zn � 1, Y � � 0 is

exact, and the lemma follows by splicing these sequences together.

Proof of the proposition. We use the lemma to show that BT satisfies
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the conditions TC1 and TC2 for being a tilting module. First, apply

the lemma with Y � T and X � the coaugmented complex

� � � 0 � AA � T 0 � T 1 � � � �

determined by T � . By TC3 for TA and the projectivity of AA, the con-

ditions of the lemma are satisfied, so since � AA
�

BT and � � add � T � �

B � proj, it follows that � � T � � is a finite resolution of BT in B-proj.

Next, the conditions of the lemma are again satisfied on taking Y � T

but X � to be the augmented complex

� � � � P
� 1 � P 0 � TA � 0 � � � �

determined by P � . Since � TA
�

BB and � � proj-A) = T -add, it follows

that � � P � � is a finite coresolution of BB in T -add.

To verify TC3 for BT , we use the projective resolution � � T � � to calculate

the self-extensions of BT as the homology of the complex � � � T � � � � �

HomB � � � T � � , BT � . As already noted, it is clear that for X � TA and,

hence for any X in add-T , the duality map eX : X � � � X � � is an

isomorphism. Thus eT 	 : T � � � � � T � � � � is an isomorphism of com-

plexes, so induces isomorphisms of homology. However, in degree n 
 1,

Hn � T � � � 0, so that Extn
B � T, T � � 0. This verifies TC3 and completes

the proof of part (1) of the proposition. In degree 0, it shows that the

map eA : A � H0 � T � � � EndB � T � is an isomorphism – so that T is

indeed a balanced B,A-bimodule – and it then follows that eX is an

isomorphism for any X in proj-A, as also then is the complex morphism

eP 	 . This completes the proof of the second part of the proposition.

Remark 2.4. The following lemma and corollary - given by Dieter

Happel in [5] - show that the finite resolutions and coresolutions

involved in Proposition 2.2 may all be chosen to have the same length.

Lemma 2.5. Let T be a module of projective dimension at most t, with

no self-extensions. Then any module X possessing a finite coresolution

in add-T has such a coresolution X � in which Xn � 0 for all n � t.

Corollary 2.6. Let TA be a tilting module over the ring A, and B �

EndA � T � . Then TA and BT have the same finite projective dimensions.



A spectral sequence analysis of classical tilting functors 35

3 Tilting functors, spectral sequences and filtrations

From now on, fix a ring A, a tilting module TA, and the bounded

complexes P � and T � required by TC1 and TC2, respectively. Set

B � EndA � T � . By Proposition 2.2, BT is a tilting module and the

complexes � � T � � and � � P � � are those required by the left B-module ver-

sions of TC1 and TC2. We shall further assume, as Remark 2.4 allows,

that

P
� n � 0 � Tn for all n � t,

where t � pdTA denotes the finite projective dimension of TA.

The bimodule BTA determines a pair of adjoint functors

F � HomA � T, � � : Mod-A � Mod-B

and

G � � 	 B T : Mod-B � Mod-A

and in this section we set up spectral sequences analysing the homolog-

ical properties of the composite functors GF and FG, and study the

filtrations of length t+1 on both A- and B-modules canonically induced

by the tilting theory. The use of spectral sequences for studying compos-

ite functors goes back a long time. It is the last topic in the famous book

[3] of Cartan and Eilenberg, and is further developed in Section 5.8, enti-

tled Grothendieck Spectral Sequences, of Weibel’s book [13], with several

examples. We conclude this section with a Remark briefly summaris-

ing the Grothendieck-Roos duality theory, [11], for finitely generated

modules over regular rings, which was explicitly discussed in parallel

with tilting theory in Vossieck’s Paderborn lecture and, in the derived

category setting, in his joint paper [8] with Keller.

The analysis of course involves the derived functors

RnF � Extn
A � T, � � and LnG � TorB

n � � , T �

of F and G, as was already the case in the early papers [1, 2, 6] (in the

case t � 1) and [5, 9]. Although the term tilting functor was first used

in [2] for F and for G, it seems appropriate to extend it to include any

of their derived functors. Their number is essentially finite since

RnF � 0 � LnG for all n � t.
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We start by noting a trivial but important lemma.

Lemma 3.1. (1) For modules MA and M �A there is a natural map

F � M � � B � M � � HomA � M � ,M � , f � B φ �� � x � �� f � φ � x � � � � ,

which is an isomorphism when M �A is in add-T .

(2) For modules MA and NB, there is a natural map

N � B � M � HomA � M,G � N � � , y � B θ �� � x �� y � B θ � x � � ,

which is an isomorphism when MA is in proj-A.

In the next two theorems, use is made of the standard notations I � �
�

and

II � �
�

for the terms of the spectral sequences determined by the column

and row filtrations (respectively) of the single complex associated with

a double complex. Also, we use the term support of a spectral sequence

E � �
�

to mean the set of points � p, q � � ZxZ such that Epq
r 	 0 for some

r 
 2.

Theorem 3.2. For each right A-module M , there is a convergent spec-

tral sequence

IIp,q
2

� IIp,q
2 � M �

q� 
 H � � M �

in Mod-A in which

H0 � M � � M and Hn � M � � 0 for n 	 0,

and

IIp,q
2

� � L � qG � RpF � � M � � TorB� q � Extp
A � T,M � , T � ,

so that its support is in the 4-th quadrant square in which 0 � p � t and

� t � q � 0. Hence

IIt � 1
� II � ,

and there is an induced filtration on M � H0 � M � ,

M � M � t � � M � t � 1 � � � � � � M � 0 � � M � � 1 � � 0,

with filtration factors

M � q � � M � q � 1 � � IIq, � q
t � 1 ,

whilst

IIp,q
t � 1

� 0 for p 	 � q.
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The formulae for the terms M � n � of the filtration require some more

notation.

Notation 3.3. Let An � Ker � T n � Tn � 1 � , so that An � 0 unless

0 � n � t; also A0 � A and At � T t. Let M � Mod-A. From the

short exact sequences 0 � An � Tn � An � 1 � 0, we obtain connecting

homomorphisms,

σn : Extn
A � An,M � � Extn � 1

A � An � 1,M � ,

whose composite σn � � � σ1σ0 is a map

πn : M � � Extn � 1
A � An � 1,M � .

Remark 3.4. The connecting homomorphism σn may be viewed as

splicing n-fold extensions of M by An with the short exact sequence

0 � An � Tn � An � 1 � 0. It then follows by an easy induction that,

for each element m � M , the Yoneda class of πn � m � in Extn � 1
A � An � 1,M �

is represented by the pushout of the exact sequence

0 � A � T 0 � � � � � Tn � An � 1 � 0

along the map a 	� ma of A into M .

Proposition 3.5. The terms of the filtration of M in Theorem 3.2 are

given by

M � n � � Ker � πn � .

Proof of Theorem 3.2. Choose any injective resolution,

I 
 : � � � � 0 � I0 � I1 � I2 � � � � ,

of the right A-module M . Then Lemma 3.1, (1), yields two different

formulae for the double complex

C 
 , 
 � F � I 
 � � B � � T 
 � 
 HomA � T 
 , I 
 � ,

and its terms,

Cp,q � F � Ip � � B � � T � q � 
 HomA � T � q, Ip � ,

are 0 except when p � 0 and � t � q � 0, thus when � p, q � is in the

fourth quadrant. The associated single complex C 
 has general term

Cn � �
p � q � nCp,q,
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which is 0 unless n � � t, and is always a direct sum of at most t � 1 terms.

Hence its two spectral sequences do converge to H � � M � : � H � � C � � .

The first spectral sequence collapses. Indeed, the injectivity of each Ip

shows that

Ip,q
1

� Hq
II � Cp � � � Hq

II � HomA � T � , Ip � � � HomA � Hq � T � � , Ip � ,

and then the fact that T � is a coresolution of A implies that I � q
1

� 0

for q � 0 and that I � 0
1

� I � . It further follows that I � q
2

� 0 for q � 0

and for p � 0, whereas I002
� M because I � is an injective resolution

of M . In particular, this implies that Hn � M � � 0 for n � 0, whereas

H0 � M � � M .

We next calculate the first two terms of the second spectral sequence.

Since the terms of � � T � � are projective left B-modules, the term IIp �1 is

given by

Hp
I � F � I � � 	 B � � T � � � � Hp

I � F � I � � � 	 B � � T � � � RpF � M � 	 B � � T � � .

But � � T � � is a projective resolution of BT , G � � 	 B T , and the differ-

entials in II1 are induced by the second differential in C � � , that is, by

the differential in � � T � � . Therefore,

IIp,q
2

� � L 
 qG � � � RpF � � M � � ,

and this formula shows that the spectral sequence has its support inside

the given square of side length t � 1. Since the differentials in the r-th

page of the spectral sequence increase the filtration index, q, by r, they

all vanish when r � t � 1, so that IIt � 1
� II � . Now the remaining

statements in the theorem follow from the fact that the terms IIp,q� are

the factors of the filtration of Hp � q � M � induced by the row filtration of

the complex C � , � .

For the proof of Proposition 3.5 we need to recall the definition of the

filtration of H � � M � � H � � C � � . The r-th row filtration term of C � is

Fr � C � � : � 

p,q:q � r

Cp,q,

– which we often abbreviate to FrC – so that

� � � � F

 tC � C � � F


 t � 1C � � � � � F0C � 0 � F1C � � � �

is a decreasing sequence of subcomplexes of C � – often abbreviated to
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C in the next few lines. The images

FrH � � M � : � Im � H � � FrC � � H � � C � �

of the induced maps of homology are the terms of the required decreasing

filtration of H � � M � , though we shall actually use the alternative formula

FrH � � M � � Ker � H � � C � � H � � C � FrC � �

obtained from the exactness of the homology sequence of the exact se-

quence of complexes

0 � FrC � C � C � FrC � 0.

The proposition is an easy consequence of the following lemma.

Lemma 3.6. For all p � 0 and n � 0, there is a commutative square

Hp � C � F
	 


n 	 1 � C � θn � 1


 � Extp � n
A � An,M �

νn ��� ��� σn

Hp � C � F
	 nC � θn


 � Extp � n
A � An � 1,M � ,

in which νn is induced by the natural projection pn : C � F
	 


n 	 1 � C �
C � F

	 nC, σn is the connecting homomorphism induced by the exact se-

quence 0 � An � Tn � An � 1 � 0, and the maps θn 	 1 and θn are

natural isomorphisms.

Proof. First, observe that a p-cocycle in C � F
	 


n 	 1 � C is a sequence

f


n � � � f i � i � n of maps f i � HomA � T i, Ip � i � such that the diagram

Tn � Tn � 1 � � � � � T t � 0 � � � �
��� fn ��� fn � 1 ��� ft ��� ft � 1

Ip � n � Ip � n � 1 � � � � � Ip � t � Ip � t � 1 � � � �

commutes. Its natural image under pn in C � FnC is the sequence

f


n � 1 � � � f i � i � n � 1, which is again a p-cocycle; this induces the map

νn in the lemma. On the other hand, the commutativity of the above

diagram implies that the restriction fn � An : An � Ip � n of fn to An

gives a p � n-cocycle in the complex HomA � An, I � � , and so determines

an element of Extp � n
A � An,M � which - abusing notation - we denote by

θn 	 1 � f


n � � . Similarly, θn � f



n � 1 � � in Extp � n � 1

A � An � 1,M � is represented

by the p � n � 1-cocycle fn � 1 � An � 1 in the complex HomA � An � 1, I � � .
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Now the proof of commutativity of the square in the lemma follows

immediately from the commutativity of the square in the diagram

0 � An � T n � An � 1 � 0

fn ��� ��� fn � 1 � An � 1

Ip � n � Ip � n � 1 .

There are two ways of showing that the horizontal maps are isomor-

phisms. The formula given above for θn � 1 � f
�
n 	 
 can easily be used to

prove ”by hand” that θn � 1 is bijective. Alternatively, just as was done

for the complex C in the proof of Theorem 3.2, one can show that the

first spectral sequence for the complex C � F
� �

n � 1 	 C collapses at the I2
page, on which the only non-zero terms are Ip � n, � n

2 � Extp
A � An,M 
 , in

the � 
 n 
 -th row, the isomorphism being induced by θn � 1.

Proof of Proposition 3.5. Recall that, for n � 0, the � 
 n 
 -th filtration

term of H0 � C 
 � M is given by

F
� nH0 � C 
 � Ker � H0 � C 
 � H0 � C � F

� nC 
 �

where, since C � C � F
� 1C, the map is the composite of the maps

ν0, . . . , νn in the lemma, with p � 0. Since πn is the composite of

the maps σ0, . . . , σn in the lemma, with p � 0, the proposition follows

immediately.

We now formulate the corresponding theorem and proposition obtained

by an appropriate spectral sequence analysis of the endofunctor FG of

Mod-B, but shall only briefly discuss their proofs.

Theorem 3.7. For each right B-module N there is a convergent spectral

sequence

Ip,q
2

p� � H � � N 


in Mod-B in which

H0 � N 
 � N and Hn � N 
 � 0 for n � 0,

and

Ip,q
2

� � RpF � L � qG 
 � N 
 � Extp
A � T,TorB� q � N,T 
 
 ,

so that its support is in the 4-th quadrant square in which 0 � p � t and


 t � q � 0. Hence

It � 1
� I � ,
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and there is an induced filtration on N � H0 � N � ,

N � N � 0 � � N � 1 � � � � N � t � � N � t � 1 � � 0,

with filtration factors

N � p � � N � p � 1 � � Ip, � p
t � 1 ,

whilst

Ip,q
t � 1

� 0 for q 	 
 p.

Notation 3.8. Let Bn � Ker � � � P
� n � 
 � � P

� n � 1 � � be the n-th kernel

in the coresolution � � P � � of BB in add-BT , so that Bn � 0 unless

0 � n � t, B0 � B and Bt � � � P
� t � . Let N � Mod 
 B. From the

short exact sequences 0 
 Bn � 1 
 � � P
� n � 1 � 
 Bn 
 0 with n � 1,

we obtain connecting homomorphisms

ρn � 1 : TorB
n � N,Bn � 
 TorB

n � 1 � N,Bn � 1 � ,

whose composite ρ0 � � � ρn � 1 is a map

τn : TorB
n � N,Bn � 
 N.

Proposition 3.9. The terms of the filtration of N in Theorem 3.7 are

given by

N � n � � Im � τn � .

The proofs of Theorem 3.7 and Proposition 3.9 are quite obvious vari-

ants of those of Theorem 3.2 and Proposition 3.5, and we just indicate

their starting point. Choose any projective resolution, Q � , of NB . By

Lemma 3.1, (2), there are two different formulae for the double complex

D � , � � HomA � P � , G � Q � � � � Q � � B HomA � P � , T � � Q � � B � � P � � ,

and its terms, Dp,q, are 0 except when 0 � p � t and q � 0, thus when

� p, q � is in the fourth quadrant. The term Dn of the single complex

is 0 unless n � t, and is a direct sum of at most t � 1 terms, so its

two spectral sequences do converge to H � � N � : � H � � D � � . For this

complex, it is the second spectral sequence which collapses, to show

that Hn � D � � 0 for n 	 0 and H0 � D � � N , whereas it is the first

spectral sequence which contains non-trivial imformation, including the

formulae for the induced filtrations on B-modules.
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Remark 3.10. In the original case considered in [1, 2, 6] of a tilting

module of projective dimension 1, the second pages of the spectral se-

quences in both theorems are already the E � pages, and the induced

filtrations of modules are just those arising from the well-known tor-

sion theories considered in the versions of the Brenner- Butler Theorem

given by Bongartz, [1], and Happel and Ringel, [6]. For example, in an

A-module M , M � 0 � � II0,0
2

� GF � M � is the torsion submodule, its tor-

sionfree quotient is II1,1
2

� � L1G � � � R1F � � M � � , and the last statement in

Theorem 3.2 gives the ‘orthogonality’ relations G � R1F � 0 � L1G � F .

Remark 3.11. The Grothendieck-Roos duality theory in [11] starts

with the construction, which we now briefly describe, of a spectral se-

quence. Let R be a regular ring, that is, a commutative noetherian ring

of finite global dimension, which number we denote by t. The category

mod-R admits an obvious duality functor

D : M �� D � M � � HomR � M,R � ,

which is a contravariant equivalence on proj-R. The spectral sequence

provides a homological analysis of the natural double duality morphism

M � D2 � M � , this of course being an isomorphism exactly when M is

a finitely generated projective R-module. Roos starts his paper with a

theorem which includes all the statements in the following analogue of

the two tilting theorems above.

Theorem 3.12. For each finitely generated R-module M there is a

convergent spectral sequence

E
p,q
2

p� � H 	 � M �

in mod-R in which

H0 � M � � M and Hn � M � � 0 for n 
 0,

and

E
p,q
2

� Extp
R � Ext

� q
R � M,R � , R � ,

so that its support is in the 4-th quadrant square in which 0 � p � t and


 t � q � 0. Hence

Et � 1
� E �

and the filtration induced on M � H0 � M � has the form

M � M � 0 � � M � 1 � � � � � � M � t � � M � t � 1 � � 0,
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with filtration factors

M � p � � M � p � 1 � � E
p, � p
t � 1 ,

whilst

E
p,q
t � 1

� 0 for q � � p.

A proof analogous to the tilting theorem proofs may be given by choosing

a finite resolution, P 	 , of M in proj-R, and an injective resolution I 	 of

R, and studying the single complex associated with the double complex

with terms

HomR � D � P q � , Ip � .

Since the D � P q � ’s are projective, the spectral sequence determined

by the filtration by columns collapses to give the stated homology.

The spectral sequence determined by the filtration by rows is the

Grothendieck- Roos spectral sequence.

4 Applications

We start with short proofs of two basic properties of tilting functors

given in [5] and [9].

Corollary 4.1. (1) If MA satisfies RpF � M � � 0 for each p 
 0,

then M � 0.

(2) If NB satisfies Lq � N � � 0 for each q 
 0, then N � 0.

Proof. If RpF � M � � 0 for each p 
 0, then every term on the second

page, II2, and hence on all subsequent pages, of the spectral sequence in

Theorem 3.2 is 0; therefore, M � 0. This proves (1), and (2) is proved

similarly using Theorem 3.7

Next, both Happel and Miyashita consider, for each n with 0 � n � t,

the subcategories

Kn � A � � �
p 
 n

Ker RpF and Kn � B � � �
q 
 n

Ker LqG

of Mod-A and Mod-B, respectively.
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Theorem 4.2. For each n with 0 � n � t, the tilting functor RnF

maps Kn � A � isomorphically onto Kn � B � and has LnG as inverse.

Proof. Let M � Kn � A � . In Theorem 3.2 for this module M , the

only non-zero column on the page II2 is the nth column. So d2
� 0,

and IIn, � q
2

� Hn � q � M � for each q. Hence LnG � RnF � M � � � M , and

LqG � RnF � M � � � 0 for q � n, so that RnF � M � � Kn � B � . Using

Theorem 3.7 similarly, we see that if N � Kn � B � then LnG � N � � Kn � A �

and RnF � LnG � N � � � N . The theorem follows.

Next, we use the spectral sequences to prove an interesting result of

Alberto Tonolo’s in [12].

Proposition 4.3. (1) Let M be a right A-module such that

LnG � Rn � 1F � M � � � 0 � Ln � 1G � RnF � M � �

for all n � 0. Then, the filtration factors for M defined in The-

orem 3.2 are given by the formulae

M � n � 	 M � n 
 1 � � LnG � RnF � M � � for 0 � n � t.

(2) Let N be a right B-module such that

Rn � 1F � LnG � N � � � 0 � RnF � Ln � 1G � N � �

for all n � 0. Then, the filtration factors for N defined in Theo-

rem 3.7 are given by the formulae

N � n � 	 N � n � 1 � � RnF � LnG � N � � for 0 � n � t.

Proof. For (1), it suffices to prove that IIn, � n
2

� IIn, � n
3

� . . . � IIn, � n
t � 1

for each n. The hypotheses on M imply, for all m � 0 and all r � 2,

that

IIm � 1, � m
r

� 0 � IIm, � m � 1
r .

Now IIn, � n
r � 1 is the homology of a complex

IIn � r � 1, � n � r
r 
 � IIn, � n

r 
 � IIn
� r � 1, � n � r

r ,

and since the end terms are trivial, it follows as required that IIn, � n
r � 1

�

IIn, � n
r . The proof of (2) is similar.
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Tonolo calls the modules of Kn � A � and of Kn � B � the n-static A-modules

and the n-costatic B-modules, respectively. Then, pursuing an analogy

with the idea of sequentially Cohen-Macaulay modules, he defines a

right A-module, M , to be sequentially static if LmG � RnF � M � � � 0

for all m � n, and a right B-module N to be sequentially costatic

if RnF � LmG � N � � � 0 for all m � n. These conditions are just

that the E2 pages of the spectral sequences for these modules of

Theorems 3.2 and 3.7 are trivial except on the ‘diagonal’ p � q � 0,

so that E2
� E3

� � � � � Et � 1. In particular, the filtration factors of

the modules are given by the terms E
n, � n
2 of the appropriate spectral

sequences, which proves the only if parts of the following characterisa-

tion by Tonolo of his sequentially static and costatic modules.

Theorem 4.4 ([12], Theorems 1.10 and 1.11). (1) The right

A-module, M , is sequentially static if, and only if, it possesses a

filtration

M � Mt � Mt � 1 � � � � � M0 � M � 1
� 0

in which, for each n, the filtration factor Mn 	 Mn � 1 is an

n-static module, in which case this factor is isomorphic to

LnG � RnF � M � � .

(2) The right B-module, N , is sequentially costatic if, and only if, it

possesses a filtration

N � N0 � N1 � � � � � Nt � Nt � 1
� 0

in which, for each n, the filtration factor Nn 	 Nn � 1 is an n-

costatic module, in which case this factor is isomorphic to

RnF � LnG � N � � .

Proof. We have noted that the only if parts are immediate consequences

of the properties of the spectral sequences. For completeness, we con-

clude with Tonolo’s elegant proof of the if part of (1). Assume therefore

that MA has a filtration as in (1), with n-th factor Mn 	 Mn � 1 an n-

static module for each n. We first show that RmF � Mn � � 0 for all

m 
 n. This is true for n � 0 since M0
� M0 	 M � 1 is 0-static. Suppose

m 
 n 
 0 and that the result holds for smaller n, so in particular,

RmF � Mn � 1 � � 0. Then, in the portion

� � � � Rm � 1F � Mn 	 Mn � 1 � � RmF � Mn � 1 � �
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� RmF � Mn � � RmF � Mn � Mn � 1 � � Rm � 1F � Mn � 1 � � � � �

of the long exact connected sequence associated with the n-static n-th

factor, the second and fourth displayed terms are trivial, and so therefore

is RmF � Mn � .

Now, fix m � 0 and consider these exact sequences for n � m,m 	
1, . . . , t. For n � m, the preceding discussion shows that the second and

last terms are trivial, so we obtain an isomorphism of RmF � Mm � with

RmF � Mm � Mm � 1 � . For n 
 m, the first and fourth terms are trivial

because Mn � Mn � 1 is n-static, so we obtain isomorphisms

RmF � Mm � � RmF � Mm � 1 � � � � � � RmF � Mt � � RmF � M � .

Thus RmF � Mm � Mm � 1 � � RmF � M � , and so

Ln � RmF � M � � � LnG � RmF � Mm � Mm � 1 � �

for all n. Now Mm � Mm � 1 is m-static, so the RHS is trivial for n � m,

and we conclude that M is sequentially static. Also, by Theorem 4.2, the

functor LmG 
 RmF is equivalent to the identity on m-static modules,

so the above formula with n � m shows that

Mn � Mn � 1 � Lm � RmF � M � � .

This completes the proof of Tonolo’s theorem.

5 Edge effects, and the case t � 2

Given a tilting module of arbitrary projective dimension t, we note

some edge effects stemming from the specific features of the spectral

sequences relating the tilting functors. In the case t � 2, we show that

rather complete imformation about the filtrations induced on modules

is given by the spectral sequences.

Proposition 5.1. (1) Let M be a right A-module.

Then F � M � � Ker LtG and RtF � M � � Ker G; if also t � 2, then

F � M � � Ker Lt � 1G and RtF � M � � Ker L1G.

(2) Let N be a right B-module.

Then G � N � � Ker RtF and LtG � N � � Ker F ; if also t � 2, then

G � N � � Ker Rt � 1F and LtG � N � � Ker R1F .
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Proof. In Theorem 3.2, d2 has bidegree � � 1, 2 � , so IIp,q
t � 1

� IIp,q
2 if � p, q �

is any one of the ‘edge’ pairs � 0, � t � , � 0, 1 � t � , � t, 0 � or � t, � 1 � . The

first assertion then follows from the last part of Theorem 3.2. The proof

of (2) uses the last part of Theorem 3.7.

One can formulate other edge effects. In Theorem 3.2, for example, since

d3 has bidegree � � 2, 3 � , we have II1, � t
3

� II1, � t
t � 1

� 0 for t � 2. Hence

d2 : II1, � t
2 � II0,2 � t

2 is injective, and we obtain an exact sequence

0 � II1, � t
2 � II0,2 � t

2 � II0,2 � t
t � 1 � 0,

where the last 0 depends on the fact that d2
� 0 on the first column.

For t � 3, this shows that

II1, � t
2 � II0,2 � t

2 ,

whereas, for t � 2, it reduces to a presentation of the smallest filtration

term M � 0 � in M as a quotient of GF � M � . Rather than list further

such formulae, we gather below all that we know about the filtrations of

A-modules in the case t � 2.

When t � 2, an arbitrary A-module has a filtration of the form

0 	 M � 0 � 	 M � 1 � 	 M � 2 � � M,

and II3
� II 
 is given by Theorem 3.2. We have already noted that

there is an exact sequence presenting M � 0 � ,

0 � L2G � R1F � M � � � GF � M � � M � 0 � � 0.

A similar argument gives a presentation of the top quotient of the fil-

tration via the exact sequence

0 � M � 1 � � M � L2G � R2F � M � � � G � R1F � M � � � 0,

and similarly there is an exact sequence

0 � M � 0 � � M � 1 � � L1G � R1F � M � � � 0

presenting the middle quotient. Finally, there are four ‘orthogonality

relations’

0 � L1G � F � L2G � F � G � R2F � L1G � R2F.
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Derived categories and tilting

Bernhard Keller

Abstract

We review the basic definitions of derived categories and derived func-

tors. We illustrate them on simple but non trivial examples. Then

we explain Happel’s theorem which states that each tilting triple yields

an equivalence between derived categories. We establish its link with

Rickard’s theorem which characterizes derived equivalent algebras. We

then examine invariants under derived equivalences. Using t-structures

we compare two abelian categories having equivalent derived categories.

Finally, we briefly sketch a generalization of the tilting setup to differ-

ential graded algebras.

1 Introduction

1.1 Motivation: Derived categories as higher invariants

Let k be a field and A a k-algebra (associative, with 1). We are especially

interested in the case where A is a non commutative algebra. In order

to study A, one often looks at various invariants associated with A, for

example its Grothendieck group K0 � A � , its center Z � A � , its higher K-

groups Ki � A � , its Hochschild cohomology groups HH � � A,A � , its cyclic

cohomology groups . . . . Of course, each isomorphism of algebras A � B

induces an isomorphism in each of these invariants. More generally, for

each of them, there is a fundamental theorem stating that the invariant

is preserved not only under isomorphism but also under passage from A

to a matrix ring Mn � A � , and, more generally, that it is preserved under

49
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Morita equivalence. This means that it only depends on the category

Mod A of (right) A-modules so that one can say that the map taking A

to any of the above invariants factors through the map which takes A

to its module category:

A
� ��

�
����

���
� K0 � A � , Z � A � ,Ki � A � ,HH � � A,A � ,HC

�
� A � , . . .

ModA
�

��������������������

Now it turns out that for each of these invariants, there is a second

fundamental theorem to the effect that the invariant does not depend so

much on the module category but only on its derived category D Mod A

in the sense that each (triangle) equivalence between derived categories

allows us to construct an isomorphism in the invariant. So we obtain a

second factorization:

A
� ��

�
����

���
� K0 � A � , Z � A � ,Ki � A � ,HH � � A,A � ,HC

�
� A � , . . .

ModA
� �� D Mod A

�
��

In this picture, the derived category appears as a kind of higher invari-

ant, an invariant which, as we will see, is much coarser than the module

category (at least in the non commutative case) but which is still fine

enough to determine all of the classical homological and homotopical

invariants associated with A.

Tilting theory enters the picture as a rich source of derived equivalences.

Indeed, according to a theorem by D. Happel, if B is an algebra and T a

tilting module for B with endomorphism ring A, then the total derived

tensor product by T is an equivalence from D Mod A to D Mod B. In

particular, A and B then share all the above-mentioned invariants. But

an equivalence between the derived categories of ModA and ModB also

yields strong links between the abelian categories ModA and ModB

themselves: often, it allows one to identify suitable ‘pieces’ of ModA with

‘pieces’ of ModB. This has proved to be an extremely useful method in

representation theory.

1.2 Contents

We will recall the definition of the derived category of an abelian cat-

egory. We will make this abstract construction more intuitive by con-

sidering the quivers of module categories and their derived categories
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in several examples. These examples will suggest the existence of cer-

tain equivalences between derived categories. We will construct these

equivalences using D. Happel’s theorem: the derived functor of tensor-

ing by a tilting module is an equivalence. We will then proceed to a first

crude analysis of the relations between module categories with equiva-

lent derived categories and examine some examples. In the next section,

we generalize Happel’s theorem to Rickard’s Morita theorem for derived

categories. Here, the key notion is that of a tilting complex. This gener-

alizes the notion of a tilting module. Tilting modules over selfinjective

algebras are always projective, but there may exist non trivial tilting

complexes. We illustrate this by exhibiting the action of a braid group

on the derived category of a selfinjective algebra following Rouquier-

Zimmermann. Then we proceed to a more sophisticated analysis of the

links between two abelian categories with equivalent derived categories.

We use aisles (=t-structures) and also sketch the link with the spec-

tral sequence approach due to Vossieck and Brenner-Butler. Finally, we

show how the notion of a tilting complex can be weakened even more if,

instead of algebras, we consider differential graded algebras. We present

the description of suitable ‘algebraic’ triangulated categories via derived

categories of differential graded algebras. As an illustration, we present

D. Happel’s description of the derived category of a finite-dimensional

algebra via the category of graded modules over its trivial extension.

2 Derived categories

2.1 First definition

Let A be an additive category. For example, A could be the category

Mod A of (right) modules over a ring A or the category ModOX of

sheaves of OX -modules on a ringed space � X,OX � . A complex over A

is a diagram

. . . �� Mp dp

�� Mp � 1 �� . . . , p � Z ,

such that dp � dp � 1 � 0 for all p � Z. A morphism of complexes is a

morphism of diagrams. We obtain the category of complexes CA.

Now suppose that A is abelian. This is the case for the above examples.

For p � Z, the pth homology HpM of a complex M is ker dp � im dp � 1.
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A morphism of complexes is a quasi-isomorphism if it induces isomor-

phisms in all homology groups. Ignoring a set-theoretic problem, we

define the derived category DA as the localization of the category of

complexes with respect to the class of quasi-isomorphisms. This means

that the objects of the derived category are all complexes. And mor-

phisms in the derived category between two complexes are given by

paths composed of morphisms of complexes and formal inverses of quasi-

isomorphisms, modulo a suitable equivalence relation cf. [28].

This quick definition is not very explicit but it immediately yields an im-

portant universal property of the derived category: The canonical func-

tor CA � DA makes all quasi-isomorphisms invertible and is universal

among all functors F : CA � C with this property. More precisely, for

each category C, the canonical functor CA � DA yields an isomorphism

of functor categories

Fun � DA, C � �� Funqis � CA, C � ,

where the category on the right is the full subcategory on the functors

making all quasi-isomorphisms invertible. We deduce that a pair of exact

adjoint functors between two abelian categories induces a pair of adjoint

functors between their derived categories.

2.2 Second definition

We keep the notations of paragraph 2.1. A morphism of complexes

f : L � M is null-homotopic if there are morphisms rp : Lp � Mp � 1

such that fp � dp � 1 � rp
� rp � 1dp for all p 	 Z. Null-homotopic

morphisms form an ideal in the category of complexes. We define the

homotopy category HA to be the quotient of CA by this ideal. Thus,

the objects of HA are all complexes, and morphisms between two

objects are classes of morphisms of complexes modulo null-homotopic

morphisms. Note that the homology functors M 
� HpM descend

to functors defined on the homotopy category. A quasi-isomorphism

in HA is a morphism whose image under the homology functors is

invertible. Let Σ be the class of quasi-isomorphisms in HA. The

following lemma states that the analogues of the Ore conditions in the

localization theory of rings hold for the class Σ (the assumption that

the elements to be made invertible be non-zero divisors is weakened
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into condition c).

Lemma 2.1. a) Identities are quasi-isomorphisms and composi-

tions of quasi-isomorphisms are quasi-isomorphisms.

b) Each diagram

L � L
s�� f �� M (resp. L �

f � �� M � M
s ��� )

of HA, where s (resp. s � ) is a quasi-isomorphism, may be em-

bedded into a square

L

s

��

f �� M

s �
��

L �
f � �� M �

which commutes in HA.

c) Let f be a morphism of HA. Then there is a quasi-isomorphism

s such that sf � 0 in HA if and only if there is a quasi-

isomorphism t such that ft � 0 in HA.

The lemma is proved for example in [44, 1.6.7]. Clearly condition a)

would also be true for the pre-image of Σ in the category of complexes.

However, for b) and c) to hold, it is essential to pass to the homotopy

category. Historically [39], this observation was the main reason for in-

serting the homotopy category between the category of complexes and

the derived category. We now obtain a second, equivalent, definition

[82] of the derived category DA: it is the category of fractions of the ho-

motopy category with respect to the class of quasi-isomorphisms. This

means that the derived category has the same objects as the homotopy

category (namely all complexes) and that morphisms in the derived cat-

egory from L to M are given by ‘left fractions’ “s
� 1f”, i.e. equivalence

classes of diagrams

M �

L

f
����������

M

s

����������

where s is a quasi-isomorphism, and a pair � f, s � is equivalent to � f � , s � �
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iff there is a commutative diagram of HA

M �

��
L

f
										 f � ��

f � 















 M � M

s

����������
s ���

s �����
��
��
��

M �

��

where s � is a quasi-isomorphism. Composition is defined by

“t
� 1g” � “s

� 1f” � “ � s � t 	
� 1 � g � f” ,

where s � 
 Σ and g � are constructed using condition b) as in the following

commutative diagram of HA

N �

M �

g �
		









N �

s �
����������

L

f
����������

M

s

����������
g

		








N

t

��









One can then check that composition is associative and admits the obvi-

ous morphisms as identities. Using ‘right fractions’ instead of left frac-

tions we would have obtained an isomorphic category (use lemma 2.1

b). The universal functor CA � DA of paragraph 2.1 descends to

a canonical functor HA � DA. It sends a morphism f : L � M to

the fraction “1
� 1
M f”. It makes all quasi-isomorphisms invertible and is

universal among functors with this property.

2.3 Cofinal subcategories

A subcategory U � HA is left cofinal if, for each quasi-isomorphism

s : U � V with U 
 U and V 
 HA, there is a quasi-isomorphism

s � : U � U � with U � 
 U and a commutative diagram

V



















U

s

���������
s � �� U � .



Derived categories and tilting 55

Dually, one defines the notion of a right cofinal subcategory.

Lemma 2.2. If U � HA is left or right cofinal, then the essential image

of U in DA is equivalent to the localization of U at the class of quasi-

isomorphisms s : U � U � with U,U � � U .

For example, the category H
� � A � of complexes U with Un � 0 for

all n � 0 is easily seen to be left cofinal in HA. The essential image

of H
� � A � in DA is the right bounded derived category D

�
A, whose

objects are all complexes U with HnU � 0 for all n � 0. According

to the lemma, it is equivalent to the localization of the category H
�
A

with respect to the class of quasi-isomorphisms it contains. Similarly,

the category H 	 A of all complexes U with Un � 0 for all n 
 0 is

right cofinal in HA and we obtain an analogous description of the left

bounded derived category D 	 A. Finally, the category Hb A formed by

the complexes U with Un � 0 for all � n � � 0 is left cofinal in H 	 A and

right cofinal in H
�
A. We infer that the bounded derived category Db A,

whose objects are the U with HnU � 0 for all � n � � 0, is equivalent to

the localization of Hb � A � with respect to its quasi-isomorphisms.

2.4 Morphisms and extension groups

The following lemma yields a more concrete description of some mor-

phisms of the derived category. We use the following notation: An object

A � A is identified with the complex

. . . � 0 � A � 0 � . . .

having A in degree 0. If M is an arbitrary complex, we denote by SnM

or M � n 
 the complex with components � SnM � p � Mn 	 p and differential

dSnM
� � � 1 � ndM . A complex I (resp. P ) is fibrant (resp. cofibrant) if

the canonical map

HomHA � L, I � � HomDA � L, I � resp. HomHA � P,L � � HomDA � P,L �

is bijective for each complex L.

Lemma 2.3. a) The category DA is additive and the canonical

functors CA � HA � DA are additive.

b) If I is a left bounded complex (i.e. In � 0 for all n 
 0) with



56 B. Keller

injective components then I is fibrant. Dually, if P is a right

bounded complex with projective components, then P is cofibrant.

c) For all L,M � A, there is a canonical isomorphism

�
: ExtnA � L,M � �� HomDA � L, SnM �

valid for all n � Z if we adopt the convention that Extn vanishes for

n � 0. In particular, the canonical functor A � DA is fully faithful.

The calculus of fractions yields part a) of the lemma (cf. [28]). Part b)

follows from [38, I, Lemma 4.5]. Part c) is in [38, I, §6]. Let us prove

c) in the case where A has enough injectives (i.e. each object admits a

monomorphism into an injective). In this case, the object M admits an

injective resolution, i.e. a quasi-isomorphism s : M � I of the form

. . . � 0 � M � 0 � 0 � . . .� � � �

. . . � 0 � I0 � I1 � I2 � . . .

where the Ip are injective. Then, since s becomes invertible in DA, it

induces an isomorphism

HomDA � L, SnM � �� HomDA � L, SnI � .
By part b) of the lemma, we have the isomorphism

HomDA � L, SnI � �� HomHA � L, SnM � .
Finally, the last group is exactly the nth homology of the complex

HomA � L, I � ,

which identifies with ExtA � L,M � by (the most common) definition.

2.5 Derived categories of semi-simple or hereditary categories

In two very special cases, we can directly describe the derived category

in terms of the module category: First suppose that A is semi-simple,

i.e. Ext1A � A,B � 	 0 for all A,B � A. For example, this holds for the

category of vector spaces over a field. Then it is not hard to show that

the functor M 
� H � M establishes an equivalence between DA and the

category of Z-graded k-vector spaces. In the second case, suppose that

A is hereditary (i.e. Ext2A � A,B � 	 0 for all A,B � A). We claim that
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each object M of DA is quasi-isomorphic to the sum of the � HnM � � � n � ,

n � Z. To prove this, let us denote by Zn the kernel of dn : Mn � Mn � 1,

and put Hn � Hn � M � . Then we have an exact sequence

0 �� Zn 	 1 �� Mn 	 1 δ �� Zn �� Hn �� 0

for each n � Z, where δ is induced by d. Its class in Ext2A vanishes by

the assumption on A. Therefore, there is a factorization

Mn 	 1 �� ε �� En
ζ �� �� Zn

of δ where ε is a monomorphism, ζ an epimorphism, Zn 	 1 identifies with

the kernel of ζ and Hn with the cokernel of ε. It follows that the direct

sum H of the complexes Hn � � n � is quasi-isomorphic to the direct sum

S of the complexes

. . . �� 0 �� Mn 	 1 ε �� En �� 0 �� . . . .

There is an obvious quasi-isomorphism S � M . Thus we have a diagram

of quasi-isomorphisms

M S�� �� H

and the claim follows. Note that the direct sum of the � HnM � � � n � ,

n � Z, identifies with their direct product. Therefore, if L and M are

two complexes, then the morphisms from L to M in DA are in bijection

with the families � fn, εn � , n � Z, of morphisms fn : HnL � HnM and

extensions εn � Ext1A � HnL,Hn 	 1M � .

2.6 The quiver of a k-linear category

We briefly sketch the definition of this important invariant (cf. [27, Ch. 9]

and [1, Ch. VII] for thorough treatments). It will enable us to visualize

the abelian categories and derived categories appearing in the examples

below. Let k be a field and A a k-linear category such that all morphism

spaces A � A,B � , A,B � A, are finite-dimensional. Recall that an object

U of A is indecomposable if it is non zero and is not the direct sum of

two non zero objects. We suppose that A is multilocular [27, 3.1], i.e.

a) each object of A decomposes into a finite sum of indecomposables

and

b) the endomorphism ring of each indecomposable object is local.
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Thanks to condition b), the decomposition in a) is then unique up to

isomorphism and permutation of the factors [27, 3.3].

For example, the category mod A of finite-dimensional modules over a

finite-dimensional algebra A is multilocular, cf. [27, 3.1], and so is the

category coh X of coherent sheaves on a projective variety X, cf. [72].

The bounded derived categories of these abelian categories are also mul-

tilocular.

A multilocular category A is determined by its full subcategory indA

formed by the indecomposable objects. Condition b) implies that the

sets

rad � U, V � � � f : U � V � f is not invertible �

form an ideal in indA. For U, V � indA, we define the space of irreducible

maps to be

irr � U, V � � rad � U, V � � rad2 � U, V � .

The quiver Γ � A � is the quiver (=oriented graph) whose vertices are the

isomorphism classes 	 U 
 of indecomposable objects U of A and where,

for two vertices 	 U 
 and 	 V 
 , the number of arrows from 	 U 
 to 	 V 

equals the dimension of the space of irreducible maps irr � U, V � .

For example, the quiver of the category of finite dimensional vector

spaces mod k has a single vertex (corresponding to the one-dimensional

vector space) and no arrows. The quiver of the bounded derived category

Db mod k has vertex set Z, where n � Z corresponds to the isoclass of

k 	 n 
 , and has no arrows. The quiver of the category of finite-dimensional

modules over the algebra of lower triangular 5 � 5-matrices is depicted in

the top part of figure 5.1. This example and several others are discussed

below in section 2.8.

2.7 Algebras given by quivers with relations

Interesting but accessible examples of abelian categories arise as cate-

gories of modules over non semi-simple algebras. To describe a large

class of such algebras, we use quivers with relations. We briefly recall

the main construction: A quiver is an oriented graph. It is thus given

by a set Q0 of points, a set Q1 of arrows, and two maps s, t : Q1 � Q0

associating with each arrow its source and its target. A simple example
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is the quiver

�A10 : 1
α1� � 2

α2� � 3 � . . . � 8
α8� � 9

α9� � 10.

A path in a quiver Q is a sequence � y � βr
� βr � 1

� . . . � β1
� x � of composable

arrows βi with s � β1 � � x, s � βi � � t � βi � 1 � , 2 � i � r, t � βr � � y. In

particular, for each point x � Q0, we have the lazy path � x � x � . It is

neutral for the obvious composition of paths. The quiver algebra kQ has

as its basis all paths of Q. The product of two basis elements equals the

composition of the two paths if they are composable and 0 otherwise.

For example, the quiver algebra of Q � �A10 is isomorphic to the algebra

of lower triangular 10 	 10 matrices.

The construction of the quiver algebra kQ is motivated by the (easy)

fact that the category of left kQ-modules is equivalent to the category

of all diagrams of vector spaces of the shape given by Q. It is not hard

to show that each quiver algebra is hereditary. It is finite-dimensional iff

the quiver has no oriented cycles. Gabriel [26] has shown that the quiver

algebra of a finite quiver has only a finite number of k–finite-dimensional

indecomposable modules (up to isomorphism) iff the underlying graph

of the quiver is a disjoint union of Dynkin diagrams of type A, D, E.

The above example has underlying graph of Dynkin type A10 and thus

its quiver algebra has only a finite number of finite-dimensional inde-

composable modules.

An ideal I of a finite quiver Q is admissible if, for some N , we have

� kQ1 � N 
 I 
 � kQ1 � 2,

where � kQ1 � is the two-sided ideal generated by all paths of length 1.

A quiver Q with relations R is a quiver Q with a set R of generators

for an admissible ideal I of kQ. The algebra kQ � I is then the algebra

associated with � Q,R � . Its category of left modules is equivalent to the

category of diagrams of vector spaces of shape Q obeying the relations in

R. The algebra kQ� I is finite-dimensional (since I contains all paths of

length at least N), hence artinian and noetherian. By induction on the

number of points one can show that if the quiver Q contains no oriented

cycle, then the algebra kQ � I is of finite global dimension.

One can show that every finite-dimensional algebra over an algebraically

closed field is Morita equivalent to the algebra associated with a quiver

with relations and that the quiver is unique (up to isomorphism).
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2.8 Example: Quiver algebras of type An

Let k be a field, n � 1 an integer and A the category of k-finite-

dimensional (right) modules over the quiver algebra A of the quiver
�An given by

�An : 1 �� 2 �� . . . �� n � 1 �� n .

The quiver Γ � A � is triangle-shaped with n � n � 1 � � 2 vertices. For n � 5, it

is given in the top part of figure 5.1: There are n (isomorphism classes of)

indecomposable projective modules given by the Pi
� eiiA, 1 � i � n.

They occur in increasing order on the left rim of the triangle. There

are n simple modules Si
� Pi � Pi � 1, 1 � i � n (where P0 : � 0). They

are represented in increasing order by the vertices at the bottom. There

are n injective modules Ii
� Homk � Aeii, k � , 1 � i � n. They are

represented in decreasing order by the vertices on the right rim. Note

that each simple module has a projective resolution of length 1 which

confirms that A is hereditary.

Using 2.5 we see that the indecomposable objects of Db A are precisely

the U 	 n 
 , n � Z, U � ind � A � . Thus the quiver Db A has the vertices

	 SnU 
 , n � Z, where 	 U 
 is a vertex of Γ � A � . Arrows from 	 SnU 


to 	 SmV 
 can occur only if m equals n or n � 1, again by 2.5. Now

Lemma 2.3 shows that the functor

indA � ind DA , M 
� SnU

preserves the spaces of irreducible maps. So the arrows 	 SnU 
 � 	 SnV 
 ,

where U and V are indecomposable in A, are in bijection with the ar-

rows 	 U 
 � 	 V 
 in Γ � A � . The additional arrows 	 SnU 
 � 	 Sn � 1V 
 are

described in [34, 5.5] for A � mod A, where A is an arbitrary finite-

dimensional path algebra of a quiver. For A � k �An, the quiver Γ � Db A �

is isomorphic to the infinite stripe Z �An depicted in the middle part of

figure 5.1. The objects 	 U 
 , U � indA, correspond to the vertices � g, h �

in the triangle

g � 0 , h � 1 , g � h � n.

The translation U 
� SU corresponds to the glide-reflection � g, h � 
�

� g � h, n � 1 � h � . Remarkably, this quiver was actually discovered twenty

years before D. Happel’s work appeared in R. Street’s Ph. D. Thesis [77]

[76], cf. also [78] [79] [75].
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The quiver

Q : 1 2�� 3�� �� 4 �� 5

is obtained from �A5 by changing the orientation of certain arrows. The

quiver of mod kQ is depicted in the lower part of figure 5.1. The quiver

of Db � mod kQ � turns out to be isomorphic to that of Db � mod k �A5 � ! The

isomorphism commutes with the shift functor U �� SU . In fact, the

isomorphism between the quivers of Db � mod �A5 � and Db � mod kQ � comes

from an equivalence between the derived categories themselves, as we

will see below. However, this equivalence does not respect the module

categories embedded in the derived categories. This is also visible in

figure 5.1: Some modules for k �A5 correspond to shifted modules for

kQ and vice versa. Note that the module categories of kQ and k �A5

cannot be equivalent, since the quivers of the module categories are not

isomorphic.

2.9 Example: Commutative squares and representations of
�D4

Let A be the algebra given by the quiver with relations

1

α
�������

β ���
��

��

2
γ

���
��

��

3
δ

�������

4 , γα � δβ.

A (right) A-module is the same as a commutative diagram of vector

spaces

V1

V2

����
��
�

V3

�������

V4

����
��
�

�������
.

The quivers of mod A and Db � mod A � are depicted in figure 5.2. Their

computation is due to D. Happel [33] and, independently, R. Street,

cf. p. 118 of [75]. The shift functor U �� SU corresponds to the map

� g, h � �� � g � 3, h � . Note that the algebra A is not hereditary. Therefore,
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some indecomposable objects of the derived category are not isomorphic

to shifted modules. In the notations of the figure, these are the translates

of Y . Let Q be the quiver �D4:

2

1

���������
��

���
��

��
��

3

4

.

The quiver of mod kQ is depicted in the lower part of figure 5.2. The

quiver of the derived category Db � mod kQ � turns out to be isomorphic

to that of Db � mod A � ! Moreover, the isomorphism respects the shift

functors. The isomorphism between the quivers of the bounded derived

categories of A and kQ comes from an equivalence between the categories

themselves, as we will see below.

2.10 Example: Kronecker modules and coherent sheaves on

the projective line

Let Q be the Kronecker quiver

1
��
�� 2 .

The quiver of the category mod kQ is depicted in the top part of fig-

ure 5.3, cf. [67]. It is a disjoint union of infinitely many connected com-

ponents: one postprojective component containing the two (isoclasses

of) indecomposable projective modules P1, P2, one preinjective compo-

nent containing the two indecomposable injective modules I1, I2 and

an infinity of components containin the regular modules R � t, n � indexed

by a point � t0 : t1 � of the projective line P1 � k � and an integer n � 1.

Explicitly, the module R � x, n � is given by the diagram

Vn � 1 Vn
x1

��

x0��
,

where Vn is the nth homogeneous component of the graded space

k � x0, x1 � � � � t1x0 � t0x1 � n � . The category mod kQ is hereditary. Thus

the indecomposables in its derived category are simply shifted copies of

indecomposable modules. The quiver of the derived category is depicted
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in the middle part of figure 5.3. Remarkably, it is isomorphic to the

quiver of the derived category of the category coh P1 of coherent sheaves

on the projective line. The quiver of the category coh P1 is depicted

in the bottom section of figure 5.3. It contains one component whose

vertices are the line bundles O � n � , n � Z, and an infinity of components

containing the skyscraper sheaves Onx of length n � 1 concentrated

at a point x � P1. Note that via the isomorphism of the quivers of

the derived categories, these correspond to the indecomposable regular

modules over kQ, while the line bundles correspond to postprojective

modules and to preinjective modules shifted by one degree. We will see

that the isomorphism between the quivers of the derived categories of

the categories mod kQ and coh P1 comes from an equivalence between

the derived categories themselves.

3 Derived functors

3.1 Deligne’s definition

The difficulty in finding a general definition of derived functors is to

establish a framework which allows one to prove, in full generality, as

many as possible of the pleasant properties found in the examples. This

seems to be best achieved by Deligne’s definition [23], which we will give

in this section (compare with Grothendieck-Verdier’s definition in [82]).

Let A and B be abelian categories and F : A � B an additive functor.

A typical example is the fixed point functor

FixG : Mod ZG � Mod Z

which takes a module M over a group G to the abelian group of G-

fixed points in M . The additive functor F clearly induces a functor

CA � CB between the categories of complexes (obtained by applying

F componentwise) and a functor HA � HB between the homotopy

categories. By abuse of notation, both will be denoted by F as well. We

are looking for a functor ? : DA � DB which should make the following

square commutative

HA
F� HB� �

DA
?� DB

However, if F is not exact, it will not transform quasi-isomorphisms to
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quasi-isomorphisms and the functor in question cannot exist. What we

will define then is a functor RF called the ‘total right derived functor’,

which will be a ‘right approximation’ to an induced functor. More pre-

cisely, for a given M � DA, we will not define RF � M � directly but only

a functor

� rF � � ?,M � : � DB � op � Mod Z

which, if representable, will be represented by RF � M � . For L � DB,

we define � rF � � L,M � to be the set of ‘left F -fractions’, i.e. equivalence

classes of diagrams

FM � M �

L

f
		��������

M

s

����������

where f is a morphism of DB and s a quasi-isomorphism of HA. Equiv-

alence is defined in complete analogy with section 2.1. We say that RF

is defined at M � DA if the functor � rF � � ?,M � is representable and if

this is the case, then the value RFM is defined by the isomorphism

HomDB � ?, � RF � � M � � �� � rF � � ?,M � .

The link between this definition and more classical constructions is

established by the

Proposition 3.1. Suppose that A has enough injectives and M is left

bounded. Then RF is defined at M and we have

RFM � FI

where M � I is a quasi-isomorphism with a left bounded complex with

injective components.

Under the hypotheses of the proposition, the quasi-isomorphism M � I

always exists [44, 1.7.7]. Viewed in the homotopy category HA it is

functorial in M since it is in fact the universal morphism from M to a

fibrant (2.4) complex. For example, if M is concentrated in degree 0,

then I may be chosen to be an injective resolution of M and we find

that

HnRFM � � RnF � � M � , (3.1.1)

the nth right derived functor of F in the sense of Cartan-Eilenberg [19].

The above definition works not only for functors induced from functors
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F : A � B but can also be applied without any changes to arbitrary

functors F : HA � HB. One obtains RF (defined in general only on

a subcategory). Dually, one defines the functor LF : DA � DB: For

each M � DA, where LF � M � is defined, it represents the functor

L �� lF � M,L � ,

where lF � M,L � is the set of equivalence classes of diagrams

M �
s

��












FM �
g

���
��

��
��

�

M L

As an exercise, the reader can prove the isomorphism of functors

RFixG � H � RFixH
� RFixG

for a group G and a normal subgroup H of G. Here, all derived

functors are defined on the full subcategory of left bounded complexes

D 	 Mod ZG of D Mod ZG. This isomorphism replaces the traditional

Lyndon-Hochschild-Serre spectral sequence:

E
pq
2

� Hp � G 
 H,Hq � H,M � � �
Hp 	 q � G,M � (3.1.2)

for a G-module M . In fact, using the methods of section 7 one can

obtain the spectral sequence from the isomorphism of functors.

Equation 3.1.1 shows that in general, derived functors defined on

Db � A � will take values in the unbounded derived categories. It is

therefore useful to work with unbounded derived categories from

the start. The following theorem ensures the existence of derived

functors in all the cases we will need: Let A be a k-algebra and B a

Grothendieck category (i.e. an abelian category having a generator,

such that all set-indexed colimits exist and all filtered colimits are exact).

Theorem 3.2. a) Every functor with domain H � B � admits a total

right derived functor.

b) Every functor with domain H � Mod A � admits a total right derived

functor and a total left derived functor.

c) If � F,G � is a pair of adjoint functors from H � Mod A � to H � B � ,
then � LF,RG � is a pair of adjoint functors from D � Mod A � to

D � B � .
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We refer to [25] and [80] for a) and to [74] and [49] for b). Statement c)

is a special case of the following easy

Lemma 3.3. Let � F,G � be an adjoint pair of functors between the ho-

motopy categories H � A � and H � B � of two abelian categories A and B.

Suppose that LF and RG are defined everywhere. Then � LF,RG � is an

adjoint pair between D � A � and D � B � .

4 Tilting and derived equivalences

4.1 Tilting between algebras

Let A and B be associative unital k-algebras and T an A-B-bimodule.

Then we have adjoint functors

? � A T : Mod A
��
ModB : HomB � T, ? ���

(and in fact each pair of adjoint functors between module categories is

of this form). One variant of Morita’s theorem states that these functors

are quasi-inverse equivalences iff

a) TB is finitely generated projective,

b) the canonical map A � HomB � TB , TB � is an isomorphism, and

c) the free B-module of rank one BB is a direct factor of a finite

direct sum of copies of T .

If, in this statement, we replace the module categories by their derived

categories, and adapt the conditions accordingly, we obtain the state-

ment of the

Theorem 4.1 (Happel [33]). The total derived functors

L � ? � A T � : D � Mod A �
��
D � Mod B � : RHomB � T, ? ���

are quasi-inverse equivalences iff

a) As a B-module, T admits a finite resolution

0 � Pn � Pn � 1 � . . . � P1 � P0 � T � 0

by finitely generated projective B-modules Pi,
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b) the canonical map

A � HomB � T, T �

is an isomorphism and for each i � 0, we have ExtiB � T, T � � 0,

and

c) there is a long exact sequence

0 � B � T 0 � T 1 � . . . � Tm � 1 � T m � 0

where B is considered as a right B-module over itself and the T i

are direct factors of finite direct sums of copies of T .

If these conditions hold and, moreover, A and B are right noetherian,

then the derived functors restrict to quasi-inverse equivalences

Db � mod A �
��
Db � mod B ��� ,

where mod A denotes the category of finitely generated A-modules.

4.2 First links between the module categories

Now assume that � A, T,B � is a tilting triple, i.e. that the conditions of

Happel’s theorem 4.1 hold. Note that we make no assumption on the

dimensions over k of A, B, or T . Let w be the maximum of the two

integers n and m occuring in conditions a) and c). Put

F � ? � L

A T , G � RHomB � T, ? �

and, for n � Z, put

Fn
� H

� n � F 	 ModA , Gn � Hn � G 	 ModB.

These functors are homological, i.e. each short exact sequence of modules

will give rise to a long exact sequence in these functors. This makes it

clear that the subcategories

An
� 
 M � Mod A 	 Fi � M � � 0 , � i � n 


Bn
� 
 N � Mod B 	 Gi � N � � 0 , � i � n 


are closed under extensions, that they vanish for n � 0 or n � w and

that Aw and B0 are closed under submodules and A0 and Bw under

quotients. Moreover, since

Fn
	 An �� S

� nF 	 An and Gn 	 Bn �� SnG 	 Bn
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the functors Fn and Gn induce quasi-inverse equivalences between An

and Bn. Let us now assume that ModA is hereditary. Then each inde-

composable of D � Mod A � is concentrated in precisely one degree. Thus,

for each indecomposable N of Mod A, FN will have non-vanishing ho-

mology in exactly one degree and so N will lie in precisely one of the Bn.

Thus, as an additive category, Mod B is made up of ‘pieces’ of the hered-

itary category Mod A. Whence the terminology that Mod B is piecewise

hereditary. The algebras in the examples below are all hereditary or

piecewise hereditary.

This first analysis of the relations between abelian categories with equiv-

alent derived categories will be refined in section 7.

4.3 Example: k �A5

We continue example 2.8. In mod k �A5, we consider the module T given

by the sum of the indecomposables Ti, 1 � i � 5, marked in the top part

of figure 5.1. The endomorphism ring of T over k �A5 is isomorphic to

kQ so that T becomes a kQ-k �A5-bimodule. It is not hard to check that

� kQ, T, k �A5 � is a tilting triple. The resulting equivalence between the

derived categories gives rise to the identification of their quivers depicted

in figure 5.1. For two indecomposables U and V , let us write U � V if

there is a path from U to V in the quiver of the module category. Then

we can describe the indecomposables of the subcategories An and Bn of

4.2 as follows:

B0 : U � ind � k �A5 � such that U � Ti for some i

A0 : U � ind � kQ � such that U � GIi for some i

B1 : P1, P2, S2 � ind � k �A5 �

A1 : S �2, I �2, I �1 � ind � kQ �

In terms of representations of Q and �A5, the functor G0
� Hom

k 
A5
� T, ? �

corresponds to the ‘reflection functor’ [10] which sends a representation

V1 V2α1

�� V3α2

�� V4
�� V5

��

to

ker � α2 � �� ker � α1α2 � �� V3 V4
�� V5

�� .
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The functor G1
� Ext

k 
A5
� T, ? � corresponds to the functor which sends

a representation

V1 V2α1

�� V3α2

�� V4
�� V5

��

to

cok � α2 � �� cok � α1α2 � �� 0 0�� 0�� .

To describe the total right derived functor G � RHom
k 
A5

� T, ? � , we need

the mapping cone: recall that if f : K � L is a morphism of complexes,

the mapping cone C � f � is the complex with components Lp �
Kp � 1 and

with the differential �
dL f

0 � dK � .

We view complexes of k �A5-modules as representations of �A5 in the cat-

egory of complexes of vector spaces and similarly for complexes of kQ-

modules. Then the functor RHom
k 
A5

� T, ? � is induced by the exact func-

tor which sends

V1 V2α1

�� V3α2

�� V4
�� V5

��

(where the Vi are complexes of vector spaces) to

C � α2 � �� C � α1α2 � �� V3 V4
�� V5

�� .

4.4 Example: Commutative squares and representations of
�D4

We continue example 2.9. Let T be the k �D4-module which is the direct

sum of the indecomposables Ti, 1 	 i 	 4, marked in the lower part

of figure 5.2. It is not hard to see that the endomorphism ring of T is

isomorphic to A and that � A, T, k �D4 � is a tilting triple. The resulting

equivalence of derived categories leads to the identification of their quiv-

ers depicted in figure 5.2. The indecomposables of the subcategories An

and Bn of 4.2 are as follows

A0 : U 
 indA such that U � τI4

B0 : U 
 ind kQ such that U � Y,Z and U 
 T1

A1 : U 
 indA such that U 
 τI4

B1 : P �1, P �2, P �4, Z 
 indA.
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Note that GY has homology in degrees 0 and 1 so that Y belongs neither

to B0 nor to B1. In terms of representations of quivers, the functor

G0
� Hom

k 
D4
� T, ? � is constructed as follows: Given a diagram V , we

form

V2

�����
��
��
��
�

W3
��

�����
��
��
��

V1 V3
� W1

�� W4

����������

��












V4

������������
W2

�����������
��

where all ‘squares’ are cartesian. Then the image of V is the commuta-

tive square W .

4.5 Historical remarks

Happel’s theorem 4.1, the links between module categories described

in section 4.2 and examples like the above form the theory of tilting

as it was developped in the representation theory of finite-dimensional

algebras in the 1970s and 80s. Important precursors to the theory

were: Gelfand-Ponomarev [31] [30], Bernstein-Gelfand-Ponomarev [10],

Auslander-Platzeck-Reiten [2], Marmaridis [56], . . . . The now classical

theory (based on homological algebra but avoiding derived categories)

is due to: Brenner-Butler [14], who first proved the ‘tilting theorem’,

Happel-Ringel [37], who improved the theorem and defined tilted alge-

bras, Bongartz [13], who streamlined the theory, and Miyashita [58],

who generalized it to tilting modules of projective dimension � 1. The

use of derived categories goes back to D. Happel [33]. Via the work of

Parshall-Scott [21], this lead to J. Rickard’s Morita theory for derived

categories [65], which we present below.

4.6 Tilting from abelian categories to module categories

Let B be a k-linear abelian Grothendieck category. An object T of B is

a tilting object if the functor

RHom � T, ? � : D � B � � D � Mod End � T � �
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is an equivalence.

Proposition 4.2 ([8], [12]). Suppose that B is locally noetherian of

finite homological dimension and that T � B has the following properties:

a) T is noetherian.

b) We have Extn � T, T � � 0 for all n � 0.

c) Let add � T � be the closure of T under forming finite direct sums

and direct summands. The closure of add � T � under kernels of

epimorphisms contains a set of generators for B.

Then T is a tilting object. If, moreover, End � T � is noetherian, the func-

tor RHom � T, ? � induces an equivalence

Db � Bnoe � � Db � mod End � T � � ,

where Bnoe is the subcategory of noetherian objects of B.

An analysis of the links between B and mod End � T � analogous to 4.2 can

be carried out. The more refined results of section 7 also apply in this

situation.

4.7 Example: Coherent sheaves on the projective line

We continue example 2.10. Let A be the category of quasi-coherent

sheaves on the projective line P1 � k � . Let T be the sum of O � � 1 � with

O � 0 � . Then the conditions of the above proposition hold: Indeed, A is

locally noetherian and hereditary and T is noetherian. So condition a)

holds. Condition b) is a well-known computation. The sheaves O � � n � ,
n � N, form a system of generators for A. Therefore condition c) follows

from the existence of the short exact sequences

0 � O � � n � 1 � � O � � n � �
O � � n � � O � � n � 1 � � 0 , n � Z.

The endomorphism ring of T is isomorphic to the Kronecker algebra of

example 2.10. The resulting equivalence

RHom � T, ? � : Db � coh � P1 � � � Db � End � T � �

induces the identification of the quivers depicted in figure 5.3. With

notations analogous to 4.2, the indecomposables of A0 are those of the

postprojective and the regular components. Those of A1 are the ones
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in the preinjective component. The indecomposables in B0 are the line

bundles O � n � with n � 0 and the skyscraper sheaves. Those of B1 are

the line bundles O � n � with n � 0.

This example is a special case of Beilinson’s [11] description of the de-

rived category of coherent sheaves on Pn � k � . It was generalized to other

homogeneous varieties by Kapranov [40] [41] [42] [43] and to weighted

projective lines by Geigle and Lenzing [29] and Baer [8].

5 Triangulated categories

5.1 Definition and examples

Let A be an abelian category (for example, the category Mod R of mod-

ules over a ring R). One can show that the derived category DA is

abelian only if all short exact sequences of A split. This deficiency is

partly compensated by the so-called triangulated structure of DA, which

we are about to define. Most of the material of this section first appears

in [82].

A standard triangle of DA is a sequence

X
Qi� Y

Qp� Z � ε� X � 1 � ,

where Q : CA � DA is the canonical functor,

ε : 0 � X
i� Y

p� Z � 0

a short exact sequence of complexes, and
�
ε a certain morphism of DA,

functorial in ε, and which lifts the connecting morphism H 	 Z � H 	 
 1X

of the long exact homology sequence associated with ε. More precisely,�
ε is the fraction � s

� 1 
 j � where j is the inclusion of the subcomplex Z

into the complex X � � 1 � with components Zn �
Y n 
 1 and differential�

dZ p

0 � dY � ,

and s : X � 1 � � X � � 1 � is the morphism � 0, i � t. A triangle of DA is a

sequence � u � , v � , w � � of DA isomorphic to a standard triangle, i.e. such
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that we have a commutative diagram

X �
u � ��

x

��

Y �
v � ��

��

Z �
w � ��

��

X � � 1 �

x � 1 �
��

X �� Y �� Z �� X � 1 �

,

where the vertical arrows are isomorphisms of DA and the bottom row

is a standard triangle.

Lemma 5.1. T1 For each object X, the sequence

0 � X
1

� X � S0

is a triangle.

T2 If � u, v, w � is a triangle, then so is � v, w, 	 Su � .

T3 If � u, v, w � and � u � , v � , w � � are triangles and x, y morphisms such

that yu 
 u � x, then there is a morphism z such that zv 
 v � y and

� Sx � w 
 w � z.

X
u ��

x

��

Y
v ��

y

��

Z
w ��

z

��

SX

Sx

��
X �

u �
�� Y �

v �
�� Z �

w �
�� SX �

.

T4 For each pair of morphisms

X
u �� Y

v �� Z

there is a commutative diagram

X
u �� Y

x ��

v

��

Z �

w

��

�� SX

X �� Z
y ��

��

Y �
s ��

t

��

SX

Su

��
X �

r

��

X �
r ��

��

SY

SY
Sx �� SZ �

,

where the first two rows and the two central columns are triangles.
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Property T4 can be given a more symmetric form if we represent a

morphism X � SY by the symbol X
�
� Y and write a triangle in the

form

X Y

Z

�

	

�

�

With this notation, the diagram of T4 can be written as an octahedron

in which 4 faces represent triangles. The other 4 as well as two of the 3

squares ’containing the center‘ are commutative.

X

Y

Z

X �

Y �

Z �



�

�



�




�

�

�

�

�

�

u v

r

s

w t

�

�

�

�

A triangulated category is an additive category T endowed with an auto-

equivalence X �� X � 1 � and a class of sequences (called triangles) of the

form

X � Y � Z � X � 1 �

which is stable under isomorphisms and satisfies properties T1–T4.

Note that ‘being abelian’ is a property of an additive category, whereas

‘being triangulated’ is the datum of extra structure.

A whole little theory can be deduced from the axioms of triangulated

categories. This theory is nevertheless much poorer than that of abelian

categories. The main reason for this is the non-uniqueness of the mor-

phism z in axiom T3.

We mention only two consequences of the axioms: a) They are actually
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self-dual, in the sense that the opposite category T op also carries a canon-

ical triangulated structure. b) For each U � T , the functor HomT � U, ? �

is homological, i.e. it takes triangles to long exact sequences. Dually, the

functor HomT � ?, V � is cohomological for each V of T . By the 5-lemma,

this implies for example that if in axiom T3, two of the three vertical

morphisms are invertible, then so is the third.

For later use, we record a number of examples of triangulated categories:

If A is abelian, then not only the derived category DA is triangulated

but also the homotopy category HA. Here the triangles are constructed

from componentwise split short exact sequences of complexes.

If T is a triangulated category, a full triangulated subcategory of T is

a full subcategory S � T such that S � 1 � � S and that whenever we

have a triangle � X,Y, Z � of T such that X and Z belong to T there is

an object Y � of S isomorphic to Y . For example, the full subcategories

H � A, 	 � 
 � , � , b 
 , of HA are full triangulated subcategories. Note that

the categories H � A, 	 � 
 � , � , � , b 
 , are in fact defined for any additive

category A.

If T is a triangulated category and X a class of objects of T , there is a

smallest strictly (=closed under isomorphism) full triangulated subcate-

gory tria � X � of T containing X . It is called the triangulated subcategory

generated by X . For example, the category Db A is generated by A

(identified with the category of complexes concentrated in degree 0).

If R is a ring, a very important triangulated subcategory is the full sub-

category per R � D Mod R formed by the perfect complexes, i.e. the

complexes quasi-isomorphic to bounded complexes with components in

projR, the category of finitely generated projective R-modules. The sub-

category per R may be intrinsically characterized [65, 6.3] as the subcate-

gory of compact objects of D Mod R, i.e. objects X whose associated func-

tor Hom � X, ? � commutes with arbitrary set-indexed coproducts. Note

that by lemma 2.3, the canonical functor

Hb projR � per R

is an equivalence so that the category per R is relatively accessible to

explicit computations.
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5.2 Auslander-Reiten sequences and triangles

How are short exact sequences or triangles reflected in the quiver of a

multilocular abelian or triangulated category ? The problem is that the

three terms of a triangle, like that of a short exact sequence, are only

very rarely all indecomposable. The solution to this problem is provided

by Auslander-Reiten theory, developed in [3] [4] [5] [6] [7] and presented,

for example, in [27] and [1]. The typical ‘mesh structure’ which we

observe in the quivers in figures 5.1 to 5.3 is produced by the ‘minimal

non split’ exact sequences (resp. triangles), i.e. the Auslander-Reiten

sequences (resp. triangles).

Let A be a multilocular abelian category and let X and Z be indecom-

posable objects of A. An almost split sequence (or Auslander-Reiten

sequence) from Z to X is a non-split exact sequence

0 � X
i

� Y
p

� Z � 0

having the two equivalent properties

i) each non isomorphism U � Z with indecomposable U factors

through p;

ii) each non isomorphism X � V with indecomposable V factors

through i.

In this case, the sequence is determined up to isomorphism by Z (as well

as by X) and X is the translate of Z (resp. Z the cotranslate of X).

Moreover, if an indecomposable U occurs in Y with multiplicity µ, then

there are µ arrows from X to U and µ arrows from U to Z in the quiver

of A. We write X � τZ resp. Z � τ
�
X. This yields the following

additional structure on the quiver Γ � A � :

- a bijection τ from set of ‘non-projective’ vertices to the set of

‘non-injective’ vertices;

- for each non projective vertex � Z � and each indecomposable U , a

bijection σ from the set of arrows from � U � to � Z � to the set of

arrows from τ � Z � to � U � .

Auslander-Reiten have shown, cf. [27] or [1], that if A is the category

mod A of finite-dimensional modules over a finite-dimensional algebra,

each non-projective indecomposable Z occurs as the right hand term of
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an almost split sequence and each non-injective indecomposable X as

the left hand term.

Analogously, if A is a multilocular triangulated category, an almost split

triangle (or Auslander-Reiten triangle) is defined as a triangle

X
i� Y

p� Z
e� X � 1 �

such that X and Z are indecomposable and the equivalent conditions i)

and ii) above hold. Almost split triangles have properties which are com-

pletely analogous to those of almost split sequences. D. Happel [33] has

shown that in the derived category of the category of finite-dimensional

modules over a finite-dimensional algebra, an object Z occurs as the

third term of an almost split triangle iff it is isomorphic to a bounded

complex of finitely generated projectives. For example, for the quiver of

Db � mod k �An � in the middle part of figure 5.1, the translation X �� τX is

given by � g, h � �� � g � 1, h � . In the quivers of the two module categories,

it is the ‘restriction’ (where defined) of this map. Similarly, in the mid-

dle part of figure 5.2, the translation τ is given by � g, h � �� � g � 1, h � and

in the lower part of the figure by the restriction (where defined) of this

map. The analogous statement is true for the category of ‘commutative

squares’ in the top part of the figure except for τ
�
P1, whose translate

is P1 and I4, whose translate is τI4 (such exceptions are to be expected

because the category of commutative squares is not hereditary).

5.3 Grothendieck groups

Then Grothendieck group K0 � T � of a triangulated category T is defined

[32] as the quotient of the free abelian group on the isomorphism classes

� X � of objects of T divided by the subgroup generated by the relators

� X � � � Y � � � Z �

where � X,Y, Z � runs through the triangles of T .

For example, if R is a right coherent ring, then the category mod R of

finitely presented R-modules is abelian and the K0-group of the trian-

gulated category Db mod R is isomorphic to G0R
	 K0 � mod R � via the

Euler characteristic:

� M � �� 

i � Z

� � 1 � i � HiM � .
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If R is any ring, the K0-group of the triangulated category per R is

isomorphic to K0R via the map

� P � �� �
i � Z

� � 1 � i � P i � , P 	 Hb projR.

Note that this shows that any two rings with the ‘same’ derived category,

will have isomorphic K0-groups. To make this more precise, we need the

notion of a triangle equivalence (cf. below).

5.4 Triangle functors

Let S, T be triangulated categories. A triangle functor S � T is a

pair � F,ϕ � formed by an additive functor F : S � T and a functorial

isomorphism

ϕX : F � X � 1 � � 
� � FX � � 1 � ,

such that the sequence

FX
Fu� FY

Fv� FZ

�
ϕX � Fw
 
 
 
 
 
 � � FX � � 1 �

is a triangle of T for each triangle � u, v, w � of S.

For example, if A and B are abelian categories and F : A � B is an

additive functor, one can show [23] that the domain of definition of the

right derived functor RF is a strictly full triangulated subcategory S of

DA and that RF : S � DB becomes a triangle functor in a canonical

way.

A triangle functor � F,ϕ � is a triangle equivalence if the functor F is an

equivalence. We leave it to the reader as an exercise to define ‘morphisms

of triangle functors’, and ‘quasi-inverse triangle functors’, and to show

that a triangle functor admits a ‘quasi-inverse triangle functor’ if and

only if it is a triangle equivalence [53].

6 Morita theory for derived categories

6.1 Rickard’s theorem

Let k be a commutative ring. One version of the Morita theorem states

that for two k-algebras A and B the following statements are equivalent:
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(i) There is a k-linear equivalence F : ModA � ModB.

(ii) There is an A-B-bimodule X (with central k-action) such that the

tensor product ? � A X is an equivalence from ModA to ModB.

(iii) There is a finitely generated projective B-module P which gen-

erates Mod B and whose endomorphism ring is isomorphic to A.

This form of the Morita theorem carries over to the context of derived

categories. The following theorem is due to J. Rickard [65] [66]. A

direct proof can be found in [49] (with a more didactical version in

[52]).

Theorem 6.1 (Rickard). Let A and B be k-algebras which are flat as

modules over k. The following are equivalent

i) There is a k-linear triangle equivalence � F,ϕ � : D Mod A �

D Mod B.

ii) There is a complex of A-B-modules X such that the total left

derived functor

L � ? � A X � : D Mod A � D Mod B

is an equivalence.

iii) There is a complex T of B-modules such that the following con-

ditions hold

a) T is perfect,

b) T generates D Mod B as a triangulated category with infi-

nite direct sums,

c) we have

HomD B � T, T � n � � � 0 for n � 0 and HomD B � T, T � � A ;

Condition b) in iii) means that DMod B coincides with its smallest

strictly full triangulated subcategory stable under forming arbitrary (set-

indexed) coproducts. The implication from ii) to i) is clear. To prove

the implication from i) to iii), one puts T � FA (where A is regarded as

the free right A-module of rank one concentrated in degree 0). Since F

is a triangle equivalence, it is then enough to check that the analogues

of a), b), and c) hold for the object A of D Mod A. Properties a) and c)

are clear. Checking property b) is non-trivial [51]. The hard part of the
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proof is the implication from iii) to ii). Indeed, motivated by the proof of

the classical Morita theorem we would like to put X � T . The problem

is that although A acts on T as an object of the derived category, it does

not act on the individual components of T , so that T is not a complex

of bimodules as required in ii). We refer to [48] for a direct solution of

this problem.

Condition b) of iii) may be replaced by the condition that the direct

summands of T generate per B as a triangulated category, which is easier

to check in practice.

If the algebras A and B are even projective as modules over k, then the

complex X may be chosen to be bounded and with components which

are projective from both sides. In this case, the tensor product functor

? � A X is exact and the total left derived functor ? � L

A X is isomorphic

to the one induced by ? � A X.

By definition [66], the algebra A is derived equivalent to B if the condi-

tions of the theorem hold. In this case, T is called a tilting complex, X

a two-sided tilting complex and L � ? � A X � a standard equivalence.

We know that any equivalence between module categories is given by

the tensor product with a bimodule. Strangely enough, in the setting

of derived categories, it is an open question whether all k-linear triangle

equivalences are (isomorphic to) standard equivalences.

An important special case of the theorem is the one where the equiv-

alence F in (i) takes the free A-module AA to an object T � F � AA �

whose homology is concentrated in degree 0. Then T becomes an A-

B-bimodule in a natural way and we can take X � T in (ii). The

equivalence between (ii) and (iii) then specializes to Happel’s theorem

(4.1). In particular, this yields many non-trivial examples of derived

equivalent algebras which are not Morita equivalent.

Derived equivalence is an equivalence relation, and if two algebras A and

B are related by a tilting triple, then they are derived equivalent. One

may wonder whether derived equivalence coincides with the smallest

equivalence relation containing all pairs of algebras related by a tilting

triple. Let us call this equivalence relation T -equivalence. It turns out

that T -equivalence is strictly stronger than derived equivalence. For

example, any T -equivalence between self-injective algebras comes from

a Morita-equivalence but there are many derived equivalent self-injective

algebras which are not Morita equivalent, cf. below. On the other hand,
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two hereditary finite-dimensional algebras are T -equivalent iff they are

derived equivalent, by a result of Happel-Rickard-Schofield [36].

In the presence of an equivalence D � A � � D � B � , strong links exist be-

tween the abelian categories Mod A and Mod B. They can be analyzed

in analogy with 4.2 (where w now becomes the width of an interval con-

taining all non-zero homology groups of T ). The more refined results of

section 7 also apply in this situation.

6.2 Example: A braid group action

To illustrate theorem 6.1, let n � 2 and consider the algebra A given by

the quiver

1

α1

��
2

α2

��

β1

�� 3
β2

�� . . . n � 1

αn � 1

��
n

βn � 1

��

with the relators

αi � 1αi , βiβi � 1 , αiβi � βi � 1αi � 1 for 1 � i � n � 1

and

α1β1α1 , βn 	 1αn 	 1βn 	 1.

Note that the bilinear form

� 
 P � , 
 Q � � 
 dimHom � P,Q �

defined on K0 � A � is symmetric and non degenerate. In fact, its matrix

in the basis given by the Pi

 eiA, 1 � i � n, is the Cartan matrix of

the root system of type An. For 1 � i � n, let Xi be the complex of

A-A-bimodules

0 � AeiA � A � 0 ,

where A is concentrated in degree 0. It is not very hard to show that

Xi is a two-sided tilting complex. Note that the automorphism σi of

K0 � A � induced by ? � L

A Xi is the reflection at the ith simple root 
 Pi � so

that the group generated by these automorphisms is the Weyl group of

An (i.e. the symmetric group of degree n � 1). Rouquier-Zimmermann

[69] (cf. also [55]) have shown that the functors Fi

 ? � L Xi themselves

satisfy the braid relations (up to isomorphism of functors) so that we

obtain a (weak) action of the braid group on the derived category D A.
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6.3 The simplest form of Broué’s conjecture

A large number of derived equivalent (and Morita non equivalent)

algebras is provided by Broué’s conjecture [17], [16], which, in its

simplest form, is the following statement

Conjecture 6.2 (Broué). Let k be an algebraically closed field of

characteristic p and let G be a finite group with abelian p-Sylow sub-

groups. Then Bpr � G � (the principal block of of kG) is derived equivalent

to Bpr � NG � P � � , where P is a p-Sylow subgroup.

We refer to [64] for a proof of the conjecture for blocks of group algebras

with cyclic p-Sylows and to J. Chuang and J. Rickard’s contribution to

this volume [20] for much more information on the conjecture.

6.4 Rickard’s theorem for bounded derived categories

Often, it makes sense to consider subcategories of the derived category

defined by suitable finiteness conditions. The following theorem shows,

among other things, that this yields the same derived equivalence

relation:

Theorem 6.3 ([65]). If A is derived equivalent to B, then

a) there is a triangle equivalence per A �� per B (and conversely, if

there is such an equivalence, then A is derived equivalent to B);

b) if A and B are right coherent, there is a triangle equivalence

Db mod A �� Db mod B (and conversely, if A and B are right co-

herent and there is such an equivalence, then A is derived equiv-

alent to B).

6.5 Subordinate invariants

One of the main motivations for considering derived categories is the

fact that they contain a large amount of information about classical

homological invariants. Suppose that A and B are k-algebras, projective

as modules over k and that there is a complex of A-B-bimodules X such

that ? � L X is an equivalence.
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a) The algebra A is of finite global dimension iff this holds for the

algebra B and in this case, the difference of their global dimen-

sions is bounded by r � s � 1 where � r, s� is the smallest interval

containing the indices of all non vanishing homology groups of X,

cf. [27, 12.5]. Note that the homological dimensions may actually

differ, as we see from example 4.4.

b) There is a canonical isomorphism K0A �� K0B and, if A and B

are right coherent, an isomorphism G0A �� G0B, cf. [65].

c) There is a canonical isomorphism between the centers of A and

of B, cf. [65]. More generally, there is a canonical isomorphism

between the Hochschild cohomology algebras of A and B, cf. [35]

[66]. Moreover, this isomorphism is compatible with the Gersten-

haber brackets, cf. [47].

d) There is a canonical isomorphism between the Hochschild ho-

mologies of A and B, cf. [66], as well as between all variants of

their cyclic homologies (in fact, the mixed complexes associated

with A and B are linked by a quasi-isomorphism of mixed com-

plexes, cf. [50]).

e) There is a canonical isomorphism between Ki � A � and Ki � B � for

all i � 0. In fact, Thomason-Trobaugh have shown [81] how to

deduce this from Waldhausen’s results [84], cf. [22] or [24]. If

A and B are right noetherian of finite global dimension, so that

Ki � A � 	 Gi � A � , i � 0, it also follows from Neeman’s description

of the K-theory of an abelian category A purely in terms of the

triangulated category Db � A � , cf. [60] [61] [62].

f) The topological Hochschild homologies and the topological cyclic

homologies of A and B are canonically isomorphic. This follows

from work of Schwede-Shipley, cf. [70].

7 Comparison of t-structures, spectral sequences

The reader is advised to skip this section on a first reading.
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7.1 Motivation

Let A and B be abelian categories and suppose that there is a triangle

equivalence

Φ: Db � A � � Db � B �

between their derived categories. Our aim is to obtain relations between

the categories A and B themselves. We will refine the analysis which we

performed in section 4.2. For this, we will use the fact that the derived

category Db � A � is ‘glued together’ from countably many copies of A.

The gluing data are encoded in the natural t-structure on Db � A � . On

the other hand, thanks to the equivalence Φ, we may also view Db � A � as

glued together from copies of B. This is encoded in a second t-structure

on Db � A � , the pre-image under Φ of the natural t-structure on B. We

now have two t-structures on Db � A � . The sought for relations between

A and B will be obtained by comparing the two t-structures. We will see

how spectral sequences arise naturally in this comparison. This general-

izes an idea first used in tilting theory by Vossieck [83] and developped

in this volume by Brenner-Butler [15]. Finally, we will review the rela-

tively subtle results [54] which are obtained by imposing compatibility

conditions between the two t-structures. These compatibility conditions

(strictly) imply the vanishing of ‘half’ the E2-terms of the spectral se-

quences involved.

Note that to obtain the second t-structure on Db � A � we could equally

well have started from a duality

Ψ: Db � A � � � Db � B � � op.

Indeed, both tilting theory and Grothendieck-Roos duality theory [68]

yield examples which fit into the framework which we are about to

sketch.

7.2 Aisles and t-structures

Let T be a triangulated category with suspension functor S. A full

additive subcategory U of T is called an aisle in T if

a) SU � U ,

b) U is stable under extensions, i.e. for each triangle X � Y �

Z � SX of T we have Y � U whenever X,Z � U ,
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c) the inclusion U � T admits a right adjoint T � U , X �� XU .

For each full subcategory V of T we denote by V � (resp. � V) the

full additive subcategory consisting of the objects Y � T satisfying

Hom � X,Y � � 0 (resp. Hom � Y,X � � 0) for all X � V.

Proposition 7.1 ([46]). A strictly (=closed under isomorphisms) full

subcategory U of T is an aisle iff it satisfies a) and c’)

c’) for each object X of T there is a triangle XU � X � XU � �
S � XU � with XU � U and XU � � U � .

Moreover, a triangle as in c’) is unique.

Given an aisle U � T and n � Z, we define

U 	 n
� U 
 n � 1

� SnU , U � n
� U 
 n � 1

� � U 	 n � � ,

τU	 nX � τU
 n � 1X
� XU � n

, τU� nX � τU

 n � 1X

� XU � n .

Then the proposition above shows that � τU	 n, τU� n � n � Z is a t-structure [9]

on T and that we have a bijection between aisles in T and t-structures

on T .

For example, let T be the derived category D � A � of an abelian category

A. Then the full subcategory U formed by the complexes X such that

Hn � X � � 0 for all n � 0 is the natural aisle on D � A � . Its right orthogonal

is formed by the complexes Y with Hn � Y � � 0 for all n � 0. The

corresponding truncation functors τ 	 0 and τ � 0 are given by

τ 	 0 � X � � � . . . � X
� 1 � Z0 � X � � 0 � . . . �

τ � 0 � X � � � . . . 0 � X0 � Z0 � X � � X1 � . . . � .

The corresponding t-structure is the natural t-structure on D � A � . Let

U � T be an aisle. Its heart is the full subcategory

U � S � U � � � U 	 0 � U 
 0.

It equals the heart of the corresponding t-structure [9]. For example, the

heart of the natural t-structure on D � A � equals A (identified with the

full subcategory of the complexes with homology concentrated in degree

0). In general, the heart H of an aisle U is always abelian, each short

exact sequence � i, p � of H fits into a unique triangle

A
i� B

p
� C

e� SA
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and the functor H0
U

� τ � 0τ � 0 is a homological functor. We put Hn
U

�
H0

U � Sn.

7.3 Example: classical tilting theory

Let � A, T,B � be a tilting triple. In T � Db � Mod A � , we consider the

natural aisle U and the aisle V which is the image of the natural aisle

of Db � Mod A � under the functor RHomB � T, ? � . Then the heart A of U

identifies with ModA, the heart B of V with Mod B, the functor Hn
V

� A
with TorA� n � ?, T � and the functor Hn

U
� B with ExtnB � T, ? � .

7.4 Example: duality theory

Let R be a commutative ring which is noetherian and regular, i.e. of

finite homological dimension. Recall [57, 17.4] that

a) For each finitely generated R-module M , the codimension

c � M � � inf � dimRp : p 	 Spec � R � ,Mp 
 0 �

equals the grade

g � M � � inf � i : Exti
R � M,R � 
 0 � .

b) We have c � Extn
R � M,R � � � n for all finitely generated R-modules

M and N and each n.

The derived functor D � RHomR � ?, R � induces a duality

Db � mod R � 
� � Db � mod R � � op.

In T � Db � mod R � , we consider the natural aisle V and the aisle U which

is the image of the natural co-aisle under D. The heart B of V identifies

with mod R and the heart A of U with � mod R � op. The functors Hn
U

� B
and Hn

V
� A are given by Ext

� n
R � ?, R � and ExtnR � ?, R � .
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7.5 Spectral sequences

Let T be a triangulated category and H0 a homological functor defined

on T with values in an abelian category. Put Hn � H0 � Sn, n � Z. Let

. . . � Xq � 1
iq� Xq � . . . , q � Z

be a diagram in T such that Xq
� 0 for all q � 0 and iq is invertible for

all q � 0. Let X be the colimit (=direct limit) of this diagram. Let us

choose a triangle

Xq � 1
iq� Xq � X

q
q � 1 � SXq

for each q � Z. Then the sequences

. . . � Hp � q � Xq � 1 	 � Hp � q � Xq 	 � Hp � q � Xq
q � 1 	 � . . . , p, q � Z ,

combine into an exact couple

D
i �� D

j����
��
��
�

E

k

���������

where Dpq � Hp � q � Xq 	 and Epq � Hp � q � Xq
q � 1 	 . The associated spec-

tral sequence has E
pq
2

� Epq and its rth differential is of degree � r, 1 
 r 	 .
It converges after finitely many pages to Hp � q � X 	

E
pq
2

� Hp � q � Xq 	 � �
Hp � q � X 	 .

The qth term of the corresponding filtration of Hp � q � X 	 is the image of

Hp � q � Xq 	 under the canonical map ι so that we have canonical isomor-

phisms

Epq

 �� ι � Hp � q � Xq 	 	 � ι � Hp � q � Xq � 1 	 	 .

Now suppose that in T , we are given two aisles U and V with hearts

A and B. We suppose that A generates U as a triangulated category

and that the same holds for B. This entails that for each X � T , the

sequence

. . . � τV� q � 1X � τV� qX � . . .

satisfies the assumptions made above. We choose the canonical triangles

τV� q � 1X � τV� qX � S
� qH

q
V � X 	 � SτV� q � 1X.

If we apply the above reasoning to these data and to the homological
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functor H0
U , we obtain a spectral sequence, convergent after finitely many

pages, with

E
pq
2

� H
p � q
U � S

� qH
q
V � X � � � H

p
UH

q
V � X � � �

Hp � q � X � . (7.5.1)

Of course, if we exchange U and V, we also obtain a spectral sequence

E
pq
2

� H
p
VH

q
U

� X � � �
Hp � q � X � . (7.5.2)

In example 7.3, the two sequences become

E
pq
2

� Ext
p
B � T,TorA� q � M,T � � � �

M

and

E
pq
2

� TorA� p � Ext
q
B � T,N � � � �

N ,

where we suppose that M � ModA and N � ModB. They lie respec-

tively in the second and in the fourth quadrant and have their non zero

terms inside a square of width equal to the projective dimension of T .

Thus, we have E � � Er � 1 if r is the projective dimension of T . In

particular, if r � 1, then E2
� E � . For the first sequence, the qth term

of the corresponding filtration of

M � RHomB � T,M 	 L

A T �

equals the image of the map H0
U � τV
 qM � � M , i.e. of

H0 � RHomB � T, τ 
 q � M 	 L

A T � � � M.

In example 7.4, the first sequence becomes

E
pq
2

� Ext
p
R � Ext

� q
R � M,R � , R � � �

M ,

where we suppose that M � mod R.

7.6 Compatibility of t-structures

Let T be a triangulated category with suspension functor S. Let U and V

be aisles in T . We use the notations of 7.5 for the t-structures associated

with the aisles. Moreover, we put A � n
� A 
 V � n and B 
 n

� B 
 U 
 n.

Thus we have filtrations

A � . . . � A � n � A � n � 1 � . . . and . . . � B 
 n � B 
 n � 1 � . . . � B .

Note that M � A belongs to A � n iff H
q
V � M � � 0 for all q � n. This

occurs iff all the lines below q � n vanish in the spectral sequence 7.5.1.
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Similarly, N � B belongs to B � n iff all the lines above q � n vanish in

the spectral sequence 7.5.2.

The co-aisle U � is compatible with the aisle V if U � is stable under the

truncation functors τV� n for all n � Z. Dually, the aisle U is compatible

with the co-aisle V � , if U is stable under the truncation functors τV� n for

all n � Z, cf. [54]. If U is compatible with V � , it is not hard to check

that U is also stable under τV� n and we have Hn
V � U � 0 � � B � 	 n. Thus

we obtain

H
p
U
H

q
V


 U � 0
� 0

for all p � q � 0. Thus, if X belongs to U � 0, then in the spectral

sequence 7.5.1, all terms above the codiagonal p � q � 0 vanish. The

following proposition shows that the converse often holds:

Proposition 7.2 ([54]). Suppose that A generates T as a triangulated

category and that the same holds for B. Then the following are equivalent

(i) U is compatible with V � .

(ii) U � 
 X � T 
 Hn
V � X � � B � 	 n for all n � Z � .

(iii) We have

a) H
p
UH

q
V


 A � 0 for all p � q � 0 and

b) for each morphism g : N � N � of B with N � B � n and

N � � B � n � 1, we have ker � g � � B � n and cok � g � � B � n � 1.

It is not hard to show that in example 7.4, the aisle U is compatible with

V � and V � is compatible with U . In example 7.3 these properties are

satisfied if T is of projective dimension 1. They are not always satisfied

for tilting modules T of higher projective dimension.

7.7 Links between the hearts of compatible t-structures

Keep the notations of 7.6 and suppose moreover that the t-structures

defined by U and V are compatible, i.e. that U is compatible with V �
and V � compatible with U . Then for each object N � B, one obtains a

short exact sequence

0 � H0
V � τU� qN � � N � H0

V � τU� qN � � H1
V � τU� qN � � 0.
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Its terms admit intrinsic descriptions: First consider N � q
� H0

V � τU� qN � .
One shows that for each N � B, the morphism N � q � N is the largest

subobject of N contained in B � q. It follows that B � q is stable under

quotients. Note that N � q is also the qth term of the filtration on N

given by the spectral sequence

E
pq
2

� H
p
VH

q
U � N � � �

N.

Now consider N � q
� H0

V � τU� qN � . Call a morphism t : N � N 	 of B

a q-quasi-isomorphism if its kernel belongs to B � q and its cokernel to

B � q 
 1; call an object of B of B q-closed if the map

Hom � t, B � : Hom � N 	 , B � � Hom � N,B �

is bijective for each q-quasi-isomorphism t : N � N 	 . It is easy to see

that the morphism N � N � q is a q-quasi-isomorphism. Moreover, one

shows that N � q is q-closed. Thus the functor N �� N � q is left adjoint

to the inclusion of the subcategory of q-closed objects in B.

Dually, one defines q-co-quasi-isomorphisms and q-co-closed objects in

A. Let Aq � A 
 q be the full subcategory of � q � 1 � -co-closed objects and

Bq � B � q the full subcategory of � q � 1 � -closed objects. Then we have the

Proposition 7.3. The functors H
q
U and H

q
V induce a pair of adjoint

functors

H
q
U : B � 
 q

��
A 
 q : H

q
V��

and inverse equivalences

Bq

��
A 
 q�� .

8 Algebraic triangulated categories and dg algebras

8.1 Motivation

One form of Morita’s theorem characterizes module categories among

abelian categories: if A is an abelian category admitting all set-indexed

coproducts and P is a compact (i.e. Hom � P, ? � commutes with all set-

indexed coproducts) projective generator of A, then the functor

Hom � P, ? � : A � Mod End � P �
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is an equivalence. Is there an analogue of this theorem for triangu-

lated categories? Presently, it is not known whether such an ana-

logue exists for arbitrary triangulated categories. However, for trian-

gulated categories obtained as homotopy categories of Quillen model

categories, there are such analogues. The most far-reaching ones are

due to Schwede-Shipley, cf. [71] and [73]. The simplest, and historically

first [49], case is the one where the triangulated category is the stable

category of a Frobenius category. It turns out that all triangulated cat-

egories arising in algebra are actually of this form. In this case, the rôle

of the module category Mod End � P � is played by the derived category

of a differential graded algebra. In this section, we will review the defi-

nition of differential graded algebras and their derived categories, state

the equivalence theorem and illustrate it with Happel’s description of

the derived category of an ordinary algebra.

8.2 Differential graded algebras

Let k be a commutative ring. Following Cartan [18] a differential graded

(=dg) k-algebra is a Z-graded associative k-algebra

A � �
p � Z

Ap

endowed with a differential, i.e. a homogeneous k-linear endomorphism

d : A � A of degree � 1 such that d2 � 0 and the Leibniz rule holds: we

have

d � ab � � d � a � b � � � 1 � pa d � b �

for all a � Ap and all b � A. Let A be a dg algebra. A differential

graded A-module is a Z-graded A-module M endowed with a differential

d : M � M homogeneous of degree � 1 such that the Leibniz rule holds:

d � ma � � d � m � a � � � 1 � pmd � a �

for all m � Mp and all a � A. Note that the homology H 	 � A � is a

Z-graded algebra and that H 	 � M � becomes a graded H 	 � A � -module for

each dg A-module M .

If Ap � 0 for all p 
 0, then A is given by the ordinary algebra A0. In

this case, a dg A-module is nothing but a complex of A0-modules. In

the general case, A becomes a dg module over itself: the free A-module

of rank one. If M is an arbitrary A-module and n is an integer, then
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the shifted complex M � n � carries a natural dg A-module structure (no

additional sign changes here).

To give a more interesting example of a dg algebra, let us recall the

morphism complex: Let B be an ordinary associative k-algebra. For

two complexes

M � � . . . � Mp d
p
M� Mp � 1 � . . . �

and N of B-modules, the morphism complex Hom � B � M,N � has as its

nth component the k-module of B-linear maps f : M � N , homogeneous

of degree n (which need not satisfy any compatibility condition with the

differential). The differential of the morphism complex is defined by

d � f � � dN � f 	 � 	 1 � nf � dM ,

where f is of degree n. Note that the zero cycles of the morphism com-

plex identify with the morphisms of complexes M � N and that its

0th homology identifies with the set of homotopy classes of such mor-

phisms. Then the composition of graded maps yields a natural structure

of dg algebra on the endomorphism complex Hom � B � M,M � and for each

complex N , the morphism complex Hom � B � M,N � becomes a natural dg

module over Hom � � M,M � . Note that even if M is concentrated in de-

grees 
 0, the dg algebra Hom � B � M,M � may have non-zero components

in positive and negative degrees.

8.3 The derived category

Let A be a dg algebra. A morphism s : L � M of dg A-modules is a

quasi-isomorphism if it induces a quasi-isomorphism in the underlying

complexes. By definition, the derived category D � A � is the localization

of the category of dg A-modules at the class of quasi-isomorphisms.

If A is concentrated in degree 0, i.e. A � A0, then D � A � equals the

ordinary derived category D � A0 � . Note that, for arbitrary dg algebras

A, homology yields a well defined functor

H � : D � A � � Grmod � H � A � , M �� H � � M � ,

where Grmod � H � A � denotes the category of graded H � � A � -modules. To

compute morphism spaces in the derived category, it is useful to intro-

duce the homotopy category: a morphism of dg modules f : L � M is
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nullhomotopic if there is a morphism r : L � M of graded A-modules

(not compatible with the differential) such that

f � dM � r � r � dL.

The nullhomotopic morphisms form an ideal in the category of dg A-

modules and the quotient by this ideal is the homotopy category H � A � .
We have a canonical functor H � A � � D � A � . A dg module M is cofibrant

(resp. fibrant) if the map

HomH
�
A � � M,L � � HomD

�
A � � M,L �

resp.

HomH
�
A � � L,M � � HomD

�
A � � L,M �

is bijective for all dg A-modules L. We have the

Proposition 8.1 ([49]). a) The derived category D � A � admits a

canonical triangulated structure whose suspension functor is

M � M � 1 	 . Moreover, it admits all set-indexed coproducts and

these are computed as coproducts of dg A-modules.

b) For each dg A-module M , there are quasi-isomorphisms

pM � M and M � iM

such that pM is cofibrant and iM is fibrant.

c) The free A-module AA is cofibrant. We have

HomD
�
A � � A,M � n 	 � 
� Hn � M �

for all dg A-modules M . In particular, the functor HomD
�
A � � A, ? �

commutes with coproducts and we have

Hn � A � 
� HomH
�
A � � A,A � n 	 � 
� HomD

�
A � � A,A � n 	 � .

Part b) of the proposition shows in particular that

HomD
�
A � � L,M �

is actually a set (not just a class) for all dg A-modules L and M . We

deduce from the proposition that the object A � D � A � is compact (i.e. its

covariant Hom-functor commutes with coproducts) and generates D � A � ,
in the sense that an object M vanishes iff we have HomD

�
A � � A,M � n 	 � � 0

for all n � Z.
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The objects pM and iM are functorial in M � D � A � . They yield a

left and a right adjoint of the canonical functor H � A � � D � A � . For

each functor F : H � A � � C, one defines the total right and left derived

functors via

RF � F � i and LF � F � p.

The perfect derived category per � A � is the full subcategory of D � A �

whose objects are obtained from the free A-module of rank one by

forming extensions, shifts (in both directions) and direct factors.

Clearly it is a triangulated subcategory consisting of compact objects.

We have the following important

Proposition 8.2 ([59]). The perfect derived category per � A � equals the

subcategory of compact objects of D � A � .

An explicit proof, based on [59], can be found in [49]. If A is an ordinary

algebra, per � A � is equivalent to Hb � proj A � , the homotopy category of

bounded complexes with finitely generated projective components.

8.4 Stalk algebras

Proposition 8.3. Let f : A � B be a morphism of dg algebras which is

a quasi-isomorphism of the underlying complexes. Then the restriction

functor

D � B � � D � A �

is an equivalence.

It A is a dg algebra, then the complex

τ � 0 � A � � � . . . � A
� 2 � A

� 1 � Z0 � A � � 0 � . . . �

becomes a dg subalgebra and the canonical map τ � 0 � A � � H0A a

morphism of dg algebras (where we consider H0A as a dg algebra

concentrated in degree 0). Thus, if H � � A � is concentrated in degree

0, then A is linked to H0 � A � by two quasi-isomorphisms. Thus we get the

Corollary 8.4. If A is a dg algebra such that H � � A � is concentrated in

degree 0, then there is a canonical triangle equivalence

D � A � 	� D � H0A �
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8.5 Example: mixed complexes

Let Λ be the exterior k-algebra on one generator x of degree � 1. Endow

Λ with the zero differential. Then a dg Λ-module is given by a Z-graded

k-module M endowed with b � dM and with the map

B : M � M , m �� � � 1 � deg
�
m � m.x ,

which is homogeneous of degree � 1. We have

b2 � 0 , B2 � 0 , bB � Bb � 0.

By definition, the datum of the Z-graded k-module M together with

b and B satisfying these relations is a mixed complex, cf. [45]. The

augmentation of Λ yields the Λ-bimodule k. The tensor product over Λ

by k yields a functor

? 	 Λ k : H � Λ � � H � k �

and if we compose its derived functor ? 	 L

Λ k : D � Λ � � D � k � with H

 n,

we obtain the cyclic homology:

HCn � M � � H

 n � M 	 L

Λ k � .

Moreover, the negative cyclic homology groups identify with morphism

spaces in the derived category:

HNn � M � � HomD
�
Λ � � k,M � n � � .

8.6 Frobenius categories

A Frobenius category is an exact category in the sense of Quillen [63]

which has enough injectives, enough projectives and where the class of

the injectives coincides with that of the projectives. Let E be a Frobenius

category. The morphisms factoring through a projective-injective form

an ideal and the quotient by this ideal is the associated stable category

E . The stable category admits a canonical structure of triangulated cat-

egory [33] whose suspension functor S is defined by choosing admissible

short exact sequences

0 � L � I � S � L � � 0

with projective-injective I for each object L. The triangles are con-

structed from the admissible exact sequences of E .
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For example, let A be a dg algebra (e.g. an ordinary algebra). Then the

category of dg A-modules becomes a Frobenius category if we define a

short exact sequence

0 � L � M � N � 0

of dg A-modules to be admissible exact if it splits in the category of

graded A-modules. Then the morphisms factoring through projective-

injectives are precisely the nullhomotopic morphisms and the associated

stable category is the category H � A � . Now let Cc � A � be the full subcat-

egory of the category of dg A-modules whose objects are the cofibrant

dg A-modules. It is not hard to see that it inherits the structure of a

Frobenius category and that its associated stable category is equivalent

to D � A � as a triangulated category.

8.7 Algebraic triangulated categories and dg algebras

Let T be an algebraic triangulated category, i.e. a triangulated category

which is triangle equivalent to the stable category of some Frobenius

category. As we have seen at the end of section 8.6, all derived

categories of dg algebras are of this form.

Theorem 8.5 ([49]). Let T be an object of T .

a) There is a dg algebra RHom � T, T � with homology

H � � RHom � T, T � � � �
p � Z

HomT � T, T � p � �

and a k-linear triangle functor

F : T � D � RHom � T, T � �

which takes T to the free module of rank one and whose compo-

sition with homology is given by

T � Grmod � H � � RHom � T, T � � � , X 	� �
p � Z

� T,X � p � � .

b) Suppose that T admits all set-indexed coproducts and that T is

a compact generator for T . Then the functor F is a k-linear

triangle equivalence

T 
� D � RHom � T, T � � .
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c) Suppose that T is the closure of T under forming extensions,

shifts (in both directions) and direct factors. Then F is a k-linear

triangle equivalence

T �� per � RHom � T, T � � .

If we take T to be the derived category of a k-algebra B and T a tilt-

ing complex, we can deduce the implication from iii) to i) in Rickard’s

theorem 6.1.

8.8 Illustration: Happel’s theorem

Let k be a field and A a finite-dimensional k-algebra. Put DA �

Homk � A, k � . We view DA as an A-A-bimodule. Let B be the graded

algebra with Bp � 0 for p � 0, 1, B0 � A and B1 � DA. Consider the

category Grmod B of Z-graded B-modules and its subcategory grmod B

of graded B-modules of total finite dimension. If we endow them with all

exact sequences, both become abelian Frobenius categories. We would

like to apply theorem 8.5 to the stable category T � GrmodB and the

B-module T given by A considered as a graded B-module concentrated

in degree 0. A straightforward computation shows that T is compact in

T , that

HomT � T, T � n � � � 0

for all n � 0 and that HomT � T, T � is canonically isomorphic to A (be-

ware that the suspension in T has nothing to do with the shift functor

of Grmod B). By theorem 8.5 and corollary 8.4, we get a triangle functor

F : GrmodB � D � A � .

Now by proving the hypotheses of b) and c) of theorem 8.5, one obtains

the

Theorem 8.6 (Happel [33]). If A is of finite global dimension, then

F is a triangle equivalence

GrmodB �� D � A � .

and induces a triangle equivalence

grmodB �� per � A � �� Db � mod A � .
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mod kQ

D
b �

mod kQ � � D
b �

mod �A5 �

mod k �A5
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et triangulées, complexes parfaits, pp. 351–371, Springer-Verlag, Berlin,
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Soc. Math. France, Paris, 1997, pp. 13–33.

[51] , Invariance and localization for cyclic homology of DG algebras,
J. Pure Appl. Algebra 123 (1998), no. 1-3, 223–273.

[52] , On the construction of triangle equivalences, Derived equiv-
alences for group rings, Lecture Notes in Math., vol. 1685, Springer,
Berlin, 1998, pp. 155–176.

[53] Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R.
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6

Hereditary categories

Helmut Lenzing

Hereditary categories serve as prototypes for many phenomena of repre-

sentation theory. For instance the concepts of representation-finite, tame

and wild algebras are most easily illustrated in the framework of finite

quivers and the hereditary categories of their representations. Stan-

dard types of Auslander-Reiten components (preprojective, preinjective,

tubes, type ZA � ) show up naturally in the hereditary context. Hered-

itary categories further allow the paradigmatic study of one-parameter

families, a central concept in the study of tame algebras. Most impor-

tant, due to the simple form of their derived category, hereditary cate-

gories are the natural domain to study derived equivalence and tilting

for quite large classes of algebras. The classes of tilted, quasitilted, iter-

ated tilted, tubular, canonical, concealed hereditary, concealed canonical

algebras, among others, all owe their existence and properties to hered-

itary categories. Categories of coherent sheaves over smooth projective

curves provide another main source for hereditary categories. A main

aim of this survey is therefore to show the ubiquity of hereditary cate-

gories and the variety of effects covered by them.

Let H be a small abelian, connected k-category where k is a field. We as-

sume that H is Ext-finite, that is, has all morphism and extension spaces

Exti � X,Y � finite dimensional over k. We call H hereditary if Ext2 � � , � �

vanishes. If k is algebraically closed and the hereditary category H has

a tilting object then Happel’s theorem [17] states that — up to derived

equivalence — there are only two standard types to consider, namely the

category mod-H of finite dimensional modules over a finite dimensional

hereditary k-algebra H and the category coh X of coherent sheaves on

a weighted projective line X. Starting from this fundamental result it
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is then an easy task to describe all hereditary categories with a tilting

object, see [16] and [37]. This survey therefore focus on the study of

the two standard types of hereditary categories with a tilting object and

their main properties. Particular attention is given to a gentle axiomatic

introduction of categories of coherent sheaves on a weighted projective

line, establishing all their main properties but bypassing the technicali-

ties of the actual construction of sheaves. A particular highlight is the

classification of indecomposable sheaves on weighted projective lines of

tubular type and the implied structure of the module category for a

canonical algebra of tubular type.

1 Fundamental concepts

Let k be a field, supposed to be algebraically closed in order to sim-

plify the exposition. Most results of this survey will be true also for

arbitrary base fields, however proofs will often need to be modified and

will sometimes even rely on more sophisticated concepts and arguments.

The interested reader is referred to [7, 35, 20, 29, 36].

A category is said to be k-linear (or a k-category) if its morphism spaces

are vector spaces over k and, moreover, composition is k-bilinear. We

say that an abelian k-category A is Ext-finite if all extension spaces

Extn � X,Y � , defined in terms of Yoneda-extensions, are finite dimen-

sional over k. Our main interest is the study of small (the isomorphism

classes of objects form a set) abelian Ext-finite k-categories H which

are additionally hereditary, that is, have vanishing Ext2 � � , � � , and then

vanishing Extn � � , � � for all n � 2. We refer to [40] for basic information

on abelian categories and Yoneda extensions. Mostly we will deal with

categories H that are connected, that is, do not decompose into a coprod-

uct H1 � H2 of nonzero categories H1 and H2. We say that H satisfies

weak Serre duality if there exists a functor τ : H � H such that for

all X,Y from H there are isomorphisms D Ext1 � X,Y � �� � Hom � Y, τX �
which are functorial in X and Y . Here, D refers to the k-dual Hom � � , k � .
If additionally τ is an equivalence we say that H satisfies Serre duality. In

this case H has no non-zero projectives or injectives, it has almost-split

sequences and τ acts (on objects) as the Auslander-Reiten translation

for DbH. Note that Serre duality for H — in the form specified here —

implies that H is hereditary, see Section 10.2. Such hereditary categories

arise in quite different mathematical contexts.
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By DbH we denote the derived category (of bounded complexes) of

H. Since H is hereditary, DbH is the additive closure of the dis-

joint union
�

n � Z H � n � , where each H � n � is a copy of H with ob-

jects denoted X � n � , X � H, see Section 3. Morphisms are deter-

mined by Hom � X � m � , Y � n � � � Extn � m
H � X,Y � , composition is given

by the Yoneda-composition of Ext, and translation of DbH acts as

X � n � 	
 X � n � 1 � , where X � H. Generally, we use the notation

Z 	
 Z � n � , Z � DbH, for the n-th iterate of the translation functor. We

write DbH � �
n � Z H � n � in order to indicate that there are no nonzero

morphisms backwards, that is from H � n � to H � m � for n 
 m.

Assume H as above satisfies Serre duality or is of the form mod-H with H

finite dimensional hereditary. In DbH we have Serre duality in the form

D Hom � X,Y � � Hom � Y � � 1 � , τX � , for some self-equivalence τ of DbH.

Accordingly DbH has Auslander-Reiten triangles, see [27] or [15] for this

concept, and τ serves as the Auslander-Reiten translation. Note in this

context a related not so obvious result proved by Happel [15]: Dbmod-A

has Serre duality in the above form whenever A is a finite dimensional

algebra of finite global dimension. Within this survey we will mostly

encounter algebras whose module category is derived-equivalent to a

hereditary category.

Let A be a small Ext-finite abelian k-category. We say that T � A is a

tilting object of H if

� i � T has no self-extensions, that is, Extn � T, T � � 0 for all n 
 0,

� ii � Extn � T, � � � 0 for large n, and

� iii � T generates H in a homological sense: for every X � A the condition

Extn � T,X � � 0 for every integer n � 0 implies that X � 0.

Note that � ii � is automatically satisfied if A is hereditary. Recall fur-

ther that an abelian category G is called a Grothendieck category if it

has a generator G in the categorical sense, that is Hom � G, u � � 0 for

any morphism u implies u � 0, and further G has arbitrary coproducts

and exact direct limits. Each Grothendieck category automatically has

injective envelopes, see [9], underlining the importance of this concept.

Main examples of Grothendieck categories are the category Mod-R of

all modules over a ring R and the category Qcoh X of quasi-coherent

sheaves on a scheme X. An object E of G is called finitely presented

if the functor Hom � E, � � from G to the category Ab of abelian groups

commutes with direct limits. In case of the category Mod-R exactly
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those modules E admitting an exact sequence Rn � Rm � E � 0,

with integers m and n, are finitely presented. Finally, the author wishes

to thank Henning Krause and the referees for for specific suggestions

and valuable advice.

2 Examples of hereditary categories

We illustrate the ubiquity of hereditary categories by a list of examples.

Each example is accompanied by comments, some of these rely on

concepts explained only later.

Example 2.1. Let H be a finite dimensional hereditary k-algebra, for

instance the path algebra H � k � �∆ � of a finite quiver �∆ without ori-

ented cycles. Then the module category H � mod-H of finite dimen-

sional (right) H-modules is a small abelian hereditary Ext-finite cate-

gory. Since H is hereditary, the Auslander-Reiten translation ‘is’ a func-

tor τ : mod-H � mod-H, take τ � DExt1 � � ,H � . Due to Auslander-

Reiten theory we further have weak Serre (or Auslander-Reiten) duality.

The category H � mod-H has a tilting object (or tilting module) T , we

may take T � HH as a trivial example. Usually, however, there will be

lots of further tilting modules, and it is of great interest to study them.

The endomorphism rings of tilting modules over hereditary algebras are

called tilted algebras.

Hereditary categories also arise in algebraic geometry, preferably related

to geometric objects of dimension one.

Example 2.2. Let R � �
n � 0 Rn denote the polynomial algebra k � x, y �

in two indeterminates, positively Z-graded by total degree, where hence

Rn consists of all homogeneous polynomials of total degree n. By

modZ-R we denote the category of all finitely presented Z-graded R-

modules M � �
n 	 Z Mn with Ml Rh 
 Ml � h. Similarly modZ

0 -R de-

notes the full category of all graded modules of finite length. Since

modZ
0 -R is a Serre subcategory of the abelian category modZ-R we may

form the quotient category H � modZ-R � modZ
0 -R in the sense of Serre-

Grothendieck (see [9], [42]) which is an Ext-finite hereditary abelian

connected k-category. Clearly Z acts on modZ-R, hence on H, by grad-

ing shift M 
� M � l � where M � l � is the graded R-module with underlying

R-module M whose n-th component M � l � n equals Ml � n. We write �M
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for the image of a graded R-module M in the quotient category H, and

in particular O for �R. H satisfies Serre duality, where τ : H � H,

X �� X � � 2 � , is the equivalence induced by grading shift M �� M � � 2 � .
Using additionally that Hom � O � n � ,O � m � � � Rm � n, it is easily checked

that T � O
�
O � 1 � is a tilting object in H whose endomorphism ring is

the Kronecker algebra k 	 
 � 
 � . It follows that the derived categories

of H and of mod-k 	 
 � 
 � are equivalent as triangulated categories. It

is classical, and in fact a special case of Serre’s theorem [49], that H

is equivalent to the category of coherent sheaves on the projective line

P1 � k � .
This example allows many variations, we mention three of them

explicitly.

Example 2.3. Let R � k 	 x, y, z � 
 � h � , h � x2 � y3 � z5. Attach-
ing degrees 15, 10 and 6 to x, y and z, respectively, turns R into
a positively Z-graded k-algebra. Again, the category H � 2, 3, 5 � �
modZ-R 
 modZ

0 -R is a connected hereditary abelian category with Serre
duality D Ext1 � X,Y � � Hom � Y, τX � , where τ : H � H is the equiva-

lence induced by the grading shift M �� M � � 1 � . Writing O � �R as in
the preceding example, the direct sum of all objects from the configura-
tion

O
� 15 �� �

O
� 0 � � O

� 10 � � O
� 20 � � O

� 30 �� �
O

� 6 � � O
� 12 � � O

� 18 � � O
� 24 �

is a tilting object in H � 2, 3, 5 � whose endomorphism ring is the canonical

algebra Λ � 2, 3, 5 � . Changing the relation to h � x2 � y3 � z7 yields

another hereditary abelian category H � 2, 3, 7 � with Serre duality, where

now τ is induced by the shift M �� M � 1 � . In this case the direct sum of

the objects O, O � 21 � , O � 14 � , O � 28 � , O � 6 � , O � 12 � , O � 18 � , O � 24 � , O � 30 � ,
O � 36 � and O � 42 � is a tilting object whose endomorphism ring is the

canonical algebra Λ � 2, 3, 7 � . The categories H � 2, 3, 5 � and H � 2, 3, 7 � are

equivalent to categories of coherent sheaves over weighted projective lines

of weight type � 2, 3, 5 � and � 2, 3, 7 � , respectively, compare [12]. From a

different perspective we will investigate such categories in Section 10.

Example 2.4. Let R � k 	 x, y � be the polynomial algebra. Consider
R as a Z � Z-graded algebra, where x gets degree � 1, 0 � and y gets

degree � 0, 1 � . The quotient category H � modZ � Z-R 
 modZ � Z
0 -R is

abelian hereditary with Serre duality, where τ is induced by grading
shift M �� M � � 1, � 1 � . H does not have a tilting object, but does have
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an infinite tilting system O � p, q � , where p, q runs through the integers
satisfying p � q � 0 or p � q � 1. The full subcategory formed by this
tilting system is equivalent to the path category of the infinite zig-zag-
quiver � � � � �

� � � � � � � � � � � � � � � �� � �

Within this survey we will not investigate such hereditary categories

with an infinite tilting system. The interested reader is referred to [43]

and [36].

Example 2.5. Let C be a smooth projective curve over an algebraically

closed field k. Then the category H � coh C of coherent (algebraic)

sheaves on C is a small abelian hereditary Ext-finite category with Serre

duality. This category has a tilting object if and only if C has genus

zero, that is, C is isomorphic to the projective line over k. In a dif-

ferent language, coherent sheaves on the projective line are treated in

example 2.2.

Example 2.6. For the base field of complex numbers such categories

also occur in a different context. It is classical that there is a bijection

between isomorphism classes of compact Riemann surfaces and isomor-

phism classes of smooth projective curves over C, yielding equivalences of

the respective categories of holomorphic and algebraic coherent sheaves,

respectively. Let X be a compact Riemann surface. The category H of

holomorphic coherent sheaves on X is an abelian, hereditary, Ext-finite

C-category with Serre duality. We have a tilting object in H if and only

if X is isomorphic to the Riemann sphere.

Example 2.7. Let k be any field, and R � k � � x 	 	 denote the power series

ring in one indeterminate. The category T � mod0-R of all R-modules

of finite length (=finite k-dimension) is a hereditary k-category with

Serre duality D Ext1 � X,Y � � Hom � Y, τX � with τ the identity functor.

Each indecomposable in T is uniserial, that is, has a unique composition

series. We state this by saying that T is a uniserial category. Clearly

T is connected with just one simple object — up to isomorphism. Its

indecomposables form a tube of rank (or τ -period) one. An easy variation

leads to (uniserial) tubes of rank p 
 1. Consider R to be Zp-graded,

putting R � k � � xkR for 0 
 k � p. The category Tp
� mod

Zp

0 -R of finite

dimensional Zp-graded R-modules has p simples k � � n 	 � , 0 
 n � p,

arising from the simple R-module k � R � � x � by grading shift. Again,

we have Serre duality, where τ is given by grading shift M �� M � � � 1 	 � .
In particular, τ has period p. Note that Tp has no tilting object.
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Example 2.8. There are further hereditary categories with Serre du-

ality not covered by the present framework. Such categories arise for

instance in the investigation of surface singularities. Here, we deal

only with the most basic example. A detailed investigation is be-

yond the scope of this survey. Let R � k � � x, y � � be the ring of for-

mal power series in two indeterminates. Let mod-R (resp. mod0-R)

denote the category of all finitely presented (resp. all finite length)

modules over R. Then the quotient category H � mod-R � mod0-R is

a hereditary abelian category which is noetherian and satisfies Serre

duality D Ext1 � X,Y � � Hom � Y,X � . Here D refers to Matlis-duality

HomR � � , E � k � � with E � k � the injective hull of the simple R-module k.

Note for this example that morphism and extension spaces are reflexive

R-modules, that is, the canonical morphism into the Matlis-bidual is an

isomorphism, but they are usually not finitely generated R-modules.

All the categories H, mentioned so far, are additionally noetherian,

meaning that each ascending sequence of subobjects � Un � of an object

E of H becomes stationary. Noetherianness is however not typical

for a hereditary abelian category H with Serre duality. Just note

that the category Hop, opposite to H, is again hereditary abelian

with Serre duality and, for the examples above, therefore an artinian

category, that is, descending chains of subobjects become stationary.

With the exception of Example 2.7 none of these opposite categories

is noetherian. A hereditary abelian category with Serre duality not

having any simple object, hence not being noetherian nor artinian, is

obtained as follows.

Example 2.9. Let Λ be the path algebra of a wild connected quiver
�∆, that is, we assume that the underlying connected graph ∆ is neither

Dynkin nor extended Dynkin. Then mod-Λ � � P � Λ � � R � Λ � � � I � Λ �

is a cut in mod-Λ (see Section 7), where P � Λ � , R � Λ � and I � Λ � respec-

tively are the full subcategories consisting of all preprojective, regular

or preinjective Λ-modules. Within the derived category we form the full

subcategory

H � Λ � � I � Λ � � � 1 � � P � Λ � � R � Λ � .

The category H � Λ � is abelian hereditary with Serre duality. There does

not exist any simple object in H � Λ � : Assume that S is simple in H � Λ � .

Since Λ is wild and τ is an equivalence of H � Λ � , the objects τnS, n �

0, are pairwise non-isomorphic simple objects. Since Hom � S, τnS � is
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nonzero for large n, implying S � τnS by Schur’s lemma, we get a

contradiction.

3 Repetitive shape of the derived category

A main reason for the interest in hereditary categories is the very simple

form of its derived category. By definition, the bounded derived category

DbH is obtained from the category of bounded complexes in H by

formally inverting all quasi-isomorphisms, that is, those isomorphisms

inducing isomorphisms for (co)-homology in each degree. DbH carries

the structure of a triangulated category. We refer to [27] and [14]

for further information on derived and triangulated categories. For

any abelian category A its repetitive category RepH � �
n � Z A � n �

is the additive closure of the union of disjoint copies A � n � of A,

objects written in the form A � n � (A in A), with morphisms given

by Hom � A � m � , B � n � � � Extn � m � A,B � and composition given by the

Yoneda product of extensions. Identifying A � n � with the complexes

with cohomology concentrated in degree n, the repetitive category is a

full subcategory of the bounded derived category DbA of A. Moreover,

with the present notation, the translation functor for the derived

category sends A � m � to A � m 	 1 � . Each object X in the repetitive

category of A has the form X � 

n � Z Xn � n � where Xn � A and only

finitely many Xn’s are non-zero.

Theorem 3.1. Let H be an abelian hereditary category. Then the repet-

itive category RepH and the bounded derived category DbH are naturally

equivalent.

Proof. Let X be a bounded complex, being zero in degrees � n. As

usual let Bn (resp. Zn � 1) be the image (resp. the kernel) of Xn � 1 d
 �
Xn. Let X � denote the complex obtained from X by replacing Xn by 0

and Xn � 1 by Zn � 1. We are going to show that X is quasi-isomorphic to

X � �
HnX � n � which by induction implies the claim. Since H is hereditary,

the epimorphism c : Xn � 1 � Bn, induced by d, induces an epimorphism

Ext1 � HnX,Xn � 1 � � Ext1 � HnX,Bn � . We thus obtain a commutative
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diagram with exact diagonals

0

++��
���

0

0

++��
���

Bn

,,�����
f

--��
��

0

� � � �� Xn � 3
d �� Xn � 2

d ��
a
++

Xn � 1

c ,,���� d ��
e
--��

��
Xn ��

..�����

h

++�
��

� 0

Zn � 1

���
�

���
�

b ..����
X̄n

g

//�
��

�

c̄ 00����
HnX

���
��

�

0

..�����
Zn � 1

b̄ ,,����
HnX

����
����

++��
���

0

0

11     
0

hence an induced diagram of complexes

X � � � �� Xn � 3
d �� Xn � 2

d �� Xn � 1
d �� Xn �� 0

X̄

α
��

β��

� � � �� Xn � 3
d �� Xn � 2

� 0

a �
�� Xn � 1 � Zn � 1

�
1,b � ��

�
0,1 ���

�
e,0 � �� X̄n

c̄

��

g
��

�� 0

X � � HnX � n 	 � � � �� Xn � 3
d �� Xn � 2

a �� Zn � 1
0 �� HnX �� 0

with quasi-isomorphisms α and β. The claim follows.

For any abelian category A the Grothendieck group K0 � A � of A with re-

spect to short exact sequences is canonically isomorphic to the Grothen-

dieck group of the bounded derived category DbA with respect to ex-

act or distinguished triangles: Since short exact sequences in A yield

exact triangles in DbA, identification of A with complexes in DbA con-

centrated in degree zero induces a morphism i 
 : K0 � A � � K0 � DbA �
sending the class of X in A to the class of X in K0 � DbA � . Conversely,

to a complex C � � Cn � in DbA we assign the element 

n � Z � � 1 � n � Cn �

of K0 � A � . Due to the shape of mapping cones this assignment is addi-

tive on exact triangles in DbA, and yields the desired inverse of i 
 . For

a hereditary category H, where RepH � DbH, the class of an object

X � �
n � Z Xn � n � , with Xn � H, is identified with 


n � Z � � 1 � n � Xn � in

K0 � H � .
Assume now that H is an Ext-finite hereditary category with Serre dual-

ity. In the sequel we will need the Euler form
� � , � � : K0 � H � � K0 � H � �

Z, which is the bilinear form on K0 � H � given on classes of objects by

the expression
� � X � , � Y � � � dimk Hom � X,Y � � dimk Ext1 � X,Y � . Be-

cause of Serre duality the Euler form satisfies
�
x, y � � � �

y, τx � for all

x, y � K0 � H � . Note that here and later we denote the isomorphism

induced by τ on K0 � H � by the same letter.
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4 Perpendicular categories

Assume k is an algebraically closed field. An object E of an abelian

k-category C is called exceptional if End � E � � k and Extn � E,E � � 0

for all n � 1. Similarly, an object E of a triangulated k-category is

called exceptional if End � E � � k and Hom � E,E � n � � � 0 for each non-

zero integer n. The proper framework for forming the left (resp. right)

perpendicular category E � (resp. � E) of an exceptional object E are the

triangulated categories. For a hereditary category H and E exceptional

in DbH, these constructions reduce to the analogous constructions for

H. As general reference for this section we refer to [4] and [13].

We start with some remarks on canonical morphisms in k-categories,

respectively triangulated k-categories. Fix an object E. For each

finite dimensional vector space V and object E of H we write

V � E for Edim V . Since, obviously, V � E represents the functor

X �	 Homk � V,Hom � E,X � � , the tensor product V � E is functorial

in V . It is then easily checked that there are natural isomorphisms

Hom � X,V � E � � V � Hom � X,E � , where all tensor products are taken

over k.

Lemma 4.1. For each pair of objects E and X in H there is a

canonical morphism κ : Hom � E,X � � E 	 X such that for any

F 
 H the application of Hom � F, � � induces the composition map

Hom � E,X � � Hom � F,E � 	 Hom � F,X � , u � v �	 u � v.

Proof. Let u1, . . . , un be a k-basis of Hom � E,X � , and let κ be the

morphism � u1, . . . , un � : En 	 X.

We need a variant for triangulated categories. Let E and X

be objects of DbH. Define Hom 
 � E,X � � E as the direct

sum �
n � Z Hom � E � n � , X � � E � n � , yielding a canonical morphism

κ : Hom 
 � E,X � � E 	 X which combines the canonical morphisms

κn : Hom � E � n � , X � � E � n � 	 X to a single morphism. Note, that in the

present context the direct sum above has only finitely many non-zero

terms. Let E be an object of DbH. The full subcategory E � of all

objects X of DbH such that Hom � E � n � , X � � 0 for each integer n is a

triangulated subcategory of DbH, that is, if two terms of an exact trian-

gle of DbH belong to E � then so does the third. More can be said in the

case when E is exceptional. Up to translation we may then assume that

E belongs to H and then form the category H � � H � E � of all objects
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X of H satisfying the conditions Hom � E,X � � 0 � Ext1 � E,X � . Since

H is hereditary, H � is a full exact subcategory of H, hence an abelian

category in its own right and moreover hereditary. It is then easy to

check that E � � DbH � . For each X in DbH put EX
� Hom � � E,X � � E,

and let κ : EX � X be the canonical morphism. Since E is exceptional,

we have Hom � E � n 	 , EX � � Hom � E � n 	 , X � � End � E � n 	 � , hence the

map Hom � E � n 	 , κ � : Hom � E � n 	 , X � � End � E � n 	 � � Hom � E � n 	 , X � ,
u � v 
� u � v, is an isomorphism for each integer n. Hence the

third term �X of the triangle EX
κ� � X

α� � �X � EX � 1 	 belongs

to the right perpendicular category E � . Moreover, for any object Y

in E � application of Hom � 
 , Y � to the triangle above shows that α

induces an isomorphism Hom � �X, Y � �� Hom � X,Y � which is clearly

functorial in Y . Therefore the inclusion E � � � DbH admits a left

adjoint � : DbH � E � . It is then not difficult to show that � is an exact

functor, yielding the following result due to [4].

Proposition 4.2. Let E be an exceptional object of DbH. Then E �
is a triangulated subcategory of DbH and the inclusion i : E � � DbH

admits a left adjoint � which is an exact functor.

The following consequence is the basis for “perpendicular induction”

with respect to the rank of the Grothendieck group.

Corollary 4.3. Let E be an exceptional object of H. Let H � be the right

perpendicular category of E formed in H. Then the inclusion functor

admits a left adjoint � : H � H � . Moreover, K0 � H � � Z � E 	 �
K0 � H � � .

5 Exceptional objects

Throughout we assume that H is a hereditary abelian k-category

with finite-dimensional morphism and extension spaces spaces. As

an abelian category with finite dimensional morphism spaces, H

is a Krull-Schmidt category, that is, each object of H is a finite

direct sum of indecomposable objects with local endomorphism

ring. Due to Proposition 3.1 the Krull-Schmidt property also holds in

DbH. The next result is fundamental and due to Happel and Ringel [23].

Proposition 5.1. Let E and F be indecomposable objects of H such



116 H. Lenzing

that Ext1 � F,E � � 0. Then each nonzero morphism f : E � F is a

monomorphism or an epimorphism. In particular, each indecomposable

object E without self-extensions is exceptional.

Proof. Represent f as the composition f � � E p
� F � i� � F � of an epi-

morphism p and a monomorphism i, and form the short exact sequence

η : 0 � F � i� � F � F 	 � 0. Since H is hereditary, p induces an epi-

morphism Ext1 � F 	 , E � � Ext1 � F 	 , F � � . Hence η is the push-out along

p of a short exact sequence µ 
 Ext1 � F 	 , E � . The push-out diagram

µ : 0 � � E
j� � X � � F 	 � � 0

p
� �

q � �
η : 0 � � F � i� � F � � F 	 � 0

yields a short exact sequence 0 � E
� j

p �� � X



F �
�
q, � i �� � F � 0. By

the assumption Ext1 � F,E � � 0 this sequence splits such that E



F �
X



F � . The Krull-Schmidt property then implies that X and F � are

also indecomposable. Moreover, we obtain a splitting morphism � α, β � :

X



F � � E such that αj � βp � 1E . Since E has a local endomorphism

ring, αj or βp is an isomorphism. It follows that p is an isomorphism,

and then f is a monomorphism, or else that j is an isomorphism (use

that X is indecomposable), and then F 	 � 0 implying that f is an

epimorphism.

Corollary 5.2. Let E and F be exceptional objects of H and as-

sume Ext1 � F,E � � 0. Then at most one of the terms Hom � E,F � and

Ext1 � E,F � is non-zero.

Proof. We assume that there is a non-zero morphism f : E � F .

By the proposition f is a monomorphism or an epimorphism. In the

first case f induces an epimorphism 0 � Ext1 � F, F � � Ext1 � E,F �
whereas in the second case we obtain an epimorphism 0 � Ext1 � E,E � �
Ext1 � E,F � . In either case therefore Ext1 � E,F � � 0.

Exceptional objects for hereditary categories have a somehow combina-

torial flavor due to the next proposition. Note that — different from

the module case — it may happen that a non-zero object of H has a

trivial class in the Grothendieck group. The next result is due to [25,

Lemma 4.2], see also [39, Prop. 4.4.1].

Proposition 5.3. Each exceptional object E of H is determined by its

class � E � in the Grothendieck group K0 � H � .



Hereditary categories 117

Proof. Let E and F be exceptional objects with � E � � � F � . Then

0 � � � E � , � E � � � � � E � , � F � � , and hence there exists a non-zero morphism

f : E � F whose kernel and image we denote by E � and F � , respec-

tively. We claim that f is an isomorphism and assume, for contradic-

tion, that E � is non-zero. The assumption implies that Hom � F � , E 	 � 0:

Otherwise there exists a nonzero morphism g : F � � E and the com-

position E � F � g
 � E yields a non-trivial endomorphism, hence an

automorphism, of E. It then follows that the morphism E � F � ,
induced by f , is an isomorphism, contradicting E � � 0. We have

shown that the assumption E � � 0 implies Hom � F � , E 	 � 0. Fur-

ther, since H is hereditary the embedding F � � � F induces an epi-

morphism 0 � Ext1 � F, F 	 � Ext1 � F � , F 	 implying Ext1 � F � , F 	 � 0.

We thus obtain
� � F � � , � E � � � 
 dim Ext1 � F � , E 	 � 0 and

� � F � � , � F � � �
dim Hom � F � , F 	 � 0. Since the classes of E and F agree, we get

0 � � � F � � , � E � � � � � F � � , � F � � � dim Hom � F � , F 	 , hence Hom � F � , F 	 � 0,

contradicting f � 0. We have thus shown that there exists a monomor-

phism f : E � F . Similarly, there exists a monomorphism g : F � E

yielding non-zero endomorphisms, hence automorphisms, f � g and g � f

of F resp. E. Therefore f and g are isomorphisms and the claim fol-

lows.

6 Piecewise hereditary algebras and Happel’s theorem

We say that T � DbH is a tilting complex for a hereditary category H if

� i 	 Hom � T, T � n � 	 � 0 for each non-zero integer n and,

� ii 	 for each X � DbH the condition Hom � T,X � n � 	 � 0 for each integer

n implies that X � 0.

The following result is fundamental for the study of piecewise hereditary

algebras.

Theorem 6.1. Let H be a small hereditary abelian k-category with finite

dimensional morphism and extension spaces. We assume that T is a

tilting complex for H. Then the full subcategory M of all subobjects

X of DbH, satisfying Hom � T,X � n � 	 � 0 for each non-zero integer n,

is an abelian category, equivalent to the category of finite dimensional

modules over Λ � End � T 	 . Moreover, a sequence η : 0 � M � u
 � M
v
 �

M � � 0 is exact in M if and only if M � u
 � M
v
 � M � η
 � M � � 1 � is
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an exact triangle in DbH and, further, we have natural isomorphisms

Extn
M � M,X � � HomDbH � M,X � n � � for all M,X � M and integers n.

Further, Λ has finite global dimension, and there is an equivalence

DbH � Dbmod-Λ of triangulated categories. Also DbH satisfies Serre

duality.

Proof. For M in M let κ : T a � M denote a morphism whose

components κ1, . . . , κa form a k-basis of Hom � T,M � , implying that

Hom � T, κ � : Hom � T, T a � � Hom � T,M � is surjective. We extend κ to an

exact triangle N � T a κ� � M � N � 1 � . We claim that N also belongs to

M and that, moreover, the sequence 0 � Hom � T,N � � Hom � T, T a � �
Hom � T,M � � 0 is exact. The assertion follows immediately by apply-

ing Hom � T � n � , � � to the above triangle, keeping in mind that M belongs

to M and that Hom � T, κ � is surjective. Applying the same argument

to N yields a sequence T b � T a � M inducing an exact sequence

Hom � T, T b � � Hom � T, T a � � Hom � T,M � � 0.

Starting with two such sequences T b 	 � T a 	 � M 
 and T b � T a � M

(for M and M 
 from M) it follows that each morphism f : M 
 � M

extends to a commutative diagram

T b 	 u 	� � T a 	 v 	� � M 
�
h

�
g

�
f

T b u� � T a v� � M

where f is zero if and only if g lifts to T b via u.

To sum up: Let T be the set of all T n, n � 0. Then M can be viewed

as the category of morphisms in T where a morphism from u 
 : X 
 � Y 

to u : X � Y (all terms in T ) is given by a commutative square

X 
 u 	� � Y 
�
h

�
g

X
u� � Y

where we identify two such squares if they differ by a morphism from

Y 
 to Y lifting to X. That is, M is naturally equivalent to the category

of homotopy squares in T . Note that T is equivalent to the category F

of all finitely generated free Λ-modules. It is well known, and easy to

prove, that the category of all homotopy squares in F is equivalent to the

category of all finite dimensional Λ-modules. It follows that the functor
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Hom � T, � � yields an equivalence M �� � mod-Λ sending the projective

generator T of M to Λ.

We now deal with the relationship between exact sequences in M and

exact triangles in DbH. Assume first that M � u� � M
v� � M � w� �

M � � 1 	 is an exact triangle in DbH where M � , M and M � belong to

M. Applying Hom � T, � � yields an exact sequence 0 � Hom � T,M � � �
Hom � T,M � � Hom � T,M � � � 0 in mod-Λ, proving that 0 � M � �

M � M � � 0 is exact in M. Next, assume that η : 0 � M � u 
� �

M
v� � M � � 0 is a short exact sequence in M. We claim that M � u 
� �

M
v� � M �

η
� � M � � 1 	 is an exact triangle in DbH. To show this we

complete M
v� � M � to an exact triangle K

u� � M
v� � M � w� � K � 1 	

in DbH. Invoking that T is a projective generator in M and applying

Hom � T, � � to the above triangle shows that K belongs to M and that,

moreover, the sequence 0 � K
u� � M

v� � M � � 0 is exact in M,

hence isomorphic to the sequence η. Since Yoneda composition agrees

with the composition in the derived category this proves the relationship

between short exact sequences in M and exact triangles with members

from M.

By means of short exact sequences 0 � N � P � M � 0 with M � M

and P projective in M, that is, P lying in the addivive closure of T ,

we obtain natural isomorphisms Ext1M � M,X � � HomDbH � M,X � 1 	 � for

each X � M. Invoking dimension shift Ext1M � M,X � � HomDbH � N,X �
for X � M we obtain inductively natural isomorphisms Extn

M � M,X � �

HomDbH � M,X � n 	 � for all M,X � M. The finitely many simple objects

S1, . . . , Sn from M 
 mod-Λ belong to a finite number r of consecutive

copies H � m 	 ,H � m � 1 	 , . . . ,H � m � r � 1 	 . It follows that Extr � 1 � Si, Sj � �

Hom � Si, Sj � r � 1 	 � � 0 for all i, j, hence gl.dim Λ � r.

We finally show that M and DbH are derived-equivalent. By a re-

sult of [18] H has a tilting object T1, hence is derived-equivalent to

mod-Λ1, where Λ1
� End � T1 � by an argument of Beilinson [2], compare

[12, Theorem 3.2]. Hence T becomes a tilting complex in Dbmod-Λ1,

and Rickard’s theorem [44] implies that mod-Λ and mod-Λ1 are derived

equivalent, implying the derived equivalence of H and mod-Λ. Since Λ

has finite global dimension and Dbmod-Λ has Auslander-Reiten trian-

gles and Serre duality by a theorem of Happel [15, chap. I, Prop. 4.10],

this proves the last claim.

A tilting complex for H whose members belong to H is just a tilting ob-
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ject of H. This situation is particularly easy to describe and historically

was the starting point of tilting theory. For a tilting object T in H we

form the full subcategories T (resp. F) of H consisting of all objects X

(resp. Y ) of H satisfying Ext1 � T,X � � 0 (resp. Hom � T, Y � � 0). Clearly

we have Hom � T ,F � � 0. Obviously, T � M � H, F � 1 � � M � H � 1 � and

M � H � n � � 0 for n � 0, 1. We thus obtain a transparent interpretation

of the module category mod-Λ.

Corollary 6.2 ([23, 5]). Let T be a tilting object of a small hereditary

abelian Ext-finite k-category H. Then M � T � F � 1 � . Moreover, for

each X in H there is a short exact sequence 0 � XT � X � XF � 0

with XT 	 T and XF 	 F .

Proof. Only the last assertion needs a proof. Let XT
� Hom � T,X � 
 Λ

X. (This makes sense since H is abelian.) The natural morphism κ :

XT � X induces an isomorphism Hom � T, κ � . Applying Hom � T, � � to

the triangle XT
κ� � X � Y � XT � 1 � proves that Hom � T � n � , Y � 1 � � � 0

for each n � 0 such that Y � 1 � belongs to M, and thus Y � U � � 1 � 


V where U 	 T and V 	 F . Since Hom � T � � 1 � , Y � � 0 we obtain

Hom � T,U � � 0, and hence U � 0. We conclude that Y belongs to

F ; in particular the three terms XT , X and Y belong to H. Hence

0 � XT
κ� � X � Y � 0 is exact in H and satisfies the claim.

A finite dimensional algebra Λ is called piecewise hereditary if there

exists a hereditary k-category H with finite dimensional morphism and

extension spaces and a tilting complex T for H such that Λ is isomorphic

to the endomorphism algebra of T . Λ is called quasitilted if, moreover,

T is a tilting object of H. In this context, Happel’s theorem [17], which

has a difficult proof, shows that, up to derived equivalence, there are

only two classes of hereditary categories.

Theorem 6.3 (Happel’s theorem). Let k be an algebraically closed

field and H be a connected, Ext-finite, hereditary, abelian k-category with

a tilting complex. Then H is derived equivalent to the category mod-H

for some finite dimensional hereditary k-algebra or to the category coh X

of coherent sheaves over a weighted projective line.
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7 Derived equivalence of hereditary categories

We assume that H is a hereditary category such that H, and hence DbH,

has Serre duality. (We allow that H has projectives or injectives.) By τ

we denote the Auslander-Reiten translation in DbH, where Serre duality

takes the form D Hom � X,Y � 1 � � � Hom � Y, τX � with τ a self-equivalence

of DbH.

A decomposition H � A � B is called a cut of H if Hom � B,A � � 0 and

Hom � B, τA � � 0. The second assumption follows from the first if A is

closed under τ or B is closed under τ
� 1. The next proposition is taken

from [21].

Proposition 7.1. Let H � A � B be a cut in a hereditary category H

with Serre duality. Then the full subcategory H̄ � B � A � 1 � of DbH is

an abelian hereditary category which is derived-equivalent to H.

There is a partial converse with an obvious proof.

Proposition 7.2. Assume H and H̄ are hereditary categories which

are derived equivalent allowing us to identify RepH and Rep H̄. We

assume that the equivalence is normal in the sense that H̄ is lying in two

consecutive copies of H, say H̄ � H � H � 1 � . We put A � H � H̄ and

B � H � H̄ � 	 1 � . Then H � B � A is a cut of H, and H̄ � A � B � 1 � .
The hypothesis for the equivalence to be normal is automatically true

if H (or H̄) is hereditary noetherian with Serre duality. On the other

side it is easily seen that there are selfequivalences of DbH, where H �
mod-k � 
 � 
 � 
 � , which are not normal.

8 Modules over hereditary algebras

Let A be a finite dimensional k-algebra. By Hölder’s theorem the classes

of simple modules S1, S2, . . . , Sn form a Z-basis of the Grothendieck

group K0 � A � � K0 � mod-A � . We thus identify K0 � A � and Zn, and also

speak of the dimension vector dimM instead of the class � M � of an A-

module M . If A is hereditary K0 � A � is equipped with the Euler form

which induces the Tits quadratic form qA on K0 � A � with qA � x � � �
x, x 
 .

We call x � K0 � A � � Zn a root of qA if qA � x � � 1. We call x a positive

root if, moreover, x � Nn.
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8.1 The representation-finite case

A finite dimensional k-algebra A is called representation-finite if — up to

isomorphism — there is only a finite number of finite-dimensional inde-

composable modules. By a theorem of Auslander, then any A-module

is a possibly infinite direct sum of indecomposables. The next theo-

rem [10] is famous, in particular, since it links representation theory of

finite dimensional algebras with Lie theory. For the proof we refer to [3].

Theorem 8.1 (Gabriel’s theorem). Let H � k � �∆� be the path algebra

of a finite connected quiver �∆ without oriented cycles. Then the following

holds:

� i � H is representation-finite if and only if the underlying graph ∆ is a

Dynkin diagram, that is, is of type An, Dn (n � 4), E6, E7 or E8.

� ii � In this case, each indecomposable H-module E has the form τ
� nP ,

with P indecomposable projective, in particular E is exceptional.

� iii � The Tits quadratic form qH associated to H is positive definite.

Moreover, the mapping E �� dimE, sending a module to its dimension

vector, establishes a bijection between the set of isomorphism classes of

indecomposable H-modules and the set of positive roots of the Tits form

qH .

8.2 The tame case

By definition, a connected quiver �∆ is called tame if the quadratic form

qH associated to H � k � �∆ � is positive semidefinite but not positive

definite. This holds true exactly if ∆ is an extended Dynkin diagram.

Recall that the associated Dynkin diagram ∆ 	 is a star � p, q, r � satisfying

1 
 p � 1 
 q � 1 
 r � 1, called the Dynkin type of �∆. Thus 
Apq has type

� 1, p, q � or just type � p, q � , 
Dn (n � 4) has type � 2, 2, n � 2 � , and 
E6,


E7 or 
E8 have types � 2, 3, 3 � , � 2, 3, 4 � and � 2, 3, 5 � , respectively. If ∆ is

extended Dynkin there exists a unique positive integral valued function

λ on the set ∆0 of vertices of ∆ which is additive, that is, for p � ∆0

the value 2λ � p � agrees with the sum �
q–p λ � q � , extended over all neigh-

bors q of p, and normalized, that is, λ � p � � 1 for some vertex p. For

each p � ∆0 let P � p � be the indecomposable projective right H-module

associated to the vertex p. The unique linear form r : K0 � H � � Z

satisfying r � � P � p � � � � λ � p � is called rank. The rank is invariant under

the Coxeter transformation Φ, the unique endomorphism of K0 � H � with
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�
y, x � � � �

x,Φy � for all x, y.

Theorem 8.2. Let �∆ be a tame quiver of type � p, q, r � and H � k � �∆ � .
Let P, R and I denote the additive closure of all indecomposable H-

modules of rank � 0, � 0 or � 0, respectively. Then the following holds:

� i 	 There is a trisection mod-H � P 
 R 
 I in the subcategories of

preprojective, regular and preinjective modules.

� ii 	 The indecomposables of P, called preprojective, are exactly the mod-

ules τ
� mP , where P is indecomposable projective and m � 0. The inde-

composable preprojective modules form a single Auslander-Reiten com-

ponent.

� ii 	 The indecomposables of I, called preinjective, are exactly the mod-

ules τmI, where I is indecomposable injective and m � 0. The indecom-

posable preinjective modules form a single Auslander-Reiten component.

� iii 	 The indecomposables of R, called regular, form a 1-parameter fam-

ily � Tx 	 of tubes, naturally indexed by the points of the projective line

P1 � k 	 � k 
 � � � , and such that Tx is homogeneous, that is, fixed under

τ , for x � � 0, 1, � � , and Tx has τ -period p, q or r, according as x � 0, 1

or � .

� iv 	 Each morphism f : P � Q with P � P and Q � I factors through

any given tube Tx.

For the proof we refer to [46], an alternative proof, using weighted

projective lines, can be based on Theorem 10.14.

8.3 The wild case

A connected quiver �∆ and the path algebra H � k � �∆� are called wild if

the quadratic form qH is indefinite. As in the tame case an indecompos-

able module is called preprojective (resp. preinjective) if it is of the form

τ
� nP (resp. τnI), where P is indecomposable projective, I is indecom-

posable injective, and n � 0. An indecomposable H-module is called

regular if it is not preprojective nor preinjective. For the next theorem

we refer to [45] and [28].

Theorem 8.3. Let �∆ be a wild connected quiver. Then there is a tri-

section mod-H � P 
 R 
 I, where P, I and R is, respectively, the

additive closure of all preprojective, preinjective or regular H-modules.

Moreover,
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� i � The preprojective (resp. the preinjective) indecomposable modules

each form a single Auslander-Reiten component, the preprojective (resp.

preinjective component).

� ii � The indecomposable regular modules decompose into components Cx,

each of type ZA � , where x belongs to some index set X.

� iii � If X and Y are indecomposable regular, then Hom � X, τnY � � 0 for

n � 0.

Very little is known or conjectured about the, perhaps geometric, struc-

ture of the index set X � X � H � parametrizing the regular components

for a wild hereditary algebra H. It should perhaps be imagined to be

a huge, exotic and complicated space. Some indication on the impor-

tance of X � H � is given by the existence of so called Kerner bijections:

If H and H � are connected, wild hereditary algebras there exist natural

bijections X � H � � X � H � � , see [6].

9 Spectral properties of hereditary categories

Let H be a connected hereditary k-category with a tilting object. By

Happel’s theorem H is derived equivalent to a module category mod-H,

H a hereditary k-algebra, or to a category coh X of coherent sheaves

on a weighted projective line. The easiest way to decide which of the

two cases happens, is to determine the Coxeter polynomial chH of H,

defined as the characteristic polynomial of the Coxeter transformation,

that is, the Z-linear map K0 � H � � K0 � H � induced by the Auslander-

Reiten translation in DbH. By definition, the Coxeter polynomial is

thus a derived invariant of H.

Proposition 9.1. Let H be a connected hereditary k-category with a

tilting object. Then the following holds:

� i � If H � coh X is the category of coherent sheaves on a weighted pro-

jective line of weight type � p1, . . . , pt � , then all roots of

chH � x � � � x � 1 � 2
t	

i 
 1

xpi � 1

x � 1

lie on the unit circle and, moreover, 1 is a root of chH.

� ii � Assume H � mod-H for a finite dimensional connected hereditary

k-algebra. Then

� a � If H is representation-finite, then all roots of chH lie on the unit
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circle, and 1 is not a root.

The Coxeter transformation ΦH is periodic, and its period p is the Cox-

eter number of ∆, given as p � n � 1 for An, 2 � n � 1 � for Dn and 12, 18

and 30 for E6, E7 and E8, respectively.

� b � If H is tame with associated Dynkin type � p, q, r � , then

chH � x � � � x � 1 � 2 xp � 1

x � 1
� xq � 1

x � 1
� xr � 1

x � 1
.

� c � If H is wild hereditary, then the spectral radius ρH
� max � 	 z 	 	 z 


C, chH � z � � 0 � of the Coxeter transformation is � 1 and, moreover,

ρH is a simple root of chH .

Proof. For � i � we refer to [34] and [31]. By Corollary 10.15 the category

of coherent sheaves of weight type � p, q, r � , 1 
 p � 1 
 q � 1 
 r � 1, and

the category of modules over a connected tame hereditary algebra of

type � p, q, r � are derived equivalent, hence � ii � � b � is a special case of � i � .
Assertion � ii � � a � is a well known result from Lie theory, and besides

easily established directly. Finally, � ii � � c � is due to Ringel [47].

For the path algebra H � k � �∆ � of a wild connected quiver with bipar-

tite orientation, that is, each vertex of �∆ is either a sink or a source,

there is additional information on the spectral behavior: In this case

all roots of chH are either real or lie on the unit circle. For wild quiv-

ers in general this assertion is not correct as shows the following quiver
� ������

�
��� ������

�
������ �� � ������

�

While it is easy to decide whether a polynomial appears as the Coxeter

polynomial for a weighted projective line, no manageable criterion is

known to decide the analogous question for hereditary algebras. Many

questions in this field are still open.

10 Weighted projective lines

10.1 Hereditary categories with a tilting object

It is natural to aim for a classification of hereditary categories — if

wanted with further properties — up to derived equivalence. In general

this task is difficult and only partial solutions are known. If we assume

the existence of a tilting object then, by Happel’s theorem 6.3, there are

only two cases to consider, the categories mod-Λ for a finite dimensional
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hereditary algebra and the categories coh X of coherent sheaves on a

weighted projective line X.

Weighted projective lines were introduced by Geigle-Lenzing in [12] to

analyze the interaction between preprojective and regular modules for

tame hereditary algebras and to relate Ringel’s classification of indecom-

posable modules over tubular algebras [46] to Atiyah’s classification [1]

of coherent sheaves over an elliptic curve. A weighted projective line X is

defined through its attached category coh X of coherent sheaves which is

a natural generalization of the category of coherent sheaves on the pro-

jective line, but allowing a finite number of points x having more than

one simple sheaf (always a finite number p � x � � 1) to be concentrated

in x. We will see that the classification problem for indecomposables

for H � coh X mainly depends on a homological invariant, the Euler

characteristic χH of H (or X).

It may happen that a category coh X, X a weighted projective line,

and a category mod-H, H a connected finite dimensional hereditary

algebra, are derived equivalent. Actually this is going to happen exactly

for the tame hereditary algebras Λ and the weighted projective lines of

positive Euler characteristic. An overview of the situation is given by

the following picture, which is up to derived equivalence:

coh X

χX � 0

type: wild

coh X

χX � 0

type: tame tubular

mod-H

H representation-finite

mod-H � der coh X

H tame hereditary

χX � 0

type: tame domestic

mod-H

H wild hereditary

Fig. 6.1. Hereditary categories with a tilting object
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10.2 Generalities

Let k be an algebraically closed field. By a category of coherent sheaves

coh X on a weighted projective line X we mean in the sequel a small

k-category H satisfying the axioms (H 1) to (H 7) below. Before stating

the last three axioms, we prove some consequences of the first four ones.

(H 1) H is a connected abelian k-category, and each object in H is

noetherian.

(H 2) H is (skeletally) small and Ext-finite, that is, all morphism and

extension spaces in H are finite dimensional k-vector spaces.

(H 3) (Serre duality) We assume the existence of an equivalence

τ : H � H and of natural isomorphisms D Ext1 � X,Y � � Hom � Y, τX �
for all objects X, Y of H.

(H 4) H is noetherian, but not every object of H has finite length.

Assumptions (H 1) – (H 3) imply that the abelian category H is heredi-

tary, that is, extension spaces Extd
H � X,Y � vanish in degree d � 2. This

holds since Serre duality in the form (H 3) implies that Ext1 � X, � � is a

right exact functor for each X. As another consequence of Serre dual-

ity, for each indecomposable object X there is an almost split sequence

0 � τX � Z � X � 0; in particular, τ serves as the Auslander-Reiten

translation. Since τ is an equivalence, moreover, H does not have any

nonzero projective or injective objects.

We denote by H0 the full subcategory of H consisting of all objects of

finite length. Further H � denotes the full subcategory of H consisting

of all objects without a simple subobject. By definition there are no

nonzero morphisms from (any object of) H0 to (any object of) H � .

Proposition 10.1. Assume (H 1)–(H4). Then each indecomposable

object from H either belongs to H � or to H0. Moreover, for some index

set C we have H0
� � x � C Ux, where each Ux is a connected uniserial

length category of τ -period p � x � which may be finite or infinite. If H has

a tilting object, then p � x � is always finite, and there are at most finitely

many x 	 C with p � x � 
 1.

Proof. For an indecomposable object X let X0 denote its maximal sub-

object of finite length. We claim that Ext1 � X � X0, X0 � � 0. Otherwise

by Serre duality Hom � τ � 1X0, X � X0 � is non-zero, contradicting maxi-
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mality of X0. Hence the sequence 0 � X0 � X � X � X0 � 0 splits,

establishing the first claim. We now are going to prove the second as-

sertion. The category H0 is a length category, that is, H0 is abelian and

each of its objects has finite length. Moreover, as an exact extension-

closed subcategory of H, the category H0 is hereditary with τ acting

as an equivalence; it follows that for each simple object S of H0, that

is, of H, there is — up to isomorphism — exactly one simple S � (S � )

with Ext1 � S, S � � � 0 (Ext1 � S � , S � � 0, respectively) and, moreover, the

extension spaces in question are of dimension one over End � S � . As in

Proposition 10.1 it follows from [11, 8.3] that H0 is uniserial, meaning

that each indecomposable object in H0 has a unique composition series.

For the last assertion one uses that K0 � H � has finite rank over Z if H

has a tilting object.

The members of the index set C are called the points of H, notation

C � C � H � . The objects of Ux are said to be concentrated in x. The

indecomposable objects of Ux form a tube as in Example 2.7. By the

simples of the tube we mean the simple objects of the abelian category

Ux. Objects from H � (respectively those of rank one) are called bundles

(resp. line bundles).

(H 5) There is a linear form rk : K0 � H � � Z, called rank, that is τ -

invariant, zero on objects of H0, and 	 0 on nonzero objects of H � .

Moreover, H � contains a line bundle.

(H 6) Each tube in H0 has only finitely many simple objects. Moreover,

if L is a line bundle and Ux is a tube in H0, then 

S dimk Hom � L, S � � 1,

where S runs through the simple objects from Ux.

(H 7) H has a tilting object.

Let x1, . . . , xt be the finitely many points of H with pi : � p � xi � 	 1,

then � p1, . . . , pt � is called the weight type of H.

Remark 10.2. The axioms (H 1) to (H 7) focus on important proper-

ties of categories of coherent sheaves on weighted projective lines. Note

however, that they form a redundant system:

� i � Note that H0 is a Serre subcategory of H, that is, is closed un-

der the formation of subobjects, quotients and extensions. Therefore

the quotient category H � H0, obtained from H by formally inverting all

morphisms in H with kernel and cokernel in H0, is an abelian category.

It can be shown [43, IV.1.4] or [36, Prop. 4.9] that each object in H � H0
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has finite length. (The proof, however, is not easy.) Defining rkX as the

length of X in H � H0 then yields a rank function satisfying (H 5).

� ii � Assume (H 1) to (H 4) and (H 7). Then the remaining axioms follow,

see [32].

Note further that properties (H 1) to (H 6) with the additional request

that each tube Ux has exactly one simple object characterize the cat-

egories of coherent sheaves on smooth projective curves, as can be de-

duced from [43].

Lemma 10.3. Any non-zero morphism from a line bundle L to a bundle

E is a monomorphism. In particular, the endomorphism ring End � L �
of a line bundle equals k.

Proof. Let u : L � E be a non-zero morphism. By properties of

the rank, the kernel of u has rank zero, therefore has finite length and

consequently is zero. The second assertion follows from the first because

End � L � has finite dimension over k and has no zero-divisors.

10.3 Shift action associated to a point

This section is an adaptation of a part of [35], dealing with module

categories with separating tubular families, to the present context of

hereditary categories satisfying (H 1)–(H 6). The request (H 7) of a

tilting object is not of relevance, here. Let Sx be a simple object in

Ux. The additive closure Sx of the Auslander-Reiten orbit τ jSx, 1 �
j � p � x � , of Sx consists of all semisimple objects from Ux, hence is a

semisimple abelian category. Therefore each k-linear functor G : Sx �
mod-k is exact and hence representable (by an object from Sx). This

follows from [8, 51] or by a direct argument using that Sx is equivalent

to mod-kp
�
x � . For instance, if G is contravariant, we get G � Hom � � , Z �

with Z 	 
 p
�
x �

j � 1 G � τ jSx � � τ jSx; the covariant case is dual.

When applied to the restriction Ext1 � � , E � 

Sx

of Ext1 � � , E � to Sx, the

argument shows the existence of an object

Ex
	

p
�
x �

�
j � 1

Ext1 � τ jSx, E � � τ jSx

from Sx and a natural isomorphism of functors ηE : Hom � � , Ex � 

Sx

�
Ext1 � � , E � 


Sx
. By means of the Yoneda lemma, we shall view ηE as
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a short exact sequence ηE : 0 � E � E � x � � Ex � 0, Ex � Sx

with the property that Yoneda composition Hom � U,Ex � � Ext1 � U,E � ,
f �� ηE .f with ηE induces an isomorphism for each U in Sx. We

call ηE the Sx-universal extension of E. Notice that the identification

Hom � � , Ex � �
Sx

� Ext1 � � , E � �
Sx

turns the assignment E �� Ex into a

functor such that, for each u : E � N , we obtain u.ηE
� ηN .ux.

Similarly, the restriction Hom � E, � � �
Sx

is representable by an object

Ex from Sx, and the isomorphism Hom � Ex, � � � Hom � E, � � �
Sx

corre-

sponds to a morphism πE : E � Ex, called the Sx-couniversal morphism

for E.

Proposition 10.4 (Shift by a universal extension). For each E �
H � we fix an Sx-universal extension ηE : 0 � E

αE	 � E � x � βE	 � Ex � 0

for E. The following properties hold:

� i � Also E � x � belongs to H � and βE is the Sx-couniversal morphism for

E � x � .
� ii � For each morphism u : E � N in H � , there is a unique morphism

u � x � : E � x � � N � x � yielding a commutative diagram

ηE : 0 � E
αE	 � E � x � βE	 � Ex � 0

u



u � x � 

ux




ηN : 0 � N
αN	 � N � x � βN	 � Nx � 0.

� iii � The arising functor σ �x : H � � H � , E �� E � x � , is an equiva-

lence which preserves the rank and additionally is exact on short exact

sequences 0 � E � � E � E � � 0 with terms from H � .

We are going to see later, see Theorem 10.8, that σ �x extends to a self-

equivalence σx of H.

Proof. � i � : The sequence 0 � Hom � � , E � �
Sx

� Hom � � , E � x � � �
Sx


 �
βE	 �

Hom � � , Ex � �
Sx

ηE	 � Ext1 � � , E � �
Sx

� Ext1 � � , E � x � � �
Sx

Ext1
� 
 ,βE �	 �

Ext1 � � , Ex � �
Sx

� 0 of functors on Sx is exact. By definition of Sx-

universal extensions, ηE is an isomorphism. This shows that E � x � does

not admit nonzero morphisms from Sx, and moreover that Ext1 � � , βE � ,
hence by Serre duality Hom � βE , � � , is an isomorphism thus proving that

βE : E � x � � Ex is Sx-couniversal. Since E belongs to H � , it is further
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obvious that E � x � does not admit any non-zero morphism from Uy, for

y � x, so that E � x � also is a member of H � .

� ii � : Because u.ηE
� ηN .ux, we obtain a commutative diagram

ηE : 0 � E
αE� � E � x � βE� � Ex � 0

u
� � � �

u.ηE
� ηN .ux : 0 � N � X � Nx � 0

� � �
ux

�

ηN : 0 � N
αN� � N � x � βN� � Nx � 0,

allowing to define u � x � : E � x � � N � x � as the composition of the

two vertical maps in the middle. Uniqueness of u � x � follows from

Hom � Ex, N � x � � � 0.

� iii � : For E from H � let πE : E � Ex be the surjective Sx-couniversal

homomorphism. We denote the corresponding kernel by E � 	 x � which

is a member of H � . Clearly, the assignment E 
� E � 	 x � extends to

a functor ρ �x : H � � H � , which by assertion � i � , is a left inverse to

σ �x. To see that ρ �x also serves as a right inverse to σ �x, we start with

some E from H � , and form the sequence ηE : 0 � E � 	 x � � E
πE

� �
Ex � 0 which leads to an exact sequence 0 � Hom � 	 , Ex � �

Sx

ηE

� �
Ext1 � 	 , E � 	 x � � �

Sx
� Ext1 � 	 , E � �

Sx

Ext1
� 
 ,πE �� � Ext1 � 	 , Ex � �

Sx
� 0.

By Serre duality, Ext1 � 	 , πE � corresponds to Hom � πE , 	 � , so is an iso-

morphism, implying that ηE is an Sx-universal extension.

Exactness of σ �x on exact sequences 0 � E � � E � E � � 0 in Hx

follows from inspection of the commutative diagram

0 0 0� � �

ηE � : 0 � E � αE �� � E � � x � βE �� � Ex � 0

u
�

u � x � �
ux

�

ηE : 0 � E
αE� � E � x � βE� � Ex � 0

v
�

v � x � �
vx

�

ηE � : 0 � E � αE �� � E � � x � βE �� � E �x � 0� � �
0 0 0

whose rows and outer columns are exact: for the exactness of the right

column notice that the functor E 
� Ex is exact, and further Ext1 � U, 	 � ,
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with U � Sx, is exact on short exact sequences with terms in H � . The

assertion on exactness follows. It is further obvious from the construc-

tion, that shift E �� E � x � preserves the rank.

The following proposition shows the importance of line bundles for a

study of the category H:

Proposition 10.5. Each E � H � has a filtration 0 � E0 � E1 � � � � �
Er 	 1 � Er

� E with line bundle factors Ei 
 Ei 	 1.

Proof. We argue by induction on the rank r of E. For r � 1 there is

nothing to prove. For r � 1 we get an inclusion L � � E in the quotient

category 
H � H 
 H0 for some line bundle L. (Recall that H and 
H have

the same objects.) By the definition of quotient categories this yields

a nonzero morphism (necessarily monomorphic) L � � � E for some line

bundle L � � L. Consider the exact sequence 0 � L � � E � E 
 L � � 0

and let L̄ 
 L � denote the maximal subobject of E 
 L � having finite length.

Then L̄ is a line bundle contained in E such that E 
 L̄ belongs to H � .

The claim now follows by induction on the rank.

For E � H � we define E � nx � to be � σ �x � n � E � for each n � 0 and to be

� ρ �x � 	 n � E � for n � 0.

Corollary 10.6. Let E and F be in H � and x in C. Then

Hom � E,F � nx � � � 0 and Ext1 � E,F � nx � � � 0 for n � 0.

Proof. In view of the proposition, the two assertions reduce to the

case where E and F are line bundles. The first assertion follows by

observing that
� � E � , � F � nx � � � is unbounded as a function of n. For

the second assertion we invoke Serre duality and use that any non-zero

F � nx � � τE is a monomorphism with cokernel Un from H0. Assume

that Ext1 � E,F � nx � � � 0 for infinitely many n � 0 then the formula� � F � , � F � nx � � � � � � F � , � Un � � � � � F � , � τE � � holding for such n’s yields a

contradiction since its left hand side is unbounded as a function of n.

Proposition 10.7 ([12, Cor. 1.8.3]). There exists a countable gen-

erating family L of line bundles for H, that is, for each object X of H

there exists an epimorphism L1
�

. . .
�

Ln � X with L1, . . . , Ln from L.

Proof. We first collect a finite system L � of line bundles such that for

each simple object S there is a non-zero morphism L � � S with L � � L � .
Note that L � already generates H0. Denote by L � � nx � the system of all
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L � � nx � with L � in L and let L be the union of all L � � � nx � , n � 0. The

preceding corollary implies that L generates H.

For the next statement compare [33, 38, 35], where the context is

however slightly different. Note that we use the notation from Section 4.

Theorem 10.8. The equivalence σ �x : H � � H � extends to a self-

equivalence σx of H and hence of DbH such that for each Y from

DbH there is an exact triangle � p
�
x 	

j 
 1 Hom � � τ jSx, Y � � τ jSx
can
 � Y 
 �

σxY 
 � � p
�
x 	

j 
 1 Hom � � Sx, Y � � τ jSx � 1 � .

Proof. First we construct “functorial resolutions” of objects from H

by objects of H � . Let L be a countable generating family of line

bundles for H. We represent L as the union L0 � L1 � � � � of fi-

nite subsets, each containing a generating system for H0. For each

object Y from H and each n � 0 we form the canonical morphism

En � Y � : � �
L � Ln

Hom � L, Y � � L
βn,Y
 � Y , yielding an exact sequence

0 � Fn � Y � αn,Y
 � En � Y � βn,Y
 � Y

which is functorial in Y . Note that βn,Y is an epimorphism for

n � 0. By construction En � Y � is a direct factor of En � 1 � Y � and

Fn � Y � is a subobject of Fn � 1Y ; moreover the factors En � 1 � Y � � En � Y �
and Fn � 1 � Y � � Fn � Y � belong to H � for n � 0. Next we define σnY as

the cokernel of � Fn � Y � � � x � αn,Y

�
x 	
 � � En � X � � � x � . By the preceding com-

ments αn,Y is a monomorphism and σn � Y � � σn � 1Y for n � 0. Notice

moreover that for any E � H � we have σnE � E � x � for all n and

σnE � E � x � for n � 0. It follows that the sequence � σnY � stabilizes

for each Y � H, that is, we have σY � σnY for large n. The resulting

functor σx � Y � � lim� � σnY is the wanted extension of σ �x to H.

10.4 Normal form of tilting object: canonical algebras

It is quite exceptional that a normal form for a tilting module and its

endomorphism algebra exists. This is the case for the categories H of

coherent sheaves on a weighted projective line. We fix a line bundle L

of H. Recall that for each point x of C there is a unique simple Sx in

H with Hom � L, Sx � � 0. By Serre duality τ
� 1Sx is the unique simple

concentrated in x extending non-trivially with L. Putting L
�
x 	

0
� L we
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obtain a nonsplit sequence 0 � L
�
x �

0 � L
�
x �

1 � τ
� 1Sx � 0. Continuing

we obtain short exact sequences 0 � L
�
x �

i � 1 � L
�
x �

i � τ
� iSx � 0 for

each integer i � 1, . . . , p � x � . Since the class � p
�
x �

i � 1 	 τ � iSx 
 is easily seen

to be independent of x it follows that the line bundle L̄ : � L
�
x �

p
�
x � is

independent of x, see Prop. 5.3.

Theorem 10.9. Each category H of coherent sheaves on a weighted

projective line over k of weight type p � � p1, . . . , pt � has a tilting object

whose endomorphism ring is a canonical algebra of type � p, λ � for a pa-

rameter sequence � 1 � λ3, . . . , λt � of pairwise distinct nonzero elements

from k.

Proof. We follow [32] and consider the line bundles L and L̄ together

with a representative system of all L
�
x �

j , with x � C and j � 1, . . . , p � x � �
1. Since only the exceptional points x1, . . . , xt matter, this yields the

full subcategory consisting of the following objects

L
�
x1 �

1

x1 �� L
�
x1 �

2

x1 �� 
 
 
 x1 �� L
�
x1 �

p1
� 1

x1

!!!
!!
!!
!!
!!
!!
!!
!!
!!

L
�
x2 �

1 x2

�� L
�
x2 �

2 x2

�� 
 
 

x2

�� L
�
x2 �

p2
� 1

x2

���
��

��
��

��

L

x1

  """""""""""""""""
x2

�����������

xt

���
��

��
��

��
...

... L̄

L
�
xt �

1

xt �� L
�
xt �

2

xt �� 
 
 
 xt �� L
�
xt �

pt
� 1

xt

�����������

and actually generated by the above quiver. As is easily checked, the

above line bundle configuration, called canonical, is a tilting object in

H. Note that Hom � L, L̄ � � k2 and that the cokernel of each x
pi

i : L � L̄

belongs to the exceptional tube Ui
� Uxi

with the simple Sxi
, yielding

t � 3 relations x
pi

i
� x

p2

2 � λix
p1

1 , i � 3, . . . , t, for pairwise distinct nonzero

elements λ3, . . . , λt from k.

Denoting by Λ � p, λ � the canonical algebra given by the above quiver

with the above relations, we obtain the following consequence:

Corollary 10.10 ([12]). Each category of weighted projective lines is
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derived equivalent to the category mod-Λ � p, λ � over a canonical algebra.

10.5 Degree, slope and Euler characteristic

There are two important linear forms on K0 � H � , rank and degree. While

the rank is zero on H0, positive on non-zero objects from H � and further

constant on τ -orbits, the degree is positive on non-zero objects from H0

and constant on τ -orbits in H0. While there is — up to scalars — only

one choice for the rank, several choices are possible for the degree. It is

customary to normalize the degree in such a way that it becomes zero

on a preselected line bundle L0.

Following [12] we fix a line bundle L0, and denote by p the least common

multiple of the τ -periods of exceptional simple objects from H. Consider

the following average of the Euler form

� �
x, y � � � 1

p

p � 1�
j � 0

�
τ jx, y �

having values in 1
p
Z. We then define the degree on K0 � H � by the formula

deg x � � � 	 L0 
 , x � � � � � 	 L0 
 , 	 L0 
 � � � rk � x � .
It follows from the definition that deg L0

� 0, and deg Sx
� 1 
 p � x � for

each simple Sx concentrated in x. If L is any further line bundle we have

	 L 
 � 	 L0 
 � u with rk � u � � 0, hence deg τu � deg u. It follows that

the difference deg τL � deg L0 does not depend on the choice of the line

bundle L. We thus call χH
� deg L � deg τL the Euler characteristic

of H. The Euler characteristic is an important invariant of H, it has a

significant influence on the representation type.

The slope of a non-zero object X of H is defined as the quotient

µ X � deg X 
 rk � X � � Q � � � � . (The zero object is allowed to have

any slope). A non-zero object X is called stable (resp. semistable)

if µ X � � µ X (resp. µ X � � µ X) holds for any proper subobject

X � of X. The zero object is also semistable. Let f : X � Y be a

non-zero homomorphism between semistable objects, then µ X � µ Y .

If moreover X and Y are stable and f is not an isomorphism, then

µ X � µ Y . In particular, the endomorphism ring of a stable object is

a division ring, hence in the present context isomorphic to k. For the
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next result, see [41] or [12, Prop. 5.2].

Proposition 10.11. Let q � Q � � � � . Then the full subcategory H
�
q �

of H consisting of all semistable objects of slope q is a hereditary abelian

category where each object has finite length. Moreover, the simple objects

of H
�
q � are exactly the stable objects of slope q.

Proof. Clearly, the assertion holds for q � � , since H
� � � � H0. We

may thus assume q is a rational number. It is easy to check that H
�
q � is

closed under kernels, cokernels and extensions. As an exact subcategory

of H the category H
�
q � hence is itself an abelian category; moreover,

extensions spaces Ext1 	 X,Y 
 , with X and Y from H
�
q � , taken in H

�
q �

agree with those taken in H, hence Hq is also hereditary. Let X be a

subobject of Y . If X and Y have the same slope and the same rank

it follows from the properties of rank and degree that X � Y . As an

immediate consequence the length of an object X in H
�
q � is bounded by

its rank.

The importance of the Euler characteristic is underlined by the two

following propositions.

Proposition 10.12. Let 	 p1, . . . , pt 
 be the weight type of H. Then

χH
� 2 � � t

i 
 1 � 1 � 1
pi � . Moreover, for each non-zero bundle E we

have µ 	 τE 
 � µ 	 E 
 � χH.

Proof. Since H has a tilting object, the Euler form
� � , � � is non-

degenerate. Choose a line bundle L, a homogeneous simple S0 and

a representative system S1, . . . , St of exceptional simples satisfying

Ext1 	 L, Si 
 � 0. We put u � � L � � 	 t � 2 
 � S0 � � � t
i 
 1 � Si � 
 . Using

that
�
u, � � and

� � τL � , � � agree on a system of generators for K0 	 H 
 , it

follows that � τL � � u. Passing to degrees and invoking Proposition 10.5

the two assertions follow.

For the proof of the next proposition we refer to [12, prop. 5.5] or [36,

prop. 4.1]. Note that χH � 0 if and only if the weight type of H is one

of 	 
 , 	 n 
 , 	 m,n 
 , 	 2, 2, n 
 (n � 2), 	 2, 3, 3 
 , 	 2, 3, 4 
 or 	 2, 3, 5 
 . Here 	 

stands for the empty weight type. Further χH

� 0 if and only if the

weight type is one of 	 2, 2, 2, 2 
 , 	 3, 3, 3 
 , 	 2, 4, 4 
 or 	 2, 3, 6 
 .
Proposition 10.13. 	 i 
 If χH � 0 then each indecomposable bundle in
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H is semistable.

� ii � If χH � 0 then each indecomposable bundle in H is stable.

10.6 Positive Euler characteristic: domestic case

The next theorem, due to Hübner [24], implies that a category H with

positive Euler characteristic χH is derived equivalent to the category

of modules over a tame hereditary k-algebra H, that is, the path

algebra of a quiver whose underlying graph is extended Dynkin. For

the proof we refer to [36, prop. 6.5, prop. 4.3]. From property � ii �
we conclude that for positive Euler characteristic there is an addi-

tional normal form for tilting bundles, called the hereditary normal form.

Theorem 10.14. Assume that H has Euler characteristic χH � 0.

Then the following properties hold:

� i � Each indecomposable bundle is stable and exceptional.

� ii � The direct sum T of a representative system (with respect to iso-

morphism) of indecomposable bundles E with 0 � µ E � χH is a tilting

object.

� iii � The indecomposable bundles form a single Auslander-Reiten com-

ponent.

� iv � The endomorphism ring of T is isomorphic to the path algebra of

an extended Dynkin quiver, which is either of type �Ap,q or of type �Dn

(n � 4), �E6, �E7 or �E8 with bipartite orientation.

Let T be a tilting object in H. It is now easy to derive the properties

of mod-H, H � End � T � , from the above description of H. One obtains

this way an alternative description of the module category for tame

hereditary algebras, similarly for the larger class of tame concealed

algebras defined as the endomorphism rings of tilting bundles of tilting

objects in H with χH � 0.

Corollary 10.15. Up to derived equivalence the following two classes

of hereditary categories coincide:

� i � the categories of coherent sheaves coh X on a weighted projective line

X with positive Euler characteristic.

� ii � the module categories mod-H over a connected finite dimensional

tame hereditary algebra H.
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10.7 Euler characteristic zero: tubular case

We assume that H is a hereditary noetherian category with Serre

duality and having a tilting object. We call the category H tubular if

its Euler characteristic is zero. It follows from Proposition 10.13 that

in this case each indecomposable bundle is semistable. The main result

of this section is that each Auslander-Reiten component of H is a tube.

More precisely we show that the indecomposables of a fixed slope, which

may be a rational number or infinity, form a one-parameter family of

tubes, naturally indexed by the points of the projective line. The proof

relies on the following two statements (compare [19] for the first one).

Lemma 10.16. Let ρ � 0 be an integral-valued function on H, additive

with respect to short exact sequences, such that the Serre subcategory

H � � � C : ρ � C � � 0 � is noetherian. Assume further that Hom � H � ,H � � �
0, where H � is the additive category generated by the indecomposable

objects not in H � . Then H is also noetherian.

Proof. Let X1 � X2 	 	 	 � Xn � 	 	 	 � X be an ascending chain of

subobjects of an object X from H. Since ρ � 0 it follows that ρ � X1 � 

ρ � X2 � 
 	 	 	 
 ρ � Xn � 
 	 	 	 
 ρ � X � . Hence we can assume without

restriction that ρ is constant on � Xn � . This yields an ascending chain

X2 � X1 � X3 � X1 � 	 	 	 � Xn � X1 � 	 	 	 � X � X1 of subobjects of X � X1,

hence of the direct sum � X � X1 � � of the indecomposable summands of

X � X1 which are in H � , since Hom � H � ,H � � � 0. The claim follows since

H � is noetherian.

Assume now that χH
� 0. Then each indecomposable bundle is

semistable and, moreover, the semistable bundles of slope q form a

hereditary abelian category H
�
q 
 which is stable under the equivalence

τ . It follows [11] that H
�
q 
 is a uniserial category decomposing into

connected uniserial categories.

Lemma 10.17. Assume that χH
� 0. For a ratio-

nal number q we form the interval category H
�
q � �

add � �
r � Q � � � � ,q � r H

�
r 
 � � 1 � � �

s � Q,s � q H
�
s 
 � . Then H � � H

�
q �

is a hereditary noetherian k-category with Serre duality, whose full

subcategory H �0 of finite length objects equals H
�
q 
 . Moreover, if H has

a tilting object, the same holds for H � .
Proof. In view of 7.1 H � is abelian. The construction yields that H � is
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hereditary and, with the equivalence τ induced by τDbH, satisfies Serre

duality. Writing q � d � r with d, r coprime integers and r � 0, it follows

in a straightforward manner that the linear form ρ � d rk � r deg on

K0 � H � � K0 � H � � is non-negative on all objects of H � and moreover

vanishes exactly on objects from H �0 : � H
�
q � , and hence acts as a rank

function for H � . It now follows from Lemma 10.16 that H � is noetherian.

Let T be a tilting object in H. We write T � T0
	

T1, where each

indecomposable summand of T0 (resp. T1) has slope 
 q (resp. � q). It

follows that T � � T0
	

τT1 � � 1 � is a tilting object of H � .
Note that the existence of a tilting object implies that all tubes of H

�
q �

have finite τ -period and only finitely many of them have τ -period � 1.

A much stronger statement can be shown by invoking the shift functors

from Section 10.3.

Proposition 10.18. For any rational number q there is a selfequiva-

lence of DbH inducing equivalences from H to H


q � and from H0 to

H
�
q � .

Proof. Let x1, . . . , xt denote the finite number of points x of H such that

Ux has finite τ -period p1, . . . , pt, respectively. Let p be the least common

multiple of p1, . . . , pt. By Theorem 10.8 the shift σx associated to the

point x yields a selfequivalence of DbH. By construction σx satisfies

µ � σxE � � µ E � 1 � p � x � for each non-zero E. Since p � p1, . . . , p � pt are

collectively coprime, there exists an selfequivalence σ of DbH, belonging

to the subgroup generated by the shifts associated to the x1, . . . , xt,

satisfying µ � σE � � µ E � 1 � p.

Applying the same argument to H


q � , we obtain a selfequivalence ρ

of DbH � � DbH satisfying µ � ρE � � 1 � � 1 � p � µ E � . It follows that the

subgroup


σ, ρ � of selfequivalences generated by σ and ρ acts transitively

on the set Q � � � � of all slopes, and the assertion follows.

Theorem 10.19. Let H be hereditary noetherian category of Euler char-

acteristic zero and having a tilting object. Then

H � �
q � Q � � � �

H
�
q � , where for each q we have H

�
q � � H0.

Proof. Since H has Euler characteristic zero, each indecomposable

object is semistable, hence belongs to some H
�
q � . It follows that H �

�
q � Q � � � � H

�
q � . The last claim now follows from Proposition 10.18.
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The Auslander-Reiten quiver of H is a rational family — indexed by

Q � � � � — of one-parameter families of tubes, each of them indexed by

the set of points k � � � � of the projective line over k. The theorem,

with a different proof, is due to Happel and Ringel [22]. We further note

that — with minor modifications — the proof also holds for a category

of coherent sheaves on a smooth elliptic curve, thus covering Atiyah’s

theorem [1].

10.8 The module category over a tubular algebra

By definition, a finite dimensional k-algebra Λ is called tubular if there

exists a hereditary noetherian category H which is tubular and a tilting

object T in H such that Λ is isomorphic to the endomorphism alge-

bra of T . Our prime examples of tubular algebras are the canonical

algebras Λ � 2, 2, 2, 2;λ � , Λ � 3, 3, 3 � , Λ � 2, 4, 4 � and Λ � 2, 3, 6 � . We are going

to describe the shape of the module category mod-Λ if Λ is a tubular

canonical algebra. The case of an arbitrary tubular algebra is similar,

but technically more involved.

Let Λ � Λ � p1, . . . , pt � be a tubular canonical algebra. By Λ � we denote

the algebra arising from Λ by deleting the sink vertex c. Obviously Λ �
is the path algebra of the star � p1, . . . , pt 	 having t branches of length

p1, . . . , pt, respectively. (The length of a branch counts the number of

its vertices.) If Pc denotes the indecomposable projective Λ-module

corresponding to c, then mod-Λ � can be viewed as the full subcategory

of mod-Λ consisting of all Λ-modules with Hom � Pc,M � � 0, that

is, taking value zero at the sink vertex c of the quiver of Λ. We

describe the position of the indecomposable Λ-modules by means of the

identification mod-Λ 
 H � H � 1 	 .

Theorem 10.20. Let Λ � Λ � p1, . . . , pt � be a tubular canonical algebra.

We put p � lcm � p1, . . . , pt � . Then the following assertions hold:

� i � The category mod-Λ has a preprojective component P � Λ � containing

all indecomposable projectives Lv, where the vertex v is different from

the sink vertex of Λ. Moreover, P � Λ � is lying in H and agrees with the

preprojective component P � Λ � � of Λ � .
� ii � P � Λ � consists exactly of the indecomposable Λ-modules P with slope

q � µ � P � in the range 0 � q 
 p.

� iii � The remaining indecomposable Λ-modules in H have slope � p. In
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more detail,

� a � An object M of H
�
p � belongs to mod-Λ if and only if Ext1 � Lc,M � �

0.

� b � The category L �c � H
�
p � agrees with the category of regular Λ � -modules.

� c � For q � p all objects of H
�
q � are Λ-modules.

The corresponding dual assertions (and proofs) concerning the Λ-

modules belonging to H 	 1 
 are left to the reader. We thus arrive to

the following visualization of mod-Λ in terms of its Auslander-Reiten

quiver, taken from [26].

Proof. We first show that the right perpendicular category of Lc,

formed in H, agrees with mod-Λ � . Notice that this part of the proof

is independent of the assumption on tubular weights. Assume first

that M belongs to H and belongs to L �c . Since each indecompos-

able summand Lv of T admits an embedding Lv � � Lc, the condition

Ext1 � Lc,M � � 0 implies that Ext1 � Lv,M � � 0 for each vertex v of Λ,

and hence M belongs to mod-Λ with the additional property that its

value Mc
� Hom � Lc,M � at the vertex c vanishes. This proves that M

— under the above identifications — is a Λ � -module. Conversely, assume

M is indecomposable and belongs to mod-Λ � , that is, is a Λ-module sat-

isfying Hom � Lc,M � � 0. We know that M belongs to H 
 H 	 1 
 . If M

belongs to H the assertion is obvious. We thus need to exclude that M

has the form M � X 	 1 
 for some X in H satisfying Hom � T,X � � 0.

Since Mc
� 0 we obtain Ext1 � Lc, X � � 0, hence Ext1 � T,X � � 0 by the

previous argument. Since T is tilting, this implies X � 0, and we are

done.

Next we have a closer look at mod-Λ � . Note that H
�
p � � � x � X Vx

for uniserial categories (tubes) Vx. Moreover, Lc belongs to some Vx0
.

Since the Vx are pairwise orthogonal, clearly each Vx, x � x0, belongs to

mod-Λ � . Since Lc is quasisimple in the tube Vc it follows that L �c � Vx0
is

again a tube and that its tubular rank is one less than the tubular rank

of Vx0
. To conclude: L �c � H

�
p � � � x � X V �x with connected uniserial

categories V �x � Vx for x � x0 and V �x0

� L �c � Vx0
.
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We consider the additive function λ � p rk � deg : mod-Λ � � Z. On

the system of indecomposable projective Λ � -modules this takes values as

follows

λ :

p � p � p1 � p � 2p � p1 � � � � � p � � p1 � 1 � p � p1�
p � p � p � p2 � p � 2p � p2 � � � � � p � � p2 � 1 � p � p2�

p � p � pt � p � 2p � pt � � � � � P � � pt � 1 � p � pt.

For the tubular weights these stars 	 p1, . . . , pt 
 are the extended Dynkin

quivers 	 2, 2, 2, 2 
 , 	 3, 3, 3 
 , 	 2, 4, 4 
 and 	 2, 3, 6 
 , and λ induces the unique

normalized additive function on each of these quivers. Assume now that

M is an indecomposable Λ � -module. It is well-known that λ � M � � 0,

λ � M � � 0 or λ � M � 
 0 if and only if M is respectively preprojective,

regular or preinjective. This happens if and only if respectively µ � M � 

p, µ � M � � p or µ � M � � 0, and proves the claims of the theorem. In

particular the category R � Λ � � of regular Λ � -modules agrees with L �c �
H

�
p � .

10.9 Negative Euler characteristic: the wild case

For a detailed study of this case, and the relationship to the represen-

tation theory of path algebras of wild hereditary stars, we refer to [34].

Here, we just mention a fundamental fact:

Proposition 10.21. Let H be a category of coherent sheaves on a

weighted projective line of negative Euler characteristic. Then the fol-

lowing holds:

� i � Each Auslander-Reiten component in H � has shape ZA � .

� ii � If E and F are nonzero bundles, then for large positive n we have

Hom � E, τnF � � 0 and Hom � τnE,F � � 0.

11 Quasitilted algebras

We recall that a finite dimensional k-algebra Λ is called quasitilted if

there exists a tilting object T in a hereditary abelian category H such

that Λ is isomorphic to the endomorphism ring of T . Quasitilted algebras



Hereditary categories 143

are an important class of algebras for many reasons: Many interesting

algebras are quasitilted, tilted algebras of finite or tame type provide the

central clue in quite a number of classification results. Canonical alge-

bras and tubular algebras are quasitilted. Further, quasitilted algebras

have a clear homological description: By [21] an algebra Λ is quasitilted

if and only if it satisfies the two following two conditions:

� i � Λ has global dimension � 2.

� ii � Each indecomposable Λ-module M has projective or injective di-

mension � 1.

Restricting to connected algebras, Happel’s theorem (Theorem 6.3) im-

plies — with a little extra work classifying hereditary categories with

a tilting object up to derived equivalence — that quasitilted algebras

occur in two types:

� a � the tilted algebras [23] Λ � End � T � , where T is a tilting object in a

module category mod-H over a finite dimensional hereditary algebra H.

� b � the quasitilted algebras Λ � End � T � of canonical type [37], where

T is a tilting object in a hereditary category H, derived-equivalent to a

category of coherent sheaves on a weighted projective line.

Due to Corollary 10.15 there is some overlap between the two types.

Note, in particular, that any representation-finite quasitilted algebra

is actually tilted [21, Cor. 2.3.6]. According to [37] a representation-

infinite quasitilted algebra of canonical type can be characterized as a

semiregular branch enlargement of a concealed canonical algebra, that

is, a semiregular branch extension of the endomorphism ring of a tilting

bundle on a weighted projective line.
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Fourier-Mukai transforms

Lutz Hille and Michel Van den Bergh

Dedicated to Claus Michael Ringel on the occasion of his 60th birthday.

Abstract

In this paper we discuss some of the recent developments on derived

equivalences in algebraic geometry.

1 Some background

In this paper we discuss some of the recent developments on derived

equivalences in algebraic geometry but we don’t intend to give any kind

of comprehensive survey. It is better to regard this paper as a set of

pointers to some of the recent literature.

To put the subject in context we start with some historical background.

Derived (and triangulated) categories were introduced by Verdier in his

thesis (see [26, 79]) in order to simplify homological algebra. From this

point of view the role of derived categories is purely technical.

The first non-trivial derived equivalence in the literature is between the

derived categories of sheaves on a sphere bundle and its dual bundle

[70]. The equivalence resembles Fourier-transform and is now known as

a “Fourier-Sato” transform.

The first purely algebro-geometric derived equivalence seems to appear

in [54] where is it is shown that an abelian variety A and its dual Â

have equivalent derived categories of coherent sheaves. Again the equiv-

147
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alence is similar to a Fourier-transform and is therefore called a “Fourier-

Mukai” transform.

In [7] Beilinson showed that Pn is derived equivalent to a (non-

commutative) finite dimensional algebra. This explained earlier results

by Barth and Hulek on the relation between vector bundles and linear

algebra. Beilinson’s result has been generalized to other varieties and

has evolved into the theory of exceptional sequences (see for example

[9]). The observation that derived equivalences do not preserve commu-

tativity is significant for non-commutative algebraic geometry (see for

example [29]).

Most algebraists probably became aware of the existence non-trivial de-

rived equivalences when Happel showed that “tilting” (as introduced by

Brenner and Butler [15]) leads to a derived equivalence between finite

dimensional algebras [32]. This was generalized by Rickard who worked

out the Morita theory for derived categories of rings [62, 63]; see also

[41].

Hugely influential was the so-called homological mirror symmetry con-

jecture by Kontsevich [46] which states (very roughly) that for two

Calabi-Yau manifolds X, Y in a mirror pair, the bounded derived cat-

egory of coherent sheaves on X is equivalent to a certain triangulated

category (the Fukaya category) related to the symplectic geometry of Y .

The homological mirror symmetry conjecture was recently proved by

Seidel for quartic surfaces (which are the simplest Calabi-Yau manifolds

after elliptic curves) [72].

Finally this introduction would be incomplete without at least mention-

ing the celebrated Riemann-Hilbert correspondence [14, 38, 50, 51] which

gives a derived equivalence between sheaves of vector spaces and regu-

lar holonomic D-modules on a complex manifold or a smooth algebraic

variety (depending on context). This is a far reaching generalization of

the classical correspondence between local systems and vector bundles

with flat connections.

Acknowledgment. The authors would like to thank Dan Abramovich,

Paul Balmer, Alexei Bondal, Tom Bridgeland, Daniel Huybrechts, Pierre

Schapira, Paul Smith and the anonymous referee for helpful comments

on the first version of this paper.

There are many other survey papers dedicated to Fourier-Mukai trans-

forms. We refer in particular to Raphael Rouquier’s “Catégories dérivées
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et géometrie algebriques” [68]. Another good source of information is

given by preliminary course notes by Daniel Huybrechts [35].

2 Notations and conventions

Throughout we work over the base field C. The bounded derived cate-

gory of coherent sheaves on a variety X is denoted by Db � X � . Similarly,

the bounded derived category of finitely generated modules over an al-

gebra A is denoted by Db � A � . The shift functor in the derived category

is denoted by � 1 � . All functors between triangulated categories are addi-

tive and exact (i.e. they commute with shift and preserve distinguished

triangles).

A sheaf is a coherent OX–module and a point in X is always a closed

point. The structure sheaf of a point x will be denoted by Ox. The

canonical divisor of a smooth projective variety is denoted by KX and

the canonical sheaf is denoted by ωX .

3 Basics on Fourier-Mukai transforms

Let X and Y be connected smooth projective varieties. We are inter-

ested in equivalences of the derived categories Φ: Db � Y � � � Db � X � .

Such varieties X and Y are also called Fourier-Mukai partners and the

equivalence Φ is called a Fourier-Mukai transform. In this section we

will discuss some properties which remain invariant under Fourier-Mukai

transforms. The main technical tool is Orlov’s theorem (see below)

which states that any derived equivalence Φ: Db � Y � � � Db � X � is com-

ing from a complex on the product Y � X.

Given Fourier-Mukai X,Y it is also interesting to precisely classify the

Fourier-Mukai transforms Db � Y � � � Db � X � (it is usually sufficient to

consider X � Y ). This is generally a much harder problem which has

been solved in only a few special cases, notably abelian varieties [59] and

varieties with ample canonical or anti-canonical divisor (see Theorem 4.4

below).

To start one has the following simple result.
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Lemma 3.1 ([21, Lemma 2.1]). If X and Y are Fourier-Mukai part-

ners, then dim � X � � dim � Y � and the canonical line bundles ωX and

ωY have the same order.

Proof. The proof is an exercise in the use of Serre functors [13]. The

Serre functor SX
� � � ωX � dim � X � � on X is uniquely characterized by

the existence of natural isomorphisms

HomDb
�
X � � E ,F � 	 HomDb

�
X � � F , SXE � 
 . (3.0.1)

By uniqueness it is clear that any Fourier-Mukai transform commutes

with Serre functors. Pick a point y � Y and put E � Φ � Oy � . The

fact that SY � � dimY � � Oy � 	 Oy yields SX � � dimY � � E � 	 E , or E � X

ωX � dimX � dimY � 	 E . Looking at the homology of E we see that this

impossible if dimY � dimX . The statement about the orders of ωX and

ωY follows by considering the orders of the functors SX � � dimX � and

SY � � dimY � .

The following important result tells that any derived equivalence

between Db � Y � and Db � X � is obtained from an object on the product

Y 
 X.

Theorem 3.2 ([58]). Let Φ: Db � Y � � � Db � X � be a fully faithful func-

tor. Then there exists an object P in Db � Y 
 X � , unique up to isomor-

phism, such that Φ is isomorphic to the functor

ΦP
Y � X � � � : � πX 
 � P � OY � X

π 
Y � � � � ,

where πX and πY are the projection maps and πX 
 , � , and π 
Y are the

appropriate derived functors.

In the original statement of this theorem Φ was required to have a right

adjoint but this condition is automatically fulfilled by [12, 13].

The object P in the theorem above is also called the kernel of the

Fourier-Mukai transform.

Remark 3.3. Theorem 3.2 is quite remarkable as for example its ana-

logue for affine varieties or finite dimensional algebras is unknown (ex-

cept for hereditary algebras [52]). Projectivity is used in the proof in the

following way: let L be an ample line bundle on a projective variety X.

Then for any coherent sheaf F on X one has Homcoh
�
X � � F ,L

� n � � 0 for
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large n. If X is for example affine then OX is ample but this additional

property does not hold.

It would seem useful to generalize Theorem 3.2 to singular varieties, in

particular those occurring in the minimal model program (see below).

A first result in this direction has been obtained by Kawamata [40] who

proves the analogue of Theorem 3.2 for orbifolds.

The real significance of Theorem 3.2 is that it makes it possible to define

Φ on objects functorially derived from X and Y . For example (see

[22, 60]) let ch �
X � � � � chX � � � .Td � X � 1 � 2 (where chX � � � is the Chern

character and Td � X � is the Todd class of X). Using ch �
Y � X � P � as kernel

one finds a linear isomorphism of vector spaces

H � � Φ � : H � � Y, Q � � 	 H � � X, Q �

preserving parity of degree. Since the Chern character of P and the

Todd class on Y 
 X may have denominators the same result is not a

priory true for H � � X, Z � . However it is true for elliptic curves (trivial)

and for abelian and K3-surfaces [55].

Remark 3.4. In order to circumvent the non-preservation of integral-

ity it may be convenient to replace H � � X, Z � by topological K-theory

[37] K � � X � top � K0 � X � top �
K1 � X � top which is the K-theory of com-

plex vector bundles (not necessarily holomorphic) on the underlying real

manifold of X. Topological K-theory is a cohomology theory satisfying

the usual Eilenberg-Steenrod axioms except the dimension axiom (which

fixes the cohomology of a point). Since K � � � � top has the appropriate

functoriality properties [37] one proves that Φ induces an isomorphism

K � � Φ � top : K � � Y � top 	 K � � X � top

It follows from the Atiyah-Hirzebruch spectral sequence that K � � X � top
is a finitely generated Z � 2Z graded abelian group such that the Chern-

character

ch: K � � X � top 	 H � � X, Q �

induces an isomorphism [34, Eq (3.21)]

K � � X � top 
 Z Q � H � � X, Q �

In good cases the lattices given by K � � X � top and H � � X, Z � are the

same. This is for example the case for curves, K3 surfaces and abelian

varieties.



152 L. Hille and M. Van den Bergh

By Riemann-Roch the following diagram is commutative

K0 � Y � K0
�
Φ �� � � � � K0 � X �

��� ch �Y � 	 � ��� ch �X � 	 �

H 
 � Y, Q � H � �
Φ �� � � � � H 
 � X, Q �

K0 � X � is equipped with the so-called Euler form

e � � E 
 , � F 
 � � �
i

� � � idimHom Db
�
X � � E,F � i 
 �

which is of course preserved by K0 � Φ � . The map ch �
X � � � is compatible

with the Euler form up to sign provided one twists the standard bilinear

form on cohomology (obtained from Poincare duality) slightly [22]. More

precisely put

v̌ � ideg ve
	 �

1 � 2 � KX v

and �
v, w � � deg � v̌ � w �

Then

e � � E 
 , � F 
 � � � �
ch �

X � E � , ch �
X � F � �

The map Hi � Φ � is an isometry for
� � , � � .

The standard grading on H 
 � X, C � is of course not preserved by a

Fourier-Mukai transform. However there is a different grading which

is preserved. Define

nH 
 � X, C � � �
j 	 i � n

Hi,j � X �

where Hm � X, C � � �
i � j � mHi,j � X, C � � �

i � j � mHi � X,Ωj
X � is the

Hodge decomposition [31, §0.6]. It is classical that algebraic cycles lie

in 0H 
 � X, C � . From the fact that the kernel of H 
 � Φ � is algebraic it

follows that H 
 � Φ � preserves the 
 � � � grading.

As another application of functoriality note that if S is of finite type

then there is an equivalence

ΦS : Db � YS � � Db � XS �
induced by PS (i.e. a Fourier-Mukai transform extends to families).
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Example 3.5. Here we give an example of a Fourier-Mukai transform

which is very important for mirror-symmetry. Assume first that Z is

a four dimensional symplectic manifold and let i : S2 � Z be an em-

bedding of a sphere as a Lagrangian submanifold. Then there exists

a symplectic automorphism τ of Z which is trivial outside a tubular

neighborhood of S2 and which is the antipodal map on S2 itself [73]. τ

is called the symplectic Dehn twist of Z associated to i.

By the homological mirror symmetry conjecture there should be an anal-

ogous notion for derived categories of varieties. This was worked out in

[74] (see also [42, 69]). It turns out that the analogue of a Lagrangian

sphere is a so-called spherical object. To be more precise E � Db � X � is

spherical if Homi
Db

�
X � � E , E � is equal to C for i � 0,dimX and is zero in

all other degrees and if in addition E � E � ωX .

Associated to a spherical object E � Db � X � there is an auto-equivalence

TE of Db � X � , informally defined by

TE � F � � cone 	 RHomDb
�
X � � E ,F � � C E

evaluation
 
 
 
 
 
 � F �
The non-functoriality of cones leads to a slight technical problem with

the naturality of this definition. This would be a problem for abstract

triangulated categories but it can be rectified here using the fact that

Db � X � (being a derived category) is the H0-category of an exact DG-

category.

It is easy to show that the kernel of TE is given by

cone 	 Ě � E
ϕ
 � O∆ �

where Ě � RHomOX
� E ,OX � , O∆ is the structure sheaf of the diagonal

and ϕ is the obvious map.

If X is a K3-surface then OX is spherical and the kernel of TOX
is

given by OX � 
 ∆ � . Other examples of spherical objects are structure

sheaves of a rational curve on a smooth surface with self intersection


 2 and restrictions of exceptional objects to anticanonical divisors. In

particular this last construction yields spherical objects on hypersurfaces

of degree n � 1 in Pn.

It is convenient to have a criterion for a functor of the form

ΦP
Y � X � 
 � : � πX, � � P � π �Y � 
 � � to be an equivalence. The follow-

ing result originally due to Bondal and Orlov [9] and slightly amplified

by Bridgeland [18, Theorem 1.1] shows that we can use the skyscraper
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sheaves as test objects.

Theorem 3.6. Let P be an object in Db � Y � X � . Then the functor

Φ : � ΦP
Y � X � � � : Db � Y � � � Db � X � is fully faithful if and only if the

following conditions hold

1. for each point y in Y

HomDb
�
X 	 � Φ � Oy � ,Φ � Oy � � � C

2. for each pair of points y1 and y2 and each integer i

Homi
Db

�
X 	 � Φ � Oy1

� ,Φ � Oy2
� � � 0 unless y1

� y2 and 0 
 i 
 dimY .

If these conditions hold then Φ is an equivalence if and only if Φ � Oy � �
ωX � Φ � Oy � for all y 
 Y .

Remark 3.7. Assume that P is an object in coh � Y � X � flat over Y

and write Py
� Φ � Oy � . Then the previous theorem implies that Φ is

fully faithful if and only if

1. for each point y in Y

HomDb
�
X 	 � Py ,Py � � C

2. for each pair of points y1 � y2 and each integer i

Exti
OX

� Py1
,Py2

� � 0.

It is obvious that the conditions for Theorem 3.6 are necessary. Proving

that they are also sufficient is much harder. Since the proof in [9] only

works for derived categories of coherent sheaves, we make explicit some

of the steps in Bridgeland’s proof (see [18]) which are valid for more

general triangulated categories.

Let A be a triangulated category. A subset Ω is called spanning if for

each object a in A each of the following conditions implies a � 0:

1. Homi � a, b � � 0 for all b 
 Ω and all i 
 Z,

2. Homi � b, a � � 0 for all b 
 Ω and all i 
 Z.

It is easy to see that the set of all skyscraper sheaves on a smooth

projective variety X is a spanning class for Db � X � . Note that a

spanning class will not usually generate A in any reasonable sense.
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Theorem 3.8 ([18, Theorem 2.3]). Let F : A � � B be an exact

functor between triangulated categories with left and right adjoint. Then

F is fully faithful if and only if there exists a spanning class Ω for A such

that for all elements a1, a2 in Ω, and all integers i, the homomorphism

F : Homi
A � a1, a2 � � � Homi

B � Fa1, Fa2 �

is an isomorphism.

Recall that a category is called indecomposable if it is not the direct

sum of two non-trivial subcategories. The derived category Db � X � is

indecomposable for X connected. For a finite dimensional algebra A

the derived category Db � A � is connected precisely when A is connected.

Theorem 3.9 ([20, Theorem 2.3]). Let F : A � B be a fully faithful

functor between triangulated categories with Serre functors SA, SB (see

(3.0.1)) possessing a left adjoint. Suppose that A is non-trivial and B

is indecomposable. Let Ω be a spanning class for A and assume that

FSA � ω � � SBF � ω � for all ω � Ω. Then F is a equivalence of categories.

It follows from [12, 13] that ΦP
Y � X has both a right and a left adjoint.

Explicit formulas for the left and the right adjoint are [18, Lemma 4.5]:

Φ
P̌ � π �

X
ωX 	 dimX 


X � Y � � � and Φ
P̌ � π �

Y
ωY 	 dimY 


X � Y � � �

Applying Theorems 3.8, 3.9 with F � ΦP
Y � X and Ω � 
 Oy

� y � Y �
almost proves Theorem 3.6 except that we seem to need additional in-

formation on Homi
Db

�
X � � Φ � Oy � ,Φ � Oy � � for i � 0. It is not at all obvious

but it turns out that this extra information is unnecessary. Although it

is not clear how to formalize it, it seems that this part of the proof may

generalize whenever Y is the solution of some type of moduli problem

in a triangulated category B (with P being the universal family). See

[19, 20, 77] for other manifestations of this principle.

4 The reconstruction theorem

It is quite trivial to reconstruct X from the abelian category coh � X �
[28, 66, 68]. For example the points of X are in one-one correspondence

with the objects in coh � X � without proper subobjects. With a little

more work one can also recover the Zariski topology on X as well as the

structure sheaf.
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It is similarly of interest to know to which extent one can reconstruct

a variety from its derived category. The existence of non-isomorphic

Fourier-Mukai partners shows that this cannot be done in general, but

it is possible if the canonical sheaf or the anticanonical sheaf is ample.

Later Balmer and Rouquier [3, 68] have shown independently that

one can reconstruct the variety from the category of coherent sheaves

viewed as a tensor category, the crucial point is that the tensor product

allows to reconstruct the point objects for any variety.

Theorem 4.1 ([10, Theorem 2.5]). Let X be a smooth connected

projective variety with either ωX ample or ω
� 1
X ample. Assume Db � X �

is equivalent to Db � Y � . Then X is isomorphic to Y .

Proof. We give a proof based on Orlov’s theorem. For another proof see

[68]. Note that Y is also connected since Db � Y � � Db � X � is connected.

Let Φ: Db � Y � � Db � X � be the derived equivalence and let S be the

Serre functor � � ωX � dimX � on X. Recall that it is intrinsically defined

by (3.0.1). We say that E in Db � X � is a point object if

1. E � S � E � � i � for some integer i,

2. Homi � E,E � 	 0 for all i 
 0, and

3. Hom � E,E � 	 C.

It is easy to prove that the only point objects in Db � X � (under the

assumptions on ωX � are the shifts of the skyscraper sheaves. The main

point is 1., since this condition and the ampleness of ω � 1
X easily implies

that E has finite length cohomology.

It follows that Φ sends skyscraper sheaves to shifts of skyscraper sheaves.

Then the proof may then be finished using Corollary 4.3 below.

We need the following standard fact.

Proposition 4.2. Let π : Z � S be a flat morphism of schemes of finite

type with S connected. Let P � D
� � coh � Z � � and and assume that for all

s � S we have that P
L

� OZ
π 
 Os � Oz � n � for some n � Z, z � Z. Then

P � i 
 L � m � where i : S � Z is a section of π, L � Pic � S � and m � Z.

Proof. We claim first that the support of the cohomology P is finite over
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S. Assume that this is false and let Hi � P � be the highest cohomology

group with non-finite support. Then, up to finite length sheaves we have

Hi � P � � OZ
π � Os � Hi � P

L
� OZ

π � Os � . Hence H i � P � � OZ
π � Os has finite

length for all s which is a contradiction.

It is now sufficient to prove that P0
� π � � P � is a shifted line bundle

given that P0

L
� OS

Os has one-dimensional cohomology for all s.

Fix s � S and assume P0

L
� OS

Os � Os � n � . Using Nakayama’s lemma

we deduce that there is a neighborhood U of s such that H i � P0
	 U � � 0

for i 
 � n. We temporarily replace S by U .

Applying �
L

� OS
Os to the triangle

τ � 
 n 
 1P0 � P0 � H

 n � P0 � � n � �

we find H

 n � P0 � � OS

Os � Os and TorOS

1 � H 
 n � P0 � ,Os � � 0. Hence

H

 n � P � is a line bundle on a neighborhood of s. Shrinking S further we

may assume P0 � τ � 
 n 
 1P0
�

H

 n � P0 � � n � and hence τ � 
 n 
 1P0

L
� OS

Os
� 0. Shrinking S once again we have τ � 
 n 
 1P0

� 0 and thus

P0 � H0 � P0 � � n � is a line bundle on a neighborhood of s.

Since this works for any s and S is connected we easily deduce that P0

is itself a shifted line bundle.

We deduce the following

Corollary 4.3. Assume that Φ: Db � Y � � Db � X � is a Fourier-Mukai

transform between smooth connected projective varieties which sends

skyscraper sheaves to shifted skyscraper sheaves. Then Φ is of the form

σ � � � � OX
L � � n � for an isomorphism σ : Y � X, L � Pic � Y � and n � Z.

Proof. By Proposition 4.2 the kernel of Φ must be of the form P �
� 1, σ � � � L � n � for some map σ : Y � X. The resulting ΦP

Y � X
�

σ � � � � OX
� � n � will be a derived equivalence if and only if σ is an iso-

morphism.

One also obtains as a corollary the following result.

Theorem 4.4 ([10, Theorem 3.1]). Let X be a smooth connected

projective variety with ample canonical or anticanonical sheaf. Then the



158 L. Hille and M. Van den Bergh

group of isomorphism classes of auto-equivalences of Db � X � is generated

by the automorphisms of X, the twists by line bundles and the transla-

tions.

Remark 4.5. It is clear that the notion of point object make sense for

arbitrary triangulated categories with Serre functor.

Let D be the bounded derived category of modules over a connected

finite dimensional hereditary C–algebra A. Then point objects only

exist for A tame (or in the trivial case A � C). For Dynkin quivers

or wild quivers the structure of the Auslander-Reiten components is

well-known (Gabriels work on Dynkin-quivers and Ringels work on wild

hereditary alegebras), consequently, point objects do not exist. In the

tame case the point objects are the shifts of quasi-simple modules in

homogeneous tubes (see [64]). Let A be not necessary hereditary and

we assume Db � A � is equivalent to Db � X � for some smooth projective

variety X. Then Db � A � has point objects. The situation is similar

if we replace X by a weighted projective variety. However, it is an

open problem to construct algebras A having (sufficiently many) point

objects without knowing such an equivalence between Db � A � and Db � X �
for some (weighted) projective variety X.

Note that there is a subtle point in the statement of Theorem 4.1. One

does not apriori require Y to have ample canonical or anti-canonical

divisor. If we preimpose this condition then Theorem 4.1 also follows

from Theorem 4.6 below which morally corresponds to the fact that

derived equivalences commute with Serre functors.

Theorem 4.6 ([60]). Let X be a smooth projective variety. Then the

integers dimΓ � X,ω � m
X � as well as the the canonical and anti-canonical

rings are derived invariants.

Assume that X is connected. For a Cartier divisor D denote by R � X,D �
the ring

R � X,D � � �
n � 0

Γ � X,OX � nD � �

and by K � X,D � the part of degree zero of the graded quotient field of

R � X,D � . We have K � X,D � � K � X � where K � X � is the function field

of X. By [76, Prop 5.7] K � X,D � is algebraically closed in K � X � . If

some positive multiple of D is effective then the D-Kodaira dimension

κ � X,D � of K � X,D � is the transcendence degree of K � X,D � , otherwise
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we set k � X,D � � � � . It is clear that we have

κ � X,D � � dimX

and in case of equality we have K � X � � K � X,D � .

The Kodaira dimension κ � X � of X is κ � X,KX � . X is of general type if

κ � X,KX � � dimX .

Corollary 4.7 ([39, Theorem 2.3]). The Kodaira dimension is in-

variant under Fourier-Mukai transforms. If X is of general type then

any Fourier-Mukai partner of X is birational to X.

Proof. This follows directly from Theorem 4.6 and the preceding discus-

sion.

5 Curves and surfaces

In this section we consider Fourier-Mukai transforms for smooth projec-

tive curves and smooth projective surfaces. For curves the situation is

rather trivial: only elliptic curves admit non-trivial Fourier-Mukai trans-

forms Db � C � � Db � D � , and in that case the curves C and D must be

isomorphic. The group of auto-equivalences of Db � C � is generated by

the trivial ones and the classical Fourier-Mukai transform (which is al-

most the same as the auto-equivalence associated to the spherical object

OE).

For surfaces the situation is more complicated and is worked out in

detail in [21]. The classification of possible non-trivial Fourier-Mukai

transforms is based on the classification of complex surfaces (see [4,

page 188]). This classification is summarized in Table 1.

Let us start with the case of curves. Let C be a smooth projective

curve and denote by gC the genus of C. According to the degree of the

canonical divisor KC there are three distinct classes:

1. KC � 0: C is the projective line P1 � C � and gC
� 0,

2. KC
� 0: C is an elliptic curve and gC

� 1,

3. KC � 0: C is a curve of general type and gC � 1.
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Class of X κ � X � nX b1
� X � c2

1 c2

1) minimal rational
surfaces � � 0 8, 9 4, 3
3) ruled surfaces
of genus g � 1 � � 2g 8 � 1 � g � 4 � 1 � g �

4)Enriques surfaces 0 2 0 0 12
5) hyperelliptic surfaces 0 2, 3, 4, 6 2 0 0
7) K3-surfaces 0 1 0 0 24
8) tori 0 1 4 0 0

9) minimal properly
elliptic surfaces 1 0 � 0

10) minimal surfaces �
of general type 2 0 mod 2 � 0 � 0

Table 1. Classification of algebraic smooth complex surfaces

Using the reconstruction theorems 4.1 and 4.4 it is obvious that non-

trivial Fourier-Mukai transforms can only exist for elliptic curves since

K
� 1
C is ample in case 1. and KC is ample in case 3..

We will now look in somewhat more detail at the interesting case

of elliptic curves. Note that if C, D are abelian varieties then it is

known precisely when C and D are derived equivalent and furthermore

the group Aut � Db � C 	 	 consisting of auto-equivalences of Db � C 	 (up

to isomorphism) is also completely understood [59]. Here we give an

elementary account of the one-dimensional case. This is well-known and

was explained to us by Tom Bridgeland. First we have the following

result.

Theorem 5.1. If C, D are derived equivalent elliptic curves then C 

D.

Proof. By the discussion in §3 the Hodge structures on H1 � C, C 	 and

H1 � D, C 	 are isomorphic. Since the isomorphism class of an elliptic

curve is encoded in its Hodge structure on H1 � � , C 	 we are done.

Determining the structure of Aut � Db � C 	 	 requires slightly more work.

For an elliptic curve C let eC be the Euler form on K0 � C 	 . By Serre

duality eC is skew symmetric. Put N � C 	 � K0 � C 	 
 rad eC 
 Z2. eC

defines a non-degenerate skew symmetric form (i.e. a symplectic form)

on N � C 	 which we denote by the same symbol.
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N � C � has a canonical basis given by v1
� � OC � , v2

� � Ox � (x � C

arbitrary). The matrix of eC � vi, vj � ij with respect to this basis is�
0 1� 1 0 �

With respect to the standard basis the group of symplectic automor-

phisms of N � C � may be identified with Sl2 � Z � .
Let T1, T2 be the auto-equivalences of C associated to the spherical

objects OC and Ox. It is not hard to see that T2
� � 	 OC

OC � x � so

only T1 is a non-trivial Fourier-Mukai transform.

One computes that with respect to the standard basis the action of T1,

T2 on N � C � is given by matrices

T1
� �

1 � 1

0 1 �
T2

� �
1 0

1 1 �
These matrices are standard generators for Sl2 � Z � which satisfy the braid

relation

T1T2T1
� T2T1T2. (5.0.2)

Remark 5.2. Since the objects OC , Ox form a so-called A2 configura-

tion [74] the relation (5.0.2) actually holds in Aut � Db � C � � .
We have:

Theorem 5.3. Let Aut0 � Db � C � � be the subgroup of Aut � Db � C � � consist-

ing of auto-equivalences of the form σ 
 � � 	 OC
L � � n � where σ � Aut � C � ,

L � Pic0 � C � and n � 2Z. Then the symplectic action of Aut � Db � C � � on

N � C � yields an exact sequence

0 � Aut0 � Db � C � � � Aut � Db � C � � � Sl2 � Z � � 0.

Proof. The existence of T1, T2 implies that the map Aut � Db � C � � �
Sl2 � Z � is onto.

Assume that Φ � Aut � D � C � � act trivially on N � C � . It is easy to see

that for an object E � Db � C � this implies

deg Φ � E � � deg E

rk Φ � E � � rk E
(5.0.3)
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The abelian category coh � D � is hereditary and hence every object in

Db � D � is the direct sum of its cohomology. Since Φ � Oy � must be inde-

composable we deduce from (5.0.3) that Φ � Oy � is a twisted skyscraper

sheaf.

We find by Corollary 4.3 that Φ � σ � � � � OC
L � � n � . The fact that Φ

acts trivially on N � C � implies degL � 0 and n is even.

Remark 5.4. Using similar arguments as above it is easy to see that

the orbits of the action Aut � Db � C � � on the indecomposable objects in

Db � C � are indexed by N � 	 0 
 . The quotient map is given by

E �� gcd � rk � E � ,deg � E � �

In particular any indecomposable vector bundle is in the orbit of an

indecomposable finite length sheaf.

Remark 5.5. The situation for elliptic curves is very similar to the

situation for tubular algebras [64, 33], tubular canonical algebras, or

tubular weighted projective curves (weighted projective curves of genus

one) [48]. We quickly explain how these three categories Db � C � (C

an elliptic curve), Db � X � (X a tubular weighted projective curve) and

Db � Λ � (Λ a tubular canonical algebra or a tubular algebra) are related

to each other. Any elliptic curve C admits a non-trivial automorphism

ϕ : C 
 � C, x �� � x. Let G � Z � 2Z, generated by ϕ. The category

of G-equivariant sheaves on C is isomorphic to the category of coherent

sheaves on a weighted projective line of type �D4. For the remaining

types E6,7,8 we consider elliptic curves with complex multiplication of

order 3, 4 or 6, respectively. Then an analogous result holds for those

curves (see also [71]).

Now we discuss the case of surfaces. In the rest of this section a surface

will be a smooth projective surface.

Remember that a surface X is called minimal if it does not contain

an exceptional curve C (i.e. a smooth rational curve with self intersec-

tion � 1). The possible non-trivial Fourier-Mukai partners for minimal

surfaces were classified by Bridgeland and Maciocia in [21]. This clas-

sification is based on the classification of surfaces (see [4, page 188]) as

summarized in Table 1 (we have only listed the algebraic surfaces as

these are the only ones of interest to us).

Table 1 is in terms of some standard invariants which we first describe.

We have already mentioned the Kodaira dimension κ � X � . It is either
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� � , 0, 1 or 2 and divides the minimal surfaces into four classes. For an

arbitrary surface X there is always a map X � X0 to a minimal surface.

If k � X � � 0 then X0 depends only on the birational equivalence class of

X [4, Proposition (4.6)].

Further invariants are the first Betti number b1 � X � � dimH
1 � X, C � , the

square of the first Chern class c2
1 � X � � K2

X and the second Chern class

c2 � X � (where ci
� ci � TX � ). Finally, for surfaces of Kodaira dimension

zero one also needs the smallest natural number nX with nXKX
� 0.

The invariants b1 � X � , c1 � X � 2, c2 � X � contain exactly the same informa-

tion as the (numeric) Hodge diamond of X:

1

q � X � q � X �
pg � X � h1,1 � X � pg � X �

q � X � q � X �
1

where pg � X � is the geometric genus of X, q � X � is the Noether number

of X and hij � X � � dimH
ij � X, C � . One has

b1 � X � � 2q � x �
c2 � X � � 2 � 2pg � X � � 4q � X � � h1,1 � X �

1

12
� c1 � X � 2 � c2 � X � � � 1 � q � x � � pg � X � �

The second line is the Gauss-Bonnet formula [31, §3.3] which says that

c2 � X � is equal to the Euler number �
i dim 	 � 1 � idimH

i � X, C � of X.

The third formula is Noether’s formula. It follows from applying the

Riemann-Roch theorem [4, Thm I.(5.3)] to the structure sheaf.

For abelian and K3-surfaces the so-called transcendental lattice is

of interest. First note that H2 � X, Z � is free. For abelian surfaces

this is clear since they are tori and for K3 surfaces it is [4, Prop

VIII(3.2)]. The Neron-Severi lattice is NX
� H2 � X, Z � 
 H1,1 � X � and

the transcendental lattice TX is the sublattice of H2 � X, Z � orthogonal

to NX .

Theorem 5.6 ([21, Theorem 1.1]). Let X and Y be a non-

isomorphic smooth connected complex projective surfaces with equiva-

lent derived categories Db � X � and Db � Y � such that X is minimal. Then

either
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1. X is a torus (an abelian surface, in class 8)) and Y is also a

torus with Hodge-isometric transcendental lattice,

2. X is a K3-surface (a surface in class 7)) and Y is also a K3-

surface with Hodge isometric transcendental lattice, or

3. X is an elliptic surface and Y is another elliptic surface obtained

by taking a relative Picard scheme of the elliptic fibration on X.

A Hodge isometry between transcendental lattices is an isometry un-

der which the one dimensional subspaces H0 � X,ωX � and H0 � Y, ωY � of

TX � R C and TY � R C correspond.

The proof of Theorem 5.6 is quite involved and uses case by case analysis

quite essentially. As a very rough indication of some of the methods one

might use, let us show that if X is minimal then so is Y and X and Y are

in the same class. Along the way we will settle the easy case κ � X � � 2.

Step 1: By Corollary 4.7 and the discussion in §3 X and Y have the

same Kodaira dimension and the same Hodge diamond. In particular

they have the same b1 � � � , c1 � � � 2 and c2 � � � . Hence if they are both

minimal then they are in the same class.

Step 2: Assume now that X is minimal and let Y � Y0 be a minimal

model of Y . We have b1 � Y � � b1 � Y0 � [4, Theorem I.(9.1)]. If κ � X � �

� � , 1, 2 then the class of X is recognizable from b1 � X � and hence Y0

must be in the same class as X. If Y0 is not in class 1,10) then it follows

from the classification that c1 � Y0 � 2 � c � X � 2 and hence c1 � Y0 � 2 � c1 � Y � 2.

If Y0 is in class 10) then by Corollary 4.7 we have X � Y0 and hence

we also have c1 � Y0 � 2 � c1 � Y � 2. Since c1 � � � 2 changes by one under a

blowup [4, Theorem I.(9.1)(vii)] it follows in these cases that Y � Y0.

If Y0 is is in class 1) then in principle we could have c1 � Y0 � 2 � 9, c1 � Y � 2 �

c1 � X � 2 � 8. But then in Y is the blowup of P2 in a point and hence is

Del-Pezzo. We conclude by the reconstruction theorem 4.1 that X � Y

which is a contradiction.

Step 3: If κ � X � � 0 then ωX has finite order and hence the same is

true for Y by Lemma 3.1. This is impossible if Y is not minimal.

Let us also say a bit more on the K3 and abelian case. Assume that X

is a a K3 or abelian surface. Then according [55] the Chern character

K0 � X � � H � � X, Q � takes it values in H � � X, Z � . As before let N � X �
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be K0 � X � modulo the radical of the Euler form. Since the intersection

form on H � � X, Z � is non-degenerate it follows that N � X � is the image

of K0 � X � in H � � X, Z � . It is easy to see that the orthogonal to N � X � is

TX .

Now assume that X and Y are derived equivalent K3 or abelian surfaces.

Again by [55] the induced isometry between H � � X, Q � and H � � Y, Q �

yields an isometry between H � � X, Z � and H � � X, Z � . By the above dis-

cussion there is an isometry between TX and TY . This is a Hodge

isometry since H0 � X,ωX � � 2H � � X, C � .

The complete result for K3 or abelian surfaces is as follows.

Theorem 5.7 ([58], see also [21]). Let X and Y be a pair of either

K3-surfaces or abelian surfaces (tori) then the following statements are

equivalent.

1. There exists a Fourier-Mukai transform Φ: Db � Y � � � Db � X � .

2. There is an Hodge isometry ϕt : T � Y � � � T � X � .

3. There is an Hodge isometry ϕ : H2 � � Y, Z � � � H2 � � X, Z � .

4. Y is isomorphic to a fine, two-dimensional moduli space of stable

sheaves on X.

The non minimal case is covered by the following result of Kawamata.

Theorem 5.8 ([39, Theorem 1.6]). Assume that X, Y are Fourier-

Mukai partners but with X not minimal. Then there are only a finite

number of possibilities for Y (as in the minimal case). If X is not

isomorphic to a relatively minimal elliptic rational surface then X and

Y are isomorphic.

It remains to classify the auto-equivalences of the derived category

Db � X � for a surface X. Orlov solved this problem for an abelian surface

[59] (and more generally for abelian varieties). Ishii and Uehara [36]

solve the problem for the minimal resolutions of An-singularities on a

surface (so this is a local result). The most interesting open case is given

by K3-surfaces although here important progress has recently been made

by Bridgeland [16, 17]. For any X Bridgeland constructs a finite dimen-

sional complex manifold Stab � X � on which Aut � Db � X � � acts naturally.

Roughly speaking the points of Stab � X � correspond to t-structures on

Db � X � together with extra data defining Harder-Narasimhan filtrations
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on objects in the heart. The definition of Stab � X � was directly inspired

by work of Michael Douglas on stability in string theory [27]. It seems

very important to obtain a better understanding of the space Stab � X � .

6 Threefolds and higher dimensional varieties

If X is a projective smooth threefolds then just as in the surface case one

would like to find a unique smooth minimal X0 birationally equivalent

to X. Unfortunately it is well known that this is not possible so some

modifications have to be made. In particular one has to allow X0 to

have some mild singularities, and furthermore X0 will in general be far

from unique.

Throughout all our varieties are projective. We say that X is minimal

if X is Q-Gorenstein and KX is numerically effective. I.e. for any curve

C � X we have KX � C � 0.

A natural category to work in are varieties with terminal singulari-

ties. Recall that a projective variety X has terminal singularities if

it is Q-Gorenstein and for a (any) resolution f : Z � X the discrepancy

(Q-)divisor KZ � f � KX contains every exceptional divisor with strictly

positive coefficients. If dimX � 2 and X has terminal singularities then

X is smooth. So terminal singularities are indeed very mild.

If X is a threefold with terminal singularities then there exists a map

f : Z � X which is an isomorphism in codimension one such that Z

is terminal, and Q-factorial [45, Theorem 6.25]. Minimal threefolds

with Q-factorial terminal singularities are the “end products” of

the three dimensional minimal program. Such minimal models are

however not unique. One has the following classical result by Kollar [44].

Theorem 6.1. Any birational map between minimal threefolds with Q-

factorial terminal singularities can be decomposed as a sequence of flops.

Recall that a flop is a birational map which factors as � f 	 �

 1f

X

f
##

#



#
##

�� X 	

f 	 





��





W

where f , f 	 are isomorphisms in codimension one such that KX and
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KX � are Q-trivial on the fibers of f and f � respectively and such

that there is a Q-Cartier divisor D on X with the property that D is

relatively ample for f and � D is relatively ample for f � .

Example 6.2. The easiest (local) example of a flop is the Atiyah flop

[61]: Let W � Spec � C � x, y, z, u � � � xu � yz � be the affine cone over

P1 	 P1 associated to the line bundle OP1 
 P1 � 1, 1 � . W has an isolated

singularity in the origin which may be resolved in two different ways

X � � W 
 � X � by blowing up the ideals � x, y � and � x, z � . The vari-

eties X and X � are related by a flop.

How does one construct a minimal model? Assume that X has Q-

factorial terminal singularities such that KX is not numerically effective.

The celebrated cone theorem [24, 45] allows one to construct a map

f : X � W with relatively ample � KX such that one of the following

properties holds [24, Thm (5.9)]

1. dimX � dimW and f is a Q-Fano fibration.

2. f is birational and contracts a divisor.

3. f is birational and contracts a subvariety of codimension � 2.

Case 1. is what one would get by applying the cone theorem to P2. The

result would be the contraction P2 � pt. In the case of surfaces 2.

corresponds to blowing down exceptional curves. In general the result

is again a variety with terminal singularities and smaller Neron-Severi

group. Case 3. represents an new phenomenon which only occurs in

dimension three and higher. In this case W may be not be Q-Gorenstein

so one is out of the category one wants to work in. In order to continue

at this point one introduces a new operation called a flip. A flip is a

birational map which factors as � f � �
� 1f

X

f
##

#



#
##

�� X �

f � 





��





W

where f , f � are isomorphisms in codimension one such that � KX is

relatively ample for f , KX is relatively ample for f � and X � again has

Q-factorial terminal singularities. The existence of three dimensional

flips was settled by Mori in [53]. In higher dimension it is still open.
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Example 6.3. Let us give an easy example of a (higher dimensional) flip

generalizing Example 6.2. Let W be the affine cone over Pm � Pn (m �
n) associated to the line bundle OPm � Pn � 1, 1 � . W has two canonical

resolutions, the first one X being given as the total space of the vector

bundle O � 1 � � n over Pm and the second one X � as the total space of the

vector bundle O � 1 � � m over Pn. The birational map X ��� X � is a flip.

Following (and slightly generalizing) [11] (see also [39]) let us say that a

birational map X ��� X � between Q-Gorenstein varieties is a general-

ized flip if there is a commutative diagram with �X smooth

�X
π
���

�����
π �













X �� X �

such that D � π 	 KX 
 π � 	 � KX � � is effective. If D � 0 then X ��� X �
is a generalized flop.

Bondal and Orlov [11] state the following conjecture (see also [39]).

Conjecture 6.4. For any generalized flip X ��� X � between smooth

projective varieties there is a full faithful functor Db � X � � � Db � X � .
This functor is an equivalence for generalized flops.

One could think of this conjecture as the foundation for a “derived min-

imal model” program.

As evidence of the fact that smooth projective varieties related by a

generalized flop are expected to have many properties in common we

recall the following very general result by Batyrev and Kontsevich.

Theorem 6.5. If X and X � smooth varieties related by a generalized

flop then they have the same Hodge numbers.

Proof. (see [6, 25, 49]) If X and X � are related by a generalized flop then

they have the same “stringy E-function”. Since X and X � are smooth

the stringy E-function is equal to usual E-function which encodes the

Hodge numbers.

Remark 6.6. The relation between Conjecture 6.4 and Theorem 6.5

seems rather subtle. Indeed a non-trivial Fourier-Mukai transform does



Fourier-Mukai transforms 169

not usually preserve cohomological degree and hence certainly does not

preserve the Hodge decomposition.

For non-smooth varieties Db � X � is probably not the correct object

to consider. If X is Q-Gorenstein then every point x � X has some

neighborhood Ux such that on Ux there is some positive number mx

with the property mxKx
� 0. Then Kx generates a cover �Ux of

Ux on which Z � mZ is acting naturally. Gluing the local quotient

stacks �Ux � � Z � mZ � defines a Deligne-Mumford stack [47] X birationally

equivalent to X. As usual we write Db � X � for Db � coh � X � � . The

following result summarizes what is currently known in dimension three

concering the categories Db � X � .

Theorem 6.7. Let α : X ��� X � be a generalized flop between threefolds

with Q-factorial terminal singularities.

1. α is a composition of flops.

2. There is a corresponding equivalence Db � X � � Db � X � � .

In this generality this result was proved by Kawamata in [39]. The

corresponding result in the smooth case was first proved by Bridgeland

in [19]. By 1) it is sufficient to consider the case of flops. While trying

to understand Bridgeland’s proof the second author produced a mildly

different proof of the result [78]. Some of the ingredients in this new

proof were adapted to the case of stacks by Kawamata. We should also

mention [23] which uses a different method to extend Bridgeland’s result

to singular spaces.

Let us give some more comments on flips and flops. Flips and flops

occur very naturally in invariant theory [75] and toric geometry and,

as a particular case, for moduli spaces of thin sincere representations of

quivers.

Batyrev’s construction of Calabi-Yau varieties [5] uses toric geometry,

in particular toric Fano varieties. Those varieties correspond to reflexive

polytopes. Reflexive polytopes can also be constructed directly from

quivers, however, this class of reflexive polytopes is very small. For

moduli spaces of thin sincere quiver representations of dimension three

all flips are actually flops.

Remark 6.8. The results above should have consequences for derived
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categories of modules over finite dimensional algebras. However, no

example is known of a derived equivalence between a bounded derived

category Db � A � of modules over finite dimensional algebra A and Db � X � ,

where X admits a flop. The “closest” examples to such an equivalence

are the fully faithful functors constructed in [1]. If one allows flips (in-

stead of flops) such equivalences exist, one may find toric varieties Y

with a full strong exceptional sequence of line bundles. However, for its

counterpart W under the flip such sequences are not known. Strongly

related to this problem is a conjecture of A. King, that each smooth

toric variety admits a full strong exceptional sequence of line bundles,

however, even the existence of a full exceptional sequence of line bundles

is an open problem (see [43] and [2]).

7 Non-commutative rings in algebraic geometry

In the previous section we considered mainly Fourier-Mukai transforms

between algebraic varieties. There are also species of Fourier-Mukai

transforms where one of the partners is non-commutative. In this section

we discuss some examples. In contrast to the previous sections our

algebraic varieties will not always be projective.

Let f : X � W be a projective birational map between Gorenstein

varieties. f is said to be a crepant resolution if X is smooth and if

f � ωW
� ωX . A variant of Conjecture 6.4 is the following:

Conjecture 7.1. Assume that W has Gorenstein singularities and that

we have two crepant resolutions.

X

f
##

#



#
##

�� X �

f � 





��





W

Then X and X � are derived equivalent.

This conjecture is known in a number of special cases. See the previous

section and [9, 19, 56, 39]. There was some initial hope that the derived

equivalence between X and X � would always be induced by OX � W X �

but this turned out to be false for certain so-called “stratified Mukai-

flops”. See [57].
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We will now consider a mild non-commutative situation to which a

similar conjecture applies. Let G � Sln � C � be a finite group and put

W � Cn � G. Write Db
G � Cn � for the category of G equivariant coherent

sheaves on Cn and let X � W be a crepant resolution W .

Conjecture 7.2. Db � X � and Db
G � Cn � are derived equivalent.

If A is the skew group ring O � Cn � � G then one may view A as a

non-commutative crepant resolution of Cn � G. Conjecture 7.2 may be

reinterpreted as saying that all commutative crepant resolutions are

derived equivalent to a non-commutative one. So in that sense it is

an obvious generalization of Conjecture 7.1. A proper definition of a

non-commutative crepant resolution together with a suitably general-

ized version of Conjecture 7.2 was given in [77]. An example where this

generalized conjecture applies is [30]. A similar but slightly different

conjecture is [11, Conjecture 5.1].

Conjecture 7.2 has now been proved in two cases. First let X be the

irreducible component of the G-Hilbert scheme of Cn containing the

regular representation. Then we have the celebrated BKR-theorem [20].

Theorem 7.3. Assume that dimX � n � 1 (this holds in particular if

n � 3). Then X is a crepant resolution of W and Db � X � is equivalent

to Db
G � Cn � .

Note that this theorem, besides establishing the expected derived equiv-

alence, also produces a specific crepant resolution of W . For n � 3 this

was done earlier by a case by case analysis (see [65] and the references

therein).

Very recently the following result was proved.

Theorem 7.4 ([8]). Assume that G acts symplectically on Cn (for some

arbitrary linear symplectic form). Then Conjecture 7.2 is true.

Somewhat surprisingly this result is proved by reduction to characteristic

p.

Let us now discuss a similar but related problem. For a given scheme

X one may want to find algebras A derived equivalent to X. One has

the following very general result.
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Theorem 7.5 ([12], see also [67]). Assume that X is separated. Then

there exists a perfect complex E such that D � Qcoh � X � � is equivalent to

D � A � where A is the DG-algebra RHomOX
� E,E � .

Recall that a perfect complex is one which is locally quasi-isomorphic to

a finite complex of finite rank vector bundles.

In order to replace DG-algebras by real algebras let us say that a

perfect complex E � D � Qcoh � X � � is classical tilting if it generates

D � Qcoh � X � � (in the sense that RHomOX
� E,U � � 0 implies U � 0) and

Homi
OX

� E,E � � 0 for i � 0. One has the following result.

Theorem 7.6. Assume that X is projective over a noetherian affine

scheme of finite type and assume E � D � Qcoh � X � � is a classical tilting

object. Put A � EndOX
� E � . Then

1. RHomOX
� E, � � induces an equivalence between D � Qcoh � X � � and

D � A � .

2. This equivalence restricts to an equivalence between Db � coh � X � �
and Db � mod � A � � .

3. If X is smooth then A has finite global dimension.

Proof. 1) is just a variant on Theorem 7.5. The inverse functor is �
L

� AE.

To prove 2) note that the perfect complexes are precisely the compact

objects (see [12, Theorem 3.1.1] for a very general version of this state-

ment). Hence perfect complexes are preserved under �
L

� A E. An object

U has bounded cohomology if and only for any perfect complex C one

has Hom � C,U � n � � � 0 for 	 n 	 
 0. Hence objects with bounded coho-

mology are preserved as well. Now let Z be an object in Db � mod � A � � .
Then it easy to see that τ � n � Z

L
� A E � is in Db � coh � X � � for any n. Since

Z
L

� A E has bounded cohomology we are done. To prove 3) note that

for any U, V � mod � A � we have Exti
A � U, V � for i 
 0. Since A has finite

type this implies that A has finite global dimension.

Classical tilting objects (and somewhat more generally: “exceptional

collections”) exist for many classical types of varieties [9]. The following

somewhat abstract result was proved in [78].



Fourier-Mukai transforms 173

Theorem 7.7. Assume that f : Y � X is a projective map between vari-

eties, with X affine such that Rf
�
OY

� OX and such that dimf
� 1 � x � �

1 for all x � X. Then Y has a classical tilting object.

This result was inspired by Bridgeland’s methods in [19]. It applies in

particular to resolutions of three-dimensional Gorenstein terminal sin-

gularities. It also has a globalization if X is quasi-projective instead of

affine.
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[51] , Une équivalence de catégories, Compositio Math. 51 (1984),
no. 1, 51–62.

[52] J.-i. Miyachi and A. Yekutieli, Derived Picard groups of finite-
dimensional hereditary algebras, Compositio Math. 129 (2001), no. 3,
341–368.

[53] S. Mori, Flip theorem and the existence of minimal models for 3-folds,
J. Amer. Math. Soc. 1 (1988), no. 1, 117–253.

[54] S. Mukai, Duality between D � X � and D � X̂ � with its application to Picard



176 L. Hille and M. Van den Bergh

sheaves, Nagoya Math. J. 81 (1981), 153–175.
[55] , On the moduli space of bundles on K3 surfaces. I, Vector bun-

dles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud.
Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413.

[56] Y. Namikawa, Mukai flops and derived categories, J. Reine Angew.
Math. 560 (2003), 65–76.

[57] , Mukai flops and derived categories. II, Algebraic structures and
moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc.,
Providence, RI, 2004, pp. 149–175.

[58] D. O. Orlov, Equivalences of derived categories and K3 surfaces, J.
Math. Sci. (New York) 84 (1997), no. 5, 1361–1381, Algebraic geom-
etry, 7.

[59] , Derived categories of coherent sheaves on abelian varieties and
equivalences between them, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002),
no. 3, 131–158.

[60] , Derived categories of coherent sheaves and equivalences between
them, Uspekhi Mat. Nauk 58 (2003), no. 3, 89–172.

[61] M. Reid, What is a flip?, colloquium talk at Utah 1992.
[62] J. Rickard, Morita theory for derived categories, J. London Math. Soc.

(2) 39 (1989), no. 3, 436–456.
[63] , Derived equivalences as derived functors, J. London Math. Soc.

(2) 43 (1991), no. 1, 37–48.
[64] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes

in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984.
[65] S. Roan, Minimal resolutions of Gorenstein orbifolds in dimension three,

Topology 35 (1996), no. 2, 489–508.
[66] A. L. Rosenberg, The spectrum of abelian categories and recon-

struction of schemes, Rings, Hopf algebras, and Brauer groups
(Antwerp/Brussels, 1996), Lecture Notes in Pure and Appl. Math., vol.
197, Dekker, New York, 1998, pp. 257–274.

[67] R. Rouquier, Dimensions of triangulated categories, math.CT/0310134.
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Tilting theory and homologically finite
subcategories with applications to

quasihereditary algebras

Idun Reiten

Introduction

Tilting theory is a central topic in the representation theory of algebras

and related areas, as illustrated by the diverse contributions to this vol-

ume. One of the important aspects has been connections with homolog-

ically finite subcategories, which is a common term for contravariantly,

covariantly and functorially finite subcategories. One main result along

these lines is the following correspondence theorem.

For an artin algebra Λ of finite global dimension there is a one-one corre-

spondence between isomorphism classes of basic cotilting Λ-modules and

contravariantly finite resolving subcategories of the category of finitely

generated Λ-modules.

This result has interesting applications to the quasihereditary algebras

introduced in [18], with the category of modules having standard filtra-

tion as the relevant subcategory [44]. Through the above result, there

is an associated tilting module, which since the early nineties has had

great influence in the theory of algebraic groups and Lie algebras (see

[22] and the references there).

This paper is centered around the above correspondence theorem. Ac-

tually, we discuss a more general version valid beyond finite global di-

mension, which has applications to generalizations of quasihereditary

algebras.

We start with the basic setup in Chapter 1. First we discuss some gener-

alities on correspondences between modules and subcategories, or pairs

of subcategories. Then we recall results from tilting theory which are

179
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relevant for our discussions in this paper, and we give a brief introduc-

tion to the theory of contravariantly and covariantly finite subcategories

[11] [12]. We also discuss some connections between the topics.

In Chapter 2 we give the correspondence theorem for any artin algebra

from [7]. We first explain the special case which was the starting point

for the connection along these lines from [12], and we discuss the close

interplay with, and influence by, the theory of maximal Cohen-Macaulay

modules over Cohen-Macaulay rings. We also include some old results

on abelian groups from [45] related to these ideas.

In Chapter 3 we discuss the application to quasihereditary algebras.

Here the categories of modules with standard filtrations play a central

role. They are shown to be contravariantly finite resolving, so that there

is a naturally associated (co)tilting module [44]. This module is called

the characteristic tilting module, and plays a central role in the theory,

in addition to providing a beautiful illustration of the correspondence

theorem. We also discuss the generalizations to properly stratified and

standardly stratified algebras, giving interesting illustrations beyond fi-

nite global dimension.

There are generalizations of the correspondence theorem in various direc-

tions. One direction is to consider more general modules than (co)tilting

modules, and try to describe corresponding subcategories. Some work

is done in this direction for Wakamatsu tilting modules [39]. For gener-

alizations to arbitrary modules, we refer to other papers in this volume

[47, 48]. Also we discuss some results of this nature for the bounded

derived category [17][13].

All our rings, unless otherwise stated, will be artin algebras. The mod-

ules will be finitely generated, and we denote by mod Λ the category of

finitely generated (left) Λ-modules. By a subcategory of mod Λ we mean

a full subcategory closed under isomorphisms and finite direct sums and,

if not otherwise stated, also closed under direct summands. We shall in

an informal way refer to the number of indecomposable modules, or to

the direct sum of indecomposable modules with a certain property, and

let it be understood that we choose one module from each isomorphism

class.

I would like to thank A. Beligiannis, C.F. Berg, A. Buan, V. Mazorchuk,

S.O. Smalø, Ø. Solberg, and especially the referee, for helpful comments

and suggestions.
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1 The Basic Ingredients

In this chapter we provide relevant background material from tilting

theory and homologically finite subcategories, in order to discuss con-

nections and interplay between the topics in later chapters. The main

theme of the paper is correspondences between modules and subcate-

gories, so we start with a general discussion of this type of problem.

1.1 General correspondences

In this section we discuss some natural types of correspondences between

modules and subcategories for artin algebras.

Let Λ be an artin algebra and T a module in mod Λ which is selforthog-

onal, that is, Exti
Λ � T, T � � 0 for i � 0. We say that a module C in a

subcategory Y of mod Λ is Ext-projective in Y if Ext1Λ � C,Y � � 0, and

strong Ext-projective if Exti
Λ � C,Y � � 0 for all i � 0. Denote by T � the

subcategory of mod Λ whose objects are the X with Exti
Λ � T,X � � 0 for

i � 0. Then T � is the largest subcategory Y of mod Λ such that T is

strong Ext-projective in Y. We have assumed that T is selforthogonal to

make sure that T is in the subcategory T � . Denote by YT the subcate-

gory of mod Λ whose objects are the Y in T � for which there is an exact

sequence � � � � Tn
fn� Tn � 1 � � � � � T1

f1� T0
f0� Y � 0, with Ti in

addT and Ker fi in T � . Recall that the objects in add T are summands

of finite direct sums of copies of T . Then YT is the largest subcategory

of mod Λ such that T , in addition to being strong Ext-projective, is a

generator of YT in the sense that if X is in YT there is an exact sequence

0 � Y � T0 � X � 0 with T0 in addT and Y in YT .

Conversely, starting with a subcategory Y of mod Λ, a natural way of

associating a module (or a subcategory which often will turn out to be

given by a module), is to consider the Ext-projective or the strong Ext-

projective objects. This is of course closely connected with finding an

inverse for associating T � or YT with T .

Natural general questions are then the following. Let T be a selforthog-

onal module. Then we can associate with T a subcategory Y which is

T � or YT , and ask when the Ext-projectives or strong Ext-projectives in

Y are given by addT . Similarly, given a subcategory Y of mod Λ, when
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are the Ext-projectives or strong Ext-projectives in Y given by addT

for some selforthogonal module T , such that Y is T � or YT ?

Assume that T belongs to a class of selforthogonal modules such that

we have a correspondence T � � Y of one of the above types. Then

it is natural to investigate which properties of T correspond to which

properties of Y. Such a type of result can be used in both directions, ac-

cording to whether there is a subcategory Y or a module T that appears

naturally.

Sometimes it is interesting to investigate correspondences between mod-

ules and certain pairs of subcategories, rather than just one subcategory.

This is closely related to the above discussion, but provides a different

point of view which may be useful to keep in mind.

For a subcategory Y of mod Λ, denote by Ker Ext1 � ,Y � the subcategory

of mod Λ whose objects are the C with Ext1Λ � C, Y � � 0 for all Y � Y, and

let � Y � � C; Exti
Λ � C, Y � � 0 for Y � Y and i � 0 	 . Then clearly Y 
 � Y

consists of the strong Ext-projective objects in Y and Y 
 Ker � Ext1 � ,Y � �
consists of the Ext-projective ones. So we can describe one direction as

the correspondence Y � Y 
 � Y or Y � Y 
 Ker � Ext1 � ,Y � � . Hence

it is also natural to consider correspondences between selforthogonal

modules T and pairs of subcategories � � Y,Y � , or � Ker � Ext1 � ,Y � � ,Y � .

We also have the dual considerations. Then Ext-injective and strong

Ext-injective objects in a subcategory X of mod Λ are defined in the

obvious way, along with the concept of a cogenerator. We associate with

a selforthogonal module T the subcategory � T � � � add T � of mod Λ.

Then � T is the largest subcategory X of mod Λ where T is strong Ext-

injective, and we denote by XT the largest subcategory of mod Λ where

T is also a cogenerator.

1.2 Background on tilting theory

In this section we recall some basic material on tilting theory relevant

for this paper, from [15] [30] [14] [29] [36].

Denote by pdΛ C the projective dimension of a Λ-module C, and by

idΛ C the injective dimension. Let first T be a tilting Λ-module of pro-

jective dimension at most one, that is:

(i) pdΛ T � 1
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(ii) Ext1Λ � T, T � � 0

(iii) there exists an exact sequence 0 � Λ � T0 � T1 � 0 with T0

and T1 in addT .

Denote by � T ,F � the associated torsion pair, where T is the torsion

class Fac T whose objects are the factors of finite direct sums of copies

of T , and F the torsionfree class � C; HomΛ � T,C � � 0 � . Recall that

in our setting a class of modules T is a torsion class if and only if

it is closed under extensions and quotients, and a class of modules F

is a torsionfree class if and only if it is closed under extensions and

submodules. Alternative descriptions are F � SubD Tr T and T �

� C; Ext1Λ � T,C � � 0 � � � C; Exti
Λ � T,C � � 0 for i � 0 � � T � . Here the

objects of SubD Tr T are the submodules of finite direct sums of copies

of D Tr T , and D denotes the ordinary duality and Tr the transpose.

Also, for each X � T there is an exact sequence 0 � Y � T0 � X � 0

with T0 � addT and Y � T .

Dually, a module U in mod Λ is a cotilting module of injective dimension

at most one if D � U � is a tilting Λop-module of projective dimension at

most one. Associated with U is a torsion pair � U ,V � , where V is the tor-

sionfree class Sub U and U is the torsion class � Y ; HomΛ � Y,U � � 0 � . Al-

ternative descriptions are V � � C; Ext1Λ � C,U � � 0 � � � C; Exti
Λ � C,U � �

0 for i � 0 � � � U and U � Fac Tr DU .

Denote by Γ � EndΛ � T � op the endomorphism algebra of the tilting

module T with pdΛ T 	 1. Then U � D � T � is a cotilting Γ-module

with idΛ U 	 1, EndΓ � U � op 
 Λ, and we have the following basic

Brenner-Butler theorem [15].

Theorem 1.1. Let T be a tilting module with pdΛ T 	 1 over an artin

algebra Λ. Then we have the following, where � T ,F � denotes the torsion

pair in mod Λ associated with the tilting Λ-module T , and � U ,V � the

torsion pair in mod Γ associated with the cotilting Γ-module D � T � .

(a) There are inverse equivalences HomΛ � T, � : T � V and

D HomΓ � , D � T � � : V � T .

(b) There are inverse equivalences Ext1Λ � T, � : F � U and

D Ext1Γ � , D � T � � : U � F .

This result is the basis for comparing mod Λ and mod Γ, and is especially

interesting when Λ is hereditary, in which case the algebras Γ obtained
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this way are the tilted algebras, and the torsion pair � U ,V � is split, that

is, each indecomposable Γ-module is in U or V [30].

Let now T be an arbitrary tilting Λ-module, that is

(i) pdΛ T � �

(ii) Exti
Λ � T, T � � 0 for i � 0

(iii) there is an exact sequence 0 � Λ � T0 � � � � � Tn � 0 with

the Ti in addT .

Whereas it is no longer true in general that FacT is a torsion class and

we may have T � 	 FacT , we do have T � � YT , in the terminology of

section 1.1 (see [7]). This means that in the largest subcategory where T

is strong Ext-projective, T is also a generator. It will be the topic of the

next chapter to investigate the correspondence T 
� T � more closely, in

view of the general considerations from the previous section.

For an arbitrary tilting module T there are, like in the case when

pdΛ T � 1, induced equivalences between certain subcategories of

modules over Λ and Γ � EndΛ � T � op, but not all of these subcate-

gories have especially nice properties. Nevertheless, some of these

subcategories have been important. Let T be a tilting module with

pdΛ T � n. While for n � 1 we had the associated subcategories

T � � C; Ext1 � T,C � � 0 
 and F � � C; Hom � T,C � � 0 
 , we have

in general for any i with 0 � i � n an associated subcategory

Yi
� � C; Extt

Λ � T,C � � 0 for t �� i, t � 0 
 , which clearly generalizes

the case n � 1. Then for a cotilting module U with idΛ U � n

we have for any i with 0 � i � n an associated subcategory

Xi
� � C; Extt � C,U � � 0 for t �� i, t � 0 
 . Also in this generality, we

have the following, where gl.dim. Λ denotes the global dimension of Λ.

Proposition 1.2. Let T be a tilting Λ-module with pdΛ T � n and

Γ � EndΛ � T � op.

(a) Then the Γ-module U � D � T � is a cotilting module with

idΓ D � T � � n and EndΓ � D � T � � op � Λ.

(b) If gl.dim. Λ � t � � , then gl.dim. Γ � t � n.

There is the following relationship between the subcategories introduced

above [36] [29].
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Theorem 1.3. Let T be a tilting Λ-module with pdΛ T � n, and let

Yi
� � C; Extt

Λ � T,C � � 0 for t �� i, t � 0 � be the associated sub-

categories of mod Λ for i � 0, 1, . . . n. Let Γ � EndΛ � T � op, and let

Xi
� � C; Extt

Γ � C,U � � 0 for t �� i, t � 0 � be the subcategories of mod Γ

associated to the cotilting Γ-module U � D � T � .

Then we have inverse equivalences of categories Exti
Λ � T, � : Yi � Xi

and D Exti
Γ � , U � : Xi � Yi.

Note that when n � 1, this specializes to Theorem 1.1, where F � Y0,

T � Y1, U
� X0 and V � X1.

These equivalences are naturally explained by the existence of a derived

equivalence R HomΛ � T, � : Db � Λ � � Db � Γ � [29], which restricts to give

these equivalences. This result has had enormous influence, via the

tilting complexes of Rickard [42], in the representation theory of finite

groups.

We shall especially be dealing with the case i � 0, when we have

Y � Y0
� T � and X � X0

� � U , so that we get inverse equiva-

lences HomΛ � T, � : T � � � � D � T � � and D HomΓ � , D � T � � : � � D � T � � �
T � . We shall in addition deal with the subcategories � Y0

�

� C; Exti
Λ � C,Y0 � � 0 for i 	 0 � and X �0

� � C; Exti
Λ � X0, C � � 0 for i 	

0 � naturally associated with Y0 and X0, and we shall later see that there

are sometimes useful induced equivalences involving such subcategories.

An important aspect of tilting modules of special interest for the

applications is the following [30].

Proposition 1.4. Let T be a tilting module over an artin algebra Λ.

Then the number of indecomposable summands of T equals the number

of simple Λ-modules.

For tilting modules of projective dimension at most one, the following,

which does not hold for tilting modules in general [43], is also useful [14].

Proposition 1.5. Let T 
 be a selforthogonal module with pdΛ T 
 � 1

over an artin algebra Λ. Then there is some Λ-module T � with pdΛ T � �
1 such that T � T 
 
 T � is a tilting module.
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1.3 Homologically finite subcategories

In this section we provide some background material for the theory of

contravariantly finite, covariantly finite and functorially finite subcat-

egories, as introduced in [11]. This includes motivation and basic ex-

amples, with special emphasis on results relevant to the focus of this

paper.

Let C be a subcategory of mod Λ. Then C is contravariantly finite in

mod Λ if for all X � mod Λ there is a map f : C � X which is a right C-

approximation, that is, C � C and given any map t : C � � X with C � � C,

there is some s : C � � C such that fs � t. The notions of covariantly fi-

nite subcategories and left C-approximations are defined dually. Finally,

C is by definition functorially finite in mod Λ if it is both covariantly and

contravariantly finite. A common name for these three kinds of subcat-

egories is homologically finite. More generally, if C is a subcategory of

an arbitrary category D, we define C to be contravariantly, covariantly

or functorially finite in D in the obvious way.

The importance of these subcategories is that many properties of mod Λ

are inherited by them. The motivation for introducing this type of sub-

categories comes more specifically from the theory of preprojective and

preinjective partitions on one hand and the development of a general

theory for almost split sequences in subcategories on the other hand [11]

[12] (see also [8]). Central for the first topic is that a subcategory C of D

in mod Λ is functorially finite in D if C is obtained from D by removing

only a finite number of indecomposable modules.

For the second topic, it was proved that a functorially finite subcategory

C, which is in addition closed under direct summands and extensions,

has almost split sequences [12]. This means in particular that for any

indecomposable module C in C which is not Ext-projective in C there is

some almost split sequence 0 � A � B � C � 0, and the same for each

indecomposable module A in C which is not Ext-injective. So a natural

problem investigated in [12] was to try to identify the Ext-projective and

Ext-injective objects in C, in particular to decide whether (1) the number

of indecomposable Ext-projectives and the number of indecomposable

Ext-injectives objects are finite and coincide, and, (2) if the numbers

coincide, whether they are the same as the number of simple Λ-modules.

These questions were investigated under appropriate additional as-

sumptions on the subcategories. Central examples of contravariantly
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finite subcategories C are those closed under factors. And there is the

following nice criterion for when they are covariantly finite [11].

Proposition 1.6. (a) Let C be a subcategory of mod Λ closed under

factors. Then C is covariantly finite if and only if it is of the

form Fac X for some X in C.

(b) Dually, let C be a subcategory of mod Λ closed under submodules.

Then C is contravariantly finite if and only if it is of the form

SubX for some X in C.

The following result was proved about Ext-projectives and Ext-

injectives [12].

Proposition 1.7. For the subcategories of the form SubX or FacX,

there is only a finite number of indecomposable Ext-projectives and Ext-

injectives.

The subcategories closed under factors which are in addition closed

under extensions are exactly the torsion classes, and the extension

closed ones closed under submodules are the torsionfree classes. When

� T ,F � is a torsion pair, we have the following result on covariantly and

contravariantly finite [4] [46].

Theorem 1.8. Let � T ,F � be a torsion pair in mod Λ. Then T is covari-

antly (functorially) finite in mod Λ if and only if F is contravariantly

(functorially) finite in mod Λ.

While torsion pairs � T ,F � are characterized via T having as objects

the C such that Hom � C,F � � 0 and F having the objects B such

that Hom � T , B � � 0, we can instead consider pairs of subcategories

� X ,Y � such that Y � Ker Ext1 � X , � and X � Ker Ext1 � ,Y � . We say

that such a pair of subcategories � X ,Y � forms a cotorsion pair, with

X being the cotorsionfree class and Y the cotorsion class [45] (see also

[48]). Like torsion pairs, the cotorsion pairs also play an important

role in connection with tilting modules, as we shall see later. It is

immediate that for a cotorsion pair � X ,Y � , X is closed under extensions

(and summands) and contains the projective modules, and Y is closed

under extensions (and summands) and contains the injective modules.

Recall that X is resolving if in addition it is closed under kernels of

epimorphisms. Dually Y is coresolving if in addition it is closed under

cokernels of monomorphisms. When X is resolving, it is easy to see that
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Ker Ext1 � X , � � X � , and if Y is coresolving, then � Y � Ker Ext1 � ,Y � .
The following result, analogous to Theorem 1.8, will be of interest for

us [7].

Theorem 1.9. Let � X ,Y � be a cotorsion pair in mod Λ. Then we have

the following.

(a) X is contravariantly finite in mod Λ if and only if Y is covariantly

finite.

(b) X is resolving if and only if Y is coresolving.

A cotorsion pair � X ,Y � with X contravariantly finite is often called a

complete cotorsion pair.

There are interesting exact sequences associated with complete cotor-

sion pairs. The following result of Wakamatsu is important in this

connection [49] [8]. Recall that a map g : X � C is right minimal if for

any map h : X � X with gh � g, the map h is an isomorphism. For a

subcategory X of mod Λ, a right X -approximation g : X � C is said to

be a minimal right X -approximation if g : X � C is also right minimal.

The notion of a left minimal map is dual.

Lemma 1.10. Let X be a contravariantly finite extension closed sub-

category of mod Λ and let g : X � C a minimal right X -approximation.

Then Ext1Λ � X ,Ker g � � 0.

We can now describe the associated exact sequences [6].

Theorem 1.11. Let � X ,Y � be a complete cotorsion pair in mod Λ.

(a) For any C in mod Λ there is an exact sequence 0 � YC � XC
g

�
C � 0 with YC � Y, XC � X and g : XC � C a minimal right

X -approximation.

(b) For any A in mod Λ there is an exact sequence 0 � A
f

� Y A �
XA � 0, with Y A � Y, XA � X and f : A � Y A a minimal left

Y-approximation.

So, similar to the situation for torsion pairs, mod Λ is built up from a

complete cotorsion pair in the sense that each Λ-module is a quotient of

a module from the cotorsionfree class by a module from the cotorsion

class.
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There are some useful general criteria for a subcategory of mod Λ

to be contravariantly or covariantly finite. We state an important

result of this type, which will be useful later [44]. For a finite set

X � � X1, . . . Xn � of Λ-modules we shall denote by F � X � the subcat-

egory of mod Λ consisting of the modules which have filtrations with

factors amongst X1, . . . Xn, and by F̄ � X � the subcategory of mod Λ

whose objects are direct summands of the objects in F � X � .

Theorem 1.12. Let X � � X1, . . . Xn � be a set of Λ-modules satisfying

Ext1Λ � Xi, Xj � � 0 for all i � j. Then the subcategories F � X � and F̄ � X �

of mod Λ are functorially finite in mod Λ.

This has the following interesting consequence [44].

Corollary 1.13. For a set X � � X1, . . . Xn � of Λ-modules with

Exti
Λ � Xi, Xj � � 0 for all i � j, the subcategory F̄ � X � has almost split

sequences.

An important general property of a covariantly finite subcategory is

the following, as the substitute for not being closed under factors ([11],

Lemma 3.11).

Proposition 1.14. A covariantly finite subcategory Y of mod Λ has a

cover, that is, there is some X in addY such that Y � Fac X.

Amongst frequently investigated subcategories of mod Λ it is of interest

to know if they are contravariantly/covariantly finite, and if they do not

have these properties in general, what are some sufficient conditions for

these properties to hold?

For example the category Ωd � mod Λ � whose objects are the dth syzygy

modules, including the projectives, is always functorially finite (see [9],

[10]). On the other hand the category � C; pdΛ C � � � is in general

not contravariantly finite, even though there are interesting sufficient

conditions [33], and it is also not always covariantly finite [31].

1.4 Basic interplay

In this section we discuss some of the basic interplay between tilting

theory and functorially finite subcategories [12] [6] [7].
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The first main connection was given in [12], where tilting theory was

used to show the following (in a dual formulation). Here we denote by

annX the annihilator of a module X.

Theorem 1.15. Assume that the subcategory Fac X of mod Λ is closed

under extensions. Then there is the same number of indecomposable

Ext-projective and indecomposable Ext-injective objects in Fac X, and

the number coincides with the number of simple Λ � � annX � -modules.

The idea of the proof is the following. By Proposition 1.7 there is only

a finite number of indecomposable Ext-projectives and Ext-injectives.

Let T be the direct sum of the indecomposable Ext-projective modules

in FacX. Then it is shown that T is a tilting Λ � � annT � -module, and

the Ext-injective Λ � � annT � -modules in FacX coincide with the injective

Λ � � annT � -modules. Then we use that the number of indecomposable

summands of T equals the number of simple Λ� � annT � -modules, which

is again the number of indecomposable injective Λ� � annT � -modules.

On the other hand there are interesting contravariantly and co-

variantly finite subcategories associated with tilting and cotilt-

ing modules. We have already mentioned that the category

T � Fac T � � C; Ext1Λ � T,C � � 0 � � T � associated with a tilt-

ing module T with pdΛ T � 1 is functorially finite. And dually, the

category F � SubU associated with a cotilting module with idΛ U � 1

is functorially finite. More generally we have the following, part of

which will be discussed in the next chapter [7].

Proposition 1.16. (a) If T is a tilting Λ-module, then the subcate-

gory T � is functorially finite in mod Λ.

(b) If U is cotilting Λ-module, then the subcategory � U is functorially

finite in mod Λ.

In particular, since T � and � U are clearly closed under extensions (and

direct summands), they have almost split sequences.

Via Proposition 1.16, the tilting and cotilting modules also give rise to

interesting complete cotorsion pairs [7]. For a subcategory C of mod Λ we

denote by �C the subcategory of mod Λ consisting of objects X for which

there is an exact sequence 0 	 X 	 C0 	 C1 	 
 
 
 	 Cn 	 0, with

the Ci in C. Dually, the objects of the subcategory �C are the Y in mod Λ

for which there is an exact sequence 0 	 Cn 	 
 
 
 C1 	 C0 	 Y 	 0
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with the Ci in C. We then have the following, which will be discussed

more in the next chapter [7].

Proposition 1.17. (a) For a tilting module T we have the complete

cotorsion pair � �addT, T � � .

(b) For a cotilting module U we have the complete cotorsion pair

� � U, �addU � .

In view of previous remarks, we have a complete cotorsion pair

� � � T � � , T � � , so we only need to show � � T � � � �addT . Similarly we

have a complete cotorsion pair � � U, � � U � � � , so we only need to show

� � U � � � �addU . We will comment more on this in the next chapter.

As a consequence of the general results in the previous section, we then

have the following.

Corollary 1.18. Let T be a tilting Λ-module. For any C in mod Λ

there are exact sequences 0 � YC � XC
g� C � 0 and 0 � C

h� Y C �
XC � 0, with XC , XC in �addT and YC , Y C in T � , and g : XC � C

is a minimal right �addT -approximation and h : C � Y C a minimal left

T � -approximation.

If C is in �addT , then since XC is in �addT , which is closed under ex-

tensions, it follows that Y C is in addT . So there is associated with any

indecomposable object in �addT a unique module in addT . We shall

later consider a situation where �addT has n distinguished indecompos-

able modules, where n is the number of simple modules, and the asso-

ciated modules Y1, . . . Yn in addT are indecomposable. Then Y1, . . . Yn

are exactly the indecomposable summands of T .

2 The Correspondence Theorem

In this chapter we discuss a correspondence theorem between tilting

modules on one hand and covariantly or contravariantly finite subcate-

gories with additional properties on the other hand. We discuss inter-

play with commutative ring theory and related work from abelian group

theory.
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2.1 The main result

This section is devoted to discussing the correspondence theorem. Such

a theorem was first discovered for tilting modules of projective dimension

at most one, at the time when more general tilting modules had not yet

been introduced [12], and we consider this case first.

Let T be a tilting Λ-module with pdΛ T � 1, and T � Fac T �
� C; Ext1Λ � T,C � � 0 � � T � . Then T is Ext-projective in T , and addT is

given by the Ext-projectives in T . For assume that T1 is indecomposable

Ext-projective in T and not in addT . Then Ext1Λ � T �
T1, T

�
T1 � � 0,

so that T
�

T1 can be extended to a tilting module by Proposition 1.5,

which gives a contradiction to Proposition 1.4.

Start conversely with a torsion class T � Fac X for some X, with

ann T � � 0 � , where ann T � �
C 	 T annC. Let T be a direct sum of the

indecomposable Ext-projective modules in T . Then we have seen that

T is a tilting module. Recall that T is basic if T � 
 n
s � 1 Ti with Ti

indecomposable and Ti � Tj for i 
� j. So we have the following (see

[12]).

Theorem 2.1. Let Λ be an artin algebra and T a Λ-module. Then

T �� FacT and T �� � T ; Ext1Λ � T, T � � 0 � give one-one inverse corre-

spondences between basic tilting modules of projective dimension at most

one and torsion classes T � Fac X with ann T � � 0 � .
Now consider arbitrary tilting modules T . Associated with T there is

the subcategory Y � T � � � C; Exti
Λ � T,C � � 0 for i � 0 � , which is not

closed under factors in general. But for a torsion class T , being of the

form FacX is equivalent to T being covariantly finite by Proposition

1.6, and by Proposition 1.16 we see that Y has this latter property in

general. It is obvious that Y is closed under extensions and contains the

injective modules. While Y is not closed under arbitrary quotients, it is

easily seen to be closed under cokernels of monomorphisms and under

direct summands. Hence Y is coresolving.

Let conversely Y be a covariantly finite coresolving subcategory of

mod Λ. If Λ is of finite global dimension, then it turns out that the

direct sum of the indecomposable Ext-projective modules is a tilting

module. In the general case we need additional assumptions on Y to

make the same conclusion. This way we get a correspondence between

basic tilting modules and certain covariantly finite subcategories Y.
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By considering X such that � X ,Y � is a cotorsion pair, we also obtain

a related correspondence between basic tilting modules and certain

contravariantly finite subcategories. Of course there are dual statements

for cotilting modules, which we also include in the following main result

[7].

Theorem 2.2. Let Λ be an artin algebra.

(a) There is a one-one correspondence between basic tilting modules

T and covariantly finite coresolving subcategories Y of mod Λ with

�Y � mod Λ, given by T �� T � and Y �� T � direct sum of the

indecomposable Ext-projectives in Y.

(b) There is a one-one correspondence between basic tilting modules

T and contravariantly finite resolving subcategories X of mod Λ

with X � � C; pdΛ C 	 
 � , given by T �� �addT and X �� T �

direct sum of the indecomposable Ext-injectives in X .

(c) There is a one-one correspondence between basic cotilting modules

U and contravariantly finite resolving subcategories X of mod Λ

with 
X � mod Λ, given by U �� � U and X �� U � direct sum of

the indecomposable Ext-injectives in X .

(d) There is a one-one correspondence between basic cotilting modules

U and covariantly finite coresolving subcategories Y of mod Λ with

Y � � C; idΛ C 	 
 � , given by U �� �addU and Y �� U � direct

sum of the indecomposable Ext-projectives in Y.

Using that the torsion class T is of the form Fac X if and only if it is

covariantly finite by Proposition 1.6, and that annT � � 0 � if and only

if T contains all injectives, it is not hard to see that this specializes to

Theorem 2.1.

We give a sketch of the main steps in the proof of Theorem 2.2 (c)(d).

So let U be a cotilting Λ-module. Then � U is clearly resolving, and

one proves � U � XU , in the notation of section 1. Then we show�
XU

� mod Λ, and use a result from [6] saying that since XU is resolving

with an Ext-injective cogenerator U , then XU is contravariantly finite

and X �U � �addU .

Assume conversely that X is contravariantly finite resolving in mod Λ

with 
X � mod Λ. Then one can use the first part to find a cotilting

module U such that X � XU , and U is an Ext-injective cogenerator
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also for X . Since both X and XU are resolving with U as Ext-injective

cogenerator and �X � mod Λ �
�
XU , we have X �U

� �addU � X � . Using

that � XU , �addU � and � X , �addU � are then both cotorsion pairs, it follows

that X � XU .

We have pointed out in Proposition 1.16 that when T is a tilting module,

then T � is also functorially finite. In view of Theorem 2.2 this can be

restated by saying that a covariantly finite coresolving subcategory Y

with the additional property that �Y � mod Λ must be functorially finite.

It has been shown in [35] that the additional condition can be dropped,

so that any covariantly finite coresolving subcategory of mod Λ is in fact

functorially finite.

We can clearly also talk about a correspondence theorem between

tilting or cotilting modules and certain cotorsion pairs.

Corollary 2.3. We have the following for an artin algebra Λ.

(a) There is a one-one correspondence between basic tilting modules

T and complete cotorsion pairs � X ,Y � with Y coresolving and

�Y � mod Λ, given by T �	 � 
addT, T � � and � X ,Y � �	 direct sum

of the indecomposable modules in X � Y.

(b) There is a one-one correspondence between basic cotilting modules

U and complete cotorsion pairs � X ,Y � with X resolving and �X �

mod Λ, given by U 	 � � U, �addU � and � X ,Y � �	 direct sum of

the indecomposable modules in X � Y .

Note that when pdΛ T � 1, then the corresponding cotorsion pair is

� Sub T,Fac T � .

Also note that the conditions on the corresponding subcategories

simplify for algebras of finite global dimension. For when X contains

the projectives, we have automatically �X � mod Λ, and when Y

contains the injectives, we have �Y � mod Λ. Similarly, all subcategories

are contained in 
 C; pdΛ C � � � and in 
 C; idΛ C � � � . So in this

case we have the following.

Corollary 2.4. For an algebra of finite global dimension the tilting mod-

ules coincide with the cotilting modules.

Corollary 2.5. Let Λ be an artin algebra of finite global dimension.

(a) There is a one-one corespondence between basic (co)tilting mod-
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ules T and covariantly finite coresolving subcategories Y of mod Λ

given by T �� T � � �addT .

(b) There is a one-one correspondence between basic (co)tilting mod-

ules T and contravariantly finite resolving subcategories Y of

mod Λ given by T �� � T � �addT .

Let T be a tilting module over an artin algebra Λ, and let � X ,Y � �
� �addT, T � � be the associated cotorsion pair. For Γ � EndΛ � T � op,

let � X � ,Y � � � � � � D � T � � , �addD � T � � be the cotorsion pair in mod Γ as-

sociated with the cotilting Γ-module D � T � . We have seen that we

have an equivalence F � HomΛ � T, � : Y � X � , but we do not know

whether there is a (canonical) equivalence between X and Y � in gen-

eral. This is however the case when Λ, and consequently also Γ by

Proposition 1.2, has finite global dimension. Since then �addT � � T and

�addD � T � � � D � T � � � by Corollary 2.5, it follows from section 1.2 that

G � D HomΛ � , T � : X � Y � is an equivalence.

We do not know whether there is an equivalence G �
D HomΛ � , T � : �addT � �addD � T � in general. Similarly, let U be

a cotilting Λ-module and � � U, �addU � the associated cotorsion pair. For

Γ � EndΛ � U � op, let � �addD � U � , D � U � � � be the cotorsion pair in mod Γ

associated with the tilting Γ-module D � U � . Then we have seen that we

have an equivalence G � D Hom � , U � : � U � D � U � � , and for Λ of finite

global dimension an equivalence F � HomΛ � U, � : �addU � �addD � U � .
But we do not know if there is such an equivalence F in general.

There are however cases beyond finite global dimension where we have

such equivalences, and we shall see such a class in Chapter 3. Another

case is provided by the following. We say that a cotilting module U is

a strong cotilting module if �addU � 	 C; idΛ C 
 � � and that a tilting

module T is a strong tilting module if �addU � 	 C; pdΛ C 
 � � [7].

This concept is motivated by the case of a commutative complete local

noetherian Cohen-Macaulay ring and its dualizing module. If U is a

strong cotilting Λ-module, and D � U � is a strong tilting Γ-module, where

Γ � EndΛ � U � op, then there is an equivalence F � HomΛ � U, � : �addU �
�addD � U � [7]. A special case is that Λ is a Gorenstein algebra, that is,

Λ has finite injective dimension both as a left and as a right module

over Λ. Then Λ is itself a cotilting module, and Γ � EndΛ � Λ � op 
 Λ.

Further �addΛ � 	 C; idΛ C 
 � � � 	 C; pdΛ C 
 � � � �addD � Λ � , and

F � HomΛ � Λ, � : �addΛ � �addD � Λ � is the identity functor.
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When Λ is an algebra of finite global dimension, we have seen that a

tilting module T is automatically a cotilting module and that the two

associated covariantly finite subcategories T � and �addT coincide and

the two associated contravariantly finite subcategories � T and �addT

coincide. When Λ has infinite global dimension, we may still have tilting

modules T which are also cotilting modules, for example T � Λ for a

Gorenstein algebra Λ. It is easy to see that �addT and T � never coincide

for algebras of infinite global dimension, and similarly �addT and � T do

not coincide.

2.2 Some applications

When we encounter a contravariantly finite resolving subcategory, or

a covariantly finite coresolving one, there is always a natural question

whether we have any of the additional conditions satisfied which ensure

the existence of an associated tilting or cotilting module.

In the next chapter we discuss the main and most influential application

of the correspondence theorem, to quasihereditary algebras and their

generalizations. In this section we indicate two other applications of a

quite different nature.

There is an interesting illustration of the theory for the closed model

structures of Quillen [41] (see [13] for details). We do not recall the rele-

vant definitions here, but just say that in a closed model category in the

sense of Quillen [41] there are associated some important subcategories

in a natural way, namely on one hand the subcategory Cof, respectively

T Cof, of cofibrant, respectively trivially cofibrant objects, and on the

other hand the subcategory Fib, respectively T Fib, of fibrant, respec-

tively trivially fibrant, objects. Then the subcategories Cof and T Cof

are contravariantly finite and the subcategories Fib and T Fib are co-

variantly finite. In addition we have nice illustrations of cotorsion pairs,

since � Cof,T Fib � and � T Cof,Fib � are both examples of such pairs. In

particular, there are associated tilting modules, and any tilting module

gives rise to a cotorsion pair of this kind. Via showing that sometimes

such pairs (i.e. when X � Y is covariantly finite) give rise to closed

model structures, it follows that tilting modules determine closed model

structures.
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Another illustration is given by the following. Let Λ be an artin algebra

satisfying the following condition:

(*) If 0 � Λ � I0 � I1 � � � � � Ij � � � � is a minimal injective

resolution of Λ as right module, then pdΛop Ij � j � 1 for all j � 0.

This holds in particular for the Auslander rings, that is, the rings Λ

which are k-Gorenstein for all k, that is pdΛ Ij � j for all j � 0. For

each d denote by Xd the subcategory of mod Λ whose objects are the

direct summands of objects in the syzygy category Ωd � mod Λ � . Then

Xd is closed under extensions [10], and hence also under kernels of

epimorphisms [8]. We have mentioned that Ωd � mod Λ � is functorially

finite, and hence Xd also has the same property [11]. Then we have the

following.

Proposition 2.6. For an artin algebra Λ satisfying (*) the categories

Xd are functorially finite resolving with �Xd
� mod Λ.

As a consequence there is a cotilting module U such that Xd
� 	 U , and

we have a cotorsion pair � Xd,Yd � , with Yd
� 
addU . It is easy to see

that Yd
� � C; idΛ C � d � , which is hence covariantly finite coresolving.

The indecomposable summands of U are the indecomposable projective

modules P with idΛ P � d and the ΩdI for I indecomposable injective

with pdΛ I 
 d [9]. It also follows from Proposition 2.6 that Xd has

almost split sequences for Λ satisfying (*).

2.3 Interplay with the commutative case

In this section we discuss modules analogous to cotilting modules in

commutative ring theory, and how the interplay between artin algebras

and commutative rings has been fruitful in both directions.

The cotilting modules T have many analogous properties with the dual-

izing module ω for a complete local commutative Cohen-Macaulay ring

R. The module ω has finite injective dimension, and Exti
R � ω, ω � � 0

for all i 
 0. The condition for a cotilting module that there is an

exact sequence 0 � Tn � � � � � T1 � T0 � DΛ � 0, says that

the category 
addT contains the injective Λ-modules, or in other words,

is a cogenerator for mod Λ. This last property also holds for ω (see

[6]). The category 	 ω is the category of maximal Cohen-Macaulay mod-

ules CM � R � , which plays a central role in commutative ring theory. In
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this setting the duality HomR � , ω � : CM � R � � CM � R � is important.

This corresponds to the fact that HomΛ � T, � for a tilting module T

induces an equivalence of categories between T � and the subcategory

� � D � T � � of mod EndΛ � T � op, or dually, that a cotilting module U in-

duces an equivalence D HomΛ � , U � : � U � D � U � � , or rather a duality

HomΛ � , U � : � U � � UEnd
�
U � . Note that in the commutative case we

have EndR � ω � � R. But it is rare for cotilting modules over artin alge-

bras that we get the same algebra back again.

Here we see two different lines of developments leading to similar con-

cepts. The dualizing modules have been around for a long time in com-

mutative ring theory, and the roots of tilting theory, starting much later,

is a different kind of story. Whereas the theory of tilting and of cotilting

modules are dual for finitely generated modules over artin algebras, and

hence equally interesting, the concept of tilting module is not interesting

in the commutative case. For if R is a local complete noetherian com-

mutative Cohen-Macaulay ring, then R is the only basic tilting module.

The Memoir by Auslander-Bridger [5] has served as an important

foundation for many ideas in commutative and noncommutative ring

theory. There are also various examples of the behavior of left and

right approximations in [5], and hence some interesting predecessors of

the theory of contravariantly and covariantly finite subcategories. For

example, in this new language there is the following result from [5] (p.

64, p. 85).

Proposition 2.7. For a k-Gorenstein ring Λ the category � C; pdΛ C �
k 	 is covariantly finite in mod Λ, and the category � TrΩkC;C 
 mod Λ 	
is contravariantly finite.

After the work of Auslander-Smalø on the theory of contravariantly

and covariantly finite subcategories, there was further work for Cohen-

Macaulay rings, actually formulated more generally in the context of

abelian categories [6]. This specialized to the concept of maximal Cohen-

Macaulay approximation, and the construction �Y (and �X ) first appeared

here, in particular the category �ω and the fact that 
CM � R � � mod R

[6]. This work served again as inspiration for the work on the connection

between (co)tilting modules and covariantly/contravariantly finite sub-

categories, discussed in the previous section. The pair � CM � R � , �ω � was

a model example for a pair of contravariantly finite/covariantly finite

subcategories.
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The notions of contravariantly and covariantly finite subcategories were

also independently explored by Enochs, in the language of (pre)covers

and (pre)envelopes [25].

2.4 Predecessors for abelian groups

We have seen that associated to tilting or cotilting modules there are

natural cotorsion pairs � X ,Y � where X is contravariantly finite (resolv-

ing) and Y is covariantly finite (coresolving). The same thing holds for

the pair � CM � R � , �ω � when R is a commutative complete local noetherian

Cohen-Macaulay ring and ω the dualizing module.

The idea of cotorsion pairs/theories goes back to the work of Salce on

abelian groups [45], where it is defined the way we give it here. Note that

since Exti � , � � 0 for i � 1 for abelian groups, it does not make any

difference whether we deal with Ker � Ext1 � ,Y � � or � Y. The classical

example was � X ,Y), where X is the class of torsionfree groups, and

Y the class of cotorsion groups, which by definition is X � . Salce is

concerned with cotorsion pairs cogenerated by a class A, in the sense

that X � Ker � Ext1 � ,A � � and Y � Ker � Ext1 � X , � � . He investigates

especially those which are cogenerated by subgroups of Q containing Z.

It was already known that for every group G there is an exact sequence

0 � G � Y � X � 0 with Y cotorsion and X torsionfree. For a

general cotorsion theory Salce refers to this property as the cotorsion

pair having enough injectives, and the dual property as having enough

projectives. He shows that in this setting a cotorsion theory � X ,Y � has

enough injectives if and only if it has enough projectives. Note that

these conditions are closely related to X being contravariantly finite and

Y being covariantly finite. These are clearly a consequence, and the

statements are equivalent for mod Λ with Λ an artin algebra, because of

the validity of the Wakamatsu lemma in this case.

Some problems are posed at the end of the paper of Salce, which have

been considered recently [28] [24]: Find all cotorsion pairs � X ,Y � co-

generated by torsionfree groups. Does a cotorsion pair � X ,Y � of abelian

groups always have enough projectives?
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3 Quasihereditary algebras and their generalizations

The main application of the correspondence theorem between tilt-

ing/cotilting modules and contravariantly/covariantly finite subcate-

gories is Ringel’s application to quasihereditary algebras. There are

follow-up results to more general classes of algebras, including properly

stratified and standardly stratified algebras, which we also discuss.

3.1 Preliminaries

We start with the basic definitions and background material for quasi-

hereditary algebras and their generalizations. There are various equiva-

lent definitions in the literature, and we choose the one most convenient

for our discussion.

Let Λ be an artin algebra, and P1, . . . Pn a fixed ordering of the indecom-

posable projective Λ-modules, with corresponding simple tops S1, . . . Sn.

Let ∆i be the largest factor of Pi with no composition factor Sj for j � i.

Denote by ∆̄i the largest factor of ∆i where Si occurs only once as a

composition factor. The ∆i are called the standard modules, and the ∆̄i

the proper standard modules. Then for ∆ � � ∆1, . . . ∆n � the objects of

F � ∆ � are those with standard filtrations, and for ∆̄ � � ∆̄1, . . . ∆̄n � the

objects of F � ∆̄ � are those with proper standard filtrations.

Dually, let I1, . . . In be the indecomposable injective modules, with

soc Ij
� Sj . Let ∇i be the largest submodule of Ii with no compo-

sition factor Sj for j � i, and ∇̄i the largest submodule of ∇i with Si

occurring only once as composition factor, and let ∇ � � ∇1, . . .∇n � and

∇̄ � � ∇̄1, . . . ∇̄n � . Then the objects of F � ∇ � are those with costandard

filtrations, and the objects of F � ∇̄ � are those with proper costandard

filtrations.

Having possible applications of the correspondence theorem in mind, it

is of interest to investigate the relevant properties of the above subcat-

egories. We then have the following, where part (b) is a consequence of

(a) and Theorem 1.12 [44].

Theorem 3.1. (a) With the previous notation, we have

Ext1Λ � ∆i,∆j � � 0, for i � j and Ext1Λ � ∇i,∇j � � 0 for

i � j.
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(b) The subcategories F � ∆ � and F � ∇ � are functorially finite in

mod Λ.

It is obvious that our subcategories are closed under extensions, and

one can also show that F � ∆ � and F � ∆̄ � are closed under summands and

kernels of epimorphisms and that F � ∇ � and F � ∇̄ � are closed under sum-

mands and cokernels of monomorphisms [44] [23] [1]. So the only thing

missing for the first two to be resolving or the second two to be core-

solving is that they contain the projectives, respectively the injectives.

From this point of view, the following definitions are natural.

The algebra Λ is said to be standardly stratified if F � ∆ � contains the

projectives, and Λ is quasihereditary if in addition ∆i
� ∆̄i for all

i � 1, . . . n. If Λ is standardly stratified and the ∆i have filtrations

using the ∆̄j , that is, F � ∆ � � F � ∆̄ � , then Λ is said to be properly

stratified [20]. The quasihereditary algebras are characterized amongst

the standardly stratified ones as follows (see [2]).

Proposition 3.2. Let Λ be a standardly stratified artin algebra. Then

Λ is quasihereditary if and only if gl.dim. Λ � � .

The quasihereditary algebras were introduced by Cline-Parshall-Scott

[18], motivated by the theory of Lie algebras and algebraic groups. Also

the standardly stratified algebras appear naturally in Lie theory (see

[26] [37]), and were introduced in [19] with the weaker condition that

there is only a preorder on the indecomposable projective modules. The

categories F � ∆ � and F � ∇ � play a central role in the theory of these

algebras. In particular the subcategory F � ∆ � � F � ∇ � of modules having

both standard and costandard filtrations is important.

The central role of quasihereditary algebras in representation theory

is also stressed by Iyama’s work on the representation dimension [32],

where he shows that for any artin algebra there is a module M which is

a projective generator and injective cogenerator, such that EndΛ � M � op

is quasihereditary. This answered Auslander’s conjecture that the rep-

resentation dimension is always finite.

3.2 Quasihereditary algebras

In this section we apply the correspondence theorem to quasihereditary

algebras. General references for this section are [44] [23] [34].
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Let Λ � � Λ, � � be a quasihereditary algebra with respect to a fixed

ordering P1, . . . Pn of the indecomposable projective modules. As we

have seen, gl.dim. Λ � � , so the tilting and cotilting modules coincide,

and to apply the correspondence theorem we only need to check that

our subcategories are contravariantly finite resolving/covariantly finite

coresolving. We have the following [44].

Theorem 3.3. Let � Λ, � � be a quasihereditary algebra. Then there is

a basic (co)tilting Λ-module T such that � T � F � ∆ � and T � � F � ∇ � ,
and � F � ∆ � ,F � ∇ � � is a cotorsion pair.

We make some remarks about the proof. As we have already mentioned,

F � ∆ � is contravariantly resolving. So, since gl.dim. Λ � � , we have our

desired (basic) (co)tilting module T such that � T � F � ∆ � . It is then

shown that F � ∇ � � F � ∆ � � , so that � F � ∆ � ,F � ∇ � � is the associated co-

torsion pair, and consequently F � ∇ � � T � , since
�

� T, T � � is a cotorsion

pair by section 2.

This particular (basic) tilting module T has some extra nice proper-

ties. While in general we have T � T1 � 	 	 	 � Tn, where n is the num-

ber of simple modules Si, we normally do not have a natural corre-

spondence between the Ti and the Si. For quasihereditary algebras we

do however have such a correspondence. This can be seen as follows.

Let T 
 be one of the Ti. Since T 
 is in F � ∆ � , we have an exact se-

quence 0 � ∆i
f� T 
 � X � 0, with X in F � ∆ � , for some i. Then

f : ∆i � T 
 is a left F � ∇ � -approximation since Ext1Λ � X,F � ∇ � � � 0,

necessarily minimal since T 
 is indecomposable. By uniqueness of left

minimal F � ∇ � -approximations, ∆i uniquely determines T 
 , and since

the number of Ti is the same as the number of ∆i, then T 
 also uniquely

determines ∆i. Since Ext1Λ � ∆j ,∆i � � 0 for j � i, X must be filtered

by ∆ 
js for j � i. So Si occurs as a composition factor of T 
 , and no

Sj with j 
 i occurs. Hence T 
 is naturally associated with Si, and we

write T 
 � Ti. Dually we have, since T 
 is in F � ∇ � , an exact sequence

0 � Y � Ti
g� ∇i � 0 with Y in F � ∇ � . Then g : Ti � ∇i is a minimal

right F � ∆ � -approximation.

The above (basic) (co)tilting module T is canonically associated

with a quasihereditary algebra, and is called the characteristic tilting

module. Hence there is canonically associated with T the algebra

Γ � EndΛ � T � op called the Ringel dual. The equivalences between

subcategories associated with cotorsion pairs are nicely illustrated here.
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Using the notation T � T1 � � � � � Tn as explained above, we consider

Γ with the opposite of the ordering for Λ [44].

Theorem 3.4. Let � Λ, � � be a quasihereditary algebra, with character-

istic tilting module T .

(a) Then Γ � EndΛ � T � op is a quasihereditary algebra, with the in-

duced opposite ordering for Γ, and Λ � EndΓ � D � T � � op.

(b) Let ∆ �i and ∇ �i be the standard and costandard modules

for Γ. Then we have equivalences of categories F �

HomΛ � T, � : F � ∇ � � F � ∆ � � and G � D HomΛ � , T � : F � ∆ � �
F � ∇ � � .

For (b), we have seen in section 2.1 that we have equivalences

F : F � ∇ � � X � and G : F � ∆ � � Y � , where � X � ,Y � � is the cotorsion

pair associated with the cotilting Γ-module D � T � . One can consider the

set of modules F � ∇i � and show that they have to coincide with the stan-

dard modules ∆ �1, . . . ∆ �n for Γ, in opposite order. Similarly the G � ∆i �
are the costandard modules ∇ �1, . . .∇ �n for Γ, so that X � � FΓ � ∆ � � and

Y � � FΓ � ∇ � � . Hence D � T � is the characteristic tilting module for Γ,

which is quasihereditary since F � T � � Γ 	 FΓ � ∆ � � .

In addition to giving a beautiful illustration of the general theory, this

result also has the following important application, taking advantage of

basic properties of tilting modules.

Corollary 3.5. Let Λ be a quasihereditary algebra with n simple mod-

ules. Then there are exactly n indecomposable Λ-modules which have

both a standard and costandard filtration.

For note that F � ∆ � 
 F � ∇ � � addT , where T is the characteristic tilting

module, and T has exactly n indecomposable summands by Proposition

1.4.

The part of the theory of quasihereditary algebras related to tilting the-

ory has had a large influence in the theory of algebraic groups and related

topics (see [22]). It has also inspired further developments within the

theory of quasihereditary algebras. For natural questions are to inves-

tigate more closely the relationship between a quasihereditary algebra

and its Ringel dual (see [50]), as well as using the relationship to inves-

tigate when F � ∆ � is of finite (representation) type. For example FΛ � ∆ �
is clearly of finite type if the Ringel dual Γ of Λ is of finite type. And
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results for quasihereditary algebras involving tilting suggest problems

within tilting theory more generally. For example, how generally do we

have a natural correspondence between the indecomposable summands

of a tilting module and the simple modules. Interesting are also the

generalizations of quasihereditary algebras to be discussed in the next

section, which are still closely related to tilting theory.

3.3 Standardly stratified algebras

In this section we discuss a correspondence theorem for standardly strat-

ified algebras, and the smaller class of properly stratified algebras [1] [2]

[20] [21] [27] [37] [40].

When a standardly stratified algebra is not quasihereditary, we have seen

in Proposition 3.2 that it must have infinite global dimension, so we get

a nice illustration of the theory also beyond finite global dimension.

Let Λ be a standardly stratified algebra, that is, Λ is in F � ∆ � , or

equivalently, D � Λ � is in F � ∇̄ � [1]. Then F � ∆ � is functorially finite in

mod Λ by Theorem 1.12. It is clearly closed under extensions, and

under summands and kernels of epimorphisms by [44] [23]. It is easy

to see by induction that the modules in F � ∆ � have finite projective

dimension, starting with ∆n
� Pn being projective [2] [40]. Hence there

is by Theorem 2.2 (b) a tilting module T such that �addT � F � ∆ � .
Since F � ∆ � � � F � ∇̄ � by [1], we have F � ∇̄ � � T � , and � F � ∆ � ,F � ∇̄ � �
is a complete torsion pair. So we have the following result, where the

second part follows by duality.

Theorem 3.6. (a) Let Λ be standardly stratified. Then F � ∆ � �
� C; pdΛ C � � 	 , and there is a tilting module T such that

F � ∆ � � �addT and F � ∇̄ � � T � , and � F � ∆ � ,F � ∇̄ � � is a com-

plete cotorsion pair.

(b) Assume that Λop is standardly stratified. Then F � ∇ � �
� C; idΛ C � � 	 , and there is a cotilting module U such that

F � ∇ � � �addU and F � ∆̄ � � � U , and � F � ∆̄ � ,F � ∇ � � is a com-

plete cotorsion pair.

When Λ is standardly stratified, the associated tilting module is also

called the characteristic tilting module, and when Λop is standardly strat-

ified, then the associated cotilting Λ-module U is called the characteristic
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cotilting module. When Λ is standardly stratified, Λop does not neces-

sarly have the same property (see [27]). For we can have that Λ � F � ∆ � ,
but Λ � F � ∆̄ � . Actually, if Λ is standardly stratified, then it is properly

stratified if and only if Λop is standardly stratified, and so Λ is properly

stratified if and only if Λop is [21].

Using the complete cotorsion pair � F � ∆ � ,F � ∇̄ � � for a standardly

stratified algebra Λ we get in the same way as for quasihereditary

algebras a one-one correspondence between indecomposable summands

Ti of T and simple modules Si, such that Si is a composition factor of

Ti, but no Sj with j � i is. In particular, there is induced an ordering

of the Ti, so that we again can use the opposite ordering for the Ringel

dual Γ � EndΛ � T � op. Denote by ∆ �i and ∆̄ �i the standard and proper

standard modules for Γ, and by ∇ �i and ∇̄ �i the costandard and proper

costandard modules. It turns out that Γ is not necessarily standardly

stratified, but the opposite ring has this property. And we have a

similar relationship between subcategories as before [2].

Theorem 3.7. Let Λ be a standardly stratified algebra with characteris-

tic tilting module T and let Γ � EndΛ � T � op. Then we have the following.

(a) Γop is standardly stratified, and Γ has a characteristic cotilting

module D � T � .

(b) F � ∆̄ � � � � � D � T � � and F � ∇ � � � �addD � T � , and we have

equivalences F � HomΛ � T, � : F � ∇̄ � 	 F � ∆̄ � � and G �

D HomΛ � , T � : F � ∆ � 	 F � ∇ � � .

We have the equivalence F � HomΛ � T, � : T � 	 � � D � T � � from general

tilting theory, and T � � F � ∇̄ � . By considering the Γ-modules F � ∇̄i �
one shows that F � F � ∇̄ � � � F � ∆̄ � . From general theory one has that

G : F � ∆ � 	 mod Γ is full and faithful, using that F � ∆ � � 
addT , but to

identify the image as F � ∇ � � one considers the G � ∆i � . In particular, this

gives examples of D HomΛ � , T � : 
addT 	 �addD � T � being an equivalence

for a tilting module T , for algebras of infinite global dimension.

Let now Λ be properly stratified. Then we have both a characteristic

tilting module T and a characteristic cotilting module U . Then Γ �

EndΛ � T � op and Γop are not properly stratified in general. But if T � U ,

then Γ is again properly stratified, with the characteristic tilting and

cotilting module coinciding [27].

Note that when the characteristic tilting module T is also a characteristic
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cotilting module for a properly stratified algebra Λ, which can happen

also for infinite global dimension, the four subcategories T � , � T , �addT

and �addT associated with T in Theorem 2.2 have a nice illustration as

the four subcategories with filtrations which we are dealing with.

Assume more generally that Λ is a standardly stratified algebra and

that Γ is properly stratified. Let T be the characteristic tilting

module for Λ, and let T � be the characteristic tilting module for Γ.

Consider the equivalence F � HomΛ � T, � : T � � �ΓD � T � � FΓ � ∆̄ � .
Then T � � FΓ � ∆ � 	 FΓ � ∆̄ � , so we can consider H � F


 1 � T � � [27].

This module is shown to have some interesting properties [27]. If

T � �
ΓD � T � , then H is just ΛD � Λ � . Recall that the finitistic dimension

of Λ, denoted fin.dim. Λ, is sup � pdΛ C; pdΛ C � 
 , C � mod Λ � .

Theorem 3.8. For a standardly stratified algebra Λ such that the Ringel

dual Γ is properly stratified, we have the following, with the above nota-

tion.

(a) H is a tilting Λ-module.

(b) X � � C; pdΛ C � 
 � is contravariantly finite in mod Λ and X �

�addH.

(c) fin.dim. Λ � pdΛ H.

Note that this motivates interesting questions for tilting theory more

generally. Let Λ be an artin algebra with a pair of modules � T,U � , where

T is a tilting module and U � T is a cotilting module, such that �addU 	
T � , that is, U � T � , or equivalently T � � U . Let Γ � EndΛ � T � op and

F � HomΛ � T, � : T � � � � D � T � � . Then �addD � U � 	 � � D � T � � , and

we let H � F

 1 � D � U � � . When does H have similar properties to those

stated in the above theorem? Also it would be interesting to find natural

sources of such pairs � T,U � .

For more information on the finitistic dimension for standardly strati-

fied or properly stratified algebras, see [38]. In particular, for a properly

stratified algebra Λ fin.dim. Λ � pdΛ T � idΛ U , where T is the charac-

teristic tilting module and U is the characteristic cotilting module.
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4 Generalizations

In this chapter we consider on one hand generalizations of the correspon-

dence theorem for (co)tilting modules for mod Λ using the more general

class of Wakamatsu tilting modules. There are also generalizations to

categories of arbitrary modules over a ring, with direct extensions of

the definitions of tilting/cotilting modules. For this we refer to the sur-

vey [47]. On the other hand there are similar correspondence theorems

for triangulated categories, in particular bounded derived categories of

finitely generated modules, and we discuss some of the work which has

been done in this direction.

4.1 Wakamatsu tilting modules

Generalizations of tilting modules (of finite projective dimension) have

been considered, amongst others by Wakamatsu [49]. A module T in

mod Λ for an artin algebra Λ is said to be a Wakamatsu tilting module if

Exti
Λ � T, T � � 0 for i � 0 and there is an exact sequence 0 � Λ

f0� T0
f1�

T1 � � � � Ti � � � � with the Ti in addT and Coker fi � � T for all i � 0.

A Wakamatsu cotilting module is defined dually, and it is known that T

is a Wakamatsu tilting module if and only if it is a Wakamatsu cotilting

module, so we do not really need the latter concept [49] [16]. It is an

interesting open problem, closely related to the homological conjectures

for artin algebras, whether a Wakamatsu tilting module of finite projec-

tive dimension must be a tilting module. This is called the Wakamatsu

tilting conjecture in [13].

Recall that for a tilting module T we had two associated subcat-

egories, on one hand T � , where 	T � � mod Λ, and on the other

hand 
addT whose modules have finite projective dimension. We

had for a general selforthogonal module T considered the sub-

category YT of T � , whose modules Y admit an exact sequence

� � � � Ti
fi� Ti � 1 � � � � f2� T1

f1� T0 � Y � 0, with Ti in addT and

Ker fi in T � . For a tilting module T we had YT
� T � , but it is not

known whether this equality holds for Wakamatsu tilting modules.

So it is not so clear to start with which of the categories YT and T �
would be the best candidate for the subcategory in a correspondence

theorem generalizing T �� T � for T a tilting module. Such questions
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are discussed and investigated in [39], where the following is proved.

Theorem 4.1 (Correspondence theorem). Let T be a selforthogonal

module over an artin algebra Λ.

(a) Then T �� YT and Y �� Y � � Y give a one-one correspondence

between Wakamatsu tilting modules and coresolving subcategories

with Ext-projective generator, maximal amongst those with the

same Ext-projective generator.

(b) Then T �� XT and X �� X � X � give a one-one correspondence

between Wakamatsu tilting modules and resolving subcategories

with Ext-injective cogenerator, maximal amongst those with the

same Ext-injective cogenerator.

We point out that if Y is a coresolving subcategory of mod Λ, then Y

being covariantly finite and �Y � mod Λ is equivalent to Y having an

Ext-projective generator and �Y � mod Λ [6]. This makes it clear that

the class of subcategories appearing in the above theorem is an extension

of the class corresponding to tilting modules.

An example is given in [39] to show that the condition on maximality in

the above theorem can not be dropped.

Also here one can alternatively formulate the relationship between Waka-

matsu tilting modules and the associated cotorsion pair � � Y,Y � for case

(a) and � X ,X � � for case (b).

4.2 Correspondences for derived categories

There is an analogue of the main correspondence theorem in the setting

of bounded derived categories Db � Λ � of an artin algebra Λ [17], which

we discuss in this section. We also point out connections with torsion

pairs associated with tilting objects (see [13] [3]).

The first problem is to extend the essential notions involved in the state-

ment of the correspondence theorem for mod Λ in a natural way to the

setting of derived categories. The notion of tilting object, called tilting

complex, in Db � Λ � , is central and has been introduced in [42]. We say

that a subcategory Y of Db � Λ � is coresolving if Y is closed under exten-

sions and the shift [1] [17]. This is a natural analogue of a subcategory of

mod Λ being closed under extensions and cokernels of monomorphisms.
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There does not seem to be a natural analogue of containing all injective

modules. But this is not so serious since in the correspondence theo-

rem for mod Λ this condition could have been dropped, because it is a

consequence of �Y � mod Λ.

Denote by Kb � P � Λ � � the bounded complexes of finitely generated pro-

jective modules. Recall that a complex T � is a tilting complex if

(i) T � � Kb � P � Λ � �

(ii) Hom � T, T � i � � � 0 for i � 0

(iii) T � generates Kb � P � Λ � � , that is , Kb � P � Λ � � is the smallest trian-

gulated subcategory of Db � Λ � containing T � .

Also define �Y to be the full subcategory of Db � Λ � with objects C such

that there is an integer n, objects Y0, . . . Yn in Y and objects K1, . . . Kn 	 1

in Db � Λ � , and a sequence of triangles

C 
 Y0 
 K1 

...

Kn 	 2 
 Yn 	 2 
 Kn 	 1 

Kn 	 1 
 Yn 	 1 
 Yn 


Then the following is proved [17]. Here a subcategory C of Db � Λ � is

selforthogonal if Hom � A,B � i � � � 0 for A,B � C and i �� 0, and T � � is

defined to be 
 C; Hom � T � , C � i � � 0 for i � 0 � .

Theorem 4.2. There is a one-one correspondence between basic tilting

complexes T � in Db � Λ � and full subcategories Y of Db � Λ � having the

properties

(i) Y is covariantly finite

(ii) Y is coresolving

(iii) �Y � Db � Λ �

(iv) � Y generates Kb � P � Λ � �

(v) Y � � Y is selforthogonal.

The correspondence is given by T � �
 T � � and Y �
 Y � � Y.
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Note that compared to the corresponding result for mod Λ, two addi-

tional conditions have been added. There might have been a different

possible choice for the definition of the basic notions, although this one

seems very natural. But given this choice, the last two conditions can

not be dropped, and it is shown in [17] that neither condition is a con-

sequence of the others.

We also point out that an analogue of the Wakamatsu lemma is proved

in [17], and from this it follows that when T � is a tilting object in Db � Λ � ,
then � � Y,Y � is a complete cotorsion pair, with the obvious definitions

analogous to those in mod Λ.

For artin algebras Λ there is a nice correspondence between tilting mod-

ules T with pdΛ T � 1 and certain torsion pairs � T ,F � , where the associ-

ated torsion class coincides with the associated cotorsion class. But there

is not such a correspondence for arbitrary tilting modules. We remark

that we do however have an induced torsion pair � X � addT,Y � addT �
in the (stable) category mod Λ � addT , with the appropriate definitions,

where mod Λ � addT is a pretriangulated category, which is triangulated

when Λ is selfinjective and T � Λ [13] [6]. We now explain that for

Db � Λ � the situation is analogous to the case of projective dimension at

most one for mod Λ. Before giving the definition of a torsion pair in

Db � Λ � , it is useful to recall the definitions in an abelian category.

For an abelian category A, the subcategory T is a torsion class if it

is closed under extensions and factors and the inclusion i : T � A has

a right adjoint (which in particular implies that T is contravariantly

finite in A). The last condition is automatic in mod Λ. There is a

natural generalization of torsion class and torsion pair to triangulated

categories, in particular to Db � Λ � , which is closely related to the better

known notion of t-structure (see [13]).

We say that a pair � T ,F � of full subcategories of Db � Λ � is a torsion pair

if

(i) Hom � T ,F � � 0

(ii) T � 1 	 
 T or F � � 1 	 
 F

(iii) For each C � Db � Λ � there is a triangle X � C � Y � with

X � T and Y � F . Then T is the torsion class and F the

torsionfree class.

An equivalent characterization is the following, using that we have a
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Krull-Schmidt category: A full subcategory T of Db � Λ � is a torsion

class if and only if T is coresolving and contravariantly finite in Db � Λ �
[13].

For a tilting object T � in Db � Λ � (that is, a tilting complex), we

associate a torsion pair � T ,F � with T � as follows [13]. We first

define the torsionfree class F . We clearly want Hom � T � ,F � � 0,

but with this condition alone the subcategory F will not have the

required properties. The idea is then to take the largest subcategory

of � C; Hom � T � , C � � 0 � which is closed under extensions and [-1].

So we let F � � C; Hom � T � , C � i � � � 0 � i 	 0 � , and then define

T � � X; Hom � X,F � � 0 � . We then have the following ([13] III.2, III.4).

Theorem 4.3. The pair � T ,F � as defined above is a torsion pair in

Db � Λ � and T � � C; Hom � T � , C � i � � � 0 for i 
 0 � � T � � .

The proof of this result goes via the unbounded derived category

D � Mod Λ � of all Λ-modules.

Note that it follows from Theorem 4.2 and Theorem 4.3 that the torsion

class and the cotorsion class associated with a tilting complex in Db � Λ �
coincide. In particular, a subcategory Y with the properties (i)-(v) from

Theorem 4.2 must be contravariantly finite. It would be interesting to

see if, like for mod Λ [35], the last three conditions can be dropped, so

that covariantly finite coresolving implies contravariantly finite also in

this context.

Also note that by Theorem 4.2 we get a one-one correspondence between

(basic) tilting complexes in Db � Λ � and torsion pairs � T ,F � where T sat-

isfies (i) (ii) (iv) (v) in Theorem 4.2. The tilting complex T � associated

with � T ,F � is then given by T � � T . There is also an alternative way

of getting back to T � . For the projective objects of the heart T � F � 1 �
of the associated t-structure is equivalent to add Γ (see [13]).

References
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Tilting modules for algebraic groups and
finite dimensional algebras

Stephen Donkin

Introduction

This is a survey article describing some of the ways in which the theory

of rational representations of algebraic groups interacts with the repre-

sentation theory of finite dimension algebras, with particular emphasis

on tilting modules.

In its simplest form the connection between the two areas is the fol-

lowing. Let G be a linear algebraic group over an algebraically closed

field k. Then the coordinate algebra k � G � is naturally a commutative

Hopf algebra, in particular a coalgebra. A coalgebra is the union of

its finite dimensional subcoalgebras and, for a finite dimensional coal-

gebra C, say, there is a natural equivalence of categories between the

category of C-comodules and the category of modules for the dual al-

gebra C � . A (rational) G-module is, more or less by definition, a k � G � -

comodule. If V is a finite dimensional right comodule, with structure

map τ : V � V � k � G � , then the image of τ lies in V � C, for some

finite dimensional subcoalgebra C of k � G � and V is naturally a right

C-comodule and hence a left C � -module. Thus the (finite dimensional)

representation theory of G is simply the union of the (finite dimensional)

representation theories of the finite dimensional algebras C � , as C ranges

over finite dimensional subcoalgebras of k � G � .

Of course all of this is so far too general to be of any particular use. How-

ever, when G is reductive, k � G � may be written as the ascending union

of finite dimensional subcoalgebras C, defined by the weight theory of G,

whose dual algebra C � is quasi-hereditary, in the sense of Cline, Parshall

and Scott, [7]. These algebras (or rather their module categories) have

215
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a very tight structure, in particular they have finite global dimension

and have decomposition numbers which obey the “Brauer-Humphreys

reciprocity formulas (analogues of the well known Bernstein-Gelfand-

Gelfand reciprocity formula in the category O of modules for a semisim-

ple, complex Lie algebra).

There are already several survey articles on tilting modules for finite

dimensional algebras and for algebraic groups, see [22], [11],[29], [2], [45]

(see also the appendix of [23]): [22] deals with the relations with in-

variant theory, [11] and [23, Appendix] deal only with finite dimensional

algebra aspects, the article [29] is particularly concerned with applica-

tions of Schur algebras - as quasi-hereditary algebras - to the representa-

tion theory of symmetric groups, whereas [2] (dealing in particular with

sum formulas for tilting modules for algebraic and quantum groups) and

[45] (which includes an extensive account of fundamental theorems on

induced modules for algebraic groups) are written from a thoroughly

algebraic group theory perspective. Our aim here (partly as in order to

offer something different and partly because of our limited expertise) is

to describe, in some detail, the relationship between the representation

theory of algebraic groups and quasi-hereditary algebras which arise in

this context (the so-called generalized Schur algebras). We consider in

some detail the usual Schur algebras, and give some applications of our

point of view.

We make no attempt to be encyclopedic (in fact we are highly selective)

and instead refer the reader to the excellent survey articles mentioned

above for details of the many important applications described therein.

There are a few new proofs and results and a new conjecture scattered

throughout. We give a somewhat new treatment of some recent work of

Hemmer and Nakano, which shows, in particular, that Specht module

multiplicities are well defined if the base field does not have characteristic

2 or 3, with an improvement on degree in certain extension groups for

Hecke algebras. We give a homological treatment of a recent result

of Fayers and Lyle on homomorphisms between symmetric groups; our

version is valid also for Hecke algebras and is generalized to extension

groups in small degree. This can be found in Section 10. We give,

in Section 5, a character formula for certain tilting modules which are

projective as modules for the restricted enveloping algebra. We make a

conjecture describing the support variety of tilting modules for general

linear groups in characteristic 2 (also in Section 5).
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Finally we mention a couple of further applications which would have

fitted well here but have been omitted to keep the size of the paper

down. The first is the application of tilting modules to the calculation

of the character of the cohomology of line bundles on the generalized

flag variety. We refer the reader to the papers [25] and [27]. The second

application is a tilting modules treatment of Adams operations on group

representations, with applications to Lie representations of general linear

groups, due to R. Bryant, and for this we refer to [4].

1 Quasi-hereditary algebras

We quickly review the theory of quasi-hereditary algebras, due to Cline,

Parshall and Scott. A fuller account, from the point of view relevant

here, can be found in [23, Appendix]. We fix a field k which, for conve-

nience, we take to be algebraically closed. For a k-algebra S we denote

by Mod � S � the category of left S-modules and by mod � S � the category

of finite dimensional left S-modules. We write V � mod � S � to indicate

that V is a finite dimensional left S-module.

Let S be a finite dimensional k-algebra. Let � L � λ � � λ � Λ � be a complete

set of pairwise non-isomorphic irreducible S-modules. We introduce

some notation that will also be used in the strongly related contexts

of the representation theory of coalgebras and of reductive algebraic

groups. Let π be a subset of Λ. We say that V � mod � S � belongs to π if

all composition factors of V belong to � L � λ � � λ � π � . For an arbitrary

V � mod � S � the set of submodules belonging to π has a unique maximal

element, and we denote it Oπ � V � . Similarly, among all submodules U

of V such that V � U belongs to π there is a unique minimal one, and

we denote this Oπ � V � . (The notation comes from an analogy with finite

group theory where, for a set of primes π, the standard notation for the

largest normal subgroup of a finite group G whose order is divisible only

by primes in π is Oπ � G � , with Oπ � G � defined similarly.)

Let P � λ � be a minimal projective cover and I � λ � a minimal injective

envelope of L � λ � , for λ � Λ. Assume now that Λ is given a partial

order. We put π � λ � � � µ � Λ � µ � λ � . Let M � λ � denote the maximal

submodule of P � λ � .

The module ∆ � λ � is defined by ∆ � λ � � P � λ � � Oπ
	
λ 
 � M � λ � � and the

module ∇ � λ � is the submodule of I � λ � containing L � λ � defined by
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∇ � λ � � L � λ � � Oπ
�
λ � � I � λ � � L � λ � � . A module isomorphic to ∆ � λ � (resp.

∇ � λ � ) for some λ � Λ will be called a standard module (resp. a costan-

dard module).

By construction L � λ � occurs precisely once as a composition factor of

∆ � λ � and of ∇ � λ � and other composition factors have the form L � µ � ,
with µ � λ. Thus we have the following.

Lemma 1.1. The Grothendieck group Grot � S � of mod � S � has the fol-

lowing Z-bases:

(i) � 	 L � λ � 
 � λ � Λ � ;

(ii) � 	 ∆ � λ � 
 � λ � Λ � ;

(iii) � 	 ∇ � λ � 
 � λ � Λ � .

Here 	 X 
 denotes the class in Grot � S � of X � mod � S � .

For X � mod � S � and λ � Λ we write, as usual, 	 X : L � λ � 
 for the

multiplicity of L � λ � as a composition factor of X. In addition we define

the “multiplicities” � X : ∆ � λ � � , � X : ∇ � λ � � � Z by the formulas

	 X 
 � 

λ � Λ

� X : ∆ � λ � � 	 ∆ � λ � 
 and 	 X 
 � 

λ � Λ

� X : ∇ � λ � � 	 ∇ � λ � 
 .

For X � mod � S � a filtration 0 � X0 � X1 � � � � � Xn will be called

a standard filtration (resp. costandard filtration) if each Xi � Xi � 1

is a standard module (resp. costandard module) for 1 � i � n.

We write X � F � ∆ � (resp. X � F � ∇ � ) to indicate that X is a

finite dimensional module which admits a standard filtration (resp.

costandard filtration). Note that, for X � F � ∆ � (resp. X � F � ∇ � ),
the integer � X : ∆ � λ � � (resp. � X : ∇ � λ � � ) is the multiplicity of ∆ � λ �
(resp. ∇ � λ � ) as a section in every standard (resp. costandard) filtration.

Definition 1.2. The category mod � S � is said to be a highest weight

category (with respect to the labelling of a full set of irreducible modules

by the poset Λ) if P � λ � � F � ∆ � , � P � λ � : ∆ � λ � � � 1 and � P � λ � : ∆ � µ � � �
0 whenever µ � Λ is not greater than or equal to λ.

There is also the equivalent notion that a finite dimensional algebra

S over k is quasi-hereditary (see e.g. [23, Appendix]. However, from

our point of view the important definition is the one just given and we
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shall say (by a somewhat casual use of terminology) that S is a quasi-

hereditary algebra if its module category is a high weight category.

We now assume that S is quasi-hereditary. An easy dimension shifting

argument gives the following crucial homological property.

Theorem 1.3. For λ, µ � Λ, we have

Exti
S � ∆ � λ � ,∇ � µ � � �

{
k, if i � 0 and λ � µ;

0, otherwise.

It is easy to deduce a symmetry property between projectives and injec-

tives; namely that an injective module has a costandard filtration, that

� I � λ � : ∇ � λ � � � 1 and that � I � λ � : ∇ � µ � � � 0 unless µ is greater than or

equal to λ (for λ, µ � Λ). Indeed one can use this property to formulate

the definition of high weight category as a condition on injective modules

instead of projective modules.

Note that Theorem 1.3 implies that for X � F � ∆ � (resp. X � F � ∇ � ) the

filtration multiplicity � X : ∆ � µ � � (resp. � X : ∇ � µ � � ) is the dimension

of HomS � X,∇ � µ � � (resp. HomS � ∆ � µ � , X � ), for µ � Λ. Applying

this to P � λ � and I � λ � we obtain the following, which is known as

“Brauer-Humphreys reciprocity”.

Theorem 1.4. For λ, µ � Λ we have

� P � λ � : ∆ � µ � � � � ∇ � µ � : L � λ � � and � I � λ � : ∇ � µ � � � � ∆ � µ � : L � λ � � .

We shall write X � F � ∆ � � F � ∇ � to indicate that X is a finite

dimensional S-module which has both a standard filtration and a

costandard filtration. Such a module will be called a partial tilting

module or just a tilting module. There is a very nice parametrization of

the indecomposable partial tilting modules, due to Ringel, [49] (see also

[48]).

Theorem 1.5. (i) For λ � Λ there exists an indecomposable partial

tilting module T � λ � which has the property that � T � λ � : ∆ � λ � � � 1

and � T � λ � : ∆ � µ � � � 0, for µ not less than or equal to λ (for

µ � Λ).

(ii) � T � λ � � λ � Λ 	 is a complete set of pairwise non-isomorphic inde-

composable partial tilting modules.
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(iii) We have � T � λ � : ∇ � λ � � � 1 and � T � λ � : ∇ � µ � � � 0 for µ not less

than or equal to λ (for λ, µ � Λ).

The existence of tilting modules leads to the construction of a related

algebra S � called the Ringel dual of S. By a full tilting module we

mean a tilting module T such that T � λ � occurs as a component

of T for each λ � Λ. Let T be a full tilting module. We define

S � � EndS � T � op, the opposite algebra of EndS � T � . Note that S � is

determined up to Morita equivalence. We have the natural left exact

functor F � HomS � T, � � : mod � S � � mod � S � � . It follows immediately

from Theorem 1.3 that F is exact on short exact sequences of modules

in F � ∇ � . We define P � � λ � � FT � λ � , λ � Λ.

Theorem 1.6. (i) � P � � λ � � λ � Λ 	 is a complete set of pairwise non-

isomorphic projective indecomposable left S � -modules.

(ii) Defining L � � λ � to be the head of P � � λ � (λ � Λ) and letting Λ � be the

poset with underlying set that of Λ and partial order the reverse

of that of the poset Λ, we have that mod � S � � is a high weight

category, with respect to the labelling L � � λ � , λ � Λ � , of a complete

set of pairwise non-isomorphic irreducible left S � -modules.

(iii) The module ∆ � � λ � � F∇ � λ � is the standard S � -module with head

L � � λ � and moreover, we have,

� T � λ � : ∇ � µ � � � � P � � λ � : ∆ � � µ � � � 
 ∇ � � µ � : L � � λ � �

(where ∇ � � µ � denotes the costandard S � -module with socle L � � µ � ),
for λ, µ � Λ.

The sense in which S � is dual to S is explained by the following.

Theorem 1.7. For λ � Λ the module T � � λ � � FI � λ � is the indecompos-

able partial tilting module for S � labelled by λ. Furthermore, a suitable

choice of full tilting modules for S and S � gives rise to an isomorphism

S � S � of quasi-hereditary algebras.

2 Coalgebras and Comodules

The connection between representations of reductive algebraic groups

and quasi-hereditary algebras is made (as we shall see) via coalgebras.

On the one hand the linear dual of a coalgebra is naturally an associative
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algebra and on the other hand a rational module for an algebraic group

is (more or less by definition) a comodule for the coordinate algebra.

We refer the reader to J.A. Green’s paper [33] for a thorough treatment

of the representation theory of coalgebras. Let � A, δ, ε � be a k-coalgebra.

Thus A is a k-vector space and δ : A � A � A, ε : A � k are linear maps

such that

� δ � 1 � � δ � � 1 � δ � � δ and � ε � 1 � � δ � � 1 � ε � � δ � 1

(where 1 here denotes the identity map on V and the identity map on

A).

The linear dual A � of A is an associative algebra with product αβ �
� α � β � δ and identity ε. By a right comodule we mean a k-vector space

V together with a linear map (called the structure map) τ : V � V � A

such that � 1 � δ � � τ � � τ � 1 � � τ : V � V � A � A (where 1 here denotes

the identity map on V ). Left comodules are defined similarly. The right

A-comodules (resp. finite dimensional right comodules) naturally form

the objects of a category which we denote Comod � A � (resp. comod � A � ).

A right A-comodule V , with structure map τ : V � V � A, is naturally a

left A � -module with action αv � � 1 � α � τ � v � , α � A � , v � V . Moreover,

if A is finite dimensional then we obtain in this way an equivalence of

categories from Comod � A � to Mod � A � � . Given a right A-comodule V

we shall in fact regard V as a left A � -module (as above) and if A is

finite dimensional and W is a left A � -module we shall also regard W as

a right A-comodule without further comment.

For V � Comod � A � there is an injective comodule I, determined up to

isomorphism, such that V embeds in I in such a way that the embedding

induces an isomorphism between the socle of V and the socle of I. The

injective comodule I is called the injective envelope of V . Suppose that

� L � λ � 	 λ � Λ 
 is a complete set of pairwise non-isomorphic irreducible

right A-comodules. For each λ � Λ we choose an injective indecompos-

able comodule I � λ � containing L � λ � . Then � I � λ � 	 λ � Λ 
 is a complete

set of pairwise non-isomorphic injective indecomposable A-comodules

and every injective right A-comodule is a direct sum of copies of the

comodules I � λ � , λ � Λ (see [33]).

Let π be a subset of Λ. We say that a left comodule V belongs to π

if all composition factors of V come from � L � λ � 	 λ � π 
 . Let V be an
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arbitrary left A-comodule. The set of subcomodules of V which belong

to π has a unique maximal element and we denote this Oπ � V � .

Regarding A itself as a right A-comodule via the structure map δ : A �
A � A we obtain a subspace A � π � � Oπ � A � and it is easy to check that in

fact A � π � is a subcoalgebra of A. Moreover, if V is a right A-comodule

then the structure map V � V � A has image in V � A � π � if and only if

V belongs to π. A right A-comodule V belonging to π is thus an A � π � -
comodule and we identify, in this way, the category of right A-comodules

belonging to π with the category of all right A � π � -comodules. Thus, in

particular, � L � λ � � λ � π � is a complete set of pairwise non-isomorphic

right A � π � -comodules.

If A is finite dimensional then we shall call it quasi-hereditary if its dual

algebra A 	 is quasi-hereditary, in other words A is quasi-hereditary if

the category of finite dimensional comodules comod � A � is a high weight

category.

This definition may be given intrinsically in the comodule category as

follows. We assume the notation above and that Λ is a poset. For λ � Λ

define π � λ � � � µ � Λ � µ 
 λ � . We define the submodule ∇ � λ � of I � λ �
containing L � λ � by the equation

∇ � λ � � L � λ � � Oπ
�
λ 
 � I � λ � � L � λ � � .

We call the comodules ∇ � λ � , λ � Λ, the costandard comodules. A

filtration 0 � X0 
 X1 
 � � � 
 Xn
� X of a left A-comodule X

is called costandard if each section Xi � Xi � 1 is a costandard module

(1 � i � n). For an A-comodule X we write X � F � ∇ � to indicate that

X admits a costandard filtration. As in the finite dimensional algebra

case, the multiplicity of ∇ � λ � as a section in a costandard filtration

of X is independent of the choice of filtration and is denoted � X : ∇ � λ � � .

Definition 2.1. The finite dimensional coalgebra A is quasi-hereditary

(with respect to the labelling of the irreducible modules by the poset Λ)

if I � λ � � F � ∇ � if � I � λ � : ∇ � λ � � � 1 and if � I � λ � : ∇ � µ � � � 0 unless µ is

greater than or equal to λ.

However, we do not just want to deal with finite dimensional coalgebras

(if G is a linear algebraic group over k then the coordinate algebra k � G �
is in general an infinite dimensional coalgebra which plays a central role

in the sequel). So it is convenient to have a definition of quasi-hereditary

valid in the more general context. In fact, for many purposes, it would be
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enough to work with coalgebras which locally are finite dimensional and

quasi-hereditary, i.e. coalgebras with the property that each finite di-

mensional subspace is contained in a finite dimensional quasi-hereditary

coalgebra. The coalgebras arising as coordinate algebras of reductive

algebraic groups have a stronger property, however, and we shall take

this as our definition.

By a saturated subset π of a poset Λ we mean one which is downwardly

closed, i.e has the property that whenever λ � π and µ � λ then µ � π.

Definition 2.2. Let Λ be a poset such that for each λ � Λ the set

� µ � Λ � µ � λ � is finite. Suppose that A is a coalgebra over k and that

� L � λ � � λ � Λ � is a complete set of pairwise non-isomorphic irreducible

right A-comodules. We say that A is a quasi-hereditary coalgebra (with

respect to the labelling of irreducible comodules by the poset Λ) if, for

every finite saturated subset π of Λ, the coalgebra A � π � � Oπ � A � is

finite dimensional and quasi-hereditary (with respect to the labelling of

the irreducible right A � π � -comodules by the poset π).

Suppose that A is a quasi-hereditary k-coalgebra, as above. We shall

define, a standard comodule ∆ � λ � , a costandard comodule ∇ � λ � , and

a (partial) tilting module T � λ � , by a local finiteness argument. So let

λ � Λ and let π � � µ � Λ � µ � λ � . We say that a finite dimensional right

A-comodule V is “λ-admissible” if it is finite dimensional, belongs to π,

has simple head L � λ � and L � λ � occurs exactly once as a composition

factor of V . Any such V is a homomorphic image of the projective cover

of L � λ � as a left S � π � -module, where S � π � � A � π � � is the dual algebra.

Hence there is a bound on the dimension of λ-admissible comodules and

it follows that there is a unique (up to isomorphism) universal one, i.e. a

λ-admissible V with the property that every λ-admissible comodule is a

homomorphic image of V . We denote such a comodule by ∆ � λ � (and call

it the standard comodule labelled by λ). We say that a right comodule

V is “λ-coadmissible” if it is finite dimensional right comodule which has

socle L � λ � , belongs to π and L � λ � occurs exactly once as a composition

factor. We deduce in a similar way that all λ-coadmissible comodules

embed in a common one, which we denote ∇ � λ � . (Note that in fact

∇ � λ � is isomorphic to the subcomodule ∇ 	 � λ � of I � λ � containing L � λ �
defined by ∇ 	 � λ � 
 L � λ � � Oπ � � I � λ � L � λ � � , where π 	 � � µ � Λ � µ � λ � .)
As usual we shall write X � F � ∆ � (resp. X � F � ∇ � ) to indicate that

X � comod � A � admits a standard (resp. costandard) filtration, and

for such X and λ � Λ write the corresponding filtration multiplicity as
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� X : ∆ � λ � � (resp. � X : ∇ � λ � � ). By a (right) tilting comodule for A

we mean a finite dimensional right A comodule which admits both a

standard filtration and a costandard filtration.

From the construction we see that if σ is any finite saturated subset of Λ

containing π then ∆ � λ � (resp. ∇ � λ � ) is the standard (resp. costandard)

A � σ � -comodule corresponding to λ. Let T � λ � be the indecomposable

tilting comodule for A � π � labelled by λ. Then T � λ � is an indecomposable

right comodule for A � σ � which admits both a standard filtration and a

costandard filtration and in which ∇ � λ � occurs as a composition factor

with multiplicity 1. Hence T � λ � is also the tilting comodule, labelled by

λ, for A � σ � .

Thus we have, for each λ � Λ, an indecomposable finite dimensional

right A-comodule T � λ � � F � ∆ � � F � ∇ � with � X : ∆ � λ � � � 1 and

� X : ∆ � µ � � � 0 for µ not less than or equal to λ. If T � � λ � is also such a

right A-comodule and σ is a finite saturated subset of Λ such that both

T � λ � and T � � λ � belong to σ then T � λ � and T � � λ � are indecomposable

tilting comodules, labelled by λ, for A � σ � and hence are isomorphic as

A � σ � -comodules, and hence as A-comodules. Similarly one gets that a

finite dimensional right A-comodule in F � ∆ � � F � ∇ � is a direct sum of

copies of T � λ � , λ � Λ. To summarize, we have the following extension

of Theorem 1.5.

Theorem 2.3. (i) For λ � Λ there exists an indecomposable finite

dimensional right A-comodule T � λ � which is a tilting module and

has the property that � T � λ � : ∆ � λ � � � 1 and � T � λ � : ∆ � µ � � � 0,

for µ not less than or equal to λ (for µ � Λ).

(ii) � T � λ � � λ � Λ � is a complete set of pairwise non-isomorphic inde-

composable tilting modules.

(iii) We have � T � λ � : ∇ � λ � � � 1 and � T � λ � : ∇ � µ � � � 0 for µ not less

than or equal to λ (for λ, µ � Λ).

We now give a criterion for a k-coalgebra A to be quasi-hereditary.

Theorem 2.4. Let � L � λ � � λ � Λ � be a complete set of pairwise non-

isomorphic irreducible right A-comodules, labelled by the poset Λ. Sup-

pose that:

(i) for each λ � Λ there exists a universal (finite dimensional)
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λ-admissible right comodule ∆ � λ � and universal (finite dimen-

sional) λ-coadmissible right comodule ∇ � λ � ; and

(ii) Exti
A � ∆ � λ � ,∇ � µ � � � 0 for all λ, µ � Λ and i � 1, 2.

Then A is quasi-hereditary (with respect to the labelling of irreducible

comodules by the poset Λ).

Here Exti
A � X,Y � , for right comodules X,Y , is computed via an injective

comodule resolution of Y . The argument of proof is a straightforward

adaptation to the coalgebra context of arguments which appear in the

algebraic group context in [14].

In view of the following result, the homological algebra of finite dimen-

sional comodules for a quasi-hereditary coalgebra may be understood in

terms of that of its finite dimensional quasi-hereditary subcoalgebras.

For the proof we refer to the argument of proof of the corresponding

result for modules for algebraic groups, see [16, (2.1f) Theorem].

Theorem 2.5. Let A be a quasi-hereditary coalgebra as above. Let π

be a saturated subset of of Λ. Then for right A � π � -comodules (equiva-

lently right A-comodules belonging to π) X,Y , we have Exti
A

�
π � � X,Y � �

Exti
A � X,Y � , for all i � 0.

3 Linear Algebraic Groups

We now see how all of this theory comes to life in the context of reduc-

tive groups. By an algebraic group we mean a linear algebraic group

over the algebraically closed field k. Let G be an algebraic group, with

coordinate algebra k � G 	 . The canonical example is G � GL � n � , the

group of invertible n 
 n matrices with entries in k. In this case we have

k � G 	 � k � c11, . . . , cnn, 1� d 	 , where cij � g � is the � i, j � -entry, and d � g � is

the determinant, of g � G.

A left kG-module V is called locally finite (dimensional) if every cyclic

submodule (and hence every finitely generated submodule) of V is finite

dimensional. A finite dimensional left kG-module V is called rational

if for some (and hence every) basis v1, . . . , vn of V the corresponding
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coefficient functions fij , defined by the equations

gvi
�

n

�
j � 1

fji � g � vj

(for g � G, 1 � i � n) belong to k � G � . A rational (left) kG-module (of

arbitrary dimension) is a kG-module V such that:

(i) V is locally finite; and

(ii) every finite dimensional submodule of V is rational.

Given a rational kG-module V with basis � vi
	 i � I 
 and “coefficient

functions” fij � k � G � defined by

gvi
� �

j � I

fji � g � vj

(g � G, i � I) we have on V the structure of a right k � G � -comodule via

the structure map τ : V 
 V � k � G � , given by τ � vi � � �
j � I vj � fji

(for i � I). The definition of τ is independent of the choice of basis and

one obtains in this way an equivalence of categories between rational

kG-module and right k � G � -comodules. We identify a rational (left) G-

module with a (right) k � G � -comodule via this equivalence.

The coefficient space cf � V � is, by definition, the subspace of k � G �
spanned by all coefficient functions fij . It is independent of the choice of

basis. Note also that the image of the structure map τ lies in V � cf � V � .
From now on a G-module will mean a rational kG-module. We note

that the category of G-modules is closed under the operations of taking

submodules, quotient modules and tensor products. Moreover if V is

a finite dimensional rational G-module then so is the dual module V � .

We write Mod � G � (resp. mod � G � ) for the category of G-modules (resp.

finite dimensional G-modules).

Examples of rational modules for linear algebraic groups

We give some example of rational modules for an arbitrary linear alge-

braic group G.

(i) If V is a k-vector space viewed as a kG-module with trivial action

(gv � v for all g � G, v � V ) then V is a rational G-module. In

particular we have the one dimensional trivial kG-module, denoted k.
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The condition that the trivial module k is (up to isomorphism) the only

simple G-module is equivalent to the condition that G is a unipotent

group, i.e. the image of G in some (and hence every) faithful matrix

representation (affording a rational module) should be conjugate to a

subgroup of the group of upper unitriangular matrices.

(ii) Suppose G has an algebraic right action on an affine algebraic variety

V . Thus the action µ : V � G � V is required to be a morphism of affine

varieties. The comorphism µ � : k � V � � k � V � G � � k � V � � k � G � makes

the coordinate algebra k � V � into a rational G-module (on which G acts

as k-algebra automorphisms).

In particular we can take V � G with the action by right multiplication:

µ � x, g � � xg, for x, g 	 G. The coordinate algebra k � G � , considered as a

rational G-module in this way, is called the left regular G-module.

Alternatively, we get a G-module structure on k � G � via the conjugation

action � κ � x, g � � g

 1xg) of G on itself. Explicitly, the module action is

given by � g � f � � x � � f � g 
 1xg � , for g, x 	 G, f 	 k � G � . Note that the

augmentation ideal M � � f 	 k � G � 
 f � 1 � � 0 � is a G-submodule. Hence

M2 is also a submodule and we have the finite dimensional rational

module M � M2. The action of G on k � G � gives rise to a kG-module

structure on the dual k � G � � , in the usual way, i.e. in such a way that

� gγ � � f � � γ � g 
 1 � f � , for g 	 G, γ 	 k � G � � and f 	 k � G � . This action is

not, in general, rational. However, the Lie algebra

Lie � G � � � γ 	 k � G � � 
 γ � ab � � γ � a � b � 1 � � a � 1 � γ � b � , for all a, b 	 k � G � �

is a G -submodule of k � G � � and naturally dual to M � M2. Thus the Lie

algebra Lie � G � is naturally a rational G-module.

Examples of rational modules for general linear groups

We now take G � GL � n � and provide some additional examples of ratio-

nal modules in this case. Let E be the natural module of column vectors

of length n and let e1, . . . , en be the standard basis (so ei has 1 in the ith

position and 0s elsewhere). The � i, j � -matrix coefficient function with

respect to this basis is the function cij which picks out the � i, j � -entry

of an invertible matrix. Thus E is a rational module. Hence the rth

tensor power E � r � E � � � � � E is also rational as are the rth sym-

metric power SrE and the rth exterior power � r
E (quotient modules
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of E � r). Thus we have, for any finite sequence α � � α1, α2, . . . , αm �
a rational module SαE � Sα1E � � � � � SαmE and a rational module

� α
E � � α1E � � � � � � αmE.

4 Reductive Groups

The rational representation theory of reductive groups is highly devel-

oped and we need to recall now some of its features. A full account is

given in the book by Jantzen, [39]. We begin with the simplest kind of

reductive algebraic group. An algebraic group T is called a torus if it

is isomorphic to a product of copies of the multiplicative group of the

field k, equivalently if T is isomorphic to the group of invertible diagonal

n � n-matrices, for some n. The character group X � G � , of an algebraic

group G, is the (abelian) group of all algebraic group homomorphisms

from G to k � , the multiplicative group of the field. The group operation

on X � G � is given by � λ 	 µ � � g � � λ � g � µ � g � , for g 
 G, λ, µ 
 X � G � .
To start with, for definiteness, we take T to be the group of invertible

diagonal n � n-matrices. Let εi : T � k be the group homomorphism

which takes t 
 T to its � i, i � -entry, for 1 � i � n. Then X � T � is the free

abelian group on ε1, . . . , εn, and X � T � may be identified with Zn in such

a way that λ � � λ1, . . . , λn � 
 Zn is the homomorphism taking t 
 T to

tλ1

1 tλ2

2 . . . tλn
n , where ti is the � i, i � -entry of t, for 1 � i � n.

Thus, if T is any n-dimensional torus, then the character group X � T �
is free abelian of rank n. For V 
 Mod � T � and λ 
 X � T � we have

the λ weight space V λ � 
 v 
 V � tv � λ � t � v for all t 
 T � . We have

V � �
λ � X

�
T � V λ. In particular all T -modules are semisimple. We say

that λ 
 X � T � is a weight of V if V λ � 0.

To keep track of weight space multiplicities, one assigns a character to

a finite dimensional T -module. We form the integral group ring ZX � T � .
Thus X � T � has a Z-basis of “formal exponentials” eλ, λ 
 X � T � , which

multiply according to the rule eλeµ � eλ � µ. The formal character of a

finite dimensional module V is defined by

ch V � �
λ � X

�
T �

dim V λeλ.

We need to recall now how a root system may be attached to a reductive

algebraic group. We fix a maximal torus T in G and a Borel subgroup (
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i.e. a maximal closed solvable connected subgroup of G) containing T .

We have the normalizer N of T in G and the Weyl group W � N � T . The

action of N on T by conjugation gives rise to a ZW -module structure

on X � T � and hence a RW -module structure on the real vector space

R � Z X � T � . Let � , � be a real positive definite, symmetric, W -invariant

bilinear form on R � Z X � T � . Let Φ denote the set of roots, i.e. the non-

zero weights for the action of T on Lie � G � . Then Lie � G � decomposes

as Lie � G � � Lie � T � � � �
α � Φ Lie � G � α � , and Lie � G � α is one dimensional,

for α � Φ. We identify X � T � with a subgroup of R � Z X � T � and let

E be the R-span of Φ in R � Z X � T � . Then the induced bilinear form

makes � E,Φ � into a root system with Weyl group W . We choose the

system of positive roots which makes B the negative Borel subgroup. In

other words we choose the system of positive roots Φ � � 	 
 α � α � Φ
� 
 ,

where Φ
�

is the set of non-zero weights for the action of T on Lie � B � .
We have a natural partial order on X � T � . We declare λ � µ if the

difference µ 
 λ has the form �
α � Φ � nαα, for non-negative integers nα.

For α � Φ we put α̌ � 2α � � α, α � . Then X � � T � � 	 λ � X � T � � � λ, α̌ � �
0 for all α � Φ � 
 is the set of dominant weights.

We consider the representation theory of B. Now B is the semidirect

product of T with U , the unipotent radical of B, i.e. the largest normal

unipotent subgroup of B. Each λ � X � T � can be uniquely extended to a

multiplicative character of B which, by abuse of notation, we also write

λ. Explicitly, we have λ � tu � � λ � t � , for t � T , u � U . We identify X � B �
with X � T � in this way.

The irreducible G-modules are classified as follows.

Theorem 4.1. (i) For λ � X � � T � there exists an irreducible G-

module L � λ � such that dim L � λ � λ � 1 and all weights of L � λ � are

less than or equal to λ.

(ii) The modules L � λ � , λ � X � � T � , form a complete set of pairwise

non-isomorphic irreducible G-modules.

Example 4.2. We take G � SL2 � k � . We take T to be the group of

diagonal matrices in G and take B to the group of lower triangular

matrices in G. Then N � T � sT , where s � �
0 1
 1 0 � . Then X � T � �

Zρ and X � � T � � N0ρ, where ρ

�
a 0

0 a
� 1 � � a , a � k � (and where
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N0 denotes the set of non-negative integers). Let E denote the natural

G-module of column vectors. If k has characteristic 0 then, as one

may readily check, the rth symmetric power SrE is irreducible and has

highest weight rρ. Hence we have L � rρ � � SrE, for r � 0. This is not

the case for all r if k has characteristic p (one may easily check that

SpE, for example, is reducible). However we do have L � rρ � � SrE for

0 � r � p � 1.

In general, the irreducible modules may be constructed via certain nat-

urally occurring induced modules. We shall not develop the theory of

induction for algebraic groups in general, but only give what we need

for the sequel. Let V be a B-module. By definition the induced module

IndG
BV is the space of maps f : G � V such that:

(i) f is regular, i.e. f : G � V has image in a finite dimensional

subspace V0, say, of V and the restriction f : G � V0 is a mor-

phism of affine varieties (where V0 is viewed as affine n-space,

n � dim V0); and

(ii) f is B-equivariant, i.e. f � bx � � bf � x � , for all b � B, x � G.

The action of G on IndG
BV is given by � gf � � x � � f � xg � , f � IndG

BV ,

g, x � G. To check that this module is rational one may first restrict to

the case in which V is finite dimensional, with basis v1, . . . , vn, say. For

f � IndG
BV we have f1, . . . , fn � k 	 G 
 , defined by f � g � � f1 � g � v1 � � � � �

fn � g � vn. Then IndG
BV embeds (as a G-module) in k 	 G 
 
 � � � 


k 	 G 
 (the

direct sum of n copies of the left regular module) via the map sending

f � IndG
BV to � f1, . . . , fn � .

One may regard IndG
BV as a left exact functor, from Mod � B � to Mod � G � .

The natural evaluation map ε : IndG
BV � V , ε � f � � f � 1 � , gives rise

to Frobenius Reciprocity, i.e. the isomorphism HomG � M, IndG
BV � �

HomB � M,V � , θ �� ε � θ, for M � Mod � G � .

In addition to Frobenius reciprocity one also has the tensor identity.

There is a natural isomorphism IndG
B � M � V � � M � IndG

BV , for M a

G-module and V a B-module. Furthermore this gives rise to an isomor-

phism in each degree: RiIndG
B � M � V � � M � RiIndG

BV , where RiIndG
B

denotes the ith derived functor of the induction functor.

The right derived functors RiIndG
B take finite dimensional B-modules

to finite dimensional G-modules. This may be seen by associating

to a finite dimensional B-module V a vector bundle L � V � on the
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projective variety G � B and identifying RiIndG
BV with the ith (coherent

sheaf) cohomology space Hi � G � B,L � V � � . In the case i � 0 there is

a direct elementary argument to see that R0IndG
BV � IndG

BV is finite

dimensional (see [15, Section 1.5]). The case in which V � kλ, a

one dimensional B-module on which T acts according to λ (and L � V �
is a line bundle) is especially important and one has the following results.

Theorem 4.3. (i) IndG
Bkλ is non-zero if and only if λ � X � � T � ;

(ii) RiIndG
Bkλ

� 0 for all i � 0 if � λ, α̌ � � � 1, for some simple root

α;

(iii) RiIndG
Bkλ

� 0 if λ � X � � T � and i � 0.

The third property is known as Kempf’s vanishing theorem and it is

this which is behind the connection between reductive groups and quasi-

hereditary algebras.

We put ∇ � λ � � IndG
Bkλ, for λ � X � � T � . We now describe the character

of ∇ � λ � . It is convenient to enlarge X � T � slightly and work in the

group ring ZX 	 � T � , where X 	 � T � is the Q vector subspace of R 
 Z X � T �
spanned by X � T � . Thus we have X � T � � X 	 � T � � R 
 Z X � T � (and

X 	 � T � � Q 
 Z X � T � ). Then ZX 	 � T � has Z basis eλ, λ � X 	 � T � , and we

have eλeµ � eλ � µ, λ, µ � X 	 � T � .

For µ � X 	 � T � we put A � µ � � 

w � W sgn � w � ewµ, where sgn � w � denotes

the sign of a Weyl group element w. Let ρ � X 	 � T � be half the sum

of the positive roots. Then for λ � X � T � the alternating sum A � λ � ρ �
is divisible by A � ρ � and the Weyl character χ � λ � is defined to be the

quotient A � λ � ρ � � A � ρ � . The “dot action” of the Weyl group on X 	 � T �
is given by w � ν � w � ν � ρ � � ρ. The Weyl character satisfies χ � w � ν � �
sgn � w � χ � ν � , and moreover we have χ � ν � � 0 if � ν, α̌ � � � 1 for any

simple root α. It follows that, for any ν � X � T � , the Weyl character is

either 0 or � χ � λ � for some dominant weight λ.

It is not difficult to show that the Euler character 

i � 0 � � 1 � ich RiIndG

Bkλ

is equal to the Weyl character χ � λ � , for λ � X � T � , (see e.g. [15, Section

2.2]) and so from (iii) above we get the following explicit description of

the character of an induced module.

Theorem 4.4. ch∇ � λ � � χ � λ � , for λ � X � � T � .

It follows from Frobenius Reciprocity that there is an embedding of L � λ �
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into ∇ � λ � . Moreover, its follows from the density of the “big cell” U � B

in G (where U � is the group generated by all roots subgroups Uα, α a

positive root) that ∇ � λ � has a simple socle as a B-module. Hence ∇ � λ �

has G-module socle L � λ � .

We write w0 for the longest element of the Weyl group W . For

λ � X � � T � we put λ � � � w0λ and ∆ � λ � � ∇ � λ � � � . The following

consequences of Kempf’s vanishing theorem were obtained by Cline,

Parshall, Scott and van der Kallen [6].

Theorem 4.5. (i) Exti
G � ∆ � λ � ,∇ � µ � � �

{
k, if i � 0 and λ � µ;

0, otherwise.

(ii) If Ext1G � ∇ � λ � ,∇ � µ � � � 0 then λ � µ (for λ, µ � X � � T � .

For λ � X � � T � let I � λ � be the injective envelope L � λ � (as a rational

G-module, or k 	 G 
 -comodule). Then ∇ � λ � embeds in I � λ � . The main

result of [14] restated in the language of Section 2 is now the following.

Theorem 4.6. We regard X � � T � as a poset with order induced from

the natural order on X � T � . Then k 	 G 
 is a quasi-hereditary coalgebra

with respect to the labelling L � λ � , λ � X � � T � , of irreducible modules and

moreover, for λ � X � � T � , the corresponding costandard k 	 G 
 comodule

(i.e. G-module) is ∇ � λ � � IndG
Bkλ and the standard module is ∆ � λ � �

∇ � λ � � � .

Remark 4.7. In fact k 	 B 
 is a quasi-hereditary coalgebra. This follows

from van der Kallen’s paper [41]. This is a deep and sophisticated work

which generalizes the above (restriction gives a full embedding of the

category of G-modules into the category of B-modules) and whose con-

sequences, to the best of my knowledge, have so far not been investigated

or exploited.

Definition 4.8. Let A � k 	 G 
 and let π be a finite saturated subset

of X � � T � . The dual algebra S � π � of the coalgebra A � π � is called a

generalized Schur algebra.

We will see in Section 8 that the Schur algebras S � n, r � , described by

Green in [34], are generalized Schur algebras. The importance of these

finite dimensional algebras algebras lies in that fact that the homological

algebra of finite dimensional G-modules may be understood in terms of

them, in view of the following result (which follows immediately from
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Theorem 2.5).

Theorem 4.9. If M,N are finite dimensional G-modules and π is a

saturated subset of of X � � T � such that M,N belong to π then we have

Exti
G � M,N � � Exti

S
�
π � � M,N � , for all i � 0.

We conclude this section by stating a result which, though not part

of the standard quasi-hereditary set-up, is nevertheless very useful in

applications. It was proved by J-P Wang for large characteristics, by

the author except for small characteristics and by O. Mathieu in general

(for a full account of this and related issues see [42]).

Theorem 4.10. ∇ � λ � � ∇ � µ � � F � ∇ � for all λ, µ � X � � T � .
From this we get that if X,Y � F � ∇ � then X � Y � F � ∇ � . Moreover,

since X � F � ∆ � if and only if X 	 � F � ∇ � we get that if X,Y � F � ∆ �
then X � Y � F � ∆ � . Hence if X,Y are tilting modules then X � Y is a

tilting module.

5 Infinitesimal Methods

We consider some ways in which the tilting theory for a reductive group

G interacts with the representation theory of the Lie algebra of G. In

due course we shall (for convenience) take G to be semisimple and simply

connected. However, to begin we let G be any linear algebraic group over

an algebraically closed field k of characteristic p 
 0. A left G-module

V is naturally a right k � G � -comodule, and hence a left k � G � 	 -module

with action given by X 
 v � �
i X � fi � vi, for X � k � G � 	 , v � V with

τ � v � � �
i vi � fi (where τ : V � V � k � G � is the structure map). This

applies in particular to the left regular G-module, i.e the right regular

k � G � -comodule � k � G� , δ � . Then we have X � a � � � X 
 a � � 1 � , X � k � G � 	 ,

a � k � G � . For X � Lie � G � , a, b � k � G � we have

X 
 � ab � � �
i,j X � a �ib �j � aibj� �
i,j X � a �i � b �j � 1 � aibj � �

i,j a �i � 1 � X � b �j � aibj� � X 
 a � b � a � X 
 b �
(where δ � a � � �

i ai � a �i, δ � b � � �
j bj � b �j). It follows that

Xr 
 � ab � � �
r � i � j

�
r

i � � Xi 
 a � � Xj 
 b �
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for r � 0, a, b � k � G � . In particular Xp � � ab � � � Xp � a � b � a � Xp � b � ,
for a, b � k � G � , and hence Xp � Lie � G � showing that Lie � G � is a p-

Lie algebra with operation X 	 p
 � Xp, where Xp is computed in the

associative algebra k � G � � . (For generalities on p-Lie algebras see e.g. [3,

Section 3.1].) One may check that in the case G � GLn � k � , identifying
� Lie � G � with the Lie algebra of n � n-matrices gln � k � in the usual

way, the p-operation is given by X 	 p 
 � Xp (the pth power of the matrix

X).

If is a p-Lie algebra then we have the restricted enveloping algebra u � �
of . By definition u � � is U � � 
 I, where U � � is the universal enveloping

of and I is the ideal generated by � X 	 p 
 � Xp � X � � . If has finite

dimension n then u � � has finite dimension pn. Thus if � Lie � G �
then u � � is a finite dimensional associative algebra of dimension pdim G.

Moreover, the inclusion � k � G � � induces a monomorphism of algebras

u � � � k � G � � . A left G-module is naturally a k � G � � -module and hence

a u � � -module.

Now suppose that G is semisimple and simply connected. Then, in

the notation of Section 4, the character group X � T � is free abelian on

the fundamental dominant weights ω1, . . . , ωl defined by � ωi, α̌j � � δij ,

1 � i, j � l, where α1, . . . , αl are the simple roots. We define X1 � T �
to be the set of dominant weights of the form a1ω1 � � � � � alωl, with

0 � a1, . . . , al � p � 1, i.e. X1 � T � � � λ � X � T � � 0 � � λ, α̌j � � p �
1 for 1 � j � l � .

We have the following fundamental theorem of Curtis.

Theorem 5.1. � L � λ � � λ � X1 � T � � is a complete set of pairwise non-

isomorphic simple u � � -modules.

By analogy with Curtis’s Theorem one would like to know that the

projective indecomposable u � � -modules come from G-modules. The

following conjecture (taken from [19]) states that in fact they are the

restrictions of certain tilting modules.

Conjecture 5.2. For λ � X1 � T � the restriction of T � 2 � p � 1 � ρ � w0λ �
to u � � is the projective cover of the u � � -module L � λ � .

It is known that T � 2 � p � 1 � ρ � w0λ � is projective as a u � � -module and

that the projective cover of L � λ � occurs as a summand with multiplicity

one. Thus the key question is whether T � 2 � p � 1 � ρ � w0λ � is inde-
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composable, as a u � � -module. The conjecture is known to be true for

p � 2h � 2, where h is the Coxeter number of G, if the root system Φ is

indecomposable, thanks to earlier work of Jantzen. This is discussed in

[22]. (The Coxeter number is defined by h � 1 � � ρ, β̌0 � , where β0 is the

highest short root - we have h � n for G � SLn � k � .)

In case λ � � p � 1 � ρ we have L � λ � � ∇ � λ � � ∆ � λ � � T � λ � . This module

is known as the Steinberg module and denoted St. It exerts an enormous

moderating influence over the representation theory of G. In particular,

the conjecture holds for λ � � p � 1 � ρ.

We have the Frobenius endomorphism of a general linear group

F : GLn � k � � GLn � k � taking a matrix � aij � to the matrix � ap
ij � . One

can realize G as a closed subgroup of some general linear group GLn � k �
in such a way that G,B and T are F -stable, and T is realized as a

group of diagonal matrices (e.g. via the Chevalley construction). The

restriction of F to G will also be denoted F , and called the Frobe-

nius morphism of G (defined by this embedding of G in GLn � k � ). For

M � mod � G � affording a representation ψ : G � GL � M � we write MF

for the G-module with underlying vector space M on which G acts via

ψ � F . For ϕ � �
λ aλeλ � ZX � T � we define ϕF � �

λ aλepλ. Then (from

the definitions) we have ch MF � � ch M � F , for M � mod � T � .

For λ � � p � 1 � ρ 	 pτ with µ � X1 � T � , τ � X 
 � T � , we have

∇ � λ � � St � ∇ � µ � F (see [39, II,3.19 Proposition]). Moreover, if

M � mod � G � is indecomposable as a -module and N � mod � G � is

indecomposable then M � NF is indecomposable (see [13, Section 2,

Lemma]). We get the following.

Theorem 5.3. Let µ � X1 � T � and τ � X 
 � T � . If

T � 2 � p � 1 � ρ 	 w0µ � is indecomposable as a u � � -module then

T � 2 � p � 1 � ρ 	 w0µ 	 pτ � � T � 2 � p � 1 � ρ 	 w0µ � � T � τ � F . In particular

we have St � T � τ � F � T � � p � 1 � ρ 	 pτ � .

This leads, via Brauer’s Formula (see e.g. [15, (2.2.3)]) to the following

character formula.

Theorem 5.4. Suppose µ � X1 � T � , τ � X 
 � T � and T � 2 � p � 1 � ρ 	 w0µ �
is indecomposable, as a u � � -module. We write the character

ch T � 2 � p � 1 � ρ 	 w0µ � � χ � � p � 1 � ρ � ψµ, where ψµ
� �

ν 
 X
�
T � aνeν.
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Then we have

ch T � 2 � p � 1 � ρ � w0µ � pτ �
� �

ν � X
�
T � ,ζ � X 	 �

T � aν � T � τ � : ∇ � ζ � � χ � � p � 1 � ρ � ν � pζ � .

A Weyl character χ � σ � is either 0 or 
 χ � ξ � , for some ξ �
X � � T � , (as mentioned in Section 4) so that any multiplicity

� T � 2 � p � 1 � ρ � w0µ � pτ � : ∇ � λ � � may be derived, at least in principle,

from Theorem 5.4, provided that the multiplicities for T � 2 � p � 1 � ρ � w0µ �
and T � τ � are known.

We see how this works out in a special case. We assume, for convenience,

that the root system Φ is connected. Let λ be a dominant weight such

that � λ, β̌0 � 
 p, where β0 is the highest short root. If µ is any dominant

weight less than λ then we also have � µ, β̌0 � 
 p.

Let V be module with character χ � λ � (e.g. V � ∇ � λ � ). Then we have

a B-module filtration 0 � V0 � V1 � . . . � Vn
� V with Vi � Vi � 1 � kνi

where χ � λ � � � n
i � 1 eνi . Hence k �

p � 1 � ρ � V has a B-module filtration with

sections k �
p � 1 � ρ � νi

. Let ν be a weight of V and let α be a simple root.

Then wν � τ , say, is dominant for some w � W and � ν, α̌ � � � wν, γ̌ � �
� τ, � β̌0 � � � p, where γ � wα. Hence we have � � p � 1 � ρ � ν, α̌ � �
p � 1 � p � � 1. Hence, by Theorem 4.3, RIndG

B � Vi � Vi � 1 � � 0 and

St � V � IndG
B � k �

p � 1 � ρ � V � has a filtration with sections ∇ � � p � 1 � ρ � νj � ,
where j runs over the set

Z � � 1 
 i 
 n � � p � 1 � ρ � νi � X � � .

We write s � λ � for the orbit sum, i.e. s � λ � � �
ν � Wλ eν . From Brauer’s

formula we get χ � � p � 1 � ρ � s � λ � � �
ν � Zλ

χ � � p � 1 � ρ � ν � , where

Zλ
� � ν � Wλ � � p � 1 � ρ � ν � X � � .

We identify W with a group of permutations of X � T � via its natural

(faithful) action. The affine Weyl group Wp is the group of permutations

of X � T � generated by W and all translations by pθ, θ � X � T � . Then

Wp is the semidirect product of W and the translation subgroup. The

dot action of W on X � T � extends to an action of Wp (given by w � λ �
w � λ � ρ � � ρ). If simple G-modules L � λ � , L � µ � lie in the same block then

λ and µ lie in the same orbit of X � T � for the dot action of Wp (see e.g.

[39, II,7.1]).

We now consider the block component M , say, of St � V for the block
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containing L � � p � 1 � ρ � λ � . Note that, for w � W , the weight � p � 1 � ρ � wλ

belongs to the orbit of � p � 1 � ρ � λ under the dot action of the affine Weyl

group Wp. On the other hand, if � M : ∇ � � p � 1 � ρ � νj � � � 0, for some

j � Z, then � p � 1 � ρ � νj � Wp � � � p � 1 � ρ � λ � . Now νj is conjugate to a

dominant weight τ , say, under W and � p � 1 � ρ � τ � Wp � � � p � 1 � ρ � νj � � .
Hence � p � 1 � ρ � λ and � p � 1 � ρ � τ belong to same Wp orbit (for the dot

action). But then � ρ � λ and � ρ � τ belong to the same orbit. However,

� ρ � λ and � ρ � τ belong to the well known fundamental domain (see

[39, II. Section 6.1]) for the action of Wp. So � ρ � λ � � ρ � τ , λ � τ

and νj � Zλ. Thus, for j � Z, we get

� M : ∇ � � p � 1 � ρ � νj � � �
{

1, if νj � Zλ;

0, otherwise.

This proves that ch M � χ � � p � 1 � ρ � s � λ � . Moreover, M has a component

T � � p � 1 � ρ � λ � the character of T � � p � 1 � ρ � λ � is divisible by χ � � p � 1 � ρ �
and invariant under W . It follows that chM � ch T � � p � 1 � ρ � λ � ,
M � T � � p � 1 � ρ � λ � and therefore

ch T � � p � 1 � ρ � λ � � χ � � p � 1 � ρ � s � λ � .

In [38] Jantzen considers a category of finite dimensional modules for

u � � and T together, the category of � u � � , T � -modules (equivalently,

in [39], the category of G1T -modules). It is shown in particular that

for µ � X � T � there is a unique simple � u � � , T � -module of high weight

µ, this module has an injective envelope, denoted Q̂1 � µ � , and for µ �
X1 � T � , the restriction of Q̂1 � µ � to u � � is the injective (and projective)

indecomposable module corresponding to the simple u � � -module L � µ � .
Now, by character considerations, Q̂ � � p � 1 � ρ � w0λ � is a direct summand

of T � � p � 1 � ρ � λ � (as a � u � � , T � -module). Moreover, Q̂ � � p � 1 � ρ � w0λ �
has character which is divisible by χ � � p � 1 � ρ � and W -invariant. Hence

we must have

T � � p � 1 � ρ � λ � � Q̂ � � p � 1 � ρ � w0λ �

as a � u � � , T � -module, and hence T � � p � 1 � ρ � λ � 	
u


 � is the projective

indecomposable u � � -module corresponding to the simple module L � � p �
1 � ρ � w0λ � . This is a special case of the above Conjecture. It has

a consequence for filtration multiplicities of some tilting modules and

hence (see Section 9,(3)) for some decomposition numbers for symmetric

groups.
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Let µ � X � � T � . Then, by [19, (2.1) Proposition], we have

T � � p � 1 � ρ � λ � pµ � � T � � p � 1 � ρ � λ � � T � µ � F .

Hence we have

ch T � � p � 1 � ρ � λ � pµ �
� 	

ξ 
 X � �
T 
 � T � µ � : ∇ � ξ � � χ � � p � 1 � ρ � s � λ � χ � ξ � F

� 	
ξ 
 X � �

T 
 � T � µ � : ∇ � ξ � � χ � � p � 1 � ρ � pξ � s � λ �
� 	

ξ 
 X � �
T 
 ,ν 
 Wλ � T � µ � : ∇ � ξ � � χ � � p � 1 � ρ � ν � pξ � .

We summarize our findings.

Proposition 5.5. Let λ, µ � X � � T � and assume � λ, β̌0 � � p. Then:

(i) ch T � � p � 1 � ρ � λ � � χ � � p � 1 � ρ � s � λ � ;

(ii) T � � p � 1 � ρ � λ � , as a u � � -module, is the projective cover of

L � � p � 1 � ρ � w0λ � ;

(iii) � T � � p � 1 � ρ � λ � pµ � : ∇ � τ � � � 	
ξ 
 N

�
τ 
 � T � µ � : ∇ � ξ � � , for τ �

X � � T � , where N � τ � � � ξ � X � � T � � τ � ρ � p � ξ � ρ � � Wλ � .

We refer the reader to the papers of Cox, [8], and Erdmann, [30], for

related applications to decomposition numbers of the tensor product

theorem for tilting modules, [19, (2.1) Proposition].

6 Some support for tilting modules

Let be a p-Lie algebra. Attached to each restricted -module (equiva-

lently u � � -module) M there is an affine algebraic variety V � M � , called

its support variety. This is defined via the cohomology of M . However,

we shall not need to deal with the cohomology directly: there is a more

concrete realization of V � M � due to Friedlander-Parshall, [32], and we

shall use this instead. The support variety V � M � may be identified with

the subvariety of consisting of 0 together with all elements X such that

X � p � � 0 and M is not projective as a module for the subalgebra of u � �
generated by X (i.e for the restricted enveloping algebra of kX).

The problem of describing the support variety of a tilting module T � λ �
has been raised by J. E. Humphreys, in a talk at the meeting on Rep-

resentations of Algebraic Groups at the Isaac Newton Institute in 1997.

We make a modest contribution to this problem by offering a conjecture
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in the very special case in which G � GLn � k � and k has characteristic

2.

Let λ � � λ1, λ2, . . . � be a partition of n. We write J � λ � for the nilpo-

tent n � n matrix with Jordan blocks of size λ1, λ2, . . .. We say that a

nilpotent matrix X has Jordan type λ if it is conjugate to J � λ � . Thus

V � k � is the variety of all nilpotent matrices whose Jordan type µ has

all parts µ1, µ2, . . . of size at most p. Moreover, if M is a restricted -

module then an explicit knowledge of V � M � is equivalent to a knowledge

of which J � µ � belong to V � M � , i.e. to knowing whether for such µ the

module M is injective as a module for the subalgebra of u � � -generated

by J � µ � .

Let λ, µ be partitions of n. We write λ � R µ if λ is a refinement of

µ (as in [44]). The condition is there is some partition of sets � 1, n � �

B1 � � � � � Bm with sizes µ1, µ2, . . . and partitions Br
� Br1 � � � � Brjr

such that the subsets B11, . . . , Bmjm
have sizes λ1, λ2, . . ., taken in some

order. For example we have � 5, 4, 2, 1, 1 � � R � 7, 6 � (since 6 � 1 	 1 	 4

and 7 � 2 	 5).

Let λ 
 Λ � � n, r � . Let a0 be the number of parts equal to 0, let a1 be

the number of parts equal to 1 and so on. We write λ̄ for the partition

of n whose parts are a0, a1, . . . (arranged in descending order). We can

now state our conjecture on the support variety of tilting modules.

Conjecture 6.1. Suppose k has characteristic 2. Let λ � � λ1, . . . , λn � 


Λ � � n, r � . For a partition µ of n we have J � µ � 
 V � T � λ � � if and only if

µ � R λ̄.

By using [19, (1.5) Proposition] one gets one direction, namely that if

µ � R λ̄ then J � µ � 
 V � T � λ � � . Moreover, we have checked the conjecture

for GL � n � for all λ � � λ1, . . . , λn � up to n � 6.

7 Invariant theory

Our interest in tilting modules was motivated originally by the possibil-

ity of using them in invariant theory. Nevertheless, we shall be brief in

this section. There are two reasons for brevity. The first is that we have

already had a chance to give a survey of this topic in [22]. The second

reason is that the original application using tilting modules in a very

explicit way has been superseded by the paper of Domokos and Zubkov,
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see [12] and related papers, and by further progress in the theory of

semi-invariants by Domokos and Zubkov and also by Derksen and Wey-

man, see [9] and references given there. (Though in fact ∇-filtrations

play a crucial role in these developments and modules which have both

a ∇-filtration and a ∆-filtration play a key role in [12], even though the

general theory of tilting modules is not used.) We shall content our-

selves with stating the main general result from [20] and the application

to invariant theory given there.

Let G be a reductive group over k. Let H be a closed subgroup of G. We

consider the algebra of H class functions C � G,H � � � f � A � f � hgh
� 1 � �

f � g � for all h � H, g � G � (where A � k � G 	 is the coordinate algebra).

More generally, for a saturated subset π of X 
 � T � we put C � G,H, π � �
A � π � � C � G,H � .

If V � mod � G � , affording the representation ϕ : G � GL � V � , and θ is

an H-module endomorphism of V , we define χθ � C � G,H � by χθ � g � �
Trace � ϕ � g � 
 θ � .

We say that a closed subgroup H is saturated if the induced module

IndG
Hk � k � H � G 	 � � f � k � G 	 � f � hg � � f � g � for all h � H, g � G �

admits an exhaustive, ascending filtration 0 � V0 � V1 � V2 . . . such

that each Vi � Vi � 1 is isomorphic to ∇ � λi � , for some dominant weight λi.

The main general result of [20] is the following.

Theorem 7.1. Suppose that H is a saturated subgroup of G.

Then for any saturated subset π of X 
 � T � we have C � G,H, π � �
� χθ

� θ � EndH � T � λ � � , λ � π � .

This is applied to the special case in which G is a direct product of

copies of GL � n � , H is the diagonally embedded copy of GL � n � and π is

the set of polynomial weights to prove the following result. We write

M � n � for the space of n � n matrices with entries in k and χs � y � for the

sth coefficient of the characteristic polynomial of an n � n-matrix y.

Theorem 7.2. The algebra of invariants k � M � n � m 	 GL
�
n � (for the ac-

tion of GL � n � on the variety M � n � m, of m-tuples of matrices, by si-

multaneous conjugation) is generated by the functions � x1, . . . , xm � ��
χs � xi1xi2 . . . xir

� , for r, s � 1 and 1 � i1, . . . , ir � m.

For the corresponding result in characteristic zero see, e.g., [47]. The
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proof of the above given in [22] relies on a substantial amount of algebraic

combinatorics, which is skillfully avoided in [12].

We mention that even the case H � 1 of Theorem 7.1 is not without

interest. One may readily check that for V � mod � G � , the k-span of

all χθ,θ � Endk � V � , is the coefficient space cf � V � . Hence we get the

following description of A � π � .

Corollary 7.3. (of Theorem 7.1) For a saturated subset π of X � � T � ,
the subspace A � π � is generated by the subspaces cf � V � , as V ranges over

all tilting modules T � λ � with λ � π.

8 General Linear Groups

We consider the case of G � GL � n � . Let A � n � � k � c11, . . . , cnn � � k � G � .
Then A � n � is a subbialgebra of k � G � . A finite dimensional representation

ρ : G � GLN � k � is said to be polynomial if it is given by ρ � g � � � fij � g � � ,
g � G, with all fij � A � n � . A (finite dimensional) G-module V is said to

be polynomial if it affords a polynomial matrix representation. The poly-

nomial representation theory of G is studied, in great detail, by Green

in the monograph [34], to which we refer the reader for background and

the results not explicitly covered here. Note that if V is any finite di-

mensional G-module then V 	 D 
 s is polynomial, for some s � 0, where

D is the (one dimensional) determinant module. Hence a knowledge of

the representation theory of finite dimensional polynomial modules is

equivalent to a knowledge of all finite dimensional G-modules.

Giving each cij degree one we get a grading A � n � � � 

r � 0 A � n, r � and

moreover, this is actually a coalgebra decomposition. The Schur algebra

S � n, r � is the dual algebra A � n, r � � . A matrix representation ρ : G �
GLN � k � is called polynomial of degree r if it given by ρ � g � � � fij � g � � ,
g � G, with all fij � A � n, r � . A G-module V is called polynomial of degree

r if it affords a matrix representation which is polynomial of degree r.

An arbitrary polynomial G-module V has a unique decomposition V �
� 


r � 0 V � r � , where V � r � is polynomial of degree r. Thus the polynomial

representation theory of G is determined by the representation theory of

the finite dimensional coalgebras A � n, r � and hence by the representation

theory of the Schur algebras S � n, r � .

We may also see this set-up via the representation theory of reductive
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groups. We take for T the group of diagonal matrices and for B the

group of lower-triangular matrices. Then N � NG � T � is the group of

monomial matrices in G (matrices with precisely one non-zero entry in

each row and column). Thus N is the semidirect product of T and the

group of permutation matrices in G. We identify the Weyl group with

the group of permutation matrices and hence with the symmetric group

of degree n. We identify X � T � with Zn, as in Section 4. Then we have

X � � T � � � λ � � λ1, . . . , λn � � Zn � λ1 � . . . � λn � .

We write Λ � n � for � λ � � λ1, . . . , λn � � Zn � λ1, . . . , λn � 0 � and write

Λ � � n � for X � � n � 	 Λ � n � , the set of partitions with at most n parts. We

write Λ � � n, r � for the set of all partitions of r into at most n parts.

One may easily check that, for r 
 n, the exterior power � r
E

is irreducible and (by Weyl’s character formula) has character

χ � 1, . . . , 1, 0, . . . , 0 � . It follows that � r
E � ∇ � 1, . . . , 1, 0, . . . , 0 � �

∆ � 1, . . . , 1, 0, . . . , 0 � and hence is also the tilting module

T � 1, . . . , 1, 0, . . . , 0 � . Hence (since the tensor product of tilting

modules is a tilting module) � α
E � � α1E � 
 
 
 � � αmE is a tilting

module for any m-tuple α � � α1, . . . , αm � of non-negative integers.

Let λ � Λ � � n, r � and let λ � denote the dual (or conjugate) partition, as

in for example [44, Chapter I]. Then it is easy to check that the module

� λ �
E has highest weight λ. Hence we have

� λ �
E � T � λ � �

R

where R is a direct sum of tilting modules T � µ � with µ � λ. Thus

we get the following description of polynomial tilting modules for GL � n � .

Theorem 8.1. For λ � Λ � � n, r � we have

� λ �
E � T � λ � �

R

where R � �
µ � Λ � �

n,r � ,µ � λT � µ �
�
mλµ � for certain non-negative integers

mλµ.

Let P denote the set of all partitions. Thus λ � P is a string λ �
� λ1, λ2, . . . � of non-negative integers, almost all zero with λ1 � λ2 � . . ..

For λ � P let � λ � � �
i � 1 λi. If � λ � � r and λn � 1

� 0 we identify λ

with an element of Λ � � n, r � in the obvious way. For λ � Λ � � n, r � we

write now ∇n � λ � and Ln � λ � for the induced GLn � k � -module and simple

GLn � k � -module labelled by λ, to emphasize the role of n. Suppose now
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λ, µ � P, that � λ � � � µ � and that λn � 1
� µn � 1

� 0. Then, by [34,

Chapter 6], the decomposition number � ∇n � λ � : Ln � µ � � is equal to the

decomposition number � ∇N � λ � : LN � µ � � , for all N � n. We denote this

number simply � λ : µ � .

Using the above theorem one may prove that S � n, r � is its own Ringel

dual for r 	 n (by considering the exterior algebra 
 � M � n � as a

� G,G � -bimodule). The argument is given in [21, Section 5] (and an

earlier proof, using the Schur functor, can be found in [19, Section 3]).

This has the interesting consequence (see [19, Section 3]):

Theorem 8.2. For all λ, µ � Λ � � n, r � we have � T � λ � : ∇ � µ � � � � µ � : λ � � .

A similar result for the other classical groups has been obtained by

Adamovich and Rybnikov, see [1].

We end this section by noting that in fact the Schur algebra S � n, r � is a

generalized Schur algebra. We take π � Λ � � n, r � . Let A � k � G � . Then

by the Corollary of Section 8, A � π � is spanned by cf � T � λ � � , as λ varies

over Λ � � n, r � . However, by Theorem 8.1, this is the span of cf � 
 λ
E � ,

as λ varies over all partitions of r whose parts have size at most n.

Moreover, for such λ, the module 
 λ
E is a homomorphic image of E 
 r

so that cf � 
 λ
E � 	 cf � E 
 r � � A � n, r � . Thus we have A � π � 	 A � n, r �

and indeed, since we may take λ � � 1, 1, . . . , 1 � , we must have equality.

Thus we get:

Theorem 8.3. S � n, r � is the generalized Schur algebra S � π � , for π �
Λ � � n, r � .

Remark 8.4. This proof is different from the one given originally in

[17]. The case of the general symplectic group is discussed in [18] where

the two notions of Schur algebra are again identified. Running through

the argument above again in this case gives a much shorter proof of this

identification than in [18]. Furthermore, the notion of Schur algebra as

the dual algebra of a graded component of a subalgebra of the coordi-

nate algebra of reductive a group is discussed for other classical groups

by Doty in [28]. Using the description of tilting modules for classical

group which on finds in [1] it is easy to check that here too (in odd

characteristic) these Schur algebras are generalized Schur algebras.
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9 Connections with symmetric groups and Hecke algebras

We follow Green, [34], to make a connection between representations of

general linear groups and representations of symmetric groups via the

Schur functor. For this we need to set up some additional notation.

We write Sym � X � for the group of permutations of a set X. For r � 1

we write Sym � r � for Sym � 1, 2, . . . , r � . We write Λ � n, r � for the set of

n-tuples α � � α1, . . . , αn � of non-negative integers whose sum is r. For

α � Λ � r, r � we write Sym � α � for the Young subgroup Sym � 1, . . . , α1 � �
Sym � α1 � 1, . . . , α1 � α2 � � 	 	 	 of Sym � r � . We write I � n, r � for the

set of maps from � 1, 2, . . . , r � to � 1, 2, . . . , n � . An element i � I � n, r �
may be written as an r-tuple i � � i1, . . . , ir � of elements of � 1, 2, . . . , n � .
Then i � I � n, r � has content α � � α1, . . . , αr � where αh is the number

of 1 
 a 
 r with ia
� h. Note that i, j � I � n, r � have the same content

if and only if i � j � π for some π � Sym � r � .

For i, j � I � n, r � we write cij for ci1j1 . . . cirjr
� A � n, r � . Then the

elements cij , i, j � I � n, r � , form a k-basis and we have cij
� cuv if and

only if there exists a permutation π of � 1, 2, . . . , r � such that i � i � u,

v � j � π. For i, j � I � n, r � the corresponding dual basis element of

S � n, r � is denoted ξij . In particular for α � Λ � n, r � we have the element

ξα, defined by ξα
� ξii, where i is any element of I � n, r � which has

content α. The elements ξα are idempotent and indeed

1 � �
α 
 Λ

�
n,r �

ξα

is an orthogonal decomposition of 1. One may check that if V is a module

for GLn � k � which is polynomial of degree r then we have V α � ξαV ,

α � Λ � n, r � .

We now suppose that r 
 n we let u � � 1, 2, . . . , r � � I � n, r � and let

ω � � 1, 1, . . . , 1, 0, . . . , 0 � , the content of u. We write S � S � n, r � and

e � ξuu for short. Then eSe is naturally a k-algebra with identity

e. Moreover, there is an algebra isomorphism from the group algebra

kSym � r � to eSe taking a permutation π to ξu,uπ. In this way we identify

eSe with the group algebra of Sym � r � . We thus have a left exact functor,

called the Schur functor, f : mod � S � � mod � Sym � r � � given on objects

by fV � eV (and where mod � Sym � r � � is short for mod � kSym � r � � ).

Applying the Schur functor to familiar modules in the representation
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theory of general linear groups yields familiar modules in the represen-

tation theory of symmetric groups.

(1) (i) For α � Λ � n, r � we have fSαE � M � α � , where M � α � denotes

the permutation module kSym � r � � kSym
�
α � k.

Now let λ � Λ � � n, r � .

(ii) We have f � λ 	
E � ks � M � λ � , where ks denotes the one dimen-

sional Sym � r � -module affording the sign representation.

(iii) We have f∇ � λ � � Sp � λ � , where Sp � λ � denotes the Specht mod-

ule corresponding to λ.

(iv) Let In,r � λ � denote the injective envelope of the S-module L � λ � .
Then fIn,r � λ � is the Young module Y � λ � corresponding to λ.

(v) fT � λ � � ks � Y � λ 
 � .

For constructions of Specht modules and Young modules entirely within

the context of the symmetric groups see, for example, [36] and [37].

We write Λ � � n, r � row for the set of row regular partitions, i.e. the set

of partitions λ � � λ1, . . . , λn � � Λ � � n, r � which contain no sequence

of p equal non-zero parts. We write Λ � � n, r � col for the set of column

regular partitions, i.e. the set of λ � � λ1, . . . , λn � � Λ � � n, r � such that

λi � λi � 1 � p, for 1 
 i � n. Then we have the following results (see

e.g. [34, Chapter 6]):

(2) (i) � fL � λ � � λ � Λ � � n, r � col � is a complete set of pairwise non-

isomorphic simple kSym � r � -modules.

(ii) For λ � Λ � � n, r � row the Specht module Sp � λ � � f∇ � λ � has a

simple head Dλ and � Dλ � λ � Λ � � n, r � row � is a complete set of

pairwise non-isomorphic kSym � r � -modules.

(iii) The relationship between these two labellings of simple modules

is: ks � Dλ � fL � λ 
 � , λ � Λ � � n, r � row.

(iv) For λ � Λ � � n, r � and µ � Λ � � n, r � col we have an equality of

decomposition numbers � ∇ � λ � : L � µ � � � � Sp � λ � : fL � µ � � .

The last result comes by applying the Schur functor f to a compo-

sition series of ∇ � λ � . Now for λ � Λ � � n, r � and µ � Λ � � n, r � row

we have that � T � λ � : ∇ � µ � � is � ∇ � µ 
 � ;L � λ 
 � � , by Section 8, and

hence also � Sp � µ 
 � : fL � λ 
 � � (applying the Schur functor) and hence also
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� ks � Sp � µ � � : ks � fL � λ � � � � � Sp � µ � : Dλ � (since ks � Sp � µ � � is isomorphic

to the dual of Sp � µ � , see [36, (8.15)], and all irreducible kSym � r � -modules

are self dual). Hence we have (as in [29, 4.5 Lemma]):

(3) � T � λ � : ∇ � µ � � � � Sp � µ � : Dλ � , for λ � Λ � � n, r � row, µ � Λ � � n, r � .

We should like now to point out that essentially all of this development

extends to the case of quantum general linear groups and Hecke algebras.

Full details can be found in [23]. We simply briefly describe the frame-

work and leave it to the reader to formulate precise generalizations of

the results for general linear groups and symmetric groups given above

(or look them up in [23]).

So now let q be a non-zero element of k. We write Aq � n � for the k-algebra

given by generators cij , 1 	 i, j 	 n, subject to the relations:

circis
� ciscir for all 1 	 i, r, s 	 n

cjrcis
� qciscjr for all 1 	 i 
 j 	 n, 1 	 r 	 s 	 n

cjscir
� circjs � � q � 1 � ciscjr for all 1 	 i 
 j 	 n, 1 	 r 
 s 	 n.

Then Aq � n � is a bialgebra with comultiplication δ : Aq � n � 
 Aq � n � �
Aq � n � and augmentation ε : Aq � n � 
 k satisfying δ � cij � � � n

r � 1 cir � crj

and δ � cij � � δij , for 1 	 i, j 	 n. The determinant d � Aq � n � is defined

by d � �
π sgn � π � c1,1πc2,2π . . . cn,nπ where π runs over all permutations

of � 1, 2, . . . , n � and where sgn � π � denotes the sign of a permutation π.

The bialgebra structure on Aq � n � extends to the localization Aq � n � d of

Aq � n � at d (with δ � d � 1 � � d
� 1 � d

� 1 and ε � d � 1 � � 1). Furthermore,

Aq � n � d is a Hopf algebra. We write k � G � n � � for Aq � n � d and call G � n �
the quantum general linear group of degree n. We denote the antipode

of k � G � n � � by S. We have S2 � f � � dfd
� 1, for f � k � G � n � � . Explicitly,

we have S2 � cij � � dcijd
� 1 � qj � icij for 1 	 i, j 	 n.

By the expression “V is a left G � n � -module” we mean that V is a right

k � G � n � � -comodule. We have, in particular, the natural left G � n � -module

E with basis e1, . . . , en and structure map τ : E 
 E � k � G � n � � given

by τ � ei � � � n
j � 1 ej � cji. More generally, for r � 0, we have the rth

symmetric power SrE and rth exterior power � r
E (defined in [23]).

Let I be the Hopf ideal of k � G � n � � generated by all cij with i � j.

Then k � G � � I is the algebra of Laurent series in c11 � I, . . . , cnn � I. Let

T � n � be the subgroup of GLn � k � consisting of the diagonal matrices. We

identify k � G � n � � � I with k � T � n � � in such a way that cii � I is identified
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with the function taking t � T � n � to its � i, i � -entry. A G � n � -module

is naturally a k � G � n � � � I-comodule and hence a T � n � -module. Hence

we have a theory of weights for G � n � -modules. We write X � � n � for

� λ � � λ1, . . . , λn � � Zn 	 λ1 
 . . . 
 λn � . For each λ � X � � n � there is an

irreducible G-module L � λ � with unique highest weight λ (which occurs

with multiplicity one). Moreover, � L � λ � 	 λ � X � � n � � is a complete set

of pairwise non-isomorphic irreducible G � n � -modules. Among all G � n � -
modules M with socle L � λ � and M � L � λ � having only composition factors

from � L � µ � 	 µ � λ � there is one of largest dimension and we denote this

module by ∇ � λ � . Then k � G � n � � is a quasi-hereditary coalgebra (with

respect to the usual dominance order on X � � n � ). There is a theory

of polynomial G � n � -modules and the indecomposable polynomial tilting

modules are exactly the components of the exterior powers 
 α
E �


 α1E � � � � � 
 αmE, as before.

For i, j � I � n, r � we write cij for ci1j1 . . . cirjr
. We write A � n, r � for the

subcoalgebra of k � G � n � � spanned (as a vector space) by the cij with

i, j � I � n, r � . The q-Schur algebra S � S � n, r � is the dual algebra

A � n, r � � . For α � Λ � n, r � we write αA � n, r � for the subspace of A � n, r �
spanned by all cij with i, j � I � n, r � with i having content α. Then we

have a G � n � -module decomposition A � n, r � � �
α � Λ

�
n,r � αA � n, r � . Let

e � S � n, r � be given by e � f � � ε � π � f � � , where π : A � n, r � � ωA � n, r � is

the vector space projection (and ω � � 1, 1, . . . , 1, 0, . . . , 0 � ).

The Hecke algebra Hec � r � is the associative k-algebra defined by gener-

ators T1, . . . , Tr � 1 subject to the relations:

� Ti � q � � Ti � 1 � � 0;

TiTi � 1Ti
� Ti � 1TiTi � 1 for 1 � i � r � 1;

TiTj
� TjTi, for 1 � i, j � n � 1, 	 i � j 	 � 1.

There is a natural isomorphism H � r � � eSe (see [23, Section 2.1]) and

we use this to identify H � r � with the algebra eSe. We thus have the

Schur functor f : mod � S � � mod � H � r � � as in the case q � 1 discussed

above.

10 Some recent applications to Hecke algebras

We give a couple of new applications. The first is related to recent work

of Hemmer and Nakano and the second to recent work by Fayers and

Lyle.
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We use tilting modules to give a variant on the recent work of Hemmer

and Nakano, [35] showing in particular that for a finite dimensional

module X over a Hecke algebra H � r � with parameter q such that 1 � q

and 1 � q � q2 are non-zero the number of occurrences of Sp � λ � , as a

section is independent of the choice of the filtration. We deduce this from

a special case of Proposition 10.5 (ii) which is in itself a generalization

to arbitrary q of a result proved in the case q � 1 by Kleshschev and

Nakano,[43]. (The second application is also derived from this result and

general results for quantum general linear groups.)

As usual we denote by H � r � the Hecke algebra of type A on generators

T1, . . . , Tr � 1, for r � 2, at a parameter 0 � q � k. We set H � 1 � � k.

Then H � n � has the trivial module k (afforded by the representation

sending Ti to q) and the sign module ks (afforded by the representation

sending Ti to � 1). For a composition α � � α1, . . . , αm � of r we write

H � α � for the Young subalgebra H � α � 	 H � α1 � 
 � � � 
 H � αm � .

We write M � λ � � H � r � 
 H
�
α 
 k for the “permutation module” and

Ms � λ � � H � r � 
 H
�
α 
 ks for the “signed permutation module”, where α

is the composition obtained by taking the parts of λ in reverse order.

Then we have (cf Section 9,(1)) : fM � λ � 	 SλE and Ms � λ � � f � λ �
E.

Lemma 10.1. Suppose 1 � q � 0. Then we have:

(i) HomH
�
α 
 � ks, k � � 0 for any composition α � � 1r � of r;

(ii) HomH
�
r 
 � Sp � λ � , k � � 0 for any partition λ � � r � of r.

Proof. (i) Clear. (ii) There is an epimorphism � λ �
E � ∇ � λ � giving rise

to an epimorphism Ms � λ � � Sp � λ � . Hence HomH
�
r 
 � Sp � λ � , k � embeds

in HomH
�
r 
 � Ms � λ � , k � � HomH

�
λ 
 � ks, k � , and this is 0 by (i).

Suppose r � 1 and r � a � b. We write ks 
 k for the one dimensional

H � a, b � � H � a � 
 H � b � -module on which the first tensor factor acts via

the sign representation and on which the second factor acts trivially.

If q does not satisfy an equation qm � 1 for some m � r then Hec � r � is

semisimple (see e.g. [26, 1.4]) and what follows is trivially true. So we

assume now that q is a root of unity and let l be the smallest positive

integer such that 1 � q � � � � � ql � 1 � 0.
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Lemma 10.2. Suppose r � 2. Then we have Extd
H

�
r � � ks, k � �

Extd
H

�
r � � k, ks � � 0 in all degrees 0 � d � l � 2.

Proof. We have the involutory algebra anti-automorphism σ : H � r � 	
H � r � , defined by σ � Ti � � Ti, 1 � i � r. If V is a left H � r � -module then

the dual space V 
 � Homk � V, k � is naturally a left H � r � -module, with

action given by � hα � � v � � α � σ � h � v � , h � H � r � , α � V 
 , v � V . More-

over, the natural isomorphism HomH
�
r � � V,W � 
 � HomH

�
r � � W 
 , V 
 �

(for V,W � mod � H � r � � ) extends in all degrees to give an isomorphism

of vector spaces Exti
H

�
r � � V,W � � Exti

H
�
r � � W 
 , V 
 � , i � 0. We have

k 
s � ks and k 
 � k so that Exti
H

�
r � � ks, k � � Exti

H
�
r � � k, ks � and it is

enough to prove Extd
H

�
r � � k, ks � � 0 for all 0 � d � l � 2.

Suppose for a contradiction that the Lemma is false and let r be as small

as possible for which it fails. Suppose further that d � l � 2 is as small

as possible such that Extd
H

�
r � � k, ks � 
 0. Then Hec � r � is not semisimple

so we have r � l � d � 2, in particular r � 2.

We choose n � r and let S � S � n, r � . We identify H � r � with eSe for

the idempotent e � S considered in Section 9. We shall make use of the

Schur functor f : mod � S � 	 mod � H � r � � .

We have the Koszul resolution

0 	 � r
E 	 � r � 1

E � E 	 � r � 1
E � S2E 	 � � �

	 E � Sr � 1E 	 SrE 	 0

(cf [23, Section 4.8]). Applying the Schur functor we get an exact se-

quence

0 	 f � r
E 	 f � � r � 1

E � E � 	 f � � r � 2
E � S2E � 	 � � �

	 f � E � Sr � 1E � 	 fSrE 	 0

of H � r � -modules. We leave it to the reader to check that

f � � a
E � SbE � � H � r � � H

�
a,b � � ks � k � for r � a � b (cf [24, Lemma

3.1a]). In particular we have fSrE � k.

We recall a fact from elementary homological algebra. Let R be a ring,

V,W left R-modules and t � 0. If

� � � 	 X1 	 X0 	 V 	 0
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is an exact sequence of R-modules then Extt
R � V,W � � 0 provided that

Exti
R � Xj ,W � � 0 whenever i � j � t.

Thus we must have Exti
H

�
r � � f � � j � 1

E 	 Sr 
 1 
 jE � , ks � � 0 for some

i � j � d, equivalently Exti
H

�
r � � f � � j

E 	 Sr 
 jE � , ks � � 0 for some

i � j � d � 1, j � 0. Note that i � j � d � 1 
 d � 2 
 l � r gives

j � r � 2.

Now we have f � E 	 Sr 
 1E � � H � r � 	 H
�
1,r 
 1 � k and so if j � 1 we get,

by “Shapiro’s Lemma”

0 � Exti
H

�
r � � H � r � 	 H

�
1,r 
 1 � k, ks � � Exti

H
�
r 
 1 � � k, ks �

contradicting the minimality of r. Hence we have j � 1. Now we have

Exti
H

�
r � � f � � j

E 	 Sr 
 jE � , ks �
� Exti

H
�
r � � H � r � 	 H

�
j,r 
 j � � ks 	 k � , ks �

� Exti
H

�
j � � H

�
r 
 j � � ks 	 k, ks 	 ks �

which, by the Künneth formula, is

�
i � i1 � i2

Exti1
H

�
j � � ks, ks � 	 Exti2

H
�
r 
 j � � k, ks �

so that some Exti1
H

�
j � � ks, ks � 	 Exti2

H
�
r 
 j � � k, ks � is non-zero. But, for

i � j � d � 1 and i � i1 � i2, we get i2 � i � d � 1 � j 
 d. We also

have r � j � 2 and so get Exti2
H

�
r 
 j � � ks, k � � 0 by minimality. This

contradiction completes the proof.

Remark 10.3. To get that Specht module filtrations are well defined

one only needs Ext1H
�
r � � ks, k � � 0 for 1 � q, 1 � q � q2 � 0 and this can

be done by a more elementary argument showing that any extension of

k by ks splits (by considering the action of each generator Ti on such an

extension).

Proposition 10.4. If X � mod � H � r � � admits a Specht filtration then

Extd
H

�
r � � X,M � µ � � � 0 for all 0 
 d 
 l � 2 and partitions µ of r.

Proof. It is enough to consider X � Sp � λ � for λ a partition of r. Assume,

for a contradiction, that the result is false and d is as small as possible

such that some Extd
H

�
r � � Sp � λ � ,M � µ � � � 0. By Shapiro’s Lemma we

have Extd
H

�
µ � � Sp � λ � , k � � 0. Moreover, the restriction of Sp � λ � to H � µ �

has a filtration with sections Sp � τ1 � 	 � � � 	 Sp � τm � , where τi is a partition

of µi (see [23, Section 4.6]). Thus, by the Künneth formula once more,

we are reduced to proving that Extd
H

�
r � � Sp � λ � , k � � 0. We do this by
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induction on λ. For λ � � 1r � this is true by Lemma 10.2. Now assume

λ � � 1r � .

We have an exact sequence 0 � J � λ � � Ms � λ � � Sp � λ � � 0, where

J � λ � is filtered by Specht modules Sp � µ � with µ � λ. (The module

� λ �
E has a good filtration with top term ∇ � λ � and there is an exact

sequence 0 � K � λ � � � λ �
E � ∇ � λ � � 0, where K � λ � has a good

filtration. Applying the Schur functor to this gives the required short

exact sequence of H � r � -modules.) Thus we get an exact sequence

Extd � 1
H

�
r 	 � J � λ � , k � � Extd

H
�
r 	 � Sp � λ � , k � � Extd

H
�
r 	 � Ms � λ � , k � .

We have Extd
H

�
r 	 � Ms � λ � , k � 
 Extd

H
�
λ 	 � ks, k � 
 0, by Lemma 10.2. If

d 
 1 then Extd � 1
H

�
r 	 � J � λ � , k � 
 HomH

�
r 	 � J � λ � , k � 
 0 by Lemma 10.1(ii).

If d � 1 then Extd � 1
H

�
r 	 � J � λ � , k � 
 0 by the inductive assumption, and

hence Extd
H

�
r 	 � Sp � λ � ,M � µ � � 
 0.

We also have the “inverse Schur functor” g : mod � eSe � � mod � S � (see

e.g. [34, Chapter 6]) given on objects by gX 
 S � eSe X. This functor

is right exact and we consider its left derived functors Ldg.

Proposition 10.5. If X 
 mod � eSe � admits a Specht series then we

have:

(i) LdgX 
 0 for 0 � d � l � 2; and

(ii) Extd
S � gX, Y � 
 Extd

eSe � X, fY � , for Y 
 mod � S � and 0 � d �
l � 2.

Proof. (i) For X 
 mod � eSe � , Y 
 mod � S � we have HomS � gX, Y � �
HomeSe � X, eY � 
 HomeSe � X, fY � and hence a factorization of functors

HomeSe � � , fY � 
 HomS � � , Y � � g. Moreover, g takes projective mod-

ules to projective modules so we get a Grothendieck spectral sequence,

with second page Exti
S � LjgX, Y � , converging to Ext �

eSe � X, fY � . If Y is

injective then this degenerates and we get

HomS � LigX, Y � � Exti
eSe � X, fY � .

Thus we have LdgX 
 0 provided that Extd
eSe � X, fY � 
 0 for every

injective Y 
 mod � S � . The injective indecomposable S-modules are

summands of modules of the form SµE and fSµE 
 M � µ � . Hence it
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suffices to prove that Extd
H

�
r � � X,M � µ � � � 0 when X has a Specht series.

This is true by Proposition 10.4.

(ii) This follows from (i) and the degeneration of the spectral sequence

considered in the proof of (i).

Proposition 10.6. Suppose 1 � q � 0 and 1 � q � q2 � 0.

(i) We have g Sp � λ � � ∇ � λ � , for λ a partition of r.

(ii) If X � mod � eSe � has Specht series 0 � X0 � X1 � . . . � Xm
�

X and 0 � X 	0 � X 	1 � . . . � X 	n � X with Xi 
 Xi � 1 � Sp � λi � ,
X 	j 
 X 	j � 1 � Sp � µj � , for partitions λi, µj, for 1 
 i 
 m, 1 

j 
 n, then m � n and for each partition τ we have � � 1 
 i 

m � λi

� τ � � � � � 1 
 j 
 n � µj
� τ � � .

Proof. (i) The natural map Se � eSe e∇ � λ � � ∇ � λ � is onto, by [23,

4.5.4], so that dim gSp � λ � � ∇ � λ � , for all partitions λ of r. Now Se �
E � r has a ∇-filtration and � Se : ∇ � λ � � � dim Sp � λ � � 0, for λ a

partition of r. Let 0 � X0 � X1 � . . . � Xm
� Se be such a filtration,

with Xi 
 Xi � 1 � ∇ � λi � , for 1 
 i 
 m. Thus eSe has a filtration

0 � eX0 � eX1 � . . . � eXm
� eSe, with eXi 
 eXi � 1 � Sp � λi � , for

1 
 i 
 m. Then, by Proposition 10.5(i), we have a filtration 0 �
Y0 � Y1 � � � � � Ym

� Se with Yi 
 Yi � 1 � gSp � λi � , 1 
 i 
 m. Thus

dim Se � � m
i � 1 dim gSp � λi � � � m

i � 1 dim ∇ � λi � and it follows that

dim gSp � λi � � dim ∇ � λi � for all i and hence gSp � λ � � ∇ � λ � , for all λ.

(ii) This follows from (i) by applying g to X and computing ∇-filtration

multiplicities.

We now turn our attention to a generalization of recent results of Fay-

ers and Lyle, [31], on homomorphisms between certain Specht modules

for symmetric groups. Similar results for decomposition numbers were

proved in various degrees of generality by Gordon James and the author

(see [23, Section 4.2]) for the result and history).

We fix a positive integer h. For a partition λ � � λ1, λ2, . . . � we define

λt � � λ1, . . . , λh � and λb � � λh � 1, λh � 2, . . . � , the top and bottom parts

of λ. We shall say that a pair of partitions � λ, µ � admits a horizontal

h-cut if we have � λ � � � µ � and λ1 � � � � � λh
� µ1 � � � � � µh. One similarly

defines λl, λr, the left and right parts of the partition λ and the notion

of a pair of partitions � λ, µ � admitting a vertical h-cut (for more details

see e.g. [23, Section 4.2]).
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For λ � X � � n � we write ∇n � λ � (instead of ∇ � λ � � for the induced module

defined by λ if we wish to emphasize the role of n (as in Section 8). Recall

(see e.g.[23]) that associated to G � n � we have a root system Φ � X � T � n � �
and set of simple roots Π � � α1, . . . , αn � , where αi

� εi � εi � 1, for

1 	 i 
 n, and εi
� � 0, . . . , 0, 1, 0, . . . , 0 � � X � T � n � � (with 1 in the ith

position). Now the assumption that � λ, µ � admits a horizontal h-cut is

that λ � µ � ZΣ, where Σ � Π � � αh � . By [23, 4.2(17)] we therefore have

that Exti
G

�
n 
 � ∇ � λ � ,∇ � µ � � � Exti

GΣ
� ∇Σ � λ � ,∇Σ � µ � � , where GΣ is the

Levi subgroup corresponding to GΣ, which we identify with G � h � � G � n �
h � in the usual way, and ∇Σ � λ � ,∇Σ � µ � are the corresponding induced

modules for G � h � � G � n � h � , which we identify with ∇h � λt � � ∇n � h � λb �
and ∇h � µt � � ∇n � h � µb � . Thus we have

Extd
G

�
n 
 � ∇ � λ � ,∇ � µ � �

� Extd
G

�
h 
 � G

�
n � d 
 � ∇h � λt � � ∇n � h � λb � ,∇h � µt � � ∇n � h � µb � �

and so, by the Künneth formula, obtain

Extd
G

�
n 
 � ∇ � λ � ,∇ � µ � �

� �
d � i � j Exti

G
�
h 
 � ∇ � λt � ,∇ � µt � � � Extj

G
�
n � h 
 � ∇ � λb � ,∇ � µb � � .

Note, in particular, that if λ and µ are partitions into at

most m parts then � λ, µ � admits a horizontal m-cut and we get

Extd
G

�
m 
 � ∇m � λ � ,∇m � µ � � � Extd

G
�
n 
 � ∇n � λ � ,∇n � µ � � so we just write

Extd � ∇ � λ � ,∇ � µ � � for Extd
G

�
r 
 � ∇r � λ � ,∇r � µ � � , r � m. Returning to the

case of a horizontal h-cut, we thus have

Extd � ∇ � λ � ,∇ � µ � � � �
d � i � j

Exti � ∇ � λt � ,∇ � µt � � � Extj � ∇ � λb � ,∇ � µb � �

� � � .

We now get the generalization of the results of Fayers and Lyle, [31].

Proposition 10.7. Suppose that � λ, µ � is a pair of partitions of r, ad-

mitting a horizontal h-cut or a vertical h-cut for some 1 	 h 
 r. Then,

for all 0 	 d 
 l � 2, we have

Extd
H

�
r 
 � Sp � λ � ,Sp � µ � �

� �
d � i � j Exti

H
�
h 
 � Sp � λt � ,Sp � µt � � � Extj

H
�
r � h 
 � Sp � λb � ,Sp � µb � �

in the case of a horizontal h-cut and

Extd
H

�
r 
 � Sp � λ � ,Sp � µ � �

� �
d � i � j Exti

H
�
h 
 � Sp � λl � ,Sp � µl � � � Extj

H
�
r � h 
 � Sp � λr � ,Sp � µr � �
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in the case of a vertical h-cut.

The statement for horizontal h-cuts follows from (*) and Proposition

10.5(ii) with X � Sp � λ � , Y � ∇ � µ � . The statement for vertical h-cuts

may be deduced from that for horizontal h-cuts by dualizing and using

the q-analogue of the usual isomorphism Sp � λ � � ks � Sp � λ � � � (cf. [23,

Proposition 4.5.9]) to interchange vertical and horizontal cuts (see also

[19, (3.9) Corollary]).

The conscientious reader will have noticed that the case in which k has

characteristic 3 and q � 1, of Fayers and Lyle’s results, are not covered

by the Proposition. However, by a result of Dipper and James. [10,

8.6 Corollary], (generalizing a result of Carter and Lusztig, [5, Theorem

3.7]) we have, Hom � ∆ � µ � ,∆ � λ � � � HomH
�
r � � Sp � λ � ,Sp � µ � � and hence,

by duality, Hom � ∇ � λ � ,∆ � µ � � � HomH
�
r � � Sp � λ � ,Sp � µ � � , for l 	 2. Thus

(*) also gives the Proposition in the case l � 3. I am grateful to Alison

Parker for this remark.
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10

Combinatorial aspects of the set of tilting
modules

Luise Unger

1 Introduction

Let Λ be a basic artin algebra over a commutative artin ring R and

let mod Λ be the category of finitely generated left Λ-modules. For a

module M � mod Λ we denote by pd M the projective dimension of M

and by gl.dim Λ the global dimension of Λ.

A module T � modΛ is called a tilting module if

(i) the projective dimension of T is finite, and

(ii) ExtiΛ � T,T � � 0 for all i � 0, and

(iii) there is an exact sequence 0 � ΛΛ � T 1 � � � � � T d � 0 with

T i � addT for all 1 � i � d.

Here addT denotes the category of direct sums of direct summands of T .

We say that a tilting module is basic if in a direct sum decomposition

of T the indecomposable direct summands of T occur with multiplicity

one. Unless stated otherwise all tilting modules considered here will be

assumed to be basic. We consider the set TΛ of all tilting modules over

Λ up to isomorphism.

It was observed by Ringel that TΛ carries the structure of a simplicial

complex whose geometric realization in some examples turned out to be

an n-dimensional ball. Here n � 1 is the number of isomorphism classes

of simple Λ-modules. During a ring theory conference in Antwerp 1987

he proposed to to study this complex. This was the starting point for

the investigations of the combinatorial structure of TΛ.

259
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The first article that dealt with the combinatorics of TΛ was due to

Riedtmann and Schofield [33], published in 1991. In this article Riedt-

mann and Schofield introduced three combinatorial setups: the partial

order of tilting modules, the quiver of tilting modules and the simplicial

complex of tilting modules. All these combinatorial structures were later

studied and generalized by various authors. The aim of this article is to

summarize the results in this context.

The notation and terminology introduced here will be fixed throughout

the article. For unexplained representation-theoretical terminology we

refer to [34] or [4].

2 The partial order of tilting modules

Following [3] we consider for a tilting module T the right perpendicular

category

T � � � X � mod Λ � Exti
Λ � T,X � � 0 for all i � 0 � .

We define a partial order 	 on TΛ (compare [33]). For T, T 
 � TΛ we

set T 	 T 
 provided T � � T 
 � . Then � TΛ, 	 � is a partially ordered set.

The following proposition lists some elementary properties of � TΛ, 	 � .

Proposition 2.1.

(a) T 	 T 
 if and only if T � T 
 � .

(b) ΛΛ is the unique maximal element.

(c) If Λ is Gorenstein, then the injective cogenerator DΛΛ of modΛ

is the unique minimal element.

(d) If T 	 T 
 in � TΛ, 	 � then pdT � pdT 
 .

The partial order does not always admit a minimal element – an

example where this situation occurs may be found in [27]. This raises

the question under which circumstances minimal elements do exist

and whether they are unique. This relates to a further concept in

representation theory, namely to contravariantly finite subcategories of

modΛ, introduced by Auslander and Smalø in [5]. Let C be a full sub-

category of modΛ which is closed under direct sums, direct summands

and isomorphisms. The subcategory C is called contravariantly finite

in modΛ, if every X � modΛ has a right C-approximation, i.e. there is
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a morphism FX � X with FX � C such that the induced morphism

HomΛ � C,FX � � HomΛ � C,X � is surjective for all C � C. We denote

by P
� � � Λ � the full subcategory of modΛ of modules of finte projective

dimensions. The answer to the question above was given in [23].

Theorem 2.2. The partial order � TΛ, � � contains a minimal element

if and only if P
� � � Λ � is contravariantly finite in modΛ. Moreover, a

minimal element is unique if it exists.

3 The quiver of tilting modules

Riedtmann and Schofield related with TΛ a quiver
� �
KΛ as follows. The

vertices of
� �
KΛ are the elements of TΛ. For T, T � � TΛ we set T � � T in

case T � 	 M



X, T 	 M



Y with X,Y indecomposable and there is

a non-split short exact sequence

0 � X � �M � Y � 0

with �M � addM. We call
� �
KΛ the quiver of tilting modules over Λ. This

setup was used essentially in [39] and [42] and has been extended to

infinite dimensional tilting modules in [8].

3.1 Examples

The quiver
� �
KΛ has a unique source, the projective tilting module ΛΛ.

Moreover,
� �
KΛ does not contain oriented cycles. We include some exam-

ples to stress further properties of
� �
KΛ.

The first series of examples classifies the quivers of tilting modules over

hereditary algebras with three isomorphism classes of sinple modules as

it was given in [40].

If A is the path algebra of

or or

then
� �
KA equals
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or or

If A is a tame three-point quiver algebra, i.e. if A is the path algebra of

the quiver , then the quiver of tilting modules decomposes into

two connected components:

If A is a wild three-point quiver algebra, then
� �

KA decomposes into in-

finitely many connected components. All but finitely many of these

components are binary trees without a source or sink, i.e. they are of

the form
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The following example from [33] shows that
� �
KΛ may be finite even for

representation infinite algebras. Let Λ be given by the following quiver

.

with relations βα � γδ � 0. Then gl.dim Λ � 2 and Λ is representation

infinite. The quiver
� �
KΛ is

In general
� � � �
K � Λ � may be rather complicated, even when it is finite.

One measure for the complicatedness of a graph G is its genus γ � G � .

This is the minimal genus of an orientable surface on which G can be

embedded. It was proved in [43] that there are finite quivers of tilting

modules of arbitrary genus.

Theorem 3.1. For all integers r � 0 there is a representation finite,

connected algebra Λr such that γ �
� � � � �
K � Λr � � � r.

The proof is constructive., namely Λ1 is the path algebra of the quiver
� �
∆1

a

b

c

d

α

γ

β

δ

bound by the relation αβ � γδ, and Λr for r � 1 is the path algebra of

the quiver
��
∆r

a

b

c

d

α

γ

β

δ

1

2 3 r
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bound by the relations αβ � γδ and rad2 � 0, i.e. the composition of

two consecutive arrows in
� �
∆r � � a � is zero.

3.2 The Hasse diagram of the poset of tilting modules

Riedtmann and Schofield already observed in [33] a relation between

the partial order � TΛ, � � and the quiver
� � � �
K � Λ � . They raised the question

whether the underlying graph K � Λ � of
� � � �
K � Λ � is the Hasse diagram of

� TΛ, � � . A positive answer to this question was given in [23].

Theorem 3.2. Let T, T � 	 TΛ with T � T � and T 
� T � . Then there

exists T � 	 TΛ with T � � T � in
� � � �
K � Λ � such that T � T � . In particular,

K � Λ � is the Hasse diagram of � TΛ, � � .

A consequence of this theorem is that
� � � �
K � Λ � has the Brauer-Thrall 1

property:

Corollary 3.3. If
� � � �
K � Λ � has a finite connected component C then

� � � �
K � Λ � �

C.

A sink in
� � � �
K � Λ � corresponds to a minimal element in � TΛ, � � . Hence

combining this theorem with the theorem in section 2 we obtain the

following consequences.

Corollary 3.4. The quiver
� � � �
K � Λ � contains at most one sink. It contains

a sink if and only if P

 � � Λ � is contravariantly finite in modΛ.

Corollary 3.5. If
� � � �
K � Λ � is finite, then P


 � � Λ � is contravariantly finite

in modΛ.

Corollary 3.6. Let T 	 TΛ be a tilting module such that EndΛT is

representation finite. Then P

 � � Λ � is contravariantly finite in modΛ.

3.3 Connected components

We saw in section 3.2 that
� � � �
K � Λ � is connected in case it is finite. The

converse does not hold. In general very little is known about the

connected components of
� � � �
K � Λ � even in the case where Λ is the path

algebra of a quiver
� �
∆. We denote by ∆ the underlying graph of

� �
∆.
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The following result taken from [39] deals with tame quiver algebras k
� �
∆.

Theorem 3.7. The following are equivalent for an affine diagram ∆.

(a)
��
K

mod k
��
∆

is connected.

(b) There is a k
��
∆-tilting module T such that EndT is representation

finite.

(c) ∆ �� �A1,p.

Moreover, it is shown in [39] that
� �
K

mod k
��
∆

has precisely two connected

components if ∆ is of type �A1,p.

It is conjectured (compare [39] and [24]) that
� �
K

mod k
��
∆

will have infinitely

many connected components if ∆ is a wild diagram and the number of

vertices of ∆ is greater than 2. This conjecture has been verified for

three-point quiver algebras in [40].

3.4 The local structure

In this section we summarize the main results of [25] where the structure

of
� � � �
K � Λ � in the neighborhood of a vertex was studied. In this article

the precise relationship between the number of neighbors of a vertex

T 	
� � � �
K � Λ � and the addT-coresolution of ΛΛ in the definition of a tilting

module was established. Moreover, the number and length of paths

leading to or starting in a given vertex was investigated.

Let us assume first that Λ is the path algebra of a quiver
��
∆. Let s � T �

respectively e � T � be the number of arrows starting respectively ending

at a vertex T 	
� � � �
K � Λ � . It is easy to see that s � T � 
 e � T � � rkK0 � Λ � ,

where rkK0 � Λ � denotes the rank of the Grothendieck group of modΛ.

We call T saturated if equality holds. The following result is contained

in [41].

Theorem 3.8. Let Λ be the path algebra of a quiver
��
∆. Then each

connected component of
� � � �
K � Λ � contains a non-saturated vertex.

There is a purely combinatorial criterion to decide whether or not a

vertex T ist saturated.
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Proposition 3.9. Let Λ be the path algebra of a quiver
��
∆. A vertex

T �
� � � �
K � Λ � is saturated if and only if all entries in the dimension vector

of T are at least 2.

A different approach to compute the number of neighbors of a vertex T

in
� � � �
K � Λ � is as follows:

Let

0 � ΛΛ � T 0 � T 1 � 0

and

0 � T1 � T0 � DΛΛ � 0

be minimal addT-(co)resolutions. For a Λ-module X we denote by

δ � X � the number of pairwise non isomorphic indecomposable direct

summands of X. The numbers s � T � and e � T � defined above may be

interpreted as follows:

Proposition 3.10. For a path algebra Λ with n isomophism classes of

simple modules we have s � T � � n � δ � T0 � � δ � T1 � and e � T � � n � δ � T 0 � �
δ � T 1 � .

Hence a module T �
� � � �
K � Λ � is saturated if and only if n � δ � T 0 � � δ � T0 � .

In particular, ΛΛ is never saturated.

Let us now assume that Λ is an arbitrary artin algebra. For T �
� � � �
K � Λ �

we consider

0 � ΛΛ � T 0 � � � � � T r � 0

and

� � � Ts � � � � � T0 � DΛΛ � 0

minimal addT-(co)resolutions.

For an indecomposable direct summand X of T choose i � X � minimal

such that X is a direct summand of T i
	
X 
 . Note that each indecompos-

able direct summand X of T has to occur in the first exact sequence,

hence i � X � is well defined. If X occurs in the second exact sequence,

we choose j � X � minimal such that X is a direct summand of Tj
	
X 
 .

Otherwise we set j � X � � � . Note that the validity of the generalized

Nakayama conjecture will imply that j � X � � � . For more details about

this connection we refer to the following section. With these notations



Combinatorial aspects of the set of tilting modules 267

the main result in [25] states:

Theorem 3.11. For each indecomposable direct summand X of T there

is a path w � X � in
� � � �
K � Λ � of length i � X � ending in T and a path u � X � of

length j � X � starting in T . These paths are pairwise disjoint.

3.5 Complements to partial tilting modules

A direct summand M of a tilting module T is called a partial tilting

module. We say that a basic module C is a complement to a partial

tilting module T if M
�

C is a tilting module and addM � addC � 0.

In general, a partial tilting module admits many complements. In [22]

very special complements were introduced which relate the structure of� � � �
K � Λ � with homological properties of modΛ.

A complement C to a partial tilting module is called a source complement

if

� M �
C � � � M � .

It was shown in [21] that source complements to partial tilting modules

do not always exist. Moreover, if M admits a source complement, then

it is unique up to isomorphism.

Dually, we define for a partial tilting module the notion of a sink com-

plement. A complement C to M is called a sink complement to M

if

� M � P
� 	 � Λ � � � � M �

C � � P
� 	 � Λ � .

The left perpendicular category � M is the full subcategory of modΛ

with objects Y satisfying Exti � Y,M � � 0 for all i 
 0. Again, sink

complements need not exist, but they are unique in case they exist.

A partial tilting module M which admits an indecomposable comple-

ment is said to be an almost complete partial tilting module. Almost

complete partial tilting modules always have a source complement. To

be more precise, the following is basically contained in [10] or [17].

Theorem 3.12. Let M be an almost complete partial tilting module.

Then M admits a source complement X0. Moreover, M has at most

finitely many complements if and only if M admits a sink complement.
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If there are r � 1 non-isomorphic complements for some r � 1, then

r � fd � Λ � and there is a long exact sequence

0 � � X0 � � M1 f1� � M2 � � � � � � � M r � 1 fr 	 1� � M r fr� � Xr � � 0

with kerfi

 Xi for 1 � i � r, M i � addM for 1 � i � r and X0, . . . , Xr

complements to M . In particular, if fd � Λ � � 
 , then M has finitely

many complements.

Here fd � Λ � 
 sup � pdΛX � X � P
� � � Λ � � is finitistic dimension of Λ.

A classical conjecture (see for example [1], [2], [6], [30], [31] and [36]),

the so called finitistic dimension conjecture states, that fd � Λ � is always

finite. This conjecture has been verified for some special classes of artin

algebras, see for example [14], [15], [28], [29], [3], and also [37], [38].

Note that the complements X0, . . . , Xr of the theorem above give rise

to a path M
�

X0 � � � � � M
�

Xr in
� � � �
K � Λ � .

It is well known that the finitistic dimension conjecture implies the gen-

eralized Nakayama conjecture which states that in a minimal projective

resolution of DΛΛ each indecomposable projective Λ-module occurs, or

equivalently, for each simple Λ-modules S there is an integer t such that

Extt
Λ � DΛΛ, S � �
 0. We refer to [2] and [16] for related problems and

the precise relationship between these homological conjectures.

There is a connection between the number of complements to almost

complete partial tilting modules and the generalized Nakayama conjec-

ture that was observed in [9] and [22]. To formulate this connection we

need some further notation. We fix a complete set S 
 � S1, . . . , Sn � of

representatives from the isomorphism classes of simple Λ-modules. If

S 
 Si � S for some 1 � i � n we denote by P � S � the projective cover

of S and by PS

 �

j �� i

P � Sj � . Note that PS is an almost complete partial

tilting module with source complement P � S � . The following result was

proved in [22].

Theorem 3.13. The following are equivalent:

(1) For each simple Λ-module S the category � PS � P
� � � Λ � is con-

travariantly finite.

(2) PS has finitely many complements for all simple Λ-modules S.

(3) PS has a sink complement for each simple Λ-module S.
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(4) The generalized Nakayama conjecture holds for Λ.

3.6 Generalizations to tilting objects

Let H be a connected hereditary k-category over an algebraically closed

field k such that for all X,Y � H we have that both HomH � X,Y � and

Ext1H � X,Y � are finite dimensional k-vector spaces. Following [20] we

call an object T � H a tilting object provided Ext1H � T, T � � 0 and for

X � H with HomH � T,X � � Ext1H � T,X � � 0 we have that X � 0. For

an object X � H we denote by fac X the full subcategory of H whose

objects are factor objects of objects in addX.

Let H be as above and assume that H contains a tilting object. It was

proved by Happel in [19] that H is derived equivalent to the category of

finite dimensional modules modk
� �
∆ over the path algebra k

� �
∆ of a finite

quiver
� �
∆ without oriented cycles or the category of coherent sheaves

cohX over a weighted projective line X (see for example [13]). In [18] a

complete list of all categories derived equivalent to these two standard

types is given.

In analogy to the algebra case one defines the set TH of all basic tilting

objects over H up to isomorphism. The set TH is partially ordered in

the following way. For T, T � � TH we set T � T � if facT � fac T � . The

set TH together with this partial order is denoted by � TH, � � . Moreover,

one defines the quiver
� �
KH of tilting objects as for the algebra case. The

vertices of
� �
KH are the elements of TH and for T, T � � TH there is an

arrow T � � T if T � � M
	

X, T � M
	

Y with X,Y indecomposable

and there is a short exact sequence

0 � X � 
M � Y � 0

with 
M � addM.

In [24] the partial order and the quiver of tilting object was investigated.

It was shown that the underlying graph KH of
� �
KH is the Hasse diagram

of � TH, � � . Moreover, it was proved that a vertex T � � �
KH has precisely

n � rkK0 � H � neighbors in
� �
KH provided H does not contain nonzero

projective objects. Here K0 � H � denotes the Grothendieck group of H.

In [24] also the question when
� �
KH is connected is addressed. A complete

answer is given in the cases where that H is derived equivalent to

modk
��
∆ with

��
∆ not wild (i.e.

� �
∆ is Dynkin or affine). If the underlying
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graph ∆ of
� �
∆ is Dynkin, then

� �
KH is always connected. If it is affine,

then
� �
KH is connected unless H � modk

� �
∆ and ∆ � �A1,n. This also

covers the case that H is derived equivalent to coh X where X is a

domestic weighted projective line. For the remaining cases we suggest

the following conjecture as an answer.

Conjecture 3.14. If H is derived equivalent to cohX and X is tubular

or wild or to modk
��
∆ with

� �
∆ wild, then

� �
KH is connected if and only if

H does not contain nonzero projective objects.

Part of this conjecture was proved in [24]. It was shown that if H is

derived equivalent to modk
��
∆ with

� �
∆ wild, then

� �
KH is connected if H

does not contain nonzero projective objects. Investigations by Ringel

[35] on tubular algebras in the non algebraically closed case show that

a related general conjecture will fail.

4 The simplicial complex of tilting modules

Let n � 1 be the number of isomorphism classes of simple Λ modules.

The set TΛ forms a simplicial complex ΣΛ as follows. The 0-simplices

are the indecomposable direct summands of tilting modules ΛT � TΛ,

and � T0, . . . , Tr � is an r-simplex if
n�

i 	 0

Ti is a direct summand of a tilting

modules ΛT � TΛ.

Note that we can recover the underlying graph KΛ of
� �
KΛ from ΣΛ and

vice versa: The n-simplices correspond to the vertices, and there is an

edge between two vertices if and only if the corresponding n-simplices

contain a common 
 n � 1 � -simplex.

4.1 Examples

The set TΛ is countable [17], hence ΣΛ is a countable simplicial complex.

Since a multiplicity free tilting module has n � 1 indecomposable direct

summands, ΣΛ is a simplicial complex of dimension n. Moreover, since

all r-simplices are contained in an n-simples, ΣΛ is a simplicial complex

of pure dimension n.

We include some examples stressing further properties of ΣΛ.
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If Λ is the path algebra of the quiver then ΣΛ equals

If Λ is the path algebra of the quiver modulo the ideal

generated by the path of length 2, then ΣΛ is of the form

In general ΣΛ is not finite and not connected. As an example, if Λ is

the path algebra of the quiver

then ΣΛ decomposes into two A � -components.

The following example shows that ΣΛ is not necessarily locally finite.

Here ΣΛ is the simplicial complex of tilting modules over the path alge-

bra of :

We will also be interested in the boundary of ΣΛ. By definition the

boundary δΣΛ of a purely n-dimensional simplicial complex consists of

the simplices contained in those � n � 1 � -simplices which lie in precisely
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one n-simplex. Clearly δΣΛ is a simplicial complex of pure dimension

n � 1. The boundaries of the simplicial complexes considered above are

δΣΛ for ΣΛ

δΣΛ for ΣΛ

δΣΛ for ΣΛ

Note that δΣΛ may be finite if ΣΛ is infinite.

4.2 Shellability

For a countable simplicial complex of pure dimension n one has the

notion of shellability: A simplicial complex Σ with these properties is

called shellable if its n-simplices may be linearly ordered σ1, σ2, σ3, . . .

such that for all l � 1 the simplicial subcomplex � l � 1�
i � 1

σi � � σl is of pure

dimension n � 1. The linear order σ1, σ2, σ3, . . . is called a shelling.

The simplicial complex
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is shellable – any linear order of its 2-simplices is a shelling.

We assume until the end of this section that Σ is a finite simplicial

complex.

Shellability of Σ has surprising consequences in algebraic combinatorics.

We briefly recall the facts. Let τ � Σ be a simplex. The link of τ is the

simplicial subcomplex lk � τ � � � σ � Σ � τ � σ � Σ and τ � σ � � 	 . Let R

be the ring of integers or a field. By 
H � � Σ, R � we denote the reduced sim-

plicial homology of Σ with coefficients in R. The simplicial complex Σ is

said to be Cohen-Macaulay over R if 
Hi � lk � τ � , R � � 0 for all τ � Σ and

all i � dim lk � τ � . The motivation for this terminology comes from an-

other object studied in in algebraic combinatorics. Let V � � x0, . . . , xr 	
be the vertex set of Σ. Consider the polynomial ring R 
 x0, . . . , xr � and

the ideal IΣ generated by the square free monomials xi1 � � � xis
such that

� xi1 , . . . , xis
	 � Σ. The quotient R 
 Σ � � R 
 x0, . . . , xr � � IΣ is called the

face ring or the Stanley-Reisner ring of Σ. A theorem of Reisner [32]

states that Σ is Cohen-Macaulay over R if and only if R 
 Σ � is a Cohen-

Macauley ring. It was first observed by Hochster [26] that a shellable

simplicial complex is Cohen-Macaulay over the integers. Examples for

non-shellable simplicial Cohen-Macaulay complexes are given in [12].

Further consequences of shellability concern the geometric realization�
Σ

�
of Σ. For this connection one needs an invariant, the so called

characteristic, associated with a shellable simplicial complex. To define

this we introduce some further notation. For a given shelling of Σ and

for all l � 1 we denote
l�

i � 1

σi by Σl. For l � 1 one further defines the

restriction R � σl � of an n-simplex σl as the set of vertices v of σl such

that σl � � v 	 is contained in Σl � 1. A shellable simplicial complex of

pure dimension n is said to be shellable of characteristic h if h is the

cardinality of the n-simplices σ satisfying R � σ � � σ. The connection

between this notion and the geometric realisation of a simplicial

complex is given by a theorem of Björner [7]:

Theorem 4.1. Let Σ be a shellable simplicial complex of pure dimension
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n and characteristic h. Then
�
Σ

�
has the homotopy type of a wedge of

h n-spheres. In particular, Σ is � n � 1 � -connected.

Recall that a purely n-dimensional simplicial complex is called � n � 1 � -
connected if for all n-simplices σ and τ there is a sequence σ �
σ1, σ2, . . . , σt

� τ of n-simplices such that for all 1 � i � t � 1 the

simplices σi and σi � 1 have a common � n � 1 � -simplex.

Shellability of the simplicial complex ΣΛ of tilting modules over Λ was

studied in [39] and [42]. The main results state:

Theorem 4.2. Let ΣΛ be the simplicial complex of tilting modules over

Λ.

(a) If ΣΛ is finite, then it is shellable of characteristic 0. In particu-

lar, ΣΛ is contractible.

(b) If ΣΛ is finite, then δΣΛ is shellable.

Note that the characteristic of δΣΛ may be arbitrarily large. If Λn is

the path algebra of a linearly ordered An � 1 modulo the ideal generated

by all paths of length two, then δΣΛn
is shellable of characteristic n.

4.3 Tilting modules of projective dimensions at most one

Much better results can be obtained provided Σ is a pseudomanifold, i.e.

if Σ is � n � 1 � -connected and if every � n � 1 � -simplex is contained in at

most two n-simplices. A result of Danaraj and Klee [11] states that for

a shellable pseudomanifold Σ of dimension n its geometric realization is

an n-ball or an n-sphere. The latter case occurs if and only if Σ has no

boundary.

Let Σ
� 1
Λ be the simplicial complex of tilting modules of projective

dimensions at most one. This again is a countable simplicial complex of

pure dimension n, where n � 1 is the number of isomorphism classes of

simple Λ-modules. In [33] Riedtmann and Schofield proved that Σ
� 1
Λ is

a shellable pseudomanifold provided it is finite. Moreover, Σ
� 1
Λ always

admits a boundary. Hence in combination with [11] the main result of

[33] follows.

Theorem 4.3. If Σ
� 1
Λ is finite, then

�
Σ

� 1
Λ

�
is an n-ball.
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It was proved in [42] that this result also extends to the boundaries of

Σ
� 1
Λ .

Theorem 4.4. If δΣ
� 1
Λ is finite, then it is a pseudomanifold. In par-

ticular,
�
δΣ

� 1
Λ

�
is an � n � 1 � -ball or an � n � 1 � -sphere.

Both cases may occur. The example of Igusa, Smalø and Todorov [27]

mentioned above yields an example where the boundary complex of Σ
� 1
Λ

is a ball.

4.4 Connected components

If the graph
� � � �
K � Λ � of tilting modules is connected, then ΣΛ is connected.

In particular, ΣΛ is connected in case it is finite. In general very little is

known about the connected components of ΣΛ. For quiver algebras Λ the

situation is better understood. The following result was obtained in [41].

Theorem 4.5. Let Λ be a path algebra of a quiver
��
∆ with n vertices.

Then ΣΛ has at most n connected components.

To be more precise, it was shown in [41] that a connected component of

ΣΛ has to contain a simple Λ-module provided Λ is the path algebra of

a quiver.
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Infinite dimensional tilting modules and
cotorsion pairs

Jan Trlifaj1

Dedicated to Claus Michael Ringel on the occation of his 60th birthday.

Classical tilting theory generalizes Morita theory of equivalence of mod-

ule categories. The basic property – existence of a maximal category

equivalence represented by the tilting module – forces the module to be

finitely generated, cf. [31, §2], [85].

However, some aspects of the classical theory can be extended to in-

finitely generated modules over arbitrary rings. In this paper, we inves-

tigate such an aspect in detail: the relation of tilting to approximations

(preenvelopes and precovers) of modules. Then we show how infinitely

generated tilting modules are employed for proving finitistic dimension

conjectures in particular cases, and for characterizing Matlis localiza-

tions of commutative rings.

General existence theorems provide a big supply of approximations in the

category Mod-R of all modules over an arbitrary ring R. However, the

corresponding approximations may not be available in the subcategory

of all finitely generated modules. So the usual sharp distinction between

finitely and infinitely generated modules becomes unnatural, and even

misleading.

Cotorsion pairs give a convenient tool for the study of module approx-

imations. Tilting cotorsion pairs are defined as the cotorsion pairs in-

duced by tilting modules. We present their characterization among all

cotorsion pairs, and apply it to a classification of tilting classes in partic-

ular cases (e.g., over Prüfer domains). The point of the classification is

that tilting classes coincide with classes of finite type. So we can replace

1 Supported by the research project MSM 0021620839.
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each infinitely generated tilting module by a set of finitely presented

modules; in particular, the corresponding tilting class is axiomatizable

in the language of the first order theory of modules.

Most of this paper is a survey of recent developments. We give complete

definitions and statements of the results, but most proofs are omitted

or replaced by outlines of the main ideas. For full details, we refer

to the original papers listed in the references, or to the forthcoming

monograph [55]. However, Theorems 3.5, 3.7, 4.14, and 4.15 are new,

hence presented with full proofs.

In §1, we introduce cotorsion pairs and their relations to approxima-

tion theory of infinitely generated modules over arbitrary rings. In §2

and §3, we study infinitely generated tilting and cotilting modules, and

characterize the induced tilting and cotilting cotorsion pairs. In §4, we

deal with classes of finite and cofinite type, and with the classification

of tilting and cotilting classes over particular rings. We also character-

ize Matlis localizations of commutative rings. Finally, §5 relates tilting

approximations to the first and second finitistic dimension conjectures.

We start by fixing our notation. For an (associative, unital) ring R,

Mod-R denotes the category of all (right R-) modules. mod-R denotes

the subcategory of Mod-R formed by all modules possessing a projec-

tive resolution consisting of finitely generated modules. (If R is a right

coherent ring then mod-R is just the category of all finitely presented

modules).

Let C be a class of modules. For a cardinal κ, we denote by C
� κ, and

C
� κ, the subclass of C consisting of the modules possessing a projective

resolution containing only � κ-generated, and � κ-generated, modules,

respectively. For example, mod-R � � Mod-R � � ω. Further, lim� � C denotes

the class of all modules that are direct limits of modules from C. (In

general, lim� � C is not closed under direct limits, but it is in case C 	
mod-R. In that case, C � lim� � C 
 mod-R provided C is closed under

finite direct sums and direct summands.)

Let n � ω. We denote by Pn (In, Fn) the class of all modules of

projective (injective, flat) dimension � n. Further, P (I, F) denotes

the class of all modules of finite projective (injective, flat) dimension.

The injective hull of a module M is denoted by E � M � .

We denote by Z the ring of all integers, and by Q the field of all rational
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numbers. For a commutative domain R, Q denotes the quotient field of

R.

For a left R-module N , we denote by N � � HomZ � N, Q� Z � the character

module of N . Note that N � is a (right R-) module.

Let M be a module. Then M is a dual module provided that M � N �
for a left R-module N . M is pure-injective provided that M is a di-

rect summand in a dual module. M is (Enochs) cotorsion provided

that Ext1R � F,M � � 0 for each F � F0. Notice that any dual module

is pure-injective, and any pure-injective module is cotorsion (The con-

verses do not hold in general; however, flat cotorsion modules over left

coherent rings are pure-injective, [93]). The class of all pure-injective,

and cotorsion, modules is denoted by PI, and EC, respectively.

A module M is divisible if Ext1R � R � rR,M � � 0 for each r � R, and

torsion-free if TorR
1 � M,R � Rr � � 0 for each r � R (If R is a commuta-

tive domain, then these notions coincide with the classical ones). The

class of all divisible and torsion-free modules is denoted by DI and T F ,

respectively.

1 Cotorsion pairs and approximations of modules

Cotorsion pairs are analogs of (non-hereditary) torsion pairs, with Hom

replaced by Ext. They were introduced by Salce (under the name “cotor-

sion theories”) in [76]. The analogy with the well-known torsion pairs

makes it possible to derive easily some basic notions and facts about

cotorsion pairs. However, the main point concerning cotorsion pairs is

their close relation to special approximations of modules: cotorsion pairs

provide a homological tie between the dual notions of a special preen-

velope and a special precover. This tie (discovered in [76], cf. 1.9.3) is a

sort of remedy for the non-existence of a duality in Mod-R.

Before introducing cotorsion pairs, we define various Ext-orthogonal

classes.

Let C � Mod-R. Define C � � �
1 	 n 
 ω C � n where C � n � � M �

Mod-R � Extn
R � C,M � � 0 for all C � C 
 for each 1 � n � ω. Du-

ally, let � C � �
1 	 n 
 ω � nC where � nC � � M � Mod-R � Extn

R � M,C � �
0 for all C � C 
 for each 1 � n � ω.
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1.1. Cotorsion pairs. Let R be a ring. A cotorsion pair is a pair

C
� � A,B � of classes of modules such that A � � 1B and B � A � 1 . The

class A � B is called the kernel of C. The cotorsion pair C is hereditary

provided that Exti
R � A,B � � 0 for all A � A, B � B and i � 2.

Notice that C is hereditary iff A � � B and B � A � . The property of C

being hereditary can easily be expressed in terms of the properties of A

and B: C is hereditary iff A is closed under kernels of epimorphisms iff

B is closed under cokernels of monomorphisms.

Each module M in the kernel of a cotorsion pair C is a splitter, that

is, M satisfies Ext1R � M,M � � 0. We will see that the kernel of C in

the tilting and cotilting cases plays an important role: it determines

completely the classes A and B. (This contrasts with what happens

for torsion pairs: since idM � HomR � M,M � for each module M , the

“kernel” of any torsion pair is trivial.)

1.2. By changing the category, we could take a complementary point

of view, working modulo the kernel rather than stressing its role. By a

result of Beligiannis and Reiten [26], each complete hereditary cotorsion

pair C
� � A,B � in Mod-R determines a torsion pair, � A,B � , in the

stable module category Mod-R (of Mod-R modulo the kernel of C), cf.

1.9.3. Consequently, special A-precovers and special B-preenvelopes are

functorial modulo maps factoring through the kernel, cf. [66].

1.3. The class of all cotorsion pairs is partially ordered by inclusion in

the first component: � A,B � � � A � ,B � � iff A 	 A � . The � -least cotorsion

pair is � P0,Mod-R � , the � -greatest � Mod-R, I0 � ; these are the trivial

cotorsion pairs.

The cotorsion pairs over a ring R form a complete lattice, LR: given a

sequence of cotorsion pairs S � � � Ai,Bi � 
 i � I � , the infimum of S in LR

is � �
i � I Ai, � �

i � I Ai � � 1 � , the supremum being � � 1 � �
i � I Bi � , �

i � I Bi � .

For any class of modules C, there are two cotorsion pairs associated

with C: � � 1C, � � 1C � � 1 � , called the cotorsion pair generated by C, and

� � 1 � C � 1 � , C � 1 � , the cotorsion pair cogenerated by C. If C has a repre-

sentative set of elements S, then the first cotorsion pair is generated by

the single module 
 S � S S, while the second is cogenerated by the single

module �
S � S S.

The existence of cotorsion pairs generated and cogenerated by any class

of modules indicates that LR is a large class in general.
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For example, the condition of all cotorsion pairs being trivial is extremely

restrictive: by [86] and [43], for a right hereditary ring R, this condition

holds iff R � S or R � T or R is the ring direct sum S � T , where

S is semisimple artinian and T is Morita equivalent to a 2 � 2-matrix

ring over a skew-field. As another example, consider the case of R � Z:

by [53], any partially ordered set embeds in LZ; in particular, LZ is a

proper class.

1.4. Replacing Ext by Tor in 1.1, we can define a Tor-torsion pair as

the pair � A,B � where A � � A � Mod-R � TorR
1 � A,B � � 0 for all B � B �

and B � � B � R-Mod � TorR
1 � A,B � � 0 for all A � A � . Similarly to

the case of cotorsion pairs, we can define Tor-torsion pairs generated

(cogenerated) by a class of left (right) R-modules. Tor-torsion pairs

over a ring R form a complete lattice; by 1.5.3 below, the cardinality of

this lattice is 	 22κ

where κ � card � R � 
 ℵ0.

The well-known Ext-Tor relations yield an embedding of the lattice of

Tor-torsion pairs into LR as follows: a Tor-torsion pair � A,B � is mapped

to the cotorsion pair � A,A � 1 � . The latter cotorsion pair is easily seen

to be generated by the class � B � � B � B � . In this way, Tor-torsion

pairs are identified with particular cotorsion pairs generated by classes

of pure-injective modules.

The following lemma says that most of the classes of modules defined

above occur as first or second components of cotorsion pairs cogenerated

by sets:

Lemma 1.5. Let R be a ring and n 
 ω. Let κ � card � R � 
 ℵ0.

(1) C
� � Pn, � Pn � � � is a hereditary cotorsion pair cogenerated by

P
� κ
n . If R is right noetherian then C is cogenerated by P

� ω
n .

(2) Let C
� � A,B � be a cotorsion pair generated by a class of pure-

injective modules. Then C is cogenerated by A
� κ.

(3) Let � A,B � be a Tor-torsion pair. Then � A,A � 1 � is a cotorsion

pair cogenerated by A
� κ, and generated by � B � � B � B � . In

particular, � Fn, � Fn � � � is a hereditary cotorsion pair cogenerated

by F
� κ
n .

(4) � � In, In � is a hereditary cotorsion pair cogenerated by � � In � � λ

where λ is the least infinite cardinal such that each right ideal of

R is λ-generated.
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(5) Let R be a right noetherian ring. Then the cotorsion pair cogen-

erated by In is cogenerated by a set.

(6) � � 1DI,DI � and � T F , T F � 1 � are cogenerated by sets of cardinal-

ity � κ.

Proof. 1.[1] For n � 0, we apply the classical result of Kaplansky saying

that each projective module is a direct sum of the countably generated

ones. For n � 1, it suffices to prove that given a free resolution R :

0 � Fn � � � � � F0 � M � 0 of M � Pn with Fi
� R

	
Ai 
 and

0 � x � M , there is a submodule N � M and an exact subcomplex

of R, 0 � Gn � � � � � G0 � N � 0 where Gi
� R

	
Bi 
 , Bi � Ai,

card � Bi � � κ for all i � n, and x � N . This is proved by a back and

forth argument in R, see [1]. The noetherian case is similar, cf. [80].

2. This is proved in [44].

3. The first statement follows by part 2. and by 1.4. The second is a

particular case of the first one.

4. By Baer test lemma for injectivity, we have M � In iff Ext1R � N,M � �
0 where N runs over a representative set of all n-th syzygies of cyclic

modules.

5. Since R is right noetherian, there is a cardinal µ such that any

injective module is a direct sum of � µ-generated modules, and the

proof proceeds in a dual way to 1., see [1].

6. The first cotorsion pair is cogenerated by the set 
 R � rR � r � R � .
The assertion concerning the second pair is a particular case of 3.

The key property of cotorsion pairs is their relation to approximations

of modules. The connection is via the notion of a special approximation,

[93]:

1.6. Special approximations. Let R be a ring, M a module and

C a class of modules. An R-homomorphism f : M � C is a special C-

preenvelope of M provided that f induces a short exact sequence 0 �
M

f� C � D � 0 with C � C and D � � 1C. C is a special preenveloping

class if each module M � Mod-R has a special C-preenvelope.

Dually, an R-homomorphism g : C � M is a special C-precover of M

provided that g induces a short exact sequence 0 � B � C
g� M � 0
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with C � C and B � C � 1 . C is a special precovering class if each module

M � Mod-R has a special C-precover.

The terminology of 1.6 comes from the fact that special preenvelopes

and precovers are special instances of the following more general

notions, [46], [93]:

1.7. Let R be a ring, M a module, and C a class of modules. An R-

homomorphism f : M � C with C � C is a C-preenvelope of M provided

that for each C � � C and each R-homomorphism f � : M � C � there is an

R-homomorphism g : C � C � such that f � � gf .

The C-preenvelope f is a C-envelope of M if f has the following mini-

mality property: if g is an endomorphism of C such that gf � f then g

is an automorphism.

C is a preenveloping (enveloping) class provided that each module M �
Mod-R has a C-preenvelope (envelope).

The notions of a C-precover, C-cover, precovering class, and covering

class are defined dually.

A preenvelope (precover) may be viewed as a kind of weak (co-) reflection

[48]; however, we do not require the assignment M �� C (C �� M) to

be functorial or unique, cf. 1.2.

However, if a module M has a C-envelope (cover) then the C-envelope

(cover) is easily seen to be uniquely determined up to isomorphism;

morever the C-envelope (cover) of M is isomorphic to a direct summand

in any C-preenvelope (C-precover) of M , [93].

Classical examples of enveloping classes include I0 and PI, see [38] and

[92], and of covering classes, P0 in case R is a right perfect ring, and

T F in case R is a domain, see [14] and [45]. We will have many more

examples later in this section.

1.8. (i) The definitions above can be extended to the setting of an

abitrary category K (in place of Mod-R) and its subcategory C � K. If

K � mod-R, we say that C is covariantly finite (contravariantly finite)

provided that C is preenveloping (precovering) in mod-R, cf. [13]. We

refer to [72] for more on the role of covariantly and contravariantly finite

subcategories of mod-R in tilting theory.

(ii) There is a related notion of a ”Γ-separated cover” introduced by
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Klingler and Levy in their classification of finitely generated modules

over Dedekind-like rings, cf. [65]. For classical Dedekind-like rings, these

”Γ-separated covers” turn out to be a particular sort of the covers defined

in 1.7, though they do not fit any cotilting setting – see [68] for more

details.

The following lemma connects cotorsion pairs to approximations of

modules:

Lemma 1.9. Let R be a ring, M a module, and C
� � A,B � a cotorsion

pair.

(1) [91] Assume M has a B-envelope f . Then f is a special B-

preenvelope. So if B is enveloping then B is special preenveloping.

(2) [91] Assume M has a A-cover f . Then f is a special A-precover.

So if A is covering then A is special precovering.

(3) [76] A is special precovering iff B is special preenveloping. In

this case C is called a complete cotorsion pair.

Proof. 1. Since I0 � B, f is monic, so there is a short exact sequence

0 � M
f

� B
g

� C � 0. Take a short exact sequence 0 � B � � D
h�

C � 0 with B � � B. Considering the pull-back of g and h, and using the

minimality of the map f , we obtain a splitting map for h, thus proving

that C � A.

2. This is dual to 1.

3. Let M be a module. Consider a short exact sequence 0 � M � I
f

�
J � 0 where I � I0. Let g : A � J be a special A-precover of J . Then

the pull-back of g and f yields a special B-preenvelope of M . The proof

of the converse implication is dual.

The following example shows that in 1.9.3, we cannot claim that A is

a covering class iff B is an enveloping one (however, by 1.11 below, the

equivalence holds in case A is closed under direct limits):

Example 1.10. [22], [23], [24] Let R be a commutative domain and C

be the cotorsion pair cogenerated by the quotient field Q. Matlis proved

that C is hereditary iff proj.dim � Q � � 1 (that is, R is a Matlis domain).

The class B � � Q 	 
 1 is the class of all Matlis cotorsion modules. Since
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B � � Mod-Q � � 1 , B is an enveloping class, [93]. For example, the

B-envelope of a torsion-free reduced module M coincides with the R-

completion of M , cf. [50].

On the other hand, A (called the class of all strongly flat modules) is a

covering class iff all proper factor-rings of R are perfect. For example,

if R is a Prüfer domain then A is a covering class iff R is a Dedekind

domain.

Cotorsion pairs C
� � A,B � such that A is a covering class and B is

an enveloping class are called perfect. By 1.9, each perfect cotorsion

pair is complete. There is a sufficient condition for perfectness of com-

plete cotorsion pairs due to Enochs. For a proof, we refer to [46] and [93]:

Theorem 1.11. Let R be a ring, M a module, and C
� � A,B � a cotor-

sion pair. Assume that A is closed under direct limits.

(1) If M has a B-preenvelope then M has a B-envelope.

(2) If M has an A-precover then M has an A-cover.

In particular, C is perfect iff C is complete iff A is covering iff B is

enveloping.

1.12. Let R be a ring, and C a subclass of mod-R closed under extensions

and direct summands such that R � C. Let D � lim� � C. Then C �

D � mod-R. Moreover, by [9], the Tor-torsion pair cogenerated by C has

the form � D, E � for some E � R-Mod.

By 1.5.3, there are two associated cotorsion pairs: � A,B � – the cotorsion

pair cogenerated by C, and � D,G � – the cotorsion pair generated by the

class of all dual modules in B. Clearly, � A,B � 	 � D,G � .

Assume that R is an artin algebra. By [66], if C is resolving and con-

travariantly finite, then � D,G � is also generated by H � B � mod-R.

So � C,H � is a complete hereditary cotorsion pair in mod-R. Moreover,

G � lim� � H.

Let C � � A,B � be a complete cotorsion pair. It is an open problem

whether A is a covering class iff A is closed under direct limits (The ’if’

part is true by 1.11). 1.10 shows that B may be enveloping even if A is

not closed under direct limits.

1.13. Invariants of modules. Assume C
� � A,B � is a perfect
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cotorsion pair. Then often the modules in the kernel, K, of C can be

classified up to isomorphism by cardinal invariants. There are two ways

to extend this classification:

a) Any module A � A determines – by an iteration of B-envelopes (of

A, of the cokernel of the B-envelope of A, etc.) – a long exact sequence

all of whose members (except for A) belong to K. This sequence is

called the minimal K-coresolution of A. The sequence of the cardinal

invariants of the modules from K occuring in the coresolution provides

for an invariant of A. In this way, the structure theory of the modules

in K is extended to a structure theory of the modules in A.

b) Dually, any module B � B determines – by an iteration of A-covers

– a long exact sequence all of whose members (except for B) belong to

K, the minimal K-resolution of B. This yields a sequence of cardinal

invariants for any module B � B.

For specific examples to a) and b), we consider the case when R is a

commutative noetherian ring:

If C
� � Mod-R, I0 � , then K � I0, and by the classical theory of Matlis,

each M � K is determined up to isomorphism by the multiplicities of

indecomposable injectives E � R � p � (p a prime ideal of R) occuring in an

indecomposable decomposition of M . The cardinal invariants of arbitary

modules (in A � Mod-R) constructed in a) are called the Bass numbers.

A formula for their computation goes back to Bass: the multiplicity of

E � R � p � in the i-th term of the minimal injective coresolution of a module

N is µi � p,N � � dim k
�
p � Exti

Rp
� k � p � , Np � where k � p � � Rp � Rad � Rp � , and

Rp and Np is the localization of R and N at p, respectively, cf. [70].

If C � � F0, EC � , then K consists of the flat pure-injective modules:

these are described by the ranks of the completions, Tp, of free mod-

ules over localizations Rp (p a prime ideal of R) occuring in their

decomposition, [46]. The construction b) yields a sequence of invari-

ants for any cotorsion module N . These invariants are called the dual

Bass numbers. A formula for their computation is due to Xu [93]:

the rank of Tp in the i-th term of the minimal flat resolution of N

is πi � p,N � � dim k
�
p � Tor

Rp

i � k � p � ,HomR � Rp, N � � .

In view of 1.5, the following result says that most cotorsion pairs are

complete, hence provide for approximations of modules.

For a module M and a class of modules C, a C-filtration of M is an
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increasing sequence of submodules of M , � Mα
� α � σ � , such that

M0
� 0, M � �

α � σ Mα, Mα
� �

β � α Mβ for all limit ordinals α � σ,

and Mα � 1 � Mα is isomorphic to an element of C for each α � σ. A

module possessing a C-filtration is called C-filtered.

Theorem 1.14. Let R be a ring and C
� � A,B � a cotorsion pair co-

generated by a set of modules S. Then C is complete, and A is the class

of all direct summands of all S 	 
 R � -filtered modules.

Proof. [43] The core of the proof is a construction (by induction, using

a push-out argument inspired by [52] in the non-limit steps), for each

pair of modules, � M,N � , of a short exact sequence 0 � M � B �
A � 0 such that A is 
 N � -filtered and B 
 
 N � � 1 . By assumption, C is

cogenerated by a single module, say N . For any module M , the short

exact sequence above yields a special B-preenvelope of M , proving that

C is complete.

For a module X 
 A, consider a short exact sequence 0 � M � F �
X � 0 with F free. Let 0 � M � B � A � 0 be as above. The

push-out of the maps M � F and M � B yields a split exact sequence

0 � B � G � X � 0, and G is an extension of F by A, hence G is


 N,R � -filtered. The converse is proved by induction on the length of

the filtration.

1.14 was applied by Enochs to prove the flat cover conjecture: each

module has a flat cover and a cotorsion envelope, [27]. This was

generalized in [44] as follows:

Theorem 1.15. Let R be a ring and C be a cotorsion pair generated by

a class of pure-injective modules. Then C is perfect.

Proof. By 1.5, C is cogenerated by a set of modules. By 1.14, C is a

complete cotorsion pair. By a classical result of Auslander, the functor

Ext1R � � ,M � takes direct limits to the inverse ones for each pure-injective

module M . In particular, � 1 
 M � is closed under direct limits. So 1.11

applies, proving that C is perfect.

The flat cover conjecture is the particular case of 1.15 for C generated by

PI. The importance of 1.15 for cotilting theory comes from the recent
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result of Šťov́ıček proving that any cotilting module is pure-injective (see

Section 3).

For Dedekind domains, we can extend 1.15 further:

Theorem 1.16. Let R be a Dedekind domain and C be a cotorsion pair

generated by a class of cotorsion modules. Then C is perfect.

Proof. Let C be a cotorsion module and f : F � C be its flat cover.

Then F is flat and cotorsion, hence pure-injective. By [44], � C � � F . So

C is generated by a class of pure-injective modules, and 1.15 applies.

However, the possibility of extending 1.15 to larger classes of modules

depends on the extension of set theory (ZFC) that we work in. Here, one

uses the well-developed theory studying dependence of vanishing of Ext

on set-theoretic assumptions. This theory originated in Shelah’s solution

of the Whitehead problem, but has many more applications [40].

In the positive direction, Gödel’s axiom of constructibility (V = L) is

useful, or rather its combinatorial consequence called Jensen’s diamond

principle ♦:

♦ Let κ be a regular uncountable cardinal, E be a stationary subset

in κ, and X be a set of cardinality κ such that X � �
α � κ Xα where

� Xα
� α � κ � is an increasing chain of subsets of X with card � Xα � � κ

for all α � κ, and Xβ
� �

γ � β Xγ for each limit ordinal β � κ.

Then there exist sets Yα � α 	 E � such that Yα 
 Xα for all α 	 E, and

moreover, for each Z 
 X, the set � α 	 E � Z � Xα
� Yα 
 is stationary

in κ.

(A subset E 
 κ is stationary in κ if E has a non-empty intersection

with each closed and unbounded subset of κ.)

The following recent result from [79] extends [44]. It is proved by

induction, applying ♦ in regular cardinals, and Shelah’s Singular

Compactness Theorem in the singular ones:

Theorem 1.17. Assume ♦. Let R be a ring and C � � A,B � a cotorsion

pair generated by a set of modules. Assume that A is closed under pure

submodules. Then C is cogenerated by a set, and hence C is complete.
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Theorem 1.17 is not provable in ZFC (+ GCH), see Theorems 1.19 and

1.20 below. However, it becomes a theorem in ZFC once we strengthen

the assumptions on A. This result, conjectured by Bazzoni in [17], has

recently been proved in the following general form by Šťov́ıček [83] (the

alternative (i)) and Šaroch [79] (the alternative (ii)):

Theorem 1.18. Let R be a ring and C
� � A,B � be a cotorsion pair

such that A is closed under arbitrary direct products. Moreover, assume

that either (i) A is closed under pure submodules, or (ii) C is hereditary

and B � In for some n � ω. Then C is perfect.

In the negative direction, Shelah’s uniformization principle UP � is use-

ful. Like Gödel’s axiom of constructibility, UP � is relatively consistent

with ZFC + GCH, but UP � and ♦ are mutually inconsistent.

UP � Let κ be a singular cardinal of cofinality ω. There is a stationary

subset E in κ � consisting of ordinals of cofinality ω, and a ladder system

µ � � µα
� α � E � with the following uniformization property:

For each cardinal λ � κ and each system of maps hα : µα � λ (α � E)

there is a map f : κ � � λ such that for each α � E, f coincides with hα

in all but finitely many ordinals of the ladder µα.

(A ladder system µ � � µα
� α � E � consists of ladders, the ladder µα

being a strictly increasing countably infinite sequence of ordinals � α

whose supremum is α.)

UP � can be used, for any non-right perfect ring R, to construct particu-

lar free modules G � F such that M � F 	 G is a non-projective module

satisfying Ext1R � M,N � � 0 for each module N with card � N � � λ. The

point is that in the particular setting, a homomorphism ϕ : G � N

determines a system of maps hα (α � E) as in the premise of UP � .

The uniformization map f can then be used to define a homomorphism

ψ : F � N extending ϕ, thus giving Ext1R � M,N � � 0.

The following is proved in [42] (cf. with 1.16):

Theorem 1.19. Assume UP � . Let R be a Dedekind domain with a

countable spectrum, and C a cotorsion pair generated by a set containing

at least one non-cotorsion module. Then C is not cogenerated by a set

of modules.
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In the particular case of R � Z, there is a stronger result by Eklof and

Shelah [41], using a much stronger version of UP � which we do not

state here, but just denote by SUP (SUP is also relatively consistent

with ZFC + GCH, cf. [41]):

Theorem 1.20. Assume SUP. Denote by C
� � A,B � the cotorsion pair

generated by Z. Then Q does not have an A-precover; in particular, C

is not complete.

Notice that the class A in 1.20 is the well-known class of all Whitehead

groups.

We finish this section by two open problems. Let R be a ring and C a

cotorsion pair.

1. Is C complete provided that C is generated by a class of cotorsion

modules? This is true in the Dedekind domain case by 1.16. Notice that

for right perfect rings, the question asks whether all cotorsion pairs are

complete.

2. Is the completeness of C independent of ZFC in case C is generated by

a set containing at least one non-cotorsion module? This is true when

R � Z and C is generated by Z, cf. 1.17 and 1.20. The term “set” is

important here, since by 1.5 and 1.14, in ZFC there are many complete

cotorsion pairs C � � A,B � with B containing non-cotorsion modules.

2 Tilting cotorsion pairs

In this section, we investigate relations between tilting and approxima-

tion theory of modules. For this purpose, it is convenient to work with

a rather general definition of a tilting module. Our definition allows

for infinitely generated modules, and also modules of finite projective

dimension � 1.

2.1. Tilting modules. Let R be a ring. A module T is tilting

provided that

(1) proj.dim � T � � � ;

(2) Exti
R � T, T

�
κ � � � 0 for any cardinal κ and any i 	 1;
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(3) There are k � ω, Ti � Add � T � (i � k), and an exact sequence

0 � R � T0 � � � � � Tk � 0.

Here, Add � T � denotes the class of all direct summands of arbi-

trary direct sums of copies of the module T .

Let n � ω. Tilting modules of projective dimension � n are called n-

tilting. A class of modules C is n-tilting if there is an n-tilting module T

such that C � � T 	 
 .

A cotorsion pair C
� � A,B � is n-tilting provided that B is an n-tilting

class.

Notice that the notions above do not change when replacing the tilting

module T by the tilting module T
�
κ � (κ 
 1). It is convenient to define an

equivalence of tilting modules as follows: T is equivalent to T � provided

that the induced tilting classes coincide: � T 	 
 � � T � 	 
 (This is also

equivalent to Add � T � � Add � T � � .)

Clearly, 0-tilting modules coincide with the projective generators.

Finite dimensional tilting modules over artin algebras have been studied

in great detail - we refer to [4], [72] and [90] in this volume for much

more on this classical case. Now, we give several examples of infinitely

generated 1-tilting modules:

2.2. Fuchs tilting modules. [50], [51] Let R be a commutative

domain, and S a multiplicative subset of R. Let δS
� F � G where F is

the free module with the basis given by all sequences � s0, . . . , sn � where

n � 0, and si � S for all i � n, and the empty sequence w � � � . The

submodule G is generated by the elements of the form � s0, . . . , sn � sn �
� s0, . . . , sn � 1 � where 0 � n and si � S for all 1 � i � n, and of the form

� s � s � w where s � S.

The module δ � δR � � 0 � was introduced by Fuchs. Facchini [47] proved

that δ is a 1-tilting module. The general case of δS comes from [51]:

the module δS is a 1-tilting module, called the Fuchs tilting module.

The corresponding 1-tilting class is � δS 	 
 � � M � Mod-R � Ms �
M for all s � S 	 , the class of all S-divisible modules. If R is a Prüfer

domain or a Matlis domain, then the 1-tilting cotorsion pair cogenerated

by δ is � P1,DI � .
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Example 2.3. [5] Let R be a commutative 1-Gorenstein ring. Let P0

and P1 denote the set of all prime ideals of height 0 and 1, respectively.

By a classical result of Bass, the minimal injective coresolution of R has

the form

0 � R � �
q � P0

E � R � q � π� �
p � P1

E � R � p � � 0.

Consider a subset P � P1. Put RP
� π

� 1 � 	
p � P E � R � p � � . Then TP

�
RP


 	
p � P E � R � p � is a 1-tilting module, the corresponding 1-tilting

class being � TP � 
 � � M � Ext1R � E � R � p � ,M � � 0 for all p � P � . In par-

ticular, if R is a Dedekind domain then � TP � 
 � � M � Ext1R � R � p,M � �
0 for all p � P � � � M � pM � M for all p � P � .
In his classical work [74], Ringel discovered analogies between modules

over Dedekind domains and tame hereditary algebras. The analogies

extend to the setting of infinite dimensional tilting modules:

2.4. Ringel tilting modules. [74], [75] Let R be a connected tame

hereditary algebra over a field k. Let G be the generic module. Then

S � End � G � is a skew-field and dim SG � n � ω. Denote by T the

set of all tubes. If α � T is a homogenous tube, we denote by Rα the

corresponding Prüfer module. If α � T is not homogenous, denote by

Rα the direct sum of all Prüfer modules corresponding to the rays in α.

Then there is an exact sequence

0 � R � G
�
n � π� �

α � T
R

�
λα �

α � 0

where λα � 0 for all α � T .

Let P � T . Put RP
� π

� 1 � 	
α � P R

�
λα �

α � . Then TP
� RP


 	
α � P Rα is

a 1-tilting module, called the Ringel tilting module. The corresponding

1-tilting class is the class of all modules M such that Ext1R � N,M � � 0

for all (simple) regular modules N � P . In particular, if P � P � � T ,

then the 1-tilting modules TP and TP � are not equivalent.

2.5. Lukas tilting modules. [64], [69] Let R be a connected wild

hereditary algebra over a field k. Denote by τ the Auslander-Reiten

translation, and by R the class of all Ringel divisible modules, that is, of

all modules D such that Ext1R � M,D � � 0 for each regular module M .
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Let M be any regular module. Then for each finite dimensional module

N , Lukas constructed an exact sequence 0 � N � AM � BM � 0

where AM � M � and BM is a finite direct sum of copies of τnM for

some n � ω. Letting CM
� � τmM � m � ω � , we can iterate this

construction (for N � R, N � AM , etc.) and get an exact sequence

0 � R � CM � DM � 0 where DM has a countable CM -filtration.

Then TM
� CM

�
DM is a 1-tilting module, called the Lukas tilting

module. The corresponding 1-tilting class is R (so in contrast to 2.4,

TM and TM 	 are equivalent for all regular modules M and M 
 ).

Next, we consider a simple example of an infinitely generated n-tilting

module. In §5, we will see that this example is related to the validity of

the first finitistic dimension conjecture for Iwanaga-Gorenstein rings.

A ring R is called Iwanaga-Gorenstein provided that R is left and right

noetherian and the left and right injective dimensions of the regular

module are finite, [46]. In this case, inj.dim � RR � � inj.dim � RR � � n for

some n � ω, and R is called n-Gorenstein. Notice that 0-Gorenstein

rings coincide with the quasi-Frobenius rings.

Example 2.6. Let R be an n-Gorenstein ring. Let

0 � R � E0 � 
 
 
 � En � 0

be the minimal injective coresolution of R. Then T � �
i � n Ei is an

n-tilting module. The only non-trivial fact needed for this is that P �
Pn

� In
� I ( � Fn

� F) for any n-Gorenstein ring, cf. [46, §9].

For any tilting cotorsion pair C
� � A,B � , there is a close relation among

the classes A, B, and the kernel of C:

Lemma 2.7. Let R be a ring and C
� � A,B � a tilting cotorsion pair.

Let T be an n-tilting module with � T � � � B. Then

(1) C is hereditary and complete. Moreover, C � � Pn,P �n � , and the

kernel of C equals Add � T � .

(2) A coincides with the class of all modules M such that there is an

exact sequence
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0 � M � T0 � � � � � Tn � 0

where Ti � Add(T) for all i � n.

(3) Let 0 � Fn � � � � � F0 � T � 0 be a free resolution of T

and let S � � Si
� i � n � be the corresponding set of syzygies of

T . Then A coincides with the class of all direct summands of all

S-filtered modules.

(4) B coincides with the class of all modules N such that there is a

long exact sequence

� � � � Ti � 1 � Ti � � � � � T0 � N � 0

where Ti � Add(T) for all i 	 ω. In particular, B is closed under

arbitrary direct sums.

Proof. 1. The first claim follows from B � � T � 
 by 1.14, the second is

clear from T � Pn. The last claim is proved in [2].

2. Since A is closed under kernels of monomorphisms, any M possessing

such exact sequence is in A. Conversely, we obtain the desired sequence

by an iteration of special B-preenvelopes (of M etc.). The fact that we

can stop at n follows from proj.dim � T � � n.

3. This follows by the characterization of A given in 1.14, since C is

cogenerated by 

i � n Si.

4. If N � B then the long exact sequence can be obtained by an iteration

of special A-precovers (of N etc.). The converse uses proj.dim � T � � n

once again.

We arrive at the characterization of tilting cotorsion pairs in terms

of approximations. We start with the case of n � 1 treated in [7] and [84]:

Theorem 2.8. Let R be a ring.

(1) A class of modules C is 1-tilting iff C is a special preenveloping

torsion class.
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(2) Let C
� � A,B � be a cotorsion pair. Then C is 1-tilting iff A � P1

and B is closed under arbitrary direct sums.

Proof. 1. Since � T � � is closed under homomorphic images and exten-

sions for any module T with proj.dim � T � � 1, the only-if part is a

consequence of parts 1. and 4. of 2.7 (for n � 1). For the if-part, we

consider a special B-preenvelope of R; this yields an exact sequence

0 � R � B � A � 0 with B 	 B and A 	 A. Then T � A



B is a

1-tilting module with � T � � � C, cf. [7].

2. The only-if part follows directly from parts 1. and 4. of 2.7. For the

if-part, we first note that C is complete by [19]. Further, B is closed

under homomorphic images and extensions since B � A � 1 and A � P1.

So B is a torsion class, and part 1. applies.

We stress that the special approximations induced by 1-tilting modules

may not have minimal versions in general (compare this with 3.10.1

below). For example, if R is a Prüfer domain and δ is the Fuchs tilting

module from 2.2 then special � δ � � -preenvelopes coincide with special

divisible preenvelopes (and also with special FP-injective preenvelopes).

However, if proj.dim � Q � � 2 then the regular module R does not have

a divisible envelope (and so it does not have an FP-injective envelope),

see [87].

The characterization in the general case is due to Angeleri Hügel and

Coelho [2], with a recent improvement from [84]:

Theorem 2.9. Let R be a ring and C � � A,B � be a cotorsion pair. Let

n � ω. Then C is n-tilting iff C is hereditary (and complete), A � Pn,

and B is closed under arbitrary direct sums.

Proof. The only-if part follows by 2.7. For the if-part, we first note that

C is complete by [84]. Consider the iteration of special B-preenvelopes

of R, of Coker � f � (where f is a special B-preenvelope of R), etc. By

assumption, this yields a finite � A 
 B � -coresolution of R, 0 � R �
T0 � � � � � Tn � 0. Then T � �

i � n Ti is n-tilting with � T � � � B, cf.

[2].

2.10. (cf. [81]) Many authors define a partial tilting module P as the

module satisfying the first two conditions of 2.1 (for P ). However, in
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general, these two conditions are not sufficient for existence of a com-

plement of P (= a module P � such that T � P
�

P � is tilting and

� P � � � � T � � ). For a counter-example, consider R � Z and P � Q;

then � P � � is the class of all cotorsion groups which is not closed under

arbitrary direct sums.

The extra condition (E): “ � P � � is closed under arbitrary direct sums”

is clearly necessary for the existence of a complement of P . We define

a partial n-tilting module P as a module of projective dimension � n

satisfying (E), and Exti
R � P, P � � 0 for all 0 	 i 	 ω. Then a complement

of P always exists in Mod-R by 2.9: � P � � is an n-tilting class with an

n-tilting module T such that � T � � � � P � � , so T is a complement of P ,

cf. [3]. Condition (E) is of course redundant in case P 
 mod-R.

Let P be a finitely presented partial 1-tilting module. If R is an artin

algebra then P has a finitely presented complement by a classical result

of Bongartz, cf. [90]. However, a finitely presented complement of P

may not exists even if R is a hereditary noetherian domain, cf. [35].

Rickard and Schofield constructed artin algebras and finitely presented

partial 2-tilting modules with no finitely presented complements, cf. [90].

3 Cotilting cotorsion pairs

In this section, we consider the dual case of cotilting modules and cotilt-

ing cotorsion pairs.

Similarly as tilting modules, the cotilting ones have first appeared in the

representation theory of finite dimensional k-algebras. There, the finite

dimensional cotilting modules coincide with the k-duals of the finite

dimensional tilting modules, and the theory is obtained by applying the

k-duality.

1-cotilting modules over general rings are closely related to dualities (see

[33] in this volume for more details). In §4, we will show that there is

an explicit homological duality between arbitrary tilting modules and

classes on one hand, and cotilting modules and classes of cofinite type

on the other hand. The adjective “of cofinite type” is essential here:

Bazzoni [18] proved that there exist 1-cotilting modules not equivalent

to duals of any 1-tilting modules, cf. 4.16.



Infinite dimensional tilting modules and cotorsion pairs 299

The problem of the cotilting setting is that the dual of the key

approximation construction 1.14 is not available in ZFC: by 1.20, there

is an extension of ZGC + GCH with a cotorsion pair C generated by

a set such that C is not complete. This has recently been overcome

by Šťov́ıček who proved (in ZFC) that all cotilting modules are

pure-injective (that is, they are direct summands in dual modules,

see 3.3 below), so 1.15 applies and gives the desired covers and envelopes.

3.1. Cotilting modules. Let R be a ring. A module C is cotilting

provided that

(1) inj.dim � C � � � ;

(2) Exti
R � Cκ, C � � 0 for any cardinal κ and any i � 1;

(3) There are k � ω, Ci � Prod � C � (i � k), and an exact sequence

0 � Ck � 	 	 	 � C0 � W � 0,

where W is an injective cogenerator for Mod-R, and Prod � C � de-

notes the class of all direct summands of arbitrary direct products

of copies of the module C.

Let n � ω. Cotilting modules of injective dimension � n are called

n-cotilting. A class of modules C is n-cotilting if there is an n-cotilting

module C such that C � 
 � C � . A cotorsion pair C � � A,B � is n-cotilting

provided that A is an n-cotilting class.

The equivalence of cotilting modules is defined as follows: C is equivalent

to C 
 provided that the induced cotilting classes coincide: 
 � C � � 
 � C 
 �
(that is, Prod � C � � Prod � C 
 � .)

0-cotilting modules coincide with the injective cogenerators. In 4.12

below, we will see that any resolving subclass of P
� ω
n yields an n-cotilting

class (of left R-modules), so there is a big supply of n-cotilting modules

for n � 1 in general.

We will need the following version of a characterization of cotilting

modules by Bazzoni [16]. It generalizes the case of n � 1 from [32].

Lemma 3.2. Let R be a ring, C a module, and 0 � n � ω. Then C

is n-cotilting iff 
 � C � coincides with the class, Cogn � C � , of all modules



300 J. Trlifaj

M possesing an exact sequence 0 � M � C0 � � � � � Cn where κ is a

cardinal and Ci
� Cκ for all i � n.

A class C of modules is definable provided that C is closed under arbitrary

direct products, direct limits, and pure submodules, [37]. (Definability

implies axiomatizability: definable classes are axiomatized by equality to

1 of certain of the Baur-Garavaglia-Monk invariants. Definable classes

of modules correspond bijectively to closed sets of indecomposable pure-

injective modules, cf. [37] and [71].)

The following result was first proved in the particular case of R � Z

in [54], and for R a Dedekind domain in [44], as a consequence of the

classification of all cotilting modules in these cases. Bazzoni made a

crucial step towards a general proof by proving the result for any ring

R and n � 1 in [15]. An extension to arbitrary n, but for R countable,

appeared in [20]. The general case was finally proved by Šťov́ıček [83]

(by induction on n, applying 1.18(i) and [17] in the inductive step):

Theorem 3.3. [83], [17] Let R be a ring, n � ω, and C be an n-cotilting

module. Then C is pure-injective, and � � C � is a definable class.

Being definable, n-cotilting classes are completely characterized by the

indecomposable pure-injective modules they contain, cf. [71].

3.4. We now introduce (almost) rigid systems in order to characterize

cotilting modules and the corresponding cotilting classes:

Let n � ω. Consider a set S � � Mα
� α � κ � of modules such

that each Mα (α � κ) is pure-injective with inj.dim 	 Mα 
 � n, and

Exti
R 	 Mα,Mβ 
 � 0 for all α, β � κ and 1 � i � n (So in particular,

each Mα is a splitter.) Then S is an n-rigid system if all the elements of

S are indecomposable. S is almost n-rigid if M0 is superdecomposable,

and all Mα (0 � α � κ) are indecomposable.

Theorem 3.5. Let R be a ring, n � ω, and C an n-cotilting module.

Then there is an almost n-rigid system S such that C � � � M 
 S M is an

n-cotilting module equivalent to C.

Proof. By a result of Fisher [63, 8.28], the pure-injective module C is

of the form C � M0
�

E where M0 is zero or superdecomposable, and

E is zero or a pure-injective hull of a direct sum of indecomposable

pure-injective modules, E � PE 	 �
0 � α � κ Mα 
 . Then E is a direct

summand in P � � 0 � α � κ Mα, and P is a pure submodule, hence a
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direct summand, in Eκ. Put C � � M0
�

P . Then � � C � � � � C � � ,
and also Cogn � C � � Cogn � C � � , so 3.2 gives that C � is an n-cotilting

module equivalent to C. Then S � � Mα
� α 	 κ � is an almost n-rigid

system.

3.6. Assume there are no superdecomposable pure-injective modules

(i.e., in the terminology of Jensen and Lenzing [63, §8], R has sufficiently

many algebraically compact indecomposable modules). Then the system

S in 3.5 is n-rigid. So it only remains to determine which of the n-rigid

systems indeed yield n-cotilting modules.

This occurs when R is a Dedekind domain, or a tame hereditary algebra,

for example; in fact, in these cases the structure of indecomposable pure-

injective modules is well-known, see [37] and [63].

In the Dedekind domain case, 1-rigid systems contain no finitely gen-

erated modules. It follows from 3.5 that up to equivalence, cotilting

modules are of the form CP
� 
 p � P Jp

� �
q � Spec



R � � P

E � R � q � where

0 � P � Spec � R � , and Jp denotes the completion of the localization of

R at p, cf. 4.14 and 4.17 below.

For the case of tame hereditary algebras, we refer to [28], [29], and [81].

Notice that by 3.7 below, in the right artinian case, each 1-rigid system

yields a partial 1-cotilting module in the sense of 3.12.

In the noetherian case, there is more to say for n � 1. We can char-

acterize 1-cotilting classes in terms of 1-rigid systems (for a different

description, in terms of torsion-free classes in mod-R, see 3.11 below):

Theorem 3.7. Let R be a right noetherian ring.

If C is a 1-cotilting class then there is a 1-rigid system S such that

C � �
M � S � � M � .

Conversely, if R is right artinian and S a 1-rigid system then
�

M � S � � M � is a 1-cotilting class.

Proof. Let C be a 1-cotilting module such that C � � � C � . By a result

of Ziegler, C is elementarily equivalent to a pure-injective envelope of a

direct sum of indecomposable pure-injective modules, hence to a direct

product of indecomposable pure-injective modules, E � 
 α � κ Mα, cf.

[71]. In particular, E is a direct summand in an ultrapower of C. Since
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any ultrapower of C is isomorphic to a direct limit of products of copies

of C, 3.3 yields E � C. For right noetherian rings, Baer test lemma shows

that I1 is definable, so E � I1 because E is elementarily equivalent to

C � I1.

Since � A � � 1 is definable for each finitely presented module A, we have

C � � A � � 1 iff E � � A � � 1 . By a classical result of Auslander, Ext1R � � , I �
takes direct limits into inverse ones for any pure-injective module I.

Since R is right noetherian, it follows that C � � 1 � C � � � 1 � E � . In

particular, E is a pure-injective splitter of injective dimension � 1, so

the modules Mα form a 1-rigid system.

Conversely, by [28], � � M � is closed under arbitrary direct products for

any M � S. Let P � 	 M 
 S M . By 1.15 and 3.10, � � P � is a 1-cotilting

class.

There is a similar result for Prüfer domains

Theorem 3.8. [18] Let R be a Prüfer domain. Then each cotilting mod-

ule C has injective dimension � 1, and C is equivalent to a cotilting mod-

ule which is a direct product of indecomposable pure-injective modules.

In particular, there is a 1-rigid system S such that C � �
M 
 S � � M � .

Now, we turn to relations between cotilting modules and approxima-

tions. Except for part 3., the dual of 2.7 holds true – a proof making

use of [11] appears in [2]. In view of 3.3, one can also proceed directly,

by dualizing the proof of 2.7 with help of 1.15:

Lemma 3.9. Let R be a ring and C � � A,B � be a cotilting cotorsion

pair. Let C be an n-cotilting module with � � C � � A. Then

(1) C is hereditary and complete. Moreover, � � In, In � � C, and the

kernel of C equals Prod � C � .

(2) A coincides with the class of all modules M such that there is a

long exact sequence

0 � M � C0 � 
 
 
 � Ci � Ci � 1 � . . .

where Ci � Prod(C) for all i � ω. In particular, A is closed under

arbitrary direct products.
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(3) B coincides with the class of all modules N such that there is an

exact sequence

0 � Cn � � � � � C0 � N � 0

where Ci � Prod(C) for all i � n.

Theorem 3.10. Let R be a ring.

(1) A class of modules C is 1-cotilting iff C is a covering torsion-free

class.

(2) Let C � � A,B � be a cotorsion pair, and n � ω. Then C is n-

cotilting iff C is hereditary (and perfect), B � In, and A is closed

under arbitrary direct products.

Proof. The proof is dual to the proofs of 2.8.1 and 2.9, using 1.15,

1.18(ii), and 3.3.

So 1-cotilting classes coincide with those torsion-free classes C that are

covering. If R is right noetherian then C is completely determined by

its subclass C 	 mod-R, and the latter is characterized as a torsion-free

class in mod-R containing R. More precisely, we have

Theorem 3.11. [28] Let R be a right noetherian ring. There is a

bijective correspondence between 1-cotilting classes of modules, C, and

torsion-free classes, E, in mod-R containing R. The correspondence

is given by the mutually inverse assignments C 
� C 	 mod-R and

E 
� lim� � E.

Proof. If C is a 1-cotilting class, then clearly C 	 mod-R is a torsion-free

class in mod-R containing R.

Conversely, given E as in the claim, let C � lim� � E . By [36], C is a torsion-

free class in Mod-R. Since R � E , by 1.12, there is a Tor-torsion pair of

the form � C,D � . By 1.5.3 and 1.15, C is a covering class. By 3.10.1, C is

1-cotilting.

Now, E � lim� � E 	 mod-R. Conversely, given a 1-cotilting class C, each

M � C is a directed union of the system of its finitely presented submod-

ules, � Mi

 i � I � (because R is right noetherian). Since C is 1-cotilting,
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Mi � C for each i � I. So C � lim� � � C � mod-R � , and the assignments are

mutually inverse.

We note that the corresponding result to 3.11 does not hold for 1-tilting

classes. Namely, given a right noetherian ring R and a 1-tilting (torsion)

class T in Mod-R, the class T � mod-R is certainly a torsion class in

mod-R. Let C � lim� � � T � mod-R � . By [36], C is a torsion class in

Mod-R contained in T . However, C is not 1-tilting in general: if R

is an artin algebra and T � � P � ω
1 � � , then C is closed under arbitrary

direct products iff P
� ω
1 is contravariantly finite. The latter fails for the

IST-algebra [61], for example.

(However, if R is an artin algebra and C a 1-tilting class, there is a way

of reconstructing C from C � mod-R, see 4.3 below.)

3.12. (cf. [81]) Define a partial 1-cotilting module P as a splitter of

injective dimension 	 1 satisfying the extra condition of � 
 P � being

closed under arbitrary direct products. Then P has a complement in

the sense that there is a module P � such that C � P



P � is 1-cotilting

and � 
 P � � � 
 C � . This follows from 3.10 and [86, §6]. (Note that P is

pure-injective by 3.3.) By [28], the extra condition is redundant when

P is pure-injective and R is right artinian.

We finish this section by an open problem:

Let R be a ring. Does 3.5 hold in the stronger form, with n-rigid systems

replacing the almost n-rigid ones?

The answer is affirmative for R von Neumann regular by 3.3 (since

then pure-injective modules coincide with the injective ones), for R right

noetherian and right hereditary by 3.7, and for R a Prüfer domain by

3.8.

4 Finite type, duality, and some examples

The notions of a tilting and cotilting module are formally dual. The

duality can be made explicit using the notions of a module of finite and

cofinite type.
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4.1. Modules of finite type. Let R be a ring.

(1) Let C be a class of modules. Then C is of finite type (countable

type) provided there exist n � ω and a subset S � P
� ω
n (S �

P
� ω
n ) such that C � S � .

(2) Let M be a module. Then M is of finite type (countable type,

definable) provided the class � M � � is of finite type (countable

type, definable).

The key fact is that tilting modules (classes) are exactly the modules

(classes) of finite type. One implication is easy to prove:

Lemma 4.2. [5] Let R be a ring and C be a class of modules of finite

type. Then C is tilting (and definable).

Proof. By assumption, there are n � ω and a set S � P
� ω
n such that

C � S � .

By a classical result of Brown, the covariant functor Extn
R � M, 	 
 com-

mutes with direct limits for each n � 0 and each M � mod-R. Also, it is

easy to see that � N � � 1 is closed under pure submodules for any finitely

presented module N . It follows that C is definable.

Let C
� � A, C 
 be the cotorsion pair generated by C. By 1.14, A � Pn,

so 2.9 gives that C is a tilting cotorsion pair. That is, C is a tilting

class.

4.2 says that there is a rich supply of tilting classes in general: any

subset S � P
� ω
n (for some n � ω) determines one. A more precise

general description appears in 4.12 below; for artin algebras, there is

also the following analog of 3.11:

Theorem 4.3. [64], [21] Let R be an artin algebra. There is a bijective

correspondence between 1-tilting classes, C, and torsion classes, T , in

mod-R containing all finitely generated injective modules. The corre-

spondence is given by the mutually inverse assignments C 
� C � mod-R,

and T 
� KerHomR � 	 ,F 
 where � T ,F 
 is a torsion pair in mod-R.

The proof of the converse of 4.2 is much more involved. First, we note

the following characterization of finite type:
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Lemma 4.4. [5] Let R be a ring and T be a tilting module. Let B �

� T � � , and � A,B � be the corresponding tilting cotorsion pair. Then T is

of finite type iff T is definable and T � lim� � A
� ω.

For n 	 1, the last condition of 4.4 holds by the following lemma:

Lemma 4.5. Let R be a ring and M be a module of projective dimension


 1. Let � A,B � be the cotorsion pair cogenerated by M . Then M �
lim� � A

� ω.

Proof. Since M � P1, there is an exact sequence 0 � F � G � M � 0

where F and G are free modules. Let � xα
� α 
 κ � and � yβ

� β 
 λ �
be a free basis of F and G, respectively. W.l.o.g., κ is infinite. For

each finite subset S � κ let S � be the least (finite) subset of λ such that

FS
	 �

α � S xαR � GS
	 �

β � S � yβR. Then F is a directed union of its

summands of the form FS where S runs over all finite subsets of κ. Let

MS
	 GS � FS. Then MS � P

� ω
1 , and M 	 P

�
H where P is free and

H 	 lim� � S
MS .

It suffices to prove that MS � A
� ω for each finite subset S � κ: Take

an arbitrary N � B 	 � M � � . Then any homomorphism from F to N

extends to G. Let ϕ be a homomorphism from FS to N . Since FS is a

direct summand in F , ϕ extends to F , hence to G, and GS. It follows

that N � � MS � � , so MS � A
� ω, and H � lim� � A

� ω.

In general, 4.5 fails for modules of projective dimension n � 1. By [80],

for each n � 1, there is an artin algebra R such that P 	 Pn, but

P
� ω 	 P

� ω
1 . So lim� � P

� ω
1

	 P1, and 4.5 fails for the cotorsion pair

� Pn, � Pn � � � , cf. 1.5.1.

Next step for the converse of 4.2 was done in [19], where it was proved

that all 1-tilting modules are of countable type. Using this, Bazzoni and

Herbera proved in [21] that all 1-tilting modules are definable, so the

converse of 4.2 holds for n 	 1 by 4.4 and 4.5.

For n � 1, Šťov́ıček and Trlifaj proved in [84] that all n-tilting modules

are of countable type. Their proof – generalizing the case of n 	 1

from [19] – makes essential use of the set-theoretic methods developed

by Eklof, Fuchs and Shelah for the structure theory of so called Baer

modules, cf. [39], [40].

Building on [21] and [84], Bazzoni and Šťov́ıček finally proved the
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converse of 4.2 in full generality:

Theorem 4.6. [25] Let R be a ring, n � ω, and T be an n-tilting

module. Then T is of finite type.

4.7. Let R be a ring, n � ω, T be an n-tilting module, and � A,B � be

the corresponding n-tilting cotorsion pair. Then T is A
� ω-filtered by

[84].

Though T � lim� � A
� ω by 4.4, T need not be A

� ω-filtered (for example, if

R is a ring possesing a countably generated projective module P which

is not a direct sum of finitely generated modules, then T � P
	

R is

0-tilting, but T is not a direct sum of modules in P
� ω
0 ). However, T

is always equivalent to a A
� ω-filtered n-tilting module T 
 (where T 
 �

�
i � n Ti can be obtained by the following iteration of special � A � ω � � -

preenvelopes with A
� ω-filtered cokernels: µ0 : R � T0, µ1 : R 
 T0 � T1

etc.).

The counterpart of a tilting (right R-) module (of finite type) is a

cotilting left R-module of cofinite type:

4.8. Modules of cofinite type. Let R be a ring. Let C � R-Mod.

Then C is of cofinite type provided that there exist n � ω and a subset

S � P
� ω
n such that C � Sᵀ, where Sᵀ � � M � R-Mod � TorR

i � S,M � �
0 for all S � S and all 0 � i � n � .
Let C be a left R-module. Then C is of cofinite type provided that the

class � � C � is of cofinite type.

Applying 3.10, we can dualize 4.2:

Lemma 4.9. Let R be a ring and C be a class of left R-modules of

cofinite type. Then C is cotilting (and definable).

4.5 yields a characterization of 1-cotilting classes of cofinite type:

Lemma 4.10. Let R be a ring and C be a class of left R-modules. Then

C is 1-cotilting of cofinite type iff there is a module M � P1 such that

C � � M � ᵀ.

Proof. For the only-if part, consider S � P
� ω
n such that Sᵀ � C. Put

M � �
S � A S where A is a representative set of elements of S. Then
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C � � M � ᵀ � � � M � � , so M � � I1 (because C is 1-cotilting). It follows

that M � F1. So S � F1 � mod-R � P
� ω
1 for each S � A, and M � P1.

For the if part, let � A,B 	 be the cotorsion pair cogenerated by M . Since

A 
 P1, it suffices to show that � M � ᵀ � � A � ω 	 ᵀ. By 4.5, � A � ω 	 ᵀ 

� M � ᵀ. Conversely, let N � � M � ᵀ. Then N � � B, so N � Aᵀ


 � A � ω 	 ᵀ.

The bijective correspondence between tilting classes, and cotilting

classes of cofinite type, is mediated by resolving subclasses of mod-R.

It is analogous to the classical characterization of cotilting classes in

mod-R over artin algebras due to Auslander and Reiten [12].

Definition 4.11. Let R be a ring and S 
 mod-R. Then S is resolv-

ing provided that P
� ω
0 
 S, S is closed under direct summands and

extensions, and S is closed under kernels of epimorphisms.

Notice that a subclass S 
 P
� ω
1 is resolving iff S is closed under

extensions and direct summands, and R � S.

Theorem 4.12. [5], [25] Let R be a ring and n � ω. There is a

bijective correspondence among

� n-tilting classes in Mod-R,

� resolving subclasses of P
� ω
n ,

� n-cotilting classes of cofinite type in R-Mod.

Proof. Given an n-tilting class T 
 Mod-R, we put S � � T � mod-R;

conversely, given a resolving subclass S 
 P
� ω
n , we let T � S � . These

assignments are mutually inverse. Similarly, given an n-cotilting class of

cofinite type C 
 R-Mod, we let S � ᵀC � mod-R; conversely, C � Sᵀ.

For more details, we refer to [5].

Moreover, if T is an n-tilting module then T � is an n-cotilting left R-

module of cofinite type; in the correspondence of 4.12, the n-tilting class

� T � � corresponds to the n-cotilting class of cofinite type � � T � � � � T � ᵀ,

cf. [5].

Lemma 4.13. [5] Let R be a left noetherian ring and C be a 1-cotilting

left R-module. Then � � C � � � C � � ᵀ.
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Proof. By 3.3, C is pure-injective, so C is a direct summand in C � � .

In particular, � C � � ᵀ � � � C � � � � � � C � . Conversely, take M � R-mod.

If Ext1R � M,C � � 0, then the Ext-Tor relations yield TorR
1 � C � ,M � � 0.

Since R is left noetherian, if N � � � C � then N is a directed union,

N � 	
i 
 I Ni, of submodules of N such that Ni � � � C � � R-mod for all

i � I. So Ni � � C � � ᵀ. Since Tor commutes with direct limits, we have

N � � C � � ᵀ. This proves that � � C � � � C � � ᵀ.

4.10 and 4.13 yield a partial converse of 4.9:

Theorem 4.14. Let R be a left noetherian ring. Assume that F1
� P1

(this holds when R is (i) right perfect or (ii) right hereditary or (iii)

1-Gorenstein, for example). Then every 1-cotilting left R-module is of

cofinite type.

Proof. Let C be a 1-cotilting left R-module. Then C � � F1
� P1. By

4.13, � � C � � � C � � ᵀ. The latter class is of cofinite type by 4.10.

4.14 applies to the left artinian case:

4.15. 1-tilting and 1-cotilting classes over artinian rings. Let

R be a left artinian ring. Then 1-cotilting classes of left R-modules

are of cofinite type, hence coincide with the classes of the form � M �
R-Mod � TorR

1 � S,M � � 0 for all S � S � for some S � P

 ω
1 . Moreover,

by 4.12, these classes correspond bijectively to the classes S � closed under

extensions and direct summands, and satisfying P

 ω
0 � S � � P


 ω
1 . By

3.11, they also correspond to torsion-free classes in R-mod containing

R.

If R is an artin algebra, then 1-tilting classes correspond bijectively

to torsion classes in mod-R containing all finitely generated injective

modules by 4.3. Moreover, 1-cotilting left R-modules coincide (up to

equivalence) with duals of 1-tilting modules.

In contrast with 4.6, the converse of 4.9 does not hold in general: there

exist Prüfer domains with 1-cotilting modules that are not of cofinite

type. We are going to discuss the Prüfer and Dedekind domain cases in

more detail:

4.16. Tilting and cotilting classes over Prüfer domains. [18],

[19], [77], [78] Let R be a Prüfer domain. Then all tilting modules have
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projective dimension � 1. Moreover, for each 1-tilting class, T , there

is a set, E , of non-zero finitely generated (projective) ideals of R such

that T consists of all modules M satisfying IM � M for all I � E (or,

equivalently, Ext1R � R � I,M � � 0 for all I � E).

Moreover, tilting classes correspond bijectively to finitely generated lo-

calizing systems, I, of R in the sense of [49, §5.1]. (A multiplicatively

closed filter I of non-zero ideals of R is a finitely generated localizing

system provided that I contains a basis consisting of finitely generated

ideals; by [49, 5.1], finitely generated localizing systems correspond bi-

jectively to overrings of R.) Given such system I, the corresponding

1-tilting class TI consists of all modules M satisfying IM � M for all

I � I.

The appropriate generalization of the Fuchs tilting module δS from 2.2 to

the present setting is obtained by replacing finite sequences of elements

of S by finite sequences of finitely generated (invertible) ideals in I. The

resulting 1-tilting module, δI , generates TI . This yields a classification

of tilting modules over Prüfer domains up to equivalence – for more

details, we refer to [78].

Since the weak global dimension of a Prüfer domain is � 1, all pure-

injective modules have injective dimension � 1, in particular, all cotilting

modules have injective dimension � 1. By (the proof of) 4.12, the

cotilting classes of cofinite type coincide with the classes of the form

� M � TorR
1 � M,R � I � � 0 for all I � I � where I is a finitely generated

localizing system.

By [18], the structure of cotilting modules can be reduced to the val-

uation domain case: if C is a cotilting module then C is equivalent

to the direct product 	 m Cm where m runs over all maximal ideals of

R, and the localization of C at m, Cm, is a cotilting Rm-module. By

Theorem 3.8, we can further reduce to products of indecomposable pure-

injective Rm-modules (the latter are known to be isomorphic to injective

envelopes of the uniserial Rm-modules Rm � I where I 
 Rm is an ideal

of Rm, or to pure-injective envelopes of the uniserial Rm-modules of the

form J � I where 0 � I � J � Qm, [50, XIII.5]).

If R is a valuation domain then all cotilting modules are of cofinite type

iff R is strongly discrete (that is, R contains no non-zero idempotent

prime ideals). Indeed, if L is a non-zero idempotent prime ideal in R,

denote by CL the class of all modules M such that the annihilator of x
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is either 0 or L, for each 0 � x � M . Then CL is 1-cotilting, but not of

cofinite type. For more details, we refer to [18].

A complete description is available for Dedekind domains:

4.17. Tilting and cotilting modules over Dedekind domains.

[19] Let R be a Dedekind domain. By 2.3, for each set of maximal

ideals, P , there is a tilting module TP
� RP

� �
p � P E � R � p � with the

corresponding tilting class 	 TP 
 � � 	 M � pM � M for all p � P 
 . Since

localizing systems of ideals of R are determined by their prime ideals,

by 4.16, any tilting module T is equivalent to TP for a set of maximal

ideals P , cf. [19]. (In the particular case when R � Z, and R is a small

Dedekind domain, this result was proved assuming V = L in [54] and

[89], respectively).

By 4.12, cotilting classes of cofinite type are exactly the classes of

the form CP
� 	 M � TorR

1 � M,R � p � � 0 for all p � P 
 for a set,

P , of maximal ideals of R. Moreover, CP
� � 	 CP 
 where CP

�

 p � P Jp

� �
q � Spec

�
R � � P

E � R � q � is a cotilting module. (Here, Jp de-

notes the completion of the localization of R at p).

By 4.14 (or 3.6), all cotilting classes are of the form CP , and all cotilting

modules are equivalent to the modules of the form CP , for a set, P , of

maximal ideals of R, cf. [44].

The analogies between modules over Dedekind domains and tame hered-

itary algebras (cf. 2.3 and 2.4) extend also to the tilting and cotilting

setting, see [28], [29], and [81], for more details.

Finally, we present a recent application of 1-tilting modules to decom-

position theory over commutative rings:

4.18. Matlis localizations. [6] Let R be a commutative ring, Σ

the monoid of all regular elements (= non-zero-divisors) in R, and S a

submonoid of Σ. Consider the localization RS
� 1 of R at S. The ring

RS
� 1 is a Matlis localization of R provided that RS

� 1 has projective

dimension � 1 as an R-module.

Assume R is a commutative domain. Then Q � RΣ
� 1, so Q is a Matlis

localization iff R is a Matlis domain in the sense of 1.10. Lee, extending

earlier work of Kaplansky and Hamsher, characterized Matlis domains

by the property that Q� R decomposes into a direct sum of countably
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generated R-modules, [67]. Lee’s result was extended by Fuchs and Salce

to the case of an arbitrary submonoid S of Σ, [51].

Infinite dimensional tilting theory makes it possible to extend this char-

acterization further, to the setting of arbitrary commutative rings:

Theorem 4.19. [6] Let R be a commutative ring and S be a submonoid

of Σ. The following conditions are equivalent:

(1) RS
� 1 is a Matlis localization.

(2) TS
� RS

� 1 �
RS

� 1 � R is a 1-tilting module.

(3) RS
� 1 � R decomposes into a direct sum of countably presented R-

modules.

Under these conditions, the 1-tilting class generated by TS equals � M �
Mod-R � Ms � M for all s � S � , the class of all S-divisible modules

(cf. 2.2). Condition (3) can be viewed as a stronger form of countable

type going in a different direction than finite type: when computing the

1-tilting class T �S � 	 RS
� 1 � R 
 � , we can replace the single (infinitely

generated) module RS
� 1 � R by a set of countably presented modules

which moreover form a direct sum decomposition of RS
� 1 � R.

We finish this section by an open problem:

4.20. Characterize the rings R such that all cotilting left R-modules are

equivalent to duals of tilting (right R-) modules.

This property holds for all left noetherian right hereditary rings, and all

1-Gorenstein rings, by 4.14, and (trivially) for all von Neumann regular

rings, but fails for any non-strongly discrete valuation domain by 4.16.

5 Tilting modules and the finitistic dimension conjectures

Let R be a ring and C be a class of modules. The C-dimension of R is

defined as the supremum of projective dimensions of all modules in C.

If C � Mod-R then the C-dimension is called the (right) global dimension

of R; if C � P, it is called the big finitistic dimension of R. If C is

the class of all finitely generated modules in P then the C-dimension is
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called the little finitistic dimension of R. These dimensions are denoted

by gl.dim � R � , Fin.dim � R � , and fin.dim � R � , respectively.

Clearly, fin.dim � R � � Fin.dim � R � � gl.dim � R � for any ring R. More-

over, if R has finite global dimension, then gl.dim � R � is attained on

cyclic modules, so all the three dimensions coincide.

If R has infinite global dimension, then the finitistic dimensions take

the role of the global dimension to provide a fine measure of complexity

of the module category. For example, if R � Zpn for a prime integer

p and n � 1, then R has infinite global dimension, but both finitistic

dimensions are 0; they certainly reflect better the fact that R is of finite

representation type.

In [14], Bass considered the following assertions

(I) fin.dim � R � � Fin.dim � R �

(II) fin.dim � R � is finite

and proposed to investigate the validity of these assertions in dependence

on the structure of the ring R. Later, (I) and (II) became known as the

first, and the second, finitistic dimension conjecture, respectively.

For R commutative and noetherian, Bass, Raynaud and Gruson proved

that Fin.dim � R � coincides with the Krull dimension of R, so classical

examples of Nagata can be used to provide counter-examples to the

assertion (II). In case R is commutative local noetherian, Auslander

and Buchweitz proved that fin.dim � R � coincides with the depth of R, so

(I) holds iff R is a Cohen-Macaulay ring.

Assume that R is right artinian. Then the validity of (II) is still an

open problem. However, Huisgen-Zimmermann proved that (I) need

not hold even for monomial finite dimensional algebras, [57]. Smalø

constructed, for any 1 � n � ω, examples of finite dimensional algebras

with fin.dim � R � � 1 and Fin.dim � R � � n, [80].

However, there are many positive results available: (II) was proved for

all monomial algebras in [56], for algebras of representation dimension

� 3 in [62], etc.

(I) and (II) were proved for all algebras such that P
� ω is contravariantly

finite in [12] and [60]. In this section, we use tilting approximations to
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give a simple proof of the latter result. Then we prove (I) for all Iwanaga-

Gorenstein rings.

In the rest of this section, R denotes a right noetherian ring, and C
�

� A,B � the cotorsion pair cogenerated by P
� ω. By 1.14, C is complete

and hereditary; moreover, P
� ω � A � mod-R.

The basic relation between tilting approximations and the finitistic

dimension conjectures comes from [8]:

Theorem 5.1. Let R be a right noetherian ring. Then (II) holds iff C

is a tilting cotorsion pair. Moreover, if T is a tilting module such that

� T � � � B, then fin.dim � R � � proj.dim � T � .

Proof. Assume fin.dim � R � � n � ω. Then P
� ω 	 Pn, so B is of finite

type, and C is a tilting cotorsion pair by 4.2. Conversely, if C is n-tilting

then P
� ω 	 Pn, so (II) holds. Since fin.dim � R � is the least m such that

A 	 Pm, we infer that fin.dim � R � � proj.dim � T � .

A dual version of 5.1 for artin algebras appears in [30].

5.2. The tilting module T in 5.1 is unique up to equivalence, and it is

clearly of finite type. In principle, T can be constructed as in the proof

of 2.9: that is, by an iteration of special B-preenvelopes of R etc. yielding

an Add � T � -coresolution of R, 0 
 R 
 T0 
 � � � 
 Tn 
 0, and giving

T � �
i 
 n Ti. However, little is known of the (definable) class B in

general, so this construction is of limited use. (The construction works

fine for gl.dim � R � � � . Then B � I0, so the Add � T � -coresolution above

can be taken as the minimal injective coresolution of R.)

In the artinian case, we can compute fin.dim � R � using A-approximations

of all the (finitely many) simple modules. This is proved in [88], gener-

alizing [12]:

Theorem 5.3. Let R be a right artinian ring and � S0, . . . Sm � be

a representative set of all simple modules. For each i � m, take

a special A-preenvelope of Si, fi : Ai 
 Si. Then fin.dim � R � �
maxi 
 mproj.dim � Ai � .

Moreover, all the modules Ai (i � m) can be taken finitely generated iff
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P
� ω is contravariantly finite. In this case (II) holds true, since P

� ω �
A � mod-R.

Now, we relate pure-injectivity properties of the tilting module T from

5.1 to closure properties of the class A.

A module M is pure-split if all pure submodules of M are direct sum-

mands; M is � -pure-split iff all modules in Add(M) are pure-split. For

example, any � -pure-injective module is � -pure-split, [59].

A module M is product complete if Prod � M � � Add � M � . Any product

complete module is � -pure-injective, [63].

The following is proved in [8] and [9]:

Lemma 5.4. Let R be a right noetherian ring satisfying (II). Let T be

the tilting module from 5.1. Then

(1) T is � -pure-split iff A is closed under direct limits.

(2) T is product complete iff A is closed under products iff A is de-

finable.

(3) A � P iff Add � T � is closed under cokernels of monomorphisms.

5.5. The condition A � P implies (I), since any module of finite projec-

tive dimension is then a direct summand in a P
� ω-filtered module, by

1.14. In fact, when proving the first finitistic dimension conjectures in

5.6 and 5.8 below, we always prove that A � P. However, (I) may hold

even if A � P, see [9].

Theorem 5.6. [8] Let R be an artin algebra such that (II) holds. Let

T be the tilting module from 5.1. Then T can be taken finitely generated

iff P
� ω is contravariantly finite. In this case, (I) holds.

Proof. If P
� ω is contravariantly finite, then B

� ω is covariantly finite (by

a version of 1.9.3 in mod-R). As in the proof of 2.9, an iteration of the

B
� ω-envelopes of R etc. yields an Add � T � -coresolution of R, 0 � R �

T0 � 	 	 	 � Tn � 0. Then T 
 � �
i � n Ti is a finitely generated tilting

module equivalent to T . The converse implication follows from [12].

If T is finitely generated then T is � -pure injective, and [8] gives that

Add � T � is closed under cokernels of monomorphisms. By 5.4.3, A � P,

so (I) holds true.
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5.3 and 5.6 now give

Corollary 5.7. [12], [60] Let R be an artin algebra such that P
� ω is

contravariantly finite. Then (I) and (II) hold for R.

Note that all right serial artin algebras satisfy the assumption of 5.7, see

[58]. However, there are finite dimensional algebras R with fin.dim � R � �
Fin.dim � R � � 1 such that P

� ω is not contravariantly finite, for example

the IST-algebra [61]; for those algebras, T is an infinitely generated 1-

tilting module. For an explicit computation of T for the IST-algebra,

we refer to [82].

Finally, we turn to Iwanaga-Gorenstein rings (see 2.6). Let n � ω and

R be n-Gorenstein. Then P � I � Pn
� In. In particular, there

exist cotorsion pairs D
� � P,GI � and E

� � GP , I � . The modules in GI

are called Gorenstein injective, the ones in GP Gorenstein projective.

The kernel of D equals I0, the kernel of E is P0, cf. [46]. Clearly,

Fin.dim � R � � n, so (II) holds.

By [5], also (I) holds:

Theorem 5.8. Let R be an Iwanaga-Gorenstein ring. Then (I) holds

true. Moreover, the tilting module T from 5.1 can be taken of the form

T � �
i � n Ii where 0 � R � I0 � � � � � In � 0 is the minimal

injective coresolution of R.

Proof. By 1.5.1, the cotorsion pair D
� � P,GI � is of countable type.

By [19], for each C 	 P
� ω there is a P

� ω-filtered module D such that

D � C



P where P 	 P0. So C 	 A, that is, A � P, and (I) holds.

Since the minimal GI-coresolution of R is actually its minimal injective

coresolution, and C
�

D, T can be taken as claimed by 5.2.

If R in 5.8 is an artin algebra, then T is finitely generated. So by 5.6,

Iwanaga-Gorenstein artin algebras give yet another example of algebras

with P
� ω contravariantly finite, [12].
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Birkhäuser, Basel 2000, 331-368.

[60] B. Huisgen Zimmermann and S. Smalø, A homological bridge be-
tween finite and infinite dimensional representations, Algebras and
Repres. Theory 4 (2001), 155-170.

[61] K. Igusa, S. O. Smalø and G. Todorov, Finite projectivity and
contravariant finiteness, Proc. Amer. Math. Soc. 109 (1990), 937-941.

[62] K. Igusa and G. Todorov, On the finitistic global dimension conjec-
ture for artin algebras, in Representations of algebras and related topics,
Fields Inst. Comm. 45 (2005).

[63] C. Jensen and H. Lenzing, Model Theoretic Algebra, ALA 2,
Gordon & Breach, Amsterdam 1989.

[64] O. Kerner and J. Trlifaj, Tilting classes over wild hereditary alge-
bras, J. Algebra 290 (2005), 538-556.

[65] L. Klingler and L. Levy, Representation Type of Commutative
Noetherian Rings III: Global Wildness and Tameness, Memoir
Amer. Math. Soc., Vol. 832 (2005).

[66] H. Krause and O. Solberg, Applications of cotorsion pairs, J. London
Math. Soc. 68 (2003), 631–650

[67] S.B. Lee, On divisible modules over domains, Arch. Math. 53 (1989),
259–262.

[68] L. Levy and J. Trlifaj, Γ-separated covers, to appear as chapter 1 in
Abelian Groups, Rings, and Modules, CRC Press, New York 2005.

[69] F. Lukas, Infinite-dimensional modules over wild hereditary algebras,
J. London Math. Soc. 44 (1991), 401–419.

[70] M. Matsumura, Commutative Ring Theory, 5th ed., CSAM 8,
Cambridge Univ. Press, Cambridge 1994.

[71] M. Prest, Model Theory and Modules, LMSLN 130, Cambridge
Univ. Press, Cambridge 1988.

[72] I. Reiten, Tilting theory and homologically finite subcategories with



320 J. Trlifaj

applications to quasi-hereditary algebras, in this volume.
[73] I. Reiten and C.M. Ringel, Infinite dimensional representations of

canonical algebras, to appear in Canad. J. Math.
[74] C.M. Ringel, Infinite dimensional representations of finite dimensional

hereditary algebras, Symposia Math. 23 (1979), Academic Press, 321–
412.

[75] C.M. Ringel, Infinite length modules. Some examples as introduction,
Trends in Mathematics, Birkhäuser, Basel 2000, 1-74
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mains, J. Pure Appl. Algebra 199 (2005), 245-259.
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Infinite dimensional tilting modules over
finite dimensional algebras

Øyvind Solberg

Introduction

The theory for tilting and cotilting modules has its roots in the represen-

tation theory of finite dimensional algebras (artin algebras) generalizing

Morita equivalence and duality. First through reflection functors studied

in [16] and a module theoretic interpretation of these in [8], tilting mod-

ules of projective dimension at most one got an axiomatic description in

[18, 41]. Among others, [6, 17, 59] developed this theory further. These

concepts were generalized in [40, 52] to tilting modules of arbitrary fi-

nite projective dimension. In the seminal paper [9] tilting and cotilting

modules were characterized by special subcategories of the category of

finitely presented modules. This paper started among other things the

close connections between tilting and cotilting theory and homological

conjectures studied further in [23, 42, 44].

Generalizations of tilting modules of projective dimension at most one

to arbitrary associative rings have been considered in [4, 27, 32, 51]. As

tilting and cotilting modules in this general setting is not necessarily

linked by applying a duality, a parallel development of cotilting modules

were pursued among others in [25, 24, 26, 28, 29, 30, 31]. Definitions

of tilting and cotilting modules of arbitrary projective and injective di-

mension were introduced in [3] and [61], where the definition introduced

in [3] being the most widely used now.

As the theory of tilting and cotilting modules has its origin in the rep-

resentation theory of finite dimensional algebras, the current research

on tilting and cotilting modules over more general rings seems also to

return to finiteness conditions by considering modules of finite, cofinite

323
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and countable type. In this paper we consider finite dimensional al-

gebras or artin algebras Λ, and review some of the properties and the

structure of all tilting and cotilting modules. Of particular interest is

the information these can give on the representation theory of finitely

presented modules over Λ.

Let Λ be an artin algebra, and let Mod Λ denote the category of all left

Λ-modules. Our aim is to show that generalizing the characterization of

finitely presented tilting and cotilting modules over Λ to arbitrary tilt-

ing and cotilting modules in Mod Λ gives many of the results obtained

for these modules. After recalling definitions and some basic results in

section 1, the next section gives analogues in Mod Λ of all the known

characterizations of finitely presented tilting and cotilting modules given

in [9]. Section 3 is devoted to discussing the finitistic dimension conjec-

tures. Here the little finitistic dimension of Λ, when finite, is shown to be

obtained as the projective dimension of a tilting module in Mod Λ, and

we investigate when the big finitistic dimension is given by the projec-

tive dimension (the injective dimension) of a tilting (cotilting) module.

We proceed in the next section to show that all finitely presented partial

tilting and cotilting modules, when viewed as partial tilting and cotilt-

ing modules in Mod Λ always have a complement, contrary to within

finitely presented modules. Moreover, the classical completion result

for all finitely presented partial tilting and cotilting modules of projec-

tive and injective dimension at most one, respectively, is generalized.

We end by giving the classification of all cotilting modules over a tame

hereditary algebra.

1 Definitions and preliminaries

In this section we recall the definitions and the preliminary results that

we shall use throughout the paper.

Let Λ be a ring. Denote by mod Λ the full subcategory of Mod Λ con-

sisting of all finitely presented Λ-modules. For a module M in Mod Λ we

define the full subcategory (i) addM to be the direct summands of all

finite coproducts of copies of M , (ii) AddM to be the direct summands

of arbitrary coproducts of copies of M , and (iii) ProdM to be the direct

summands of arbitrary products of copies of M . For M in mod Λ let

Sub � M � be the full subcategory of mod Λ consisting of all submodules

of a finite coproducts of copies of M . For a subcategory C of Mod Λ
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the full subcategory � Y � Mod Λ � Exti
Λ � C, Y � � � 0 � for all i � 0 � is

denoted by C � . Dually � C denotes the full subcategory of Mod Λ given

by � X � Mod Λ � Exti
Λ � X, C � � � 0 � for all i � 0 � . The full subcategory

of Mod Λ consisting of all modules X with a finite resolution

0 	 Cn 	 Cn 
 1 	 � � � 	 C1 	 C0 	 X 	 0

for some n � 0 and with Ci in C is denoted by 
C. If all modules in

Mod Λ is in 
C with the length n bounded by some number N � � , we

say that the resolution dimension resdimC � Mod Λ � of Mod Λ is finite, and

otherwise it is infinite. Dually the full subcategory of Mod Λ consisting

of all modules Y with a finite coresolution

0 	 Y 	 C0 	 C1 	 � � � 	 Cn 
 1 	 Cn 	 0

for some n � 0 and with Ci in C for all i is denoted by �C. The injective

dimension and the projective dimension of a module X are denoted by

idΛX and pdΛX respectively.

Now we give the definitions of a tilting and a cotilting module over an

arbitrary ring Λ from [3]. Recall that a Λ-module T is a tilting module

if

(T1) pdΛT � � ;

(T2) Exti
Λ � T,�T � � � 0 � for all i � 0 and all coproducts �T of copies

of T ;

(T3) there exists a long exact sequence 0 	 Λ 	 T 0 	 T 1 	 � � � 	
Tn 
 1 	 Tn 	 0 with T i in AddT for all i � 0, 1, . . . , n.

A module T is called a partial tilting module if T satisfies the conditions

(T1) and (T2). If T is a partial tilting module, then a module T � such

that T �T � is a tilting module is called a complement of T . A Λ-module

T is a cotilting module if

(C1) idΛT � � ;

(C2) Exti
Λ � � T, T � � � 0 � for all i � 0 and all products � T of copies

of T ;

(C3) there exists an injective generator I and a long exact sequence

0 	 Tn 	 � � � 	 T1 	 T0 	 I 	 0 with Ti in ProdT for all

i � 0, 1, . . . , n.
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A module T is called a partial cotilting module if T satisfies the con-

ditions (C1) and (C2). Dually we also define complements of partial

cotilting modules. Also recall that a module T in mod Λ is a tilting or

a cotilting module if AddT and ProdT are replaced by addT and arbi-

trary coproducts and products are replaced by finite coproducts in the

above definitions. In particular, a tilting or cotilting module in mod Λ

is still a tilting or cotilting module in Mod Λ, respectively.

We denote by Iα � Mod Λ � and Pα � Mod Λ � for α in N � � � � the full

subcategories of Mod Λ consisting of all modules X with idΛX � α and

all modules Y with pdΛY � α, respectively. The categories Iα � Mod Λ �
and Pα � Mod Λ � are examples of coresolving and resolving categories,

that is, a subcategory X of Mod Λ is called resolving if X contains all

projective modules and is closed under kernels of epimorphisms, direct

summands and extensions. Coresolving is defined dually.

The big finitistic dimension Findim Λ of Λ is given by

sup � pdΛX � X � Mod Λ with pdΛX � � � .

The little finitistic dimension findim Λ of Λ is defined as

sup � pdΛX � X � mod Λ with pdΛX � � � .

Let X be a class of Λ-modules. For a given Λ-module C, a map

ϕ : X 	 C is a right X -approximation of C if X is in X and

HomΛ � X , X � HomΛ



X ,ϕ �� � � � � � � 	 HomΛ � X , C � is surjective. The approxima-

tion ϕ is minimal if every endomorphism f : X 	 X with ϕf 
 ϕ is an

isomorphism. If every Λ-module has a right X -approximation, then X

is called contravariantly finite in Mod Λ.

One crucial result with respect to approximations is the Wakamatsu’s

Lemma [65]. It says the following.

Lemma 1.1. [9, Lemma 1.3] Let X be a class of Λ-modules closed under

extensions, and let 0 	 Y 	 X
ϕ� 	 C 	 0 be an exact sequence of Λ-

modules.

(a) If ϕ is a minimal right X -approximation, then Ext1Λ � X , Y � 
 � 0 � .

(b) If Ext1Λ � X , Y � 
 � 0 � and X is in X , then ϕ is a right X -

approximation.



Infinite dimensional tilting modules 327

If an right X -approximation ϕ : X � C is surjective and

Ext1Λ � X ,Ker ϕ � � � 0 � , the approximation is called special.

We leave it to the reader to define the dual concepts of all the above

notions for right approximations in ModΛ and the corresponding notions

in mod Λ.

2 The subcategory correspondence

Let Λ be an artin algebra. In Theorem 5.5 of the paper [9] tilting and

cotilting modules in mod Λ were characterized by certain subcategories

of mod Λ. This characterization has lead to many fruitful applications

as reviewed in [53]. So it is natural to ask if there is a similar correspon-

dence for arbitrary tilting and cotilting modules over Λ. This section is

devoted to discussing such correspondences. For a closely related inves-

tigation of the associated cotorsion pairs see [62].

First we recall the characterization of equivalence classes of tilting and

cotilting modules in mod Λ given in [9]. Here we say that two tilting or

cotilting modules T and T � in mod Λ are equivalent if addT � addT � .
Note that in the following result all modules and subcategories are in

mod Λ.

Theorem 2.1. [9, Theorem 5.5] Let T be a module.

(a) T �� � T gives a one-to-one correspondence between equivalence

classes of cotilting modules and contravariantly finite resolving

subcategories X of mod Λ with �X � mod Λ. The inverse is given

by X �� X � X � .

(b) T �� 	addT gives a one-to-one correspondence between equiv-

alence classes of cotilting modules and covariantly finite core-

solving subcategories Y of I 
 � mod Λ � . The inverse is given by

Y �� � Y � Y.

(c) T �� T � gives a one-to-one correspondence between equivalence

classes of tilting modules and covariantly finite coresolving sub-

categories Y of with �Y � mod Λ. The inverse is given by

Y �� � Y � Y.

(d) T �� �addT gives a one-to-one correspondence between equiv-

alence classes of tilting modules and contravariantly finite re-
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solving subcategories X of P � � mod Λ � . The inverse is given by

X �� X � X � .

The usual duality D : mod Λ � mod Λop maps tilting modules to cotilt-

ing modules and vice versa. So a result for one case automatically yields

a result for the other. Given this remark it is superfluous to give the

correspondences both for tilting and cotilting modules. However since

a result for tilting modules in Mod Λ can not be translated to a result

about cotilting modules by applying the duality D, we have chosen to

give all correspondences in order to clearly see the relationship with the

analogous correspondences in Mod Λ.

We want to present analogues of the above characterizations for tilting

and cotilting modules in Mod Λ. As infinitely generated tilting and

cotilting modules T are defined in terms AddT and ProdT the following

are natural definitions. Two tilting (or cotilting) modules T and T � in

Mod Λ are equivalent if AddT � AddT � (or ProdT � ProdT � ).

We first discuss the situation for cotilting modules over Λ. A first

approximation to such a characterization was found in [3], and it reads

as follows (this result is true for any ring).

Theorem 2.2. [3, Theorem 4.2] Let X be class of modules in Mod Λ

closed under kernels of epimorphisms and such that X � X � is closed

under products. The following are equivalent.

(a) There exists a cotilting module T with idΛT 	 n such that X �

� T ;

(b) Every left Λ-module has a special X -approximation and all mod-

ules Y in X � have idΛY 	 n.

From our view point and for our purposes this is not a true general-

ization of the characterization given of tilting and cotilting modules in

[9], since it involve both a category and its Ext-orthogonal category. A

characterization of the equivalence classes of cotilting modules in terms

of subcategories of Mod Λ is given as follows.

Theorem 2.3. [49, Theorem 5.6] Let T be a module in Mod Λ. The map

T �� � T gives a one-to-one correspondence between equivalence classes

of cotilting modules over Λ and resolving subcategories X of Mod Λ closed

under products with 
X � Mod Λ, such that every Λ-module has a special

right X -approximation. The inverse is given by X �� X � X � .
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Remark 2.4. This result is in fact true for any ring R by replacing �X �
ModR by resdimX � Mod R � � � as formulated in [49]. So we see that

the only real difference with Theorem 2.1 (a) is that the corresponding

category should be closed under products, since in mod Λ any module

having a right X -approximation with X in mod Λ has a minimal right

approximation. In addition, when the category X is extension closed,

then by Wakamatsu’s Lemma a minimal approximation is special.

It is natural to ask if all the known characterizations of tilting and

cotilting modules in mod Λ have counterparts in Mod Λ. We first

consider an analogue of Theorem 2.1 (b).

Proposition 2.5. Let T be a module in Mod Λ. The map T �� �ProdT

gives a one-to-one correspondence between equivalence classes of cotilting

modules over Λ and coresolving subcategories Y of Mod Λ

(i) closed under products,

(ii) contained in I 	 � Mod Λ � ,
(iii) every Λ-module has a special left Y-approximation,

(iv) if 0 � Λ
 r � Y Λ � r � XΛ � r � 0 is a special left Y-approximation,

then the category � X 
 Mod Λ � Ext1Λ � X,Y Λ � r � � � 0 � � is closed

under products.

Proof. Assume first that T is a cotilting module in Mod Λ. We claim

that �ProdT � � � T � � . Using that ProdT is contained in � � T � � , we

conclude that � � T � � contains �ProdT . Taking a sequence � � � � X2
f2� �

X1
f1� � X0

f0� � Z � 0 of special right � T -approximations of a module

Z in � � T � � , the kernels Ker fi are in � � T � � and Xi are in ProdT .

Since � � T � � is contained in In � 1 � Mod Λ � for some n � � , the module

Ker fn � 1 is in ProdT . Hence Z is in �ProdT and � � T � � � �ProdT ,

which clearly is closed under products. Then by [9, Proposition 1.8] the

subcategory �ProdT is coresolving where all modules have a special left

�ProdT -approximation.

Dual to Theorem 3.1 in [49] any module in �ProdT is a direct factor of

a module having a finite filtration in products of copies of Y Λ � r. Then

it is easy to see that � X 
 Mod Λ � Ext1Λ � X,Y Λ � r � � � 0 � � � � T and

therefore closed under products.

Conversely, let Y be a subcategory of Mod Λ satisfying the properties
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(i)–(iv). Then � Y is resolving and all modules have a special right

� Y-approximation. Dual to as in the proof of Theorem 3.1 in [49] a

module is in Y if and only if it is a direct factor of a module having

a finite filtration in products of copies of Y Λ � r. Hence Y is contained

in In � 1 � Mod Λ � for some n � � . Then we infer that � X � Mod Λ 	
Ext1Λ � X,Y Λ � r � 
 � 0 � � 
 � Y and that

�
� Y 
 Mod Λ. Then � Y 
 � T for

some cotilting module T with ProdT 
 � Y 
 Y. Furthermore by the

above we have that Y 
 �ProdT .

Now we give the analogues of (c) and (d) in Theorem 2.1. The proofs

are dual to those of Theorem 2.3 and Proposition 2.5.

Proposition 2.6. Let T be a module in Mod Λ.

(a) The map T �� T � gives a one-to-one correspondence between

equivalence classes of tilting modules over Λ and coresolving sub-

categories Y of Mod Λ closed under coproducts with �Y 
 Mod Λ,

such that every Λ-module has a special left Y-approximation.

(b) The map T �� �AddT gives a one-to-one correspondence between

equivalence classes of tilting modules over Λ and resolving sub-

categories X of Mod Λ

(i) closed under coproducts,

(ii) contained in P � � Mod Λ � ,
(iii) every Λ-module has a special right X -approximation,

(iv) if 0 � YΛ � r
� XΛ � r

� Λ � r � 0 is a special

right X -approximation, then the category � Y � Mod Λ 	
Ext1Λ � XΛ � r

, Y � 
 � 0 � � is closed under coproducts.

In [9] the subcategory � T of mod Λ is shown not only to be contravari-

antly finite for a cotilting module T in mod Λ, but also to be covariantly

finite (see [9, Corollary 5.10]). Using subcategories of Mod Λ a resolv-

ing and contravariantly finite subcategory of mod Λ is shown also to be

covariantly finite in [48, Corollary 2.6]. Is something similar true for

subcategories of Mod Λ?

We end the discussion on arbitrary tilting and cotilting modules by

considering the pure-injectivity of cotilting modules. Recall that a

module M is pure-injective if the natural map M � D2 � M � splits [47].
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It was conjectured that all cotilting modules are pure-injective. This

was first proven for cotilting modules of injective dimension at most one

(see [11]). Recently, all cotilting modules are shown to be pure-injective

(see [60]). Before this result was known, pure-injectivity of a cotilting

module was characterized (see [12] and [49, Theorem 5.7]). Using [60]

they now become additional properties of a cotilting module (true for

any ring).

Theorem 2.7. Let T be a cotilting module. Then the following asser-

tions hold.

(a) � T is closed under pure factor modules,

(b) � T is closed under pure submodules,

(c) � T is closed under filtered colimits,

(d) every Λ-module has a minimal right � T -approximation and

D2 � � T � � � T ,

(e) T is pure-injective.

As already indicated by the above the theory for tilting and cotilting

modules is in particular rich both for modules in mod Λ and Mod Λ

when restricted to projective and injective dimension at most one,

respectively. In particular for mod Λ every partial tilting module of

projective dimension at most one can be completed to a tilting module

(see [17]). This question we address in section 4 for tilting and cotilting

modules in Mod Λ. Furthermore, all torsion pairs � T ,F � in mod Λ with

F � Sub � M � for some M in mod Λ and with Λ in F are in one-to-one

correspondence with cotilting modules T of injective dimension at most

one [10] (F � Sub � T � ). However there are torsion pairs in mod Λ not

induced by a cotilting (or tilting) module in mod Λ. For example, for

the Kronecker algebra let F be the additive closure of the preprojective

modules and any proper non-empty set of tubes in the Auslander-Reiten

quiver. But in [19] it is shown that all torsion pairs � T ,F � with Λ in

F are induced by cotilting modules of injective dimension at most one

in Mod Λ. We end this section by explaining this correspondence (true

for left noetherian rings). For a subcategory C in mod Λ denote by

lim� � C the full additive subcategory of all direct summands of the filtered

colimits of modules in C.

Theorem 2.8. There is a bijection between torsion pairs � T ,F � in
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mod Λ with Λ in F and equivalence classes of cotilting modules of injec-

tive dimension at most one in Mod Λ.

A cotilting module T of injective dimension at most one corresponding

to a torsion pair � T ,F � satisfies ProdT � lim� � F � � lim� � F � � and � T �
mod Λ � F .

Proof. We sketch the proof of one direction to illustrate the use of the

results in this section. Let � T ,F � be a torsion pair in mod Λ with Λ

in F . By [33] � lim� � T , lim� � F � is a torsion pair in Mod Λ. Note that any

torsion free class of a torsion pair in Mod Λ containing Λ is a resolving

subcategory. Hence lim� � F is resolving and closed under products. Since

a first syzygy of any module in Mod Λ is in lim� � F , we have that �lim� � F �

Mod Λ and � lim� � F � � is contained in I2 � Mod Λ � . Every Λ-module has

a minimal (special) right lim� � F-approximation by [19, Lemma 1.3] or

[49, Theorem 2.6], since lim� � F is resolving and closed under products

and filtered colimits. Hence by Theorem 2.3 and 2.7 we have lim� � F �
� lim� � F � � � ProdT for some pure-injective cotilting module of injective

dimension at most one in Mod Λ.

A different characterization of these torsion pairs when the ring is left or

right artinian can be found in [62, Theorem 3.7]. For related information

and examples over concealed canonical algebras see [54].

3 The finitistic dimension conjectures

The main interest in this section is the finitistic conjectures for an artin

algebra, that is, when is Findim Λ � findim Λ and when is findim Λ

finite. The first of these conjectures was disproved by in [43], and the

second one has been proven for

(i) monomial algebras in [39] (again in [46]),

(ii) radical cube zero (and even more generally for algebras with

Loewy length 2n � 1 and Λ 	 r
n of finite representation type, see

[34]) in [38] ([45]),

(iii) when P 
 � mod Λ � is contravariantly finite in [9],

(iv) when the representation dimension of Λ is at most 3 in [45] (all
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special biserial algebras has representation dimension at most 3,

see [35]).

None of the above proofs of the finiteness of findim Λ directly involve

a tilting or a cotilting module. The results on relations between these

conjectures and tilting and cotilting modules are more in the direction

of finding test classes of modules for these conjectures, and if the di-

mensions are finite to show that they are obtained as the projective or

the injective dimension of a tilting or cotilting module, respectively. For

related results see [62].

First we discuss how findim Λ is obtained as the projetive dimension of

a tilting module in Mod Λ when it is finite.

Proposition 3.1. [5, Proposition 2.3] For any positive integer n there

is a tilting module Tn with projective dimension at most n and T � �
Pn � 1 � mod Λ � � . If findim Λ � n, then Tn has projective dimension n.

Proof. The category Y � Pn � 1 � mod Λ � � is clearly coresolving. Since

Pn � 1 � mod Λ � consists only of finitely presented modules, Y is closed

under coproducts. Every Λ-module has a special left Y � -approximation

by [37, Theorem 10]. It is also clear that �Y � Mod Λ. By Proposition

2.6 there exists a tilting module Tn such that T �n � Y. The last claim

is left to the reader.

This immediately gives the following relationship between the finitistic

dimensions Findim Λ and findim Λ (for the second statement see [21,

Corollary 2.2]).

Corollary 3.2.

(a) Findim Λ � sup � pdΛT � T tilting module 	 � findim Λ.

(b) Findim Λ � sup � idΛopT � T cotilting Λop-module 	 � findim Λ.

In view of this result an obvious question is: When Findim Λ is finite or

findim Λ is finite, does there exist tilting or cotilting modules with pro-

jective or injective dimensions equal to one of the finitistic dimensions?

It seems to be unknown in general if Findim Λ always can be obtained in

this way when it is finite. But we give some sufficient conditions later.

It was first proved in [9] that if P 
 � mod Λ � is contravariantly finite, then

findim Λ is finite. It is easy to show using Theorem 2.1 (d) that then
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findim Λ is obtained as the projective dimension of a finitely presented

tilting module.

We show next that the finitistic dimension findim Λ always is obtained

by the projective dimension of a tilting module when it is finite.

Theorem 3.3. The following are equivalent.

(a) findim Λ � � .

(b) there exists a tilting module T such that T � � P � � mod Λ � � .

(c) �P � � mod Λ � � � Mod Λ.

If any of these are true, then findim Λ � pdΛT .

The equivalence of (a) and (b) is given for left noetherian rings in [5,

Theorem 2.6]. The equivalence of (b) and (c) is an immediate conse-

quence of Proposition 2.6 noting that P � � mod Λ � � always is coresolv-

ing and closed under coproducts, and every Λ-module has a special left

P � � mod Λ � � -approximation.

As a consequence of the above result Findim Λ is obtained as the

projective dimension of a tilting module T whenever Findim Λ and

findim Λ are equal. When P � � mod Λ � is contravariantly finite in mod Λ

then Findim Λ and findim Λ are shown to be equal in [44] (for an

alternative proof see [5, Corollary 4.3]). Hence this gives a situation

where also Findim Λ is realized as the projective dimension of a tilting

module. Next we give a new criterion for when Findim Λ is obtained as

the projective dimension of a tilting module.

Proposition 3.4. (a) Assume that Findim Λ � � . The category

P � � Mod Λ � � is closed under coproducts if and only if there exists

a tilting module T such that �AddT � P � � Mod Λ � . In this case

Findim Λ � pdΛT .

(b) Assume that Findim Λop � � . The category � I � � Mod Λ � is

closed under products if and only if there exists a cotilting mod-

ule T such that �ProdT � I � � Mod Λ � . In this case Findim Λop �
idΛT .

When Findim Λ � n is finite, then the subcategory P � � Mod Λ � is equal

to 	 X 
 Mod Λ � Ext1Λ � X,Ω
� n
Λ � Λ 
 r � � � � 0 � � . This subcategory is re-

solving and every Λ-module has a minimal (special) right P � � Mod Λ � -
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approximation by [36, Corollary 10]. The condition (iv) in Proposition

2.6 amounts to saying that P � � Mod Λ � � is closed under coproducts.

Similar arguments are used in (b), hence the above result is then a di-

rect consequence of Proposition 2.5 and Proposition 2.6. For related

results see also [5, Section 3].

The categories Pn � Mod Λ � are proven to be contravariantly finite for

any n � 1 in [1]. Then using similar arguments as in [9, Corollary 3.10]

one can show that the following are equivalent (i) Findim Λ is finite, (ii)

P � � Mod Λ � is contravariantly finite and (iii) P � � Mod Λ � is closed under

coproducts (see [49, Corollary 2.7]).

We end this section by characterizing the cotilting module in Proposition

3.4 (b). To this end we use the characterization of cotilting modules to

define further structures on the class of cotilting modules.

Let Cotilt Λ denote the set of all equivalence classes of cotilting modules

in Mod Λ (shown to be a set for any ring in [21]). We can partially order

the cotilting modules according to the Hasse diagram of the subcate-

gories � T for T in Cotilt Λ. Such a Hasse diagram of the subcategories

� T in mod Λ for the set of all (co)tilting modules T in mod Λ has been

considered in various contexts in [56, 64] (also see [63]). The Hasse di-

agram of Cotilt Λ was considered in [21, 22], and it was shown to be a

lattice in [21].

The characterization of cotilting modules in Theorem 2.3 imply that

for any subset � Ti � i � I of Cotilt Λ with sup � idΛTi � i � I � 	 , there

exists a cotilting module T in Cotilt Λ such that � T 
 �
i � I � Ti.

Moreover, idΛT 
 sup � idΛTi � i � I . In particular, when Findim Λop

is finite there is a unique minimal cotilting module Tmin in Cotilt Λ

with idΛT 
 sup � idΛT � T � Cotilt Λ. It is unknown whether or not

Findim Λop 
 idΛTmin. We want to compare Tmin to the module defined

in the following lemma (see [21, Lemma 3.1 and 3.2]).

Lemma 3.5. Suppose that Findim Λop is finite.

(a) There exists a Λ-module T such that

� I � � Mod Λ � � I � � Mod Λ � 
 AddT.

(b) I � � Mod Λ � 
 
AddT , where all the resolutions in AddT can be

chosen to have length at most Findim Λop.
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(c) idΛT � Findim Λop.

Denote the module T in the above lemma by Tinj. When Findim Λop is

finite it is immediate that (i) idΛTinj � � , (ii) Exti
Λ � Tinj, Tinj � � � 0 � for

all i � 0 and (iii) there exists a long exact sequence

0 � Tn � Tn � 1 � � � � � T1 � T0 � D � Λ � � 0

with Ti in AddTinj for all i. So Tinj is very close to being a cotilting

module, but nevertheless if Findim Λop is finite, then it is obtained on a

selforthogonal module. Moreover, we have 	 AddTinj
� 	 I 
 � Mod Λ � .

The following result points out a relationship between the modules Tinj

and Tmin and the dimensions idΛTinj and idΛTmin when Findim Λop is

finite (see [21, Theorem 3.3]). Recall that a modules M in Mod Λ is

called product complete if AddM � ProdM , and it is called Σ-pure-

injective if every coproduct M
�
α � is pure-injective.

Theorem 3.6. Suppose that Findim Λop is finite. Then the following

are equivalent.

(a) 	 I 
 � Mod Λ � � 	 Tmin,

(b) 	 I 
 � Mod Λ � is closed under products,

(c) Tinj is product complete,

(d) Tinj is a Σ-pure-injective cotilting module.

Moreover, when one of these conditions holds Tmin and Tinj are equiva-

lent cotilting modules and Findim Λop � idΛTmin.

4 Complements of tilting and cotilting modules

As already mentioned, a classical result in the theory of tilting modules

in mod Λ says that for any partial tilting module T of projective dimen-

sion at most one, there exists a module T 
 in mod Λ such that T � T 

is a tilting module with T 	 � � T � T 
 � 	 (the Bongartz construction

or complement). For a partial tilting module T of projective dimension

at least two in mod Λ, such a complement T 
 in mod Λ does not always

exist as shown in [55]. This naturally gives rise to at least two questions:

(1) Does the Bongartz construction of a complement generalize to par-

tial tilting (or cotilting) modules of projective (injective) dimension at
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most one in Mod Λ? (2) Does any partial tilting or cotilting module

T in mod Λ have a complement when considered as a partial tilting or

cotilting module in Mod Λ? This section is devoted to discussing these

questions. The answer to the second question is always yes, and the first

question is answered in full for tilting and cotilting modules. For related

results see [62].

First we discuss a criterion for existence of complements of partial

tilting and cotilting modules. The following is an easy consequence

of our characterizations of tilting and cotilting modules in terms of

subcategories of Mod Λ.

Proposition 4.1. [49, Proposition 6.1]

(a) Let T be a partial tilting module. Then T has a complement if

and only if T � contains a coresolving subcategory Y containing

AddT and closed under coproducts with �Y � Mod Λ, such that

every Λ-module has a special left Y-approximation.

(b) Let T be a partial cotilting module. Then T has a complement

if and only if � T contains a resolving subcategory X containing

ProdT and closed under products with �X � Mod Λ, such that

every Λ-module has a special right X -approximation.

Recall that for an extension closed subcategory X of Mod Λ a module M

in X is called Ext-injective in X if Ext1Λ � X ,M � � � 0 � and Ext-projective

in X if Ext1Λ � M,X � � � 0 � . Note that if T is a partial tilting module,

then an Ext-projective complement T � in T � correspond to the Bongartz

complement as T � � � T � T � � � . As a further application of our char-

acterizations of tilting and cotilting modules we obtained the following.

The different proofs are given in [2, Theorem 2.1] and [49, Theorem 6.2].

Theorem 4.2. (a) Let T be a partial tilting module. Then T has a

complement which is Ext-projective in T � if and only if T � is

closed under coproducts.

(b) Let T be a partial cotilting module. Then T has a comple-

ment which is Ext-injective in � T if and only if � T is closed

under products and each Λ-module has a special right � T -

approximation.

Here we see that the statements of the results for tilting and cotilting

are not dual. The explanation for this is the following. By [37,
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Theorem 10] every Λ-module has a special left M � -approximation for

any Λ-module M , while it is unknown if every Λ-module has a special

right � M -approximation for any Λ-module M . However, “duality” is

restored if we assume that T is pure-injective, since by [36, Corollary

10] every Λ-module has a minimal right � M -approximation whenever

M is pure-injective. In view of the fact that all cotilting modules

are pure-injective (see [60]), for a partial cotilting module to have a

complement it must be pure-injective. In fact, we have the following,

where the equivalence of (a) and (c) can be found in [2, p. 93].

Proposition 4.3. [49, Corollary 6.3] Let T be a pure-injective partial

cotilting module. The following are equivalent.

(a) T admits a complement which is Ext-injective in � T ,

(b) T admits a pure-injective complement which is Ext-injective in

� T ,

(c) � T is closed under products.

Let us proceed by addressing the first question for cotilting modules:

(1) Does the Bongartz construction of a complement generalize to

cotilting modules of injective dimension at most one in Mod Λ? In

[11] any cotilting module of injective dimension at most one is shown

to be pure-injective. Hence a necessary assumption for being able to

answer question (1) affirmatively is to start with a pure-injective partial

cotilting module of injective dimension at most one. This is also shown

to be sufficient in [19, Corollary 1.12].

Proposition 4.4. Suppose that T is a pure-injective partial cotilting

module of injective dimension at most one. Then there exists a pure-

injective module T � such that T �T � is a pure-injective cotilting module.

Proof. Let M be a pure-injective module of injective dimension at most

one. It is shown in [19, Corollary 1.10] that � M is closed under products.

The claim then follows immediately from the above result.

It follows from [19, Lemma 1.11] that the module T � found in the above

proposition corresponds to the Bongartz construction.

Now we address the question (1) for partial tilting modules. This in-

volves the following notions. Recall that a class of modules X is said to
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be of finite (countable) type if X � S � for some subset S of finitely pre-

sented (countably generated) modules in Pn � 1 � Mod Λ � for some n � � .

A module M is of finite or countable type if the subcategory M � is

of finite or countable type, respectively. For further details and results

about these notions for tilting modules see [62].

In [13] all tilting modules of projective dimension at most one are

shown to be of countable type. But even more is true, recently these

tilting modules were shown to be of finite type (see [14]), and all tilting

modules were shown to have the same property in [15]. So to answer

question (1) for partial tilting modules T of projective dimension at

most one, the assumption of T being of finite type is necessary. But

this is also sufficient due to the following fact. If M is a module of

finite type, then M � is closed under products, filtered colimits and pure

submodules, in particular closed under coproducts. As a consequence

of this and Theorem 4.2 (a) we obtain the following.

Proposition 4.5. Suppose that T is a partial tilting module of finite

type (and of projective dimension at most one). Then there exists a

module T � such that T � T � is a tilting module of finite type (and of

projective dimension at most one).

We end this section by answering the second question: Do any partial

tilting or cotilting module T in mod Λ have a complement when

considered as a partial tilting or cotilting module in Mod Λ? Since T �
is closed under coproducts and � T is closed under products (actually

definable) when T is finitely presented, the following result is an

immediate consequence of Theorem 4.2 (see [2, Corollary 2.2] and [49,

Corollary 6.4]).

Proposition 4.6. Let T be a finitely presented Λ-module.

(a) If T is a partial tilting module, then T has a complement which

is Ext-projective in T � .

(b) If T is a partial cotilting module, then T has a complement which

is pure-injective and Ext-injective in � T .
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5 Classification of all cotilting modules

For an artin algebra Λ of finite representation type all modules in Mod Λ

is isomorphic to a direct sum of indecomposable finitely presented mod-

ules (see [7, 58]). Therefore every tilting or cotilting module is equivalent

to a finitely presented tilting or cotilting module, hence there is only a

finite number of them.

For algebras of infinite representation type a complete classification of all

cotilting modules seems only to be known for tame hereditary algebras

([19, 20]). The aim of this section is to give this classification. For

information on cotilting modules over concealed canonical algebras see

[54, Section 10].

Assume throughout that Λ is a finite dimensional tame hereditary alge-

bra. We start by reviewing some facts about these algebras (see [57]).

The category of finitely presented regular modules is denoted by R,

which are all the modules occurring in the tubes of the Auslander-Reiten

quiver of Λ. This category is an abelian category, and P denotes the set

of isomorphism classes of all simple objects in R. Two elements S and S �
in P are said to be equivalent if Ext1Λ � S, S � � � � 0 � or Ext1Λ � S � , S � � � 0 � .
Take the transitive closure of this relation in P, and let � S � denote the

equivalence class of S. For each S in P there are unique indecompos-

able objects Sn and S � n of length n in R such that HomΛ � S, Sn � � � 0 �
and HomΛ � S � n, S � � � 0 � . Moreover there are chains of monomorphisms

S � S1 � S2 � 	 	 	 and chains of epimorphisms 	 	 	 � S � 2 � S � 1
� S

for each S in P. The colimit lim
 � Sn
� S � is the corresponding Prüfer

module, and the inverse limit lim� 
 S � n
� S � � is the adic module. Fi-

nally there is a unique generic module G, that is, G is indecomposable

of infinite length and has finite length over EndΛ � G � .

Given a module M in Mod Λ, denote by indecM the set of all the iso-

classes of indecomposable direct summands of M . If M is pure-injective,

then there is a unique family 
 Mi � i � I of modules in indecM such that

M is the pure-injective envelope of �i � IMi. With these preliminaries

we can give the classification of all cotilting modules over Λ. Recall

that by [11] all cotilting modules of injective dimension at most one

are pure-injective, so that all cotilting modules over Λ are pure-injective.

Theorem 5.1. [19, Theorem 3.9] Let Λ be a tame hereditary algebra,

and let T be a pure-injective Λ-module.
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(a) Suppose that all indecomposable direct summands of T are

finitely presented. Then T is a cotilting module if and only if

card � indec T � equals the number of non-isomorphic simple Λ-

modules and Ext1Λ � T � , T � � � � 0 � for all T � and T � in indec T .

(b) Suppose there is an indecomposable direct summand of T which

is not finitely presented. Then T is a cotilting module if and only

if the following holds:

(i) Each M in indec T is either generic or of the form Sn for

some S in P and some n in N � � � � , � 	 .

(ii) For each S in P, the set IS consisting of all the non-

isomorphic modules M in indec T with M 
 S �n for

some n in N � � � � , � 	 and some S � in � S � satisfies

card IS
� card � S � and Ext1Λ � T � , T � � � � 0 � for all T � and

T � in IS.

(c) Two cotilting modules T1 and T2 are equivalent if and only if

indec � T1 � G � � indec � T2 � G � .

The cotilting modules occurring in part (b) are given by for every tube

choosing the rank of the tube indecomposable non-isomorphic modules

totally from the tube, its Prüfer module or its adic module. For a tube

of rank one there are only two choices, the Prüfer or the adic module.

A complete characterization of the different possible choices in a tube is

given in [20].
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[2] Angeleri-Hügel, L., Coelho, F. U., Infinitely generated complements to
partial tilting modules, Math. Proc. Cambridge Philos. Soc. 132 (2002),
no. 1, 89–96.
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Cotilting dualities

Riccardo Colpi and Kent R. Fuller

In the late 1950’s K. Morita [31] and G. Azumaya [4] investigated dual-

ities between subcategories of CR of Mod � R and SC of S � Mod that

contain the regular representations of the rings and are closed under

submodules, epimorphic images and finite direct sums. It was shown

that such dualities are representable by a bimodule SUR in the sense the

dualities are isomorphic to the U -dual functors

∆ � HomR � , U � : CR � SC : HomS � , U � � ∆

with the evaluation maps δM : M � ∆2M providing natural isomor-

phisms

δ : 1CR
� ∆2 and δ : 1

SC � ∆2.

Such a duality is known as a Morita duality induced by the bimodule

SUR.

Given a bimodule SUR, a module M is U -torsionless if it embeds in a

direct product of copies of U, (i.e., belongs to Cogen � U � � or equivalently,

if δM is a monomorphism. If δM is an isomorphism, M is said to be U -

reflexive.

Morita also proved that a bimodule SUR induces such a Morita duality

if and only if it is balanced and is an injective cogenerator on both sides

if and only if the regular modules RR and SS are U -reflexive and the

categories of U -reflexive right R- and left S-modules are closed under

submodules and epimorphic images. (See [1, Sections 23 and 24], for

example.)

A module M is linearly compact if for every inverse system of epimor-

345
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phisms pλ : M � Mλ, the map lim� � pλ : M � lim� � Mλ is also an epi-

morphism. Equivalently, every finitely solvable system � xα,Kα � I with

xα � M and Kα � M is solvable in the sense that if every finite intersec-

tion of the cosets xα � Kα in M is nonempty, then � I 	 xα � Mα 
 � � .

Several years later B.J. Müller (see [33], for example) proved that if

SUR induces a Morita duality, then the U -reflexive modules are just the

linearly compact modules in Mod 
 R and S 
 Mod .

At about the same time as Morita, J. Dieudonné [19] characterized quasi-

Frobenius rings as those rings R such that R-dual functors induce a dual-

ity between the categories of finitely generated right and left R-modules,

mod 
 R and R 
 mod . Thus a noetherian ring R is quasi-Frobenius if

and only if all of its finitely generated modules are R-reflexive.

In the early 1960’s J.P. Jans [24] characterized those noetherian rings

whose finitely generated R-torsionless modules are R-reflexive as those

whose left and right injective dimensions satisfy inj .dim . 	 RR 
 � 1 and

inj .dim . 	 RR 
 � 1. Shortly thereafter, apparently inspired by Jans’s

result, E. Matlis [29] proved an early version of a cotilting theorem when

he proved that the submodules of finitely generated free modules over a

commutative domain D are D-reflexive if and only Q � D is an injective

cogenerator if and only if every finitely generated D-torsion module M

is Q � D-reflexive, where Q is the field of fractions of D. (Note that here

there is a natural isomorphism HomD 	 M,Q � D 
 � Ext1D 	 M,D 
 . 


Although they were originally defined for finitely generated modules over

artin algebras, as discussed in [30] and [12], the Brenner-Butler notions

of a tilting module and the tilting theorem [7],[22],[6] are valid for the

entire categories of modules over a pair of rings. However, as in the case

of Morita duality vs Morita equivalence, the notion of cotilting modules

and cotilting theorems for arbitrary rings must be restricted to smaller

categories. In particular, if RV is a tilting module with End 	 RV 
 � S

over an artin algebra R, then the artin algebra dual yields a bimodule

SUR
� D 	 V 
 and a cotilting theorem between mod 
 R and S 
 mod, in

the sense of the definition below.

Through out this chapter we let SUR be a bimodule, we let ∆ represent

both HomR 	 , U 
 and HomS 	 , U 
 , and we denote both Ext1R 	 , U 
 and

Ext1S 	 , U 
 by Γ.

By an abelian subcategory of Mod 
 R or S 
 Mod we mean a full

subcategory that is closed under finite direct sums and contains the
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kernels and cokernels of all of its homomorphisms. The following

definition is from [11].

Definition 0.2. Suppose that CR and SC are abelian subcategories of

Mod � R and S � Mod such that RR � CR and SS � SC. Let SUR be a

bimodule and let

TR
� Ker ∆ � CR, FR

� Ker Γ � CR, ST
� Ker ∆ � SC, SF

� Ker Γ � SC.

Then SUR induces a cotilting theorem between CR and SC if the follow-

ing four conditions are satisfied:

(1) � TR,FR � and � ST ,S F � are torsion theories in CR and SC, respec-

tively;

(2) ∆: CR � SF , Γ: CR � ST , ∆: SC � FR, Γ: SC � TR

(3) There are natural transformations γ : Γ2 � 1CR
and γ : Γ2 �

1
SC that, together with the evaluation maps δ : 1CR

� ∆2 and

δ : 1
SC � ∆2, yield exact sequences

0 � Γ2M
γM� � M

δM� � ∆2M � 0

and

0 � Γ2N
γN� � N

δN� � ∆2N � 0

for each M � CR and each N � SC.

Observe that if SUR induces a cotilting theorem between CR and SC,

then the restrictions

∆ : FR � SF : ∆ and Γ : TR � ST : Γ

define category equivalences. Also note that (see the definition of an

abelian subcategory of Mod � R or S � Mod above), since they con-

tain RR and SS, respectively, CR and SC contain all finitely presented

modules. Morita duality entails a cotilting theorem with CR
� FR and

SC
�

SF the categories of linearly compact modules, and TR and ST

both 0.

The question remains, “what is a cotilting module?” We shall discuss

several versions, each of which is the dual of a tilting module if it is

finitely generated over an artin algebra. In each version, the C 	 s are

determined by the F 	 s and the naturality of the γ 	 s is an issue.
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The first version appears in Y. Miyashita’s [30] as a noetherian dual-

ization of his tilting modules of projective dimension r � 1. There he

showed that if R is right noetherian, S is left noetherian and SUR is

finitely generated, faithfully balanced, and satisfies inj .dim . � U � � r and

Exti � U,U � � 0 for all i � 0 on both sides, then Exti
S � Exti

R � M,U � , U � �

M whenever M � mod � R with Extj
R � U,M � � 0 for all 0 � j 	 i. (If

r � 1, this is just ∆2M � M, if ΓM � 0 and Γ2M � M, if ∆M � 0. �

Moreover, he proved that for arbitrary r, l.gl.dim. S � r.gl.dim. R 
 r.

1 Generalized Morita Duality and Finitistic Cotilting

Modules

If SUR induces a Morita duality, then (see [1, Section 24], for example)

the categories of U -reflexive modules are closed under extensions, as well

as submodules and epimorphic images. In [8] R.R. Colby introduced

the notion of a generalized Morita duality.

Definition 1.1. A bimodule SUR induces a generalized Morita duality

(GMD) if SUR is faithfully balanced (i.e., UR, RR, SU and SS are all

U -reflexive) and the categories of U -reflexive right R- and left S-modules

are closed under submodules and extensions.

Then he proved

Proposition 1.2. If a bimodule SUR induces a generalized Morita du-

ality, then

1. If M is a U -reflexive module, then ΓM � 0, so Ext1R � U,U � � 0

and Ext1S � U,U � � 0; and

2. inj .dim . � UR � � 1 and inj .dim . � SU � � 1.

Thus if SUR induces a GMD, it satisfies conditions that are dual to ones

that serve to characterize tilting bimodules.

The following definitions are also from Colby’s [8]. They have motivated

much of the research that we shall discuss here.

Definition 1.3. A faithfully balanced bimodule SUR defines a finitistic

generalized Morita duality if UR, RR, SU and SS are all noetherian, and
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the categories of U -reflexive modules in mod � R and S � mod are closed

under submodules and extensions.

Now we come to the first cotilting theorem for rings (from [8]) other

than artin algebras.

Theorem 1.4. Let SUR define a finitistic generalized Morita duality.

Then SUR induces a cotilting theorem between mod � R and S � mod

with FR and SF the U -torsionless modules in mod � R and S � mod .

Moreover, the Grothendieck groups of mod � R and S � mod are isomor-

phic.

The modules we now call finitistic cotilting modules were originally

called cotilting modules in [8].

Definition 1.5. A module UR is a finitistic cotilting module if it satisfies

1. Ext1R � U,U � � 0;

2. inj .dim . � UR � � 1; and

3. if M � mod � R with HomR � M,U � � 0 � Ext1R � M,U � , then

M � 0.

Also in [8] Colby noted that condition 3. of this definition is implied by

3 � . an injective cogenerator CR admits an exact sequence 0 �

U1 � � U0 � � C � 0 with U0 and U1 direct summands of

direct products of copies of U.

In addition he established the connection between these two definitions

by proving

Theorem 1.6. Let S � End � UR � , and suppose that UR, RR, SU and

SS are all noetherian. Then UR is a finitistic cotilting module if and

only if SUR defines a finitistic generalized Morita duality.

In a later paper [9] Colby proved all but the naturalness of γ : Γ2 � 1C
in the following

Theorem 1.7. Let SUR define a GMD, and let FR and SF denote the

reflexive modules in Mod � R and S � Mod, and CR and SC consist of the

epimorphic images of modules in FR and SF , respectively. Then SUR
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induces a cotilting theorem between CR and SC with torsion free classes

FR and SF .

Moreover in [9] he established the missing third condition in Proposition

1.2:

3. if SUR defines a GMD and M � F with HomR � M,U � � 0 �

Ext1R � M,U � , then M � 0.

That γ is natural was established much later by F. Mantese in [26]. Her

methods are key to establishing the naturalness of γ in the cotilting

theorems to follow.

The following proposition is from [9] and [10].

Proposition 1.8. Let UR be a finitely generated module over an artin

algebra and let S � End � UR � . Then UR is the artin algebra dual of a

tilting module if and only if SUR defines a GMD. Moreover, if this is the

case, then δM is an isomorphism if and only if M is finitely generated

and U -torsionless, and γM is an isomorphism if and only if M is finitely

generated and ∆M � 0.

It seems that cotilting modules over artin algebras and Morita dualities

are the only known examples of generalized Morita dualities. However,

in [12] Colby and K.R. Fuller characterized the tilting modules over

hereditary noetherian serial rings and proved that any tilting module

over a right hereditary noetherian ring is a finitistic cotilting module.

2 Cotilting Modules and Bimodules

In [16] R. Colpi, G. D’Este and A. Tonolo, generalizing the notion of

injective cogenerator, made the following

Definition 2.1. A cotilting module UR is a module such that

Cogen � UR � � Ker Ext1R � , U � .

And there they observed that � Ker HomR � , U � ,Ker Ext1R � , U � � is a

torsion theory in Mod � R, and they proved (cf., Definition 1.5)

Proposition 2.2. A module UR is a cotilting module if and only if it

satisfies
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1. inj .dim . � UR � � 1;

2. Ext1R � Uα, U � � 0 for all cardinal numbers α;

3. Ker HomR � , U � � Ker Ext1R � , U � � 0

Subsequently L. Angeleri Hügel, Tonolo and J. Trlifaj [3] proved that

condition 3. of this result can be replaced by

3 � . an injective cogenerator CR admits an exact sequence 0 �
U1 � � U0 � � C � 0 with U0 and U1 direct summands of

direct products of copies of U.

In [15] Colpi made the following

Definition 2.3. A faithfully balanced bimodule SUR is a cotilting bi-

module if UR and SU are cotilting modules.

And he proved all of the following cotilting theorem, except the

facts, later established by Mantese [26], that CR and SC are abelian

subcategories of Mod � R and S � Mod, i.e., they contain the kernels

and cokernels of their homomorphisms, and that the γ’s are natural on

CR and SC.

Theorem 2.4. Let SUR be a cotilting bimodule, let FR and SF denote

the reflexive modules in Mod � R and S � Mod, and let CR and SC consist

of the cokernels of monomorphisms between modules in FR and SF ,

respectively. Then SUR induces a cotilting theorem between CR and SC

with torsion free classes FR and SF .

The following notion, a generalization of linear compactness for U -

torsionless modules, appears to have originated in [21].

Definition 2.5. If SUR is a bimodule, a U -torsionless module M is U -

torsionless linearly compact if for every inverse system of maps 	 M pλ� �
Mλ


 λ � Λ � with each Mλ U -torsionless and each Coker pλ � Ker ∆, it

happens that Coker � lim
 � pλ � � Ker ∆.

In [15] Colpi proved that if SUR is a cotilting bimodule, then any

U -torsionless linearly compact module is U -reflexive, and subsequently

in [17] Colpi and Fuller established the following connection between

generalized Morita duality and cotilting bimodules.

Proposition 2.6. Let SUR be a cotilting bimodule. Then SUR induces



352 R. Colpi and K. R. Fuller

a GMD if and only if the U -reflexive modules in Mod � R and S � Mod

are precisely the U -torsionless linearly compact modules.

Also in [17] they proved that if R is a noetherian serial ring

with self-duality induced by a Morita bimodule RWR, then SUR
�

HomR � RVS,W � is a cotilting bimodule whenever RV is a tilting module

with S � End � RV � , and if R is not artinian, then SUR is not finitely

generated on either side, so it does not induce a finitistic GMD.

Subsequently, in [14] Colpi proved

Proposition 2.7. Let CR and SC as in Theorem 2.4. Then CR (re-

spectively, SC) contains (all the submodules of) the finitely generated

modules if and only if SU (respectively, UR) is U � torsionless linearly

compact.

Corollary 2.8. Let SUR be a cotilting bimodule and assume that R

is right coherent and S is left coherent. Then SUR is U � torsionless

linearly compact on both sides and RR and SS are linearly compact.

If, moreover, SUR is finitely generated on both sides, then SUR induces

a cotilting theorem between the abelian subcategories of Mod � R and

S � Mod consisting of all the submodules of finitely generated modules.

In [2] Angeleri Hügel considered a kind of cross between a finitistic cotilt-

ing module and a cotilting module that she called a finitely cotilting

module, and a somewhat more general type of module that she called a

Colby module. She proved a slightly different version of a cotilting the-

orem for faithfully balanced bimodules of these types, and also proved

that a finitely generated module over an artin algebra that is a cotilt-

ing module, a finitely cotilting module or a Colby module is the artin

algebra dual of a tilting module.

A faithfully balanced bimodule SUR that satisfies conditions 1 and 2 of

Proposition 2.2 is called a partial cotilting bimodule. A. Tonolo proved

another cotilting theorem in [32].

Theorem 2.9. Let SUR be a partial cotilting bimodule. Denote

by δ0 and δ1 respectively the 0-th and the 1-st left derived derived

maps of the evaluation map δ. Set MR
� � M � Mod � R �

δ0
M and δ1

M are isomorphisms � . The class SM is defined similarly.

Then MR and SM are abelian subcategories of Mod � R and S � Mod

respectively, and SUR induces a cotilting theorem between them.
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Considering a special kind of cotilting modules. Mantese [27] defined

a hereditary cotilting module UR as one such that the torsion theory

� Ker ∆,Ker Γ � in Mod � R is hereditary. She characterized them as

follows

Proposition 2.10. Let UR be a cotilting module. The following are

equivalent:

a) UR is a hereditary cotilting module;

b) Ext1R � E � U � , U � � 0;

c) ∆2 preserves monomorphisms in Mod � R.

Also there she proved

Theorem 2.11. Let SUR be a cotilting bimodule, hereditary on the right.

Then:

a) ∆SΓR
� 0;

b) The class of UR-reflexive modules is closed under submodules;

c) The SU -reflexive modules are precisely the U � torsionless linearly

compact modules;

d) The functor ΓR is naturally isomorphic to

HomR � RejU � � � , E � U � � U � .

Moreover, SUR is hereditary on the left iff ∆RΓS � U � � 0 iff ΓS � U � is

finitely generated. In this case:

e) Any finitely cogenerated U -torsionless module is U -reflexive.

One should note the connection between part (d) of this theorem and

the result of Matlis described near the beginning of this chapter.

3 Weak Morita Duality

As discussed earlier, a Morita duality is a duality between full sub-

categories CR of Mod � R and SC of S � Mod that contain the regular

modules RR and SS and are closed under submodules, epimorphic

images and extensions. Extending the notions of both generalized

Morita dualities and finitistic generalized Morita dualities, Colby and



354 R. Colpi and K. R. Fuller

Fuller [13] made the following

Definition 3.1. A weak Morita duality (WMD) is a duality between full

subcategories FR of Mod � R and SF of S � Mod that contain the regular

modules RR and SS and are closed under submodules and extensions.

Letting CR and SC denote the categories of epimorphic images of

modules in FR and SF , respectively, they proved the following results

regarding weak Morita duality between FR and SF in [13].

Proposition 3.2. A weak Morita duality between FR and SF is induced

by a faithfully balanced bimodule SUR that satisfies

1. Ext1R � U,U � � 0 and Ext1S � U,U � � 0;

2. inj .dim . � UR � � 1 and inj .dim . � SU � � 1;

3. Ker ∆ � Ker Γ � CR
� 0 and Ker ∆ � Ker Γ � SC

� 0.

Theorem 3.3. If SUR induces a weak Morita duality between FR and

SF , then SUR induces a cotilting theorem between CR and SC with tor-

sion free classes FR and SF .

Also in [13] Colby and Fuller employed the notion of U -torsionless linear

compactness to obtain information regarding weak and generalized

Morita duality. They proved that if SUR induces a weak Morita

duality between FR and SF , then the modules in FR and SF are

all U -torsionless linearly compact, and obtained a characterization

of WMD’s. Also they showed that over an artin algebra, a finitely

generated bimodule induces a WMD if and only if it is the artin

algebra dual of a tilting module. Then they obtained the following

characterization of generalized Morita duality.

Theorem 3.4. Let SUR be a bimodule and let FR and SF denote the

classes of all U -reflexive modules in Mod-R and S-Mod, and let CR and

SC denote the categories of epimorphic images of modules in FR and

SF , respectively. Then U induces a generalized Morita duality if and

only if

1. SUR is faithfully balanced,

2. Γ � M � � 0 for all M in FR and Γ � N � � 0 for all N in SF ,

3. Ker ∆ � Ker Γ � CR
� 0 and Ker ∆ � Ker Γ � SC

� 0,
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4. FR and SF consist precisely of the U -torsionless linearly compact

modules.

The bimodule ZZZ induces a weak Morita (self) duality between finitely

generated free abelian groups (i.e., a finitistic generalized Morita du-

ality), but Z does not define a generalized Morita duality, nor is it a

cotilting bimodule. (See [11, Example 5.8.1]). An interesting problem

(in the spirit of Morita duality) would be to determine the U -reflexive

modules when SUR induces a WMD.

G. D’Este [18] has provided an example of a perfect coherent ring R

such that RRR is a cotilting bimodule that does not induce a WMD.

4 Pure Injectivity of Cotilting Modules and Reflexivity

A short exact sequence of right R-modules 0 � K
f

� � M
g

� � L � 0

is pure exact if every R-map X � L with X finitely presented factors

through g. Equivalently, exactness of the sequence is preserved by

� � R N � for any left R-module N. See [25], for example, for this notion

and the following definition.

Definition 4.1. A module UR is pure injective ( or algebraically com-

pact) if HomR � , U � preserves the exactness of every pure exact sequence.

According to [23, Theorem 9], the endomorphism ring S of a pure in-

jective module is semiregular in the sense that S � J � S � is von Neuman

regular and idempotents lift modulo J � S � .

In [28] Mantese, P. Ruzicka and Tonolo observed that if UR is a pure

injective module, then Cogen � UR � is closed under direct limits, and

they pointed out that, at the time, all known examples of cotilting

modules were pure injective. The following generalizations of linear

compactness and reflexivity appeared in [20].

Definition 4.2. A module M is U -linearly compact if lim� � pλ : M �
lim� � Mλ is an epimorphism whenever pλ : M � Mλ is an inverse system

of epimorphisms with each Mλ � Cogen � U � .

Definition 4.3. A module M is U -dense relative to a bimodule SUR if

for each α � ∆2M and each f1, ..., fn � ∆M, there is an m � M such

that α � fi � � fi � m � , for i � 1, ..., n.
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These notions were employed in [28] to prove

Proposition 4.4. If SUR is a cotilting bimodule that is pure injective

on both sides, then a U -torsionless module M is U -reflexive if and only

if it is both U -linearly compact and U -dense.

Fortunately, S. Bazzoni [5] has subsequently proved the following

theorem. Thus “pure injective on both sides” can be dropped from this

characterization of U -reflexivity relative to a cotilting bimodule.

Theorem 4.5. Every cotilting module is pure injective.

As an application of Bazzoni’s Theorem 4.5 Colpi [14] obtained the

following extension of an early theorem of Osofsky [1, Lemma 24.7] on

Morita duality.

Proposition 4.6. If SUR is a cotilting bimodule, then no infinite direct

sum of non-zero U -reflexive modules is U -reflexive.

Also in [14] he employed her result to obtain the following further

connection between U -reflexivity and different notions of linear com-

pactness.

Proposition 4.7. Let SUR be a cotilting bimodule and assume that RR

and SS are U � torsionless linearly compact. Let M be a U -torsionless

module. Then

1. M is U -reflexive if and only if it is U -linearly compact;

2. every submodule of M is U -reflexive iff M is linearly compact iff

∆M is U -torsionless linearly compact.
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Representations of finite groups and tilting

Joseph Chuang and Jeremy Rickard

1 A brief introduction to modular representation theory

Let G be a finite group and k, for simplicity, be an algebraically closed

field. Then to give a representation of G over a field k is equivalent to

giving a module for the group algebra kG. In general, the group algebra

is a direct product

kG � b0 � kG � � � � � � bn � kG �

of connected algebras (i.e., algebras that are not isomorphic to the direct

product of smaller algebras), called blocks. If the characteristic of k

does not divide the order of G, then these blocks are all full matrix

algebras over k, but otherwise the blocks may be much more complicated

algebras. We will always take b0 � kG � to be the principal block (i.e.,

the unique block that does not annihilate the trivial module k). Many

statements about general blocks become less technical for the principal

block, so we will often focus on this case for the sake of simplicity.

Recall that to each block bi � kG � there is associated a p-subgroup D

of G, well-defined up to conjugacy, called a defect group of the block.

This may be defined as a minimal subgroup D of G such that every

module for the block is a direct summand of a module induced from D,

although there are many other equivalent definitions. In a sense, the

defect group controls how complicated the representation theory of the

block is. For example, the defect group is trivial (the “defect zero” case)

if and only if the block is a simple algebra, and the structure of blocks

with cyclic defect group is extremely well understood. The defect groups

of the principal block are the Sylow p-subgroups of G, and so are at least

359
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as large as the defect groups of any other block. Correspondingly, the

principal block typically has a structure at least as complicated as any

other block.

In the case that k has characteristic p dividing � G � , a theme of modular

representation theory since its origins in the work of Brauer has been

that the representation theory of G over k is intimately related to that

of “p-local” subgroups of G, by which we mean normalizers NG � P � of

non-trivial p-subgroups P of G. Typically, especially if G is a large

simple group, the p-local subgroups are far smaller than G, and so to

reduce questions about the representations of G to questions about these

subgroups is a great advance.

One classical theorem along these lines, relating the blocks of kG to

blocks of p-local subgroups is “Brauer correspondence”, which, for a

fixed p-subgroup D of G, is a natural bijection between the blocks of kG

with defect group D and the blocks of kNG � D � with defect group D.

The Brauer correspondent of the principal block of kG is the principal

block of kNG � D � , where D is a Sylow p-subgroup of G.

A more recent example of this theme, this time of a still open conjecture,

is Alperin’s Weight Conjecture [2], which predicts that the number

of non-projective simple modules for kG (or the number of simple

modules, up to isomorphism, for a non-simple block of kG) should be

determined by p-local information. In the case of a block with abelian

defect group, this reduces to a very simple statement, although even

this special case is still open.

Conjecture 1.1 (Alperin). Let B be a block of kG with abelian defect

group D, and let b be the Brauer correspondent block of kNG � D � . Then

B and b have the same number of simple modules.

2 The abelian defect group conjecture

The simple statement of Alperin’s Weight Conjecture for blocks with

abelian defect group invites the question of whether there is some

structural connection between the blocks B and b that explains why

the number of simple modules should be the same. This was given in a

slightly later conjecture of Broué [6], called the Abelian Defect Group
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Conjecture. In its simplest form, it states:

Conjecture 2.1 (Broué). Let B be a block of kG with abelian de-

fect group D, and let b be the Brauer correspondent block of kNG � D � .

Then the derived categories of B and b are equivalent as triangulated

categories.

Since the Grothendieck group K0 � B � is an invariant of the derived cat-

egory, as explained in Keller’s article in this volume, and the rank of

K0 � B � is the number of simple modules of B, this conjecture implies

Alperin’s Weight Conjecture for blocks with abelian defect group, and

also implies that the blocks B and b should share many other invari-

ants. It should be stressed that the blocks B and b are rarely Morita

equivalent, and the smaller block b typically has a significantly simpler

structure than B, so the derived equivalence predicted by the conjecture

gives a lot of useful information about B.

Later in this article we shall see some refinements of the Abelian Defect

Group Conjecture.

3 Symmetric algebras

Because the category of representations of a finite group G over a field

k is equivalent to the category of modules for a ring kG, the group

algebra of G, the general Morita theory for derived categories of module

categories, described in Keller’s article in this volume, applies to this

situation.

However, there are some aspects of the general theory that are simplified

because the group algebra is a symmetric algebra. The traditional

definition is as follows.

Definition 3.1. A finite-dimensional algebra A over a field k is sym-

metric if there is a linear map α : A � k such that

α � xy � � α � yx �

for all x, y � A, and such that the kernel of α contains no non-zero left

or right ideal of A.

A linear map α satisfying these conditions is called a symmetrizing form.
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For example, the group algebra kG of a finite group G, or any block of

the group algebra, has a symmetrizing form α given by

α � �
g � G

λgg � � λ1,

the coefficient of the identity element of G.

There are various equivalent forms of the definition, summarized in the

following proposition. Most of these are well-known, but a complete

proof that they are all equivalent can be found in [106].

Proposition 3.2. Let A be a finite-dimensional algebra over a field k.

The following conditions are equivalent.

(a) A is symmetric.

(b) A and its dual A � � Homk � A, k � are isomorphic as A-bimodules.

(c) Homk � ?, k � and HomA � ?, A � are isomorphic as functors from the

category of right A-modules to the category of left A-modules.

(c’) Homk � ?, k � and HomA � ?, A � are isomorphic as functors from the

category of left A-modules to the category of right A-modules.

(d) For finitely generated projective right A-modules P and finitely

generated right A-modules M , there is an isomorphism of k-

vector spaces

HomA � P,M � � HomA � M,P � � ,

functorial in both P and M .

(d’) For finitely generated projective left A-modules P and finitely gen-

erated left A-modules M , there is an isomorphism of k-vector

spaces

HomA � P,M � � HomA � M,P � � ,

functorial in both P and M .

(e) For objects P and X of the derived category D � A � , where P is

a perfect complex and X is isomorphic to a bounded complex of

finitely generated right A-modules, there is an isomorphism of

k-vector spaces

HomD
	
A 
 � P,X � � HomD

	
A 
 � X,P � � ,
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functorial in both P and X.

(e’) For objects P and X of the derived category D � Aop � , where P

is a perfect complex and X is isomorphic to a bounded complex

of finitely generated left A-modules, there is an isomorphism of

k-vector spaces

HomD
�
Aop � � P,X � � HomD

�
Aop � � X,P � � ,

functorial in both P and X.

Note that condition � d � in the proposition makes it transparent that

the property of being symmetric depends only on the module category,

so that an algebra Morita equivalent to a symmetric algebra is itself

symmetric. Condition � e � does the same for the derived category, so that

an algebra derived equivalent to a symmetric algebra is itself symmetric,

a fact first proved by different means in [100].

For general algebras A and B over a field, it was shown in [100] that if A

and B are derived equivalent, then there is a two-sided tilting complex, a

bounded complex X of A-B-bimodules, finitely generated and projective

as left A-modules and as right B-modules, such that

? � A X : D � A � � D � B �

is an equivalence of derived categories, and that the quasi-inverse equiv-

alence is induced in a similar way by the complex

Y � HomA � X,A � � HomB � X,B �

of B-A-bimodules. For general algebras A and B, the functors

HomA � ?, A � and HomB � ?, B � are not isomorphic, so if X is not a two-

sided tilting complex, there is no reason to expect that HomA � X,A �
and HomB � X,B � should be isomorphic. However, if A and B are

symmetric, then conditions � c � and � c � � of Proposition 3.2 show that

both HomA � X,A � and HomB � X,B � are isomorphic to the vector space

dual X � of X. Hence the following proposition.

Proposition 3.3. Let A and B be derived equivalent finite-dimensional

symmetric algebras over a field k. Then there is a bounded complex X of

A-B-bimodules, finitely generated and projective as left A-modules and

as right B-modules, such that

? � A X : D � A � � D � B �
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is an equivalence with quasi-inverse

? � B X � : D � B � � D � A � ,

In fact, for any complex X of A-B-bimodules, finitely generated and

projective as left A-modules and as right B-modules, the functor

? � X � : D � B � � D � A �

is both left and right adjoint to the functor

? � A X : D � A � � D � B � ,

and the units and counits of these adjunctions are induced by natural

maps of complexes of A-bimodules

X � B X � � A

and

A � X � B X �

and natural maps of complexes of B-bimodules

X � � A X � B

and

B � X � � A X,

and the condition that X is a two-sided tilting complex is just the con-

dition that these maps are all isomorphisms in the derived categories of

A-bimodules and B-bimodules. In fact, since the composition

A � X � B X � � A

is then an isomorphism in the derived category, it is an isomorphism of

bimodules, and so in the category of complexes of bimodules

X � B X � � A
�

Z

for some acyclic complex Z. Similarly

X � � A X � B
�

Z �

for some acyclic complex Z � of B-bimodules.

The previous proposition perhaps explains why tilting complexes for

symmetric algebras seem so numerous. Here is one general construction

of such a tilting complex that has been used many times, for example
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by Okuyama [86].

Proposition 3.4. Let A be a symmetric finite-dimensional algebra, with

indecomposable projective modules � Pi : i � I � . For any subset J � I

there is a tilting complex

T � �
i � I

Ti

for A, where

Tj
� � � � � 0 � Qj � Pj � 0 � . . .

for j � J , where Qj is the projective cover of the largest submodule K of

Pj such that HomA 	 Pi, Pj 
 K � � 0 for all i � I � J , and

Ti
� � � � � 0 � Pi � 0 � 0 � . . .

for i � I � J .

Of course, even if A is a block of a group algebra, the endomorphism

algebra of this tilting complex will often not be. However, to the best

of our knowledge it is still an open question to decide whether every

derived equivalence between blocks of finite groups can be obtained (up

to a shift) by a composition of “tilts”, or inverses of tilts, of this kind.

Here is one other recent theorem about derived equivalence from [106]

that is specific to symmetric algebras.

Theorem 3.5. Let A be a finite-dimensional symmetric algebra over

a field k, and let X1, . . . , Xr be objects of the bounded derived category

Db 	 mod 	 A � � of finitely generated A-modules such that


 Hom 	 Xi, Xj � t � � � 0 for all 1 � i, j � r and all t � 0.


 Hom 	 Xi, Xj � � 0 if i � j, and End 	 Xi � is a division ring for all

i.


 X1, . . . , Xr generate Db 	 mod 	 A � � as a triangulated category.

Then there is another (symmetric) algebra B and an equivalence

D 	 A � � D 	 B �

of derived categories taking the objects X1, . . . , Xr to the simple B-

modules.
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Notice that the conditions are obviously satisfied if X1, . . . , Xr are the

simple A-modules, even if A is not symmetric. However, there are

easy examples to show that the theorem is not in general true for non-

symmetric algebras. For example, if A is the algebra of upper-triangular

2 � 2 matrices over k, and P is the two-dimensional projective module,

and S its simple quotient, then

X1
� S,X2

� P � i �

satisfy the conditions of the theorem for any i � 0, but if i � 1 there

can be no equivalence

D � A � � D � B �

of derived categories taking the objects X1, X2 to the simple B-modules

S1, S2, since Hom � Xi, Xj � 1 � � � 0 for i, j � 	 1, 2 
 but Hom � X2, X1 � i � � �
0, so that we would have Ext1 � Si, Sj � � 0 for all i, j � 	 1, 2 
 , implying

that B must be semisimple, whereas Exti � S2, S1 � i � � � 0. Similar sim-

ple examples show that the theorem is not even true for self-injective

algebras [1].

This theorem has been used, in conjunction with “Linckelmann’s Theo-

rem” (Theorem 7.1 below), to prove several examples of derived equiv-

alence between blocks of group algebras, in [13] and [31], for example.

4 Characters and derived equivalence

Much explicit calculation related to the representation theory of groups,

even modular representation theory, involves characters, which are de-

fined in terms of “ordinary” representations over a field of characteristic

zero. There is a standard framework to relate the ordinary and modular

representation theory.

We will let O be a complete discrete valuation ring with an algebraically

closed quotient field k of characteristic p � 0, and with a field of fractions

of characteristic zero with algebraic closure K. The natural surjection

O � k and the inclusion O � K give functors

? � O k : mod � OG � � mod � kG �

and

? � O K : mod � OG � � mod � KG �
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relating the representation theory of a group G over O to the representa-

tion theory over the fields k and K. Thus the ring O acts as a “bridge”

between the ordinary representation theory (and character theory) of a

group and the modular representation theory.

The completeness of O allows us to lift idempotents, and so the in-

decomposable projective kG-modules lift to indecomposable projective

OG-modules, and the block decomposition

kG � b0 � kG � � � � � � bn � kG �

of kG lifts to a block decomposition

OG � b0 � OG � � � � � � bn � OG �

of OG, so that to give a block of kG is equivalent to giving a block of

OG. A refinement of Broué’s Abelian Defect Group Conjecture is then:

Conjecture 4.1 (Broué). Let B be a block of OG with abelian de-

fect group D, and let b be the Brauer correspondent block of ONG � D � .

Then the derived categories of B and b are equivalent as triangulated

categories.

This is a refinement, in the sense that it implies the previous version,

because if A and B are derived equivalent O-algebras, free as O-modules,

and if X is a two-sided tilting complex for A and B, then it is easy to

see that X � O k is a two-sided tilting complex for A � O k and B � O k,

which are therefore also derived equivalent to one another.

The converse is not true. If A and B are O-algebras, free as O-modules,

and if A � O k and B � O k are derived equivalent, then it is not nec-

essarily true that A and B are derived equivalent. For example, OCp

and O � x � � � xp � are not derived equivalent (being nonisomorphic local

O-algebras), even though kCp and k � x � � � xp � are isomorphic.

However, we shall see in Section 3 that a further refinement of the

Abelian Defect Group Conjecture over k does imply the conjecture over

O.

A two-sided tilting complex X for a pair A and B of derived equivalent

O-algebras similarly gives rise to a two-sided tilting complex X � O K

for A � O K and B � O K, which are therefore also derived equivalent. If

A and B are blocks of finite groups over O, then these K-algebras are

semisimple, with one simple module for each irreducible character of the
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block. But a derived equivalence for such algebras takes a very simple

form: if U1, . . . , Un and V1, . . . , Vn are representatives of the isomorphism

classes of simple modules for A � O K and B � O K respectively, then for

some choice of integers ti and for some permutation σ of � 1, . . . , n � , the

derived equivalence just maps

Ui �� Vσ
�
i � � ti � ,

and so the induced map of Grothendieck groups sends

� Ui � �� 	 
 1 � ti � Vσ
�
i � � .

Since the Grothendieck group can be identified with the group of virtual

characters of the block (i.e., the group of class functions generated by

the characters), this is just a “bijection with signs” between the sets

of irreducible characters of the two blocks. In other words, if Ch 	 A �
denotes the group of virtual characters of A, then a derived equivalence

between blocks A and B over O induces an isometry (with respect to

the usual inner product of characters)

Ch 	 A � � Ch 	 B � .

But more is true. Since, as described in Keller’s article in this volume, a

derived equivalence restricts to an equivalence between the full subcat-

egories of perfect complexes (bounded complexes of finitely generated

projective modules), this isometry restricts to an isomorphism

Chpr 	 A � � Chpr 	 B � ,

where Chpr 	 A � denotes the subgroup of Ch 	 A � generated by the

characters of projective A-modules, motivating the following definition.

Definition 4.2. A perfect isometry between blocks A and B of group

algebras over O is an isometry

Ch 	 A � � Ch 	 B �

that restricts to an isomorphism

Chpr 	 A � � Chpr 	 B � .

Since the virtual characters that are in Chpr 	 A � can be characterized as

those that vanish on p-singular elements of G (i.e., elements whose order

is divisible by p), those isometries that are perfect can be described in
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terms of character values. This is how Broué’s original definition [6] was

formulated.

The existence of a perfect isometry between two blocks gives some ev-

idence for the existence of a derived equivalence. Stronger evidence is

given by a refinement of the notion of a perfect isometry introduced in

the same paper of Broué [6]: that of an isotypy. For simplicity we will

state a simplified version of the definition that applies to the situation

of the Abelian Defect Group Conjecture for principal blocks; the general

definition may be found in Broué’s paper.

In order to formulate the definition, we note that, given two finite groups

G and H, giving a linear map

I : Ch � b0 � OG � � � � Ch � b0 � OH � �

is equivalent to giving a class function µI � Ch � O � G � H � � , where

µI
� �

ζ � Irr
	
b0

	
OG 
 


ζ � I � ζ � ,

Irr � b0 � OG � � denoting the set of irreducible characters of G belonging to

the principal block.

Definition 4.3. Let G and H be finite groups with a common abelian

Sylow p-subgroup P . An isotypy between the principal blocks of OG

and OH is a collection of perfect isometries

I � Q � : Ch � b0 � CG � Q � � � � � Ch � b0 � CH � Q � � � ,

one for each subgroup Q � P , with the following compatibility condition.

Whenever Q � P , x, y � P , x 
 � CG � x � and y 
 � CH � y � , where x 
 and y 

are both p-regular elements (i.e., elements whose order is not divisible

by p),

µI
	
Q 
 � xx 
 , yy 
 � �

{
0 if x and y are not conjugate in G,

µI
	
Q � x � 
 � x 
 , y 
 � if x � y.

Although this definition looks a little complicated, it turns out to be

surprisingly easy to work with, and it is often a lot easier to verify the

existence of an isotypy than of a more general perfect isometry. Many

examples are described in the appendices of Broué’s paper [6] and in

Rouquier’s thesis [111].



370 J. Chuang and J. Rickard

5 Splendid equivalences

Given that a perfect isometry is the evidence, at the level of charac-

ters, of a derived equivalence, the definition of an isotypy at the end of

the last section (a “compatible family” of perfect isometries) raises the

question of what the corresponding definition of a “compatible family”

of derived equivalences is. This is provided by the notion of a splen-

did equivalence. We shall for simplicity deal with the case of principal

blocks as in the original definition in [103], but note that generalizations

to non-principal blocks can be found in the work of Harris, Puig and

Linckelmann [25],[28],[94].

We start by introducing the Brauer construction for modules. Let k be

a field of characteristic p, and let Q be a subgroup of a finite group G.

Then if M � k � Ω � is a permutation module for G (i.e., M has a basis

Ω that is permuted by G), we can form the subspace k � ΩG � spanned by

the fixed points of the action of G on Ω. However, this construction is

not in general functorial, and in fact k � ΩG � depends in general, even up

to isomorphism, on the choice of permutation basis Ω. If Q is a p-group,

however, we can give an alternative description of k � ΩG � that makes it

clear that in this case it does depend functorially on k � Ω � .
In fact, this functor extends to the whole of the module category to give

a functor

BrQ : mod � kG � � mod � kNG � Q � � ,
the Brauer construction with respect to the subgroup Q, where, for a

kG-module M ,

BrQ � M � � MQ � � �
R 	 Q

TrQ
R � QR � 
 ,

the quotient of the Q-fixed points of M by the relative traces from all

proper subgroups R of Q of the R-fixed points.

Now if G and H are finite groups, then a kG-kH-bimodule M may be

regarded as a k � G � H � -module with the action

m � g, h � � g
� 1mh,

and if Q is a p-subgroup of both G and H we can apply the Brauer

construction with respect to the subgroup

∆Q � 
 � q, q � : q � Q � � G � H.
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Since the normalizer NG � H � ∆Q � contains CG � Q � � CH � Q � as a sub-

group, this can be regarded as a functor from the category of kG-kH-

bimodules to the category of kCG � Q � -kCH � Q � -bimodules. We shall de-

note the image of a bimodule M under this functor as M � Q � . For

example, if G � H and M � kG, regarded as a kG-bimodule, then

M � Q � � kCG � Q � .

The Brauer construction is an additive functor, but it is far from being

exact. In fact, it is neither left nor right exact, and if Q is non-trivial then

it kills the free module, and hence all projective modules. It follows that

it does not induce a functor between derived categories in any sensible

fashion. To apply it to derived equivalences, then, we need to strengthen

the definition of a two-sided tilting complex.

Recall from Section 3 that if X is a two-sided tilting complex for sym-

metric algebras A and B, then there are natural maps of complexes of

A-bimodules

X � B X � � A

and

A � X � B X �

and natural maps of complexes of B-bimodules

X � � A X � B

and

B � X � � A X

that are isomorphisms in the appropriate derived categories of bimod-

ules. If they are even isomorphisms in the chain homotopy categories of

bimodules, then we say that X is a split endomorphism two-sided tilting

complex. A similar argument to that in Section 3 then shows that

X � B X � � A
	

Z

for some contractible complex Z of A-bimodules, and

X � � A X � B
	

Z 


for some contractible complex Z 
 of B-bimodules.

If A and B are group algebras over k of groups G and H with a common
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p-subgroup Q, the Brauer construction may be applied to these maps to

get isomorphisms

� X � B X � � � Q � � kCG � Q � ,

etc., in the chain homotopy category of bimodules for the centralizer of

Q. But to get a good interpretation of � X � B X � � � Q � we need extra

conditions.

Definition 5.1. Let G and H be finite groups with a common abelian

p-subgroup P . A splendid tilting complex for the principal blocks of kG

and kH is a split endomorphism two-sided tilting complex whose terms

are all direct sums of direct summands of bimodules of the form

kG � kR kH

for subgroups R of P . A derived equivalence induced by such a complex

is called a splendid equivalence.

Considered as a k � G � H � -module, the bimodule kG � kR kH is a permu-

tation module with permutation basis the set of cosets of ∆R in G � H.

In [103] it is proved that if X is such a splendid tilting complex,

then � X � kH X � � � Q � is isomorphic to X � Q � � kCH

�
Q 	 X � Q � � for any

subgroup Q of P , which is the key to proving:

Theorem 5.2. Let X be a splendid tilting complex for the principal

blocks of group algebras kG and kH, where G and H are finite groups

with a common abelian Sylow p-subgroup P . Then X � Q � is a splendid

tilting complex for the principal blocks of kCG � Q � and kCH � Q � for any

subgroup Q of P .

Thus a splendid tilting complex gives rise to a family of derived equiva-

lences for centralizers, just as an isotypy is a family of perfect isometries

for centralizers. However, to apply the Brauer construction sensibly, we

need to work over k, not O, since there is no corresponding functorial

construction that takes permutation OG-modules to permutation

ONG � Q � -modules for a p-subgroup Q of G. However, we can extend

the definition of a splendid tilting complex in a straightforward way to

blocks over O.

Definition 5.3. Let G and H be finite groups with a common abelian

p-subgroup P . A splendid tilting complex for the principal blocks of OG



Representations of finite groups and tilting 373

and OH is a split endomorphism two-sided tilting complex whose terms

are all direct sums of direct summands of bimodules of the form

OG � OR OH

for subgroups R of P .

Then the second important property of splendid tilting complexes,

proved in [103], is the following lifting theorem.

Theorem 5.4. Let G and H be finite groups with a common abelian

p-subgroup P . If X is splendid tilting complex for the principal blocks of

kG and kH, then there is a splendid tilting complex �X for the principal

blocks of OG and OH, unique up to isomorphism, such that

X � �X � O k.

Hence a splendid tilting complex X, defined over k, induces a family of

splendid tilting complexes �X � Q � defined over O, and so it does induce a

family of perfect isometries, which can be shown to be an isotypy [103].

6 Derived equivalence and stable equivalence

Since a block A of a group algebra kG is a self-injective algebra, the

module category mod � A � is a Frobenius category, and so, as described

in Keller’s article in this volume, its associated stable category mod � A � ,
called the stable module category of A, is a triangulated category. In fact,

it is closely related to the derived category, as there is an equivalence of

triangulated categories

Db � mod � A � � � Perf � A � �� mod � A �

from the quotient of the bounded derived category of finitely generated

modules by the triangulated subcategory of perfect complexes to the

stable module category. It follows that if two blocks are derived equiv-

alent then they are stably equivalent, meaning that the stable module

categories are equivalent. In fact, more than this is true: there is a stable

equivalence of Morita type, which means a stable equivalence induced by

an exact functor between the module categories [98].

A more general condition that guarantees a stable equivalence of Morita
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type, analogous to properties of two-sided tilting complexes or split endo-

morphism two-sided tilting complexes, is that there should be a bounded

complex X of A-B-bimodules, finitely generated and projective as left

A-modules and as right B-modules, such that

X � B X � � A
�

Z

for some perfect complex Z of A-bimodules, and

X � � A X � B
�

Z �

for some perfect complex Z � of B-bimodules. In fact, if such a complex

X exists, it is always possible to choose it to be simply a bimodule (i.e.,

a complex concentrated in degree zero), but as we shall see, it can be

more natural to allow genuine complexes.

Although derived equivalence of blocks implies stable equivalence, the

converse is false in general, as described in Section 10, although we

know of no counterexamples for blocks with abelian defect group. In

the majority of recent cases where derived equivalences of blocks have

been verified, there was a stable equivalence already known that was

lifted to a derived equivalence.

In fact, Rouquier [115] shows that, at least with some plausible strength-

ening of the definition of a splendid tilting complex, the problem of lifting

stable equivalences to splendid equivalences is the only obstruction to

proving the Abelian Defect Group Conjecture. He gives there a partial

converse to Theorem 5.2, providing a method to “glue” local splendid

tilting complexes to construct a global complex that induces a stable

equivalence. It is because the Brauer construction with respect to a

non-trivial p-subgroup Q kills all projective modules that properties of

the global complex can only be proved at the level of the stable module

category rather than the derived category.

In particular, Rouquier shows, using known facts about splendid equiva-

lence for blocks with cyclic defect group [112], that if B is a block whose

defect group is abelian of p-rank two (i.e., of the form Cpa � Cpb) or

isomorphic to C2 � C2 � C2, then the block B is stably equivalent to its

Brauer correspondent.
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7 Lifting stable equivalences

Although the general problem seems very hard, several powerful

techniques have been developed recently for lifting stable equivalences

of Morita type to derived equivalences (or splendid equivalences).

These are mostly based on the following simple but extremely useful

theorem [64], now commonly known as “Linckelmann’s Theorem”.

Theorem 7.1 (Linckelmann). Let A and B be finite-dimensional self-

injective algebras over a field k with no projective simple modules (for

example, non-semisimple blocks), and suppose that

F : mod � A � �� mod � B �

is a stable equivalence of Morita type preserving simple modules (i.e.,

such that S � mod � A � is isomorphic to a simple A-module if and only

if F � S � � mod � B � is isomorphic to a simple B-module). Then F is

induced (up to isomorphism) by an equivalence

mod � A � �� mod � B �

of module categories.

Okuyama [86] was the first to systematically exploit this to lift stable

equivalences to derived equivalences, and the method has been used

extensively since then.

The idea is as follows. Suppose that B is a block with Brauer correspon-

dent b. Typically B is a complicated block of a large group, but b is a

much simpler block of a much smaller group, and explicit calculations

may be possible with the representations of b that are far beyond reach

for the representations of B. Thus we would like to be able to work as far

as possible with b and not with B. To quote one striking example, the

Monster sporadic group M has an abelian Sylow 11-subgroup P of order

121, and it is known, for example by the results of Rouquier discussed

in the previous section, that in characteristic 11 the principal blocks of

M and NM � P � are stably equivalent, and of course they are conjectured

to be derived equivalent. The order of M is

808017424794512875886459904961710757005754368000000000,

whereas the order of NM � P � is

72600.
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Suppose that we know a stable equivalence

F : mod � B � �� mod � b �

of Morita type between B and b. Suppose further that we can construct

a derived equivalence between b and another algebra C which induces a

stable equivalence such that the composition

mod � B � �� mod � b � �� mod � C �

takes the simple B-modules to the simple C-modules. Then by Linck-

elmann’s Theorem the algebras B and C are Morita equivalent, and so,

since b and C are derived equivalent, it follows that B and b are de-

rived equivalent. Notice that all we need to know about B to apply this

method is the images of the simple B-modules under the stable equiv-

alence F (we admit that even this is far from known in the example of

the Monster group described above).

Okuyama [86],[84] and others have used this method, constructing the

derived equivalent algebra C using a sequence of (one-sided) tilting com-

plexes of the kind described in Section 3. In all these cases he was also

able to prove that the derived equivalences of blocks that he produced

were actually splendid equivalences. Theorem 3.5 is designed to produce

derived equivalences where the images of simple modules are known, and

Chuang [13], Holloway [31] and others have used this theorem in con-

junction with Linckelmann’s Theorem to prove instances of the Abelian

Defect Group Conjecture.

8 Clifford theory

Clifford theory relates the representation theory of a group �G with a

normal subgroup G to that of G and the quotient group �G � G.

Here we shall give just a taste of Clifford theory in the context of de-

rived equivalences, focusing on the easiest situation, when the order of

�G � G is not divisible by p, and describing applications to the Abelian

Defect Group Conjecture. The main idea is to lift derived equivalences

between blocks of normal subgroups of two groups with isomorphic quo-

tient groups to derived equivalences between blocks of the two groups

themselves.

To be more precise, let G and H be normal subgroups of finite groups
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�G and �H with isomorphic quotients �G � G � �H � H � E of order not

divisible by p. Let A and B be blocks of OG and OH invariant under

conjugation by elements of E, so that �A � O �G.A and �B � O �H.B are

products of blocks of O �G and of O �H.

We say that a two-sided tilting complex X for A and B is E-liftable if

X, regarded as a complex of O � G � H � -modules, extends to a complex

of O∆-modules, where ∆ � � � �g, �h � 	 �G � �H 
 �gG � �hH 	 E � . Of course

if an extension exists, it may not be unique.

Andrei Marcus [69] proves a lifting criterion for derived equivalences.

Theorem 8.1 (Marcus). Suppose X is an E-liftable two-sided tilting

complex for A and B. Then �X � Ind �G 
 �H
∆ � X � is a two-sided tilting

complex for �A and �B. Moreover if X is splendid then �X is splendid as

well.

This is useful for verifying cases of the Abelian Defect Group Conjec-

ture, as we now explain, restricting to the case of principal blocks for

simplicity’s sake. Let �G be a group with normal subgroup G, and let P

be an abelian Sylow p-subgroup of �G contained in G. By the Frattini

argument we have �G � G � N �G � P � � NG � P � � : E.

Suppose that the Abelian Defect Group Conjecture is true for the princi-

pal block of OG and that moreover there exists an E-liftable (splendid)

two-sided tilting complex X for the principal blocks of OG and ONG � P � .
Then a summand of the complex �X of O � �G � N �G � P � � -modules provided

by Marcus’s theorem is a (splendid) two-sided tilting complex for the

principal blocks of O �G and ON �G � P � , confirming the truth of the Abelian

Defect Group Conjecture for the principal block of O �G.

One of the most impressive applications of this Clifford theory is a

reduction theorem for the Abelian Defect Group Conjecture, due to

Andrei Marcus [69], which parallels some of the work of Fong and

Harris [21] on perfect isometries. The starting point for the approach

taken by Fong and Harris is a structure theorem for finite groups with

abelian Sylow p-subgroups they deduced from the classification of finite

simple groups. Marcus uses this together with Theorem 8.1 to prove

that the the Abelian Defect Group Conjecture, at least for principal

blocks, essentially reduces to the case of simple groups.

Theorem 8.2 (Marcus). Suppose that for any simple group G with
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abelian Sylow p-subgroup P and any subgroup E of Aut � G � � G of order

not divisible by p there exists an E-liftable two-sided tilting complex for

the principal blocks of OG and ONG � P � . Then the Abelian Defect Group

Conjecture is true for all principal blocks of all finite groups (with abelian

Sylow p-subgroups).

Because of the nature of Fong and Harris’s structure theorem, in order to

verify the Abelian Defect Group Conjecture for the principal block of OL

for a particular group L, it in fact suffices to establish the hypothesis of

Theorem 8.2 for all simple groups G isomorphic to a subnormal subgroup

of L.

In some situations it may be easier to prove the Abelian Defect Group

Conjecture for a group �G than for a normal subgroup G. So it makes

sense to have a counterpart to Theorem 8.1, giving conditions for

‘descending’ from �G to G. A hint for how to do this comes from the

observation that the complex �X provides something stronger than an

equivalence of derived module categories: the direct sum decomposi-

tions �A � �
e � EAe and �B � �

e � EBe give �A and �B the structure of

group-graded algebras, and �X is an complex of E-graded bimodules

inducing an equivalence of derived categories of E-graded modules.

Andrei Marcus [70] proves the following converse to Theorem 8.1.

Theorem 8.3 (Marcus). Suppose �Y is a complex of E-graded O � �G �
�H 	 -modules inducing an equivalence of the derived categories of E-graded

modules over �A and �B. Then the 1-component Y � �Y1 of �Y is a two-

sided tilting complex for A and B.

Marcus [79] uses this to deduce the truth of the Abelian Defect Group

Conjecture for alternating groups from the known result for symmetric

groups.

9 Cases for which the Abelian Defect Group Conjecture has

been verified

In the list below, B will denote a block of OG with abelian defect group

D, and b will be its Brauer correspondent, a block of ONG � D � , so that

the conjecture predicts that B and b should have equivalent derived cat-

egories. Actually, in all these cases the derived equivalences are known

to be induced by splendid two-sided tilting complexes.
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The webpage

www.maths.bris.ac.uk/~majcr/adgc/

constructed by Jeremy Rickard and Naoko Kunugi contains a list of

known examples where the Abelian Defect Group Conjecture has been

verified, and is occasionally updated as new examples are found. It was

used to help compile the list below.

(1) General families of blocks.

� All blocks with cyclic defect group.

- Rickard [98], Linckelmann [60], and Rouquier [112], [114].

� All blocks of p-solvable groups.

- Dade [17], Puig [89], Harris and Linckelmann [25]. In this

case, the blocks B and b are Morita equivalent.

� All blocks with defect group C2 � C2.

- Rickard [103], Linckelmann [61], [62] and Rouquier [115].

� All principal blocks with defect group C3 � C3.

- Koshitani and Kunugi [47]. This depends on the classifica-

tion of finite simple groups, and uses results of Okuyama

and others mentioned below for specific groups, and general

methods due to Marcus [69].

(2) Symmetric groups and related groups.

� All blocks of symmetric groups with defect groups of order p2.

- Chuang [12].

� All blocks of symmetric groups with abelian defect groups.

- Rickard [97], Chuang and Kessar [14], Chuang and Rouquier

[15].

� The principal block of the alternating group A5, p � 2. (Defect

group C2 � C2.)

- Rickard [103].

� The principal blocks of the alternating groups A6, A7, and A8,

p � 3. (Defect group C3 � C3.)
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- Okuyama [86].

� All blocks of alternating groups with abelian defect groups.

- Marcus [79]. This is deduced from the case of symmetric

groups using Clifford theory.

(3) Sporadic groups and related groups

� The principal blocks of the Mathieu groups M11,M22,M23, p �

3. (Defect group C3 � C3.)

- Okuyama [86].

� The principal block of the Higman-Sims group HS, p � 3.

(Defect group C3 � C3.)

- Okuyama [86].

� The principal block of the Janko group J1, p � 2. (Defect

group C2 � C2 � C2.)

- Gollan and Okuyama [24].

� The principal block of the Hall-Janko group HJ � J2, p � 5.

(Defect group C5 � C5.)

- Holloway [31].

� The non-principal block of the O’Nan group O � N with defect

group C3 � C3.

- Koshitani, Kunugi and Waki [48].

� The non-principal block of the Higman-Sims group HS with

defect group C3 � C3.

- Holm [34], Koshitani, Kunugi and Waki [48].

� The non-principal block of the Held group He with defect group

C3 � C3.

- Koshitani, Kunugi and Waki [49].

� The non-principal block of the Suzuki group Suz with defect

group C3 � C3.

- Koshitani, Kunugi and Waki [49].
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� The non-principal block of the double cover 2.J2 of the Hall-

Janko group with defect group C5 � C5.

- Holloway [31].

(4) Groups of Lie type in defining characteristic

� The principal block of PSL2 � pn � in characteristic p. (Defect

group Cp
n.)

- Okuyama [84] for the general case; earlier Chuang [13] for

the case n � 2 and Rouquier [112] for the case pn � 8.

� The non-principal block with full defect of SL2 � p2 � in charac-

teristic p. (Defect group Cp � Cp.)

- Holloway [30]

(5) Groups of Lie type in non-defining characteristic

� The principal block in characteristic p of the group G � GF of

rational points of a connected reductive group G defined over

the field Fq of q elements, where p is a prime dividing q � 1 but

not dividing the order of the Weyl group of G.

- This follows from result of Puig [90]. In this case the blocks

B and b are Morita equivalent.

- This general theorem includes, for p � 3, some cases where

G has Sylow 3-subgroup C3 � C3, which were needed for the

theorem of Koshitani and Kunugi. Namely: G � Sp4 � q � ,
where q � 4 or 7 � mod 9 � ; G � PSU4 � q2 � or PSU5 � q2 � ,
where q � 4 or 7 � mod 9 � (see also Koshitani and Miyachi

[52]). Of course, Puig’s theorem also deals with the case

q � 1 � mod 9 � , but then the Sylow p-subgroup is larger than

C3 � C3.

� The principal blocks of the Ree groups R � 32n � 1 � � 2G2 � 32n � 1 � ,
p � 2. (Defect group C2 � C2 � C2.)

- It follows from work of Landrock and Michler [59] that the

principal blocks of R � 32n � 1 � are all Morita equivalent (for

different values of n). This reduces the conjecture to the

case n � 0, which is known, since R � 3 � � SL2 � 8 � .3.

� The principal blocks of SU3 � q2 � , where q is a prime power, and
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p � 3 is a prime dividing q � 1. (Defect group Cr � Cr, where

r � pa is the largest power of p dividing q � 1.)

- Kunugi and Waki [58].

� The principal blocks of PSL3 � q � , p � 3, where q � 4 or 7

� mod 9 � . (Defect group C3 � C3.)

- Kunugi [54] proves that these blocks are all Morita equiva-

lent. The conjecture then follows since Okuyama [86] proved

the case of PSL3 � 4 � .

� The principal blocks of Sp4 � q � , p � 3, where q � 2 or 5

� mod 9 � . (Defect group C3 � C3.)

- It follows from work of Okuyama and Waki [88] that these

blocks are all Morita equivalent. The conjecture then follows,

because Sp4 � 2 � is isomorphic to the symmetric group S6.

� The principal blocks of Sp4 � q � , where q is a prime power and p

is an odd prime dividing q � 1. (Defect group Cr � Cr, where

r � pa is the largest power of p dividing q � 1.)

- Kunugi, Okuyama, and Waki [57] for the general case; earlier

Holloway [31] for the case q � 4, p � 5.

� The principal blocks of PSU3 � q2 � , p � 3, where q � 2 or 5

� mod 9 � . (Defect group C3 � C3.)

- Koshitani and Kunugi [46] prove that the blocks B and b are

Morita equivalent.

� The principal blocks of GL4 � q � , p � 3, where q � 2 or 5

� mod 9 � . (Defect group C3 � C3.)

- Koshitani and Miyachi [51] prove that these blocks are

all Morita equivalent. The conjecture then follows since

Okuyama [86] proved the case of GL4 � 2 � , which is isomorphic

to the alternating group A8.

� The principal blocks of GL5 � q � , p � 3, where q � 2 or 5

� mod 9 � . (Defect group C3 � C3.)

- Koshitani and Miyachi [51] prove that the blocks B and b

are Morita equivalent.
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� The principal blocks of G2 � q � , where q is a prime power and

p � 3 is a prime dividing q � 1. (Defect group Cr � Cr, where

r � pa is the largest power of p dividing q � 1.)

- Okuyama [85] in general; earlier Usami and Yoshida in the

case q � 4, p � 5.

� Unipotent blocks of weight 2 of general linear groups in non-

defining characteristic p. (Defect group Cr � Cr, for r � pa

some power of p.)

- Hida and Miyachi [29], Turner [121].

10 Nonabelian defect groups

As yet there is no general conjecture for blocks of finite groups with

arbitrary defect group that extends the Abelian Defect Group Conjec-

ture. The most naive attempt at generalization fails because a block

with a nonabelian defect group may have more simple modules than its

Brauer correspondent block. For example, the principal block of S4 in

characteristic 2 has two simple modules while its Brauer correspondent,

the principal block of the dihedral group D8, has only one.

Even in cases where a block and its Brauer correspondent do have the

same number of simple modules, they may still not be derived equivalent.

Consider for example a finite group G with a (not necessarily Abelian)

p-Sylow subgroup P with the property that P has trivial intersection

with any other p-Sylow subgroup. In this situation, Alperin’s weight

conjecture predicts that the principal blocks of kG and kNG � P � have the

same number of simple modules. Moreover it is known that induction

and restriction of modules induce a stable equivalence of Morita type

between the blocks. However this cannot in general be improved to a

derived equivalence; one of the smaller counterexamples is G � Sz � 8 � in

characteristic 2 [16, 108].

Nonetheless there are interesting examples of derived (or even splendid)

equivalences between blocks with nonabelian defect groups, a few of

which are listed below.

(1) Two blocks of symmetric groups are splendidly equivalent if and

only if they have isomorphic defect groups [15]. The smallest
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example involving nonabelian defect groups is a splendid equiva-

lence between the principal blocks of OS4 and OS5, p � 2. Here

the defect group is a dihedral group of order 8.

(2) Alvis-Curtis duality [10]. This is a self-equivalence of the derived

category for any finite reductive group in non-defining character-

istic.

(3) The principal blocks of G2 � q � , p � 3, where q � 2 or 5 � mod 9 � ,

are all Morita equivalent [129]. The defect groups are extraspecial

of order 27 and exponent 3.

(4) The principal blocks of PGL3 � q � and PGU3 � q2 � , p � 3, where q

is a prime power such that q � 1 is divisible by 3, are splendidly

equivalent [128, 56]. The defect groups are extraspecial of order

27 and exponent 3.
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(227):Exp. No. 781, 4, 171–208, 1995. Séminaire Bourbaki, Vol. 1993/94.
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[15] Joseph Chuang and Raphaël Rouquier. Derived equivalences for sym-
metric groups and sl(2)-categorification. math.RT/0407205.

[16] Gerald Cliff. On centers of 2-blocks of Suzuki groups. J. Algebra,
226(1):74–90, 2000.

[17] Everett C. Dade. A correspondence of characters. In The Santa Cruz
Conference on Finite Groups (Univ. California, Santa Cruz, Calif.,
1979), pages 401–403. Amer. Math. Soc., Providence, R.I., 1980.

[18] Michel Enguehard. Isométries parfaites entre blocs de groupes
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Morita theory in stable homotopy theory

Brooke Shipley

Abstract

We discuss an analogue of Morita theory for ring spectra, a thickening

of the category of rings inspired by stable homotopy theory. This follows

work by Rickard and Keller on Morita theory for derived categories. We

also discuss two results for derived equivalences of DGAs which show

they differ from derived equivalences of rings.

1 Introduction

Although the usual paradigm in algebraic topology is to translate topo-

logical problems into algebraic ones, here we discuss the translation of

algebra into topology. Specifically, we discuss an analogue of Morita

theory for a thickening of the category of rings inspired by stable ho-

motopy theory. Here rings in the classical sense correspond to ordinary

cohomology theories, whereas “rings up to homotopy” correspond to

generalized cohomology theories. Although these generalized rings have

a considerable history behind them, only recent progress has allowed the

wholesale transport of algebraic methods into this domain.

The topological analogue of Morita theory is very similar to the

following two algebraic versions. To emphasize this similarity we

delay discussion of the technical terminology used in these algebraic

statements. We include the third condition below since it is the most

familiar criterion for classical Morita equivalences, but we concentrate
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on the equivalence of the first two conditions in the other contexts.

Theorem 1.1. Two rings R and R � are Morita equivalent if the follow-

ing equivalent conditions hold.

(1) The categories of right modules over R and R � are equivalent.

(2) There is a finitely generated projective (strong) generator M in

Mod-R � such that the endomorphism ring � ,R � � � M,M � is isomor-

phic to R.

(3) There is an R-R � bimodule N such that � � R N : Mod-R � �

Mod-R � is an equivalence of categories.

Next we state a reformulation from [8] of Rickard’s characterization of

equivalences of derived categories [36, 37]; see also [18, 9.2] and [21].

Theorem 1.2. Two rings R and R � are derived equivalent if the fol-

lowing equivalent conditions hold.

(1) The unbounded derived categories of R and R � are triangulated

equivalent.

(2) There is a compact generator M of D � R � � such that the graded

endomorphism ring in the derived category, D � R � � � M,M �
�
, is

isomorphic to R (concentrated in degree zero).

If M satisfies the conditions in (2), it is called a tilting complex.

For the analogue in stable homotopy theory, one must make the appro-

priate changes in terminology. The real difference lies in the meaning of

“ring” and “equivalence”; we devote a section below to defining each of

these terms. In Section 2 we introduce “abelian groups up to homotopy”

or spectra and the associated “rings up to homotopy” or ring spectra. Al-

though spectra are the main object of study in stable homotopy theory

and have been studied for almost forty years, only recent work has made

the definitions of ring spectra easily accessible. In Section 3 we consider

a notion of “up to homotopy” equivalences of categories, or Quillen

equivalences. Here “homotopy” is determined by defining Quillen model

structures on the relevant categories. This extra structure allows one to

apply standard techniques of homotopy theory in non-standard settings.

Theorem 1.3 ([43], [10]). The following two statements are equivalent

for ring spectra R and R � .
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(1) The Quillen model categories of R-module spectra and R � -module

spectra are Quillen equivalent.

(2) There is a compact generator M in Ho � R � -modules � such that

the derived endomorphism ring spectrum HomR � � M,M � is weakly

equivalent to R.

The proofs of these three statements basically have the same format.

In each situation, one can prove that � 1 � implies � 2 � by noting that the

image of R under the given equivalence has the properties required of M .

For � 2 � implies � 1 � , the conditions on M are exactly what is needed to

show that the appropriate analogue of � ,R � � � M, � � induces the necessary

equivalence. For example, in the classical statement one asks that M is a

finitely generated projective module to ensure that � ,R � � � M, � � preserves

sums (and is exact). In a triangulated category T , M is compact if

T � M, � � preserves sums. (For example, in D � R � a bounded complex

of finitely generated projectives is compact [3] and conversely [18, 5.3],

[29].) Also, if M is compact then it is a (weak) generator of T if it detects

trivial objects; that is, an object X of T is trivial if and only if there

are no graded maps from M to X, T � M,X �
�

� 0. (For triangulated

categories with infinite coproducts this is shown to be equivalent to the

more common definition of a generator in [43, 2.2.1].) See [41] for a more

detailed survey developing the three theorems above.

The topological analogue of Morita theory has had many applications

in stable homotopy theory, see Remark 3.5, but here we discuss some

algebraic applications. In the last two sections of this paper we discuss

results for derived equivalences of rings and differential graded algebras.

The first of these results shows that any derived equivalence of rings

lifts to the stronger “up to homotopy” equivalence mentioned above;

see Theorem 4.1. As a consequence, all possible homotopy invariants

are preserved by derived equivalences of rings, including algebraic K-

theory; see Corollary 4.2. The next results show that this is not the

case for differential graded algebras. Example 4.5 produces two DGAs

whose derived categories are equivalent as triangulated categories but

which have non-isomorphic K-theories. In Section 5 we also give an

explicit example of a derived equivalence of differential graded algebras

that does not arise from an algebraic tilting complex. Instead there is

a topological tilting spectrum which comes from considering DGAs as

examples of ring spectra.
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2 Spectral Algebra

Before considering “rings up to homotopy” we must consider “abelian

groups up to homotopy”. The analogue of an abelian group here is

a spectrum. Each spectrum corresponds to a generalized cohomology

theory. For example, the Eilenberg-Mac Lane spectrum HA is associ-

ated with ordinary cohomology with coefficients in the abelian group A.

Another well-known cohomology theory is complex K-theory; K � � X �

basically classifies the complex vector bundles on X and the associated

spectrum is denoted K. The analogue of a ring is then a generalized

cohomology theory with a product. Both HA and K are ring spectra;

the associated products are the cup product and the product induced

by the tensor product of vector bundles.

At a first approximation, a spectrum is a sequence of pointed spaces.

Each of these spaces represents one degree of the cohomology theory;

for example Hn � X;A � , the nth ordinary cohomology of a space X, is

isomorphic to homotopy classes of maps from X with a disjoint base

point added to K � A,n � , denoted � X � ,K � A,n � � . Here K � A,n � is the

Eilenberg-Mac Lane space whose homotopy type is determined by hav-

ing homotopy concentrated in degree n, πnK � A,n � � A; for example,

K � Z, 1 � is the circle S1. Complex K-theory is represented by the infinite

unitary group U in odd degrees and by the classifying space cross the

integers, BU � Z, in even degrees.

One needs additional structure on a sequence of pointed spaces

though to make sure the associated homology theory satisfies the

Eilenberg-Steenrod axioms for a homology theory. (Note that since

we are considering generalized homology theories here we remove the

dimension axiom.) To introduce this structure we need the following

pointed version of the Cartesian product of spaces. The smash product

should be thought of as an analogue of the tensor product in algebra;
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here the base point acts like a zero element.

Definition 2.1. The smash product X � Y of two pointed spaces X

and Y with base points ptX and ptY is given by X � Y � X � Y � � X �

ptY � � � ptX � Y � . The suspension of a pointed space X, ΣX is defined

by S1 � X.

Finally we give the formal definition of a spectrum.

Definition 2.2. A spectrum Y is a sequence of pointed spaces

� Y1, Y2, � � � , Yn, � � � � with structure maps ΣYn � 	 Yn 
 1. A map of spec-

tra f : Y � 	 Z is given by a sequence of maps fn : Yn � 	 Zn which

commute with the structure maps.

Given any pointed space X, there is an associated suspension spectrum

Σ � X given by � X,ΣX,Σ2X, � � � � . A particularly important example

is the sphere spectrum, S � Σ � S0 given by � S0, S1, S2, � � � � since the

suspension of the n-sphere is the n � 1-sphere.

We should mention here that in general the association of a cohomology

theory to a spectrum Y is not as simple as the formula given for HA

and K. We explain this point in Remark 3.2.

As mentioned above, a ring spectrum is a spectrum associated to a

generalized cohomology theory with a product. Ordinary cohomology

theory with coefficients in a ring R has such a product given by the

cup product Hp � X;R � 
 Hq � X;R � � 	 Hp 
 q � X;R � . This product

is induced by a compatible family of maps on the associated spaces:

K � R, p � � K � R, q � � 	 K � R, p � q � . Basically then, a ring spec-

trum R is a spectrum with compatibly associative and unital products

Rp � Rq � 	 Rp 
 q. The unital condition here ensures that these prod-

ucts interact in a compatible way with the suspension structure as well.

Unfortunately, although this simple outline is a good beginning for the

definition of ring spectra, no one has actually been able to finish it in a

way that captures the objects we actually care about.

One wants to define a smash product on the category of spectra which

acts like a tensor product, that is, is a symmetric monoidal product.

Then the ring spectra would be spectra R with an associative and uni-

tal product map R � R � 	 R. The problem here is that one must

choose a sequence of spaces to define a spectrum R � R from among

the two-dimensional array of spaces Rp � Rq. Boardman gave the first
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approximation to defining such a smash product; his version is only

commutative and associative up to homotopy [2]; see also [1, III]. Using

this smash product one can instead consider A � or E � ring spectra,

which are associative or commutative rings up to all higher homotopies

[28]. These definitions are cumbersome in comparison to the algebraic

analogues though.

In 1991, Gaunce Lewis published a paper which seemed to imply that

these definitions were as good as could be [23]. He showed that no smash

product exists which satisfies five reasonable axioms. One of his axioms

was that the smash product is strictly commutative and associative;

the other axioms asked for reasonable relationships between the smash

product for spectra and the smash product for spaces.

Luckily, it turns out that Lewis’ axioms were just a bit too strong. In the

last few years, several new ways of defining categories of spectra with a

good smash product have been discovered. In these categories the smash

product acts like a tensor product and the usual algebraic definitions

capture the correct notion of ring, algebra and module spectra. This has

made it possible to really do algebra in the setting of stable homotopy

theory.

Rather than give an overview of the different categories and products

that have been defined, we concentrate on the one version, symmetric

spectra, which has proved most useful for comparisons with algebra.

The definitions for symmetric spectra are also the closest to the simple

approximate definitions above. Because the different models for spectra

all agree ‘up to homotopy’, in a way we discuss in Remark 3.4, one

can always choose to use whichever category is most convenient to the

problem at hand.

Definition 2.3 ([17]). A symmetric sequence is a sequence of pointed

spaces, � X1, X2, � � � � , with an action of Σn, the nth symmetric group,

on Xn, the nth space. For two symmetric sequences X and Y , define

X � Y as the sequence with � X � Y � n
� �

p � q � n Σn 	 Σp 
 Σq
� Xp 	 Yq � .

The suspension spectra introduced above are examples of symmetric

sequences with the symmetric action taking place on the suspension

coordinates. That is, ΣnX � S1 	 S1 � � � S1 	 X and the copies of S1 are

permuted. In particular, the sequence of spheres, S, is a commutative

ring under this product; specifically, there is an associative, commuta-

tive and unital map S � S � � S induced by the Σp 
 Σq-equivariant
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maps Sp � Sq � � Sp � q. Here we define Sn � � S1 � � n � S1 � S1 � � � S1.

Definition 2.4 ([17]). A symmetric spectrum is a module over the com-

mutative ring S in the category of symmetric sequences. This module

structure on a symmetric sequence X is determined by an associative

and unital map αX : S 	 X � � X. Unraveling this further, a sym-

metric spectrum X is a symmetric sequence � X1, X2, � � � � with compat-

ible Σp 
 Σq-equivariant maps Sp � Xq � � Xp � q. The smash product

X � Y � X 	 S Y is the coequalizer of the two maps 1 	 αY , αX 	 1 from

X 	 S 	 Y to X 	 Y . Similarly, a symmetric ring spectrum is an S-algebra;

specifically, a symmetric ring spectrum R is a symmetric sequence with

compatible unit map η : S � � R and associative multiplication map

µ : R 	 R � � R.

The components of the multiplication map for a symmetric ring spec-

trum R are Σp 
 Σq equivariant maps Rp � Rq � � Rp � q. For the rest

of this article we shorten “symmetric ring spectrum” to just “ring spec-

trum”; in particular, note that a commutative symmetric ring spectrum

would have the added condition that µτ � µ where τ is the twist map

on R � R. For R a (commutative) ring spectrum, the definitions of

R-modules and R-algebras follow similarly.

The Eilenberg-Mac Lane spectrum HR for R any classical ring plays an

important role in this paper. Since we want HR to be a ring spectrum

(commutative if R is), we need to be careful about our choice of the

spaces K � R,n � . It is easiest to define K � R,n � as a simplicial set and then

take its geometric realization if we want to work with topological spaces;

see [14, 27]. (Actually, throughout this paper “space” can be taken to

mean either simplicial set or topological space.) Define the simplicial set

S1 to be ∆ � 1 � 
 �
∆ � 1 � , the one-simplex with its two endpoints identified.

Then define HRn
� K � R,n � to be the simplicial set which in level k

is the free R-module with basis the non-basepoint k-simplices of Sn �
� S1 � � n [17, 1.2.5].

3 Quillen model categories

In algebra one considers derived categories; given an abelian category

A, the derived category of A, D � A � , is the localization obtained from the

category Ch � A � of (unbounded) chain complexes in A by inverting the

quasi-isomorphisms, or maps which induce isomorphisms in homology.
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The analogues in homotopy theory are homotopy categories; beginning

with a category C and a notion of weak equivalence the homotopy cate-

gory Ho � C � is obtained by inverting the weak equivalences. By requiring

more structure on C, namely a Quillen model structure, one can avoid

the set theoretic difficulties which exist when inverting a general class of

morphisms. This extra structure also enables the application of standard

techniques of homotopy theory and captures more homotopical informa-

tion than the homotopy category alone; see Section 5 for an example of

two non-Quillen equivalent model categories with equivalent homotopy

categories.

A Quillen model category is a category C with three distinguished types

of maps called weak equivalences, cofibrations and fibrations which

satisfy the five axioms below [35]. A modern variation on these axioms

appears in [16], and [11] is a very good, short introduction to model

categories. It may be useful when reading these axioms to keep a couple

of archetypal examples in mind. The category of bounded below chain

complexes of R-modules Ch � � R � , is a Quillen model category with weak

equivalences the quasi-isomorphisms, cofibrations the injections with

levelwise projective cokernels and fibrations the surjections. Similarly,

Ch � � R � with the same weak equivalences, cofibrations the injections

and fibrations the surjections with levelwise injective kernels is also

a Quillen model category. These structures can both be extended to

the category of unbounded chain complexes but the cofibrations in the

first (projective) case and the fibrations in the second (injective) case

are less explicitly defined [16]. The homotopy categories associated

to these model categories are equal (as triangulated categories) to the

corresponding (bounded or unbounded) variants of the derived category

of R; see [49, 10.3.2].

Axioms 3.1 ([35]). Axioms for a Quillen model category.

(1) C admits all finite limits and colimits.

(2) If two out of three of f, g and gf are weak equivalences, so is the

third.

(3) Cofibrations, fibrations and weak equivalences are closed under

retract.

(4) Any map f may be factored in two ways: f � pi with i a cofibra-

tion and p a fibration and a weak equivalence (a trivial fibration),
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and f � qj with j a cofibration and weak equivalence (a trivial

cofibration) and q a fibration.

(5) Given a commuting square

A ��

��

X

��
B �� Y

with A � � B a cofibration and X � � Y a fibration, then a mor-

phism B � � X making both triangles commute exists if either of

the two vertical maps is a weak equivalence.

Remark 3.2. To give some feel for working with a model category, note

that in the projective model category on Ch � � R � the first factorization

mentioned in � 4 � above applied to a map 0 � � M (with M an R-

module concentrated in degree zero) produces a projective resolution of

M . Similarly, the second factorization produces injective resolutions in

the injective model category on Ch � � R � .

Also, the formula mentioned above for associating a cohomology theory

to a spectrum works only for fibrant spectra. An object in a model

category is fibrant if the map Y � � � is a fibration, where � is the

terminal object. In the standard model category structures on both

symmetric spectra and the category of spectra in Definition 2.2, it turns

out that Y is fibrant if and only if Yn � � map
�

� S1, Yn � 1 � � ΩYn � 1 is a

weak equivalence of spaces where this map is adjoint to the map ΣYn � �

Yn � 1. Thus, for Y fibrant � X,Yn 	 
 � X,ΩYn � 1 	 
 � ΣX,Yn � 1 	 ; this

corresponds to the fact that for any cohomology theory the cohomology

group in degree n � 1 of ΣX agrees with the nth cohomology group of X.

A weakly equivalent fibrant replacement always exists due to axiom (4);

one factors the map Y � � � as Y � � Y f � � � with Y � � Y f a weak

equivalence and Y f � � � a fibration. Then, for a general spectrum Y ,

the associated cohomology theory is given by homotopy classes of maps

into the levels of Y f .

We also have the following notion of equivalence between model

categories.

Definition 3.3 ([35],[16]). A Quillen adjunction between two Quillen

model categories C and D is given by an adjoint pair of functors L :

C � D : R where the left adjoint, L, preserves cofibrations and the right
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adjoint, R, preserves fibrations. It follows that L also preserves trivial

cofibrations and R preserves trivial fibrations. Under these conditions

the adjoint functors induce adjoint derived functors on the homotopy

categories L̄ : Ho C � HoD : R̄. This pair is a Quillen equivalence if L̄

and R̄ form an equivalence of categories between Ho C and HoD. Two

model categories are said to be Quillen equivalent if there is a string of

Quillen equivalences between them.

We call all of the homotopical information associated to a Quillen

model structure a homotopy theory. For example, the identity functors

between the projective and injective model categories defined above

on Ch � � R � form a Quillen equivalence. That is, the projective and

injective model categories define the same homotopy theory, which

encompasses the homological algebra associated with R.

Remark 3.4. The category of spectra in Definition 2.2 [4], the category

of symmetric spectra [17] and all of the other new categories of spec-

tra [12, 24, 25, 26] have Quillen equivalent model structures [26, 39].

Moreover, the associated categories of rings, modules and algebras are

also Quillen equivalent. This is the sense referred to in Section 2 in

which these models all agree ‘up to homotopy’; since Quillen equivalent

model structures define the same homotopy theory, any homotopically

invariant statement about one model applies to the others as well.

These models for spectra actually define stable homotopy theories; that

is, theories where suspension is invertible in the homotopy category.

Suspension corresponds to shifting the spaces in a spectrum down by

one; this is easiest to see with suspension spectra. One can show that

up to homotopy this functor is invertible with inverse given by shifting up

by one. The category Ch � R � is another example of a stable homotopy

theory; again suspension and desuspension are homotopic to shifting.

The homotopy category associated to a stable homotopy theory is a

triangulated category [16, 7.1.6]; the triangles are given by the homotopy

fiber sequences (which can be shown to agree with the homotopy cofiber

sequences). In particular, Quillen equivalences between stable model

categories induce triangulated equivalences on the homotopy categories.

We end this section with two remarks related to Theorem 1.3 and

Quillen equivalences.

Remark 3.5. There have been many applications of variations of The-
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orem 1.3 in stable homotopy theory. A variation on this theorem shows

that any stable model category with a compact generator is Quillen

equivalent to modules over a ring spectrum [43]. This shows that many

homotopical settings can be translated into settings in spectral algebra.

Applications of this variation include various characterizations of the

stable homotopy theory of spectra [44, 46, 40]. Since any rational ring

spectrum is an HQ-algebra, combining this theorem with Theorem 4.3

gives algebraic models for any rational stable homotopy theory [48].

This is used in [47, 15] to form practical algebraic models for rational

torus-equivariant spectra for tori of any dimension.

Remark 3.6. In [43] condition (1) of Theorem 1.3 actually requires

that the functors involved in the Quillen equivalences preserve the en-

richment of these module categories over spectra. In [10] we show that

this requirement is not actually necessary by using ideas similar to those

in [6, 7].

4 Differential graded algebras

In the rest of this paper we explore some results which lie between the

Morita theory for derived categories of rings and the Morita theory for

ring spectra.

First, we consider the overlap between Theorems 1.2 and 1.3. Both of

these theorems apply to rings since there is an Eilenberg-Mac Lane ring

spectrum associated to any ring. Then we extend the association be-

tween spectra and classical algebraic objects to differential graded rings,

modules and algebras and their associated homotopy theories. This

shows that the category of DGAs lies between rings and ring spectra.

Finally, we discuss the Morita theory of DGAs.

Since any Quillen equivalence induces an equivalence on the homotopy

(or derived) categories, Theorem 1.3 may seem to give a stronger

result for ring spectra than Theorem 1.2 does for rings. Theorem 1.3,

however, has a stronger hypothesis on the endomorphism ring of the

generator since the weak equivalence type of a ring spectrum is a finer

invariant in general than the homotopy ring. (Here the graded ring of

homotopy groups of HomR � � M,M � is isomorphic to the graded ring

of endomorphisms of M in Ho � R � -modules � .) When that homotopy is

concentrated in degree zero though, the weak equivalence type of a ring
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spectrum is determined by its homotopy. Thus, for an Eilenberg-Mac

Lane spectrum the conditions on the generator in the two theorems are

equivalent. From this one can show that for rings the notions of Quillen

equivalence and derived equivalence actually agree.

Theorem 4.1 ([8]). For two rings R and R � the following are equiva-

lent.

(1) The derived categories D � R � and D � R � � are triangulated equiva-

lent.

(2) Ch � R � and Ch � R � � are Quillen equivalent model categories.

(3) There is a compact generator M in D � R � � such that the graded

endomorphism ring in the derived category D � R � � � M,M �
�

is iso-

morphic to R.

This is one case where the homotopy (or derived) category actually

determines the whole homotopy theory. For this reason, one expects

a derived equivalence between two rings to induce an isomorphism on

any homotopy invariant of rings. For example, Hochschild homology

and cyclic homology have been shown to be invariants of derived

equivalences [36, 37, 19]; see also [20]. One can also show that a Quillen

equivalence preserves algebraic K-theory. We have the following result.

For regular rings this can also be derived from Neeman’s work on

the K-theory of abelian categories [30, 31, 32, 33, 34]; this result also

appears in [5] with flatness conditions.

Corollary 4.2 ([8]). If D � R � and D � R � � are triangulated equivalent,

then K
�

� R � � K
�

� R � � .

Just as the Eilenberg-Mac Lane ring spectrum HR represents ordinary

cohomology with coefficients in R, there is a ring spectrum HA

associated to hypercohomology with coefficients in a DGA A. Here

H is defined as a composite of several functors, so we do not define it

explicitly for DGAs. In fact H induces a Quillen equivalence between

HZ-algebras and DGAs. The following statement collects the various

related results. For the relevant Quillen model structures, see [17, 42].

Theorem 4.3. (1) [43, 38] For any classical ring R, the model cat-

egories of Ch � R � and HR-modules are Quillen equivalent.
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(2) [48] The model categories of differential graded algebras and HZ-

algebras are Quillen equivalent.

(3) [48] For any DGA A, the model categories of differential graded

A-modules and HA-modules are Quillen equivalent.

Using this theorem to consider DGAs as lying between rings and ring

spectra, one might conjecture that there is an intermediary Morita

theory for DGAs similar to Theorem 4.1 for rings. The homology ring,

however, does not determine the quasi-isomorphism type for a DGA;

for example, a non-formal DGA is not quasi-isomorphic to its homology

(see Section 5 for an example). Thus, a Morita theorem for DGAs

must require a condition on the quasi-isomorphism type of the derived

endomorphism DGA of a generator rather than just its homology.

(Here the derived endomorphism DGA is an analogue of the derived

endomorphism ring spectrum.) This leads to the following question.

Question 4.4. For two DGAs A and B, are the following equivalent?

(1) D � A � is triangulated equivalent to D � B � .

(2) The model categories of differential graded modules over A and

B are Quillen equivalent.

(3) There is a compact generator M in D � A � whose derived endo-

morphism DGA is quasi-isomorphic to B.

If a generator M exists which satisfies � 3 � , then one can show that the

model categories of differential graded modules over A and B are Quillen

equivalent and hence D � A � and D � B � are triangulated equivalent. In

fact this follows from Theorems 4.3 and 1.3 by considering the DGAs as

examples of ring spectra and replacing differential graded modules by

module spectra. Hence, indeed � 3 � implies � 2 � implies � 1 � . The other

implications fail though. In Example 4.5 below we give an example of

a derived equivalence with no underlying Quillen equivalence; so � 1 �

does not imply � 2 � . In Section 5 below we’ll also give an example of a

Quillen equivalence between DGAs with no generator satisfying � 3 � ; so

� 2 � does not imply � 3 � . This example arises from considering DGAs as

special examples of ring spectra.

Example 4.5. There are two DGAs A and B whose derived categories

are equivalent even though the associated model categories of differential

graded modules are not Quillen equivalent. In particular, Corollary 4.2
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does not extend to DGAs because A and B have non-isomorphic

K-theories. This example is based on Marco Schlichting’s work in [45]

which shows that for p � 3 the stable module categories over � Z � p � � ε � � ε2

and Z � p2 are triangulated equivalent but the associated K-theories are

not isomorphic.

Proposition 4.6 ([9]). The model category underlying each of these

stable module categories is Quillen equivalent to a category of differential

graded modules over a DGA.

Stmod � � Z � p � � ε � � ε2 � �
Quillen d. g.Mod- A

Stmod � Z � p2 � �
Quillen d. g.Mod- B

For the dual numbers, the DGA A is Z � p � x, x
� 1 � , a polynomial algebra

on a class in degree one and its inverse with trivial differential. Let

k � Z � x, x
� 1 � , a similarly graded polynomial algebra over Z. For Z� p2,

the DGA B is generated over k by a class e in degree one with the

relations that e2 � 0, ex 	 xe � x2, de � p and dx � 0. Here A and B

are the endomorphism DGAs of the Tate resolution of a generator (Z � p)

of the respective stable module categories [9]; see [18, 4.3] for a related

general statement.

Because the stable module categories are triangulated equivalent, it fol-

lows that D � A � and D � B � are also equivalent. Since Quillen equivalences

induce isomorphisms in K-theory [8], Schlichting’s work showing the sta-

ble module categories’ K-theories are non-isomorphic implies that the

model categories underlying the stable module categories are not Quillen

equivalent. Hence the differential graded modules over A and B are not

Quillen equivalent, either.

5 Two topologically equivalent DGAs

As mentioned above, in this section we discuss an example from [10] of

two DGAs A and B with Quillen equivalent categories of differential

graded modules where there is no generator satisfying the properties

listed in Question 4.4. This example arises from replacing the DGAs by

their associated HZ-algebras HA and HB. One can then forget the HZ-

algebra structure and consider them as ring spectra, or S-algebras. Since

some structure has been forgotten it is reasonable to expect that there
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are more maps and equivalences between HA and HB as S-algebras

than between the DGAs A and B. This leads to the following definition.

Definition 5.1. Two DGAs A and B are topologically equivalent if their

associated HZ-algebras HA and HB are equivalent as ring spectra (S-

algebras).

Quasi-isomorphic DGAs are topologically equivalent as well, but the

converse does not hold. Below we give an example of two DGAs A

and A � which are topologically equivalent but not quasi-isomorphic.

Moreover we show that these two DGAs have equivalent derived

categories even though there is no compact generator in D � A � � whose

derived endomorphism DGA is quasi-isomorphic to A. In fact, any two

topologically equivalent DGAs have equivalent derived categories.

Theorem 5.2. If A and B are topologically equivalent DGAs then D � A �

is triangulated equivalent to D � B. � . Moreover, the associated categories

of differential graded modules are Quillen equivalent.

This is based on the following.

Corollary 5.3. If R � � R � is a weak equivalence of ring spectra,

then the model categories of R-module spectra and R � -module spectra

are Quillen equivalent.

This follows from Theorem 1.3 by taking R � as the compact generator

required in condition (2) since HomR � � R � , R � � � R � is weakly equiva-

lent to R. Although this is stated as a corollary here, it is actually an

ingredient in the proof of Theorem 1.3.

Proof of Theorem 5.2. By Theorem 4.3 differential graded modules over

A and module spectra over HA are Quillen equivalent and the same is

true for B and HB. Then Corollary 5.3 provides the bridge between

these pairs showing that HA-module spectra and HB-module spectra

are Quillen equivalent since HA and HB are weakly equivalent. Since

Quillen equivalences between stable model categories induce triangu-

lated equivalences on the homotopy (or derived) categories, the first

statement follows from the second.

Now we introduce the two DGAs from [10] which are topologically equiv-

alent but not quasi-isomorphic. The first DGA we consider is a truncated
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polynomial ring over the integers on a class in degree one, A � Z � e � � � e4 � ,

with d � e � � 2. Note that A is not graded commutative, since e2 is not

trivial. Since d � e2 � � 0 and d � e3 � � 2e2, the homology of A is an exte-

rior algebra over Z � 2 on a class in degree 2. Let A � � H � A � ΛZ � 2 � α2 � ,

with trivial differential.

One can show that A and A � are not quasi-isomorphic. In fact, A is

not quasi-isomorphic to any DGA over Z � 2. In particular, there are no

maps from Z � 2, thought of as a DGA concentrated in degree zero, to A

even up to homotopy; that is, � Z � 2, A � � 0 in the homotopy category of

associative DGAs. On the other hand, any DGA over Z � 2 would have

a unit map to it from Z � 2. To calculate that � Z � 2, A � � 0, one replaces

Z � 2 by a quasi-isomorphic free associative DGA over Z and shows that

there are no maps from it to A. In low degrees, one possibility for this

replacement begins with a generator x in degree one with dx � 2, a

generator y in degree three with dy � x2 and other generators in degree

four or higher.

This also shows that there is no compact generator M in D � A � � whose

derived endomorphism DGA is quasi-isomorphic to A. Since A � is a DGA

over Z � 2, all of the homomorphism groups between differential graded

A � modules are naturally Z � 2 vector spaces. It follows that the derived

endomorphism DGA of any differential graded A � module would also be a

DGA over Z � 2, so this endomorphism DGA cannot be quasi-isomorphic

to A. Once we show that A and A � are topologically equivalent, A and

A � give a counter example to the equivalence of conditions � 2 � and � 3 �

in Question 4.4 by Theorem 5.2.

We use topological Hochschild cohomology, THH � , to show that the

associated ring spectra HA and HA � are weakly equivalent, or A and A �

are topologically equivalent. This is the analogue of Hochschild coho-

mology, HH � , for spectral algebra. For a ring R and an R-bimodule M ,

DGAs with non-zero homology H0
� R and Hn

� M are classified by

HHn 	 2
Z � R;M � . Similarly, ring spectra with non-zero homotopy π0

� R

and πn
� M are classified by THHn 	 2

S � HR;HM � [22].

For R a k-algebra and M an R-bimodule over k, HH �k � R;M � , is cal-

culated as the derived bimodule homomorphisms from R to M over

the derived tensor product R 
 kRop. In the case where k is a field,

it is not necessary to derive the tensor product R 
 k Rop so this ex-

tra wrinkle is often suppressed. As an example, one can calculate
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that Z � 2 � ZZ � 2 is quasi-isomorphic to the exterior algebra ΛZ � 2 � x1 � , so

HH �Z � Z � 2; Z � 2 � � ExtΛZ � 2 �
x1 	 � Z � 2, Z � 2 � � Z � 2 
 σ2 � .

THH � is defined similarly, by considering maps of bimodule spectra.

In particular, THH �HZ � HR;HM � � HH �
Z � R,M � , although THH �

can be considered over any ring spectrum. Here we need to consider

THH �
S � HZ � 2,HZ � 2 � ; by [13], this is ΓZ � 2 
 τ2 � , a divided power algebra

over Z � 2 which is isomorphic to an exterior algebra over Z � 2 on classes

ei for i � 1 with ei in degree 2i.

The unit map S 
 � HZ induces a map

Φ: HH �Z � Z � 2, Z � 2 � 
 � THH �S � HZ � 2,HZ � 2 � .

The two elements in HH2 classify the two rings Z � 4 and Z � 2
�

Z � 2.

Since the associated Eilenberg-Mac Lane ring spectra are also distinct,

Φ must be injective in degree two; hence Φ � σ � � τ . Since A and A � are

not quasi-isomorphic, one can check that σ2 and 0 in HH4 correspond

respectively to A and A � . Since τ2 � 0 and Φ is a ring homomorphism,

Φ � σ2 � � 0. So HA and HA � correspond to the same homotopy type as

ring spectra; that is, HA and HA � are weakly equivalent and A and A �
are topologically equivalent.
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Appendix

Some remarks concerning tilting modules
and tilted algebras.

Origin. Relevance. Future.

Claus Michael Ringel

The project to produce a Handbook of Tilting Theory was discussed dur-

ing the Fraueninsel Conference 20 Years of Tilting Theory, in November

2002. A need was felt to make available surveys on the basic proper-

ties of tilting modules, tilting complexes and tilting functors, to collect

outlines of the relationship to similar constructions in algebra and ge-

ometry, as well as reports on the growing number of generalizations. At

the time the Handbook was conceived, there was a general consensus

about the overall frame of tilting theory, with the tilted algebra as the

core, surrounded by a lot of additional considerations and with many

applications in algebra and geometry. One was still looking forward to

further generalizations (say something like “pre-semi-tilting procedures

for near-rings”), but the core of tilting theory seemed to be in a final

shape. The Handbook was supposed to provide a full account of the

theory as it was known at that time. The editors of this Handbook have

to be highly praised for what they have achieved. But the omissions

which were necessary in order to bound the size of the volume clearly

indicate that there should be a second volume.

Part 1 will provide an outline of this core of tilting theory. Part 2 will

then be devoted to topics where tilting modules and tilted algebras have

shown to be relevant. I have to apologize that these parts will repeat

some of the considerations of various chapters of the Handbook, but such

a condensed version may be helpful as a sort of guideline. Both Parts 1

and 2 contain historical annodations and reminiscences. The final Part

3 will be a short report on some striking recent developments which are

motivated by the cluster theory of Fomin and Zelevinsky. In particular,

we will guide the reader to the basic properties of cluster tilted algebras,
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to the relationship between tilted algebras and cluster tilted algebras,

but also to the cluster categories which provide a universal setting for

all the related tilted and cluster tilted algebras. In addition, we will

focus the attention to the complex of cluster tilting objects and exhibit

a quite elementary description of this complex. In Part 1 some problems

concerning tilting modules and tilted algebras are raised and one may

jump directly to Part 3 in order to see in which way these questions have

been answered by the cluster tilting theory. We stress that it should be

possible to look at the Parts 2 and 3 independently.

1 Basic Setting

The setting to be exhibited is the following: We start with a hereditary

artin algebra A and a tilting A-module T . It is the endomorphism ring

B � End � T � , called a tilted algebra, which attracts the attention. The

main interest lies in the comparison of the categories modA and modB

(for any ring R, let us denote by mod R the category of all R-modules

of finite length).

1.1 The representation types of the hereditary categories one

starts with

We may assume that A is connected (this means that 0 and 1 are

the only central idempotents), and we may distinguish whether A is

representation-finite, tame, or wild; for hereditary algebras, this distinc-

tion is well understood: the corresponding quiver (or better species) is a

Dynkin diagram, a Euclidean diagram, or a wild diagram, respectively.

There is a parallel class of algebras: if we start with a canonical algebra

A instead of a finite-dimensional hereditary algebra (or, equivalently,

with a weighted projective line, or a so called “exceptional curve” in

the species case), there is a corresponding tilting procedure. Again the

representation theory distinguishes three different cases: A may be do-

mestic, tubular, or wild. Now two of the six cases coincide: the algebras

obtained from the domestic canonical algebras via tilting are precisely

those which can be obtained from a Euclidean algebra via tilting. Thus,

there are 5 possibilities which are best displayed as the following “T”: the

upper horizontal line refers to the hereditary artin algebras, the middle

vertical line to the canonical algebras.
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There is a common frame for the five different classes: start with an

artin algebra A, such that the bounded derived category Db � mod A �

is equivalent to the bounded derived category Db � H � of a hereditary

abelian category H. Let T be a tilting object in Db � mod A � and B its

endomorphism ring. Then B has been called a quasi-tilted algebra by

Happel-Reiten-Smalø, and according to Happel and Happel-Reiten these

categories Db � mod A � are just the derived categories of artin algebras

which are hereditary or canonical. In the “T” displayed above, the upper

horizontal line concerns the derived categories with a slice, the middle

vertical line those with a separating tubular family. More information

can be found in Chapter 6 by Lenzing.

Most of the further considerations will be formulated for tilted algebras

only. However usually there do exist corresponding results for all the

quasi-tilted algebras. To restrict the attention to the tilted algebras has

to be seen as an expression just of laziness, and does not correspond to

the high esteem which I have for the remaining algebras (and the class

of quasi-tilted algebras in general).

1.2 The functors HomA � T, � � and Ext1A � T, � �

Thus, let us fix again a hereditary artin algebra A and let D be the stan-

dard duality of modA (if k is the center of A, then D � Homk � � , k � ;

note that k is semisimple). Thus DA is an injective cogenerator in

mod A. We consider a tilting A-module T , and let B � End � T � . The

first feature which comes to mind and which was the observation by

Brenner and Butler which started the game1 , is the following: the func-

1 Of course, we are aware that examples of tilting modules and tilting functors had
been studied before. Examples to be mentioned are first the Coxeter functors in-
troduced by Gelfand and Ponomarev in their paper on the four-subspace-problem
(1970), then the BGP-reflection functors (Bernstein, Gelfand and Ponomarev,
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tor HomA � T, � � yields an equivalence between the category2 T of all

A-modules generated by T and the category Y of all B-modules cogen-

erated by the B-module HomA � T,DA � . Now the dimension vectors of

the indecomposable A-modules in T generate the Grothendieck group

K0 � A � . If one tries to use HomA � T, � � in order to identify the Grothen-

dieck groups K0 � A � and K0 � B � , one observes that the positivity cones

overlap, but differ: the new axes which define the positive cone for B are

“tilted” against those for A. This was the reason for Brenner and Butler

to call it a tilting procedure. But there is a second “tilting” phenomenon

which concerns the corresponding torsion pairs3 . In order to introduce

these torsion pairs, we have to look not only at the functor HomA � T, � � ,
but also at Ext1A � T, � � . The latter functor yields an equivalence between

the category F of all A-modules M with HomA � T,M � � 0 and the cat-

egory X of all B-modules N with T � B N � 0. Now the pair � F , T �
is a torsion pair in the category of A-modules, and the pair � Y,X � is a

torsion pair in the category of B-modules:

1973), their generalisation by Auslander, Platzeck and Reiten (1979), now called
the APR-tilting functors, and also a lot of additional ad-hoc constructions used
around the globe, all of which turn out to be special tilting functors. But the
proper start of tilting theory is clearly the Brenner-Butler paper (1980). The
axiomatic approach of Brenner and Butler was considered at that time as quite
unusual and surprising in a theory which still was in an experimental stage. But
it soon turned out to be a milestone in the development of representation theory.

2 Subcategories like T and F will play a role everywhere in this appendix. In case
we want to stress that they are defined using the tilting module T , we will write
T

�
T � instead of T , and so on.

3 In contrast to the usual convention in dealing with a torsion pair or a “torsion
theory”, we name first the torsion-free class, then the torsion class: this fits to
the rule that in a rough thought, maps go from left to right, and a torsion pair
concerns regions with “no maps backwards”.
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and one encounters the amazing fact that under the pair of functors

HomA � T, � � and Ext1A � T, � � the torsion-free class of a torsion pair is

flipped over the torsion class in order to form a new torsion pair in

reversed order4 . The stars � indicate a possible distribution of the

indecomposable direct summands Ti of T , and one should keep in mind

that for any i, the Auslander-Reiten translate τTi of Ti belongs to T

(though it may be zero). We have said that the modules in T are those

generated by T , but similarly the modules in F are those cogenerated

by τT .

According to Happel5 , the category mod B should be seen as being

embedded into the derived category Db � mod A �

Under this embedding, Y � T is the intersection of mod B with mod A,

whereas X � F � 1 � is the intersection of modB with modA � 1 � (the shift

functor in a triangulated category will always be denoted by � 1 � ). This

embedding functor modB � � Db � mod A � extends to an equivalence of

Db � mod B � and Db � mod A � , and this equivalence is one of the essential

features of tilting theory.

Looking at the torsion pair � Y,X � , there is a sort of asymmetry due to

the fact that Y is always sincere (this means that every simple module

4 The discovery of this phenomenon was based on a detailed examination of many
examples (and contributions by Dieter Vossieck, then a student at Bielefeld,
should be acknowledged). At that time only the equivalence of T

	
T 
 and Y

	
T 


was well understood. The obvious question was to relate the remaining indecom-
posable B-modules (those in X

	
T 
 ) to suitable A-modules. As Dieter Happel

recalls, the first examples leading to a full understanding of the whole tilting
process were tilting modules for the E6-quiver with subspace orientation.

5 When he propagated this in 1984, it was the first clue that the use of derived
categories may be of interest when dealing with questions in the representation
theory of finite dimensional algebras. The derived categories had been introduced
by Grothendieck in order to construct derived functors when dealing with abelian
categories which have neither sufficiently many projective nor sufficiently many
injective objects, and at that time they were considered as useless in case there
are enough projectives and enough injectives, as in the cases mod A and mod B.
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occurs as a composition factor of some module in Y), whereas X does

not have to be sincere (this happens if Y contains an indecomposable

injective module). As a remedy, one should divide Y further as follows:

Y contains the slice module S � HomA � T,DA � , let S � addS, and

denote by Y � the class of all B-modules in Y without an indecomposable

direct summand in S. It is the triple � Y � ,S,X � , which really should be

kept in mind:

with all the indecomposables lying in one of the classes Y � ,S,X and with

no maps backwards (the only maps from S to Y � , from X to S, as well

as from X to Y � are the zero maps). Also note that any indecomposable

projective B-module belongs to Y � or S, any indecomposable injective

module to S or X . The module class S is a slice (as explained in Chapter

3 by Brüstle) and any slice is obtained in this way. The modules in Y �
are those cogenerated by τS, the modules in X are those generated by

τ
� 1S.

Here is an example. Start with the path algebra A of a quiver of Eu-

clidean type �A22 having one sink and one source. Let B � End � T � ,
where T is the direct sum of the simple projective, the simple injective

and the two indecomposable regular modules of length 3 (this is a tilting

module), then the quiver of B is the same as the quiver of A, but B is

an algebra with radical square zero. Thus B is given by a square with

two zero relations.

The category mod B looks as follows:
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The separation of modB into the three classes Y � ,S,X can be phrased in

the language of cotorsion pairs. Cotorsion pairs are very well related

to tilting theory (see the Chapters 8 and 11 by Reiten and Trlifaj),

but still have to be rated more as a sort of insider tip. We recall the

definition: the pair � V,W � of full subcategories of mod A is said to

be a cotorsion pair provided V is the class of all A-modules V with

Ext1A � V,W � � 0 for all W in W, and W is the class of all A-modules

W such that Ext1A � V,W � � 0 for all V in V. The cotorsion pair is

said to be split, provided every indecomposable A-module belongs to V

or W. Usually some indecomposables will belong to both classes, they

are said to form the heart. In our case the following holds: The pair

� add � Y � ,S � , add � S,X � � forms a split cotorsion pair with heart S.

We also see that the modules in Y � and in S have projective dimension

at most 1, those in S and in X have injective dimension at most 1. As a

consequence, if X,Y are indecomposable modules with Ext2B � X,Y � � 0,

then X belongs to X and Y belongs to Y � .

Let me add a remark even if it may be considered to be superfluous —

its relevance should become clear in the last part of this appendix. If we

feel that the subcategory Y � has the same importance as X (thus that

it is of interest), then we should specify an equivalent subcategory, say

T � of modA and an equivalence T � � � Y � . Such an equivalence is given

by the functor

HomA � τ 	 1T, 
 � : mod A � � mod B

or, equivalently, by HomA � T, τ 
 � , since τ
	 1 is left adjoint to τ. This

functor vanishes on F as well as on T , and it yields an equivalence

between the subcategory T � of all A-modules generated by τ
	 1T and

the subcategory Y � of mod B. Note that the functor can also be writ-

ten in the form D Ext1A � 
 , T � , due to the Auslander-Reiten formula

D Ext1 � M,T � � HomA � T, τM � . In this way, we see that we deal with

equivalences

D Ext1A � 
 , T � : T � � � Y � and Ext1A � T, 
 � : F � � X ,

which are sort of dual to each other.

It seems to be worthwhile to have a short look at the rather trivial case

when no modules are lost, so that the tilting procedure is a kind of re-

arrangement of module classes. The following assertions are equivalent:
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(i) The tilting module T is a slice module.

(ii) The endomorphism ring B is hereditary.

(iii) The torsion pair � F , T � splits.

(iv) Ext1A � τT, T � � 0.

The equivalence of these assertions are well-known, but not too easy to

trace. Some implications are quite obvious, for example that (ii) and

(iii) are implied by (i). Let us show that (ii) implies (i): Since T is a

tilting module, the B-module T � � HomA � T,DA � � Homk � T, k � is a

slice module in mod B. Since the B-module T � is a tilting module and

A � EndB � T � � , we can use this tilting module in order to tilt from modB

to mod A. Since B is hereditary, we obtain in modA the slice module

HomB � T � , DB � � Homk � T � , k � � T. This shows (i). The equivalences of

(ii) and (iv), as well as of (iii) and (iv), can be seen as consequences of

more general considerations which will be presented later.

If T is not a slice module, so that B has global dimension equal to 2,

then the algebras A and B play quite a different role: the first difference

is of course the fact that A is hereditary, whereas B is not. Second, there

are the two torsion pairs � F , T � in mod A and � Y,X � in mod B - the

second one is a split torsion pair, the first one not. This means that we

loose modules going from mod A to mod B via tilting. Apparently, no

one cared about the missing modules, at least until quite recently. There

are two reasons: First of all, we know (see Chapter 3 by Brüstle), that

the study of indecomposable modules over a representation-finite algebra

is reduced via covering theory to the study of representation-finite tilted

algebras. Such an algebra B may be of the form B � EndA � T � , where T

is a tilting A-module, with A representation-infinite. Here we describe

the B-modules in terms of A and we are only interested in the finitely

many indecomposable A-modules which belong to F or T , the remaining

A-modules seem to be of no interest, we do not miss them. But there

is a second reason: the fashionable reference to derived categories is

used to appease anyone, who still mourns about the missing modules.

They are lost indeed as modules, but they survive as complexes: since

the derived categories of A and B are equivalent, corresponding to any

indecomposable A-module, there is an object in the derived category

which is given by a complex of B-modules. However, I have to admit

that I prefer modules to complexes, whenever possible — thus I was
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delighted, when the lost modules were actually found, as described in

Part 3 of this appendix.

1.3 The simplicial complex ΣA

We will always denote by n � n � A � the number of isomorphism classes

of simple A-modules. The interest in tilting A-modules directly leads

to a corresponding interest in their direct summands. These are the

modules without self-extensions and are called partial tilting modules.

In particular, one may consider the indecomposable ones: an indecom-

posable A-module without self-extensions is said to be exceptional (or

a “stone”, or a “brick without self-extensions”, or a “Schurian module

without self-extensions”). But there is also an interest in the partial tilt-

ing modules with precisely n � 1 isomorphism classes of indecomposable

direct summands, the so-called almost complete partial tilting modules.

If T is an almost complete partial tilting module and X is indecompos-

able with T
�

X a tilting module, then X (or its isomorphism class) is

called a complement for T . It is of interest that any almost complete

partial tilting module T has either 1 or 2 complements, and it has 2

if and only if T is sincere. Recall that a module is said to be basic,

provided it is a direct sum of pairwise non-isomorphic indecomposable

modules. The isomorphism classes of basic partial tilting modules form

a simplicial complex ΣA, with vertex set the set of isomorphism classes

of exceptional modules (the vertices of a simplex being its indecom-

posable direct summands), see Chapter 10 by Unger. Note that this

simplicial complex is of pure dimension n � 1. The assertion concerning

the complements shows that it is a pseudomanifold with boundary. The

boundary consists of all the non-sincere almost complete partial tilting

modules.

As an example, consider the path algebra A of the quiver � � � � � .

The simplicial complex ΣA has the following shape:

Some questions concerning the simplicial complex ΣA remained open:

What happens under a change of orientation? What happens under a

tilting functor? Is there a way to get rid of the boundary? Here we are
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again in a situation where a remedy is provided by the derived categories:

If we construct the analogous simplicial complex of tilting complexes in

Db � mod A � , then one obtains a pseudo manifold without boundary, but

this is quite a large simplicial complex!

If T is an almost complete partial tilting module, and X and Y are

non-isomorphic complements for T , then either Ext1A � Y,X � � 0 or

Ext1A � X,Y � � 0 (but not both). If Ext1A � Y,X � � 0 (what we may

assume), then there exists an exact sequence 0 � � X � � T � � � Y � �
0 with T � � addT , and one may write T

�
X � T

�
Y . In this way, one

gets a partial ordering on the set of isomorphism classes of basic tilt-

ing modules. One may consider the switch between the tilting modules

T
�

X and T
�

Y as an exchange process which stops at the boundary.

We will see in Part 3 that it is possible to define an exchange procedure

across the boundary of ΣA, and that this can be arranged in such a way

that one obtains an interesting small extension of the simplicial complex

ΣA.

1.4 The BGP-reflection functors and the structure of tilted

algebras

Bernstein, Gelfand and Ponomarev have defined reflection functors in

order to be able to compare representations of quivers with different

orientation, but also in order to construct inductively indecomposable

representations. A BGP-reflection functor furnishes a quite small change

of the given module category. Let us consider this in more detail. Let Q

be a quiver and i a sink of Q. We denote by σiQ the quiver obtained from

Q by changing the orientation of all arrows ending in i, thus i becomes a

source in σiQ. Let S � i � be the simple kQ-module corresponding to the

vertex i, and S � � i � the simple kσiQ-module corresponding to the vertex

i. The BGP-reflection functor σi : mod kQ � � mod kσiQ provides an

equivalence between the categories

mod kQ 	 

addS � i � � � � mod kσiQ 	 


addS � � i � � .

In general, given rings R,R � one may look for a simple R-module S and

a simple R � -module S � such that the categories

mod R 	 

addS � � � mod R � 	 


addS � �
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are equivalent. In this case, let us say that R,R � are nearly Morita-

equivalent. As we have seen, for Q a quiver with a sink i, the path

algebras kQ and kσiQ are nearly Morita-equivalent. I am not aware

that other pairs of nearly Morita-equivalent rings have been considered

until very recently, but Part 3 will provide a wealth of examples.

Unfortunately, the BGP-reflection functors are defined only for sinks

and for sources of the given quiver. This has to be considered as a real

deficiency, since there is no similar restriction in Lie theory. Indeed,

in Lie theory the use of reflections for all the vertices is an important

tool. A lot of efforts have been made in representation theory in order

to overcome this deficiency, see for example the work of Kac on the

dimension vectors of the indecomposable representations of a quiver.

A final question should be raised here. There is a very nice homologi-

cal characterization of the quasi-tilted algebras by Happel-Reiten-Smalø

[28]: these are the artin algebras of global dimension at most 2, such

that any indecomposable module has projective dimension at most 1

or injective dimension at most 1. But it seems that a corresponding

characterization of the subclass of tilted algebras is still missing. Also,

in case we consider tilted k-algebras, where k is an algebraically closed

field, the possible quivers and their relations are not known.

2 Connections

The relevance of tilting theory relies on the many different connections it

has not only to other areas of representation theory, but also to algebra

and geometry in general. Let me give some indications. If nothing else

is said, A will denote a hereditary artin algebra, T a tilting A-module

and B its endomorphism ring.

2.1 Homology

Already the definition (the vanishing of Ext1) refers to homology. We

have formulated above that the first feature which comes to mind is

the functor HomA � T, � � . But actually all the tilting theory concerns the

study of the corresponding derived functors Exti
A � T, � � , or better, of

the right derived functor R HomA � T, � � .
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The best setting to deal with these functors are the corresponding de-

rived categories Db � mod A � and Db � mod B � , they combine to the right

derived functor R HomA � T, � � , and this functor is an equivalence, as

Happel has shown. Tilting modules T in general were defined in such

a way that R HomA � T, � � is still an equivalence. The culmination of

this development was Rickard’s characterization of rings with equiva-

lent derived categories: such equivalences are always given by “tilting

complexes”. A detailed account can be found in Chapter 5 by Keller.

Tilting theory can be exhibited well by using spectral sequences. In Bon-

gartz’s presentation of tilting theory one finds the formulation: Well-

read mathematicians tend to understand tilting theory using spectral-

sequences (which is usually interpreted as a critical comment about the

earlier papers). But it seems that the first general account of this ap-

proach is only now available: the contribution of Brenner and Butler

(see Chapter 4) in this volume. A much earlier one by Vossieck should

have been his Bielefeld Ph.D. thesis in 1984, but he never handed it in.

2.2 Geometry and invariant theory.

The Bielefeld interest in tilting modules was first not motivated by homo-

logical, but by geometrical questions. Happel’s Ph.D. thesis had focused

the attention to quiver representations with an open orbit (thus to all

the partial tilting modules). In particular, he showed that the number

s � V � of isomorphism classes of indecomposable direct summands of a

representation V with open orbit is bounded by the number of simple

modules. In this way, the study of open orbits in quiver varieties was a

(later hidden) step in the development of tilting theory. When studying

open orbits, we are in the setting of what Sato and Kimura [45] call

prehomogeneous vector spaces. On the one hand, the geometry of

the complement of the open orbit is of interest, on the other hand one

is interested in the structure of the ring of semi-invariants.

Let k be an algebraically closed field and Q a finite quiver (with vertex

set Q0 and arrow set Q1), and we may assume that Q has no oriented

cyclic path, thus the path algebra kQ is just a basic hereditary finite-

dimensional k-algebra. For any arrow α in Q1, denote by tα its tail

and by hα its head, and fix some dimension vector d. Let us consider

representations V of Q with a fixed dimension vector d, we may assume
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V � x � � kd
�
x � ; thus the set of these representations forms the affine space

R � Q,d � � �
α � Q1

Homk � kd
�
tα � , kd

�
hα � � .

The group GL � Q,d � � � x � Q0
GL � d � x � � operates on this space via a sort

of conjugation, and the orbits under this action are just the isomorphism

classes of representations. One of the results of Happel [26] asserts that

given a sincere representation V with open orbit, then � Q0
� 	 s � V � is

the number of isomorphism classes of representations W with dimV �
dimW and dim Ext1A � W,W � � 1 (in particular, there are only finitely

many such isomorphism classes; we also see that � Q0
� 
 s � V � ).

Consider now the ring SI � Q,d � of semi-invariants on R � Q,d � ; by defini-

tion these are the invariants of the subgroup SL � Q,d � � � x � Q0
SL � d � x � �

of GL � Q,d � . Given two representations V,W of Q, one may look at the

map:

dV
W : �

x � Q0

Homk � V � x � ,W � x � � � � �
α � Q1

Homk � V � tα � ,W � hα � � ,

sending � f � x � � x to � f � hα � V � α � 	 W � α � f � tα � � α. Its kernel is just

HomkQ � V,W � , its cokernel Ext1kQ � V,W � . In case dV
W is a square ma-

trix, one may consider its determinant. According to Schofield [46],

this is a way of producing semi-invariants. Namely, the Grothendieck

group K0 � kQ � carries a (usually non-symmetric) bilinear form

 	 , 	 �

with


dimV,dimW � � dim k HomkQ � V,W � 	 dim k Ext1kQ � V,W � , thus

dV
W is a square matrix if and only if



dimV,dimW � � 0. So, if d � N

Q0

0

and if we select a representation W such that


d,dimW � � 0, then

cW � V � � det dV
W yields a semi-invariant cW in SI � Q,α � . Derksen and

Weyman (and also Schofield and Van den Bergh) have shown that these

semi-invariants form a generating set for SI � Q,d � . In fact, it is sufficient

to consider only indecomposable representations W , thus exceptional

kQ-modules.

2.3 Lie theory

It is a well-accepted fact that the representation theory of hereditary

artinian rings has a strong relation to Lie algebras and quantum groups

(actually one should say: a strong relation to Lie algebras via quan-

tum groups). Such a relationship was first observed by Gabriel when he

showed that the representation-finite connected quivers are just those



426 C. M. Ringel

with underlying graph being of the form An, Dn, E6, E7, E8 and that in

these cases the indecomposables correspond bijectively to the positive

roots. According to Kac, this extends to arbitrary finite quivers without

oriented cycles: the dimension vectors of the indecomposable represen-

tations are just the positive roots of the corresponding Kac-Moody Lie-

algebra. It is now known that it is even possible to reconstruct this Lie

algebra using the representation theory of hereditary artin algebras, via

Hall algebras. Here one encounters the problem of specifying the subring

of a Hall algebra, generated by the simple modules. Schofield induction

(to be discussed below) shows that all the exceptional modules belong

to this subring.

It seems to be appropriate to discuss the role of the necessary choices.

Let me start with a semisimple finite-dimensional complex Lie-algebra.

First, there is the choice of a Cartan subalgebra, it yields the root system

of the Lie-algebra. Second, the choice of a root basis yields a triangular

decomposition (and the set of positive roots), this is needed in order to

define a Borel subalgebra and the corresponding category O. Finally, the

choice of a total ordering of the root basis (or, better, of an orientation

of the edges of the Dynkin diagram) allows to work with a Coxeter ele-

ment in the Weyl group. Of course, one knows that all these choices are

inessential, when dealing with a finite dimensional Lie-algebra. The sit-

uation is more subtle if we deal with arbitrary Kac-Moody Lie-algebras:

different orderings of the root basis may yield Coxeter elements which

are not conjugate – the first case is �A3, where one has to distinguish

between �A3,1 and �A2,2.

On the other hand, when we start with a representation-finite heredi-

tary artin algebra A, no choice at all is needed in order to write down its

Dynkin diagram: it is intrinsically given as the Ext-quiver of the simple

A-modules, and we obtain in this way a Dynkin diagram with orien-

tation. A change of orientation corresponds to module categories with

quite distinct properties (as already the algebras of type A3 show). This

difference is still preserved when one looks at the corresponding Hall

algebras, and it comes as a big surprise that only a small twist of its

multiplication is needed in order to get an algebra which is independent

of the orientation.
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2.4 The combinatorics of root systems

It is necessary to dig deeper into root systems since they play an impor-

tant role for dealing with A-modules. Of interest is the corresponding

quadratic form, and the reflections which preserve the root system (but

not necessarily the positivity of roots), and their compositions, in partic-

ular the Coxeter transformations and the BGP-reflection functors. We

will return to the reflection functors when we deal with generalizations

of Morita equivalences, but also in Part 3.

As we have mentioned the relationship between the representation the-

ory of a hereditary artin algebra A and root systems is furnished by the

dimension vectors: We consider the Grothendieck group K0 � A � (of all

finite length A-modules modulo exact sequences). Given an A-module

M , we denote by dimM the corresponding element in K0 � A � ; this is

what is called its dimension vector. The dimension vectors of the in-

decomposable A-modules are the positive roots of the root system in

question. A positive root d is said to be a Schur root provided there

exists an indecomposable A-module M with dimM � d and EndA � M �
a division ring. The dimension vectors of the exceptional modules are

Schur roots, they are just the real (or Weyl) Schur roots. In case A is

representation-finite then all the positive roots are Schur roots, also for

n � A � � 2 all the real roots are Schur roots. But in all other cases, the set

of real Schur roots depends on the choice of orientation. For example,

consider the following three orientations of �D4:

The two dimension vectors on the left are Schur roots, whereas the right

one is not a Schur root.

In order to present the dimension vectors of the indecomposable A-

modules, one may depict the Grothendieck group K0 � A � ; a very

convenient way seems to be to work with homogeneous coordinates,

say with the projective space of K0 � A � � Z R. It is the merit of Derk-

sen and Weyman [22] of having popularized this presentation well: they

managed to get it to a cover of the Notices of the American Math-

ematical Society [21]. One such example has been shown in Part 1,

when we presented the simplicial complex ΣA, whith A the path al-

gebra of the linearly oriented quiver of type A3. In general, dealing
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with hereditary A, one is interested in the position of the Schur roots.

Our main concern are the real Schur roots as the dimension vectors

dimE of the exceptional modules E. They are best presented by

marking the corresponding exceptional lines: look for orthogonal ex-

ceptional pairs E1, E2 (this means: E1, E2 are exceptional modules with

HomA � E1, E2 � � HomA � E2, E1 � � Ext1A � E2, E1 � � 0) and draw the line

segment from dimE1 to dimE2. The discussion of Schofield induction

below will explain the importance of these exceptional lines.

As we know, a tilting A-module T has precisely n � n � A � isomorphism

classes of indecomposable direct summands, say T1, . . . , Tn and the di-

mension vectors dimT1, . . . ,dimTn are linearly independent. We may

consider the cone C � T � in K0 � A � � R generated by dimT1, . . . ,dimTn.

These cones are of special interest. Namely, if a dimension vector d be-

longs to C � T � , then there is a unique isomorphism class of modules M

with dimM � d such that EndA � M � is of minimal dimension, and such

a module M has no self-extensions. On the other hand, the dimension

vector of any module M without self-extensions lies in such a cone (since

these modules, the partial tilting modules, are the direct summands of

tilting modules). The set of these cones forms a fan as they are consid-

ered in toric geometry (see for example the books of Fulton and Oda).

As Hille [29] has pointed out, one should use the geometry of these

cones in order to introduce the following notion: If T � � n
i � 1 Ti is a

basic tilting module with indecomposable modules Ti of length � Ti
� , he

calls � n
i � 1

� Ti
� � 1 the volume of T . It follows that

	
T

v � T � 
 1

(where the summation extends over all isomorphism classes of basic tilt-

ing A-modules), with equality if and only if A is representation-finite or

tame. This yields interesting equalities: For example, the preprojective

tilting modules of the Kronecker quiver yield

1

1
� 1

3
�

1

3
� 1

5
�

1

5
� 1

7
� � � � � 1

2
.

One may refine these considerations by replacing the length � Ti
� by the

k-dimension of Ti, at the same time replacing A by all the Morita equiv-

alent algebras. In this way one produces power series identities in n � A �
variables which should be of general interest, for example

1

x
� 1

2x � y
�

1

2x � y
� 1

3x � 2y
�

1

3x � 2y
� 1

4x � 3y
� � � � � 1

2xy
.
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Namely, let x and y denote the k-dimension of the simple projective, or

simple injective A-module, respectively. The indecomposable preprojec-

tive A-module Pt of length 2t � 1 is of dimension tx � � t � 1 � y. This

means that the the tilting module Pt
�

Pt � 1 contributes the summand
1

tx � �
t � 1 � y � 	 1�

t � 1 � x � ty
. The sequence of tilting modules P1

�
P2, P2

�
P3, . . .

yields the various summands on the left side.

2.5 Combinatorial structure of modules

A lot of tilting theory is devoted to combinatorial considerations. The

combinatorial invariants just discussed concern the Grothendieck group.

But also the exceptional modules themselves have a combinatorial flavor:

they are “tree modules” [42]. As we have mentioned, the orbit of a

tilting module is open in the corresponding module variety, and this

holds true with respect to all the usual topologies, in particular, the

Zariski topology, but also the usual real topology in case the base field

is R or C. This means that a slight change of the coefficients in any

realization of T using matrices will not change the isomorphism class.

Now in general to be able to change the coefficients slightly, will not

allow to prescribe a finite set (for example 
 0, 1 � ) of coefficients which

one may like to use: the corresponding matrices may just belong to

the complement of the orbit. However, in case we deal with the path

algebra of a quiver, the exceptional modules have this nice property:

there always exists a realization of E using matrices with coefficients

only 0 and 1. A stronger statement holds true: If E has dimension d,

then there is a matrix realization which uses precisely d � 1 coefficients

equal to 1, and all the remaining ones are 0 (note that in order to be

indecomposable, we need at least d � 1 non-zero coefficients; thus we

assert that really the minimal possible number of non-zero coefficients

can be achieved).

2.6 Numerical linear algebra

Here we refer to the previous consideration: The relevance of 0-1-

matrices in numerical linear algebra is well-known. Thus linear algebra

problems, which can be rewritten as dealing with partial tilting modules,

are very suitable for numerical algorithms, because of two reasons: one
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can restrict to 0-1-matrices and the matrices to be considered involve

only very few non-zero entries.

2.7 Module theory

Of course, tilting theory is part of module theory. It provides a very

useful collection of non-trivial examples for many central notions in ring

and module theory. The importance of modules without self-extensions

has been realized a long time ago, for example one may refer to the

lecture notes of Tachikawa from 1973. Different names are in use for

such modules such as “splitters”.

It seems that the tilting theory exhibited for the first time a wide range

of torsion pairs, with many different features: there are the splitting

torsion pairs, which one finds in the module category of any tilted alge-

bra, as well as the various non-split torsion pairs in the category modA

itself. As we have mentioned in Part 1, tilting theory also gives rise

to non-trivial examples of cotorsion pairs. And there are corresponding

approximations, but also filtrations with prescribed factors. Questions

concerning subcategories of module categories are considered in many

of the contributions in this Handbook, in particular in Chapter 8 by

Reiten, but also in the Chapters 9, 11 and 12 by Donkin, Trlifaj and

Solberg, respectively.

We also should mention the use of perpendicular categories. Start-

ing with an exceptional A-module E, the category E � of all A-modules

M with HomA � E,M � � 0 � Ext1A � E,M � is again a module cate-

gory, say E � � mod A � , where A � is a hereditary artin algebra with

n � A � � � n � A � � 1. These perpendicular categories are an important tool

for inductive arguments and they can be considered as a kind of locali-

sation.

Another notion should be illuminated here: recall that a left R-module

M is said to have the double centralizer property (or to be balanced),

provided the following holds: If we denote by S the endomorphism ring

of RM , say operating on the right on M , we obtain a right S-module MS ,

and we may now look at the endomorphism ring R � of MS. Clearly, there

is a canonical ring homomorphism R � � R � (sending r 	 R to the left

multiplication by r on M), and now we require that this map is surjective

(in case M is a faithful R-module, so that the map R � � R � is injective,
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this means that we can identify R and R � : the ring R is determined by

the categorical properties of M , namely its endomorphism ring S, and

the operation of S on the underlying abelian group of M). Modules with

the double centralizer property are very important in ring and module

theory. Tilting modules satisfy the double centralizer property and this

is used in many different ways.

Of special interest is also the following subquotient realization of

mod A. All the modules in T are generated by T , all the modules

in F are cogenerated by τT . It follows that for any A-module M ,

there exists an A-module X with submodules X � � X � � X � such that

X � is a direct sum of copies of T , whereas X � X � is a direct sum of

copies of τT and such that M � X � � X � (it then follows that X � � X �
is the torsion submodule of M and X � � X � its torsion-free factor mod-

ule). In particular, we see that � F , T � is a split torsion pair if and

only if Ext1A � τT, T � � 0 (the equivalence of conditions (iii) und (iv) in

Part 1). This is one of the results which stresses the importance of the

bimodule Ext1A � τT, T � . Note that the extensions considered when we

look at Ext1A � τT, T � are opposite to those the Auslander-Reiten trans-

lation τ is famous for (namely the Auslander-Reiten sequences, they

correspond to elements of Ext1A � Ti, τTi � , where Ti is a non-projective

indecomposable direct summand of T ). We will return to the bimodule

Ext1A � τT, T � in Part 3.

2.8 Morita equivalence

Tilting theory is a powerful generalization of Morita equivalence. This

can already be demonstrated very well by the reflection functors. When

Gabriel showed that the representations of a Dynkin quiver correspond

to the positive roots and thus only in an inessential way on the given

orientation, this was considered as a big surprise. The BGP-reflection

functors explain in which way the representation theory of a quiver is

independent of the orientation: one can change the orientation of all

the arrows in a sink or a source, and use reflection functors in order to

obtain a bijection between the indecomposables. Already for the quivers

of type An with n � 3, we get interesting examples, relating say a serial

algebra (using one of the two orientations with just one sink and one

source) to a non-serial one.

The reflection functors are still near to classical Morita theory, since no
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modules are really lost: here, we only deal with a kind of rearrangement

of the categories in question. We deal with split torsion pairs � F , T � in

mod A and � Y,X � in modB, with F equivalent to X and T equivalent

to Y. Let us call two hereditary artin algebras similar provided they can

be obtained from each other by a sequence of reflection functors. In case

we consider the path algebra of a quiver which is a tree, then any change

of orientation leads to a similar algebra. But already for the cycle with 4

vertices and 4 arrows, there are two similarity classes, namely the quiver

�A3,1 with a path of length 3, and the quivers of type �A2,2.

One property of the reflection functors should be mentioned (since it

will be used in Part 3). Assume that i is a sink for A (this means

that the corresponding simple A-module S � i � is projective). Let S � � i �
be the corresponding simple σiA-module (it is injective). If M is any

A-module, then S � i � is not a composition factor of M if and only if

Ext1σiA
� S � � i � , σiM � � 0. This is a situation, where the reflection functor

yields a universal extension; for similar situations, let me refer to [39].

The general tilting process is further away from classical Morita theory,

due to the fact that the torsion pair � F , T � in modA is no longer split.

2.9 Duality theory

Tilting theory is usually formulated as dealing with equivalences of sub-

categories (for example, that HomA � T, � � : T � � Y is an equivalence).

However, one may also consider it as a duality theory, by composing

the equivalences obtained with the duality functor D, thus obtaining a

duality between subcategories of the category mod A and subcategories

of the category mod Bop. The new formulations obtained in this way

actually look more symmetrical, thus may be preferable. Of course, as

long as we deal with finitely generated modules, there is no mathemati-

cal difference. This changes, as soon as one takes into consideration also

modules which are not of finite length.

But the interpretation of tilting processes as dualities is always of inter-

est, also when dealing with modules of finite length: In [2], Auslander

considers (for R a left and right noetherian ring) the class W � R � of all

left R-modules of the form Ext1R � NR, RR � , where NR is a finitely gener-

ated right R-module, and he asserts that it would be of interest to know

whether this class is always closed under submodules. A first example
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of a ring R with W � R � not being closed under submodules has been

exhibited by Huang [30], namely the path algebra R � kQ of the quiver

Q of type A3 with 2 sources. Let us consider the general case when

R � A is a hereditary artin algebra. The canonical injective cogenerator

T � DA is a tilting module, thus Ext1A � T, � � is a full and dense functor

from mod A onto X � T � . The composition of functors

mod Aop D� � mod A
Ext1

�
T, � �� � � � � � � mod A

is the functor Ext1A � � , AA � , thus we see that W � A � � X � T � . On the

other hand, T � T � are the injective A-modules, they are mapped under

HomA � T, � � to the class Y � T � , and these are the projective A-modules.

It follows that X � T � is the class of all A-modules without an indecom-

posable projective direct summand. As a consequence, W � A � � X � T � is

closed under submodules if and only if A is a Nakayama algebra. (It is an

easy exercise to show that X � T � is closed under submodules if and only

if the injective envelope of any simple projective module is projective,

thus if and only if A is a Nakayama algebra).

It should be stressed that Morita himself seemed to be more interested

in dualities than in equivalences. What is called Morita theory was

popularized by P.M.Cohn and H. Bass, but apparently was considered

by Morita as a minor addition to his duality theory. When Gabriel heard

about tilting theory, he immediately interpreted it as a non-commutative

analog of Roos duality.

The use of general tilting modules as a source for dualities has been

shown to be very fruitful in the representation theory of algebraic groups,

of Lie algebras and of quantum groups. This is explained in detail in

Chapter 9 by Donkin. As a typical special case one should have the

classical Schur-Weyl duality in mind, which relates the representation

theory of the general linear groups and that of the symmetric groups,

see Chapter 9 by Donkin, but also [36].

In the realm of commutative complete local noetherian rings, Auslan-

der and Reiten [4] considered Cohen-Macaulay rings with dualizing

module W . They showed that W is the only basic cotilting module. On

the basis of this result, they introduced the notion of a dualizing module

for arbitrary artin algebras.
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2.10 Schofield induction

This is an inductive procedure for constructing all exceptional modules

starting with the simple ones, by forming exact sequences of the fol-

lowing kind: Assume we deal with a hereditary k-algebra, where k is

algebraically closed, and let E1, E2 be orthogonal exceptional modules

with dim Ext1A � E1, E2 � � t and Ext1A � E2, E1 � � 0. Then, for every pair

� a1, a2 � of positive natural numbers satisfying a2
1 � a2

2 � ta1a2
� 1, there

exists (up to equivalence) a unique non-split exact sequence of the form

0 � � Ea2

2 � � E � � Ea1

1 � � 0

(call it a Schofield sequence). Note that the middle term of such a

Schofield sequence is exceptional again, and it is an amazing fact that

starting with the simple A-modules without self-extension, all the ex-

ceptional A-modules are obtained in this way. Even a stronger assertion

is true: If E is an exceptional module with support of cardinality s

(this means that E has precisely s isomorphism classes of composition

factors), then there are precisely s � 1 Schofield sequences with E as

middle term. What is the relation to tilting theory? Starting with E

one obtains the Schofield sequences by using the various indecomposable

direct summands of its Bongartz complement as an A � I-module, where

I is the annihilator of E: the s � 1 summands yield the s � 1 sequences

[41].

2.11 Exceptional sequences, mutations

Note that a tilted algebra is always directed: the indecomposable sum-

mands of a tilting module E1, . . . , Em can be ordered in such a way that

HomA � Ei, Ej � � 0 for i � j. We may call such a sequence � E1, . . . , Em � a

tilting sequence, and there is the following generalization which is of in-

terest in its own (and which was considered by the Rudakov school [44]):

Call � E1, . . . , Em � an exceptional sequence provided all the modules Ei

are exceptional A-modules and HomA � Ei, Ej � � 0 and Ext1A � Ei, Ej � � 0

for i � j. There are many obvious examples of exceptional sequences

which are not tilting sequences, the most important one being sequences

of simple modules in case the Ext-quiver of the simple modules is di-

rected. Now one may be afraid that this generalization could yield too

many additional sequences, but this is not the case. In general most of

the exceptional sequences are tilting sequences! An exceptional sequence
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� E1, . . . , Em � is said to be complete provided m � n � A � (the number of

simple A-modules). There is a braid group action on the set of complete

exceptional sequences, and this action is transitive [18, 40]. This means

that all the exceptional sequences can be obtained from each other by

what one calls “mutations”. As a consequence, one obtains the follow-

ing: If � E1, . . . , En � is a complete exceptional sequence, then there is a

permutation π such that EndA � Ei � � EndA � Sπ
�
i � � , where S1, . . . , Sn are

the simple A-modules. In particular, this means that for any tilted alge-

bra B, the radical factor algebras of A and of B are Morita equivalent.

An exceptional module E defines also partial reflection functors [39]

as follows: consider the following full subcategories of modA. Let ME

be given by all modules M with Ext1A � E,M � � 0 such that no non-zero

direct summand of M is cogenerated by E; dually, let ME be given

by all modules M with Ext1A � M,E � � 0 such that no non-zero direct

summand of M is generated by E; also, let M
� E be given by all M

with HomA � M,E � � 0 and M � E by all M with HomA � E,M � � 0. For

any module M , let σ
� E � M � be the intersection of the kernels of maps

M � � E and σ � E � M � � M � tEM , where tEM is the sum of the images

of maps M � � E. In this way, we obtain equivalences

σ
� E : ME � 	

E 
 � � M
� E , and σ � E : ME � 	

E 
 � � M � E .

Here
	
E 
 is the ideal of all maps which factor through addE. The

reverse functors σE and σE are provided by forming universal extensions

by copies of E (from above or below, respectively). Note that on the

level of dimension vectors these partial functors σ � σE , σ
� E , σE , σ � E

yield the usual reflection formula:

dimσ � M � � dimM � 2
	
dimM,dimE 
	
dimE,dimE 
 dimE.

2.12 Slices

An artin algebra B is a tilted algebra if and only if modB has a slice.

Thus the existence of slices characterizes the tilted algebras. The neces-

sity to explain the importance of slices has to be mentioned as a (further)

impetus for the development of tilting theory. In my 1979 Ottawa lec-

tures, I tried to describe several module categories explicitly. At that

time, the knitting of preprojective components was one of the main tools,

and I used slices in such components in order to guess what later turned
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out to be tilting functors, namely functorial constructions using pushouts

and pullbacks. The obvious question about a possible theoretical foun-

dation was raised by several participants, but it could be answered only

a year later at the Puebla conference. Under minor restrictions (for

example, the existence of a sincere indecomposable module) preprojec-

tive components will contain slice modules and these are tilting modules

with a hereditary endomorphism ring! This concerns the concealed al-

gebras to be mentioned below, but also all the representation-directed

algebras. Namely, using covering theory, the problem of describing the

structure of the indecomposable modules over a representation-finite al-

gebra is reduced to the representation-directed algebras with a sincere

indecomposable module, and such an algebra is a tilted algebra, since it

obviously has a slice module.

In dealing with an artin algebra of finite representation type, and looking

at its Auslander-Reiten quiver, one may ask for sectional subquivers

say of Euclidean types. Given such a subquiver Γ, applying several

times τ or τ
� 1 (and obtaining in this way “parallel” subquivers), one

has to reach a projective, or an injective vertex, respectively. Actually,

Bautista and Brenner have shown that the number of parallel subquivers

is bounded, the bound is called the replication number. If one is

interested in algebras with optimal replication numbers, one only has to

look at representation-finite tilted algebras of Euclidean type. Note that

given a hereditary algebra A of Euclidean type and a tilting A-module

T , then B � EndA � T � is representation-finite if and only if T has both

preprojective and preinjective indecomposable direct summands.

It is natural to look inside preprojective and preinjective components for

slices. In 1979 one did not envision that there could exist even regular

components with a slice module. But any connected wild hereditary

algebra with at least three simple modules has a regular tilting module

T , and then the connecting component of B � EndA � T � is regular.

One should be aware that the category modB looks quite amazing:

the connecting component (which is a regular component in this case)

connects two wild subcategories, like a tunnel between two busy regions.

Inside the tunnel, there are well-defined paths for the traffic, and the

traffic goes in just one direction.

� � �

Tilting modules can be used to study specific classes of artin alge-

bras. Some examples have been mentioned already. We have noted that
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all the representation finite k-algebras, with k algebraically closed, can

be described using tilted algebras (the condition on k is needed in order

to be able to use covering theory). We obtain in this way very detailed

information on the structure of the indecomposables. One of the first

uses of tilting theory concerned the representation-finite tree algebras,

see Chapter 3 by Brüstle.

2.13 Concealed algebras

By definition, B is a concealed algebra, provided B � EndA � T � , where T

is a preprojective A-module with A hereditary. The tame concealed k-

algebras B where k is algebraically closed, have been classified by Happel

and Vossieck, and Bongartz has shown in which way they can be used

in order to determine whether a k-algebra is representation-finite.

2.14 Representations of posets

The representation theory of posets always has been considered as an

important tool when studying questions in representation theory in gen-

eral: there are quite a lot of reduction techniques which lead to a vector

space with a bunch of subspaces, but the study of a vector space with a

bunch of subspaces with some inclusions prescribed, really concerns the

representation theory of the corresponding poset. On the other hand,

the representation theory of finite posets is very similar to the represen-

tation theory of some quite well-behaved algebras, and the relationship

is often given by tilting modules. For example, when dealing with a

disjoint union of chains, then we deal with the subspace representations

of a star quiver Q (the quiver Q is obtained from a finite set of linearly

oriented quivers of type A, with all the sinks identified to one vertex,

the center of the star). If c is the center of the star quiver Q, then

the subspace representations are the torsion-free modules of the (split)

torsion pair � Y,X � , with X being the representations V of Q such that

Vc
� 0. We also may consider the opposite quiver Qop and the (again

split) torsion pair � F , T � , where now F are the representations V of Qop

with Vc
� 0. The two orientations used here are obtained by a sequence

of reflections, and the two split torsion pairs � F ,G � , � Y,X � are given by

a tilting module which is a slice module:
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2.15 The Crawley-Boevey-Kerner functors

If R is an artin algebra and W an R-module, let us write
�
τ � W � for

the ideal of mod R of all maps which factor through a direct sum of

modules of the form τzW with z � Z. We say that the module categories

mod R and modR � are almost equivalent provided there is an R-module

W and an R � -module W � such that the categories modR � �
τ � W � and

mod R � � �
τ � W � � are equivalent. The Crawley-Boevey-Kerner functors

were introduced in order to show the following: If k is a field and Q and

Q � are connected wild quivers, then the categories mod kQ and mod kQ �
are almost equivalent. The proof uses tilting modules, and the result may

be rated as one of the most spectacular applications of tilting theory.

Thus it is worthwhile to outline the essential ingredients. This will be

done below.

Here are some remarks concerning almost equivalent categories. It is

trivial that the module categories of all representation-finite artin alge-

bras are almost equivalent. If k is a field, and Q,Q � are tame connected

quivers, then mod kQ and mod kQ � are almost equivalent only if Q and

Q � have the same type ( �Apq, �Dn, �E6, �E7, �E8). Let us return to wild quiv-

ers Q,Q � and a Crawley-Boevey-Kerner equivalence

η : mod kQ � �
τ � W � � � mod kQ � � �

τ � W � � ,
with finite length modules W,W � . Consider the case of an uncountable

base field k, so that there are uncountably many isomorphism classes

of indecomposable modules for R 	 kQ as well as for R � 	 kQ � . The

ideals
�
τ � W � and

�
τ � W � � are given by the maps which factor through

a countable set of objects, thus nearly all the indecomposable modules

remain indecomposable in mod kQ � �
τ � W � and mod kQ � � �

τ � W � � , and

non-isomorphic ones (which are not sent to zero) remain non-isomorphic.

In addition, one should note that the equivalence η is really constructive

(not set-theoretical rubbish), with no unfair choices whatsoever. This

will be clear from the further discussion.
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Nearly all quivers are wild. For example, if we consider the m-subspace

quivers Q � m � , then one knows that Q � m � is wild provided m � 5. Let

us concentrate on a comparison of the wild quivers Q � 6 � and Q � 5 � .
To assert that Q,Q � are wild quivers means that there are full em-

beddings mod kQ � � mod kQ � and mod kQ � � � mod kQ. But the

Crawley-Boevey-Kerner theorem provides a completely new interpreta-

tion of what “wildness” is about. The definition of “wildness” itself

is considered as quite odd, since it means in particular that there is

a full embedding of mod kQ � 6 � into mod kQ � 5 � . One may reformulate

the wildness assertion as follows: any complication which occurs for 6

subspaces can be achieved (in some sense) already for 5 subspaces. But

similar results are known in mathematics, since one is aware of other

categories which allow to realize all kinds of categories as a subcategory.

Also, “wildness” may be interpreted as a kind of fractal behaviour: in-

side the category mod kQ � 5 � we find proper full subcategories which are

equivalent to mod kQ � 5 � , again a quite frequent behaviour. These re-

alization results are concerned with small parts of say mod kQ � 5 � ; one

looks at full subcategories of the category mod kQ which have desired

properties, but one does not try to control the complement. This is in

sharp contrast to the Crawley-Boevey-Kerner property which provides

a global relation between mod kQ � 5 � and mod kQ � 6 � , actually, between

the module categories of any two wild connected quivers. In this way we

see that there is a kind of homogeneity property of wild abelian length

categories which had not been anticipated before.

The Crawley-Boevey-Kerner result may be considered as a sort of Schrö-

der-Bernstein property for abelian length categories. Recall that the

Schröder-Bernstein theorem asserts that if two sets S, S � can be embed-

ded into each other, then there is a bijection S � � S � . For any kind

of mathematical structure with a notion of embedding, one may ask

whether two objects are isomorphic in case they can be embedded into

each other. Such a property is very rare, even if we replace the iso-

morphism requirement by some weaker requirement. But this is what is

asserted by the Crawley-Boevey-Kerner property.

Let us outline the construction of η. We start with a connected wild

hereditary artin algebra A, and a regular exceptional module E which is

quasi-simple (this means that the Auslander-Reiten sequence ending in

E has indecomposable middle term, call it µ � E � ), such a module exists

provided n � A � � 3. Denote by E � the category of all A-modules M

such that HomA � E,M � � 0 � Ext1A � E,M � . One knows (Geigle-Lenzing,
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Strausemi simple ) that E � is equivalent to the category mod C, where

C is a connected wild hereditary algebra C and n � C � � n � A � � 1. The

aim is to compare the categories mod C and modA, they are shown to

be almost equivalent.

It is easy to see that the module µ � E � belongs to E � , thus it can be

regarded as a C-module. Since E � � mod C, there is a projective

generator T � in E � with EndA � T � � � C. Claim: T � �
E is a tilting

module. For the proof we only have to check that Ext1A � T � , E � � 0.

Since T � is projective in E � , it follows that Ext1 � T � , µ � E � � � 0. However,

there is a surjective map µ � E � � � E and this induces a surjective map

Ext1 � T � , µ � E � � � � Ext1 � T � , E � .
As we know, the tilting module T � T

�
E defines a torsion pair � F , T � ,

with T the A-modules generated by T . Let us denote by τT M � tτAM

the torsion submodule6 of τAM . The functor η is now defined as follows:

η � M � � lim
t 	 
 � τ t

Aτ
� 2t
T τ t

C � M � .

One has to observe that the limit actually stabilizes: for large t, there

is no difference whether we consider t or t 
 1. The functor η is full,

the image is just the full subcategory of all regular A-modules. There

is a non-trivial kernel: a map is sent to zero if and only if it belongs to�
τ � W � , where W � C

�
µ � E � �

DC. Also, let W � � A
�

DA. Then η

is an equivalence

η : mod C � �
τ � W � � � mod A � �

τ � W � � .

One may wonder how special the assumptions on A and C are. Let us say

that A dominates C provided there exists a regular exceptional module E

which is quasi-simple with mod C equivalent to E � . Given any two wild

connected quivers Q,Q � , there is a sequence of wild connected quivers

Q � Q0, . . . , Qt
� Q � such that kQi either dominates or is dominated

by kQi � 1, for 1 � i � t. This implies that the module categories of all

wild path algebras are almost equivalent.

The equivalence η can be constructed also in a different way [35], using

6 The notation shall indicate that this functor τT has to be considered as an
Auslander-Reiten translation: it is the relative Auslander-Reiten translation in
the subcategory T . And there is the equivalence T � Y, where Y is a full
subcategory of mod B, with B � EndA

�
T � . Since Y is closed under τ in mod B,

the functor τT corresponds to the Auslander-Reiten translation τB in mod B.
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partial reflection functors. Let E � i � � τ iE, for all i � Z. Note that for

any regular A-module M , one knows that

HomA � M,E � � t � � � 0 � HomA � E � t � ,M � for t � 0,

according to Baer and Kerner. Thus, if we choose t sufficiently large,

we can apply the partial reflection functors σE
� � t � and σE

�
t � to M . The

module obtained from M has the form

and belongs to

ME
� � t � 	 ME

�
t � 
 M

� E
� � t � 1 � 	 M � E

�
t � 1 � .

Thus we can proceed, applying now σE
� � t � 1 � and σE

�
t � 1 � . We use in-

duction, the last partial reflection functors to be applied are the functors

σE
� � 1 � , σE

�
1 � , and then finally σE . In this way we obtain a module in

ME
�
1 � 	 ME � E �

as required. It has the following structure:

2.16 The shrinking functors for the tubular algebras

Again these are tilting functors (here, A no longer is a hereditary artin

algebra, but say a canonical algebra - we are still in the realm of the “T”

displayed in Part 1, now even in its center), and such functors belong to

the origin of the development. If one looks at the Brenner-Butler tilting

paper, the main examples considered there were of this kind. So one

of the first applications of tilting theory was to show the similarity of
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the module categories of various tubular algebras. And this is also the

setting which later helped to describe in detail the module category of

a tubular algebra: one uses the shrinking functors in order to construct

all the regular tubular families, as soon as one is known to exist.

2.17 Self-injective algebras

Up to coverings and (in characteristic 2) deformations, the trivial ex-

tensions of the tilted algebras of Dynkin type (those related to the left

arm of the “T” displayed in Part 1) yield all the representation-finite

self-injective algebras (recall that the trivial extension of an algebra R is

the semi-direct product R ���
�

DR of R with the dual module DR). In pri-

vate conversation, such a result was conjectured by Tachikawa already in

1978, and it was the main force for the investigations of him and Waka-

matsu, which he presented at the Ottawa conference in 1979. There he

also dealt with the trivial extension of a tilted algebra of Euclidean type

(the module category has two tubular families). This motivated Hughes-

Waschbüsch to introduce the concept of a repetitive algebra. But it is

also part of one of the typical quarrels between Zürich and the rest of

the world: with Gabriel hiding the Hughes-Waschbüsch manuscript from

Bretscher-Läser-Riedtmann (asking a secretary to seal the envelope with

the manuscript and to open it only several months later...), so that they

could proceed “independently”.

The representation theory of artin algebras came into limelight when

Dynkin diagrams popped up for representation-finite algebras. And this

occurred twice, first for hereditary artin algebras in the work of Gabriel

(as the Ext-quiver), but then also for self-injective algebras in the work of

Riedtmann (as the tree class of the stable Auslander-Reiten quiver). The

link between these two classes of rings is furnished by tilted algebras and

their trivial extensions. As far as I know, it is Tachikawa who deserves

the credit for this important insight.

The reference to trivial extensions of tilted algebras actually closes a cir-

cle in our considerations, due to another famous theorem of Happel. We

have started with the fact that tilting functors provide derived equiva-

lences. Thus the derived category of a tilted algebra can be identified

with the derived category of a hereditary artin algebra. For all artin

algebras R of finite global dimension (in particular our algebras A and

B), there is a an equivalence between Db � mod R � and the stable module
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category of the repetitive algebra �R. But �R is just a Z-covering of the

trivial extension of R.

2.18 Artin algebras with Gorenstein dimension at most 1

We have mentioned that the two classes of algebras: the selfinjec-

tive ones and the hereditary ones, look very different, but neverthe-

less they have some common behaviour. Auslander and Reiten [4] have

singled out an important property which they share, they are Goren-

stein algebras of Gorenstein dimension at most 1. An artin algebra

A is called Gorenstein7 provided ADA has finite projective dimen-

sion and AA has finite injective dimension. For Gorenstein algebras,

proj-dim ADA � inj-dim AA, and this number is called the Gorenstein

dimension of A. It is not known whether the finiteness of the projec-

tive dimension of ADA implies the finiteness of the injective dimension

of AA. It is conjectured that this is the case: this is the Gorenstein

symmetry conjecture, and this conjecture is equivalent to the conjecture

that the small finitistic dimension of A is finite. The artin algebras of

Gorenstein dimension 0 are the selfinjective algebras. An artin algebra

has Gorenstein dimension at most 1 if and only if DA is a tilting module

(of projective dimension at most 1).

If A is a Gorenstein algebra of Gorenstein dimension at most 1, then

there is a strict separation of the indecomposable modules: an A-module

M of finite projective dimension or finite injective dimension satisfies

both proj-dimM � 1, inj-dimM � 1. (The proof is easy: Assume

proj-dim M � m, thus the m-th syzygy module Ωm � M � is projective.

Now for any short exact sequence 0 � � X � � Y � � Z � � 0, it is clear

that inj-dimX � 1, inj-dimY � 1 imply inj-dimZ � 1. One applies

this inductively to the exact sequences Ωi � M � � � Pi � � Ωi � 1 � M � ,
where Pi is projective, starting with i � m and ending with i � 0. This

shows that inj-dim � M � � 1. The dual argument shows that a module

of finite injective dimension has projective dimension at most 1.) As

a consequence, if A is not hereditary, then the global dimension of A

7 This definition is one of the many possibilities to generalize the notion of a
commutative Gorenstein ring to a non-commutative setting. Note that a com-
mutative artin algebra R is a Gorenstein ring if and only if R is selfinjective.
Of course, a commutative connected artin algebra R is a local ring, and a lo-
cal ring has a non-zero module of finite projective dimension only in case R is
selfinjective.
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is infinite. Also, if P is an indecomposable projective A-module, then

either its radical is projective or else the top of P is a simple module

which has infinite projective and infinite injective dimension.

Until very recently, the interest in artin algebras of Gorenstein dimension

at most 1 has been quite moderate, the main reason being a lack of

tempting examples: of algebras which are neither selfinjective nor hered-

itary. But now there is a wealth of such examples, as we will see in Part

3.

� � �

We hope that we have convinced the reader that the use of tilting mod-

ules and tilted algebras lies at the heart of nearly all the major develop-

ments in the representation theory of artin algebras in the last 25 years.

In this report we usually restrict to tilting modules in the narrow sense

(as being finite length modules of projective dimension at most 1). In

fact, most of the topics mentioned are related to tilting A-modules T ,

where A is a hereditary artin algebra (so that there is no need to stress

the condition proj-dimT � 1 � . However, the following two sections will

widen the viewpoint, taking into account also various generalizations.

2.19 Representations of semisimple complex Lie algebras and

algebraic groups

The highest weight categories which arise in the representation theory of

semisimple complex Lie algebras and algebraic groups can be analyzed

very well using quasi-hereditary artin algebras as introduced by Cline-

Parshal-Scott. One of the main features of such a quasi-hereditary artin

algebra is its characteristic module, this is a tilting module (of finite

projective dimension). Actually, the experts use a different convention,

calling its indecomposable direct summands “tilting modules”, see Chap-

ter 9 by Donkin. If T is the characteristic module, then addT consists of

the A-modules which have both a standard filtration and a costandard

filtration, and it leads to a duality theory which seems to be of great

interest.
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2.20 The homological conjectures

The homological conjectures are one of the central themes of module

theory, so clearly they deserve special interest. They go back to math-

ematicians like Nakayama, Eilenberg, Auslander, Bass, but also Rosen-

berg, Zelinsky, Buchsbaum and Nunke should be mentioned, and were

formulated between 1940 and 1960. Unfortunately, there are no writ-

ten accounts about the origin, but we may refer to surveys by Happel,

Smalø and Zimmermann-Huisgen. The modern development in repre-

sentation theory of artin algebras was directed towards a solution of the

Brauer-Thrall conjectures, and there was for a long time a reluctance

to work on the homological conjectures. The investigations concerning

the various representation types have produced a lot of information on

special classes of algebras, but for these algebras the homological con-

jectures are usually true for trivial reasons. As Happel has pointed out,

the lack of knowledge of non-trivial examples may very well mean that

counter-examples could exist. Here is a short discussion of this topic, in

as far as modules without self-extensions are concerned.

Let me start with the Nakayama conjecture which according to B. Müller

can be phrased as follows: If R is an artin algebra and M is a generator

and cogenerator for modR with Exti
R � M,M � � 0 for all i � 1, then M

has to be projective. Auslander and Reiten [3] proposed in 1975 that the

same conclusion should hold even if M is not necessarily a cogenerator

(this is called the “generalized Nakayama conjecture”). This incorpo-

rates a conjecture due to Tachikawa (1973): If R is self-injective and M is

an R-module with Exti
R � M,M � � 0 for all i � 0, then M is projective.

The relationship of the generalized Nakayama conjecture with tilting

theory was noted by Auslander and Reiten [3, 4]. Then there is the

conjecture on the finiteness of the number of complements of an almost

complete partial tilting module, due to Happel and Unger. And there is

a conjecture made by Beligiannis and Reiten [5], called the Wakamatsu

tilting conjecture (because it deals with Wakamatsu tilting modules, see

Chapter 8 by Reiten): If T is a Wakamatsu tilting module of finite

projective dimension, then T is a tilting module. The Wakamatsu tilt-

ing conjecture implies the generalized Nakayama conjecture (apparently,

this was first observed by Buan) and also the Gorenstein symmetry con-

jecture, see [5]. In a joint paper, Mantese and Reiten [37] showed that it

is implied by the finitistic dimension conjecture, and that it implies the

conjecture on a finite number of complements, which according to Buan
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and Solberg is known to imply the generalized Nakayama conjecture.

There is also the equivalence of the generalized Nakayama conjecture

with projective almost complete partial tilting modules having only a fi-

nite number of complements (Happel-Unger, Buan-Solberg, both papers

are in the Geiranger proceedings). Coelho, Happel and Unger proved

that the finitistic dimension conjecture implies the conjecture on a finite

number of complements.

Further relationship of tilting theory with the finitistic dimension con-

jectures is discussed in detail in Chapter 11 by Trlifaj and in Chapter

12 by Solberg. But also other results presented in the Handbook have

to be seen in this light. We know from Auslander and Reiten, that the

finitistic dimension of an artin algebra R is finite, in case the subcate-

gory of all modules of finite projective dimension is contravariantly finite

in modR. This has been the motivation to look at the latter condition

carefully (see for example Chapter 10 by Unger).

With respect to applications outside of ring and module theory, many

more topics could be mentioned. We have tried to stay on a basic level,

whereas there are a lot of mathematical objects which are derived from

representation theoretical data and this leads to a fruitful interplay (deal-

ing with questions on quantum groups, with the shellability of simpli-

cial complexes, or with continued fraction expansions of real numbers):

There are many unexpected connections to analysis, to number theory,

to combinatorics — and again, it is usually the tilting theory which plays

an important role.

3 The new cluster tilting approach

Let me repeat: at the time the Handbook was conceived, there was a

common feeling that the tilted algebras (as the core of tilting theory)

were understood well and that this part of the theory had reached a sort

of final shape. But in the meantime this has turned out to be wrong: the

tilted algebras have to be seen as factor algebras of the so called cluster

tilted algebras, and it may very well be, that in future the cluster tilted

algebras and the cluster categories will topple the tilted algebras. The

impetus for introducing and studying cluster tilted algebras came from

outside, in a completely unexpected way. We will mention below some
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of the main steps of this development. But first let me jump directly to

the relevant construction.

3.1 The cluster tilted algebras

We return to the basic setting, the hereditary artin algebra A, the tilting

A-module T and its endomorphism ring B. Consider the semi-direct ring

extension

�B � B ���
�

Ext2B � DB,B � .
This is called the cluster tilted algebra corresponding to B. Since this is

the relevant definition, let me say a little more about this construction8 :

�B has B as a subring, and there is an ideal J of �B with J2 � 0, such that

�B � B
�

J as additive groups and J is as a B-B-bimodule isomorphic to

Ext2B � DB,B � ; in order to construct �B one may take B
�

Ext2B � DB,B � ,
with componentwise addition, and one uses � b, x � � b � , x � � � � bb � , bx � � xb � � ,
for b, b � � B and x, x � � Ext2B � DB,B � as multiplication. The definition

shows that �B can be considered as a Z-graded (or also Z � 2-graded)

algebra, with � �B � 0
� B and �B � 1

� J.

We consider again the example of B given by a square with two zero

relations. Here Ext2B � DB,B � is 8-dimensional and �B is a 16-dimensional

algebra:

Non-isomorphic tilted algebras B may yield isomorphic cluster tilted

algebras �B. Here are all the tilted algebras which lead to the cluster

tilted algebra just considered:

It is quite easy to write down the quiver of a cluster-tilted algebra.

Here, we assume that we deal with k-algebras, where k is an algebraically

8 One may wonder what properties the semi-direct product R ���
�

Ext2R
	
DR, R 
 for

any artin algebra R has in general (at least in case R has global dimension at
most 2); it seems that this question has not yet been studied.
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closed field. We get the quiver of �B from the quiver with relations of B

by just replacing the dotted arrows9 by solid arrows in opposite direction

[1]. The reason is the following: Let us denote by N the radical of B.

Then N
�

J is the radical of �B � B ���
�

J , and N2 � � NJ � JN � is equal

to the square of the radical of �B. This shows that the additional arrows

for �B correspond to J � � NJ � JN � . Note that J � � NJ � JN � is the top

of the B-B-bimodule J . Now the top of the bimodule Ext2B � DB,B � is

Ext2B � soc BDB, top BB � , since B has global dimension at most 2. It is

well-known that Ext2B � soc BDB, top BB � describes the relations of the

algebra B, and we see in this way that relations for B correspond to the

additional arrows for �B. Since rad �B � radB
�

J and J is an ideal of

�B with J2 � 0, we also see: If � rad B � t � 0, then � rad �B � 2t � 0. The

quiver of any tilted algebra is directed, thus � rad B � n
�
B � � 0, therefore

� rad �B � 2n
�
B � � 0.

The recipe for obtaining the quiver of �B shows that there are always

oriented cyclic paths (unless B is hereditary). However, such a path

is always of length at least 3. Namely, since the quiver of B has no

loops, there cannot be any relation for B starting and ending at the

same vertex. Thus, the quiver of �B cannot have a loop [8]. Also, Happel

([27], Lemma IV.1.11) has shown that for simple B-modules S, S 	 with

Ext1B � S, S 	 � 
 0 one has Ext2B � S, S 	 � � 0. This means that the quiver of

�B cannot have a pair of arrows in opposite direction [11].

It should be of interest whether knowledge about the quiver with rela-

tions of a cluster tilted algebra �B can provide new insight into the struc-

ture of the tilted algebras themselves. There is a lot of ongoing research

on cluster tilted algebras, let us single out just one result. Assume that

we deal with k-algebras, where k is algebraically closed. Then: Any clus-

ter tilted k-algebra of finite representation type is uniquely determined

by its quiver [12]. This means: in the case of finite representation type,

the quiver determines the relations! What happens in general is still

under investigation.

If A is a hereditary artin algebra and T a tilting A-module with endomor-

phism ring B, we have introduced the corresponding cluster tilted alge-

bras as the algebra �B � B ���
�

J , with B-B-bimodule J � Ext2B � DB,B � .
9 Actually, the usual convention for indicating relations is to draw dotted lines, not

dotted arrows. However, these dotted lines are to be seen as being directed, since
the corresponding relations are linear combinations of paths with fixed starting
point and fixed end point.
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The original definition of �B by Buan, Marsh and Reiten [10] used an-

other description of J , namely J � Ext1A � T, τ
� 1T � , and it was observed

by Assem, Brüstle and Schiffler [1] that the bimodules Ext1A � T, τ
� 1T �

and Ext2B � DB,B � are isomorphic10 (using this Ext2-bimodule has the

advantage that it refers only to the algebra B itself, and not to T ). It

was Zhu Bin [51] who stressed that cluster tilted algebras should be

explored as semi-direct ring extensions.

Since this isomorphism is quite essential, let me sketch an elementary

proof, without reference to derived categories. Let V be the univer-

sal extension of τT by copies of T from above, thus there is an exact

sequence

0 � � τT � � V � � Tm � � 0� � �
for some m, and Ext1A � T, V � � 0. Applying HomA � � , T � to � � � shows

that Ext1A � V, T � � Ext1A � τT, T � . Applying HomA � T, � � to � � � yields the

exact sequence

0 � � HomA � T, V � � � HomA � T, T m � � � Ext1A � T, τT � � � 0.

This is an exact sequence of B-modules and HomA � T, T m � is a free

B-module, thus we see that HomA � T, V � is a syzygy module for the

B-module Ext1A � T, τT � . But the latter means that

Ext2B � Ext1A � T, τT � , BB � � Ext1B � HomA � T, V � , BB � .
The left hand side is nothing else than Ext2B � DB,B � , since the B-module

DB and Ext1A � T, τT � differ only by projective-injective direct sum-

mands. The right hand side Ext1B � HomA � T, V � ,HomA � T, T � � is the im-

age of Ext1A � V, T � under the (exact) equivalence HomA � T, � � : T � � Y

(here we use that V belongs to T ). This completes the proof11 .

Now let us deal with the representations of 	B. The 	B-modules can

10 In addition, we should remark that Ext1A


T, τ � 1T � can be identified with

Ext1A


τT, T � (as B-B-bimodules). The reason is the fact that the functor τ � 1 is

left adjoint to τ , for A hereditary, thus Ext1A


T, τ � 1T � 
 D HomA



τ � 1T, τT � 


D HomA



T, τ2T � 
 Ext1A



τT, T � . The importance of the bimodule Ext1A



τT, T �

has been stressed already in section 2.7; I like to call it the “magic” bimod-
ule for such a tilting process. All the bimodule isomorphisms mentioned here
should be of interest when dealing with the magic bimodule J . In particular,

when working with injective �B-modules, it seems to be convenient to know that
DJ 
 HomA



T, τ2T � .

11 Note that the isomorphy of Ext2B


DB, B � and Ext1A



τT, T � yields a proof for the

implication (ii) � (iv) mentioned in Part 1. Since we know that B has global
dimension at most 2, the vanishing of Ext2B



DB, B � implies that Ext2B



X, Y � � 0

for all B-modules X, Y , thus we also see that (iv) � (ii).
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be described as follows: they are pairs of the form � M,γ � , where M is

a B-module, and γ : J � B M � � M is a B-linear map. As we know,

in mod B there is the splitting torsion pair � Y,X � and it turns out that

J � B X � 0 for X � X , and that J � B Y belongs to X for all Y � Y

(for the definition of the module classes X ,Y, but also for Y � and S we

refer to section 1.2). Let us consider a pair � M,γ � in mod �B and write

M � Y
	

S
	

X, with Y � Y � , S � S, and X � X . Then the image of γ is

contained in Y � and Y
	

S is contained in the kernel of γ (in particular,� S, 0 � is a direct summand of � M,γ � ).
Note that � Y,X � still is a torsion pair in mod �B (a module � X 	

Y, γ �
with X � X and Y � Y has � X, 0 � as torsion submodule, has � Y, 0 �
as its torsion-free factor module, and the map γ is the obstruction for

the torsion submodule to split off). Let us draw the attention to a

special feature of this torsion pair � Y,X � in mod �B: there exists an

ideal, namely J , such that the modules annihilated by J are just the

modules in add � X ,Y � .
Buan, Marsh and Reiten [10] have shown that the category mod �B can

be described in terms of mod A (via the corresponding cluster cate-

gory). Let us present such a description in detail. We will use that

J � Ext1A � T, τ

 1T � (as explained above). The algebra �B has as Z-

covering the following (infinite dimensional) matrix algebra:

with B on the main diagonal, J directly above the main diagonal, and

zeros elsewhere (note that this algebra has no unit element in case B �
0). It turns out that it is sufficient to determine the representations of

the convex subalgebras of the form B2
� �

B J

0 B 
 . We can write B2-

modules as columns � N
N � � and use matrix multiplication, provided we

have specified a map γ : J � N � � � N . In the example considered (B a

square, with two zero relations), the algebras B � and B2 are as follows:
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In order to exhibit all the B2-modules, we use the functor Φ: mod A � �
mod B2 given by

Φ � M � � �
Ext1A � T,M �

HomA � τ � 1T,M � � ,

with γ : Ext1A � T, τ
� 1T � � HomA � τ � 1T,M � � � Ext1A � T,M � being the

canonical map of forming induced exact sequences (this is just the

Yoneda multiplication)12 . Now Φ itself is not faithful, since obviously

T is sent to zero13 . However, it induces a fully faithful functor (which

again will be denoted by Φ):

Φ: mod A 	 

T � � � mod B2,

where mod A 	 

T � denotes the factor category of modA modulo the ideal

of all maps which factor through addT . The image of the functor Φ is

given by � X0 
 � 0
Y � � .

In general, given module classes K,L in modR, we write K L for

the class of all R-modules M with a submodule K in K such that

12 The reader should recall that the functors Ext1A
�
T, � � and HomA

�
τ � 1T, � � have

been mentioned already in Part 1. These are the functors which provide the
equivalences F � X and T � � Y � , respectively.

13 The comparison with the Buan-Marsh-Reiten paper [10] shows a slight deviation:
The functor they use vanishes on the modules τT and not on T (and if we
denote by Ti an indecomposable direct summand of T , then the image of Ti

becomes an indecomposable projective �B-module). Instead of looking at the

functor Φ, we could have worked with Φ � �
M � � � Ext1A

�
τT, M �

HomA

�
T, M � � , again taking

for γ the canonical map. This functor Φ � vanishes on τT . On the level of
cluster categories, the constructions corresponding to Φ and Φ � differ only by
the Auslander-Reiten translation in the cluster category, and this is an auto-
equivalence of the cluster category. But as functors mod A � � mod B2, the
two functors Φ, Φ � are quite different. Our preference for the functor Φ has
the following reason: the functor Φ kills precisely n � n

�
A � indecomposable A-

modules, thus the number of indecomposable �B-modules which are not contained
in the image of Φ is also n, and these modules form a slice. This looks quite

pretty: the category mod �B is divided into the image of the functor Φ and one
additional slice.



452 C. M. Ringel

M � K belongs to L. Thus, we assert that the image of Φ is the

class of the �B-modules � N
N � � with N � X and N � � Y � . (In order

to see that HomA � τ � 1T,M 	 � Y � , first note that HomA � τ � 1T,M 	 

HomA � T, τM 	 , thus this is a B-module in Y. We further have

HomA � T, τM 	 
 HomA � T, tτM 	 , where tτM is the torsion submod-

ule of τM . If we assume that HomA � T, tτM 	 has an indecomposable

submodule in S, say HomA � T,Q 	 , where Q is an indecomposable injec-

tive A-module, then we obtain a non-zero map Q � � tτM 
 τM , since

HomA � T, � 	 is fully faithful on T . However, the image of this map is

injective (since A is hereditary) and τM is indecomposable, thus τM is

injective, which is impossible).

We want to draw a rough sketch of the shape of modB2, in the same

spirit as we have drawn a picture of modB in Part 1:

As we have mentioned, the middle part � X0 � � 0
Y � � (starting with � X0 �

and ending with � 0
Y � � ) is the image of the functor Φ, thus this part of the

category mod B2 is equivalent to mod A � �
T � . Note that this means that

there are some small “holes” in this part, they are indicated by black

lozenges; these holes correspond to the position in the Auslander-Reiten

quiver of A which are given by the indecomposable direct summands Ti

of T (and are directly to the left of the small stars).

It follows that mod �B has the form:
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Here, we have used the covering functor Π: mod B � � � mod �B (or

better its restriction to modB2): under this functor the subcategories

� mod B
0 � and � 0

mod B � are canonically identified. In particular, a funda-

mental domain for the covering functor is given by the module classes

� X0 � � 0
Y � � and � 0

S � .
This shows that mod �B decomposes into the modules in X Y 	 (these

are the �B-modules N with a submodule X 
 N in X , such that N � X

belongs to Y 	 ) on the one hand, and the modules in S on the other hand.

Under the functor Φ, modA � �
T 
 is embedded into mod �B with image

the module class X Y 	 . This is a controlled embedding (as defined in

[43]), with control class S.

The functor

mod A
Φ� � mod B2

Π� � mod �B
has the following interesting property: only finitely many indecompos-

ables are killed by the functor (the indecomposable direct summands of

T ) and there are only finitely many indecomposables (actually, the same

number) which are not in the image of the functor (the indecomposable

modules in S). Otherwise, it yields a bijection between indecomposables.

It should be noted that some of the strange phenomena of tilted algebras

disappear when passing to cluster tilted algebras. For example, the

tunnel effect mentioned above changes as follows: there still is the tunnel,

but no longer does it connect two separate regions; it now is a sort of

by-pass for a single region. On the other hand, we should stress that

the pictures which we have presented and which emphasise the existence

of cyclic paths in mod �B are misleading in the special case when T is a

slice module: in this case, J � Ext2B � DB,B � � 0, thus �B � B is again

hereditary.

The cluster tilting theory has produced a lot of surprising results —
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it even answered some question which one did not dare to ask. For

example, dealing with certain classes of algebras such as special biserial

ones, one observes that sometimes there do exist indecomposable direct

summands X of the radical of an indecomposable projective module P ,

such that the Auslander-Reiten translate τX is a direct summand of

the socle factor module of an indecomposable injective module I. Thus,

in the Auslander-Reiten quiver of �B, there are non-sectional paths of

length 4 from I to P

I � � τX � � X � � � X � � P.

Is this configuration of interest? I did not think so before I was intro-

duced to cluster tilting theory, but according to [10], this configuration

is a very typical one when dealing with cluster tilted algebras.

As an illustration, we show what happens in the non-regular components

of our example B � (where B is the square with two zero relations). The

upper line exhibits the part of the quiver of B � which is needed as

support for the modules shown below:

For both components, the dashed boundary lines have to be identified.

In this way, the right picture with the vertical identification yields what

is called a tube, the left picture gives a kind of horizontal hose. In

contrast to the tube with its mouth, the hose extends in both directions

indefinitely. The big circles indicate the position of the modules Ti in

the corresponding components of modA, these are the modules which

are killed by the functor Φ. In both components we find non-sectional

paths of length 4 from an indecomposable injective B � -module I to an

indecomposable projective B � -module P such that the simple modules

soc I and topP are identified under the covering functor Π.
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We also want to use this example in order to illustrate the fact that the

image of Φ in mod �B is complemented by a slice S:

When looking at the non-sectional paths from I to P of length 4, where

I is an indecomposable injective �B-module, P an indecomposable pro-

jective �B-module such that S � soc I � top P , one should be aware that

the usual interest lies in paths from P to I. Namely, there is the so

called “hammock” for the simple module S, dealing with pairs of maps

of the form P � � M � � I with composition having image S (and M

indecomposable).

Taking into account not only the hammock, but also the non-sectional

paths of length 4 from I to P leads to a kind of organized round trip.

Since the simple module S has no self-extension, it is the only indecom-

posable module M such that Hom
�B

� P � ,M � � 0, for any indecomposable

projective �B-module P � 	 P. We will return to this hammock configu-

ration � P, S, I � later.

Readers familiar with the literature will agree that despite of the large

number of papers devoted to questions in the representation theory of

artin algebras, only few classes of artin algebras are known where there

is a clear description of the module categories14 . The new developments

14 Say in the same way as the module categories of hereditary artin algebras are
described. We consider here algebras which may be wild, thus we have to be
cautious of what to expect from a “clear description”.
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outlined here show that the cluster tilted algebras are such a class: As

for the hereditary artin algebras, the description of the module category

is again given by the root system of a Kac-Moody Lie algebra.

Keller and Reiten [34] have shown, that cluster tilted algebras are Goren-

stein algebras of Gorenstein dimension at most 1. This is a very remark-

able assertion! The proof uses in an essential way cluster categories, and

provides further classes of Gorenstein algebras of Gorenstein dimension

at most 1. Note that the cluster tilted algebra �B is hereditary only in

case �B � B, thus only for T a slice module. There are examples where

�B is self-injective (for example for B � kQ � �
ρ � with Q the linearly di-

rected A3-quiver and ρ the path of length 2). In general, �B will be

neither hereditary nor self-injective.

3.2 The complex Σ �A
We have mentioned in Part 1 that the simplicial complex ΣA of tilting

modules always has a non-empty boundary (for n � A � � 2). Now the

cluster theory provides a recipe for embedding this simplicial complex

in a slightly larger one without boundary. Let me introduce here this

complex Σ �A directly in terms of modA, using a variation of the work of

Marsh, Reineke und Zelevinsky [38]15 . It is obtained from ΣA by just

adding n � n � A � vertices, and of course further simplices. Recall that

a Serre subcategory16 U of an abelian category is a subcategory which

is closed under submodules, factor modules and extensions; thus in case

we deal with a length category such as modA, then U is specified by the

simple modules contained in U (an object belongs to U if and only if its

composition factors lie in U). In particular, for a simple A-module S, let

us denote by � 	 S � the subcategory of all A-modules which do not have

S as a composition factor. Any Serre subcategory is the intersection of

such subcategories.

Here is the definition of Σ �A: As simplices take the pairs � M,U � where

U is a Serre subcategory of modA and M is (the isomorphism class of)

a basic module in U without self-extensions; write � M � ,U � � 
 � M,U �
15 The title of the paper refers to “associahedra”: in the case of the path algebra of

a quiver of type An, the dual of the simplicial complex Σ �A is an associahedron
(or Stasheff polytope). For quivers of type Bn and Cn one obtains a Bott-Taubes
cyclohedron.

16 The Serre subcategories are nothing else then the subcategories of the form
mod A � AeA, where e in an idempotent of A.
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provided M � is a direct summand of M and U � � U (note the reversed

order!). Clearly17 , ΣA can be considered as a subcomplex of Σ �A, namely

as the set of all pairs � M,mod A � .

There are two kinds of vertices of Σ �A, namely those of the form

� E,mod A � with E an exceptional A-module (these are the vertices be-

longing to ΣA � , and those of the form � 0, � � S � � with S simple. It is fair

to say that the latter ones are indexed by the “negative simple roots”;

of course these are the vertices which do not belong to ΣA. Given a

simplex � M,U � , its vertices are the elements � E,mod A � , where E is

an indecomposable direct summand of M , and the elements � 0, � � S � � ,
where U � � � S � . The � n � 1 � -simplices are those of the form � M,U � ,
where M is a basic tilting module in U . The vertices outside ΣA belong

to one � n � 1 � -simplex, namely to � 0, � 0 � � . The � n � 2 � -simplices are of

the form � M,U � , where M is an almost complete partial tilting module

for U . If it is sincere in U , there are precisely two complements in U .

If it is not sincere in U , then there is only one complement in U , but

there also is a simple module S such that X belongs to � � S � , thus X

is a tilting module for U � � � S � . This shows that any � n � 2 � -simplex

belongs to precisely two � n � 1 � -simplices.

As an example, we consider again the path algebra A of the quiver

	 
 	 
 	 . The simplicial complex Σ �A is a 2-sphere and looks as

follows (considering the 2-sphere as the 1-point compactification of the

real plane):

Here, the vertex � 0, � � S � � is labeled as � dimS. We have shaded the

17 In the same way, we may identify the set of simplicies of the form
�
M,U � with

U fixed, as ΣA 
 AeA, where U � mod A � AeA. In this way, we see that Σ �A can be
considered as a union of all the simplicial complexes ΣA 
 AeA.
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subcomplex ΣA (the triangle in the middle) as well as the � n � 1 � -simplex

� 0, � 0 � � (the outside).

Consider now a reflection functor σi, where i is a sink, say. We obtain

an embedding of ΣσiA into Σ �A as follows: There are the exceptional

σiA-modules of the form σiE with E an exceptional A-module, differ-

ent from the simple A-module S � i � concentrated at the vertex i, and

in between these modules σiE the simplex structure is the same as in

between the modules E. In addition, there is the simple σiA-module

S � � i � again concentrated at i. Now we know that E has no composition

factor S � i � if and only if Ext1σiA
� S � � i � , σiM � � 0. This shows that the

simplex structure of ΣA involving � 0, � � S � i � � and vertices of the form

� E,mod A � is the same as the simplex structure of ΣσiA in the vicinity

of � S � � i � ,mod σiA � .

We may consider the simplicial complex Σ �A as a subset of the real n-

dimensional space K0 � A � � R, where n � n � A � , namely as a part of the

corresponding unit � n � 1 � -sphere, with all the � n � 1 � -simplices defined

by n linear inequalities. In case A is representation-finite, we deal with

the � n � 1 � -sphere itself, otherwise with a proper subset. For example, in

the case of the path algebra A of the quiver � 	 � 	 � , the inequalities

are ϕ1 
 0, ϕ2 
 0, ϕ3 
 0, where ϕ1, ϕ2, ϕ3 are the linear forms

inserted in the corresponding triangle:

In general, any � n � 1 � -simplex � M,U � is equipped with n linear forms

ϕ1, . . . , ϕn on K0 � A � such that the following holds: an A-module N

without self-extensions belongs to addM if and only if ϕi � dimN � 
 0.

In the same way as ΣA, also Σ �A can be identified with a fan in K0 � A � � R.

For any simplex � M,U � with vertices � E,mod A � and � 0, � � S � � , where
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E are indecomposable direct summands of M , and S simple modules

which do not belong to U , take the cone C � M,U � generated by the

vectors dimE and � dimS.

3.3 The cluster categories

We have exhibited the cluster tilted algebras without reference to cluster

categories, in order to show the elementary nature of these concepts. But

a genuine understanding of cluster tilted algebras as well as of Σ �A is not

possible in this way. Starting with a hereditary artin algebra A, let us

introduce now the corresponding cluster category CA. We have to stress

that this procedure reverses the historical development18 : the cluster

categories were introduced first, and the cluster tilted algebras only later.

The aim of the definition of cluster categories was to illuminate the

combinatorics behind the so called cluster algebras, in particular the

combinatorics of the cluster complex.

Let me say a little how cluster tilted algebras were found. Every-

thing started with the introduction of “cluster algebras” by Fomin and

Zelevinksy [23]: these are certain subrings of rational function fields,

thus commutative integral domains. At first sight, one would not guess

any substantial relationship to non-commutative artin algebras. But it

turned out that the Dynkin diagrams, as well as the general Cartan data,

play an important role for cluster algebras too. As it holds true for the

hereditary artin algebras, it is the corresponding root system, which is

of interest. This is a parallel situation, although not completely. For the

cluster algebras one needs to understand not only the positive roots, but

the almost positive roots: this set includes besides the positive roots also

the negative simple roots. As far as we know, the set of almost positive

roots had not been considered before19 . The first link between cluster

18 In the words of Fomin and Zelevinsky [25], this Part 3 altogether is completely
revisionistic.

19 Lie theory is based on the existence of perfect symmetries — partial structures
(such as the set of positive roots) which allow only broken symmetries tend to be
accepted just as necessary working tools. The set of almost positive roots seems
to be as odd as that of the positive ones: it depends on the same choices, but
does not even enjoy the plus-minus merit of being half of a neat entity. This must
have been the mental reasons that the intrinsic beauty of the cluster complex
was realized only very recently. But let me stress here that the cluster complex
seems to depend not only on the choice of a root basis, but on the ordering of the
basis (or better, on the similarity class): with a difference already for the types

�A2,2 and �A3,1.
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theory and tilting theory was given by Marsh, Reineke, Zelevinksy in

[38] when they constructed the complex Σ �A. Buan, Marsh, Reineke,

Reiten, Todorov [8] have shown in which way the representation theory

of hereditary artin algebras can be used in order to construct a category

CA (the cluster category) which is related to the set of almost positive

roots20 in the same way as the module category of a hereditary artin

algebra is related to the corresponding set of positive roots.

As we have seen, a tilted algebra B should be regarded as the factor

algebra of its cluster tilted algebra �B, if we want to take into account

also the missing modules. But mod �B has to be considered as the factor

category of some triangulated category CA, the corresponding cluster

category. Looking at CA, we obtain a common ancestor of all the algebras

tilted from algebras in the similarity class of A. In the setting of the

pictures shown, the corresponding cluster category has the form

The cluster category CA should be considered as a universal kind of

category belonging to the similarity class of the hereditary artin algebra

A in order to obtain all the module categories mod �B, where �B is a

cluster tilted algebra of type similar to A.

What one does is the following: start with the derived category

Db � mod A � of the hereditary artin algebra A, with shift functor � 1 � ,
20 A slight unease should be mentioned: as we will see, there is an embedding of

mod A into the cluster category which preserves indecomposability and reflects
isomorphy (but it is not a full embedding), thus this part of the cluster category
corresponds to the positive roots. There are precisely n � n

�
A � additional in-

decomposable objects: they should correspond to the negative simple roots, but
actually the construction relates them to the negative of the dimension vectors of
the indecomposable projectives. Thus, the number of additional objects is cor-
rect, and there is even a natural bijection between the additional indecomposable
objects and the simple modules, thus the simple roots. But in this interpretation
one may hesitate to say that “one has added the negative simple roots” (except
in case any vertex is a sink or a source). On the other hand, in our presen-
tation of the cluster complex we have used as additional vertices the elements�
0,

� 	 S � � , and they really look like “negative simple roots”. Thus, we hope that
this provides a better feeling.
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and take as CA the orbit category with respect to the functor τ
� 1
D � 1 � (we

write τD for the Auslander-Reiten translation in the derived category,

and τC for the Auslander-Reiten translation in CA). As a fundamental

domain for the action of this functor one can take the disjoint union of

mod A (this yields all the positive roots) and the shifts of the projective

A-modules by [1] (this yields n � n � A � additional indecomposable ob-

jects). It should be mentioned that Keller [33] has shown that CA is a tri-

angulated category; this is now the basis of many considerations dealing

with cluster categories and cluster tilted algebras. Now if we take a tilt-

ing module T in modA, we may look at the endomorphism ring �B of T in

CA (or better: the endomorphism ring of the image of T under the canon-

ical functors modA � Db � mod A � � 	 CA), and obtain a cluster tilted

algebra21 as considered above. The definition immediately yields that

�B � B ���
�

J , where J � HomDb


mod A � � T, τ

� 1
D T � 1 � � � Ext1A � T, τ

� 1T � .
The decisive property is that there is a canonical equivalence of cate-

gories22

CA � 

T � � 	 mod �B.

In particular, we see that the triangulated category CA has many factor

categories which are abelian23 .

What happens when we form the factor category CA � 

T � ? Consider

an indecomposable direct summand E of the tilting A-module T as an

object in the cluster category CA and the meshes starting and ending in

E:

21 This is the way, the cluster tilted algebras were introduced and studied by Buan,
Marsh and Reiten [10].

22 Instead of CA � � T � , one may also take the equivalent category CA � � τCT � . The
latter is of interest if one wants the indecomposable summands of T in CA to
become indecomposable projective objects.

23 We have mentioned that the cluster theory brought many surprises. Here is
another one: One knows for a long time many examples of abelian categories A

with an object M such that the category A � � M � (obtained by setting zero all
maps which factor through add M) becomes a triangulated category: just take
A � mod R, where R is a self-injective artin algebra R and M � RR. The
category mod R � � RR � � modR is the stable module category of R. But we are
not aware that non-trivial examples were known of a triangulated category D

with an object N such that D � � N � becomes abelian. Cluster tilting theory is
just about this!
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In the category CA � �
T � , the object E becomes zero, whereas both τCE

and τ
� 1
C E remain non-zero. In fact, τ

� 1
C E becomes a projective ob-

ject and τCE becomes an injective object: We obtain in this way in

mod �B � CA � �
T � an indecomposable projective module P � τ

� 1
C E and

an indecomposable injective module I � τCE, such that topP � soc I.

This explains the round trip phenomenon for �B mentioned above: there

is the hammock corresponding to the simple �B-module top P � soc I,

starting from I � τCE, and ending in P � τ
� 1
C E. And either radP is

projective (and I � soc I injective) or else there are non-sectional paths

of length 4 from I to P .

There is a decisive symmetry condition24 in the cluster category C � CA:

HomC � X,Y � 1 	 
 � D HomC � Y,X � 1 	 
 .
This is easy to see: since we form the orbit category with respect to

τ
� 1
D � 1 	 , this functor becomes the identity functor in C, and therefore the

Auslander-Reiten functor τC and the shift functor � 1 	 in C coincide. On

the other hand, the Auslander-Reiten (or Serre duality) formula for C

asserts that HomC � X,Y � 1 	 
 � D HomC � Y, τCX 
 . A triangulated cate-

gory is said to be d-Calabi-Yau provided the shift functor � d 	 is a Serre

(or Nakayama) functor, thus provided there is a functorial isomorphism

Hom � X, � 
 � D Hom � � , X � d 	 

(for a discussion of this property, see for example [33]). As we see, the

cluster category is 2-Calabi-Yau.

The cluster category has Auslander-Reiten sequences. One component

Γ0 of the Auslander-Reiten quiver of CA has only finitely many τC-orbits,

namely the component containing the indecomposable projective (as well

as the indecomposable injective) A-modules. The remaining components

of the Auslander-Reiten quiver of CA have tree class A � .

In a cluster category C � CA, an object is said to be a cluster-tilting ob-

ject25 provided first HomC � T, T � 1 	 
 � 0, and second, that T is maximal

24 If we write Ext1


X, Y � � HomC



X, Y � 1 � � , then this symmetry condition reads

that Ext1


X, Y � and Ext1



Y, X � are dual to each other, in particular they have

the same dimension.
25 It has to be stressed that the notion of a “cluster-tilting object” in a cluster

category does not conform to the tilting notions used otherwise in this Handbook!
If T is such a cluster-tilting object, then it may be that HomC



T, T � i � � � 0 in

C � CA for some i � 2. Observe that in a 2-Calabi-Yau category such as CA, we
have HomC



X, X � 2 � � � 0, for any non-zero object X.
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with this property in the following sense: if HomC � T �
X, � T �

X � � 1 � � � 0,

then X is in addT . If T is a tilting A-module, then one can show quite

easily that T , considered as an object of CA is a cluster-tilting object.

Let us consider the hereditary artin algebras in one similarity class and

the reflection functors between them. One may identify the correspond-

ing cluster categories using the reflection functors, as was pointed out

by Bin Zhu [52]. In this way, one can compare the tilting modules of

all the hereditary artin algebras in one similarity class. It turns out

that the cluster-tilting objects in CA are just the tilting modules for the

various artin algebras obtained from A by using reflection functors [8].

In order to see this, let T be a cluster-tilting object in CA. Let Γ0

be the component of the Auslander-Reiten quiver of CA which contains

the indecomposable projective A-modules. If no indecomposable direct

summand of T belongs to Γ0, then T can be considered as an A-module,

and it is a regular tilting A-module. On the other hand, if there is an

indecomposable direct summand of T , say T1, which belongs to Γ0, then

let S be the class of all indecomposable objects X in Γ0 with a path from

X to T1 in Γ0, and such that any path from X to T1 in Γ0 is sectional.

Then no indecomposable direct summand of T belongs to τCS. We may

identify the factor category CA � �
τCS � with mod A 	 for some hereditary

artin algebra A 	 , and consider T as an A 	 -module (the object T1, consid-

ered as an A 	 -module, is projective and faithful). Clearly, A 	 is obtained

from A by a sequence of BGP-reflection functors.

Also, the usual procedure of going from a tilting module to another

one by exchanging just one indecomposable direct summand gets more

regular. Of course, there is the notion of an almost complete partial

cluster-tilting object and of a complement, parallel to the corresponding

notions of an almost complete partial tilting module and its comple-

ments. Here we get: Any almost complete partial cluster-tilting object T

has precisely two complements [8]. We indicate the proof: We can as-

sume that T is an A-module. If T is sincere, then we know that there are

two complements for T considered as an almost complete partial tilting

A-module. If T is not sincere, then there is only one complement for T

considered as an almost complete partial tilting A-module. But there is

also one (and obviously only one) indecomposable projective module P

with HomA � P, T � � 0, and the τC-shift of P in the cluster category is

the second complement we are looking for!

An important point seems to be the following: The simplicial complex
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of partial cluster-tilting objects in the cluster category CA is nothing else

than Σ �A, with the following identification: If T is a basic partial cluster-

tilting object in CA, we can write T as the direct sum of a module M in

mod A and objects of the form τCP � i � , with P � i � indecomposable pro-

jective in mod A, and i in some index set Θ. Then M corresponds in

Σ �A to the pair � M,U � , where U � �
i � Θ � � S � i � � . The reason is very sim-

ple: HomC � τCP � i � ,M � 1 � � 	 HomC � P � i � ,M � � HomA � P � i � ,M � , with

C � CA.

The complex Σ �A should be viewed as a convenient index scheme26 for

the set of cluster tilted algebras obtained from the hereditary artin al-

gebras in the similarity class of A. Any maximal simplex of σ �A is a

cluster-tilting object in CA, and thus we can attach to it its endomor-

phism ring. Let us redraw the complex Σ �A for the path algebra A of the

quiver 
 � 
 � 
 , so that the different vertices and triangles are better

seen:

There are two kinds of vertices, having either 4 or 5 neighbours. The

vertices with 5 neighbours form two triangles (the bottom and the top

triangle), and these are the cluster-tilting objects with endomorphism

ring of infinite global dimension. The remaining triangles yield heredi-

tary endomorphism rings and again, there are two kinds: The quiver of

the endomorphism ring may have one sink and one source, these rings

are given by the six triangles which have an edge in common with the

bottom or the top triangle. Else, the endomorphism ring is hereditary

and the radical square is zero: these rings correspond to the remaining

six triangles:

26 But we should also mention the following: The set of isomorphism classes of
basic cluster-tilting objects in CA is no longer partially ordered. In fact, given
an almost complete partial cluster-tilting object T and its two complements X
and Y , there are triangles X � 
 T � � 
 Y � 
 and Y � 
 T � � 
 X � 
 with
T � , T � � add T .
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Consider an almost complete partial cluster-tilting object T in C � CA.

As we have mentioned, there are precisely two complements for T , say

E and E � . Let T � T
�

E, and T � � T
�

E � . Thus, there are given two

cluster-tilted algebras �B � EndC � T � , and �B � � EndC � T � � , we may call

them adjacent, this corresponds to the position of T and T � in the com-

plex Σ �A. We can identify CA � �
T 	 with mod �B, and CA � �

T � 	 with mod �B �
We saw that E as an indecomposable direct summand of T yields an

indecomposable projective �B-module P � τ

 1
C E and an indecomposable

injective �B-module I � τCE, such that soc I � top P. Since T
�

E � is a

cluster-tilting object, it is not difficult to show that Hom �B � P � , E � � � 0

for any indecomposable projective �B-module P � 
 P . But this implies

that E � is identified under the equivalence of CA � �
T 	 and mod �B with

the simple �B-module which is the socle of I and the top of P . In the

same way, we see that E is a simple �B � -module, namely the top of the

�B � -module P � τ

 1
C E � and the socle of the indecomposable injective

�B � -module I � τCE � . Thus, there is the following sequence of identifica-

tions:

mod �B � �
addE � 	 � CA � �

add � T �
E � � 	

� CA � �
add � T � �

E � 	 � mod �B � � �
addE 	 .

Altogether this means that artin algebras �B and �B � which are adjacent,

are nearly Morita equivalent [10]. We had promised to the reader, that

we will return to the hammock configuration � P, S, I � , where S is a

simple �B-module, P � P � S � its projective cover, and I � I � S � its

injective envelope: but this is the present setting. Using the cluster

category notation, we can write P � τ

 1
C E, I � τCE, and then S � E � ,

where E,E � are complements to an almost complete partial cluster-

tilting object T . When we form the category mod �B � �
addS 	 , the killing

of the simple �B-module S creates a hole in mod �B. From the hammock

Hom � P, � � in mod �B the following parts survive:



466 C. M. Ringel

Note that the new hole is of the same nature as the hole between I and P

(which was created when we started from the cluster category C, killing

the object E). Indeed, one may fill alternatively one of the two holes

and obtains mod �B, or mod �B � , respectively.

Altogether, we see: A cluster category C � CA has a lot of nice factor

categories which are abelian (the module categories mod �B), and one

should regard C as being obtained from patching together the various

factor categories in the same way as manifolds are built up from open

subsets by specifying the identification maps of two such subsets along

what will become their intersection. The patching process for the cat-

egories mod �B is done via the nearly Morita equivalences for adjacent

tilting objects27 .

The reader will have noticed that this exchange process for adja-

cent algebras generalizes the BGP-reflection functors (and the APR-

tilting functors) to vertices which are not sinks or sources. Indeed, for

�B � EndC � T �
E � , and �B � � EndC � T �

E � � , the indecomposable direct

summand E of T
�

E corresponds to a vertex of the quiver of �B, and

similarly, E � corresponds to a vertex of the quiver of �B � . In the BGP and

the APR setting, one of the modules E,E � is simple projective, the other

one is simple injective — here now E and E � are arbitrary exceptional

modules28 .

This concludes our attempt to report about some of the new results in

tilting theory which are based on cluster categories. Let us summerize

the importance of this development. First of all, the cluster tilted al-

gebras provide a nice depository for storing the modules which are lost

when we pass from hereditary artin algebras to tilted algebras; there is

27 It seems that there is not yet any kind of axiomatic approach to this new patching
process.

28 A direct description of this reflection process seems to be still missing. It will

require a proper understanding of all the cluster tilted algebras �B with n
� �B 	 
 3.

A lot is already known about such algebras, see [11].
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a magic bimodule which controls the situation. We obtain in this way

a wealth of algebras whose module categories are described by the root

system of a Kac-Moody Lie-algebra. These new algebras are no longer

hereditary, but are still of Gorenstein dimension at most 1. For the class

of cluster tilted algebras, there is a reflection process at any vertex of the

quiver, not only at sinks and sources. This is a powerful generalization

of the APR-tilting functors (thus also of the BGP-reflection functors),

and adjacent cluster tilted algebras are nearly Morita equivalent. The

index set for this reflection process is the simplicial complex Σ �A and

the introduction of this simplicial complex solved also another riddle of

tilting theory: it provides a neat way of enlarging the simplicial com-

plex of tilting A-modules in order to get rid of its boundary. We have

mentioned in Part 1 that both the missing modules problem as well as

the boundary problem concern the module category, but disappear on

the level of derived categories. Thus it is not too surprising that derived

categories play a role: as it has turned out, the cluster categories, as

suitable orbit categories of the corresponding derived categories, are the

decisive new objects. These are again triangulated categories, and are to

be considered as the universal structure behind all the tilted and cluster

tilted algebras obtained from a single hereditary artin algebra A (and

the hereditary artin algebras similar to A).

3.4 Appendix: Cluster algebras

Finally we should speak about the source of all these developments, the

introduction of cluster algebras by Fomin and Zelevinsky. But we are

hesitant, for two reasons: first, there is our complete lack of proper ex-

pertise, but also it means that we leave the playground of tilting theory.

Thus this will be just an appendix to the appendix. The relationship be-

tween cluster algebras on the one hand, and the representation theory of

hereditary artin algebras and cluster tilted algebras on the other hand is

fascinating, but also very subtle29 . At first, one observed certain analo-

gies and coincidences. Then there was an experimental period, with

29 Since this report is written for the Handbook of Tilting Theory, we are only
concerned with the relationship of the cluster algebras to tilting theory. There
is a second relationship to the representation theory of artin algebras, namely
to Hall algebras, as found by Caldero and Chapoton [15], and Caldero-Keller
[16, 17] , see also Hubery [31]. And there are numerous interactions between
cluster theory and many different parts of mathematics. But all this lies beyond
the scope of this volume.
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many surprising findings (for example, that the Happel-Vossieck list of

tame concealed algebras corresponds perfectly to the Seven list of mini-

mal infinite cluster algebras [47], as explained in [14]). In the meantime,

many applications of cluster-tilted algebras to cluster algebras have been

found [13, 9], and the use of Hall algebra methods provides a conceptual

understanding of this relationship [15, 16, 17, 31].

Here is at least a short indication what cluster algebras are. As we

said already, the cluster algebras are (commutative) integral domains.

The cluster algebras we are interested in (those related to hereditary

artin algebras)30 are finitely generated (this means finitely generated

“over nothing”, say over Z), thus they can be considered as subrings of a

finitely generated function field Q � x1, . . . , xn � over the rational numbers

Q. This is the way they usually are presented in the literature (but

the finite generation is often not stressed). In fact, one of the main

theorems of cluster theory asserts that we deal with subrings of the

ring of Laurent polynomials Z � x � 1
1 , . . . , x � 1

n � (this is the subring of all

elements of the form p
q

where p is in the polynomial ring Z � x1, . . . , xn �
and q is a monomial in the variables x1, . . . , xn).

Since we deal with a noetherian integral domain, the reader may expect

to be confronted with problems in algebraic geometry, or, since we work

over Z with those of arithmetical geometry. But this was not the primary

interest. Instead, the cluster theory belongs in some sense to algebraic

combinatorics, and the starting question concerns the existence of a nice

Z-basis of such a cluster algebra, say similar to all the assertions about

canonical bases in Lie theory.

What are clusters? Recall that a cluster algebra is a subring of

Z � x � 1
1 , . . . , x � 1

n � . What one is looking for is a convenient Z-basis of

the cluster algebra. One may assume that the elements of the basis are

written in the form p
q
, where p � Z � x1, . . . , xn � is not divisible by the

variables x1, . . . , xn and q � xd1

1 � � � xdn
n with exponents di � Z; the Lau-

rent monomial q is said to be the denominator31 of p
q

and one may call

dim q � � d1, . . . , dn � its dimension vector. There seems to be an induc-

tive procedure to produce at least a part of a Z-basis by first obtaining

the “cluster variables”, and then forming monomials of the cluster vari-

ables belonging to a fixed cluster. At least, this works for the cluster

30 these are the so-called acylic cluster algebras [6].
31 Note that this means that the variable xi itself will be rewritten in the form

1 � 	
x 
 1

i � ; its denominator is q � x 
 1

i .
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algebras of finite type and in this case one actually obtains a complete

Z-basis. One of the main topics discussed in cluster theory concerns the

shape of the cluster variables in general.

Consider the case of the path algebra of a finite quiver Q without ori-

ented cycles. According to Caldero-Keller [17], the simplicial complex

Σ �A with A � kQ can be identified with the cluster complex correspond-

ing to Q. Under this correspondence, the cluster variables correspond to

the exceptional A-modules and the elements of the form � 0, � � S � � . When

we introduced the simplicial complex Σ �A, the maximal simplices were

labeled � M,U � with M a basic tilting module in a Serre subcategory U

of mod A. Recall that such an � n � 1 � -simplex � M,U � in Σ �A is equipped

with n linear forms p1, . . . , pn on K0 � A � such that an A-module N with-

out self-extensions belongs to addM if and only if ϕi � dimN � � 0, for

1 � i � n. And there is the parallel assertion: A cluster monomial with

denominator q belongs to the cluster corresponding to � M,U � if and only

if ϕi � dim q � � 0, for 1 � i � n.

Here are the cluster variables for the cluster algebra of type A3, inserted

as the vertices of the cluster complex Σ �A:
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