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[Received 21 October, 1936.—Read 12 November, 1936.]

Until quite recently the theory of the invariants of an algebraic variety
Vd of d dimensions has centred almost entirely round the canonical system
of Vd_i8 lying on it. The definition of this system follows closely that of
the canonical system of curves on a surface, and dates back to Noetherf.
If | C | is a linear system of ood F^^'s on Vd, and if Cj is its Jacobian Vd_v

then the system | Cj— (d-\-1) C\ is independent of | C\ and is the canonical
system in question. An alternative expression for the system is \C'—C\,
where \C'\ is the linear system adjoint to \C\, cutting each C in a Vd_2

belonging to the canonical system on C.
It is only within the last few years that any attention has been drawn

to other geometrical invariants of algebraic varieties. IIL 1932 Severi ij:
introduced an invariant series of sets of points on an algebraic surface, and
still more recently Segre§ has considered a similar series on a V3, and an
invariant system of curves on F3.

We show here how to define on a given Vd an invariant system of
varieties of each dimension from 0 up to d— 1; the system of dimension
d— 1 being the canonical system already mentioned, and the systems of
sets of points and curves being (for d= 2, 3) the invariant systems of Severi
and Segre. We shall refer to these invariant systems as the canonical
systems of appropriate dimension, and shall denote the canonical system of
dimension k by the symbol {Xk{Vd)}.

f For references see the article in Encyk. Mat. Wiss., HI C 6b, § 47, or the later reports
by Lefschetz, Memorial des Sciences Mathdmatiques, 40 (1929), and Rosenblatt, Atti del
Congresso Internationale dei Matematici (Bologna, 1928), 4, 93.

X Severi, Commentarii Matematici Helvetici, 4 (1932), 268.
§ B. Segre, Mem. B. Accademia d'Italia, 5 (1934), 479.
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128 J. A. TODD [Nov. 12,

In order to simplify the formal work somewhat, we shall attach the
following conventional meaning to the symbol Xk(Vd) when k^d. The
symbol Xd(Vd) shall mean Vd itself; the symbol Xk{Vd), for k>d, shall
represent zero.

In the case of the canonical system {-X^_i(Fd)} it is well known that the
arithmetical invariants of a general member of the system give invariants
of Vd. For the canonical systems of lower dimensions, such invariants do
not necessarily arise. For example, on a F3 the virtual genus of a curve is
not necessarily constant as the curve moves in a system of equivalence, as
is easily seen by taking F3 to be a linear space, in which the aggregate of
curves of given order forms a single connected system of equivalencef;
We do, however, obtain invariants by considering the virtual number of
intersections of a set of canonical varieties of such number and dimension
that their virtual intersection consists of a finite set of points. In this way
the results obtained here lead to significant results in the theory of the
arithmetical invariants of Vd, which it is hoped to consider in a subsequent
paper.

The canonical system of dimension zero on Vd is easily defined in terms
of a pencil | C\ of F^^'s with an irreducible base Vd_2, (C2). In fact, if 8
denotes the set of double points of the pencil, and X0(C), X0(C

2) denote
canonical sets on C and (C2) respectively, then we show in § 2 below that the
series of equivalence (possibly virtual) defined by the set

is independent of | C\; this is the system {X0(Vdj}.
To define the canonical varieties of higher dimension we introduce the

idea of the adjoints of various dimensions of a linear system | C | of V^s on
Vd, supposing (in the first place) that | C | is a sufficiently ample linear system
and is free from base-points. The definition of these systems is similar to
that of the adjoint system of V^s; the adjoint system of dimension k
being the set of Ffc's on Vd which cut out on a general C a Vk_x belonging
to {Xk_x(C)}. There is no difficulty in defining (possibly virtual) varieties
with this property, and we assume that the aggregate of adjoint Vks to
| C | forms on Vd a system of equivalence {Ak(C)}. I t then appears that the
(possibly virtual) system of equivalence {Ak{C)~Xk(C)} is independent
of \C\; this is the canonical system {Xk(Vd)} of dimension k on Vd,
and may be used to define the system adjoint to Vd_xs on Vd which are not
members of sufficiently general linear systems for the preceding definition
to apply.

I See, e.g., Seven, Mem. R. Accademia d'ltalia, 5 (1934), 242.
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It may be remarked that, as defined, these systems are a priori virtual,
but there certainly exist Vds on which they may be realized effectively.
Further, their invariance under birational transformation of the Vd is
relative, in general, since the introduction of fundamental varieties
of various dimensions in the transformation will in general affect the
canonical systems.

1. Equivalence of Vks on a Vd.

We recall the notion of equivalence between Vk's on Vd, a concept intro-
duced by Severif. The ideas underlying the present formulation are due
to the author %. We consider on Vd d—k linear systems | ̂  |, | C21,.. •, | Cd_k \
of F^i 's and consider the aggregate of Vks obtained as the complete inter-
section of d—k Fd_x's, chosen one from each of the d—k systems. This
aggregate of Vks we call a system of intersection. Consider now the aggre-
gate of cycles of 2k dimensions on the Riemannian R2d of Vd which represent
virtual algebraic Ffc's on Vd, i.e. which are homologous on R2d to the differ-
ence of two cycles representing effective Ffc's. We call these the algebraic
2&-cycles of R2d. They form an abelian group with addition as the law of
composition; let this group be denoted by @. We define a subgroup &
of © as follows: Jj> is generated by all the cycles of the form V—F",
where V, Y" are cycles representing two effective Ffc's, A', A", with
the property that for some effective Vk, A say, A-\-A' and A-{-A"
belong to the same system of intersection. Two Vks A, B will be called
equivalent if A — B is represented by a cycle of J£>, i.e. if the cycles repre-
senting A and B lie in the same coset of @ with respect to $. When this
happens we write A = B. The relation of equivalence is symmetrical,
reflexive, and transitive, and it is invariant under the operation of group-
addition, i.e. from A?=B and (7 = D follows A-\-C ~B-\-D. Further, if
two Ffc's A, B are equivalent on Vd, and a Vd_t meets them in Ffc_j's
Av Bv then Ax = Bx on Vd_t.

A system of equivalence is essentially a connected algebraic system of
mutually equivalent effective Vk. In the present work we stress the notion
of equivalence rather than that of systems of equivalence, since the former
is better adapted to deal with varieties which may in general be virtual.

I t is of importance to have a criterion for deciding whether two varieties
A and B ona,Vd are equivalent or not. If A and B are of dimension d— 1,
then it is known that a sufficient condition for the equivalence of A and B

f Severi, Mem. B. Accademia d'Italia, 4 (1933), 71.
J Todd, Annals of Mathematics (2), 35 (1934), 702.

8KB. 2. VOL. 43 . NO. 2172.
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130 J. A. TODD [Nov. 12,

is that they should cut equivalent Fd_2's on the Vd_i& of a sufficiently general
linear pencil. It is natural to seek an extension of this result to the case in
which A and B are of dimension smaller than d— 1. The result that sug-
gests itself is that, if A and B are of k dimensions, they are equivalent if
they meet the F ^ ' s of a sufficiently general linear system \S\, free from
fundamental varieties, in equivalent Fj^ 's . In this paper we shall assume
that this is so. That the hypothesis made is probable is suggested from the
considerations which follow, though these scarcely amount to a proof.
The justi 6 cation for making the assumption lies in the consequences that
follow from it. Algebraic geometry, especially when concerned with loci
of three or more dimensions, is still an experimental science, and the results
obtained here, by using this hypothesis, seem to be very suggestive.

In order to examine more clearly the nature of the assumption made, we
consider in a little more detail the case in which A and B are curves on a
F3; the general case presents no serious new complication. Let us
suppose, in the first instance, that A and B cut out on a general
surface So of \S\ sets of points Ax and Bx which belong to a series
of intersection. This means that we can find on So two pencils of
curves | / | , \g\, with the property that the complete intersection of
one pair of curves fx, gx of the pencils is the set Ax, while the complete
intersection of another pair /2, g2 is the set Bx. It may be possible
to select such a pair of pencils | f\ and | g | in more than one way. Suppose
that | / ' |, | g' | are another pair of pencils with the same property. Then, if
the curves of | / ' | are members of the same complete continuous system as
the curves of [ f\, they must belong to the same linear system. For fx and
fi, being algebraically equivalent, cut any g in the same number of points,
hence the set Ax is the complete intersection of fx' and gx, and it then
follows from the criterion of linear equivalence for curves on a surface that
fx and fx are linearly equivalent. It may happen, however, that | / ' | and
| g' | consist of curves respectively of the same orders as, but not equivalent
to, the curves | / | and \g\, i.e. that the surface possesses several descriptively
similar linear systems which are non-equivalent (e.g. the cubic surface, with
twenty-seven pencils of conies). It seems likely, however, that this can
happen only for a limited type of surface on F3, and that, if | S | is sufficiently
general, this possibility cannot arise.

This being the case, we can now isolate the complete linear systems on
So to which | / | and | g | belong and determine uniquely on the other surfaces
of the pencil the corresponding linear systems. Then, by assigning fixed
base points to these systems, lying on the base curve of the pencil, we can
reduce the freedom of the systems passing through the sets Ax and Bx to
zero. If now So is allowed to vary in the pencil, the curves fx and gx describe
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surfaces Fly Gx which meet in the curve A, and/2, g2 describe surfaces F2,
G2 meeting in the curve B, these being the complete intersections of
the respective pairs of surfaces. Since the surfaces Fv F2 are clearly
equivalent on F3, as are Gv G2, it follows that the curves A and B belong to
a system of intersection.

The extension to the case when the sets Ax and B1 do not belong to a
series of intersection is simple, since in the most general case in which Ax

and Bx are equivalent there exists a set D1 such that Ax-\-Dlt Bx-\-Dx belong
to the sum or difference of a finite number of series of intersection. These
being, as we have seen, determinable rationally on each 8 if 18 | is sufficiently
general, it follows by an obvious process that A and B are such that there
exists a curve D such that A-\-D and B-\-D belong to the sum or difference
of a finite number of systems of intersection on F3, and are hence
equivalent.

This outline may serve to explain how the hypothesis mentioned above
is suggested, and may form the lines on which a complete proof can be
based.

2. The canonical series {XQ(Vd)} of sets of points on Vd.

We shall now prove, by induction on d, that if S denotes the set of double
points of the members of a pencil | C\ of V^s, with irreducible base (C2),
on Vd (assumed to be free from singularities), and if XQ(C), X0(C

2) are
canonical sets of C and (C2), then the series of equivalence defined by

8-2X0(C)-X0(C2) (2.1)

is independent of | C \. The proof is very similar to that of Segre in the case
d = 3, to which we have already referred, and is essentially the same as the
argument establishing the existence of the Zeuthen-Segre invariant Id of
Vd. In fact, the number of points in the set X0(Vd) is Id-\- (—l)d. 2d.

We consider two pencils, \C\, \D\, of F ^ / s with irreducible base-loci
(C2), (D2). Let <j>x be the curve of contact of a C and a D, and T the group
of points of stationary contact (lying on <j>x). Let S, 8' be the sets of double
points of members of the pencils \G\, \D\, respectively, and let p, p be the
sets of double points of the pencils | C* |, | D* |, cut out respectively by | D \
on (C2) and by \C\ on (D2).

Consider a fixed Vd_v CQ, of the pencil \C\, and the pencil of F^a's cut
out on Co by | D \. Assuming (2.1) to define the canonical series on varieties
of dimension less than d, we have

X0(C) ^ S1-2X0(CD)-XQ(CD% (2. 2)
K2
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132 J . A. TODD [Nov. 12,

where hxiB the set of double points of the pencil |(O02))|. Again, considering
the pencil \C*\ on ((72), we have

(2.3)

The points 8X and p make up the intersection of Co and fa; hence

{hC^ht+p. (2.4)

The set of double points of the linear series cut on fa by | G | consists of
the set 8 of double points of | C \, the set p of double points of | (C2 D) \, each
counted twice since they are base-points of the series in question, the set p of
double points of \(CD2) |, and the set T of stationary points. Hence

r = 2{fa C)+X0(fa). (2.5)
From (2.2), (2.3), (2.4), (2.5) we deduce that

. (2.6)

Since the right-hand member of (2.6) is symmetrical in G and D, it
follows that

which establishes the existence of the canonical series {X0(Vd)} on Vd, since
(2.1) reduces, when d= 1, to the familiar expression for the canonical
series on a curve | .

3. The canonical system {X1(V3}} of curves on a V3.

Having thus estabhshed the existence of the system {X0(Vd)} for all
values of d, we proceed to consider the canonical curves. The existence of
these on a surface is known from quite elementary considerations. We
shall establish the existence of a canonical system of curves, first on a F3,
and then on a Vd of any dimension. The proof given here for the F3 is
different from, and somewhat simpler than, that of Segre.

We consider two pencils \G\, [Z>| of surfaces on F3, and retain the
notation of the last section. The equation (2.2) becomes

X0(C) = Ol- 2X0(CD)- (CD2), (3.1)

I When d =• 2 the proof requires verbal modification, since the base (C2) consists of
a set of points and is thus " reducible."
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since {CD2) is a set of points, and so X0{CD2) = {CD2). Now X0{CD) is
the canonical series on the curve {CD), and is therefore cut out on (CD) by
that curve on the surface D which is adjoint to {CD), namely (CD)+XX{D),
where XX{D) is a canonical curve of D. Hence

)J) ( ) (3.2)

In the same way we find that

XO(C2)S((C2).(C2)+X1(C))C^(C3) + (C.X1(C)). (3.3)

The equation (2.3) reduces, since (C2Z>2) = 0, to

whence, by (3.3),

P=(C.(C*)+XX(C)+2{CD)).

Hence, from (3.1), (3.2), (2.4),

X0(C)=(C.+1-(C*)-4i(CD)-(D*)-X1{C)-2X1(D)). (3.4)

Thus the curves

f C2CD D (3.5)

cut out on C sets of the canonical series {X0{C)}. The system {A^C)} is
called the adjoint system of curves^ of \C\. We see from (3.5) that
A1{C)—X1{C) is symmetrical in C and D. Hence the system

is independent of C. This is the canonical system of curves on Vz.
Now let | 8 | be a net of surfaces on V3, and let Jx be its Jacobian curve.

On a fixed surface 80 oi\S\ the other surfaces cut out a pencil of curves, and
the double points of these curves lie at the intersections of So and Jx.
Hence

by virtue of (3.3). Thus

f The assumption made in §1 is, of course, used here (and in similar places throughout
the paper) to deduce the uniqueness of the system {^41(C')}.
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that is to say
*i(P,) = A-SIiW-Sffl1). (3.6)

Since X1(8) = (82)+(8X), where I is a canonical surface of F3, we
deduce from (3.6) the relation

which is used by Segre to define the system {X1(F3)}.

4. Canonical curves on Vd.

The extension of the considerations of the preceding section to varieties
of any dimension is now quite simple. We assume the existence of the
canonical system {X^Vj)} for I < d, and of the adjoint system (-4i(F/_1)}
for a linear system of F/_l's lying on V(, and deduce the existence of the
system { Z ^ ) } .

Considering once again the two pencils | C | and | D | of Fd_1's, we have
•the relations (2. 2), (2. 3), (2.4). By the hypothesis of the induction, if
a and j8 are not both zero, we have

the notation implying that the adjoint curves lie on (CaDp). Hence

The equations (2.2), (2.3), (2.4) now give

X0{C)» (C.<^1-Z1(C)-2Z1(Z>)-Z1(C2)-4

-2Z1(C2Z))-2Z1(Ci>2)-Z1(C2Z)2))>

showing that the system of curves

-2X1(C
2D)-2X1(CD*)-X1(C

2D*)}

is adjoint to C. Further, the system

being symmetrical in C and D, is independent of C and defines the canonical
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system of curves on Vd. It also follows that

<k1^{xi(Vd)+2X1(C)+X1(C*))+2(xi(D)+2X1{DC)+X1{DC*))

^D* C*)). (4.1)

It is a simple matter to deduce from this an expression for the Jacobian
curve of a net j >S| of F^^'s on Vd. If Jx is the Jacobian curve in question,
a repetition of the argument of the last section shows that

X0(S) = (8. J1)-2

= (8.J1-2X1(8)-3X1(&)-Xl(&)),

so that A1(S) = J1-2X1(S)-ZX1(S
2)—X^S*).

But AtWsX^+X^Va), and so

(4.2)

5. Canonical Vks on a Vd.

The extension of the considerations of the last two sections to prove the
existence of an invariant system of Vk's on a Vd for any value of k (less
than d) presents no essentially new difficulty. Let us suppose that the
canonical system {Xk_x{Vd)} is defined for all d. On a Vk+1 the existence
of the canonical Vk follows by elementary methods. We assume that
the system [Xk(Vi)} is denned on varieties of dimension I less than d, and
proceed to establish their existence on Vd. As part of the inductive hypo-
thesis we assume the following generalizations of (4.1) and (4.2): (i) that
on a Vt (of any dimension I) the Jacobian Jk_x of a linear oofc system of
F w ' s , | £|, is given by

and (ii) that the Vk_x of contact of a pencil | T \ of F ^ ' s and a linear cok~x

system j C71 of F M ' s is given by

**-i= S ( * ) (Xk_1(U
r)+2Xk_1(Ur D + I w ( ^ n ) . (5.2)

These reduce respectively to (4.2) and (4.1) when k=2.

t With the convention that S° = Vt.
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We take on Vd a pencil | C | of F ^ ' s and a linear system j D j of freedom k.
Let <f>k be the locus of contacts of a C and a D. The system | D | cuts out on
a fixed Co of | C | a linear oofc system of Fd_2's whose Jacobiah Jk_x is, by
(5.1), given by

r=0

1 (*+ X
S ( ) X ^ ^ C ) . (5.3)

The system |Z)| cuts on the base (C2) of | C\ a linear oofc system of
•whose Jacobian J'k_x is given by

S f ; X^^C). (5.4)

It is easily seen that

Now. by the definition of Xk(V^ for l<d,

and, in the same way,

Hence, from (5. 3), (5.4), and (5. 5),

(
lDr) ' (Z)r)

and so the system

{Ak(C)}={<f>k-Xk(C)-Xk(C*)

( ) ] ( 5 . 6 )

is the adjoint system of \C\ of dimension k.
Consider now the characteristic system cut by |Dj on a particular

Vd_l3 DQ, of ID |, and the pencil cut by | C j on Do. The locus of contacts of
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these systems is (<f>k. DQ), so that, from (5.2),

(

Hence, since

Xk_x{D*+i C) = (D. Xk(D« C*)+Xk{l>+i &))

if a, j8 are not both zero, we find that

**-i(2» = ^D • 4>u-*Xk{C)-Xh{C*)+Xk{D)

r = l \ '

Hence the system

{Ak{D)}={+k-2Xk(C)-Xk{C*)+Xk(D)

S I \ / v / 7")r \ _i o y / T\r /~i\ _|_ Y" / Dr i^2\ \ I / ̂  T \

is adjoint to |Z>|. From (5.6) and (5.7) it follows tha t

which estabhshe3 the existence of the invariant system Xk(Vd). Also,
from (5.6) or (5.7) we find

which is (5.2) with k—l replaced by k.
To complete the induction it is only necessary to extend (5.1). For this

we consider a linear oo*:+1 system 18 \ and its Jacobian Jk. The Jacobian of
the characteristic system cut by \S\ on a fixed So is (80Jk), so that, by
(5.1),

Now Xk-iiS*1) s (S. Xk{£T»)+Xk{8')) (r > 0),
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so that

Xk(S')-Xk(S)

*+2 /Z.
Hence 4fc(0) = Jf c+Xf t(S)- S f

and J^X f c (F d )+T
r—1

This is (5.1) with k instead of k—\. The induction is thus complete, and
the canonical system {Xk(Vd)} is defined for all values of k and d.

[Note—Added 25 February, 1937.] Since the above paper was written
two notes on the same subject have appeared by M. Eger [Comptes rendus,
204 (1937), 92, 217]. In the second of these papers the canonical system
of dimension k on a Vd is defined in terms of the Jacobian of k-\-1 pencils of
^d-i's, and a formula equivalent to our (5.1) is obtained (equation y of
Eger's note).

University of Manchester.
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