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Introduction.

In a previous paperf with the above title I denned certain systems of
equivalence {Xh} for each dimension h from 0 to d— 1 on an algebraic Vd,
which I there termed canonical systems of dimension h. The proof of the
invariance of these systems which I gave in that paper depended, for h > 0,
on the assumption of an unproved criterion of equivalence for varieties
of dimension h on Va. After that paper was written, but before it appeared
in print, Eger published two notes J in which he defined canonical systems
from a different point of view. These notes merely give an account of
Eger's results, and his proofs have not yet been published, but it would
appear from his account that these proofs are of a function-theoretic
character, and moreover require the existence of certain simple integrals
attached to the Vd in question. It therefore seems desirable to give a
purely geometric discussion of the matter which will establish the existence
of the canonical systems without making use of any unproved assumption.
This is the object of the present paper, which essentially replaces the earlier
one with the same title. I should like, however, to make my obligations to
Eger quite clear, since it seems likely that the geometrical reasoning given
below is closely related to the function-theoretic considerations employed
by Eger.

f J. A. Todd, Proc. London Math. Soc. (2), 43 (1937), 127.
X M. Eger, Comptes rendus, 204 (1937), 92, 217.
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1938.] THE GEOMETRICAL INVARIANTS OF ALGEBRAIC LOCI. 411

1. As a starting point we recall that on a non-singular variety Vd of d
dimensions the canonical system of dimension d— 1 may be defined by
taking an irreducible linear system \8\ of Vd_^& of freedom d and
constructing its Jacobian variety Sj. If 18 | is free from base points it is
then easily proved that the linear system | -X*<?_11 defined by

(1)

is independent of \S\, the proof being a simple generalization of the
corresponding result for d = 2. The system |Xd_x| is easily shown to
have the property expressed by the relation of (linear) equivalence on 8

(2)

which we call the relation of adjunction.
Suppose now that we have, on Vd, d irreducible linear pencils \8t\

(i = 1, ..., d), and seek the variety Jd-i[8x, $2> •••> ^a\ which is the locus of
points P such that the d tangent [d— l]'s to the varieties of the pencils
\S{\ which pass through P have a common line. We shall prove that

(3)

The proof of (3) is by induction on d. When d=l, (3) is equivalent to
(1). We therefore assume that (3) holds on varieties of dimension d— 1.

Let 8 be a particular variety of the pencil | Sx | and let | S,-1 denote the
linear system cut by |$ 3 | on S for j = 2, 3, ..., d. The variety

contains the base Vd_2, (S^2), of the pencil \8X\. For the tangent [d— l]'s
at a point P of (8-^) to the varieties of the pencils |$ 2 | , ..., \Sd\ which
pass through P meet in a line, and just one member of the pencil |
can be made to touch this line at P. At a point Q common to

and S which does not lie on (S^2) the tangent [d— l]'s at Q to the varieties
of \S
Q in the tangent [d—2]'s to

8d\ which pass through Q meet the tangent [d— 1] to 8 at
at Q, and these [d—2]'s meet in

the common tangent line to the varieties of | >SX |, \8,' 2 1 ' 18d | which pass
through Q. The locus of Q is therefore the Jacobian variety
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412 J. A. TODD [June 16,

of the pencils |S,-|. But, by the inductive hypothesis,

and hence

= (8.Xd_1+2[81+8t+...

by (2), the equivalences being on 8.
The right and left sides of (3) thus cut out equivalent Vd_2's on each

variety $ of the pencil |/S1|, and so by a well-known criterion of linear
equivalencef the two sides of (3) are linearly equivalent on Vd, which
proves the theorem.

2. In seeking to extend these results, and to define invariant systems
of lower dimension h on Vd I considered, in the previous paper, the
Jacobian variety of a linear system of freedom h-\-l, when h-\-l<.d.
Eger, on the other hand, considers the Jacobian variety of h-\-l linear
pencils, and in the present paper we follow Eger. Our proof is inductive;
we assume the existence of the system of equivalence {Xh}, for a fixed
value of h, to be established on varieties of dimension less than d, and
deduce the existence of the corresponding system on Vd. The " first
case " of the induction is that in which d = h+1, and the existence of the
canonical system in this case has just been established above.

It is worthy of remark that the geometrical argument which we use is
exactly parallel to a familiar argument % which leads to the existence of
the Zeuthen-Segre invariant of a surface—which is indeed merely the
particular case h = 0, d = 2. This point seems to be worth stressing, since
in most of the current accounts available of the algebro-geometric treat-
ment of the theory of algebraic surfaces this invariant appears as an
isolated phenomenon with no very clear relation to the general theory.
The present paper shows, I think, that it has a very real place in the organic
scheme of development of the theory of invariants.

It will be convenient for formal purposes to introduce a set of linear
operators Kn, due essentially to Eger, whose field of operation consists of
all proper algebraic sub varieties of Vd. These operators are defined by the

j- See, e.g., 0. Zariski, Algebraic surfaces (Berlin, 1935), 89. The proof given there for
the case d = 2 extends immediately to varieties of higher dimension.

I See H. F. Baker, Principles of geometry, 6 (Cambridge, 1933), 207.
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1938.] THE GEOMETRICAL INVARIANTS OF ALGEBRAIC LOCI. 413

condition of linearity, and by their effects on varieties lying on Vd which
are as follows:

= Vt (t = n), (4)

= 0 (t<n).

3. We suppose henceforward that h<d— 1. We consider h+l irre-
ducible linear pencils \8{\ (i = 0, 1, ..., h) on Vd, and define their Jacobian
variety Jh[S0, 8V ..., 8h] of h dimensions as follows. When h = 0 the
variety consists of the set of double points of members of the pencil | So1;
when h > 0 it consists of the points P of Vd such that the h-\-1 tangent
[d— l]'s to the members of the pencils which pass through P have a
common [d—h].

Let 8 be a particular variety of 18Q \, and let (80
2) be the base V(l_2 of the

pencil. Denote by |S3 | and |o\,-| the pencils cut out by |#3| on S and (S0
2)

respectively, fov j=l, 2, ..., h. We prove that

(S.Jh[80, Sv ..., 8h]) = Jh_1[21, ..., S J + J ^ K ..., a,]. (5)

The sign of equality is here intentional, implying that the intersection
does in fact break up into the two varieties figuring on the right of (5).

The proof of (5) is immediate. Let P be a point common to (S0
2) and

Jh[S0, Sv ..., Sh]. The tangent [dJ— l]'s at P to the varieties of

which pass through P meet in a [d—h]. Since P lies on Jh[S0, S1} ..., Sh]
this [d—h] lies in the tangent [d— 1] to some member of | >S01 at P and
therefore meets in a [d—h—1] the [d—2] common to the oo1 tangent
[d— l]'s to the varieties of | SQ\ at P (all of which lie in the tangent [d] to
Vd at P). Thus the tangent [d— 3]'s to the varieties of |ax\, ..., \ah\ which
pass through P meet in a [d—h—1], and the locus .of P is Jh-i[ov ..., ah].
On the other hand, at a point Q common to 8 and Jh[S0, S1} ..., Sh] which
does not lie on (#0

2). the tangent [d— l]'s to the varieties of 1^1,...., \Sh\
which pass through Q meet in a [d—h] lying in the tangent [d— 1] to 8 at Q,
and hence the tangent [d—2]'s to the members of [SjJ, ..., | EJ which pass
through Q meet in a [d—h]. Thus the locus of Q is J^^x, ..., 1>h], and
(5) follows at once.

4. We can, however, go further than this. At a point P of Jh_x[al5..., CTA]
there is just one variety, SP say, of the pencil |#0 | whose tangent [d— 1]
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414 J. A. TODD [June 16,

at P contains the [d—h] common to the tangent [rf— l]'s at P of the
varieties of the pencils I&J, ..., \Sh\ which pass through P. We prove
that this [d— 1] contains the tangent [h] to Jh[SQ, SV ..., Sh] at P.

This may be seen by the following differential argument, though a
direct synthetic proof is doubtless possible. Since Vd is an analytic non-
singular variety we can represent the points of Vd in a. suitable neighbour-
hood of P by the values of d parameters uv u2, ..., ud in such a way that
P corresponds to the set of values (0, 0, ..., 0) and that the coordinates of
all points of Vd in the neighbourhood are analytic functions of the u's.
Since P is supposed not to belong to the base-locus of any of the pencils
I $i |» •> I $h \> these parameters can be chosen so that the varieties of these pencils
are given respectively, near P, by ux—cl5..., uh=ch, where the c's are constants
vanishing for the particular varieties passing through P. Since P lies on
(#0

2) the varieties of \S0\ will be given near P by <£(%, ..., ud) = c where
c is a constant and 0 is a function analytic near P which is indeterminate at
the origin. Since h < d the choice of ud is certainly at our disposal, and
there is therefore no loss of generality in supposing that this equation takes
the form cud =f(uv ...,ud), where/is a power series in them's vanishing at
the origin.

The components du( of any vector common to the tangent spaces at P
to the varieties u^ = 0, ..., uh = 0 satisfy

dux = du» — ... — duh = 0, (6)

while the components of a vector lying in the tangent space at P to

satisfy the single relation

) -c~\dud = 0, (7)

the suffix indicating that the derivatives are evaluated at the origin.
Now the Jacobian of the 7&+1 pencils is given by the vanishing of all

rowed determinants of the Jacobian matrix

\\d(uv uz, ..., uh, fjud)
|| d(uv u2, ..., ud)

a matrix which reduces to

h
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1938.] THE GEOMETRICAL INVARIANTS or ALGEBRAIC LOCI. 415

where Ih is the unit matrix of h rows and columns, 0d_h is a block of zeros
of h rows and d—h columns, and

(8)

Thus the equations of the Jacobian are given, near P, by

i.e. (neglecting the inessential factor ud) by

of

OUd

Since P lies on this Jacobian it follows that

fdf\
(isM = o (i = h+l, h+2, ..., d— 1). (9)

WVo

Hence, if we choose c = (^-) , the left-hand side of (7) reduces to

which is satisfied by any vector satisfying (6). Thus this value of c gives
the variety SP, and (10) is the equation satisfied by all vectors in the
tangent [d— 1] to SP at P.

On the other hand, a vector du( lying in the tangent [h] to

0> Sv ..., Sh]

at P, whose equations are given by (8), satisfies

= h+l, ..., d-l)

and (J¥) dud- £ (&\ du

that is, when (9) is taken into account,

which is just (10). Thus all such vectors lie in the tangent space to SP at
P, which is our theorem.
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416 J. A. TODD [June 16,

5. With these preliminaries we can now proceed to our main result.
Let Xh denote the variety (possibly virtual) defined by

where Kh is the operator defined in § 2, and where the expression operated
on by Kh stands for its formal expansion, in which products are interpreted
as intersections and meaningless symbols (intersections whose virtual
dimension is negative) are replaced by zero. We shall prove that Xh

defines a system of equivalence {Xh} on Vd which is independent of the
pencils \S{\.

The proof is by induction on d. When d — h+l (11) reduces to (3),

as is easily seen by noticing that in n (1 + S{)
2— 1 the only varieties of

U=o J
dimension h are 2($0+.. . + $/t) and all varieties of lower dimension are
annihilated by the operator Kn. We therefore assume our theorem to
be true for varieties of dimension less than d, and prove it for varieties of
dimension d. The proof falls into two parts.

6. In the first place we must prove that (11) does actually define a
system of equivalence on Vd. To prove this it is clearly sufficient to prove
that, if Tv ..., Tr are r Vd_i& on V which can vary in irreducible linear
systems | 2 \ | , \T2\, ..., \Tr\ (not necessarily all different), then, as they
vary, the variety Xh[T1T2...Tr] moves in a system of equivalence.

The theorem is true trivially when d — h-\-l, since the only case which
arises then is that in which r = 1, and by definition, if T is a Vh on Vh+1,
Xh[T] = T. We assume as an inductive hypothesis that the theorem is
valid on varieties of dimension less than d, and prove it for varieties of
dimension d.

Consider first the case in which r = 1, and let T, T' denote two members
of the linear system | Tx \. We consider the h-\-1 pencils | S(\ on Vd and let

\n I*/1
denote the pencils cut out by \S{\ on T and T' respectively. By (11),
applied to T and T' (of dimension d— 1),

Xh[T]^Jh[L0, JLlt ..., S j - Z j n ( l+2 , ) 2 - l l (on T),
Li=O J

(l+S/)2-l l (on T),
»=o J
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1938.] THE GEOMETRICAL INVARIANTS OF ALGEBRAIC LOCI. 417

where, since we are assuming our main theorem for varieties of dimension
less than d, the expressions in the second term on the right of these
equivalences are independent of the particular varieties of the pencils | £,-
or | 2 / | which we use. We can thus suppose that 2 / is cut out on T' by
the same member of 18{\ which cuts out 2,- on T. But then, if 2 a 2 6 . . . 2C

is any term appearing in the expansion,

and (SaSb... SCT) and (Sa8b... SCT') are equivalent varieties on
(SaSb... Sc). Hence, applying our inductive hypothesis, since (Sa8b... Sc)
has dimension less than or equal to d— 1,

on (8aSb... Sc) and therefore on Vd. So

w - i ] on vd.
J

To prove our result when r = 1 it is therefore necessary only to show that

^ [^0 ' 2X, ..., 2 J = J/t[2!0', 2 / , ..., 2A'].

Now, since T = T', there is a linear pencil | T* | contained in | Tt | to which
T and T' belong. If |CT,| is the pencil cut out by | Sf\ on the base of 21*,
then, by (5),

15 ..., ^=(T.JM[T*t So, Sv ..., Sh])-Jh[a0, av ..., a,].2

As T varies in |T* | the second variety on the right remains fixed while
the first describes a linear pencil on Jh+1\T*, So, Sv ..., Sh]. Hence

varies in a system of equivalence, which proves the result.
The extension to the case r > 1 is trivial. For instance, if T1 = T±

and T2=T2', then

XdT.T^X.iT.T,'] (on TJ

and Xh[TxTA = XKlTlTA (on T2'),
8BB. 2. VOL. 45. NO. 2255. 2 E
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418 J. A. TODD [June 16,

so that Xh\TX T2] = X.iT,' T2'] (on Fa),

since equivalence on a subvariety implies equivalence on Vd, and the
equivalence relation is transitive. The procedure when r > 2 is clear.

We have thus shown that (11) does define a system of equivalence.
The next, and more important step, is to prove that this system is invariant.

7. The proof of the invariance of the system defined in (11) follows
very closely that of the existence of the Zeuthen-Segre invariant on a
surface. We introduce a further linear pencil Sh+1, and for convenience
make the following definitions:

A, =

i and yt are the Jacobian varieties of the pencils |S,-,-j, |CT,-,-| (j =fci) cut by
Sj\ on a particular variety S( of \S(\ and on (#t-

2) respectively; they are
each of dimension h.

Since (11) is assumed for varieties of dimension less than d, it holds for
Si and {Si2). Hence

f=o

the intersections being evaluated on 8{ and the dash indicating that the
factor for which j — i does not occur in the product. Thus

j = 0

Similarly yi = Kh[ S? W (l + S,)2!. (13)

By (5), A,.= (J£,.) = ?H-y,-. (14)

Consider now the Jacobian locus F of the ^,+ 1 pencils A,- (i = 0, 1, ..., h)
on J. By (3),

A,. (15)
«=0
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1938.] THE GEOMETRICAL INVARIANTS OF ALGEBRAIC LOCI. 419

Points of this locus arise in four different ways.

(i) Each point of y( (fori = 0, 1, ...,h) is a fixed part of the corresponding
pencil A,-. It appears clearly from (3) that every such fixed part separates
out twice from the Jacobian locus.

(ii) At any point Jh [So, Slt ..., Sh] the sections of the tangent [c?— l]'s
to the corresponding varieties of the pencils | So1, | Sx \,..., \ Sh | by the tangent
[/i.+ l] to J are the tangent [/i]'s to the varieties of the pencils

| A 0 | , | A X , .... | A J

which pass through the point, and these [h]'s meet in a line, the section by
the tangent [/&+1] to J of the [d—h] in which the h+l [d— l]'s meet.
Thus Jh [So, Sv ..., Sh] belongs to F.

(iii) The variety F also contains yh+1. For the reasoning of § 4 shows
that at any point P of yh+1 the [d—h—I] of intersection of the tangent
spaces to the varieties of | SQ|, | Sx|, ..., \Sh\ which pass through P lies in the
tangent [d— 1] at P to a definite member of the pencil | Sh+1\, and that the
tangent [h-\-1] to J at P lies in this [d— 1]. It thus meets the [d—h— 1] in
a line common to the tangent spaces of the varieties of | Ao |, | Ax |, ..., | Ah

passing through P, and hence P is a point of F. (The reader may be
reminded that only h-\-l pencils were involved in §4 as compared with
h-{-2 here: this accounts for the difference in the dimensions of the inter-
sections involved.)

(iv) At any point of F distinct from the foregoing there is a distinct
tangent space to each of the varieties of |#0|, \SX\, ..., \Sh+1\ which pass
through the point, these spaces having a common [d—h— 1]. The tangent
[d— l]'s to the varieties of So\, |/Sx|, ..., \Sh\ through the point have this
[d—h—I] as their complete intersection, but since the point lies on F the
section of this [d—h— 1] by the tangent [h-\-1] to J is a line. The locus A
of such points may thus be defined as the locus of those points of J at which
the [d—h—1] common to the tangent spaces of the h-\-2 pencils meets the
tangent [h-\-1] of J in a line. It is a locus of contacts of the pencils of some
special nature, but its only importance from our point of view is that it is
symmetrically related to the h-\-2 'pencils | # 0 | , \S1\) ..., \Sh+1\. W e have ,
accordingly,

T=A+Jh[S0, Sv ..., £fl] + 2 i y.+yA+1. (16)

2 E 2

 at E
dinburgh U

niversity on A
pril 9, 2010 

http://plm
s.oxfordjournals.org

D
ow

nloaded from
 

http://plms.oxfordjournals.org


420 J. A. TODD [June 16,

From (12), (13), (14), (15), and (16) it now follows that

„ Sv ..., Sh]

t = 0

i=0

h h+l hh+l h "I
ot- 11 ( l + Oj)''—£>h+i 11 ( 1 T « J ) I,

and so

, slt
M-o

h h+l h h

- % i n ( i+^) 2 - n
p h h+l

\ 2 s ^ n'
L i=0 j = 0
r A+i A+i h+i -i

J 2 s ^ n'(i+^.)2- n (i+^,)2+i •
L t=o j=o j=o -I

The right-hand side of (17) is symmetrical in #0, S1} ..., Sh+1. But the
left-hand side does not involve the arbitrary auxiliary pencil | Sh+11. Hence
the left-hand side of (17) is independent of the pencils |$0 | , 1^1, ...: \Sh\,
i.e. the system {Xh} given by (11) is an invariant system on Vd. This
completes the proof of the theorem.

We may note that if we define

(18)

then (11) can be written more concisely

J r O O O n XT i TT /1 I C \2 I /1 ft\
h\P& «1> •••> "dJ = -ftft }l \L-r»i) \y ( 1 9 )

which is the form obtained by Eger in the first of the notes already cited.

8. We can now show that the invariant systems thus defined possess
the general property of adjunction expressed by the relation

^ - i [ £ ] = (£-^/ , [£]+^ |Td]) (on S), (20)

where h > 0 and where S is an irreducible Vd_v We suppose first that
# belongs to an irreducible linear pencil |*Soj. Since (20) reduces to
(2) when d = h-\-\ we assume the result to hold on varieties of dimension
less than d, and prove it for varieties of dimension d.
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1938.] THE GEOMETRICAL INVARIANTS OF ALGEBRAIC LOCI. 421

We take h additional irreducible linear pencils | S{\ on Vd, (i= 1,2,..., h)
and denote by |S,-|, |a,| the pencils cut out by |5,-| on S and on the base
(S0

2) of \SQ\ respectively. Then, by the inductive hypothesis, if T is an
irreducible algebraic sub variety of k(^.d— 1) dimensions lying on Vd,

XU8T]=(8.Xh[8T]+Xh[T)),
that is, K^STl^iS.KtUl + Sffl). (21)

Now, from (13),

<Vi[>i> <r2, .... oh] = K^ f A (1+a,)2] = Kh..x \S> ft (l + Syl. (22)
U=l J L i=i J

Hence, from (11),

= l

^ t f - s ] by (6)

)«-5] by (22)

-(5.JST» [(1 + 5). {(1 + 5 ) ^ ( 1 + ̂ - 1 } ] ) by (21)

= (s.Jh[S0, 8lt ..., Sh]-Kh [_ft

^(S.Xh[S]+Xh[Vd]) by (11).

This proves the theorem stated when S belongs to an irreducible linear
pencil.

Now let S and T be two Vd_x's on Vd belonging to irreducible linear
systems | S \ and | T \ of freedom greater than zero satisfying the following
conditions:

(i) The linear system | # + T | is irreducible,

(ii) The linear systems cut by | T\ on a general S, and by \S\ on a
general T, are irreducible and have freedom greater than
zero,

(iii) The linear system cut by |$+y j on the intersection (ST) of a
general S and a general T is irreducible and has freedom
greater than zero,
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422 J. A. TODD [June 16,

We prove that

Xh[8+T] = Xh[8]+Xh[T] + 2Xh[8T]+Xh[8T(8+T)]. (23)

This is true trivially when h = d— 1, since then the last two terms on
the right are zero. We assume the theorem to hold for canonical systems
of dimension h+1. Conditions (i), (ii), and (iii) are sufficient to ensure
that (20) can be applied to S, T, S+T, on Vd, to (ST) considered as a locus
lying on S or T, and to ST(S-\-T) considered as a locus lying on (ST).
Hence, using the inductive hypothesis,

Xh[8+T]zs(8+T.Xh+1[8+T]+Xh+1[VA)

= (8+T.Xh+1[8]+Xh+1[T] + 2Xh+1[8T]

+Xh+1[ST(S+T)]+Xh+1[Vd])

^ (S.Xh+l[S]+Xh+1[Vd])+(T • Xh+1[T]+Xh+1[Vd])

+ (S.Xh+1[T]+Xh+1[ST])+(T.Xh+l[S]+Xh+J[ST])

+ (ST.Xh+1[S]+Xh+1[ST])s

+ (ST(S+T).X»rl[8T]+Xh+1[8T(8+T)])ua,)

[the suffixes indicating that the intersections are evaluated on 8, T, (ST)
respectively], and the right-hand side is consequently

Xh[S]+Xh[T]+2Xh[8T]+Xh[8T(8+T)],

which proves (23).
We now use (23) to define Xh[8+T] even when \8+T\ is reducible.

We may also use (23) to define Xh[S] on a virtual variety S ofd—1 dimen-
sions. To do this we take an effective variety U such that T = U—S is
effective, and define

Xh[S] = Xh[U]-Xh[T]-2Xh[ST]-Xh[STU].

The varieties (ST) and (STU) may be virtual, but their dimension is less
than d—1, and they lie on the effective varieties T, (TU) respectively.
If they are in fact virtual their canonical systems may be defined in the
same manner. In any event, after a finite number of steps only canonical
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1938.] THE GEOMETRICAL INVARIANTS OF ALGEBRAIC LOCI. 423

systems of effective varieties appear on the right, since when the dimension
of a variety is less than h its canonical Vh does not existf.

It follows from the proof of (23), and from Macpherson's result just
cited, that the system Xh(S) defined on any S, reducible or irreducible,
effective or virtual, satisfies the relation (20). The system

(24)

we call the adjoint system to 8, of dimension h, and we clearly have

(25)

9. We have finally to identify the invariant system {Xh} just considered
with that defined in the previous paper in terms of the Jacobian of a linear
ooft+1 system. To do this it is sufficient to showj that the Jacobian
Jh[S] of a sufficiently general linear oo^1 system \S\ is given by

that is,, symbolically,

(26)

As Eger remarks, this may be deduced by limiting considerations from
(19). It is convenient to establish the more general result § that the
Jacobian of a linear oor+1 system \S\ and of h—r other linear pencils

n-r\is g i v e n b y

Jh[S; Sv ..., S^] = Kh [(l + Sr+«if (1 + S,-)2]. (27)

The proof of (27) proceeds by induction on r, since it reduces to (19) when
r = 0. When h — d—1, (27) is easily proved by considerations similar to
those employed in the proof of (3). We suppose then that (27) has been
proved for canonical systems of dimension greater than & on Vd, and prove
it for the system {Xh}.

We consider a linear oor+2 system | T | containing \S\, and a linear oor

system \U\ contained in \8\, and consider a general pencil | $ 0 | lying in

f In a note appearing in Proc. Cambridge Ph,il. Soc, 35 (1939), 389-393, R. E. Macpherson
has extended (23) to the case in which S is an isolated variety, and has shown directly that
the relation of adjunction (20) is valid in this case also.

X C.f. equation (5.1) of the previous paper.
§ Eger, loc. cit. ante.
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T\. The Jacobian Jh+1 of T, Sv ..., Sh_.r is of h+l dimensions and
contains Jh[U; So, 8V..., Sh_r], and as | So\ varies in T this locus describes
a linear system on Jh+1. When | $ 0 | lies in \S\ it has a member S* in
common with \U\. As | SQ| tends to the limiting position in which it lies in
\8\ the variety Jh[U] So, Sv ..., S^] breaks up into Jh[S; Sv ..., Sh_r]
and a residual variety which is easily seen to be the intersection of Jh+1 and
£*. Thus

Jh[U; So, Sv ..., Sh_r] = Jh[S; Sv .... 8^]+(8.JM[T't 8X ..., Sh_r]).

Hence by the inductive hypotheses, on r and h,

+3*nV

by (21)

which is (27). Putting h = r in (27) we obtain (26). The identity of the
systems considered here with those previously obtained is therefore
established.

Trinit}' College,.
Cambridge,
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