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Noncommutative localization in topology

Andrew Ranicki

Introduction

The topological applications of the Cohn noncommutative localization con-
sidered in this paper deal with spaces (especially manifolds) with infinite
fundamental group, and involve localizations of infinite group rings and
related triangular matrix rings. Algebraists have usually considered non-
commutative localization of rather better behaved rings, so the topological
applications require new algebraic techniques.

Part 1 is a brief survey of the applications of noncommutative localization
to topology: finitely dominated spaces, codimension 1 and 2 embeddings
(knots and links), homology surgery theory, open book decompositions and
circle-valued Morse theory. These applications involve chain complexes and
the algebraic K- and L-theory of the noncommutative localization of group
rings.

Part 2 is a report on work on chain complexes over generalized free prod-
ucts and the related algebraic K- and L-theory, from the point of view of
noncommutative localization of triangular matrix rings. Following Bergman
and Schofield, a generalized free product of rings can be constructed as a
noncommutative localization of a triangular matrix ring. The novelty here
is the explicit connection to the algebraic topology of manifolds with a gen-
eralized free product structure realized by a codimension 1 submanifold,
leading to noncommutative localization proofs of the results of Waldhausen
and Cappell on the algebraic K- and L-theory of generalized free prod-
ucts. In a sense, this is more in the nature of an application of topology
to noncommutative localization! But this algebra has in turn topological
applications, since in dimensions > 5 the surgery classification of manifolds
within a homotopy type reduces to algebra.
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Part 1. A survey of applications

We start by recalling the universal noncommutative localization of P.M.Cohn
[5]. Let A be a ring, and let Σ = {s : P → Q} be a set of morphism
of f.g. projective A-modules. A ring morphism A → R is Σ-inverting

if for every s ∈ Σ the induced morphism of f.g. projective R-modules
1⊗ s : R⊗A P → R⊗A Q is an isomorphism. The noncommutative localiza-
tion A → Σ−1A is Σ-inverting, and has the universal property that any Σ-
inverting ring morphism A → R has a unique factorization A → Σ−1A → R.
The applications to topology involve homology with coefficients in a non-
commutative localization Σ−1A.

Homology with coefficients is defined as follows. Let X be a connected
topological space with universal cover X̃, and let the fundamental group
π1(X) act on the left of X̃, so that the (singular) chain complex S(X̃) is a free
left Z[π1(X)]-module complex. Given a morphism of rings F : Z[π1(X)] → Λ
define the Λ-coefficient homology of X to be

H∗(X; Λ) = H∗(Λ ⊗Z[π1(X)] S(X̃)) .

If X is a CW complex then S(X̃) is chain equivalent to the cellular free
Z[π1(X)]-module chain complex C(X̃) with one generator in degree r for
each r-cell of X, and

H∗(X; Λ) = H∗(Λ ⊗Z[π1(X)] C(X̃)) .

1.1 Finite domination

A topological space X is finitely dominated if there exist a finite CW complex
K, maps f : X → K, g : K → X and a homotopy gf ≃ 1 : X → X.
The finiteness obstruction of Wall [31] is a reduced projective class [X] ∈
K̃0(Z[π1(X)]) such that [X] = 0 if and only if X is homotopy equivalent to
a finite CW complex.

In the applications of the finiteness obstruction to manifold topology
X = M is an infinite cyclic cover of a compact manifold M – see Chapter 17
of Hughes and Ranicki [13] for the geometric wrapping up procedure which
shows that in dimension > 5 every tame manifold end has a neighbourhood
which is a finitely dominated infinite cyclic cover M of a compact manifold
M . Let f : M → S1 be a classifying map, so that M = f∗R, and let
M

+
= f∗R+. The finiteness obstruction [M

+
] ∈ K̃0(Z[π1(M )]) is the end
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obstruction of Siebenmann [27], such that [M
+
] = 0 if and only if the tame

end can be closed, i.e. compactified by a manifold with boundary.

Given a ring A let Ω be the set of square matrices ω ∈ Mr(A[z, z−1])
over the Laurent polynomial extension A[z, z−1] such that the A-module

P = coker(ω : A[z, z−1]r → A[z, z−1]r)

is f.g. projective. The noncommutative Fredholm localization Ω−1A[z, z−1]
has the universal property that a finite f.g. free A[z, z−1]-module chain
complex C is A-module chain equivalent to a finite f.g. projective A-module
chain complex if and only if H∗(Ω

−1C) = 0 (Ranicki [21, Proposition 13.9]),
with Ω−1C = Ω−1A[z, z−1] ⊗A[z,z−1] C.

Let M be a connected finite CW complex with a connected infinite cyclic
cover M . The fundamental group π1(M) fits into an extension

{1} → π1(M ) → π1(M) → Z → {1}

and Z[π1(M)] is a twisted Laurent polynomial extension

Z[π1(M)] = Z[π1(M )]α[z, z−1]

with
α : π1(M ) → π1(M) ; g 7→ z−1gz

the monodromy automorphism. For the sake of simplicity only the untwisted
case α = 1 will be considered here, so that π1(M) = π1(M )×Z. The infinite
cyclic cover M is finitely dominated if and only if H∗(M ; Ω−1Z[π1(M)]) = 0,
with A = Z[π1(M)] and Z[π1(M)] = A[z, z−1]. The Farrell-Siebenmann ob-
struction Φ(M) ∈ Wh(π1(M)) of an n-dimensional manifold M with finitely
dominated infinite cyclic cover M is such that Φ(M) = 0 if (and for n > 6
only if) M is a fibre bundle over S1 – see [21, Proposition 15.16] for the
expression of Φ(M) in terms of the Ω−1Z[π1(M)]-coefficient Reidemeister-
Whitehead torsion

τ(M ; Ω−1Z[π1(M)]) = τ(Ω−1C(M̃)) ∈ K1(Ω
−1Z[π1(M)]) .

1.2 Codimension 1 splitting

Surgery theory asks whether a homotopy equivalence of manifolds is homo-
topic (or h-cobordant) to a homeomorphism – in general, the answer is no.
There are obstructions in the topological K-theory of vector bundles, in the
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algebraic K-theory of modules and in the algebraic L-theory of quadratic
forms. The algebraic K-theory obstruction lives in the Whitehead group
Wh(π) of the fundamental group π. The L-theory obstruction lives in one
of the surgery groups L∗(Z[π]) of Wall [32], and is defined when the topo-
logical and algebraic K-theory obstructions vanish. The groups L∗(Λ) are
defined for any ring with involution Λ to be the generalized Witt groups of
nonsingular quadratic forms over Λ. For manifolds of dimension > 5 the
vanishing of the algebraic obstructions is both a necessary and sufficient
condition for deforming a homotopy equivalence to a homeomorphism. See
Ranicki [20] for the reduction of the Browder-Novikov-Sullivan-Wall surgery
theory to algebra.

A homotopy equivalence of m-dimensional manifolds f : M ′ → M splits

along a submanifold Nn ⊂ Mm if f is homotopic to a map (also denoted by
f) such that N ′ = f−1(N) ⊂ M ′ is also a submanifold, and the restriction
f | : N ′ → N is also a homotopy equivalence. For codimension m − n > 3
the splitting obstruction is just the ordinary surgery obstruction σ∗(f |) ∈
Lm(Z[π1(N)]). For codimension m − n = 1, 2 the splitting obstructions
involve the interplay of the knotting properties of codimension (m − n)
submanifolds and Mayer-Vietoris-type decompositions of the algebraic K-
and L-groups of Z[π1(M)] in terms of the groups of Z[π1(N)], Z[π1(M\N)].

In the case m − n = 1 π1(M) is a generalized free product, i.e. either
an amalgamated free product or an HNN extension, by the Seifert-van
Kampen theorem. Codimension 1 splitting theorems and the algebraic K-
and L-theory of generalized free products are a major ingredient of high-
dimensional manifold topology, featuring in the work of Stallings, Brow-
der, Novikov, Wall, Siebenmann, Farrell, Hsiang, Shaneson, Casson, Wald-
hausen, Cappell, . . . , and the author. Noncommutative localization provides
a systematic development of this algebra, using the intuition afforded by the
topological applications – see Part 2 below for a more detailed discussion.

1.3 Homology surgery theory

For a morphism of rings with involution F : Z[π] → Λ Cappell and Shaneson
[3] considered the problem of whether a Λ-coefficient homology equivalence
of manifolds with fundamental group π is H-cobordant to a homeomor-
phism. Again, the answer is no in general, with obstructions in the topolog-
ical K-theory of vector bundles and in the homology surgery groups Γ∗(F),
which are generalized Witt groups of Λ-nonsingular quadratic forms over
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Z[π]. Vogel [28], [29] identified the Λ-coefficient homology surgery groups
with the ordinary L-groups of the localization Σ−1Z[π] of Z[π] inverting the
set Σ of Λ-invertible square matrices over Z[π]

Γ∗(F) = L∗(Σ
−1Z[π]) ,

and identified the relative L-groups L∗(Z[π] → Σ−1Z[π]) in the localization
exact sequence

· · · → Ln(Z[π]) → Ln(Σ−1Z[π]) → Ln(Z[π] → Σ−1Z[π]) → Ln−1(Z[π]) → . . .

with generalized Witt groups L∗(Z[π],Σ) of nonsingular Σ−1Z[π]/Z[π])-
valued quadratic linking forms on Σ-torsion Z[π]-modules of homological
dimension 1.

1.4 Codimension 2 embeddings

Suppose given a codimension 2 embedding Nn ⊂ Mn+2 such as a knot or
link. Let Σ−1A be the localization of A = Z[π1(M\N)] inverting the set Σ
of matrices over A which become invertible over Z[π1(M)]. By Alexander
duality the Σ−1A-coefficient homology modules

H∗(M\N ; Σ−1A) ∼= Hn+2−∗(M,N ; Σ−1A) (∗ 6= 0, n + 2)

are determined by the homotopy class of the inclusion N ⊂ M . The A-
coefficient homology groups H∗(M\N ;A) and their Poincaré duality prop-
erties reflect more subtle invariants of N ⊂ M such as knotting. See Ranicki
[21] for a general account of high-dimensional codimension 2 embedding the-
ory, including some of the applications of noncommutative localization.

1.5 Open books

An (n + 2)-dimensional manifold Mn+2 is an open book if there exists a
codimension 2 submanifold Nn ⊂ Mn+2 such that the complement M\N is
a fibre bundle over S1. Every odd-dimensional manifold is an open book.
Quinn [17] showed that for k > 2 a (2k + 2)-dimensional manifold M is
an open book if and only if an asymmetric form over Z[π1(M)] associated
to M represents 0 in the Witt group. This obstruction was identified in
Ranicki [21] with an element in the L-group L2k+2(Ω

−1Z[π1(M)][z, z−1]) of
the Fredholm localization of Z[π1(M)][z, z−1] (cf. section 1.1 above).
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1.6 Boundary link cobordism

An n-dimensional µ-component boundary link is a codimension 2 embedding

Nn =
⋃

µ

Sn ⊂ Mn+2 = Sn+2

with a µ-component Seifert surface, in which case the fundamental group
of the complement X = M\N has a compatible surjection π1(X) → Fµ

onto the free group on µ generators. Duval [8] used the work of Cap-
pell and Shaneson [4] and Vogel [29] to identify the cobordism group of
n-dimensional µ-component boundary links for n > 2 with the relative L-
group Ln+3(Z[Fµ],Σ) in the localization exact sequence

· · · → Ln+3(Z[Fµ]) → Ln+3(Σ
−1Z[Fµ]) → Ln+3(Z[Fµ],Σ) → Ln+2(Z[Fµ]) → . . .

with Σ the set of Z-invertible square matrices over Z[Fµ]. The even-dimensional
boundary link cobordism groups are L2∗+1(Z[Fµ],Σ) = 0. The cobordism
class in L2k+2(Z[Fµ],Σ) of a (2k − 1)-dimensional µ-component boundary
link ∪µS2k−1 ⊂ S2k+1 was identified with the Witt class of a Σ−1Z[Fµ]/Z[Fµ]-
valued nonsingular (−1)k+1-quadratic linking form on Hk(X; Z[Fµ]), gener-
alizing the Blanchfield pairing on the homology of the infinite cyclic cover
of a knot. The localization Σ−1Z[Fµ] was identified by Dicks and Sontag [7]
and Farber and Vogel [11] with a ring of rational functions in µ noncommut-
ing variables. The high odd-dimensional boundary link cobordism groups
L2∗+2(Z[Fµ],Σ) have been computed by Sheiham [26].

1.7 Circle-valued Morse theory

Novikov [15] proposed the study of the critical points of Morse functions
f : M → S1 on compact manifolds M . The ‘Novikov complex’ C(M,f)
over Z((z)) = Z[[z]][z−1] has one generator for each critical point of f , and
the ‘Novikov homology’

H∗(C(M,f)) = H∗(M ; Z((z)))

provides lower bounds on the number of critical points of Morse functions in
the homotopy class of f , generalizing the inequalities of the classical Morse
theory of real-valued functions M → R. Suppose given a Morse function
f : M → S1 with M = f∗R such that π1(M) = π1(M ) × Z (for the sake
of simplicity). Let Σ be the set of square matrices over Z[π1(M )][z] which
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become invertible over Z[π1(M)] under the augmentation z 7→ 0. There is a
natural morphism from the localization to the completion

Σ−1Z[π1(M)] → ̂Z[π1(M)] = Z[π1(M)][[z]][z−1]

which is an injection if π1(M) is abelian or Fµ (Dicks and Sontag [7], Farber
and Vogel [11]), but may not be an injection in general (Sheiham [25]). See
Pajitnov [16], Farber and Ranicki [10], Ranicki [22], and Cornea and Ran-
icki [6] for the construction and properties of Novikov complexes of f over

̂Z[π1(M)] and Σ−1Z[π1(M)]. Naturally, noncommutative localization also
features in the more general Morse theory of closed 1-forms – see Novikov
[15] and Farber [9].

1.8 3- and 4-dimensional manifolds

See Garoufalidis and Kricker [12], Quinn [18] for applications of noncommu-
tative localization in the topology of 3- and 4-dimensional manifolds.

Part 2. The algebraic K- and L-theory of general-

ized free products via noncommutative localization

A generalized free product of groups (or rings) is either an amalgamated free
product or an HNN extension. The expressions of Schofield [24] of gener-
alized free products as noncommutative localizations of triangular matrix
rings combine with the localization exact sequences of Neeman and Ranicki
[14] to provide more systematic proofs of the Mayer-Vietoris decomposi-
tions of Waldhausen [30] and Cappell [2] of the algebraic K- and L-theory
of generalized free products. The topological motivation for these proofs
comes from a noncommutative localization interpretation of the Seifert-van
Kampen and Mayer-Vietoris theorems. If (M,N ⊆ M) is a two-sided pair
of connected CW complexes the fundamental group π1(M) is a general-
ized free product: an amalgamated free product if N separates M , and an
HNN extension otherwise. The morphisms π1(N) → π1(M\N) determine
a triangular k × k matrix ring A with universal localization the full k × k
matrix ring Σ−1A = Mk(Z[π1(M)]) (k = 3 in the separating case, k = 2
in the non-separating case), such that the corresponding presentations of

the Z[π1(M)]-module chain complex C(M̃) of the universal cover M̃ is the
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assembly of an A-module chain complex constructed from the chain com-

plexes C(Ñ), C(M̃\N ) of the universal covers Ñ , M̃\N of N , M\N . The
two cases will be considered separately, in sections 2.3, 2.4.

2.1 The algebraic K-theory of a noncommutative localiza-

tion

Given an injective noncommutative localization A → Σ−1A let H(A,Σ) be
the exact category of homological dimension 1 A-modules T which admit a
f.g. projective A-module resolution

0 // P
s

// Q // T // 0

such that 1 ⊗ s : Σ−1P → Σ−1Q is an Σ−1A-module isomorphism. The
algebraic K-theory localization exact sequence of Schofield [24, Theorem
4.12]

K1(A) → K1(Σ
−1A) → K1(A,Σ) → K0(A) → K0(Σ

−1A)

was obtained for any injective noncommutative localization A → Σ−1A,
with K1(A,Σ) = K0(H(A,Σ)). Neeman and Ranicki [14] proved that if
A → Σ−1A is injective and ‘stably flat’

TorA
i (Σ−1A,Σ−1A) = 0 (i > 1)

then

(i) Σ−1A has the chain complex lifting property : every finite f.g. free
Σ−1A-module chain complex C is chain equivalent to Σ−1B for a finite
f.g. projective A-module chain complex B,

(ii) the localization exact sequence extends to the higher K-groups

· · · → Kn(A) → Kn(Σ−1A) → Kn(A,Σ) → Kn−1(A) → · · · → K0(Σ
−1A)

with Kn(A,Σ) = Kn−1(H(A,Σ)).

8



2.2 Matrix rings

The amalgamated free product of rings and the HNN construction are spe-
cial cases of the following type of noncommutative localization of triangular
matrix rings.

Given rings A1, A2 and an (A1, A2)-bimodule B define the triangular
2 × 2 matrix ring

A =

(
A1 B
0 A2

)
.

An A-module can be written as

M =

(
M1

M2

)

with M1 an A1-module, M2 an A2-module, together with an A1-module
morphism B ⊗A2 M2 → M1. The injection

A1 × A2 → A ; (a1, a2) 7→

(
a1 0
0 a2

)

induces isomorphisms of algebraic K-groups

K∗(A1) ⊕ K∗(A2) ∼= K∗(A) .

The columns of A are f.g. projective A-modules

P1 =

(
A1

0

)
, P2 =

(
B
A2

)

such that

P1 ⊕ P2 = A , HomA(Pi, Pi) = Ai (i = 1, 2) ,

HomA(P1, P2) = B , HomA(P2, P1) = 0 .

The noncommutative localization of A inverting a non-empty subset Σ ⊆
HomA(P1, P2) = B is the 2 × 2 matrix ring

Σ−1A = M2(C) =

(
C C
C C

)

with C the endomorphism ring of the induced f.g. projective Σ−1A-module
Σ−1P1

∼= Σ−1P2. The Morita equivalence

{Σ−1A-modules} → {C-modules} ; L 7→ (C C) ⊗Σ−1A L

9



induces isomorphisms in algebraic K-theory

K∗(M2(C)) ∼= K∗(C) .

The composite of the functor

{A-modules} → {Σ−1A-modules} ; M 7→ Σ−1M = Σ−1A ⊗A M

and the Morita equivalence is the assembly functor

{A-modules} → {C-modules} ;

M =

(
M1

M2

)
7→ (C C) ⊗A M

= coker(C ⊗A1 B ⊗A2 M2 → C ⊗A1 M1 ⊕ C ⊗A2 M2)

inducing the morphisms

K∗(A) = K∗(A1) ⊕ K∗(A2) → K∗(Σ
−1A) = K∗(C)

in the algebraic K-theory localization exact sequence.

There are evident generalizations to k × k matrix rings for any k > 2.

2.3 HNN extensions

The HNN extension R ∗α,β {z} is defined for any ring morphisms α, β :
S → R, with

α(s)z = zβ(s) ∈ R ∗α,β {z} (s ∈ S) .

Define the triangular 2 × 2 matrix ring

A =

(
R Rα ⊕ Rβ

0 S

)

with Rα the (R,S)-bimodule R with S acting on R via α, and similarly for
Rβ . Let Σ = {σ1, σ2} ⊂ HomA(P1, P2), with

σ1 =

(
(1, 0)

0

)
, σ2 =

(
(0, 1)

0

)
: P1 =

(
R
0

)
→ P2 =

(
Rα ⊕ Rβ

S

)
.

The A-modules P1, P2 are f.g. projective since P1 ⊕ P2 = A. Theorem 13.1
of [24] identifies

Σ−1A = M2(R ∗α,β {z}) .
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Example Let (M,N ⊆ M) be a non-separating pair of connected CW com-
plexes such that N is two-sided in M (i.e. has a neighbourhood N × [0, 1] ⊆
M) with M\N = M1 connected

M = M1 ∪N×{0,1} N × [0, 1]

N × [0, 1]

M1

By the Seifert-van Kampen theorem, the fundamental group π1(M) is the
HNN extension determined by the morphisms α, β : π1(N) → π1(M1)
induced by the inclusions N × {0} → M1, N × {1} → M1

π1(M) = π1(M1) ∗α,β {z} ,

so that
Z[π1(M)] = Z[π1(M1)] ∗α,β {z} .

As above, define a triangular 2 × 2 matrix ring

A =

(
Z[π1(N)] Z[π1(M1)]α ⊕ Z[π1(M1)]β

0 Z[π1(M)]

)

with noncommutative localization

Σ−1A = M2(Z[π1(M1)] ∗α,β {z}) = M2(Z[π1(M)]) .

Assume that π1(N) → π1(M) is injective, so that the morphisms α, β are

injective, and the universal cover M̃ is a union

M̃ =
⋃

g∈[π1(M):π1(M1)]

gM̃1

11



of translates of the universal cover M̃1 of M1, and

g1M̃1 ∩ g2M̃1 =





hÑ if g1 ∩ g2z = h ∈ [π1(M) : π1(N)]

g1M̃1 if g1 = g2

∅ if g1 6= g2 and g1 ∩ g2z = ∅

with hÑ the translates of the universal cover Ñ of N . In the diagram it is
assumed that α, β are isomorphisms

M̃ z−2M̃1 z−1M̃1 M̃1 zM̃1 z2M̃1

z−1Ñ Ñ zÑ z2Ñ

The cellular f.g. free chain complexes C(M̃1), C(Ñ) are related by Z[π1(M1)]-
module chain maps

iα : Z[π1(M1)]α ⊗Z[π1(N)] C(Ñ) → C(M̃1) ,

iβ : Z[π1(M1)]β ⊗Z[π1(N)] C(Ñ) → C(M̃1)

defining a f.g. projective A-module chain complex

(
C(M̃1)

C(Ñ)

)
with assembly

the cellular f.g. free Z[π1(M)]-module chain complex of M̃

coker

(
iα − ziβ : Z[π1(M)] ⊗Z[π1(N)] C(Ñ) → Z[π1(M)] ⊗Z[π1(M1)] C(M̃1)

)

= C(M̃)

by the Mayer-Vietoris theorem.

Let R ∗α,β {z} be an HNN extension of rings in which the morphisms
α, β : S → R are both injections of (S, S)-bimodule direct summands, and
Rα, Rβ are flat S-modules. (This is the case in the above example if π1(N) →
π1(M) is injective). Then the natural ring morphisms

R → R ∗α,β {z} , S → R ∗α,β {z} ,

A =

(
R Rα ⊕ Rβ

0 S

)
→ Σ−1A = M2(R ∗α,β {z})

12



are injective, and Σ−1A is a stably flat universal localization, with H(A,Σ) =
Nil(R,S, α, β) the nilpotent category of Waldhausen [30]. The chain com-
plex lifting property of Σ−1A gives a noncommutative localization proof of
the existence of Mayer-Vietoris presentations for finite f.g. free R ∗α,β {z}-
module chain complexes C

0 // R ∗α,β {z} ⊗S E
iα−ziβ

// R ∗α,β {z} ⊗R D // C // 0

with D (resp. E) a finite f.g. free R- (resp. S-) module chain complex ([30],
Ranicki [23]). The algebraic K-theory localization exact sequence of [14]

· · · → Kn+1(A,Σ) = Kn(S) ⊕ Kn(S) ⊕ Ñiln(R,S, α, β)

α β 0

1 1 0




// Kn(A) = Kn(R) ⊕ Kn(S)

→ Kn(Σ−1A) = Kn(R ∗α,β {z}) → . . .

is just the stabilization by 1 : K∗(S) → K∗(S) of the Mayer-Vietoris exact
sequence of [30]

. . . // Kn(S) ⊕ Ñiln(R,α, β)
(α−β)⊕0

// Kn(R) // Kn(R ∗α,β {z}) // . . .

In particular, for α = β = 1 : S = R → R the HNN extension is just
the Laurent polynomial extension

R ∗α,β {z} = R[z, z−1]

and the Mayer-Vietoris exact sequence splits to give the original splitting of
Bass, Heller and Swan [1]

K1(R[z, z−1]) = K1(R) ⊕ K0(R) ⊕ Ñil0(R) ⊕ Ñil0(R)

as well as its extension to the Quillen higher K-groups K∗.

2.4 Amalgamated free products

The amalgamated free product R1 ∗S R2 is defined for any ring morphisms
i1 : S → R1, i2 : S → R2, with

r1i1(s) ∗ r2 = r1 ∗ i2(s)r2 ∈ R1 ∗S R2 (r1 ∈ R1, r2 ∈ R2, s ∈ S) .
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Define the triangular 3 × 3 matrix ring

A =




R1 0 R1

0 R2 R2

0 0 S




and the A-module morphisms

σ1 =




1
0
0


 : P1 =




R1

0
0


→ P3 =




R1

R2

S


 ,

σ2 =




0
1
0


 : P2 =




0
R2

0


→ P3 =




R1

R2

S


 .

The A-modules P1, P2, P3 are f.g. projective since P1 ⊕ P2 ⊕ P3 = A. The
noncommutative localization of A inverting Σ = {σ1, σ2} is the full 3 × 3
matrix ring

Σ−1A = M3(R1 ∗S R2)

(a modification of Theorem 4.10 of [24]).

Example Let (M,N ⊆ M) be a separating pair of CW complexes such that
N has a neighbourhood N × [0, 1] ⊆ M and

M = M1 ∪N×{0} N × [0, 1] ∪N×{1} M2

with M1,M2, N connected.

M1 M2N × [0, 1]

By the Seifert-van Kampen theorem, the fundamental group of M is the
amalgamated free product

π1(M) = π1(M1) ∗π1(N) π1(M2) ,
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so that
Z[π1(M)] = Z[π1(M1)] ∗Z[π1(N)] Z[π1(M2)] .

As above, define a triangular matrix ring

A =




Z[π1(M1)] 0 Z[π1(M1)]
0 Z[π1(M2)] Z[π1(M2)]
0 0 Z[π1(N)]




with noncommutative localization

Σ−1A = M3(Z[π1(M1)] ∗Z[π1(N)] Z[π1(M2)]) = M3(Z[π1(M)]) .

Assume that π1(N) → π1(M) is injective, so that the morphisms

i1 : π1(N) → π1(M1) , i2 : π1(N) → π1(M2) ,

π1(M1) → π1(M) , π1(M2) → π1(M)

are all injective, and the universal cover M̃ of M is a union

M̃ =
⋃

g1∈[π1(M):π1(M1)]

g1M̃1 ∪ ⋃
h∈[π1(M):π1(N)]

hÑ

⋃

g2∈[π1(M):π1(M2)]

g2M̃2

of [π1(M) : π1(M1)] translates of the universal cover M̃1 of M1 and [π1(M) :

π1(M2)] translates of the universal cover M̃2 of M2 with intersection the
[π1(M) : π1(N)] translates of the universal cover Ñ of N .

Ñ M̃2M̃1
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The cellular f.g. free chain complexes C(M̃1), C(Ñ) of the universal covers

M̃1, Ñ are related by Z[π1(M1)]-module chain maps

i1 : Z[π1(M1)] ⊗Z[π1(N)] C(Ñ) → C(M̃1) ,

i2 : Z[π1(M2)] ⊗Z[π1(N)] C(Ñ) → C(M̃2)

defining a f.g. projective A-module chain complex




C(M̃1)

C(M̃2)

C(Ñ)


 with assembly

the cellular f.g. free Z[π1(M)]-module chain complex of M̃

coker

((
1 ⊗ i1

1 ⊗ i2

)
: Z[π1(M)] ⊗Z[π1(N)] C(Ñ) →

Z[π1(M)] ⊗Z[π1(M1)] C(M̃1) ⊕ Z[π1(M)] ⊗Z[π1(M1)] C(M̃2)

)

= C(M̃)

by the Mayer-Vietoris theorem.

Let R1 ∗S R2 be an amalgamated free product of rings in which the mor-
phisms i1 : S → R1, i2 : S → R2 are both injections of (S, S)-bimodule
direct summands, and R1, R2 are flat S-modules. (This is the case in the
above example if π1(N) → π1(M) is injective). Then the natural ring mor-
phisms

R1 → R1 ∗S R2 , R2 → R1 ∗S R2 , S → R1 ∗S R2 ,

A =




R1 0 R1

0 R2 R2

0 0 S


→ Σ−1A = M3(R1 ∗S R2)

are injective, and Σ−1A is a stably flat noncommutative localization, with
H(A,Σ) = Nil(R1, R2, S) the nilpotent category of Waldhausen [30]. The
chain complex lifting property of Σ−1A gives a noncommutative localization
proof of the existence of Mayer-Vietoris presentations for finite f.g. free
R1 ∗S R2-module chain complexes C

0 // R1 ∗S R2 ⊗S E // R1 ∗S R2 ⊗R1 D1 ⊕ R1 ∗S R2 ⊗R2 D2
// C // 0

with Di (resp. E) a finite f.g. free Ri- (resp. S-) module chain complex
([30], Ranicki [23]). The algebraic K-theory localization exact sequence of
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[14]

· · · → Kn+1(A,Σ) = Kn(S) ⊕ Kn(S) ⊕ Ñiln(R1, R2, S)



i1 0 0
0 i2 0
1 1 0




// Kn(A) = Kn(R1) ⊕ Kn(R2) ⊕ Kn(S)

→ Kn(Σ−1A) = Kn(R1 ∗S R2) → . . .

is just the stabilization by 1 : K∗(S) → K∗(S) of the Mayer-Vietoris exact
sequence of [30]

. . . // Kn(S) ⊕ Ñiln(R1, R2, S)

i1 0

i2 0




// Kn(R1) ⊕ Kn(R2) // Kn(R1 ∗S R2) // . . .

2.5 The algebraic L-theory of a noncommutative localization

See Chapter 3 of Ranicki [19] for the algebraic L-theory of a commutative
localization.

The algebraic L-theory of a ring A depends on an involution, that is a
function : A → A; a 7→ a such that

a + b = a + b , ab = b a , a = a , 1 = 1 (a, b ∈ A) .

For an injective noncommutative localization A → Σ−1A of a ring A with an
involution which extends to Σ−1A Vogel [29] obtained a localization exact
sequence in quadratic L-theory

· · · → Ln(A) → Ln(Σ−1A) → Ln(A,Σ) → Ln−1(A) → . . .

with Ln(A,Σ) = Ln−1(H(A,Σ)). (See [14] for the symmetric L-theory lo-
calization exact sequence in the stably flat case). At first sight, it does not
appear possible to apply this sequence to the triangular matrix rings of sec-
tions 2.2, 2.3, 2.4. How does one define an involution on a triangular matrix
ring

A =

(
A1 B
0 A2

)
?
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The trick is to observe that if A1, A2 are rings with involution, and (B,β) is
a nonsingular symmetric form over A1 such that B is an (A1, A2)-bimodule
then A has a chain duality in the sense of Definition 1.1 of Ranicki [20],

sending an A-module M =

(
M1

M2

)
to the 1-dimensional A-module chain

complex

TM : TM1 =

(
M∗

1

0

)
→ TM0 =

(
B ⊗A2 M∗

2

M∗
2

)
.

The quadratic L-groups of A are just the relative L-groups in the exact
sequence

· · · → Ln(A) → Ln(A2)
(B,β)⊗A2

−
// Ln(A1) → Ln−1(A) → . . . .

In particular, for generalized free products of rings with involution the tri-
angular matrix rings A of section 2.3, 2.4 have such chain dualities, and in
the injective case the torsion L-groups L∗(A,Σ) = L∗−1(H(A,Σ)) in the
localization exact sequence

· · · → Ln(A) → Ln(Σ−1A) → Ln(A,Σ) → Ln−1(A) → . . .

are just the unitary nilpotent L-groups UNil∗ of Cappell [2].
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