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Noncommutative localization in topology

Andrew Ranicki

Introduction

The topological applications of the Cohn noncommutative localization con-
sidered in this paper deal with spaces (especially manifolds) with infinite
fundamental group, and involve localizations of infinite group rings and
related triangular matrix rings. Algebraists have usually considered non-
commutative localization of rather better behaved rings, so the topological
applications require new algebraic techniques.

Part 1 is a brief survey of the applications of noncommutative localization
to topology: finitely dominated spaces, codimension 1 and 2 embeddings
(knots and links), homology surgery theory, open book decompositions and
circle-valued Morse theory. These applications involve chain complexes and
the algebraic K- and L-theory of the noncommutative localization of group
rings.

Part 2 is a report on work on chain complexes over generalized free prod-
ucts and the related algebraic K- and L-theory, from the point of view of
noncommutative localization of triangular matrix rings. Following Bergman
and Schofield, a generalized free product of rings can be constructed as a
noncommutative localization of a triangular matrix ring. The novelty here
is the explicit connection to the algebraic topology of manifolds with a gen-
eralized free product structure realized by a codimension 1 submanifold,
leading to noncommutative localization proofs of the results of Waldhausen
and Cappell on the algebraic K- and L-theory of generalized free prod-
ucts. In a sense, this is more in the nature of an application of topology
to noncommutative localization! But this algebra has in turn topological
applications, since in dimensions > 5 the surgery classification of manifolds
within a homotopy type reduces to algebra.
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Part 1. A survey of applications

We start by recalling the universal noncommutative localization of P.M.Cohn
[B]. Let A be a ring, and let ¥ = {s : P — @} be a set of morphism
of f.g. projective A-modules. A ring morphism A — R is X-inverting
if for every s € X the induced morphism of f.g. projective R-modules
1®s: R®4 P — R®4 @ is an isomorphism. The noncommutative localiza-
tion A — Y ~'A is Y-inverting, and has the universal property that any -
inverting ring morphism A — R has a unique factorization A — Y14 — R.
The applications to topology involve homology with coefficients in a non-
commutative localization X1 A.

Homology with coefficients is defined as follows. Let X be a connected
topological space with universal cover X and let the fundamental group
71(X) act on the left of X, so that the (smgular) chain complex S(X) is a free
left Z[m1 (X)]-module complex. Given a morphism of rings F : Z[r(X)] — A
define the A-coefficient homology of X to be

H,(X;A) = H,(A®gp,x) S(X)) -

If X is a CW complex then S()Z' ) is chain equivalent to the cellular free
Z|m (X)]-module chain complex C(X) with one generator in degree r for
each r-cell of X, and

H.(X:A) = H.(A®gx) C(X))

1.1 Finite domination

A topological space X is finitely dominated if there exist a finite CW complex
K, maps f : X — K, g: K — X and a homotopy gf ~1: X — X.
The finiteness obstruction of Wall [31] is a reduced projective class [X] €
Ko(Z[r1(X)]) such that [X] = 0 if and only if X is homotopy equivalent to
a finite CW complex.

In the applications of the finiteness obstruction to manifold topology
X = M is an infinite cyclic cover of a compact manifold M — see Chapter 17
of Hughes and Ranicki [I3] for the geometric wrapping up procedure which
shows that in dimension > 5 every tame manifold end has a neighbourhood
which is a finitely dominated infinite cyclic cover M of a compact manifold
M. Let f : M — S! be a classifying map, so that M = f*R, and let
M= f*RT. The finiteness obstruction [M+] € Ko(Z[m (M)]) is the end



obstruction of Siebenmann [27], such that [M+] = 0 if and only if the tame
end can be closed, i.e. compactified by a manifold with boundary.

Given a ring A let Q be the set of square matrices w € M, (A[z,z71])

over the Laurent polynomial extension A[z,z~!] such that the A-module
P = coker(w: Alz,27 " — Az, 271]")

is f.g. projective. The noncommutative Fredholm localization Q 1Az, z71]
has the universal property that a finite f.g. free Az, 2z !]-module chain
complex C'is A-module chain equivalent to a finite f.g. projective A-module
chain complex if and only if H,(27'C) = 0 (Ranicki [21, Proposition 13.9]),
with Q710 = Q71 A[z, 271 ® Alz,2-1] C-

Let M be a connected finite CW complex with a connected infinite cyclic
cover M. The fundamental group (M) fits into an extension

{1} = m(M) = m(M) - Z — {1}
and Z[m1(M)] is a twisted Laurent polynomial extension
Z[m(M)] = Z[ri(M)]alz,27"]

with
a : m(M)—m(M); g— 2z gz

the monodromy automorphism. For the sake of simplicity only the untwisted
case a = 1 will be considered here, so that 7y (M) = 71(M) x Z. The infinite
cyclic cover M is finitely dominated if and only if H.(M;Q~Z[r (M)]) = 0,
with A = Z[r1(M)] and Z[r1(M)] = Alz, 27 1]. The Farrell-Siebenmann ob-
struction ®(M) € Wh(m(M)) of an n-dimensional manifold M with finitely
dominated infinite cyclic cover M is such that ®(M) = 0 if (and for n > 6
only if) M is a fibre bundle over S — see 21, Proposition 15.16] for the
expression of ®(M) in terms of the Q~'Z[m; (M)]-coefficient Reidemeister-
Whitehead torsion

T(M; Q' Z[r (M) = 7(Q'C(M)) € Ki(Q ' Z[m (M)]) .

1.2 Codimension 1 splitting

Surgery theory asks whether a homotopy equivalence of manifolds is homo-
topic (or h-cobordant) to a homeomorphism — in general, the answer is no.
There are obstructions in the topological K-theory of vector bundles, in the



algebraic K-theory of modules and in the algebraic L-theory of quadratic
forms. The algebraic K-theory obstruction lives in the Whitehead group
Wh(m) of the fundamental group 7. The L-theory obstruction lives in one
of the surgery groups L.(Z[r]) of Wall [32], and is defined when the topo-
logical and algebraic K-theory obstructions vanish. The groups L.(A) are
defined for any ring with involution A to be the generalized Witt groups of
nonsingular quadratic forms over A. For manifolds of dimension > 5 the
vanishing of the algebraic obstructions is both a necessary and sufficient
condition for deforming a homotopy equivalence to a homeomorphism. See
Ranicki [20] for the reduction of the Browder-Novikov-Sullivan-Wall surgery
theory to algebra.

A homotopy equivalence of m-dimensional manifolds f : M’ — M splits
along a submanifold N™ C M™ if f is homotopic to a map (also denoted by
f) such that N’ = f~1(N) C M’ is also a submanifold, and the restriction
f| : N/ — N is also a homotopy equivalence. For codimension m —n > 3
the splitting obstruction is just the ordinary surgery obstruction o.(f]) €
Ly (Z[m(N)]). For codimension m —n = 1,2 the splitting obstructions
involve the interplay of the knotting properties of codimension (m — n)
submanifolds and Mayer-Vietoris-type decompositions of the algebraic K-
and L-groups of Z[m;(M)] in terms of the groups of Z[mi(N)], Z[r1(M\N)].

In the case m —n = 1 m (M) is a generalized free product, i.e. either
an amalgamated free product or an HNN extension, by the Seifert-van
Kampen theorem. Codimension 1 splitting theorems and the algebraic K-
and L-theory of generalized free products are a major ingredient of high-
dimensional manifold topology, featuring in the work of Stallings, Brow-
der, Novikov, Wall, Siebenmann, Farrell, Hsiang, Shaneson, Casson, Wald-
hausen, Cappell, ..., and the author. Noncommutative localization provides
a systematic development of this algebra, using the intuition afforded by the
topological applications — see Part 2 below for a more detailed discussion.

1.3 Homology surgery theory

For a morphism of rings with involution F : Z[r] — A Cappell and Shaneson
[B] considered the problem of whether a A-coefficient homology equivalence
of manifolds with fundamental group 7 is H-cobordant to a homeomor-
phism. Again, the answer is no in general, with obstructions in the topolog-
ical K-theory of vector bundles and in the homology surgery groups I',.(F),
which are generalized Witt groups of A-nonsingular quadratic forms over



Z[r]. Vogel 28], [29] identified the A-coefficient homology surgery groups
with the ordinary L-groups of the localization £ ~1Z[r] of Z[r] inverting the
set 3 of A-invertible square matrices over Z|r]|

Lu(F) = L*(Eilz[ﬂ]) )

and identified the relative L-groups L, (Z[r] — X ~1Z[x]) in the localization
exact sequence

- — Ly(Z[r]) = Lo(27'Z[x])) — Lo (Z[r] — 27 Z[x]) = Lp_1(Z[x]) — ...

with generalized Witt groups L.(Z[r],X) of nonsingular ¥~1Z[r]/Z[x])-
valued quadratic linking forms on Y-torsion Z[r|-modules of homological
dimension 1.

1.4 Codimension 2 embeddings

Suppose given a codimension 2 embedding N™ C M"™*? such as a knot or
link. Let ¥71A be the localization of A = Z[r(M\N)] inverting the set ¥
of matrices over A which become invertible over Z[mi(M)]. By Alexander
duality the X! A-coefficient homology modules

H,(M\N;x7'A) = H"27*(M,N; 2 'A) (x#0,n+2)

are determined by the homotopy class of the inclusion N C M. The A-
coefficient homology groups H,(M\N; A) and their Poincaré duality prop-
erties reflect more subtle invariants of N C M such as knotting. See Ranicki
[21]] for a general account of high-dimensional codimension 2 embedding the-
ory, including some of the applications of noncommutative localization.

1.5 Open books

An (n + 2)-dimensional manifold M"*+2 is an open book if there exists a
codimension 2 submanifold N* C M™*?2 such that the complement M\N is
a fibre bundle over S'. Every odd-dimensional manifold is an open book.
Quinn [I7] showed that for £ > 2 a (2k + 2)-dimensional manifold M is
an open book if and only if an asymmetric form over Z[m;(M)] associated
to M represents 0 in the Witt group. This obstruction was identified in
Ranicki [21] with an element in the L-group Loy 2(Q 1Z[r(M)][z, 27]) of
the Fredholm localization of Z[r1(M)][z, 2~!] (cf. section [Tl above).



1.6 Boundary link cobordism

An n-dimensional g-component boundary link is a codimension 2 embedding

N" — USnCMn+2 _ Sn+2
n

with a p-component Seifert surface, in which case the fundamental group
of the complement X = M\N has a compatible surjection m(X) — F),
onto the free group on p generators. Duval [§] used the work of Cap-
pell and Shaneson [] and Vogel [29] to identify the cobordism group of
n-dimensional p-component boundary links for n > 2 with the relative L-
group Ly13(Z[F,],%) in the localization exact sequence

- = Lyy3(Z[F,)) — Ln+3(E*IZ[Fu]) — Ln43(Z[F,], ) — Lp2(Z[F,)) — ...

with ¥ the set of Z-invertible square matrices over Z[F),]. The even-dimensional
boundary link cobordism groups are Lo,11(Z[F),],3) = 0. The cobordism
class in Log42(Z[F,],%) of a (2k — 1)-dimensional p-component boundary
link U, S?*~1 C S2**+1 was identified with the Witt class of a S ~1Z[F,]/Z[F,,]-
valued nonsingular (—1)**!-quadratic linking form on Hy,(X;Z[F,]), gener-
alizing the Blanchfield pairing on the homology of the infinite cyclic cover
of a knot. The localization ¥ ~'Z[F),] was identified by Dicks and Sontag [7]
and Farber and Vogel [T1] with a ring of rational functions in ¢ noncommut-
ing variables. The high odd-dimensional boundary link cobordism groups
Lo.y2(Z[F),],%) have been computed by Sheiham [26].

1.7 Circle-valued Morse theory

Novikov [I5] proposed the study of the critical points of Morse functions
f: M — S' on compact manifolds M. The ‘Novikov complex’ C(M, f)
over Z((z)) = Z[[z]][z"!] has one generator for each critical point of f, and
the ‘Novikov homology’

H(C(M, f)) = H.(M;Z((2)))

provides lower bounds on the number of critical points of Morse functions in
the homotopy class of f, generalizing the inequalities of the classical Morse
theory of real-valued functions M — R. Suppose given a Morse function
f: M — S with M = f*R such that m1(M) = (M) x Z (for the sake

of simplicity). Let ¥ be the set of square matrices over Z[m(M)][z] which



become invertible over Z[m1(M)] under the augmentation z — 0. There is a
natural morphism from the localization to the completion

—

ST Zm (M)] — Zr(M)] = Zm (M))[[2]][z ]

which is an injection if 71 (M) is abelian or F), (Dicks and Sontag [7], Farber
and Vogel [I1]), but may not be an injection in general (Sheiham [25]). See
Pajitnov [I6], Farber and Ranicki [I0], Ranicki [22], and Cornea and Ran-
icki [6] for the construction and properties of Novikov complexes of f over

Z[m)] and Y 7'Z[r(M)]. Naturally, noncommutative localization also
features in the more general Morse theory of closed 1-forms — see Novikov
[15] and Farber [9].

1.8 3- and 4-dimensional manifolds

See Garoufalidis and Kricker [T2], Quinn [I8] for applications of noncommu-
tative localization in the topology of 3- and 4-dimensional manifolds.

Part 2. The algebraic K- and L-theory of general-
ized free products via noncommutative localization

A generalized free product of groups (or rings) is either an amalgamated free
product or an HNN extension. The expressions of Schofield [24] of gener-
alized free products as noncommutative localizations of triangular matrix
rings combine with the localization exact sequences of Neeman and Ranicki
[I4] to provide more systematic proofs of the Mayer-Vietoris decomposi-
tions of Waldhausen [30] and Cappell [2] of the algebraic K- and L-theory
of generalized free products. The topological motivation for these proofs
comes from a noncommutative localization interpretation of the Seifert-van
Kampen and Mayer-Vietoris theorems. If (M, N C M) is a two-sided pair
of connected CW complexes the fundamental group m(M) is a general-
ized free product: an amalgamated free product if N separates M, and an
HNN extension otherwise. The morphisms 71(N) — w1 (M\N) determine
a triangular k£ x k£ matrix ring A with universal localization the full k£ x k
matrix ring X714 = My (Z[r1(M)]) (k = 3 in the separating case, k = 2
in the non-separating case), such that the corresponding presentations of
the Z[m1 (M)]-module chain complex C(M) of the universal cover M is the



assembly of an A-module chain complex constructed from the chain com-
plexes C(N), C(M\N) of the universal covers N, M\N of N, M\N. The
two cases will be considered separately, in sections 23, P41

2.1 The algebraic K-theory of a noncommutative localiza-
tion

Given an injective noncommutative localization A — X 71A let H(A,Y) be
the exact category of homological dimension 1 A-modules T' which admit a
f.g. projective A-module resolution

0 P—=Q T 0

such that 1 ® s : ¥7'P — ¥71Q is an ¥~ 'A-module isomorphism. The
algebraic K-theory localization exact sequence of Schofield [24, Theorem
4.12]

Ki(A) - K1(37'A) = K1 (A, X)) — Ko(A) — Ko(X71A)

was obtained for any injective noncommutative localization A — Y 71A,
with K1(A,Y) = Ko(H(A,X)). Neeman and Ranicki [T4] proved that if
A — Y71 A is injective and ‘stably flat’

Tord (2714, 271A4) = 0 (i>1)

then

(i) ©7'A has the chain complex lifting property : every finite f.g. free
¥ ~! A-module chain complex C'is chain equivalent to 7' B for a finite
f.g. projective A-module chain complex B,

(ii) the localization exact sequence extends to the higher K-groups
= Kp(A) = Ky (S714) = Ko (A,%) = Knpo1(A) — -+ — Ko(S7'A)

with K,(A,%) = K,_1(H(A,%)).



2.2 Matrix rings

The amalgamated free product of rings and the HN N construction are spe-
cial cases of the following type of noncommutative localization of triangular
matrix rings.

Given rings Aj, A2 and an (Aj, Az)-bimodule B define the triangular
2 x 2 matrix ring
A, B
= (5 n)

An A-module can be written as

v = (i)

with My an Aj-module, My an As-module, together with an Aj-module
morphism B ®4, My — M;. The injection

0
Al x Ay — A5 (a1, a2) — (Cg a2>

induces isomorphisms of algebraic K-groups
K.(A)) ® K.(Ag) =2 K.(A).

The columns of A are f.g. projective A-modules
(A (B
A () m - ()

PI@PQ = Aa HOHIA(R,PZ‘) = AZ (2:172)7
HomA(Pl,Pg) = B, HomA(Pg,Pl) =0.

such that

The noncommutative localization of A inverting a non-empty subset ¥ C
Homy(Py, P;) = B is the 2 x 2 matrix ring

NTA = My(C) = (g g)

with C' the endomorphism ring of the induced f.g. projective ¥~!A-module
Y~1P, = ¥~1P,. The Morita equivalence

{27! A-modules} — {C-modules} ; L+ (C C) ®x-14 L



induces isomorphisms in algebraic K-theory
K.(M3(0)) = K.(C) .
The composite of the functor
{A-modules} — {7 'A-modules} ; M — XM = S tA@4 M
and the Morita equivalence is the assembly functor

{A-modules} — {C-modules} ;

_ (M
M = <M2> |—>(C C)®AM

= coker(C'®4, B®a, My — C®4, M1 ©C @4, M2)
inducing the morphisms

K.(A) = K.(A) ® K,.(Ay) = K.(271A) = K.(C)

in the algebraic K-theory localization exact sequence.

There are evident generalizations to k X k matrix rings for any k > 2.

2.3 HNN extensions

The HNN extension R x, 3 {z} is defined for any ring morphisms o, :
S — R, with
a(s)z = zB(s) € Rxqp{z} (s€9).

Define the triangular 2 X 2 matrix ring

(R R,®Rj
= (o)

with R, the (R, S)-bimodule R with S acting on R via «, and similarly for
Rg. Let ¥ = {01,020} C Homu(Py, P»), with

= (80 () (§)n (757

The A-modules Py, P» are f.g. projective since P, @ P, = A. Theorem 13.1
of [24] identifies
YA = My(R*ap{2}) .

10



Ezample Let (M, N C M) be a non-separating pair of connected CW com-
plexes such that N is two-sided in M (i.e. has a neighbourhood N x [0, 1] C
M) with M\N = M; connected

M = M1 UNX{O,I}N X [0, 1]

T

By the Seifert-van Kampen theorem, the fundamental group (M) is the
HNN extension determined by the morphisms «,3 : m(N) — m (M)
induced by the inclusions N x {0} — My, N x {1} — M;

(M) = m(M) *a5 {2},

so that
Zlm(M)] = Z[m(Mi1)] *a,5 {2} -

As above, define a triangular 2 x 2 matrix ring

_ (Zmi(N)] Zmi(My)]a @ Z[mi (M1)]
A — ( 10 1 IZ[WI(M)]I 1 )

with noncommutative localization
ST = My(Zlm (M) %05 {2}) = Ma(Z[m(M))) .

Assume that 71 (N) — (M) is injective, so that the morphisms «, 3 are
injective, and the universal cover M is a union

M = U 9M1
g€[m (M):m1 (Mn)]

11



of translates of the universal cover Ml of My, and
AN if gy Ngaz=he [m (M) :m(N)]
gMiNgM = g ifgr =g
0 if g1 # go and gy Ngoz =0

with AN the translates of the universal cover N of N. In the diagram it is
assumed that «, § are isomorphisms

M 2_2]\71 z_le/fl M, zMy 22M1

"IN N zN 22N
The cellular f.g. free chain complexes C(Ml), C(N) are related by Z[m (M, )]-
module chain maps

io ¢ Z[m1(M1)]a @z vy C (V) — C(

C ) b
ig 1 Z[m1(M)]g ®zpr vy C(N) — C(

M,
M)

C(N)
the cellular f.g. free Z[m (M )]-module chain complex of M

defining a f.g. projective A-module chain complex (C(]\/{l)> with assembly

coker (ia — Zilg : Z[Trl(M)] ®Z[7r1(N)} C(N) — Z[?Tl(M)] ®Z[7r1(M1)] C(M1)>
= C(M)
by the Mayer-Vietoris theorem. O

Let R %43 {2} be an HNN extension of rings in which the morphisms
o, : S — R are both injections of (S, S)-bimodule direct summands, and
R, Rg are flat S-modules. (This is the case in the above example if 71 (N) —
m1(M) is injective). Then the natural ring morphisms

R — Rxqp5{2}, S — Rxqp5{2},

A (R R, @ Rg

0 g > Y — MQ(R *q,8 {Z})

12



are injective, and ¥ 7! A is a stably flat universal localization, with H(A,Y) =
Nil(R, S, a, 3) the nilpotent category of Waldhausen [30]. The chain com-
plex lifting property of ¥~'A gives a noncommutative localization proof of
the existence of Mayer-Vietoris presentations for finite f.g. free R %, 3 {z}-
module chain complexes C

0——= Rxq.p3 {2} ®5EW—ZZ>BR*aﬁ {2} @p D —=C ——=0

with D (resp. E) a finite f.g. free R- (resp. S-) module chain complex ([30],
Ranicki [23]). The algebraic K-theory localization exact sequence of [14]

s Kay1(AY) = Kn(S) @ Ka(S) @ Nily(R, S, o, B)

a B 0
1 1 0

is just the stabilization by 1 : K,(S) — K.(S) of the Mayer-Vietoris exact
sequence of [30]

— Kp(37'A) = Ky(R*ap{z}) — ...

— a—0B3)80
-+ —> K, (S) ® Nil,(R, o, 8) K (R) — Ku(R *a,8{2}) —=

In particular, for o« = 3 =1:5 = R — R the HNN extension is just
the Laurent polynomial extension

Rxop{z} = R[z,z_l]

and the Mayer-Vietoris exact sequence splits to give the original splitting of
Bass, Heller and Swan [I]

Ki(R[z,27")) = Ki(R)® Ko(R) & Nily(R) & Nilg(R)

as well as its extension to the Quillen higher K-groups K.

2.4 Amalgamated free products

The amalgamated free product R; *g Ry is defined for any ring morphisms
i1: S — Ry, 19 : S — Ry, with

7“11'1(8) *xrg = 1 *iz(S)Tz € Ry *g Ry (7“1 S Rl,Tz c RQ,S c S) .

13



Define the triangular 3 x 3 matrix ring

R 0 R

A = 0 Ry Ry

o o S

and the A-module morphisms
1 R Ry
o] = 0 P = 0| -P = Ry | |

0 0 S
0 0 Ry
o2 = 1 : P2 == R2 — P3 == R2
0 0 S

The A-modules Py, P>, P3 are f.g. projective since P, & P» & P; = A. The
noncommutative localization of A inverting ¥ = {01,092} is the full 3 x 3
matrix ring

E_lA = Mg(Rl *g RQ)
(a modification of Theorem 4.10 of [24]).

Ezample Let (M, N C M) be a separating pair of CW complexes such that
N has a neighbourhood N x [0,1] € M and

M = M UNX{O}NX [0,1] UN><{1} Ms

with My, Ms, N connected.

Ml *NX [0,1}4 MQ

By the Seifert-van Kampen theorem, the fundamental group of M is the
amalgamated free product

(M) = 71 (M) %7 vy m1(Ma) |

14



so that
Zlm (M)] = Z[mi (M1)] *z[r, () Z[m1(M2)] -

As above, define a triangular matrix ring

Zm (My)] 0 Z[m1 (M)
A = 0 Z[mi(My)]  Z[m1(Ma)]
0 0 Z[m1(N)]

with noncommutative localization
STA = Ma(Zlmi(M)] #gpm, (vy) ZImi(Ma)]) = M3 (Z[m1(M))) .
Assume that m1(N) — 71 (M) is injective, so that the morphisms
i1 : m(N) - m (M), iz : m(N)— m (M),
m(My) — m (M), m(My) — m (M)

are all injective, and the universal cover M of M is a union

g1€[m1(M):m1 (My)] h€[m (M) (NI gae[my (M):m1(Mz)]

of [ (M) : w1 (My)] translates of the universal cover My of M; and [rry (M) :
71(My)] translates of the universal cover My of M, with intersection the
[ (M) : w1 (N)] translates of the universal cover N of N.

15



The cellular f.g. free chain complexes C' (Ml), C(N) of the universal covers
M, N are related by Z[m1(Mj)]-module chain maps

i+ Zlmi(M1)] @gpr, vy C(N) = C(M)
is 1 Z[mi(Mp)] @z, (ny) C(N) = C(My)
¢ (J\Zl)
defining a f.g. projective A-module chain complex | C(Ms) | with assembly
C(N)
the cellular f.g. free Z[m1(M)]-module chain complex of M

1®i9
Z[m1 (M)] @zpmy (ay) C(M1) @ Zm1(M)] @z (ary) C<A72>)

= c()

coker< (1 ? il) L Z[m (M)] @z, (V) C(N) -

by the Mayer-Vietoris theorem. O

Let R *xg Ro be an amalgamated free product of rings in which the mor-
phisms i : S — Ry, is : S — Ry are both injections of (.5, .5)-bimodule
direct summands, and Rj, Ry are flat S-modules. (This is the case in the
above example if 71 (N) — 71 (M) is injective). Then the natural ring mor-
phisms

Ry — Rixs Ry, Ro — Ri*s Ry , S — Ry x5 Ry,

R 0 Ry
A = 0 Ry Ry | — Y lh4 = Mg(Rl *g Rz)
0 0o S

are injective, and ¥4 is a stably flat noncommutative localization, with
H(A,Y) = Nil(Ry, Ry, S) the nilpotent category of Waldhausen [30]. The
chain complex lifting property of ¥~1 A gives a noncommutative localization
proof of the existence of Mayer-Vietoris presentations for finite f.g. free
R; xg Ro-module chain complexes C

0—= R1%s Ry ®g E— Ry *s Ry Qr, D1 @ Ry x5 Ry ®g, Doy — C —=0

with D; (resp. E) a finite f.g. free R;- (resp. S-) module chain complex
(B0], Ranicki [23]). The algebraic K-theory localization exact sequence of

16



4]

5 Kny1(AX) = K, (S) @ Kn(S) ® Nil, (Ry, Rg, S)

11 0 0
0 2 O
1 1 0

K,(A) = K,(R)) ® K,(R2) ® K,(5)
— Kn(zilA) = Kn(Rl *g RQ) — ...

is just the stabilization by 1 : K,(S) — K.(S) of the Mayer-Vietoris exact
sequence of [30]

= K, (S) @ ﬁln(}h, Ry, S)

Kn(R1) ® Kn(R2)

K, (R *s Ra)

2.5 The algebraic L-theory of a noncommutative localization

See Chapter 3 of Ranicki [T9] for the algebraic L-theory of a commutative
localization.

The algebraic L-theory of a ring A depends on an involution, that is a
function ~: A — A;a — a such that

a+b=a+b,ab=ba,a=a,1 =1 (a,beA).

For an injective noncommutative localization A — X' A of a ring A with an
involution which extends to ¥ ~!A Vogel [29] obtained a localization exact
sequence in quadratic L-theory

o= Ly(A) = Ly(X7MA) = Ly(A,%) = Ly 1(A) — ...

with L, (A,X) = L,_1(H(A,X)). (See [14] for the symmetric L-theory lo-
calization exact sequence in the stably flat case). At first sight, it does not
appear possible to apply this sequence to the triangular matrix rings of sec-
tions 22, 23l P24l How does one define an involution on a triangular matrix

ring
(A B o
a= (v 5
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The trick is to observe that if Ay, Ay are rings with involution, and (B, 3) is
a nonsingular symmetric form over A; such that B is an (47, A2)-bimodule
then A has a chain duality in the sense of Definition 1.1 of Ranicki [20],

sending an A-module M = <%1> to the 1-dimensional A-module chain
2

complex

*

T™ : TM; = (%ﬁ—eTMb: <B®@A@>.

M;

The quadratic L-groups of A are just the relative L-groups in the exact
sequence

B, _
o L(A) — Lo (Ag) PR A S L (A)

In particular, for generalized free products of rings with involution the tri-
angular matrix rings A of section L3, B24] have such chain dualities, and in
the injective case the torsion L-groups L.(A,Y) = L. 1(H(A,X)) in the
localization exact sequence

o> Ly(A) = Ly(271A) - Ly(AS) — Ly (A) — ...

are just the unitary nilpotent L-groups UNil, of Cappell [2].
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