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Introduction

Two ordered collections of u disjoint simple closed oriented curves in Euclidean
three dimensional space E® are said to be equivalent, if there is an orientation-
preserving homeomorphism of E* on itself, which transforms one collection into
the other, preserving the orientation and order of the components.

A knot of multiplicity p is the equivalence class of an ordered collection of u
disjoint simple closed polygons. Two collections in the same class are said to
have the same knot type.

We shall be concerned here with an invariant of the knot type, the Alexander
polynomial, which was first defined by Alexander [1]* in the case u = 1 and then
defined by R. H. Fox in the case p > 1°.

The Alexander polynomial of a knot K of multiplicity u, whose components
are X;, --+, X, is an integral polynomial A(¢, ---, ¢) in the indetermi-
nates &, -+, t, where each ¢; corresponds to one of the components X, of
K("’= L. ’“)'

A characterization of the Alexander polynomial in the case x = 1 has been
given by Seifert [9]. He proved that the polynomial A(¢) of a knot of multiplicity
1 has the properties: | A(1) | = 1 and A(t) = *A(1/t), and conversely, that
every A(t) with these properties is the Alexander polynomial of some knot.

The main purpose of this paper is to prove that the Alexander polynomial, in
the case p > 1, has the following properties:

1. There exist integers n;, --:, n, such that A4, ---, ¢t,) = (—=1)%% " ---
LA/t -, 1/6).

2. If A(t, t) is the polynomial of a knot K of multiplicity 2, whose compo-
nents are X; and X, then: A(ty, 1) = A(t)(¢i — 1)/(t — 1) where A(%) is the
polynomial of X,, and lis the linking number of X; and X,. If A(t,, ---, ¢,) is
the polynomial of a knot of multiplicity u > 2, whose components are X;, - - -, X,,,
then A(t, -, ta, 1) = (- - t*3* — 1) A4, -+, t.a), where
A(ty, -+, tui-1) is the polynomial of the knot which is obtained from K by re-
moving X, , and l;(¢ = 1, - -+ , p — 1) is the linking number of X, and X; .

3. A1, ---,1)=0if g > 2,and |AQ1,1) | = || if p = 2, where [ is the
linking number of the two components of K.*

1 The author gratefully acknowledges the guidance of Professor R. H. Fox in preparing
this paper which was submitted as a Doctor’s thesis to the faculty of Princeton University.

2 Numbers between brackets refer to the bibliography at the end of the paper.

3 An invariant polynomial associated with some knots of multiplicity 2, was considered
by K. Reidemeister and H. G. Shumann [4] and by W. Burau [2].

4 Property 3 is an immediate consequence of property 2. It is not known whether or not
properties 1 and 2 suffice to characterize the polynomial. By a procedure completely anal-
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We have included, in Chapter III, a proof of a theorem (Theorem 5), which
is a generalization, for u > 1, of a theorem proved by Seifert [11] for u = 1.
This theorem describes the effect produced on the polynomial of a knot K which
is contained in an unknotted tube U by a further knotting of U.

CHAPTER 1

1. Derivation in a free group

In this paragraph we shall give a brief account of the theory of derivation in
a free group. This concept, which has been introduced by R. H. Fox,® will be
used throughout this paper.

Let G be a multiplicative group, R the ring of integers and RG the integral
group ring of G. The elements of RG are of the form D~ 7.g; where 7, ¢ R and
g: € G. Let o be the homomorphism of RG onto R defined by Qoririg)® =
Z?=1 Ti.

A deriwative in RG is a mapping D:RG — RG of RG into itself satisfying:

(1) D(uw + v) = Du + Dv

2) D(u-v) = D(u)-v° + u-Dv
for all » and v in RG.

Let X denote the free group generated by a finite set of symbols z;, - - -, 2 .
For each index there is a unique derivation 4/dz;in RX satisfying (1) and (2) and

Tk

3 53:-]- = djk.

This is called the derivative with respect to z;. If X > w = aexi'a; - - - ayax,
where p; = +1 and @, a1, - - -, ax are words not involving the generator z;,
then:

k
g’lﬁ = 2 (@i ar - -+ @)z,
Tj =1

It can be proved that, for any derivation D in RX,
Dy = ZQE—-D@ u e RX.
7 0%;
In particular 4 — u — u° is a derivation. Hence:

@ - = ;j—:-u,- — .

ogous to the procedure used by Seifert in his proof [8], one can prove that properties 1’
and 2/, given below, suffice to characterize the polynomial A(t), obtained by substituting ¢
fort; G =1,--- ,p)in A1, «++ , &). _

1. There exists « = u (mod. 2) such that A(t) = (—1)"t"A(1/¢).

2/ A1) =0if u> 2, and | A1) | = | 1| if » = 2, where I is the linking number of
the components of K.

§ A complete account will appear in a paper “Free Differential Calculus’’ in these An-
nals.
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The row vector (8,/0z: , 8,/3x2, - - - , 8,/3x)\) may be denoted by du. From (1)
and (2) we get:

B) dlu +v) = du + dv

(6) d(uv) = du-v° + u-dv.

Every group @ is the image of some free group X under some homomorphism
¢. G is therefore determined by the generators z; , 2, - -+ of X and by a set of
elements (relations) u;(x), ux(x), --- of X whose consequence U (smallest
normal subgroup containing u;, u., ---) is the kernel of ¢. We shall call
{1, 22, -+ /W, U2, ---} = {x/u} a presentation of G. All groups considered in
this paper will be finitely presented; i.e., they will be given by a finite number
of generators and relations.

There are two types of operations on a presentation which do not alter the
group presented. They are the T7etze operation of first kind: adjoin to the relations

u;, Uz, - - - any element v of U, i.e. any consequent relation, and the Tietze opera-
tion of the second kind: adjoin to the generators z;, x., - -+ a new generator y
and simultaneously adjoin to the relations ui(x), us(z), - - - a newrelation y[g(x)]™*

defining y in terms of the old generators. The Tietze operations are complete in
the sense that, given two finite presentations of a group G, it is possible to pass
from one presentation to the other by a finite sequence of the Tietze operations
and their inverses [7].

In order that an invariant of finite presentations be a group invariant for all
finitely presented groups, it is necessary and sufficient that it be invariant under
the two Tietze operations.

To any finite presentation {x;, -+ -, 2a/u1, - -, w,} of a group G we associate
the matrix || (8u:/0x;)® || . The equivalence class of this matrix is an invariant
of G. Matrices over a group ring are equivalent if one can be obtained from the
other by a finite sequence of the following operations and their inverses.

1. M — (M) where the new row — is a left-linear combination of the rows of

M.
2. M—-><M 0
* 1

correspond to the Tietze operations of the first and second kind respectively.

0
Let RX 2* RG ﬁ RH — R, where H is the commutator quotient group of

) , » denoting an arbitrary row vector. Operations 1 and 2

G, and y is the natural homomorphism of RG onto RH. The equivalence class
of || (du/dz,)** || are of || (du:/dz;)°** || and invariants of G. (The latter matrix
is a relation matrix for the abelian group H. The former determines G modulo
its second commutator subgroup.)

For any matrix M over a commutative ring RH define: The elementary ideal
of column deficiency k = the ideal in RH generated by the minor determinants of
order n — k, where n is the number of columns of M.

The elementary ideals of a matrix over a commutative ring are invariants of
the equivalence class of the matrix. But they are not necessarily invariant under
automorphisms of RH.
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2. Calculation of the group G of a knot K [6]

Let K be a knot of multiplicity x in E*. Let G be the group of K, i.e. the funda-
mental group I;(E® — k) of E* — k, where k is a representative of K. We
shall describe here a method for calculating G.

Consider a representative k of K whose components X, , --- , X, are simple
closed polygons. A central projection of k is called regular if all projecting rays
meet at most two segments of k. A regular projection has only two-fold multiple
points (double points or crossings), and it has only a finite number » of them. We
normalize the projection by denoting which of two segments that determine a

A
—\

Fia. 1

P P

- B
XFY xp,qﬂ qu XP,Q#I

*pa'

@) (b)
Fia. 2

double point crosses underneath the other (we shall do this as indicated in fig.
1). A normalized projection consists of a finite number » of disjoint oriented
simple polygonal ares (fig. 1). Let us denote them by
eii(i =1,--- )“;j =1,--- ) L),

where e, i, -+ , €1, are the arcs corresponding to X; (¢ =1, ---, u), as
they are read off from the projection by going along X in the positive direction
(fig. 1). Then the group G is generated by {z:;}(t =1, -+, u;5 =1, -+, j2),
where z;; is represented by a loop Z.; which, starting from above the plane of
projection, goes around e;; piercing the plane to the left of e;; and emerging to
the right of e;; (fig. 1). There is a defining relation corresponding to each crossing,
and it is of the form r,, = TprqTpglprqLp. a1 OF Tpg = T ¢ Tpelp'a' Ty ¢+1 aCCOTd-
ing as the crossing is of type (a) or (b) (fig. 2). In this presentation the number
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of generators is equal to the number of relations. But any one of the relations is
a consequence of the others, therefore G is given by » generators {z;;} and
v — 1 of the relations {r;;} G =1, --- ,u;5 =1, ---, 7).

3. The Alexander Polynomial

Now we are in a position to define the Alexander polynomial of K. Let {z:;/75,}
be the above mentioned presentation of G. The commutator factor group H will
be the abelian group generated by the {z;;} with the abelianized rela-
tions {7, = Tpe¥p e41] Which express the equality of the generators {,;}
(G=1,---,7) corresponding to X; (+ = 1, - - - , u). Therefore H is free abelian
in u generators ¢, - - -, t,, where ¢; is represented by each one of the loops
{it'f} (J = 1’ e )ji)-

Consider the matrix M(t,, --- , &) = || (87py/02:;)%? || over the ring RH of
polynomials in ¢, --- , ¢, ; &1, -+, tu". The matrix M (¢, - - - , t,) is called the
Alexander matriz of K. In order that two knots of multiplicity u belong to the
same knot type it is necessary that their matrices have the same elementary
ideals in RH, because the basis t;, - - - , ¢, of H is uniquely determined by the
fact that t;(z = 1, --- , u) is the element of H which is represented by a loop
whose linking number lx(k = 1, - - -, u) with X; is 6 .

We define the Alexander polynomial A(t,, --- ,t,) of K to be the greatest
common divisor of the minor determinants of column deficiency = 1 of the
Alexander matrix M(t;, -+, t.). A(h, -+, t,) is an invariant of the group
G of K and therefore an invariant of the knot type of K, and is determined up
to units in the ring RH.

The following theorem shows how to calculate A(¢; , - - - , £,) from a properly
chosen minor of M (¢, - - -, t.).

THEOREM. Let M(t,, - - - , t,) be an Alexander matrix of a knot K of multiplic-
ity u. Let v be the number of columns and v — 1 be the number of rows. Denote by

Ai(G =1, ---,v) the determinant of the minor of M(t,, - - - , t.) obtained by de-
leting the jth column. There exists an clement A € RH such that
veé
R Ml =1, i =

A, d:t+1 A (.7 1, "') if u 1
and

Ai=d:(x¥¢_1)A G=1,--,») fp22,
where x; s the generator of G corresponding to the ;™ column.

Proor.® Denote by £; the j* column of M (4, --- ,¢,),j =1, ---, ». By for-

mula (4) we have, D 7, (z® — 1) = 0, hence
At — 1) =&, b, aE@EE 1), 8)
= (b, -, 85, k@ — 1), 8)
= (=D&, - 5@ =1 b, k) = (m )T A (Y0 - 1).

s In the proof we use the notation £ meaning deletion of &.
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Therefore z!* — 1 divides Aj- (zf® — 1) fork =1, --- , u, and therefore 1t must

divide A;-8 where § is the greatest common divisor of (z¢® — 1, ---, z{* — 1),
hence § = g.c.d.x {t — 1}. But
j k = oo
(_ ) ( 1) ¢¢ — 1 (k - 1) ;V)'
Denote the common value of (—1)J (Ax-8/zt® — 1) (k = 1,---,») by A.

Then A; = (—1)" @¥* — 1/5)-A.

The statement of the theorem follows from the observation that § = 1 if
pu=2ando=t—1lifu=

Note: In the case p = 1, the matrix M (¢) can be interpreted as follows:

Let G be the group of K, corresponding to each subgroup G’ of G there is a
covering space of E* — k whose fundamental group is isomorphic to G’. Let
M be the covering corresponding to the (commutator) subgroup Gy of G formed
by the elements of G which are represented by loops whose linking numbers with
k are zero. The first homology group H;() of M can be given as a group with
operators, with a finite number of generators {b;} and relations {r,}, where the
domain of operators is the ring of integral polynomials in ¢ and ¢, where ¢ is
the generator of the commutator quotient group H of G. It can be proved that
M(t) is the coefficient matrix of the relations in the above mentioned presentation
of H,(M). This interpretation of M (t) was given by Alexander [1].

4. Seifert’s projection of a knot

We are going to describe a special type of projection of a knot. It was first
described by Seifert [9] in the case of a knot of multiplicity 1, and his method
can be immediately generalized to the case u > 1.

Let K be a knot of multiplicity x in E*, and let X, , - - - , X, be its components.
Let F be an orientable surface,” whose boundary is K, and let h be the genus of
F. The surface F can be deformed (the type of the knot is thereby unchanged)
into a disc to which there have been attached 2o + u — 1 bands
By, -+, Bayu1, which are distributed around the disc as shown in fig. 3. The
corresponding projection of K will be called a Seifert projection. The possibility
of such a deformation of F is illustrated in fig. 4 which represents the normal
form of a surface F of genus 2, whose boundary has 3 components. One of the
components is the union of the arcs on the corners, the other components have
been represented by circles in the interior, there have been drawn 2 canonical
pairs of curves, and the dotted lines represent the boundary after the deforma-
tion.

In fig. 3 a simple closed curve a; has been drawn along each B;. a1, --- , ax
are the canonical curves which were used to direct the deformation, they are
such that ag_; crosses ax(k = 1, - -+, h) from left to right. The curves

Qohi1, A2hy2 y * ° * ) Q2htp—1

7 A procedure for spanning a knot of multiplicity 1 by an oriental surface is given by
Seifert [8] and [9], and the same procedure can be applied’in the case u > 1.
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are disjoint and ags,— separates the corresponding component X, from X,,
the exterior boundary of F. We shall refer to B, , - -, Ba as canonical bands
and to Basy1, * - ¢ , Bonyu—1 a8 extra bands.

Fic. 4

We may suppose that in the projection only one face of F is visible, for if a
band is twisted (fig. 5(a)), the number of twistings must be even, because F
is orientable, and for each pair of twistings we can perform the deformation
illustrated in fig. 5.
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Finally let us define crossing numbers. Let v;; , be equal to the number of times
that a; crosses over a; from left to right minus the number of times that a,
crosses over a; from right to left. The numbers {v;;} (4,7 =1, -+ ,2h 4+ p — 1)
are called the crossing numbers of the bands.

It is clear that if a; and a; are disjoint, the crossing number v;; is equal to the
linking number of a; and a;, and therefore v;; = v;; . If a; intersects a;, i.e., if
i1 =2k — 1andj = 2k(1 < k < 2h), then we can lift ax—, in a neighborhood
of the intersection, obtaining a curve a’s_; which does not intersect ay , and the
linking number of a’s;—; and az will be equal to ve_1,2« and equal to ve 2a—y + 1.
Therefore: va_1,06 = va.e—1 + 1(0 £ k =< h) and v;; = vj; otherwise.

N X \
O

(3) (b)
Fi1G. 5

Fi1G. 6

In fig. 6 various stages of a deformation of a simple knot into a Seifert pro-
jection are illustrated. In the case illustrated by fig. 6, we have:

v = 1, V2 = 0, Vi3 = 0

vy = —1, v = 1, v = 0

V31 = O, Vg2 = 0, V33 = 0
CuAPTER II

1. Let K be a knot of multiplicity x > 1 in E®, and let A(t1, - - -, t.) be the
Alexander polynomial of K. We shall prove:
TrEOREM 1. There exists an integer n such that

A(t) R t) = (_1)“tnA(1/t; ] l/t))

where A(2, - - - , t) is the polynomial obtained by substituting t for t.(i = 1, - -+ , p)
m A(tl y T, t,,)

Proor. Let F be an orientable surface of genus h whose boundary is K, and
consider a Seifert projection of K obtained by using F' (fig. 3). We are going to
use this projection to compute the group G of K.
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Let s be the graph formed from the {ax} by retracting the central disk of F
to a point P and retracting the bands to lines (fig. 7). Let us denote by a;;, - - -,
a;;;(6 =1, ---,2h + u — 1) the edges of the projection of s as they are read
off from the projection by going along a; in the positive direction, the edges ay,
Qg , **° , Ganu_1,1 being the edges indicated in fig. 7.

. ’,aih*‘
.

. . ‘I' ’ .-‘al’h
IR . ’ e cus
. * Pid 'l" ':...
drpep-! . S
.. dyhap-is! P edah-!

*ec nc e aces

. . “;.. :
: ‘| ‘\ ~.-
. . . .
L
".\ .::""'ag,
a,
Fiag. 7
%ij Xij
di]'
Fi1c. 8

Corresponding to each edge a;; there are two edges z.; and z:; of the projec-
tion of K (fig. 8), where z;; is the edge which has a similar orientation to the
orientation of a,;, and lies to the right of it. Let us denote also by z,; and

xi)(”: 1) e ,2h+# - 1)]= 1) )j")
the generators of G which correspond to the edges of r;; and x;; respectively.

For each crossing of a, over a; we have two defining relations R;; and S;; of
the form: ,

’—1 & —1 — - 1
(T pq Tpa) Tij(Tpq Tpa) ™ Tiojtt

—1 ’ r—1 —e I—1
(Tq Tpa) Tij(Tpg Tpg) T

I

R;;
Si;
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Kijudijn Xigu X jor Ohjor Xt ua
~ Xpg ~ Xpg
Xj g Ky Xy Gy i
Fig. 9

where ¢ = =1 according as a, crosses a; from left to right or from right to left
(fig. 9). Besides these relations we have the relations:

’ ’ —1
To1 = Tora,1%211

’ ’ ’—1
Tau = -’1321,11?21—1,;',,;__: Q=1 k)
T = Tar1,jy_yTelin
Ta = Tu,jp@zi41a
and
Q: = T, Tria ¢t=2n+1,---,2h 4+ p — 2)
Qi = TinZi, @=2n+1,--,2h+p—1)
(see figures 10 and 11). Therefore the group @ has the presentation:
@) G: {zij, ©ii/Rij, Sii, G < §) Tuaa, Tty Tora, Ter, Qe Qv
(i =1,---,2h+u—1
jo=1,- 7
l =1,k
t =2h+1,---,2h+pu—2
(¢ =2n+1,--,2h+u—1
This presentation of G differs from the presentation we described in Chapter I,
in that we have eliminated the generators corresponding to the edges which are
under the bands. We have suppressed also the relation zopy, i, ,-,,,ﬂ_‘xﬁl which,
as we know, is a consequence of the other relations.

Let us introduce generators a;;(¢ = 1, -+ ,2h +u — 1,7 =1, -+ ,7;) de-
fined by means of the relations A;; = z:;'z,;a7; . Using A;; we obtain from
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Fic. 11
. ’ 1 1 —1 ’ *1 / 1 /-1
R:; and 8;; the relations, R{; = atax:jatexiis1 and Si; = 5sx:05aTij1 Te-

spectively.
It is clear that R;; is a consequence of R:; and 4 ;;, and similarly S;; isa conse-
quence of Si; and A;; . Therefore we have:

II) G: {zi;, zis, ai;/Ris, Sy, Taa, T, Tua, Tar,y @, Qo Ay
From R:;, Si;, A:; and A, ;41 we obtain the relation r;; = at.a:;afwiin
t=1,---,2h+pu—1;5=1, ---,7). Introducing the relations {r;;} we can

suppress the relations { S:,}, since S:;is a consequence of R:; ,7:;, A:;and A j41 .
Each generator zi; 1 = 1, --- ,2h + u — 1; 1 < j < j;) appears only in the
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relation 4;; = z:7'%:;a7; which defines z:, in terms of z,; and a;; ; therefore we
can eliminate the generators z:; and the relations A;; G = 1, - -+, 2h 4 p — 1;
1 < 7 < ji). The generator xz; appears only in the relations R;; and Rz, Ry =
atly 2003 x5 defines z,, as the transformed a5y xqa%', = 1 of z4 by o’y
If we substitute this expression of z;» in Ry = a3/ g Zadl) o zs we obtain
atl 0ty zaall a3} o2, which expresses 25 as the transformed by a%t.g 0!,
of z; . Introducing this expression, we can eliminate the generator z; and the
relations R;; and R, . By iteration of this process we can eliminate the generators
T, T, -+, Tij,— and the relations Ry, Ris, - -, Ri ;1 introducing the
relation R; = w(a)zqw: ' (a)27;, ({ = 1, -+, 2h + u — 1), where w;(a) is the
word in the {a;;} which is read off from the projection of s by going along a;
in the positive direction. For each crossing of an edge a,, over a;, there is an
appearance in w(a) of the generator a; or its inverse a; ' according as the crossing
is from left to right or from right to left. Therefore, we have:

G: {Za, Tije ; Ty Tise 5 @ii/ris, Riy Aa, Aije, Tai, T,
T21—1 ) Til ) Q¢ ) Q:'}-
Each generator z3,; (I = 1, - - - , k) appears only in the relations

(I11)

’ ’ —1 =1
Ty = Zoaa%a1 and Ay = Top11%2, 1au-1 1.

’ ’ . . . .
From T'2;; we have z3,_1 = 73,1, and substituting in A, ; we obtain the rela-
. —1 —1
tion Uy = 2?2112721_1021_11 Analogously, from Tu_l = Zai1,je1_ lxzz,,“ and
—1
A2l i = x2l Juxw.nta?lut: we Obtaln U2l = 9321—1.1:1 1Z21,531 G21,55; - From
!’
Ty = zm, 1.1!721_ 1721, and Azz L = Za1, 1x2; 1a21 1, which are the only relations in-
volving 3., , we obtain Tory, jai_1 T2110z21 , from this and
-1
Aoi,jg1 ) = T2i1,igy 1 P2i1,ie1 1‘121-1,,,; 1
we have am lxnlxu_l,’,,,_lazz_ 2oy = Va . From Qg' = :culzu,,,:land Ay =
TinTen @7 we have Ty Tt 1674 ; and from this and A, Vet = Tgn Lo Gergys
we obtain W, = a;n27h 2,0 a7hg (' = 2h + 1, -+, 2h 4+ p — 1). There-
fore, we have the following presentation of G.

(IV) G: {za, zij;, aij/rii, R, Uniay Yor, Voo, Wer , T, Q).

£1 1 1
where r;; = a3 aij a5 Q711

R: = wi(a)za wi'(@)zij, .
= . 1t =1 - ,2h+pu—1
Uy = Z21,1 X21-1,1 A21-1,1 . .
1 1 .7=1:"':.7"
Usw = L21-1,521-1 T21591 B21,59;
) . l = 1’ cee, k
Va = @a1 2211 T21-1,j9;_3 A21-1,j9;_,
. - ! =2n41,---,2h+pu—1
Wi = @i Ty Tevjyr gy
. t =2n+1,---,2h + u — 2
Ta = Tal,jq; T2141,1

—1
Q. = Zij, Tep11
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—1 -1 —1_—1 .
From W, = amxerzij,-a4j, and Ry = wy(a)x,wy 27 ;,» we obtain the
. /7 —1 —1 —1
relation Ry = w,(a)rqwy (@)as i, @amxen @ = 2h + 1, -+, 2h + p — 1),
. ’ .
and R, is a consequence of W, and R;- . From the relations

—1 —1 —1 —1
Usir = 2211 %211,10211,1 and V. = Q21,1 %21,1221—1,531-1 Q211,521
. —1 —1 .
we obtain as;10211,1%21-1,1%21-1,j5;_,021-1,75:_, , and from this and
—1 —1
Ry = wa1(a)2a1,1w211(@)T201,55_, »

’ —1 —1 —1
we have Ry, = wzz—l(a)zzz—x.1w2,z_1(a)azz—1.:‘:1_1021.1021—1.1121-1.1 t=1,---,k),
and Ry, is a consequence of Rz, 1, Vo and Us—y . From

—1 —1 —1 —1
Ust = 3y 1,51, %2001 G215y, a0d Vo = Qo1 %201%201,551_,020-1,59;_,

—1 —1 —1 .

we have as1,1221,1%21,j5,021,55: ¥21—1,74,_, , and from this and
—1 —1
Roi = wa(a)zea,1 we: (@)T21,5,,
we obtain the relation
R;_ () _1()_1_ -1 —1 Q=1 -,k
2l = W2 (@)T21,1W21 (A)A21,j4; A21—1,59;_, A21,1 21,1 =L, ),

and R.; is a consequence of R3, Uy and V. Therefore G is given by:

V) G: {za, xij;, 6ij/Tis Ri, Uns, Un, Vau, We, Ta, Qd,
where
War—1(@)T211,1 W2l 1(@) Q211,731 G211 Q2111 T2 11,1 Z=2l-1)
R = { wa(a)za w21 (@)az1 g, G211, 551, G201 T2t (¢ = 20)

we(@)zwiH(@)ar, anasy @G=t =2h+1,--- ,2h +pu — 1).

Let us define a homomorphism 6: RH — R[t, ¢ '] of the group ring RH onto
the ring R[¢, £ '] of integral polynomials in ¢ and ¢ * as: ) =G =1, ---,p).
Let || (3u/0x)** || be the Alexander matrix corresponding to a presentation of
G, and let M (£) be the matrix M(t) = || (9u/3¢)"** ||. We know that the Alexander
polynomial A(t, ---, ) of K is the g.c.d. of the minor determinants of
Il (8u/0x)** || of column deficiency 1. Therefore the polynomial A(¢, - - - , ) will
be the g.c.d. of the minor determinants of M (¢) of column deficiency equal to 1.

We are going to proceed to the calculation of the matrix M (¢) which corresponds
to the last presentation of G.

Observe, first of all, that ¢ (z.) = Weé(z:;;) = t,and p(a;;)) =1(=1, ---,
2h +u — 1,7 =1, ---, j:). Therefore ¢ypw(a) = 1 for every word w(a) in
the {a.;}.

Let us study the contributions made to M (t) by the various types of relations.
(From now on, all the derivatives will be considered to be evaluated in R[t, 7).

1. ri; = dianadiary

- Ty pq®i;0pq Qi j+1
the only non-zero contributions are:
aT;',' _
3as 1 and 30
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’ —1 —1 —1 /.
2. (a) R = wi(a)zawi (a)ai;; @iy1,1a:1251 (2
the only possibly non-zero contributions are:
’
oR;  dwi(a) .
5-01—1 = —a(; — (1 - t) if Qpq # Qijiy Aig1,1 Qi1
P Pq

IR; _ dwi(a) (1 — ) - dR: _ owi(a)
da;;, dai;, ’ a1 0aiy1a

OR, _ dw,(a)
—_— = M2 (1 —
60‘1 aad ( l) + t

=2 —1)

1 =1 +¢

= wi(a)zaw; (@)ai,,aij,_aazs (@ = 20)

OR,. - aw,-(a)

5&:“ 9a5, (1 =0 if Qpq # Qir, Qijyy Gimrj_y
: ’
OR: _ow(@  _ ) _y OR:  _ dwil@ _y
dai;; dai;; iy, 0y,

@E _ owi(a)
da; da;

(c) R; = w,-(a)x;lw.*l(a)a?jl,.aﬂx._-ll =1

a—-t +t

oR:  dwi(a)

1—t if Apg = Gij;, Qs
aapq aapq ( ) Pq 'Ee] 1

OR: _ owi(a)
dai;; aaqj;

. oR, _ owi(a) ,,
-1 -t 0. = das a-20 4+t

—1 -1
3. Unr = Z21,0%u-1102111
the only non-zero contributions are:

= _ oUq_ _ =
6U211=_t v U211=t1 and 3U211=_1.
0Ta1,1 dTa_11 9an_1,1
4. Uy = 230 1 Tu-11050-1.1
the non-zero contributions are:
oUu  _ — 0Ux _ . Uy
O%or1,j21-1 ’ 0Za, s, ’ 3@, j
5. Vai = Ga11%30 1%20-1,531-, B2 -1,791-1
Va _ . Vo _ _ . oV  _ . Ve _
dag, ’ 0Ta1,1 ’ T2 1,521-1 ’

—1 -1
6. W, = AT Ty Aty

W\ W g We o We
aam ’ axg'l ’ axgljt ’ ’ :
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—1
7. Ty = Za1,5,, X211

9T =1 and T = —1
2., 021411 '
8. Q: = Tij, x?-il-l.l
99 _ 1 and 0 _ —1.
LAY 0411

Consider the submatrix B; of M(t), corresponding to the generators a.,
@i, -+, aij; and the relations r,, -+, ;1. Observe that all elements in
the same rows and outside B; are zero. Consider any element g outside B; and
in the column corresponding to a;;. If we sum to the row to which g belongs,

an A2 a3 cee A5y
Ta 1 - 0 0
Tig 0 1 —1 0
T3 0 0 0
Tijy 0 0 0 1
the rows corresponding to r;;, 7,41, - - - , 7s;; multiplied by —g, we obtain a

matrix in which the element appears in the column corresponding to a;;, . There-
fore, applying this process for every element below B; (z = 1, - -+ ,2h 4+ p — 1),
we obtain a matrix M’(t) equivalent to M (f) in which the only elements different
from zero below B; are in the columns corresponding to a;;; (+ = 1, ---,
2h + p — 1), and this element will be the sum of the elements of the original
matrix which are in the same row and in the columns corresponding to a; ,
Az, ** 0y Gy -

Let us study the elements of M’ (f) in the rows corresponding toR; (i = 1, - - -,
2h + u — 1).

(a) The elements different from zero in the row corresponding to R3;_
(I =1,---,h)are 2_Zi?(dwi_1(a)/day)(1 — t) in the column corresponding to
Apjp » if

p # 2l
and D324 (dwa—1(a)/das.)(1 — t) + t in the column corresponding to as,;,,
(see above).

(b) The elements different from zero in the row corresponding to Rj,
(t=1,---,h)are Z;’zl(awZ,(a)/aa,,q)(l — t) in the column corresponding to
@y, if p 7 20 — 1, and D_J2* (dwai(a)/azi_1,4)(1 — t) — ¢ in the column
corresponding to as;,j,,—, (see above).

(¢c) The elements different from zero in the rows corresponding to R
(¢ =h+1--, 2+ p — 1) are 22 (dwe(a)/da,)(1 — &) (@ = 1, -+,
2h + u — 1). (See above 2).

In M'(t), the only element different from zero in the column corresponding to
aijG=1,---,2h+p—1;5=1,---,j; — 1) is in the row corresponding to
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r.; and its value is 1, therefore it is clear that M’(f) is equivalent to
G=1,---,2h+u—1)

aii(j < Ji) @02 Gmutianeus Tt 5 Tijg

ri E | 0 0

R; 0 A 0

M) =

u 0

w

v C B

T

Q

where E is a unit matrix.

The matrix M”(t) has one column more than rows, therefore for calculating
A(t) we may use the theorem in §3, chapter I. (1 — ?)A(¢) will be equal to the
determinant of the matrix M’"/(t) which is obtained from M” () by deleting the
column corresponding t0 Zshiu—1.j544,-, ; therefore: (1 — A() = |A || B’ |,
where B’ is a submatrix of B in M'"'(t). B’ is of the form, (see opposite page)
which, clearly, is equivalent to a unit matrix. Therefore, (1 — )A(t) = |4 |,
where A is the matrix corresponding to the generators a;;; (2 = 1, ---
2h + u — 1) and to the relations R; G = 1, --- , 2h + u — 1). Now, since

Z;':{q(awp(a)/aaqf = Upq (P = 1) e )2h +u - 1) q= 17 e )jp)
(see the definition of w,(a) above, and the definition of the crossing numbers v,,
in §4, chapter I), we have: (see last paragraph of Chapter I, page 64).

Multiplying each row by ¢, transposing, making use of the relations between
the crossing numbers (§4, chapter I) and multiplying the rows by —1, we obtain

(—D)¥EETOA — DA@R) = (1 — £HAEY), or A(t) = (1) A
which completes the proof of Theorem I.°

2. THEOREM 2. There exist integers vy, -+ - , v, , sSuch that, A(ty , &, -+ , t,) =
(=DM -+ g A6, -+ -, &). Theorem 2 is an immediate consequence of the
following two lemmas:

Lemma 1. Let A", -- -, ) be the polynomial in t, obtained by substituting
Cifort;G=1,---,u)in AL, -+, t.), wheren,, --- , n, are arbitrary positive
integers. Then, there exists N, such that: A™*, - - - , &™) = (=1 @™, -+, ™).

Lemma 2. If an integral polynomial P(t, , - -+ ,t) inty, - -+ , t, has the property
that for arbitrary positive integers ny, - - - , n, , the polynomial

Q(t) = P(tnly e )t"“)

¢ The genus of & a knot K is defined to be the genus of a surface of minimum genus which
can span K. As a corollary of Theorem 1 we have: 2k + u — 2 > 9°A(t), where 9°A(?) is
the degree of A(t). Therefore, 8°A(t) 4+ 2 — u is a lower bound for .

)
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U,

X,

F1c. 13

is such that there exists N for which Q(t) = (—1)"t". Q(1/t). Then, there exist
integers vy, -+, v, such that, P(ty, ---, t,) = (=1 -+ t*P(tr, -, tu)-

Proor oF LEmma I. Let {z;;/r;;} be a presentation of G obtained from any
projection of K, where z;; ( = 1, --- , u;7 = 1, -- -, j;) denotes the generator
corresponding to the edge z;; belonging to the projection of X;, and r;; ¢z = 1,

<, m; 4 =1, -+, ji) denotes the word z7';x,;2Fz7 41 which is the rela-
tion corresponding to a crossing of X over X, (fig. 12). Consider the matrix
M@y, -, t) = || (8rhe/0z:;)¥? ||, in which we have suppressed a row corre-
sponding to a relation which is a consequence of the other relations. We know
that the minor determinant obtained by suppressing, in M (¢, , - - - , &), the col-
umn corresponding to x;; is

i(ti_ 1)A(t1,“‘,t“), (7'= 1)"')”’;].: 1)"')ji)‘
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F1c. 14

We are going to construct a knot K, ..., of multiplicity n; + n. + -+ 4+ n,,
associated to the projection of K, where n, , - - -, n, are arbitrary positive in-
tegers, as follows:

Let us surround each X; by a tube U, (+ = 1, - - - , u) in such a way that the
central line of U, coincides with X, (fig. 13),and U, n U; = @ if 7 5 7. Consider
ineach U, , n; copies X, --- , X{"? of X, , in such a manner that the projection

of X{** is always on the left s1de of the projection of X\ (k = ce,my— 1)
(fig. 14). Let K,,,....», be the knot whose components are x® (z =1, u;
p=1 -, n).

We shall proceed to the computation of the group G’ of K,,...

Corresponding to each generator z;; of K, we have n; generators o,
z7? of @'. Where zi? (p = 1, -- -, n;) is the generator corresponding to the
edge z{? which belongs to the projection of X{”.

Corresponding to each relation r;; = xi’lj 2 x5 541 of G, we have n; rela-

tions r{ = (zi") - 2P TP @ )T 0 = 1, -+, ny) (fig.
15). Therefore G’ has the presentatlon

i=1-,u
(I) {xnp)/r(;')} .7 = 1) o yjt'

p = 1’...,"".

Let us introduce generators X;; defined by means of the relations R;; = z{}?

P 2P X =1, - #,j =1,:--,7). From ri? and R, ; we obtain
8P = XF, 2 PXTFY 2P0 (p=1,---,n) and r? is a consequence of Ry j
and s(”). From the relations s{;’, - -+, s{7” we obtain X7x{}? ... 2} XF,
(@i -z and using R.; and R, ;;, we have u;; = X7 X, XTy Xiin
G=1,---,u;7=1,---,7:). Each relation Rijaa(G=1,---,7:) is a conse-
quence of the precedlng R, ;and 82 (p = 1, -+, n,), therefore we can delete

the relations R;; (j > 1). The relation s{ expresses z:f’ as a transformed of
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(ny) 2)
xi-j"’ xf,j'ﬂ Xl',fu
| o (njs)
. — Xy
* gy
> X i
P ()]
A 1y
(ny) )
Xij X‘ j ij
Fic. 15

2P, and s expresses P as a transformed of z{P, therefore, using s{3’ and

i3 we can express z.3 as a transformed of z{3’ , and introducing this expression

(p)

we can eliminate the generator z{3 and the relations s{3 and s{3 . Repeating
this process, we can eliminate the generators z.3 xf'é) , xf’,’), and the
relations s{% , --- , 87 (1 = 1, - - -, u), by introducing a relation Q{” = w(X)

£ Pw (X)zP ™, where wi(X) is the word in the {X,,} which is read off from the
projection of X; by going all the way along X from z; to z, . For each crossing
of X; over X;, from left to right, there is an appearance of a generator X ;, in
w;(X), and for each crossing from right to left there is an appearance of X7, .

It is clear that from the relations uy , - - - , u:,;; we obtain w,(X)X aw7 (X)) X7,
and from this and R; a.nd Q", QP, -+, Q"™ we obtain Q{"”. Therefore we
can delete Q{"” (s = 1, - -+, ). Flnally, since the relation u;; = X33 X ;X

X734 has the same form as the defining relation r;; = 27, z;aF} x4 of G,
and we know that any of the {r;;] is a consequence of the others, then any of
the {u;;} will be a consequence of the others, and we can delete it from the presen-
tation of G’. Therefore G’ is given by:
i=1-,u
In G': (X5 20 Jui;; Ra; Q) J=1 -,
p=1 -, 0
and one of the {u;;} is deleted.

The commutator factor group H’ of K, ... », is generated by {t;,} G =1, -+,
;P = 1,--+, n;), where t;, = yo(z(?’). Therefore yo(X:;) = tati -+ tin,
(G=1---,p).

Let us calculate the Jacobian matrix M’ corresponding to the presentation
(I1) of @', (Page 77).
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where M (l) is obtained by substituting I; = fafw -« ti, for t; 1 =1, --- |, u)
in M@, - ,t)(see§3)vi, (¢ =1, -+ ,u;p =1, ---n;)isa unit of RH’, and

Wy = Yyp(wi(X)) ¢ =1, -+, u), and A is a submatrix whose form we do not
need to discuss.
The matrix M’ has one row less than columns, therefore (1 — tuti - -+ tin,)

A" = | M” |, where A’ is the Alexander polynomial of K.,,,....., and M” is the
matrix which is obtained by deleting the column corresponding to Xy; in M’.
Therefore (1 — tutiz - - - tin,)A’ = M*(l) | B |, where M*(l) is the matrix which
is obtained from M (l) by deleting the column corresponding to X, , and there-
fore | M*() | = (1 — tute + -+ tin )AL, by -+, L), where A(L, --- , 1) is the
polynomial obtained from A(t;, - - - , ¢,) by substituting [; for ¢; (z = 1, - - -, u).
B is the submatrix corresponding to the generators {z:{’} and the relations {R.}
and {Q:{”}. Therefore it is clear that | B| = v][f=i (@; — 1)™", where v is a
unit of RH’. Therefore: A’ = H‘:‘=1 , — DA, -, L).

If we substitute ¢ for t;p (2 = 1, --- , u;p = 1, -+ -, n;), we have: A'(t) =
14w @ — D)™7*a@™, -~ -, t™), where @; (¢ = 1, - - - , u) is a monomial in ¢.°

By Theorem 1, we have
IT5a (@ — D™ ae™, -, ™)

= (—pmre JTa @3 — D™ TAG™, - 67

or A(t™, -+, ™) = (=1)*"'A@¢™, ---, ™), which completes the proof of
Lemma 1.

Lemma 2 is a particular case, for P = (—1)*P’ of the following.
LeEmMMA 3. If two integral polynomials P(ty, ---, t,) and P'(t;, ---, t.) in

’

ty, + -+, t. have the property that for arbitrary integers n,, - - - , n, the polynomials
Py, (t) = P&, -+, t™) and P'y,...n, () = P'(t", -, t™) are such that
there exists an integer N(ny, ---, mn,) for which Pn,...,. @) = ¢""vm™
P',.1 ..... - (). Then, there exist integers vy, - -+ , v, such that

Plty, =+, t) = &' o 2P/, o, 60).

Proor. We shall prove this lemma by induction on the number u of indeter-
minates.
If u = 1 the lemma is obviously true. If 4 > 1,

P(tly :tn) = ¢r(t1; ;tu—l)t;+¢r+l(t1y )tu—l)t;+l+
+¢G(t1) )tu—l)t;;

and
Py, b)) =¥plti, ) &+ Ypults, -, tu) T 4 oo
+ ¢q(tl: Tty tﬁ—l) tx )

where ¢,..; and ¥, are polynomials in ¢, , « - , t,y, and ¢, , ¢s , ¥ , ¥, are dif-
ferent from zero.

9 It is clear that a projection of K can be taken such that w; = 1( = 1, -+ , p).
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Let us choose integers a,, - -+, a,—; such that
qi'o,(t'”, cee t"“"), ¢,(t°‘, cee, t“u-l), ¢p(t°1, cee, t““_l), ¢,(t“1, cee, ta,.—x)
are different from zero. Let us denote by ¢(f) the polynomial
(" Y@ =rr+ 1,000, 8)

and by ¢,() the polynomial y;(t*, -+, t*™) j = p,p + 1, -+, @).

Let us denote by a; and 9 the degrees of ¢.(t) and ¢;(t) respectively, and by
8; and &; the degrees of the terms of minimum degree in @:(f) and ¢,(t) respec-
tively. Let a, be larger than 2 sup. (@,, -+ -, 9s ; 6',, , -+, dy). We have,

Py, () = SO + Gra@17TV% + oo 4 3,01,

Popoo, (&) = T + oL 4 oo J ()
Therefore:
(1) @™ + - + O™ = O [P 4 4 P (T

It is clear that, if ¢ < 7/, the degree of each term of $:(t)t""* is larger than
the degree of every term of $:(£){*, and therefore the degree and the min-
imum degree of the left hand side of (1) are d, + sa, and §, 4 ra, respectively.
Analogously, the degree and minimum degree of the right hand side are

N(al, ) aﬁ) - 6; — DOy and N(al y T au) - alﬂ — qay respectively. We
have:

9 + sa, = N(a, -+ ,a,) — 6',, - PGy
and

3,+ra,, = N(aly e )a“) - a'q_ qal‘)
therefore

W=+ —d=alg—p+r—ys)
and 2 sup (3r, -+, 9305, -+, 00 2 |9 — & |+ [0, — 8| Zaulg—p+
r—s|,sowehaveq — p=s —r.

Now let n; , - -+, n,_; be arbitrary, and let us denote by ¢:(¢) the polynomial
¢i(t”l7 T tn“~l) (1’ =Ty, .S‘) and by ¢1<t) the polynomial ¢j(t"l) Tt tn“-l)
(j=p)"'7g,)' B _ ,

Let 9; and 9; be the degrees of ¢;(f) and ¥;(t) respectively, and let §; and §;
be the minimum degree of () and ¢ ;(¢) respectively. And let n, be larger than
2sup (@, -+, s, dp, -+, ds). We have,

@) S O™ + e+ B = £ ()T e ™),
As before we have

(3) 5,+rn“=N(n1,-~-,n,.)—aé—qn“.
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Let « + in, be the degree of a term of ¢,(£)t™™ (r < ¢ < s); that term cancels

against a term of degree N(ny, - -+, m,) — B — jm, which belongs to ¢" """
Vi O™ (p £ §i £ q). Therefore
4 a+in, =N, - ,n) — B —jm,.

From (3) and (4), we have
b —a+d —B=n0Gi+i—r—gq)
and 2sup (3,, ++, 3, ;0p,**,00) = |8 —a|+|0h—B|=n|ji +1~—
r — ¢ |, therefore
®) t+ji=r+g;

that is, every term of :(£)t"™ cancels against a term of ¥ ™1™ (1) 7™,
where j: is given by (5). ) .
Thus (&)™ = (Y™, (7Y™, o

(6) a;(t) = tN(nl ,,,,, n,)—in,—j,’n,‘;ji(t—l).
By the induction hypothesis, there exist integers »;, v, -+, 7;,-1 such that
(7 Gilt, + o+, b)) = G467 - BTG -, 8,

from (6) and (7) we have
Ny, - ,m) = vam + vine + -+ + vipanus + (@ + jon,
or
Ny, -+, m) = vam + vane + -+ + vy + (r + Q)n,,
for ¢ # ¢ we have
N, -+, m) = viama + vina + -+ + vir s + (0 + @y,

then my(va — »i1) + -+ 4+ nu1(¥iu — vir u1) = 0, since this holds for arbi-
trary m,, - -+, ny—1, we must have

Vil = Vi'1y t 0ty Vip—l = Vi e,
and we may write
N, -+ ,m) = v+ vne + -+ + nymus + v,

where the {»,} are independent of 7, and v, = r + q.
Therefore, from (7), we have

P(tly e )tﬂ)

= Z;-rd’i(tl y Tt tu—l)t: = t;l te t;i—llt;u Z:—r‘/’i.‘(tl_l’ ) t‘-‘.—ll)t’i_'“
1'l e t;"——ll ;“ Z:_,¢j,-(t1_l, T [“—-ll)t;ji
=0 2 (T, GG = P L Y
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and the lemma is proved.

3. THEOREM 3. Let A(ty, - - - , t,) be the Alexander polynomial of a knot K of
multiplicity u, let X, , -+ -, X, be the components of K, and let A(t,, -« , t,—1) be
the Alexander polynomial of the knot K' obtained by removing X, from K. Then,
ifu=2 A, 1) = (ti — 1)/t — 1), where 1 is the linking number of the

components of K, and if u> 2, Alh, -+, b, 1) = (G -+ 30 — 1)
Ay, -+, tu1), wherel; (1 = 1, --- , u — 1) is the linking number of X, and X ; .

Proor. Consider any projection of K, and let {x;;/r:;} be the presentation of
the group of K obtained from the projection, where x4 , « -+, z;,;;(6 =1, -+« , )

. 1 —
are the generators corresponding to X;, and r;; = z7';z:;2¥ x7j41 corresponds

to a crossing of X ;. , over X, . Consider the Jacobian matrix
M, -, 4) = || (9rpe/02:)** | .

We know that the minor determinant D, obtained by deleting the column cor-
responding to a generator x;; is ({; — 1) A(t;, - -+, t,). Therefore if we make

=1in M, - ,t), the value of D; will be (¢; — 1) A(ty, -+, tu_r, 1) if
i # u. The generators {z,;} appear in the relations r,; = z'z, a7,z 41 which
correspond to crossings of X, over X, , and in the relations

_ Al F1_—1
Tpg = TulTpelul T p,q+1

corresponding to crossings of X, over X, .
Let us see which are the contributions of these relations to the matrix

M, -y b, 1)

The contributions of r,; are: (97,,/0z,.)%* N 0 (07,;/0%,5)" v, = =tifp =1,
9745/ 393;4:):,-1 =1 lf p =1, and (97,;/9%,,;41) 0 ey = —1. The contributions of
Tpa 8T€, (87pe/0T,1)1,2 tey = =1 — t), (61',,.,/6:1:,,«),“_l = 1and

(07pe/0%p g41)t,, = —1if p % p;

the case p = u has already been considered. Therefore, M(t;, -+ + , ty—1, 1) is

Tii(t #E p) | T Tue e Ty, j
T
(@ #= ) A B

M(tl) oy b, 1) =

T £ -1 0 - 0
Tu2 0 tt: —1 e O
: 0 SR :
Tuis -1 0 0 ---

in the submatrix of the lower right corner, there is an appearance of ¢;* for each
crossing of X;over X, (¢ = 1, --- | u),and &; = 1 or —1 according as X; crosses
over X, from left to right or from right to left Therefore the determinant of the
matrix in the lower right corner is ¢!} — 1.
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The submatrix A is equivalent to the Jacobian matrix M'(¢; , - - -, t,—1) of the
knot K’. Therefore, the determinant D; obtained from M (4, - -+, t,1, 1) by
removing a column corresponding to a generator z;;(¢ # pu), is

D;= (- t23t — 1) | 4|,

where A’ is the matrix obtained from 4 by removing the column corresponding
to Tij .

Ifu=2]A4"| = At),andif p > 2| A’ | = (t: — 1) A(tr, *** , tur). There-
fore, if u = 2

@) (t— 1Al —1) = @ — 1) A(h), and if u > 2

@) A, ooy ter, 1) = (@0, o, 6250 = 1) A, -+, ),

which completes the proof.
If we make f; = 1 in (1), we obtain

A(l, 1) = l1 )
and if wemaket; = &, = --- = {,; = 1lin (2) wehave A(1, ---,1) = O, there-
fore we have proved Theorem 4.
If A(t, -+, t,) is the Alexander polynomial of a knot K of multiplicity u,

then if 4 = 2 A(1, 1) = I, where [ is the linking number of the components of K,
andif g > 2 A(1, ---,1) = 0.

CrarTER III

Let C be a circle in euclidean 3-dimensional space, and let T be the torus whose
central line is C (fig. 16). The closure of the interior of 7' is a tube T. The closure
of the exterior of T, together with the point at «, is a tube, and it will be de-
noted by E.

Denote by b the circle determined by the intersection of T' and the plane of
C. Let a be a meridian circle on 7. Let us orient a and b in such a way that a
crosses b from left to right (fig. 16).

Consider a knot K’ of multiplicity 1 in E°. Let us surround K’ by a torus T';
whose central line is K’ (fig. 17). The closure of the interior of T" is a tube 7’
which contains K’.

Let K be a knot of multiplicity u, with components X, , --- , X, , contained
in the interior of T (fig. 16). Denote by I; the linking number of a and
KI(Z = 1) e ’ﬂ')‘

Let ¢ be a homomorphism of T onto 7", such that the linking number of K’
and the image b’ = ¢(b) of b is zero.

The image ¢(K) = K”, of K under ¢, is a knot of multiplicity u contained in
the interior of T”, (fig. 19). We shall prove:

THEOREM 5. The Alexander polynomial A" (4, -+ - , t.) of K” 1s:

A”(tl) ) tﬂ) = A,(t:lté’ e tli“) A(tl y T tl‘))
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Fic. 16

where A(ty, - - - , t,) 18 the Alexander polynomial of K, and A(t - ) is the
polynomial obtained by substituting t;'ts* - - - t,* for u in the polynomial A’(u) of K.

Proor. There is no loss of generality in supposing that the projection of b’
is parallel to the projection of K’, except in a segment S of 7’ in which b’ and K’
are braided (see fig. 17).
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Consider a segment S’ of S containing two consecutive crossings of K’ and
b’ (fig. 20(a)). It is clear that by applying the deformation illustrated by fig.
20 to each segment of 7" containing two consecutive crossings of b’ and K’, we

Fia. 18

Fia. 19

obtain a projection of 7" for which the projections of K’ and b’ are parallel (fig.
18). Such projection will be used to compute the group G” of K”.
We are going to compute separately the groupsII;(T" — K”) and I,(E®* — T”).
Clearly, II;(T” — K"”) is isomorphic toII;(T — K), and since T — K is homeo-
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morphic to 8 — (K u ), where ¢ is a circle isotopic to a in E, the group
Hl(T' — K/I)

is isomorphic to the group of the knot K u e.

Let us orient e in such a way that its projection crosses over the projection
of b from right to left (fig. 16). From the projection of K u e we obtain a presenta-
tion {z;, y;/rx} of IL(T" — K”), where the {z;} are the generators corresponding
to the projection of K, and the {y;} are the generators corresponding to the pro-
jection of e, and the number of relations is one less than the number of generators
(see §2).

The group II;(E* — T”) is isomorphic to the group G’ of K’. Let us orient K’
in such a way that a’ (the image of a under ¢) crosses over K’ from right to left.
From the projection of K’ we obtain a presentation {u,/g,} of G’, in which the

S
=) ——
«a)

F1c. 20
w(x) e

%i,*— -

A

Xi, -_

Fic. 21

number of relations is one less than the number of generators. The generators
{u,), interpreted as generators of II,(E* — T”), are represented by paths which
go once around 7" (fig. 17).

The group G” is the direct product of thegroups II,(7" — K”) and II,(E* — T"),
with identification of the elements which are represented by the same generators
of II,(T") [13].

II,(T") is generated by « and 8 which are represented by a’ and b’ respectively.
a’ represents w(z) in II;(7" — K”), where w(z) is the word in the {z;} which is
read off from the projection of K u e by going once along e in the positive direc-
tion. w(z) is represented by a loop which is homotopic to e in E* — (K u e) (see
fig. 21; in the case illustrated by the figure w(z) = 7,5, ;). InIL(E® — T7),
a’ represents a generator u, , and by relabeling the {u,} we can make a’ represent
u; . b’ represents y;, inII,(7" — K”) (fig. 16), since y; is represented by a path
homotopic to bin E* — (K u e). b’ represents W (u) in II;(E* — T’), where W (u)
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is the word in the {u,} which is read off from the projection of K by going once
along b’ in the positive direction.
Therefore G” is given by:

G’ = {xf; Yi, u"/rlc y Qu s w(x)ul_l; W(u)yfl}

Let t,, - -+, ¢, be the generators of the commutator factor group of G”, where
¢, is the image (z:)** of a generator z; corresponding to the component

XJ(] = 1; e ;”)
of K.
The image [W(u)]*® of the word W(u) is 1, since the linking number of b’

and K’ is zero. From the relation W(u)y:" we have [W(u)]** = (y1)*® = 1, and
therefore (y;)** = 1 for all j- By the definition of w(x) we have

[w@)]** = ti't? - - - b,
and from the relation w(z)u;" we have (u;)*® = #{* - - - ts*, and therefore
(u)¥® = 44t - g
for all ».
The matrix M”(,, - -+ , t,) corresponding to the presentation of G” will be:
M1 M2 o I o i?/l Y2
|
o 0 0 | 0
q2 !
M7, o 4) = ;
n 0 M(tly"'ytuyl)
T2
1 a'w(x))‘“’
-1 0 ... 0
w(zr)u; < e
1 aw(u))w
0 -1 0
woni' | (2L
which is a square matrix. M’(t) is the matrix obtained by substituting
t= tiMg? - e
for u in the matrix M’(u) corresponding to G’. M(t;, - -- , t,, 1) is the matrix
obtained by substituting 1 for ¢,,, in the matrix M(,, - - - , &, , tu41) correspond-

ing to the group of K u e, where ¢, is the generator of the commutator factor
group of I;(E* — (K u e)), corresponding to e.



ON THE ALEXANDER POLYNOMIAL

87

Adding to the column corresponding to u; the columns corresponding to the
remaining {u,} (v > 1}, we obtain:

Q1
q2
s ) ~
71
T2

(@) M"(h,---

w(z)ur*

wlw)yr’

Uy Ug * 3 X * yl y2

0 M @) 0 0

0 0 M@, -+, t4,1)

(2]
1 0 <6w(z)) 0
ail?.'
¥vé
0 ("“’—(“)> 0 -1 0
ou,

since »_, (dw(u)/dw,) = 0, for if (dw(w)/du,) is evaluated in the group ring cor-
responding to K’, we have D, (ow(u)/du,) (v — 1) = 0 (formula (4)), and
since u — 1 is not a divisor of zero, we have Y, (dw(u)/du,) = 0, and

Z' (aw(u)/allv)w¢ = Zr (aw(u)/auv)u-t = 0.

M (t) is a matrix whose determinant is A’(¢). From (a) it is clear that:

(b) Ml(tl y " t) ~

Consider the matrix:

T(tl:""tn) =

Ug Ug *°° ) Ty * - yl yz...
! M) 0 0
q2
T; 0 M(tl ’ ’ tu ) 1)
T2

Al (ow(w)\*
w(wyr ( ou, > 0 0
M'@) 0 0
0 M(tly"')tn’l)
¥vé

<"“’(“)> a-20 0| —a—-0o0--

ou,

which is obtained by multiplying the last row of b) by 1 — ¢.
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As a consequence of the relations {g,} we have the relation
g = WyuW ™ (w)ur,

whose derivatives are dg/du, = (dww)/0u,)** (1 — t) for v > 1, and as a
consequence of the {r.} we have r = w(z)y:w '(z)yr', whose derivatives are
ar/dz; = 0 and dr/dy, = t — 1. Therefore, each row of T'(¢;, - - - , ¢,) is a linear
combination of the other rows, and the ideal of column deficiency 1 will be gene-
rated by the minor determinants which are obtained by deleting one column

in the matrix obtained from 7T(4, ---,,) by deleting any row. In partic-
ular if we delete the last row, we
have:

» 0 0 “

n 0 M(tly"':tu)l) "

and by Theorem 3 we have: the elementary ideal of column deficiency 1 of
T, - -, t) is generated by

{A =)t — Da®AG, -+, 4 =1 ,wifp>1

Therefore, the elementary ideal of column deficiency 1 in M”(¢,, --- , ¢,) is
generated by {(1 — &) A’(t) AL, ---,8)} (¢ =1, ---, u), and:

A"y, -y b)) = A - DA, e, b,

which completes the proof of Theorem 5 in the case u > 1.
If u = 1, the matrix M(t,, ---, t,, 1) is of the form:

T @ o W "
M(t) * 0
.
i -1 0 -~ 0
0 0 o1 0
6 o 0 e -

where M () is the matrix corresponding to K, and * denotes a possibly non-zero
element.

Therefore, if in M”(t,) we add to each row the last row multiplied by an ap-
propriate factor, we obtain:
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Uy U3 PR Xy Xy - Y y2
M (1) 0 0 0
M’ (t) ~
M(t,) 0 0
a -1 0 0
i —
0 o |4 1 0
00 ---—1
dw(u)
—_— — — 0
p () 0 1
where A is a certain matrix whose form we do not need to discuss. It is clear that
M) 0 0
M(t) 0
n
M (tl) ~ . _1 O
0 —1
0 -1

hence: A”(t) = A'(#) A(t).”°
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