ON THE ALEXANDER POLYNOMIAL

By Guillermo Torres¹

(Received October 1, 1951)

Introduction

Two ordered collections of μ disjoint simple closed oriented curves in Euclidean three dimensional space E^3 are said to be *equivalent*, if there is an orientationpreserving homeomorphism of E^3 on itself, which transforms one collection into the other, preserving the orientation and order of the components.

A knot of multiplicity μ is the equivalence class of an ordered collection of μ disjoint simple closed polygons. Two collections in the same class are said to have the same knot type.

We shall be concerned here with an invariant of the knot type, the Alexander polynomial, which was first defined by Alexander $[1]^2$ in the case $\mu = 1$ and then defined by R. H. Fox in the case $\mu > 1^3$.

The Alexander polynomial of a knot K of multiplicity μ , whose components are X_1, \dots, X_{μ} is an integral polynomial $\Delta(t_1, \dots, t_{\mu})$ in the indeterminates t_1, \dots, t_{μ} where each t_i corresponds to one of the components X_i of $K(i = 1, \dots, \mu)$.

A characterization of the Alexander polynomial in the case $\mu = 1$ has been given by Seifert [9]. He proved that the polynomial $\Delta(t)$ of a knot of multiplicity 1 has the properties: $|\Delta(1)| = 1$ and $\Delta(t) = t^{2h}\Delta(1/t)$, and conversely, that every $\Delta(t)$ with these properties is the Alexander polynomial of some knot.

The main purpose of this paper is to prove that the Alexander polynomial, in the case $\mu > 1$, has the following properties:

1. There exist integers n_1, \dots, n_{μ} such that $\Delta(t_1, \dots, t_{\mu}) = (-1)^{\mu} t_1^{n_1} \dots t_{\mu}^{n_{\mu}} \Delta(1/t_1, \dots, 1/t_{\mu})$.

2. If $\Delta(t_1, t_2)$ is the polynomial of a knot K of multiplicity 2, whose components are X_1 and X_2 , then: $\Delta(t_1, 1) = \Delta(t_1)(t_1^l - 1)/(t_1 - 1)$ where $\Delta(t_1)$ is the polynomial of X_1 , and l is the linking number of X_1 and X_2 . If $\Delta(t_1, \dots, t_{\mu})$ is the polynomial of a knot of multiplicity $\mu > 2$, whose components are X_1, \dots, X_{μ} , then $\Delta(t_1, \dots, t_{\mu-1}, 1) = (t_1^{l_1} t_2^{l_2} \cdots t_{\mu-1}^{l_{\mu-1}} - 1) \Delta(t_1, \dots, t_{\mu-1})$, where $\Delta(t_1, \dots, t_{\mu-1})$ is the polynomial of the knot which is obtained from K by removing X_{μ} , and $l_i(i = 1, \dots, \mu - 1)$ is the linking number of X_{μ} and X_i .

3. $\Delta(1, \dots, 1) = 0$ if $\mu > 2$, and $|\Delta(1, 1)| = |l|$ if $\mu = 2$, where l is the linking number of the two components of K.⁴

¹ The author gratefully acknowledges the guidance of Professor R. H. Fox in preparing this paper which was submitted as a Doctor's thesis to the faculty of Princeton University.

² Numbers between brackets refer to the bibliography at the end of the paper.

³ An invariant polynomial associated with some knots of multiplicity 2, was considered by K. Reidemeister and H. G. Shumann [4] and by W. Burau [2].

⁴ Property 3 is an immediate consequence of property 2. It is not known whether or not properties 1 and 2 suffice to characterize the polynomial. By a procedure completely anal-

We have included, in Chapter III, a proof of a theorem (Theorem 5), which is a generalization, for $\mu > 1$, of a theorem proved by Seifert [11] for $\mu = 1$. This theorem describes the effect produced on the polynomial of a knot K which is contained in an unknotted tube U by a further knotting of U.

CHAPTER I

1. Derivation in a free group

In this paragraph we shall give a brief account of the theory of derivation in a free group. This concept, which has been introduced by R. H. Fox,⁵ will be used throughout this paper.

Let G be a multiplicative group, R the ring of integers and RG the integral group ring of G. The elements of RG are of the form $\sum_{i=1}^{n} r_i g_i$ where $r_i \in R$ and $g_i \in G$. Let \circ be the homomorphism of RG onto R defined by $(\sum_{i=1}^{n} r_i g_i)^\circ = \sum_{i=1}^{n} r_i$.

A derivative in RG is a mapping $D: RG \rightarrow RG$ of RG into itself satisfying:

(1) D(u+v) = Du + Dv

(2) $D(u \cdot v) = D(u) \cdot v^{\circ} + u \cdot Dv$

for all u and v in RG.

Let X denote the free group generated by a finite set of symbols x_1, \dots, x_{λ} . For each index there is a unique derivation $\partial/\partial x_j$ in RX satisfying (1) and (2) and

(3)
$$\frac{\partial x_k}{\partial x_j} = \delta_{jk}$$
.

This is called the *derivative with respect to* x_j . If $X \ni w = a_0 x_j^{\epsilon_1} a_1 \cdots a_j^{\epsilon_k} a_k$, where $\rho_i = \pm 1$ and a_0 , a_1 , \cdots , a_k are words not involving the generator x_j , then:

$$\frac{\partial w}{\partial x_j} = \sum_{i=1}^k \varepsilon_i (a_0 x_j^{\varepsilon_j} a_1 \cdots a_{i-1}) x_j^{\frac{1}{2}(\varepsilon_i-1)}.$$

It can be proved that, for any derivation D in RX,

$$Du = \sum_{j} \frac{\partial u}{\partial x_{j}} \cdot Dx_{j} \qquad u \in RX.$$

In particular $u \rightarrow u - u^{\circ}$ is a derivation. Hence:

(4)
$$\mu - \mu^{\circ} = \sum_{j} \frac{\partial \mu}{\partial x_{j}} \cdot (x_{j} - 1).$$

ogous to the procedure used by Seifert in his proof [8], one can prove that properties 1' and 2', given below, suffice to characterize the polynomial $\overline{\Delta}(t)$, obtained by substituting t for t_i $(i = 1, \dots, \mu)$ in $\Delta(t_1, \dots, t_\mu)$.

1.' There exists $\alpha \equiv \mu \pmod{2}$ such that $\overline{\Delta}(t) = (-1)^{\mu} t^{\alpha} \overline{\Delta}(1/t)$.

2. $\overline{\Delta}(1) = 0$ if $\mu > 2$, and $|\Delta(1)| = |l|$ if $\mu = 2$, where l is the linking number of the components of K.

⁵ A complete account will appear in a paper "Free Differential Calculus" in these Annals.

The row vector $(\partial_{\mu}/\partial x_1, \partial_{\mu}/\partial x_2, \cdots, \partial_{\mu}/\partial x_{\lambda})$ may be denoted by du. From (1) and (2) we get:

 $(5) \ d(u+v) = du + dv$

(6) $d(uv) = du \cdot v^{\circ} + u \cdot dv$.

Every group G is the image of some free group X under some homomorphism ϕ . G is therefore determined by the generators x_1, x_2, \cdots of X and by a set of elements (relations) $u_1(x), u_2(x), \cdots$ of X whose consequence U (smallest normal subgroup containing u_1, u_2, \cdots) is the kernel of ϕ . We shall call $\{x_1, x_2, \cdots/u_1, u_2, \cdots\} = \{x/u\}$ a presentation of G. All groups considered in this paper will be finitely presented; i.e., they will be given by a finite number of generators and relations.

There are two types of operations on a presentation which do not alter the group presented. They are the Tietze operation of first kind: adjoin to the relations u_1, u_2, \cdots any element v of U, i.e. any consequent relation, and the Tietze operation of the second kind: adjoin to the generators x_1, x_2, \cdots a new generator y and simultaneously adjoin to the relations $u_1(x), u_2(x), \cdots$ a new relation $y[g(x)]^{-1}$ defining y in terms of the old generators. The Tietze operations are complete in the sense that, given two finite presentations of a group G, it is possible to pass from one presentation to the other by a finite sequence of the Tietze operations and their inverses [7].

In order that an invariant of finite presentations be a group invariant for all finitely presented groups, it is necessary and sufficient that it be invariant under the two Tietze operations.

To any finite presentation $\{x_1, \dots, x_{\lambda}/u_1, \dots, u_{\mu}\}$ of a group G we associate the matrix $\| (\partial \mu_i / \partial x_j)^{\phi} \|$. The equivalence class of this matrix is an invariant of G. Matrices over a group ring are *equivalent* if one can be obtained from the other by a finite sequence of the following operations and their inverses.

1. $M \to (M)$ where the new row — is a left-linear combination of the rows of M.

2. $M \rightarrow \begin{pmatrix} M & 0 \\ * & 1 \end{pmatrix}$, * denoting an arbitrary row vector. Operations 1 and 2

correspond to the Tietze operations of the first and second kind respectively.

Let $RX \xrightarrow{\phi} RG \xrightarrow{\psi} RH \xrightarrow{\hat{0}} R$, where H is the commutator quotient group of

G, and ψ is the natural homomorphism of RG onto RH. The equivalence class of $\|(\partial u_i/\partial x_j)^{\psi\phi}\|$ are of $\|(\partial u_i/\partial x_j)^{\circ\psi\phi}\|$ and invariants of G. (The latter matrix is a relation matrix for the abelian group H. The former determines G modulo its second commutator subgroup.)

For any matrix M over a commutative ring RH define: The elementary ideal of column deficiency k = the ideal in RH generated by the minor determinants of order n - k, where n is the number of columns of M.

The elementary ideals of a matrix over a commutative ring are invariants of the equivalence class of the matrix. But they are not necessarily invariant under automorphisms of RH.

2. Calculation of the group G of a knot K [6]

Let K be a knot of multiplicity μ in E^3 . Let G be the group of K, i.e. the fundamental group $\Pi_1(E^3 - k)$ of $E^3 - k$, where k is a representative of K. We shall describe here a method for calculating G.

Consider a representative k of K whose components X_1, \dots, X_{μ} are simple closed polygons. A central projection of k is called *regular* if all projecting rays meet at most two segments of k. A regular projection has only two-fold multiple points (double points or crossings), and it has only a finite number ν of them. We normalize the projection by denoting which of two segments that determine a

F1G. 2

double point crosses underneath the other (we shall do this as indicated in fig. 1). A normalized projection consists of a finite number ν of disjoint oriented simple polygonal arcs (fig. 1). Let us denote them by

$$e_{ij} (i = 1, \dots, \mu; j = 1, \dots, l_i),$$

where $e_{i1}, e_{i2}, \dots, e_{i,l_i}$ are the arcs corresponding to X_i $(i = 1, \dots, \mu)$, as they are read off from the projection by going along X_i in the positive direction (fig. 1). Then the group G is generated by $\{x_{ij}\}(i = 1, \dots, \mu; j = 1, \dots, j_i)$, where x_{ij} is represented by a loop \bar{x}_{ij} which, starting from above the plane of projection, goes around e_{ij} piercing the plane to the left of e_{ij} and emerging to the right of e_{ij} (fig. 1). There is a defining relation corresponding to each crossing, and it is of the form $r_{pq} = x_{p'q'}x_{pq}x_{p'q'}^{-1}x_{p,q+1}^{-1}$ or $r_{pq} = x_{p'q'}x_{pq}x_{p'q'}x_{p-q+1}^{-1}$ according as the crossing is of type (a) or (b) (fig. 2). In this presentation the number of generators is equal to the number of relations. But any one of the relations is a consequence of the others, therefore G is given by ν generators $\{x_{ij}\}$ and $\nu - 1$ of the relations $\{r_{ij}\}$ $(i = 1, \dots, \mu; j = 1, \dots, j_i)$.

3. The Alexander Polynomial

Now we are in a position to define the Alexander polynomial of K. Let $\{x_{ij}/r_{pq}\}$ be the above mentioned presentation of G. The commutator factor group H will be the abelian group generated by the $\{x_{ij}\}$ with the abelianized relations $\{\tilde{r}_{pq} = x_{pq}x_{p,q+1}^{-1}\}$ which express the equality of the generators $\{x_{ij}\}$ $(j = 1, \dots, j_i)$ corresponding to X_i $(i = 1, \dots, \mu)$. Therefore H is free abelian in μ generators t_1, \dots, t_{μ} , where t_i is represented by each one of the loops $\{\tilde{x}_{ij}\}$ $(j = 1, \dots, j_i)$.

Consider the matrix $M(t_1, \dots, t_{\mu}) = || (\partial r_{pq}/\partial x_{ij})^{\psi\phi} ||$ over the ring RH of polynomials in t_1, \dots, t_{μ} ; $t_1^{-1}, \dots, t_{\mu}^{-1}$. The matrix $M(t_1, \dots, t_{\mu})$ is called the *Alexander matrix* of K. In order that two knots of multiplicity μ belong to the same knot type it is necessary that their matrices have the same elementary ideals in RH, because the basis t_1, \dots, t_{μ} of H is uniquely determined by the fact that $t_i(i = 1, \dots, \mu)$ is the element of H which is represented by a loop whose linking number $l_{ik}(k = 1, \dots, \mu)$ with X_k is δ_{ik} .

We define the Alexander polynomial $\Delta(t_1, \dots, t_{\mu})$ of K to be the greatest common divisor of the minor determinants of column deficiency = 1 of the Alexander matrix $M(t_1, \dots, t_{\mu})$. $\Delta(t_1, \dots, t_{\mu})$ is an invariant of the group G of K and therefore an invariant of the knot type of K, and is determined up to units in the ring RH.

The following theorem shows how to calculate $\Delta(t_1, \dots, t_{\mu})$ from a properly chosen minor of $M(t_1, \dots, t_{\mu})$.

THEOREM. Let $M(t_1, \dots, t_{\mu})$ be an Alexander matrix of a knot K of multiplicity μ . Let ν be the number of columns and $\nu - 1$ be the number of rows. Denote by $\Delta_j(j = 1, \dots, \nu)$ the determinant of the minor of $M(t_1, \dots, t_{\mu})$ obtained by deleting the jth column. There exists an element $\Delta \in RH$ such that

$$\Delta_j = \pm \frac{x_j^{\psi\phi} - 1}{t+1} \Delta \qquad (j = 1, \cdots, \nu) \qquad \text{if } \mu = 1$$

and

$$\Delta_j = \pm (x_j^{\psi \phi} - 1) \Delta \qquad (j = 1, \cdots, \nu) \text{ if } \mu \geq 2,$$

where x_j is the generator of G corresponding to the j^{th} column.

PROOF.⁶ Denote by ξ_j the jth column of $M(t_1, \dots, t_{\mu}), j = 1, \dots, \nu$. By formula (4) we have, $\sum_{j=1}^{\nu} \xi_j(x_j^{\nu\phi} - 1) = 0$, hence

$$\Delta_{j}(x_{k}^{\psi\phi}-1) = (\xi_{1}, \cdots, \hat{\zeta}_{j}, \cdots, \xi_{k}(x_{k}^{\psi\phi}-1), \cdots, \xi_{r})$$

= $(\xi_{1}, \cdots, \hat{\zeta}_{j}, \cdots, \xi_{j}(x_{j}^{\psi\phi}-1), \cdots, \xi_{r})$
= $(-1)^{j-k}(\xi_{1}, \cdots, \xi_{j}(x_{j}^{\psi\phi}-1), \cdots, \hat{\zeta}_{k}, \cdots, \xi_{n}) = (-1)^{j-k}\Delta_{k} \cdot (x_{j}^{\psi\phi}-1).$

⁶ In the proof we use the notation $\hat{\xi}$ meaning deletion of ξ .

Therefore $x_j^{\psi\phi} - 1$ divides $\Delta_j \cdot (x_k^{\psi\phi} - 1)$ for $k = 1, \dots, \mu$, and therefore it must divide $\Delta_j \cdot \delta$ where δ is the greatest common divisor of $(x_j^{\psi\phi} - 1, \dots, x_1^{\psi\phi} - 1)$, hence $\delta = \text{g.c.d.}_{teH} \{t - 1\}$. But

$$(-1)^{j}\frac{\Delta_{j}\cdot\delta}{x^{\psi\phi}-1} = (-1)^{k}\frac{\Delta_{k}\cdot\delta}{x^{\psi\phi}-1} \qquad (k=1,\cdots,\nu).$$

Denote the common value of $(-1)^{j} (\Delta_{k} \cdot \delta/x_{k}^{\psi\phi} - 1)$ $(k = 1, \dots, \nu)$ by Δ . Then $\Delta_{j} = (-1)^{j} (\psi^{\psi\phi} - 1/\delta) \cdot \Delta$.

The statement of the theorem follows from the observation that $\delta = 1$ if $\mu \ge 2$ and $\partial = t - 1$ if $\mu = 1$.

Note: In the case $\mu = 1$, the matrix M(t) can be interpreted as follows:

Let G be the group of K, corresponding to each subgroup G' of G there is a covering space of $E^3 - k$ whose fundamental group is isomorphic to G'. Let \mathfrak{M} be the covering corresponding to the (commutator) subgroup G_0 of G formed by the elements of G which are represented by loops whose linking numbers with k are zero. The first homology group $H_1(\mathfrak{M})$ of \mathfrak{M} can be given as a group with operators, with a finite number of generators $\{b_i\}$ and relations $\{r_p\}$, where the domain of operators is the ring of integral polynomials in t and t^{-1} , where t is the generator of the commutator quotient group H of G. It can be proved that M(t) is the coefficient matrix of the relations in the above mentioned presentation of $H_1(\mathfrak{M})$. This interpretation of M(t) was given by Alexander [1].

4. Seifert's projection of a knot

We are going to describe a special type of projection of a knot. It was first described by Seifert [9] in the case of a knot of multiplicity 1, and his method can be immediately generalized to the case $\mu > 1$.

Let K be a knot of multiplicity μ in E^3 , and let X_1, \dots, X_{μ} be its components. Let F be an orientable surface,⁷ whose boundary is K, and let h be the genus of F. The surface F can be deformed (the type of the knot is thereby unchanged) into a disc to which there have been attached $2h + \mu - 1$ bands $B_1, \dots, B_{2h+\mu-1}$, which are distributed around the disc as shown in fig. 3. The corresponding projection of K will be called a *Seifert projection*. The possibility of such a deformation of F is illustrated in fig. 4 which represents the normal form of a surface F of genus 2, whose boundary has 3 components. One of the components is the union of the arcs on the corners, the other components have been represented by circles in the interior, there have been drawn 2 canonical pairs of curves, and the dotted lines represent the boundary after the deformation.

In fig. 3 a simple closed curve a_i has been drawn along each B_i . a_1 , \cdots , a_{2h} are the canonical curves which were used to direct the deformation, they are such that a_{2k-1} crosses $a_{2k}(k = 1, \dots, h)$ from left to right. The curves

$$a_{2h+1}, a_{2h+2}, \cdots, a_{2h+\mu-1}$$

⁷ A procedure for spanning a knot of multiplicity 1 by an oriental surface is given by Seifert [8] and [9], and the same procedure can be applied in the case $\mu > 1$.

are disjoint and $a_{2h+\mu-1}$ separates the corresponding component X_k from X_1 , the exterior boundary of F. We shall refer to B_1, \dots, B_{2h} as canonical bands and to $B_{2h+1}, \dots, B_{2h+\mu-1}$ as extra bands.

We may suppose that in the projection only one face of F is visible, for if a band is twisted (fig. 5(a)), the number of twistings must be even, because F is orientable, and for each pair of twistings we can perform the deformation illustrated in fig. 5.

Finally let us define crossing numbers. Let v_{ij} , be equal to the number of times that a_j crosses over a_i from left to right minus the number of times that a_j crosses over a_i from right to left. The numbers $\{v_{ij}\}$ $(i, j = 1, \dots, 2h + \mu - 1)$ are called the crossing numbers of the bands.

It is clear that if a_i and a_j are disjoint, the crossing number v_{ij} is equal to the linking number of a_i and a_j , and therefore $v_{ij} = v_{ji}$. If a_i intersects a_j , i.e., if i = 2k - 1 and $j = 2k(1 \le k \le 2h)$, then we can lift a_{2k-1} in a neighborhood of the intersection, obtaining a curve a'_{2k-1} which does not intersect a_{2k} , and the linking number of a'_{2k-1} and a_{2k} will be equal to $v_{2k-1,2k}$ and equal to $v_{2k,2h-1} + 1$. Therefore: $v_{2k-1,2k} = v_{2k,2k-1} + 1(0 \le k \le h)$ and $v_{ij} = v_{ji}$ otherwise.

In fig. 6 various stages of a deformation of a simple knot into a Seifert projection are illustrated. In the case illustrated by fig. 6, we have:

 $v_{11} = 1, \quad v_{12} = 0, \quad v_{13} = 0$ $v_{21} = -1, \quad v_{22} = 1, \quad v_{23} = 0$ $v_{31} = 0, \quad v_{32} = 0, \quad v_{33} = 0$

CHAPTER II

1. Let K be a knot of multiplicity $\mu > 1$ in E^3 , and let $\Delta(t_1, \dots, t_{\mu})$ be the Alexander polynomial of K. We shall prove:

THEOREM 1. There exists an integer n such that

$$\Delta(t, \cdots, t) = (-1)^{\mu} t^n \Delta(1/t, \cdots, 1/t),$$

where $\Delta(t, \dots, t)$ is the polynomial obtained by substituting t for $t_i (i = 1, \dots, \mu)$ in $\Delta(t_1, \dots, t_{\mu})$.

PROOF. Let F be an orientable surface of genus h whose boundary is K, and consider a Seifert projection of K obtained by using F (fig. 3). We are going to use this projection to compute the group G of K.

Let s be the graph formed from the $\{a_k\}$ by retracting the central disk of F to a point P and retracting the bands to lines (fig. 7). Let us denote by a_{il}, \dots, a_{ij_i} $(i = 1, \dots, 2h + \mu - 1)$ the edges of the projection of s as they are read off from the projection by going along a_i in the positive direction, the edges a_{11} , $a_{21}, \dots, a_{2h+\mu-1,1}$ being the edges indicated in fig. 7.

Corresponding to each edge a_{ij} there are two edges x_{ij} and x'_{ij} of the projection of K (fig. 8), where x_{ij} is the edge which has a similar orientation to the orientation of a_{ij} , and lies to the right of it. Let us denote also by x_{ij} and

$$x'_{ij}(i = 1, \dots, 2h + \mu - 1; j = 1, \dots, j_i)$$

the generators of G which correspond to the edges of x_{ij} and x'_{ij} respectively.

For each crossing of a_p over a_i we have two defining relations R_{ij} and S_{ij} of the form:

 $\begin{aligned} R_{ij} &= (x_{pq}^{\prime-1} x_{pq})^{\epsilon} x_{ij} (x_{pq}^{\prime-1} x_{pq})^{-\epsilon} x_{i,j}^{-1} \\ S_{ij} &= (x_{pq}^{\prime-1} x_{pq})^{\epsilon} x_{ij}^{\prime} (x_{pq}^{\prime-1} x_{pq})^{-\epsilon} x_{i,j+1}^{\prime-1} \end{aligned}$

where $\varepsilon = \pm 1$ according as a_p crosses a_i from left to right or from right to left (fig. 9). Besides these relations we have the relations:

$$T'_{2l-1} = x'_{2l-1,1}x_{2l,1}^{-1}$$

$$T'_{2l} = x'_{2l,1}x'_{2l-1,j_{2l-1}}^{-1}$$

$$T_{2l-1} = x_{2l-1,j_{2l-1}}x'_{2l,j_{2l}}^{-1}$$

$$T_{2l} = x_{2l,j_{2l}}x_{2l+1,1}^{-1}$$

$$(l = 1, \dots, k)$$

and

$$Q_t = x_{t,j'} x_{t+1,1}^{-1} \qquad (t = 2h + 1, \dots, 2h + \mu - 2)$$

$$Q'_{t'} = x'_{t'1} x_{t',jt'}^{-1} \qquad (t' = 2h + 1, \dots, 2h + \mu - 1)$$

}

(see figures 10 and 11). Therefore the group G has the presentation:

(I) G:
$$\{x_{ij}, x'_{ij}/R_{ij}, S_{ij}, (j < j_i) \ T_{2l-1}, T_{2l}, T'_{2l-1}, T'_{2l}, Q_i, Q'_i, Q''_i, Q'_i, Q'_i, Q'_i, Q''_$$

This presentation of G differs from the presentation we described in Chapter I, in that we have eliminated the generators corresponding to the edges which are under the bands. We have suppressed also the relation $x_{2h+\mu-1}, j_{2h+\mu-1}x_{11}^{-1}$ which, as we know, is a consequence of the other relations.

Let us introduce generators $a_{ij}(i = 1, \dots, 2h + \mu - 1, j = 1, \dots, j_i)$ defined by means of the relations $A'_{ij} = x'^{-1}_{ij}x_{ij}a^{-1}_{ij}$. Using A_{ij} we obtain from

 R_{ij} and S_{ij} the relations, $R'_{ij} = a^{\pm 1}_{pq} x_{ij} a^{\mp 1}_{pq} x^{-1}_{i,j+1}$ and $S'_{ij} = a^{\pm 1}_{pq} x'_{ij} a^{\mp 1}_{pq} x'^{-1}_{i,j+1}$ respectively.

It is clear that R_{ij} is a consequence of R'_{ij} and A_{ij} , and similarly S_{ij} is a consequence of S'_{ij} and A_{ij} . Therefore we have:

(II) G:
$$\{x_{ij}, x'_{ij}, a_{ij}/R'_{ij}, S'_{ij}, T'_{2l-1}, T'_{2l}, T_{2l-1}, T_{2l}, Q_t, Q'_{t'}, A_{ij}\}$$

From R'_{ij} , S'_{ij} , A_{ij} and $A_{i,j+1}$ we obtain the relation $r_{ij} = a_{pq}^{\pm 1} a_{ij} a_{pq}^{\pm 1} a_{i,j+1}^{-1}$ $(i = 1, \dots, 2h + \mu - 1; j = 1, \dots, j_i)$. Introducing the relations $\{r_{ij}\}$ we can suppress the relations $\{S'_{ij}\}$, since S'_{ij} is a consequence of R'_{ij} , r_{ij} , A_{ij} and $A_{i,j+1}$. Each generator x'_{ij} $(i = 1, \dots, 2h + \mu - 1; 1 < j < j_i)$ appears only in the relation $A_{ij} = x'_{ij}^{-1}x_{ij}a_{ij}^{-1}$ which defines x'_{ij} in terms of x_{ij} and a_{ij} ; therefore we can eliminate the generators x'_{ij} and the relations A_{ij} $(i = 1, \dots, 2h + \mu - 1;$ $1 < j < j_i$). The generator x_{i1} appears only in the relations R_{i1} and R_{i2} , $R_{i1} = a_{p'q'}^{\pm 1}x_{i1}a_{p'q'}^{\pm 1}x_{i2}^{-1}$ defines x_{i2} as the transformed $a_{p'q'}^{\pm 1}x_{i1}a_{p'p'}^{\pm 1} = x_{12}$ of x_{i1} by $a_{p'q'}^{\pm 1}$. If we substitute this expression of x_{12} in $R_{i2} = a_{p''q''}^{\pm 1}x_{i2}a_{p''q''}^{\pm 1}x_{i3}^{-1}$ we obtain $a_{p'q''}^{\pm 1}a_{p'q''}^{\pm 1}a_{p'q''}^{\pm 1}a_{p'q''}^{\pm 1}a_{p''q'''}x_{i3}^{-1}$, which expresses x_{i3} as the transformed by $a_{p'q''}^{\pm 1}a_{p'q'}^{\pm 1}a_{q'}^{\pm 1}a_{q'}^{\pm 1}a_{p'q'}^{\pm 1}a_{q'}^{\pm 1}a_$

(III)

$$G: \{x_{i1}, x_{ij_{i}}; x'_{i1}, x'_{ij_{i}}; a_{ij}/r_{ij}, R_{i}, A_{i1}, A_{i,j_{i}}, T'_{2l-1}, T'_{2l}, T_{2l-1}, T_{2l}, Q_{i}, Q'_{i'}\}.$$

Each generator x'_{2l-1} $(l = 1, \dots, k)$ appears only in the relations

$$T'_{2l-1} = x'_{2l-1,1} x_{2l,1}^{-1}$$
 and $A_{2l-1,1} = x'_{2l-1,1} x_{2l-1,1} a_{2l-1,1}^{-1}$

From T'_{2l-1} we have $x'_{2l-1} = x_{2l-1}$, and substituting in A_{2l-1} we obtain the relation $U_{2l-1} = x_{2l,1}^{-1}x_{2l-1}a_{2l-1,1}^{-1}$. Analogously, from $T_{2l-1} = x_{2l-1,j_{2l-1}}x'_{2l,j_{2l}}a_{2l,j_{2l}}$ and $A_{2l,j_{2l}} = x'_{2l,j_{2l}}x_{2l,j_{2l}}a_{2l,j_{2l}}^{-1}$, we obtain $U_{2l} = x_{2l-1,j_{2l-1}}^{-1}x_{2l,j_{2l}}a_{2l,j_{2l}}^{-1}$. From $T'_{2l} = x'_{2l,1}x'_{2l-1,j_{2l-1}}a_{2l,j_{2l}} = x'_{2l,1}x'_{2l-1,j_{2l-1}}a_{2l,j_{2l}} + x'_{2l,j_{2l}}a_{2l,j_{2l}}^{-1}$. From $T'_{2l} = x'_{2l,1}x'_{2l-1,j_{2l-1}}a_{2l,j_{2l-1}} + x'_{2l,j_{2l-1}}a$

$$A_{2l-1,j_{2l-1}} = x_{2l-1,j_{2l-1}}^{\prime-1} x_{2l-1,j_{2l-1}} x_{2l-1,j_{2l-1}} a_{2l-1,j_{2l-1}}^{-1}$$

we have $a_{2l,1}x_{2l,1}^{-1}x_{2l-1,j_{2l-1}}a_{2l-1,j_{2l-1}}^{-1} = V_{2l}$. From $Q'_{t'} = x'_{t'1}x'_{t',j_{t'}}a_{t'}$ and $A_{t'1} = x'_{t'1}x_{t'1}a_{t'1}^{-1}$ we have $x'_{t',j_{t'}}x_{t'1}a_{t'1}^{-1}$, and from this and $A_{t'j_{t'}} = x'_{t',j_{t'}}x_{t'j_{t'}}a_{t'j_{t'}}^{-1}a_{t'j_{t'}}^{-1}$, we obtain $W_{t'} = a_{t'1}x_{t'1}a_{t'1}^{-1}x_{t',j_{t'}}a_{t',j_{t'}}^{-1}$ ($t' = 2h + 1, \dots, 2h + \mu - 1$). Therefore, we have the following presentation of G.

(IV)
$$G: \{x_{i1}, x_{ij_i}, a_{ij}/r_{ij}, R_i, U_{2l-1}, Y_{2l}, V_{2l}, W_{i'}, T_{2l}, Q_l\}$$

where r_{ij}

$$a_{ng}^{\pm 1} a_{ii} a_{ng}^{\pm 1} a_{i,i+1}^{-1}$$

$$\begin{aligned} R_{i} &= w_{i}(a)x_{i1} w_{i}^{-1}(a)x_{ij_{i}}^{-1} \\ U_{2l-1} &= x_{2l,1}^{-1} x_{2l-1,1} a_{2l-1,1}^{-1} \\ U_{2l} &= x_{2l-1,j_{2l-1}}^{-1} x_{2l,j_{2l}} a_{2l,j_{2l}}^{-1} \\ V_{2l} &= a_{2l,1} x_{2l,1}^{-1} x_{2l-1,j_{2l-1}} a_{2l-1,j_{2l-1}}^{-1} \\ W_{t'} &= a_{t'1} x_{t'1}^{-1} x_{t'j_{t'}} a_{t'j_{t'}}^{-1} \\ T_{2l} &= x_{2l,j_{2l}} x_{2l+1,1}^{-1} \\ Q_{t} &= x_{tj_{t}} x_{t+1,1}^{-1} \end{aligned}$$

$$\begin{aligned} i &= 1, \cdots, 2h + \mu - 1 \\ j &= 1, \cdots, k \\ t' &= 2h + 1, \cdots, 2h + \mu - 1 \\ t &= 2h + 1, \cdots, 2h + \mu - 2 \end{aligned}$$

From $W_{t'} = a_{t'1} x_{t'1}^{-1} x_{t'jt'} a_{t'jt'}^{-1}$ and $R_{t'} = w_{t'}(a) x_{t'1} w_{t'}^{-1} x_{t'jt'}^{-1}$ we obtain the relation $R'_{t'} = w_{t'}(a)x_{t'1}w_{t'}^{-1}(a)a_{t'j_t}^{-1}a_{t'1}x_{t'1}^{-1}$ $(t' = 2h + 1, \dots, 2h + \mu - 1),$ and $R_{t'}$ is a consequence of $W_{t'}$ and $R'_{t'}$. From the relations

$$U_{2l-1} = x_{2l,1}^{-1} x_{2l-1,1} a_{2l-1,1}^{-1} \quad \text{and} \quad V_2 = a_{2l,1} x_{2l,1}^{-1} x_{2l-1,j_{2l-1}} a_{2l-1,j_{2l-1}}^{-1} a_{2l-1}^{-1} a_{2l-1}}^{-1} a_{2l-1,j_{2l-1}}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1} a_{2l-1}^{-1}$$

we obtain $a_{2l,1}a_{2l-1,1}x_{2l-1,1}x_{2l-1,j_{2l-1}}a_{2l-1,j_{2l-1}}^{-1}$, and from this and

$$R_{2l-1} = w_{2l-1}(a) x_{2l-1,1} w_{2l-1}^{-1}(a) x_{2l-1,j_{2l-1}}^{-1}$$

we have $R'_{2l-1} = w_{2l-1}(a)x_{2l-1,1}w_{2l-1}^{-1}(a)a_{2l-1,j_{2l-1}}^{-1}a_{2l,1}a_{2l-1,1}x_{2l-1,1}^{-1}$ $(l = 1, \dots, k),$ and R_{2l-1} is a consequence of R'_{2l-1} , V_{2l} and U_{2l-1} . From

$$U_{2l} = x_{2l-1,j_{2l-1}}^{-1} x_{2l,j_{2l}} a_{2l,j_{2l}}^{-1} \text{ and } V_{2l} = a_{2l,1} x_{2l,1}^{-1} x_{2l-1,j_{2l-1}} a_{2l-1,j_{2l-1}}^{-1} a_{2l-1,j_{$$

 $x_{2l,1}x_{2l,j_{2l}}a_{2l,j_{2l}}a_{2l-1,j_{2l-1}}$, and from this and

$$R_{2l} = w_{2l}(a) x_{2l,1} w_{2l}^{-1}(a) x_{2l,j_{2l}}^{-1}$$

we obtain the relation

$$R'_{2l} = w_{2l}(a)x_{2l,1}w_{2l}^{-1}(a)a_{2l,j_{2l}}^{-1}a_{2l-1,j_{2l-1}}^{-1}a_{2l,1}x_{2l,1}^{-1} \qquad (l = 1, \dots, k),$$

and R_{2l} is a consequence of R'_{2l} , U_{2l} and V_{2l} . Therefore G is given by:

(V)
$$G: \{x_{i1}, x_{ij_i}, a_{ij}/r_{ij}, R'_i, U_{2l-1}, U_{2l}, V_{2l}, W_{t'}, T_{2l}, Q_t\},$$

where

$$\int w_{2l-1}(a)x_{2l-1,1}w_{2l-1}^{-1}(a)a_{2l-1,j_{2l-1}}^{-1}a_{2l,1}a_{2l-1,1}x_{2l-1,1}^{-1} \qquad (i = 2l - 1)$$

$$R = \begin{cases} w_{2l}(a)x_{2l,1}w_{2l}^{-1}(a)a_{2l,1}^{-1}a_{2l}^{-1}a_{2l-1,1}^{-1}a_{2l,1}x_{2l,1}^{-1} & (i = 2l) \\ w_{l'}(a)x_{l'1}w_{l'}^{-1}(a)a_{l',1}^{-1}a_{l',1}x_{l'1}^{-1} & (i = t' = 2h + 1, \dots, 2h + \mu - 1). \end{cases}$$

Let us define a homomorphism $\theta: RH \to \Re[t, t^{-1}]$ of the group ring RH onto the ring $\Re[t, t^{-1}]$ of integral polynomials in t and t^{-1} as: $\theta(t_i^{\pm 1}) = t_i^{\pm 1}$ $(i = 1, \dots, \mu)$. Let $|| (\partial \mu / \partial x)^{\psi \phi} ||$ be the Alexander matrix corresponding to a presentation of G, and let M(t) be the matrix $M(t) = || (\partial \mu / \partial \psi)^{\theta \psi \phi} ||$. We know that the Alexander polynomial $\Delta(t, \dots, t_{\mu})$ of K is the g.c.d. of the minor determinants of $|| (\partial \mu / \partial x)^{\psi \phi} ||$ of column deficiency 1. Therefore the polynomial $\Delta(t, \dots, t)$ will be the g.c.d. of the minor determinants of M(t) of column deficiency equal to 1.

We are going to proceed to the calculation of the matrix M(t) which corresponds to the last presentation of G.

Observe, first of all, that $\theta \psi \phi(x_{i1}) = \theta \psi \phi(x_{i1i}) = t$, and $\theta \psi \phi(a_{i1i}) = 1$ $(i = 1, \dots, n)$ $2h + \mu - 1, j = 1, \dots, j_i$. Therefore $\phi \psi \phi w(a) = 1$ for every word w(a) in the $\{a_{ij}\}$.

Let us study the contributions made to M(t) by the various types of relations. (From now on, all the derivatives will be considered to be evaluated in $\Re[t, t^{-1}]$).

1. $r_{ij} = a_{pq}^{\pm 1} a_{ij} a_{pq}^{\mp 1} a_{i,j+1}^{-1}$ the only non-zero contributions are:

$$\frac{\partial r_{ij}}{\partial a_{ij}} = 1$$
 and $\frac{\partial r_{ij}}{\partial a_{ij+1}} = -1$

2. (a) $R'_i = w_i(a)x_{i1}w_i^{-1}(a)a_{ij_i}^{-1}a_{i+1,1}a_{i,1}x_{i,1}^{-1}$ (i = 2l - 1) the only possibly non-zero contributions are:

$$\frac{\partial R'_{i}}{\partial a_{pq}} = \frac{\partial w_{i}(a)}{\partial a_{pq}} (1-t) \text{ if } a_{pq} \neq a_{ij_{i}}, a_{i+1,1} a_{i-1,1}$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) -t; \qquad \frac{\partial R'_{i}}{\partial a_{i+1,1}} = \frac{\partial w_{i}(a)}{\partial a_{i+1,1}} (1-t) +t;$$

$$\frac{\partial R_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) +t$$
(b) $R'_{i} = w_{i}(a)x_{i1}w_{i}^{-1}(a)a_{i,j_{i}}^{-1}a_{i-1,j_{i-1}}^{-1}a_{i1}x_{i1}^{-1}(i=2l)$

$$\frac{\partial R'_{i}}{\partial a_{pq}} = \frac{\partial w_{i}(a)}{\partial a_{pq}} (1-t) \text{ if } a_{pq} \neq a_{i1}, a_{ij_{i}}, a_{i-1,j_{i-1}}$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) -t; \qquad \frac{\partial R'_{i}}{\partial a_{i-1,j_{i-1}}} = \frac{\partial w_{i}(a)}{\partial a_{i-1,j_{i-1}}} (1-t) -t;$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) -t; \qquad \frac{\partial R'_{i}}{\partial a_{i-1,j_{i-1}}} = \frac{\partial w_{i}(a)}{\partial a_{i-1,j_{i-1}}} (1-t) -t;$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) -t; \qquad \frac{\partial R'_{i}}{\partial a_{i-1,j_{i-1}}} = \frac{\partial w_{i}(a)}{\partial a_{i-1,j_{i-1}}} (1-t) -t;$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) -t; \qquad \frac{\partial R'_{i}}{\partial a_{i-1,j_{i-1}}} = \frac{\partial w_{i}(a)}{\partial a_{i-1,j_{i-1}}} (1-t) -t;$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) \qquad \text{if} \qquad a_{pq} \neq a_{ij_{i}}, a_{i1}$$

$$\frac{\partial R'_{i}}{\partial a_{ij_{i}}} = \frac{\partial w_{i}(a)}{\partial a_{ij_{i}}} (1-t) -t; \qquad \frac{\partial R_{i}}{\partial a_{i}} = \frac{\partial w_{i}(a)}{\partial a_{i}} (1-t) + t.$$

3. $U_{2l-1} = x_{2l,1}^{-1} x_{2l-1,1} a_{2l-1,1}^{-1}$ the only non-zero contributions are:

$$\frac{\partial U_{2l-1}}{\partial x_{2l,1}} = -t^{-1}, \qquad \frac{\partial U_{2l-1}}{\partial x_{2l-1,1}} = t^{-1} \qquad \text{and} \qquad \frac{\partial U_{2l-1}}{\partial a_{2l-1,1}} = -1.$$

4. $U_{2l} = x_{2l,1}^{-1} x_{2l-1,1} a_{2l-1,1}^{-1}$ the non-zero contributions are:

$$\frac{\partial U_{2l}}{\partial x_{2l-1,j_{2l-1}}} = -t^{-1}; \qquad \frac{\partial U_{2l}}{\partial x_{2l,j_{2l}}} = t^{-1}; \qquad \frac{\partial U_{2l}}{\partial a_{2l,j_{2l}}} = -1.$$

5.
$$V_{2l} = a_{2l,1} x_{2l,1}^{-1} x_{2l-1,j_{2l-1}} a_{2l-1,j_{2l-1}}^{-1}$$

 $\frac{\partial V_{2l}}{\partial a_{2l,1}} = 1;$ $\frac{\partial V_{2l}}{\partial x_{2l,1}} = -t^{-1};$ $\frac{\partial V_{2l}}{\partial x_{2l-1,j_{2l-1}}} = t^{-1};$ $\frac{\partial V_{2l}}{\partial a_{2l-1,j_{2l-1}}} = -1.$

6.
$$W_{t'} = a_{t'1} x_{t'1}^{-1} x_{t'jt'} a_{t'jt'}^{-1}$$

 $\frac{\partial W_{t'}}{\partial a_{t'1}} = 1; \qquad \frac{\partial W_{t'}}{\partial x_{t'1}} = -t^{-1}; \qquad \frac{\partial W_{t'}}{\partial x_{t'jt'}} = t^{-1}; \qquad \frac{\partial W_{t'}}{\partial a_{t'jt'}} = -1.$

7.
$$T_{2l} = x_{2l,j_{2l}} x_{2l+1,1}^{-1}$$

 $\frac{\partial T_{2l}}{\partial x_{2l,j_{2l}}} = 1$ and $\frac{\partial T_{2l}}{\partial x_{2l+1,1}} = -1.$
8. $Q_t = x_{ij_t} x_{i+1,1}^{-1}$
 $\frac{\partial Q_t}{\partial x_{ij_t}} = 1$ and $\frac{\partial Q_t}{\partial x_{i+1,1}} = -1.$

Consider the submatrix B_i of M(t), corresponding to the generators a_{i1} , a_{i2}, \dots, a_{ij_i} and the relations $r_{i1}, \dots, r_{i,j_i-1}$. Observe that all elements in the same rows and outside B_i are zero. Consider any element g outside B_i and in the column corresponding to a_{ij} . If we sum to the row to which g belongs,

	a_{i1}	a_{i2}	a_{i3}	•••	a_{ij_1}
<i>r</i> _{i1}	1	-1	0	•	0
r_{i2}	0	1	-1		0
r_{i3}	0	0	1	•	0
		••••	• • • • • • • • • • • •	•••••	•••••
r_{ij_1}	0	0	0		1

the rows corresponding to r_{ij} , $r_{i,j+1}$, \cdots , r_{ij_i} multiplied by -g, we obtain a matrix in which the element appears in the column corresponding to a_{ij_i} . Therefore, applying this process for every element below B_i $(i = 1, \dots, 2h + \mu - 1)$, we obtain a matrix M'(t) equivalent to M(t) in which the only elements different from zero below B_i are in the columns corresponding to a_{ij_i} $(i = 1, \dots, 2h + \mu - 1)$, $2h + \mu - 1$), and this element will be the sum of the elements of the original matrix which are in the same row and in the columns corresponding to a_{i1} , a_{i2} , \cdots , a_{i,j_i} .

Let us study the elements of M'(t) in the rows corresponding to R'_i $(i = 1, \dots, 2h + \mu - 1)$.

(a) The elements different from zero in the row corresponding to R'_{2l-1} $(l = 1, \dots, h)$ are $\sum_{q=1}^{q=j_p} (\partial w_{l-1}(a)/\partial a_{pq})(1-t)$ in the column corresponding to a_{pj_p} , if

 $p \neq 2l$

and $\sum_{q=1}^{j_{2l}} (\partial w_{2l-1}(a)/\partial a_{2l,q})(1-t) + t$ in the column corresponding to $a_{2l,j_{2l}}$ (see above).

(b) The elements different from zero in the row corresponding to R'_{2l} $(l = 1, \dots, h)$ are $\sum_{q=1}^{j_p} (\partial w_{2l}(a)/\partial a_{pq})(1 - t)$ in the column corresponding to a_{pj_p} , if $p \neq 2l - 1$, and $\sum_{q=1}^{j_2l-1} (\partial w_{2l}(a)/\partial a_{2l-1,q})(1 - t) - t$ in the column corresponding to $a_{2l-1,j_{2l-1}}$ (see above).

(c) The elements different from zero in the rows corresponding to $R'_{t'}$ $(t' = h + 1, \dots, 2h + \mu - 1)$ are $\sum_{q=1}^{j_p} (\partial w_{t'}(a)/\partial a_{pq})(1 - t)$ $(p = 1, \dots, 2h + \mu - 1)$. (See above 2).

In M'(t), the only element different from zero in the column corresponding to a_{ij} $(i = 1, \dots, 2h + \mu - 1; j = 1, \dots, j_i - 1)$ is in the row corresponding to

		(i = 1,	$(\cdots, 2h + \mu - \dot{1})$	
		$a_{ij}(j < j_i)$	$a_{1j_1}a_{2j_2}\cdots a_{2h+\mu-1,j_{2h+\mu-1}}$	x_{i1} , x_{ij_i}
	r _{ij}	E	0	0
M!!(4)	R'_i	0	A	0
M (t) =	u w v T Q	0	С	В

 r_{ij} and its value is 1, therefore it is clear that M'(t) is equivalent to

where E is a unit matrix.

The matrix M''(t) has one column more than rows, therefore for calculating $\Delta(t)$ we may use the theorem in §3, chapter I. $(1 - t)\Delta(t)$ will be equal to the determinant of the matrix M'''(t) which is obtained from M''(t) by deleting the column corresponding to $x_{2h+\mu-1,i_{2h+\mu-1}}$; therefore: $(1 - t)\Delta(t) = |A| ||B'|$, where B' is a submatrix of B in M'''(t). B' is of the form, (see opposite page) which, clearly, is equivalent to a unit matrix. Therefore, $(1 - t)\Delta(t) = |A|$, where A is the matrix corresponding to the generators a_{ij_i} $(i = 1, \dots, 2h + \mu - 1)$ and to the relations R'_i $(i = 1, \dots, 2h + \mu - 1)$. Now, since

$$\sum_{j=1}^{j=j_q} (\partial w_p(a) / \partial a_{qj} = v_{pq} \qquad (p = 1, \dots, 2h + \mu - 1, q = 1, \dots, j_p)$$

(see the definition of $w_p(a)$ above, and the definition of the crossing numbers v_{pq} in §4, chapter I), we have: (see last paragraph of Chapter I, page 64). Multiplying each row by t^{-1} , transposing, making use of the relations between the crossing numbers (§4, chapter I) and multiplying the rows by -1, we obtain

$$(-1)^{\mu-1}t^{-(2h+\mu-1)}(1-t)\Delta(t) = (1-t^{-1})\Delta(t^{-1}), \text{ or } \Delta(t) = (-1)^{\mu}t^{2h+\mu-2}\Delta(t^{-1})$$

which completes the proof of Theorem I.⁸

2. THEOREM 2. There exist integers ν_1, \dots, ν_{μ} , such that, $\Delta(t_1, t_2, \dots, t_{\mu}) = (-1)^{\mu} t_1^{\nu_1} \cdots t_{\mu}^{\nu_{\mu}} \Delta(t_1^{-1}, \dots, t_{\mu}^{-1})$. Theorem 2 is an immediate consequence of the following two lemmas:

LEMMA 1. Let $\Delta(t^{n_1}, \dots, t^{n_{\mu}})$ be the polynomial in t, obtained by substituting t^{n_i} for t_i $(i = 1, \dots, \mu)$ in $\Delta(t_1, \dots, t_{\mu})$, where n_1, \dots, n_{μ} are arbitrary positive integers. Then, there exists N, such that: $\Delta(t^{n_1}, \dots, t^{n_{\mu}}) = (-1)^{\mu} t^N (t^{-n_1}, \dots, t^{-n_{\mu}})$.

LEMMA 2. If an integral polynomial $P(t_1, \dots, t_{\mu})$ in t_1, \dots, t_{μ} has the property that for arbitrary positive integers n_1, \dots, n_{μ} , the polynomial

$$Q(t) = P(t^{n_1}, \cdots, t^{n_{\mu}})$$

⁸ The genus of \bar{h} a knot K is defined to be the genus of a surface of minimum genus which can span K. As a corollary of Theorem 1 we have: $2\bar{h} + \mu - 2 \ge \partial^{\circ}\Delta(t)$, where $\partial^{\circ}\Delta(t)$ is the degree of $\Delta(t)$. Therefore, $\partial^{\circ}\Delta(t) + 2 - \mu$ is a lower bound for \bar{h} .

	x11	x_{21}	x_{1j_1}	x_{2j_1}	:	L24-1.1	X2 h.1	X2h-1. izh-1	X2h. izh	22h +1.1	X2h+1. j2h+1	÷	$x_{2h+\mu-1}$
nı	t-1	- (1	0	0	:	0	0	0	0	0	0	:	0
v_2	0	t-1	Ŀ	0	÷	0	0	0	0	0	0	:	0
u_2	0	0	Ľ-	L	:	0	0	0	0	0	0	:	0
T_2	0	0	0	1	-1	0	0	0	0	0	0	÷	0
B'= :			•••					•••			•••		
$u z_{h-1}$	0	0	0	0	÷	t	-1-1-1	• •	0	0	. 0	:	0
V2h	0	0	0	0	:	0	-1-1	<i>t</i> -1	0	0	0	:	0
Uzh	0	0	0	0	:	0	0	-1-1	t-1	0	0	÷	0
T_{2h}	0	0	0	0	•	0	0	0	1	1	0	÷	0
W _{2h+1}										-t-1	1-1	:	0
Q_{2h+1}										0	1		0
•••					0						•••		
W 2h+ µ-1										0	0	-1-1	<i>t</i> ⁻¹
		aıjı		$a_{2_{j_2}}$:	· 02h-1.12h-	7	G2A. j <u>a</u> h	a2h	+1.j24+1	··· a1	2h+#-l j2h+	1 -1
	R_1^1	v11(1 -	(t - t), (t - t) = t.	$v_{12}(1 - 1)$	\cdots $i + (i)$	$v_{1,2h-1}(1$	(t - t), (t - t)	$v_{1,2h}(1-t)$ $v_{2,2h}(1-t)$	v1.3	$\frac{1}{2} \frac{1}{2} \frac{1}$	¹ a	.2h+µ-1(1	()
			; ; 			-11-42.24	· · · ·	· · · · · · · · · · · · · · · · · · ·		() _ T)I+W	R.)		
$(1 - t)\Delta(t)$	$= R_{2h-1}^1$ $= R_{2h}^1$	v2h-1.1	(1 - t), -t),	v _{2h-1} ,2(1 v _{2h,2} (1 —	$\begin{pmatrix} - & t \end{pmatrix} & \cdots & t \end{pmatrix}$	• v2h-1.2h-1	(1-t), (1-t), (1-t) = t	$v_{2h-1,2h}(1-i)$ t, $v_{2h,2h}(1-i)$	$\begin{array}{c c}t \\ t \\ t \\ t \\ \end{array} \begin{array}{c}t \\ v_{2h} \\ v_{2h} \end{array}$	$\frac{1}{2h+1}(1-t)$	t) \cdots v_{2}	h—1.2h+µ—1 h.2h+µ—1(]	(1-t)- t)
	R_{2h+1}^1	V2h+1.1	(1-t),	v2h+1.2(1	- t) ···	· 234+1.24-1	(1 - t),	v2h+1.2h(1 -	- t) v2h	+1.2h+1(1 -	t) v_{2i}	h+1.2h+m-1	(1 - t)
	$\vdots R_{2h+\mu-1}^1$	V2h+µ-1	: $(1 - t)$,	: V2h+µ-1.2($1-t)\cdots$	• U2h+µ-1.2h	: -1(1 - t)	: , <i>V</i> 2h+µ-1.2h(1	(t-t)	: +#-1.2h+1(1 -	$-t) \cdots v_{2i}$: h+#-1.2h+p	-1(1-t)

ON THE ALEXANDER POLYNOMIAL

FIG. 13

Х,

is such that there exists N for which $Q(t) = (-1)^{\mu} t^{N}$. Q(1/t). Then, there exist integers $\nu_{1}, \cdots, \nu_{\mu}$ such that, $P(t_{1}, \cdots, t_{\mu}) = (-1)^{\mu} t_{1}^{\nu_{1}} \cdots t_{\mu}^{\nu_{\mu}} P(t_{1}, \cdots, t_{\mu})$.

PROOF OF LEMMA I. Let $\{x_{ij}/r_{ij}\}$ be a presentation of G obtained from any projection of K, where x_{ij} $(i = 1, \dots, \mu; j = 1, \dots, j_i)$ denotes the generator corresponding to the edge x_{ij} belonging to the projection of X_i , and r_{ij} $(i = 1, \dots, \mu; j = 1, \dots, j_k)$ denotes the word $x_{i'j'}^{\pm 1}x_{ij}z_{i'j'}^{\pm 1}x_{i,j+1}^{-1}$ which is the relation corresponding to a crossing of X over X_i (fig. 12). Consider the matrix $M(t_1, \dots, t_u) = || (\partial r_{pq}^i \partial x_{ij})^{\psi \phi} ||$, in which we have suppressed a row corresponding to a relation which is a consequence of the other relations. We know that the minor determinant obtained by suppressing, in $M(t_1, \dots, t_{\mu})$, the column corresponding to x_{ij} is

$$\pm (t_i - 1)\Delta(t_1, \cdots, t_{\mu}), \qquad (i = 1, \cdots, \mu; j = 1, \cdots, j_i).$$

Fig. 14

We are going to construct a knot $K_{n_1,...,n_{\mu}}$ of multiplicity $n_1 + n_2 + \cdots + n_{\mu}$, associated to the projection of K, where n_1, \cdots, n_{μ} are arbitrary positive integers, as follows:

Let us surround each X_i by a tube U_i $(i = 1, \dots, \mu)$ in such a way that the central line of U_i coincides with X_i (fig. 13), and $U_i \cap U_j = \emptyset$ if $i \neq j$. Consider in each U_i , n_i copies $X_i^{(1)}, \dots, X_i^{(n_i)}$ of X_i , in such a manner that the projection of $X_i^{(K+1)}$ is always on the left side of the projection of $X_i^{(K)}$ $(k = 1, \dots, n_i - 1)$ (fig. 14). Let K_{n_1,\dots,n_μ} be the knot whose components are $X_i^{(p)}$ $(i = 1, \dots, \mu; p = 1, \dots, n_i)$.

We shall proceed to the computation of the group G' of K_{n_1,\dots,n_u} .

Corresponding to each generator x_{ij} of K, we have n_i generators $x_{ij}^{(1)}, \dots, x_{ij}^{(n_i)}$ of G'. Where $x_{ij}^{(p)}$ $(p = 1, \dots, n_i)$ is the generator corresponding to the edge $x_{ij}^{(p)}$ which belongs to the projection of $X_i^{(p)}$.

Corresponding to each relation $r_{ij} = x_{i'j'}^{\pm 1} x_{ij} x_{i'j'}^{\pm 1} x_{i,j+1}^{-1}$ of G, we have n_i relations $r_{ij}^{(p)} = (x_{i'j'}^{(n_i)} \cdots x_{i'j'}^{(1)})^{\pm 1} x_{ij}^{(p)} (x_{i'j'}^{(n_i)} \cdots x_{i'j'}^{(1)})^{\pm 1} x_{i,j+1}^{(p)-1}$ $(p = 1, \dots, n_i)$ (fig. 15). Therefore G' has the presentation

(I)
$$G': \{x_{ij}^{(p)}/r_{ij}^{(p)}\} \qquad \begin{pmatrix} i = 1, \cdots, \mu \\ j = 1, \cdots, j_i \\ p = 1, \cdots, n_i \end{pmatrix}.$$

Let us introduce generators X_{ij} defined by means of the relations $R_{ij} = x_{ij}^{(n_i)}$ $x_{ij}^{(n_i-1)} \cdots x_{ij}^{(1)} X_{ij}^{-1}$ $(i = 1, \cdots, \mu; j = 1, \cdots, j_i)$. From $r_{ij}^{(p)}$ and $R_{i'j'}$ we obtain $s_{ij}^{(p)} = X_{i'j'}^{\pm 1} x_{ij}^{(p)} X_{i'j'}^{\pm 1} x_{i,j+1}^{(p)-1}$ $(p = 1, \cdots, n_i)$, and $r_{ij}^{(p)}$ is a consequence of $R_{i'j'}$ and $s_{ij}^{(p)}$. From the relations $s_{ij}^{(1)}, \cdots, s_{ij}^{(n_i)}$ we obtain $X_{i'j'}^{\pm 1} x_{ij}^{(n_i)} \cdots x_{ij}^{(1)} X_{i'j'}^{\pm 1} x_{ij+1}^{(n_i)} \cdots x_{i,j+1}^{(1)} X_{i'j'}^{\pm 1} x_{ij+1}^{(n_i)} \cdots x_{i,j+1}^{(1)} X_{i'j'}^{\pm 1} X_{ij}^{(n_i)} \cdots x_{i,j+1}^{(1)} X_{ij+1}^{\pm 1}$ $(i = 1, \cdots, \mu; j = 1, \cdots, j_i)$. Each relation $R_{i,j+1}$ $(j = 1, \cdots, j_i)$ is a consequence of the preceding R_{ij} and $s_{ij}^{(p)}$ $(p = 1, \cdots, n_i)$, therefore we can delete the relations R_{ij} (j > 1). The relation $s_{ij}^{(p)}$ expresses $x_{ij}^{(p)}$ as a transformed of

 $x_{i1}^{(p)}$, and $s_{i2}^{(p)}$ expresses $x_{i3}^{(p)}$ as a transformed of $x_{i2}^{(p)}$, therefore, using $s_{i,1}^{(p)}$ and $s_{i,2}^{(p)}$ we can express $x_{i,3}^{(p)}$ as a transformed of $x_{i,1}^{(p)}$, and introducing this expression we can eliminate the generator $x_{i,2}^{(p)}$ and the relations $s_{i,1}^{(p)}$ and $s_{i,2}^{(p)}$. Repeating this process, we can eliminate the generators $x_{i,2}^{(p)}$, $x_{i,3}^{(p)}$, \cdots , $x_{i,j_i}^{(p)}$ and the relations $s_{i,1}^{(p)}$ and $s_{i,2}^{(p)}$. Repeating this process, we can eliminate the generators $x_{i,2}^{(p)}$, $x_{i,3}^{(p)}$, \cdots , $x_{i,j_i}^{(p)}$ and the relations $s_{i,1}^{(p)}$, \cdots , $s_{i,j_i}^{(p)}$ ($i = 1, \cdots, \mu$), by introducing a relation $Q_i^{(p)} = \boldsymbol{w}_i(X)$ $x_{i1}^{(p)} \boldsymbol{w}_i^{-1}(X) x_{i1}^{(p)-1}$, where $\boldsymbol{w}_i(X)$ is the word in the $\{X_{ij}\}$ which is read off from the projection of X_i by going all the way along X_i from x_{i1} to x_{i1} . For each crossing of X_j over X_i , from left to right, there is an appearance of a generator X_{jp} in $\boldsymbol{w}_i(X)$, and for each crossing from right to left there is an appearance of X_{jp}^{-1} .

It is clear that from the relations u_{i1}, \dots, u_{i,j_i} we obtain $w_i(X)X_{i1}w_i^{-1}(X)X_{i1}^{-1}$, and from this and R_{i1} and $Q_i^{(1)}, Q_i^{(2)}, \dots, Q_i^{(n_i-1)}$ we obtain $Q_i^{(n_i)}$. Therefore we can delete $Q_i^{(n_i)}$ $(i = 1, \dots, \mu)$. Finally, since the relation $u_{ij} = X_{ij}^{\pm 1}X_{ij}X_{ij}^{\mp 1}X_{ij}^{-1}X_$

(II)
$$G': \{X_{ij}; x_{i1}^{(p)}/u_{ij}; R_{i1}; Q_i^{(p)}\} \begin{pmatrix} i = 1, \cdots, \mu \\ j = 1, \cdots, j_i \\ p = 1, \cdots, n_{i-1} \end{pmatrix}$$

and one of the $\{u_{ij}\}$ is deleted.

The commutator factor group H' of $K_{n_1,\ldots,n_{\mu}}$ is generated by $\{t_{ip}\}$ $(i = 1, \cdots, \mu; p = 1, \cdots, n_i)$, where $t_{ip} = \psi \phi(x_{i1}^{(p)})$. Therefore $\psi \phi(X_{ij}) = t_{i1}t_{i2} \cdots t_{in_i}$ $(i = 1, \cdots, \mu)$.

Let us calculate the Jacobian matrix M' corresponding to the presentation (II) of G', (Page 77).

	-						
$x_{\mu 1}^{(n)}$		0 0		000	000		1 0 0
:		÷ : : :					\tilde{w}_{μ}^{-} –
$x_{\mu 1}^{(2)}$	0	د ^{بر} 0		000	000		0 0
$x_{\mu 1}^{(1)}$		0 0 · · · a		000	000		ية 0 ية - 1
÷	:	:: :					
x21		0 *2#2 0		000	0 0 0		000
:		:: :		:: :	<u></u>		:::::
$x_{21}^{(2)}$	0	0 ²² 0		000	[0 … ≝ −] 0		o o ··· o
$x_{21}^{(1)}$		0 220		o o o	<i>₩</i> ₂ - 1 0		000
x ₁₁ ^(m1)		¹ ¹ ¹ ¹ ¹ 0		000	o o ··· o		o o ··· o
:		÷ : : :		ي الم الم	:: :		:: :
$x_{11}^{(3)}$	0	⁵¹ a 0 · · · 0		0 	000		o o ··· o
$x_{11}^{(1)}$		¹¹ 00		ة، 00	000		o o o
X_{ij}	(l) W		ŕ	V		<u> </u>	
	u_{ij}	$egin{array}{c} R_{11} \\ R_{21} \\ \vdots \\ R_{\mu 1} \end{array}$			$\begin{array}{c} Q_{2}^{(1)}\\ Q_{2}^{(2)}\\ \vdots\\ \vdots\\ Q_{2}^{(n_{2}-1)} \end{array}$	•••	$\begin{array}{c} Q_{\mu}^{(1)} \\ Q_{\mu}^{(2)} \\ \vdots \\ Q_{\mu}^{(n-)} \end{array}$

M'

ON THE ALEXANDER POLYNOMIAL

where M(l) is obtained by substituting $l_i = t_{i1}t_{i2}\cdots t_{in_i}$ for t_i $(i = 1, \dots, \mu)$ in $M(t_1, \dots, t_{\mu})$ (see §3) v_{ip} $(i = 1, \dots, \mu; p = 1, \dots, n_i)$ is a unit of RH', and $\overline{w}_i = \psi\phi(w_i(X))$ $(i = 1, \dots, \mu)$, and A is a submatrix whose form we do not need to discuss.

The matrix M' has one row less than columns, therefore $(1 - t_{11}t_{12} \cdots t_{1n_1})$ $\Delta' = |M''|$, where Δ' is the Alexander polynomial of $K_{n_1,\dots,n_{\mu}}$ and M'' is the matrix which is obtained by deleting the column corresponding to X_{11} in M'. Therefore $(1 - t_{11}t_{12} \cdots t_{1n_1})\Delta' = M^*(l) |B|$, where $M^*(l)$ is the matrix which is obtained from M(l) by deleting the column corresponding to X_{11} , and therefore $|M^*(l)| = (1 - t_{11}t_{12} \cdots t_{1n_1})\Delta(l_1, l_2, \cdots, l_{\mu})$, where $\Delta(l_1, \cdots, l_{\mu})$ is the polynomial obtained from $\Delta(t_1, \cdots, t_{\mu})$ by substituting l_i for t_i $(i = 1, \cdots, \mu)$. B is the submatrix corresponding to the generators $\{x_{i1}^{(p)}\}$ and the relations $\{R_{i1}\}$ and $\{Q_i^{(p)}\}$. Therefore it is clear that $|B| = v \prod_{i=1}^{\mu} (\overline{w}_i - 1)^{n_i-1}$, where v is a unit of RH'. Therefore: $\Delta' = \prod_{i=1}^{\mu} (\overline{w}_i - 1)^{n_i-1} \Delta(l_1, \cdots, l_{\mu})$.

If we substitute t for t_{ip} $(i = 1, \dots, \mu; p = 1, \dots, n_i)$, we have: $\Delta'(t) = \prod_{i=1}^{\mu} (\bar{w}_i - 1)^{n_i - 1} \Delta(t^{n_1}, \dots, t^{n_{\mu}})$, where \bar{w}_i $(i = 1, \dots, \mu)$ is a monomial in t.⁹ By Theorem 1, we have

$$\prod_{i=1}^{\mu} (\bar{w}_i - 1)^{n_i - 1} \Delta(t^{n_1}, \cdots, t^{n_{\mu}})$$

= $(-1)^{n_1 + \cdots + n_{\mu}} t^N \prod_{i=1}^{\mu} (\bar{w}_i^{-1} - 1)^{n_i - 1} \Delta(t_1^{-n_1}, \cdots, t_{\mu}^{-n_{\delta}}),$

or $\Delta(t^{n_1}, \cdots, t^{n_{\mu}}) = (-1)^{\mu} t^{N'} \Delta(t^{-n_1}, \cdots, t^{-n_{\mu}})$, which completes the proof of Lemma 1.

Lemma 2 is a particular case, for $P = (-1)^{\mu}P'$ of the following.

LEMMA 3. If two integral polynomials $P(t_1, \dots, t_{\mu})$ and $P'(t_1, \dots, t_{\mu})$ in t_1, \dots, t_{μ} have the property that for arbitrary integers n_1, \dots, n_{μ} the polynomials $P_{n_1,\dots,n_{\mu}}(t) = P(t^{n_1},\dots,t^{n_{\mu}})$ and $P'_{n_1,\dots,n_{\mu}}(t) = P'(t^{n_1},\dots,t^{n_{\mu}})$ are such that there exists an integer $N(n_1, \dots, n_{\mu})$ for which $P_{n_1,\dots,n_{\mu}}(t) = t^{N(n_1,\dots,n_{\mu})}$ $P'_{n_1,\dots,n_{\mu}}(t^{-1})$. Then, there exist integers ν_1, \dots, ν_{μ} such that

$$P(t_1, \cdots, t_{\mu}) = t_1^{\nu_1} \cdots t_{\mu}^{\nu_{\mu}} P'(t_1^{-1}, \cdots, t_{\mu}^{-1}).$$

PROOF. We shall prove this lemma by induction on the number μ of indeterminates.

If $\mu = 1$ the lemma is obviously true. If $\mu > 1$,

$$P(t_1, \dots, t_{\mu}) = \phi_r(t_1, \dots, t_{\mu-1}) t_{\mu}^r + \phi_{r+1}(t_1, \dots, t_{\mu-1}) t_{\mu}^{r+1} + \dots + \phi_s(t_1, \dots, t_{\mu-1}) t_{\mu}^s,$$

and

$$P'(t_1, \dots, t_{\mu}) = \psi_p(t_1, \dots, t_{\mu-1}) t_{\mu}^p + \psi_{p+1}(t_1, \dots, t_{\mu-1}) t_{\mu}^{p+1} + \dots + \psi_q(t_1, \dots, t_{\mu-1}) t_{\mu}^q,$$

where ϕ_{r+i} and ψ_{p+j} are polynomials in $t_1, \dots, t_{\mu-1}$, and $\phi_r, \phi_s, \psi_p, \psi_q$ are different from zero.

⁹ It is clear that a projection of K can be taken such that $\overline{w}_i \neq 1 (i = 1, \dots, \mu)$.

Let us choose integers $a_1, \dots, a_{\mu-1}$ such that

$$\phi_r(t^{a_1}, \cdots, t^{a_{\mu-1}}), \phi_s(t^{a_1}, \cdots, t^{a_{\mu-1}}), \psi_p(t^{a_1}, \cdots, t^{a_{\mu-1}}), \psi_q(t^{a_1}, \cdots, t^{a_{\mu-1}})$$

are different from zero. Let us denote by $\bar{\phi}_i(t)$ the polynomial

$$\phi_i(t^{a_1}, \cdots, t^{a_{\mu-1}}) \ (i = r, r+1, \cdots, s)$$

and by $\overline{\psi}_j(t)$ the polynomial $\psi_j(t^{a_1}, \cdots, t^{a_{\mu-1}})$ $(j = p, p + 1, \cdots, q)$.

Let us denote by ∂_i and ∂'_j the degrees of $\bar{\phi}_i(t)$ and $\bar{\psi}_j(t)$ respectively, and by δ_i and δ'_i the degrees of the terms of minimum degree in $\bar{\phi}_i(t)$ and $\bar{\psi}_j(t)$ respectively. Let a_{μ} be larger than 2 sup. $(\partial_r, \dots, \partial_s; \partial'_p, \dots, \partial'_q)$. We have,

$$P_{a_1,\dots,a_{\mu}}(t) = \bar{\phi}_r(t)t^{ra_{\mu}} + \bar{\phi}_{r+1}(t)t^{(r+1)a_{\mu}} + \dots + \bar{\phi}_s(t)t^{sa_{\mu}},$$

$$P'_{a_1,\dots,a_{\mu}}(t) = \bar{\psi}_p(t)t^{pa_{\mu}} + \bar{\psi}_{p+1}(t)t^{(p+1)a_{\mu}} + \dots + \bar{\psi}_q(t)t^{qa_{\mu}}.$$

Therefore:

(1)
$$\bar{\phi}_r(t)t^{ra_{\mu}} + \cdots + \bar{\phi}_s(t)t^{sa_{\mu}} = t^{N(a_1,\cdots,a_{\mu})} [\bar{\psi}_p(t^{-1})t^{-pa_{\mu}} + \cdots + \psi_q(t^{-1})t^{-qa_{\mu}}].$$

It is clear that, if i < i', the degree of each term of $\bar{\phi}_i(t)t^{i'a_{\mu}}$ is larger than the degree of every term of $\bar{\phi}_i(t)t^{ia_{\mu}}$, and therefore the degree and the minimum degree of the left hand side of (1) are $\partial_s + sa_{\mu}$ and $\delta_r + ra_{\mu}$ respectively. Analogously, the degree and minimum degree of the right hand side are $N(a_1, \dots, a_{\mu}) - \delta'_p - pa_{\mu}$ and $N(a_1, \dots, a_{\mu}) - \partial'_p - qa_{\mu}$ respectively. We have:

$$\partial_s + sa_\mu = N(a_1, \cdots, a_\mu) - \delta'_p - pa_\mu$$

and

$$\delta_r + ra_\mu = N(a_1, \cdots, a_\mu) - \partial'_q - qa_\mu,$$

therefore

$$\partial_s - \delta_r + \delta'_p - \partial'_q = a_\mu (q - p + r - s)$$

and 2 sup $(\partial_r, \cdots, \partial_s; \partial'_p, \cdots, \partial'_q) \ge |\partial_s - \delta_r| + |\delta'_p - \partial'_q| \ge a_\mu |q - p + r - s|$, so we have q - p = s - r.

Now let $n_1, \dots, n_{\mu-1}$ be arbitrary, and let us denote by $\bar{\phi}_i(t)$ the polynomial $\phi_i(t^{n_1}, \dots, t^{n_{\mu-1}})$ $(i = r, \dots, s)$ and by $\bar{\psi}_j(t)$ the polynomial $\psi_j(t^{n_1}, \dots, t^{n_{\mu-1}})$ $(j = p, \dots, g)$.

Let ∂_i and ∂'_j be the degrees of $\bar{\phi}_i(t)$ and $\bar{\psi}_j(t)$ respectively, and let δ_i and δ'_j be the minimum degree of $\bar{\phi}_i(t)$ and $\bar{\psi}_j(t)$ respectively. And let n_{μ} be larger than 2 sup $(\partial_r, \dots, \partial_s, \partial'_p, \dots, \partial'_q)$. We have,

(2)
$$\bar{\phi}_r(t)t^{rn_{\mu}} + \cdots + \bar{\phi}_s(t)t^{sn_{\mu}} = t^{N(n_1,\cdots,n_{\mu})} [\bar{\psi}_p(t^-)t^{-pn_{\mu}} + \cdots + \bar{\psi}_q(t^{-1})t^{-qn_{\mu}}].$$

As before we have

(3)
$$\delta_r + rn_\mu = N(n_1, \cdots, n_\mu) - \partial'_q - qn_\mu.$$

Let $\alpha + in_{\mu}$ be the degree of a term of $\bar{\phi}_i(t)t^{in_{\mu}}$ $(r \leq i \leq s)$; that term cancels against a term of degree $N(n_1, \dots, n_{\mu}) - \beta - j_i n_{\mu}$ which belongs to $t^{N(n_1, \dots, n_{\mu})} \bar{\psi}_{j_i}(t^{-1})t^{-j_i n_{\mu}}$ $(p \leq j_i \leq q)$. Therefore

(4)
$$\alpha + in_{\mu} = N(n_1, \cdots, n_{\mu}) - \beta - j_{n_{\mu}}.$$

From (3) and (4), we have

$$\delta_r - \alpha + \partial'_q - \beta = n_\mu (j_i + i - r - q)$$

and 2 sup $(\partial_r, \dots, \partial_s; \partial'_p, \dots, \partial'_q) \ge |\delta_r - \alpha| + |\partial'_q - \beta| \ge n_\mu |j_i + i - r - q|$, therefore

that is, every term of $\bar{\phi}_i(t)t^{in_{\mu}}$ cancels against a term of $t^{N(n_1,\dots,n_{\mu})}\bar{\psi}_{j_i}(t^{-1})t^{-j_in_{\mu}}$, where j_i is given by (5).

Thus
$$\bar{\phi}_i(t)t^{in_{\mu}} = t^{N(n_1,\dots,n_{\mu})}\bar{\psi}_{j_i}(t^{-1})t^{-j_in_{\mu}}$$
, or

(6)
$$\bar{\phi}_{i}(t) = t^{N(n_{1}, \dots, n_{\mu}) - i n_{\mu} - j_{i} n_{\mu}} \bar{\psi}_{j_{i}}(t^{-1}).$$

By the induction hypothesis, there exist integers ν_{i1} , ν_{i2} , \cdots , $\nu_{i,\mu-1}$ such that

(7)
$$\phi_i(t_1, \cdots, t_{\mu-1}) = t_1^{\nu_{i1}} t_2^{\nu_{i2}} \cdots t_{\mu-1}^{\nu_{i,\mu-1}} \psi_{j_i}(t_1^{-1}, \cdots, t_{\mu-1}^{-1}),$$

from (6) and (7) we have

$$N(n_1, \cdots, n_{\mu}) = \nu_{i1}n_1 + \nu_{i2}n_2 + \cdots + \nu_{i,\mu-1}n_{\mu-1} + (i+j_i)n_{\mu}$$

or

$$N(n_1, \cdots, n_{\mu}) = \nu_{i1}n_1 + \nu_{i2}n_2 + \cdots + \nu_{i,\mu-1}n_{\mu-1} + (r+q)n_{\mu},$$

for $i' \neq i$ we have

$$N(n_1, \cdots, n_{\mu}) = \nu_{i,1}n_1 + \nu_{i'2}n_2 + \cdots + \nu_{i',\mu-1}n_{\mu-1} + (r+q)n_{\mu},$$

then $n_1(\nu_{i1} - \nu_{i'1}) + \cdots + n_{\mu-1}(\nu_{i,\mu-1} - \nu_{i',\mu-1}) = 0$, since this holds for arbitrary $n_1, \cdots, n_{\mu-1}$, we must have

$$\nu_{i1} = \nu_{i'1}, \cdots, \nu_{i,\mu-1} = \nu_{i',\mu-1},$$

and we may write

$$N(n_1, \cdots, n_{\mu}) = \nu_1 n_1 + \nu_2 n_2 + \cdots + n_{\mu-1} n_{\mu-1} + \nu_{\mu} n_{\mu}$$

where the $\{\nu_i\}$ are independent of *i*, and $\nu_{\mu} = r + q$. Therefore, from (7) we have

Therefore, from (7), we have

$$P(t_{1}, \dots, t_{\mu}) = \sum_{i=r}^{s} \phi_{i}(t_{1}, \dots, t_{\mu-1}) t_{\mu}^{i} = t_{1}^{\nu_{1}} \cdots t_{\mu-1}^{\nu_{\mu-1}} t_{\mu}^{\nu_{\mu}} \sum_{i=r}^{s} \psi_{j_{i}}(t_{1}^{-1}, \dots, t_{\mu-1}^{-1}) t_{\mu}^{i-\nu_{\mu}} \\ = t_{1}^{\nu_{1}} \cdots t_{\mu-1}^{\nu_{\mu-1}} t_{\mu}^{\nu_{\mu}} \sum_{i=r}^{s} \psi_{j_{i}}(t_{1}^{-1}, \dots, t_{\mu-1}^{-1}) t_{\mu}^{-j_{i}} \\ = t_{1}^{\nu_{1}} \cdots t_{\mu}^{\nu_{\mu}} \sum_{j=p}^{q} \psi_{j}(t_{1}^{-1}, \dots, t_{\mu-1}^{-1}) t_{\mu}^{-j} = t_{1}^{\nu_{1}} \cdots t_{\mu}^{\nu_{\mu}} P'(t_{1}^{-1}, \dots, t_{\mu}^{-1})$$

and the lemma is proved.

3. THEOREM 3. Let $\Delta(t_1, \dots, t_{\mu})$ be the Alexander polynomial of a knot K of multiplicity μ , let X_1, \dots, X_{μ} be the components of K, and let $\Delta(t_1, \dots, t_{\mu-1})$ be the Alexander polynomial of the knot K' obtained by removing X_{μ} from K. Then, if $\mu = 2$, $\Delta(t_1, 1) = (t_1^l - 1\Delta(t_1)/t_1 - 1)$, where l is the linking number of the components of K, and if $\mu > 2$, $\Delta(t_1, \dots, t_{\mu-1}, 1) = (t_1^{l+1}t_2^{l+2} \cdots t_{\mu-1}^{l+\mu-1} - 1)$ $\Delta(t_1, \dots, t_{\mu-1})$, where l_i $(i = 1, \dots, \mu - 1)$ is the linking number of X_{μ} and X_i .

PROOF. Consider any projection of K, and let $\{x_{ij}/r_{ij}\}$ be the presentation of the group of K obtained from the projection, where $x_{i1}, \dots, x_{i,ji} (i = 1, \dots, \mu)$ are the generators corresponding to X_i , and $r_{ij} = x_{i'j'}^{\pm 1} x_{ij} x_{i'j'}^{\pm 1} x_{i,j+1}^{-1}$ corresponds to a crossing of $X_{i'}$, over X_i . Consider the Jacobian matrix

$$M(t_1, \cdots, t_{\mu}) = \| (\partial r_{pq}/\partial x_{ij})^{\psi \phi} \|.$$

We know that the minor determinant D_i obtained by deleting the column corresponding to a generator x_{ij} is $(t_i - 1) \Delta(t_1, \dots, t_{\mu})$. Therefore if we make $t_{\mu} = 1$ in $M(t_1, \dots, t_{\mu})$, the value of D_i will be $(t_i - 1) \Delta(t_1, \dots, t_{\mu-1}, 1)$ if $i \neq \mu$. The generators $\{x_{\mu j}\}$ appear in the relations $r_{\mu j} = x_{rs}^{\pm 1} x_{\mu j} x_{rs}^{\mp 1} x_{\mu,j+1}^{-1}$ which correspond to crossings of X_p over X_{μ} , and in the relations

$$r_{pq} = x_{\mu l}^{\pm 1} x_{pq} x_{\mu l}^{\mp 1} x_{p,q+1}^{-1}$$

corresponding to crossings of X_{μ} over X_{p} .

Let us see which are the contributions of these relations to the matrix

$$M(t_1, \cdots, t_{\mu-1}, 1).$$

The contributions of $r_{\mu j}$ are: $(\partial r_{\mu j}/\partial x_{rs})_{\mu-1}^{\psi\phi} = 0$, $(\partial r_{\mu j}/\partial x_{\mu j})_{\mu-1}^{\psi\phi} = t_r^{\pm 1}$ if $\mu \neq r$, $(\partial r_{\mu j}/\partial x_{\mu j})_{\mu-1}^{\psi\phi} = 1$ if $\mu = r$, and $(\partial r_{\mu j}/\partial x_{\mu,j+1})_{\mu-1}^{\psi\phi} = -1$. The contributions of r_{pq} are, $(\partial r_{pq}/\partial x_{\mu l})_{\mu-1}^{\psi\phi} = \pm (1 - t_p)$, $(\partial r_{pq}/\partial x_{pq})_{\mu-1}^{\psi\phi} = 1$ and

$$(\partial r_{pq}/\partial x_{p,q+1})_{t_{\mu=1}} = -1$$
 if $p \neq \mu$

the case $p = \mu$ has already been considered. Therefore, $M(t_1, \dots, t_{\mu-1}, 1)$ is

		$x_{ij} (i \neq \mu)$	x _{µ1}	$x_{\mu 2}$	•••		$x_{\mu,j}$
(1	ij i ≠ μ)	Α			В		
$M(t_1, \cdots, t_{\mu-1}, 1) = r_{\mu}$	41		$t_{i_1}^{\varepsilon_1}$	-1	0		0
r	12	0	0	$t_{i_2}^{\epsilon_2}$	-1	•••	0 :
<i>r</i> ,	ι, j _μ		-1	0	0	•••	$t_{i_{\mu}}^{\varepsilon_{\mu}}$

in the submatrix of the lower right corner, there is an appearance of $t_i^{\epsilon_i}$ for each crossing of X_i over X_{μ} $(i = 1, \dots, \mu)$, and $\epsilon_i = 1$ or -1 according as X_i crosses over X_{μ} from left to right or from right to left. Therefore, the determinant of the matrix in the lower right corner is $t_1^{l_1}t_2^{l_2}\cdots t_{\mu-1}^{l_{\mu-1}}-1$.

The submatrix A is equivalent to the Jacobian matrix $M'(t_1, \dots, t_{\mu-1})$ of the knot K'. Therefore, the determinant D_i obtained from $M(t_1, \dots, t_{\mu-1}, 1)$ by removing a column corresponding to a generator $x_{ij}(i \neq \mu)$, is

$$D_{i} = (t_{1}^{l_{1}} \cdots t_{\mu-1}^{l_{\mu-1}} - 1) |A'|,$$

where A' is the matrix obtained from A by removing the column corresponding to x_{ij} .

If $\mu = 2$, $|A'| = \Delta(t_1)$, and if $\mu > 2 |A'| = (t_i - 1) \Delta(t_1, \dots, t_{\mu-1})$. Therefore, if $\mu = 2$

(1)
$$(t_1 - 1) \Delta(t_1 - 1) = (t_1^{l_1} - 1) \Delta(t_1)$$
, and if $\mu > 2$

(2)
$$\Delta(t_1, \dots, t_{\mu-1}, 1) = (t_1^{l_1}, \dots, t_{\mu-1}^{l_{\mu-1}} - 1) \Delta(t_1, \dots, t_{\mu-1}),$$

which completes the proof.

If we make $t_1 = 1$ in (1), we obtain

 $\Delta(1, 1) = l_1$,

and if we make $t_1 = t_2 = \cdots = t_{\mu-1} = 1$ in (2) we have $\Delta(1, \cdots, 1) = 0$, therefore we have proved Theorem 4.

If $\Delta(t_1, \dots, t_{\mu})$ is the Alexander polynomial of a knot K of multiplicity μ , then if $\mu = 2 \Delta(1, 1) = l$, where l is the linking number of the components of K, and if $\mu > 2 \Delta(1, \dots, 1) = 0$.

CHAPTER III

Let C be a circle in euclidean 3-dimensional space, and let \dot{T} be the torus whose central line is C (fig. 16). The closure of the interior of \dot{T} is a tube T. The closure of the exterior of \dot{T} , together with the point at ∞ , is a tube, and it will be denoted by E.

Denote by b the circle determined by the intersection of \hat{T} and the plane of C. Let a be a meridian circle on \hat{T} . Let us orient a and b in such a way that a crosses b from left to right (fig. 16).

Consider a knot K' of multiplicity 1 in E^3 . Let us surround K' by a torus T'; whose central line is K' (fig. 17). The closure of the interior of T' is a tube T' which contains K'.

Let K be a knot of multiplicity μ , with components X_1, \dots, X_{μ} , contained in the interior of T (fig. 16). Denote by l_i the linking number of a and $K_i(i = 1, \dots, \mu)$.

Let ϕ be a homomorphism of T onto T', such that the linking number of K' and the image $b' = \phi(b)$ of b is zero.

The image $\phi(K) = K''$, of K under ϕ , is a knot of multiplicity μ contained in the interior of T', (fig. 19). We shall prove:

THEOREM 5. The Alexander polynomial $\Delta''(t_1, \dots, t_{\mu})$ of K'' is:

 $\Delta''(t_1, \cdots, t_{\mu}) = \Delta'(t_1^{l_1}t_2^{l_2}\cdots t_{\mu}^{l_{\mu}}) \Delta(t_1, \cdots, t_{\mu}),$

F1G. 16

where $\Delta(t_1, \dots, t_{\mu})$ is the Alexander polynomial of K, and $\Delta'(t_1^{l_1} \cdots t_{\mu}^{l_{\mu}})$ is the polynomial obtained by substituting $t_1^{l_1}t_2^{l_2} \cdots t_{\mu}^{l_{\mu}}$ for μ in the polynomial $\Delta'(\mu)$ of K'.

PROOF. There is no loss of generality in supposing that the projection of b' is parallel to the projection of K', except in a segment S of T' in which b' and K' are braided (see fig. 17).

Consider a segment S' of S containing two consecutive crossings of K' and b' (fig. 20(a)). It is clear that by applying the deformation illustrated by fig. 20 to each segment of T' containing two consecutive crossings of b' and K', we

F1G. 19

obtain a projection of T' for which the projections of K' and b' are parallel (fig. 18). Such projection will be used to compute the group G'' of K''.

We are going to compute separately the groups $\Pi_1(T' - K'')$ and $\Pi_1(E^3 - T')$. Clearly, $\Pi_1(T' - K'')$ is isomorphic to $\Pi_1(T - K)$, and since T - K is homeomorphic to $S^3 - (K \cup e)$, where e is a circle isotopic to a in E, the group

$$\Pi_1(T' - K'')$$

is isomorphic to the group of the knot $K \cup e$.

Let us orient e in such a way that its projection crosses over the projection of b from right to left (fig. 16). From the projection of $K \cup e$ we obtain a presentation $\{x_i, y_i/r_k\}$ of $\Pi_1(T' - K'')$, where the $\{x_i\}$ are the generators corresponding to the projection of K, and the $\{y_i\}$ are the generators corresponding to the projection of e, and the number of relations is one less than the number of generators (see §2).

The group $\Pi_1(E^3 - T')$ is isomorphic to the group G' of K'. Let us orient K' in such a way that a' (the image of a under ϕ) crosses over K' from right to left. From the projection of K' we obtain a presentation $\{u_{\nu}/g_{\mu}\}$ of G', in which the

number of relations is one less than the number of generators. The generators $\{u_r\}$, interpreted as generators of $\Pi_1(E^3 - T')$, are represented by paths which go once around T' (fig. 17).

The group G'' is the direct product of the groups $\Pi_1(T' - K'')$ and $\Pi_1(E^3 - T')$, with identification of the elements which are represented by the same generators of $\Pi_1(\dot{T}')$ [13].

 $\Pi_1(\dot{T}')$ is generated by α and β which are represented by a' and b' respectively. a' represents w(x) in $\Pi_1(T' - K'')$, where w(x) is the word in the $\{x_i\}$ which is read off from the projection of $K \cup e$ by going once along e in the positive direction. w(x) is represented by a loop which is homotopic to e in $E^3 - (K \cup e)$ (see fig. 21; in the case illustrated by the figure $w(x) = x_{i_3}^{-1} x_{i_2}^{-1} x_{i_1}$. In $\Pi_1(E^3 - T')$, a' represents a generator u_r , and by relabeling the $\{u_v\}$ we can make a' represent u_1 . b' represents y_1 in $\Pi_1(T' - K'')$ (fig. 16), since y_1 is represented by a path homotopic to b in $E^3 - (K \cup e)$. b' represents W(u) in $\Pi_1(E^3 - T')$, where W(u) is the word in the $\{u_r\}$ which is read off from the projection of K by going once along b' in the positive direction.

Therefore G'' is given by:

$$G'' = \{x_i, y_j, u_{\nu}/r_k, q_{\mu}, w(x)u_1^{-1}, \overline{W}(u)y_1^{-1}\}$$

Let t_1, \dots, t_{μ} be the generators of the commutator factor group of G'', where t_j is the image $(x_i)^{\psi\phi}$ of a generator x_i corresponding to the component

$$X_j(j=1,\cdots,\mu)$$

of K.

The image $[W(u)]^{\psi\phi}$ of the word W(u) is 1, since the linking number of b' and K' is zero. From the relation $W(u)y_1^{-1}$ we have $[W(u)]^{\psi\phi} = (y_1)^{\psi\phi} = 1$, and therefore $(y_j)^{\psi\phi} = 1$ for all j. By the definition of w(x) we have

$$[w(x)]^{\psi\phi} = t_1^{l_1} t_2^{l_2} \cdots t_{\mu}^{l_{\mu}}$$

and from the relation $w(x)u_1^{-1}$ we have $(u_1)^{\psi\phi} = t_1^{l_1} \cdots t_{\mu}^{l_{\mu}}$, and therefore

$$(u_{\nu})^{\psi\phi} = t_1^{l_1} \cdots t_{\mu}^{l_{\mu}}$$

for all ν .

The matrix $M''(t_1, \dots, t_{\mu})$ corresponding to the presentation of G'' will be:

		$\mu_1 \mu_2 \cdots$	$x_1 x_2 \cdots$	$y_1 y_2 \cdots$
$M''(t, \ldots, t) =$	$egin{array}{c} q_1 \ q_2 \ dots \end{array}$	M'(t)	0	0
III (01, ····, 0μ) —	r_1 r_2	0	$M(t_1, \cdots$	$\cdots, t_{\mu}, 1)$
	$\vdots \\ w(x)u_1^{-1}$	-1 0	$\left(rac{\partial w(x)}{\partial x_i} ight)^{\psi\phi}$	0
	$w(x)y_1^{-1}$	$\left(\frac{\partial w(u)}{\partial u_{\mu}} ight)^{\psi\phi}$	0	$-1 0 \cdots$

which is a square matrix. M'(t) is the matrix obtained by substituting

$$t = t_1^{l_1} t_2^{l_2} \cdots t_{\mu}^{l_{\mu}}$$

for u in the matrix M'(u) corresponding to G'. $M(t_1, \dots, t_{\mu}, 1)$ is the matrix obtained by substituting 1 for $t_{\mu+1}$ in the matrix $M(t_1, \dots, t_{\mu}, t_{\mu+1})$ corresponding to the group of $K \cup e$, where $t_{\mu+1}$ is the generator of the commutator factor group of $\Pi_1(E^3 - (K \cup e))$, corresponding to e.

Adding to the column corresponding to u_1 the columns corresponding to the remaining $\{u_{\nu}\}$ ($\nu > 1$), we obtain:

$$(\mathbf{a}) \quad M''(t_{1}, \dots, t_{\mu}) \sim \begin{bmatrix} u_{1} & u_{2} \cdots & x_{1} & x_{2} \cdots & y_{1} & y_{2} \cdots \\ q_{1} & & & \\ q_{2} & & \\ \hline q_{2} & & \\ \vdots & & \\ r_{1} & & \\ r_{2} & & \\ \vdots & & \\ w(x)u_{1}^{-1} & & \\ & & \\ w(u)y_{1}^{-1} & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline (\frac{\partial w(u)}{\partial u_{\mu}})^{\psi\phi} & & \\ 0 & & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline (\frac{\partial w(u)}{\partial u_{\mu}})^{\psi\phi} & & \\ 0 & & & \\ \hline 0 & & & \\ \hline (\frac{\partial w(u)}{\partial u_{\mu}})^{\psi\phi} & & \\ 0 & & & \\ \hline 0 & & & \\ \hline (\frac{\partial w(u)}{\partial u_{\mu}})^{\psi\phi} & & \\ 0 & & & \\ \hline \end{array}$$

since $\sum_{\nu} (\partial w(u)/\partial u_{\nu}) = 0$, for if $(\partial w(u)/\partial u_{\nu})$ is evaluated in the group ring corresponding to K', we have $\sum_{\nu} (\partial w(u)/\partial u_{\nu})$ (u - 1) = 0 (formula (4)), and since u - 1 is not a divisor of zero, we have $\sum_{\nu} (\partial w(u)/\partial u_{\nu}) = 0$, and

$$\sum_{\nu} (\partial w(u)/\partial u_{\nu})^{\psi\phi} = \sum_{\nu} (\partial w_{(u)}/\partial u_{\nu})_{u=t} = 0.$$

 $\overline{M}'(t)$ is a matrix whose determinant is $\Delta'(t)$. From (a) it is clear that:

(b)
$$M'(t_1, \dots, t_{\mu}) \sim \begin{pmatrix} u_2 & u_3 & \cdots & x_1 & x_2 & \cdots & y_1 & y_2 & \cdots \\ & & & & & \\ q_1 \\ q_2 \\ \vdots \\ r_1 \\ r_2 \\ \vdots \\ w(u)y_1^{-1} \\ \hline \left(\frac{\partial w(u)}{\partial u_r} \right)^{\psi \phi} \\ \hline 0 \\$$

Consider the matrix:

$$T(t_{1}, \dots, t_{\mu}) = \frac{\overline{M}'(t)}{0} \frac{0}{M(t_{1}, \dots, t_{\mu}, 1)} \frac{0}{\left(\frac{\partial w(u)}{\partial u_{\mu}}\right)^{\psi \phi} (1 - t)} \frac{0}{0} - (1 - t) 0 \cdots$$

which is obtained by multiplying the last row of b) by 1 - t.

As a consequence of the relations $\{q_{\mu}\}$ we have the relation

$$q = W(u)u_1W^{-1}(u)u_1^{-1},$$

whose derivatives are $\partial q/\partial u_r = (\partial w_{(u)}/\partial u_r)^{\psi\phi} (1-t)$ for $\nu > 1$, and as a consequence of the $\{r_k\}$ we have $r = w(x)y_1w^{-1}(x)y_1^{-1}$, whose derivatives are $\partial r/\partial x_i = 0$ and $\partial r/\partial y_1 = t - 1$. Therefore, each row of $T(t_1, \dots, t_{\mu})$ is a linear combination of the other rows, and the ideal of column deficiency 1 will be generated by the minor determinants which are obtained by deleting one column in the matrix obtained from $T(t_1, \dots, t_{\mu})$ by deleting any row. In particular if we delete the last row, we have:

$$\begin{array}{c|c} \overline{M''(t)} & 0 \\ \hline 0 & M(t_1, \cdots, t_{\mu}, 1) \end{array}$$

and by Theorem 3 we have: the elementary ideal of column deficiency 1 of $T(t_1, \dots, t_{\mu})$ is generated by

$$\{(1 - t_i)(t - 1)\Delta'(t)\Delta(t_1, \dots, t_{\mu})\} \quad (i = 1, \dots, \mu) \text{ if } \mu > 1.$$

Therefore, the elementary ideal of column deficiency 1 in $M''(t_1, \dots, t_{\mu})$ is generated by $\{(1 - t_i) \Delta'(t) \Delta(t_1, \dots, t_{\mu})\}$ $(i = 1, \dots, \mu)$, and:

$$\Delta''(t_1, \cdots, t_{\mu}) = \Delta'(t_1^{l_1}t_2^{l_2}\cdots t_{\mu}^{l_{\mu}})\Delta(t_1, \cdots, t_{\mu}),$$

which completes the proof of Theorem 5 in the case $\mu > 1$.

If $\mu = 1$, the matrix $M(t_1, \dots, t_{\mu}, 1)$ is of the form:

$x_1 x_2 \cdots$	y_1	$y_1 \cdots$
	*	
$M(t_1)$	*	0
×/	:	
	*	
	$t_{1}^{\pm 1}$	$-1 0 \cdots 0$
0	0	$t_1^{\pm 1} -1 \cdots 0$
	÷	
	0	$0 0 \cdots -1$

where $M(t_1)$ is the matrix corresponding to K, and * denotes a possibly non-zero element.

Therefore, if in $M''(t_1)$ we add to each row the last row multiplied by an appropriate factor, we obtain:

	$u_2 u_3 \cdots$	$x_1 x_2 \cdots$	y_1	$y_2 \cdots$
	$ar{M}'(t)$	0	0	0
M $(\iota_1) \sim$		$M(t_1)$	0	0
	a	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{\partial w(u)}{\partial u_{\nu}} (1 - t)$	0	-1	0

where A is a certain matrix whose form we do not need to discuss. It is clear that

	$\bar{M}'(t)$	0	0
		$M(t_1)$	0
$M''(t_1) \sim$	a	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

hence: $\Delta''(t_1) = \Delta'(t_1^{l_1}) \Delta(t_1)$.¹⁰

Instituto de Matemáticas, Universidad Nacional de México

BIBLIOGRAPHY

- ALEXANDER, J. W.: Topological Invariants of Knots and Links. Trans. Amer. Math. Soc., Vol. 30 (1928) pp. 275-306.
- [2] BURAU, W.: Kennzeichnung der Schlauchknoten. Abh. Math. Sem. Hansischen Univ., Vol. 9 (1932) pp. 125–133.
- [3] BURAU, W.: Kennzeichnung der Schlauchverkettungen. Abh. Math. Sem. Hansischen Univ., Vol. 10 (1934) pp. 285-297.
- [4] REIDEMEISTER, K. AND SCHUMANN, H.: L- Polynome von Verkettungen. Abh. Math. Sem. Hansischen Univ., Vol. 10 (1934), pp. 256-262.
- [5] REIDEMEISTER, K.: Kommutative Fundamentalgruppen. Monat. f
 ür Math. u. Physik. Vol. 43 (1936) pp. 20-28.
- [6] REIDEMEISTER, K.: Knotentheorie. Chelsea Publishing Co. New York, 1948.
- [7] REIDEMEISTER, K.: Topologie der Polyeder. Akademische Verlagsgesellschaft M.B.H. Leipzig. 1938.
- [8] SEIFERT, H.: Über das Geschlecht von Knoten. Math. Ann., Vol. 110 (1934) pp. 571-592.
- [9] SEIFERT, H.: Die Verschlingungsinvarianten der Zyklischen Knotenüberlagerungen. Abh. Math. Sem. Hansischen Univ., Vol. 11 (1935) pp. 84-101.
- [10] SEIFERT, H.: On the Homology Invariants of Knots. Quart. J. Math. Oxford Ser. 2, Vol. 1 (1950) pp. 23-32.
- [11] SEIFERT, H. and THRELFALL, W.: Old and new results on knots. Canadian J. Math., Vol. 2 (1950) pp. 1-15.
- [12] VAN KAMPEN, E.: On the connection between the fundamental groups of some related spaces. Amer. J. Math., Vol. 55 (1933) pp. 261-267.

¹⁰ Theorem 5, in the particular case $\mu = 1$, was proved by Seifert in [10].