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Introduction 
Two ordered collections of , disjoint simple closed oriented curves in Euclidean 

three dimensional space E3 are said to be equivalent, if there is an orientation- 
preserving homeomorphism of E3 on itself, which transforms one collection into 
the other, preserving the orientation and order of the components. 

A knot of multiplicity u is the equivalence class of an ordered collection of jI 
disjoint simple closed polygons. Two collections in the same class are said to 
have the same knot type. 

We shall be concerned here with an invariant of the knot type, the Alexander 
polynomial, which was first defined by Alexander [1]2 in the case ,L = 1 and then 
defined by R. H. Fox in the casei > 13. 

The Alexander polynomial of a knot K of multiplicity ,u, whose components 
are X1, ***, X, is an integral polynomial A(t1, *.. , tQ) in the indetermi- 
nates t1, , to where each ti corresponds to one of the components Xi of 
K (i = 1, ..., A). 

A characterization of the Alexander polynomial in the case 4 = 1 has been 
given by Seifert [9]. He proved that the polynomial A(t) of a knot of multiplicity 
1 has the properties: I A(1) I = 1 and A(t) = t2hA(1/t), and conversely, that 
every A(t) with these properties is the Alexander polynomial of some knot. 

The main purpose of this paper is to prove that the Alexander polynomial, in 
the case d > 1, has the following properties: 

1. There exist integers ni, ** , n, such that A(ti, ** , t,,) = (-1)t'1 ** 
Ato Hi (l/tl, * * 1 ItI) . 

2. If A(tl, t2) is the polynomial of a knot K of multiplicity 2, whose compo- 
nents are X1 and X2 , then: A(t1, 1) = A(t1)(t -1)/(t - 1) where A(t1) is the 
polynomial of X1, and 1 is the linking number of X1 and X2. If A(tl, * *, t,,) is 
the polynomial of a knot of multiplicity 1A > 2, whose components are X1, X, 
then A(ti, , t,,- , 1) = (tflt22 * A tlj - 1) A(t1, * , t,,_), where 

A(tiI... , t;l-) is the polynomial of the knot which is obtained from K by re- 
moving X, and l(i = 1, *.. - , -1) is the linking number of X,, and Xi. 

3. A(1, ..., 1) = O if u > 2, and I A(1, 1)I = l1 if , = 2, where I is the 
linking number of the two components of K.4 

1 The author gratefully acknowledges the guidance of Professor R. H. Fox in preparing 
this paper which was submitted as a Doctor's thesis to the faculty of Princeton University. 

2 Numbers between brackets refer to the bibliography at the end of the paper. 
3 An invariant polynomial associated with some knots of multiplicity 2, was considered 

by K. Reidemeister and H. G. Shumann [4] and by W. Burau [2]. 
4Property 3 is an immediate consequence of property 2. It is not known whether or not 

properties 1 and 2 suffice to characterize the polynomial. By a procedure completely anal- 
57 
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We have included, in Chapter III, a proof of a theorem (Theorem 5), which 
is a generalization, for A > 1, of a theorem proved by Seifert [11] for A = 1. 
This theorem describes the effect produced on the polynomial of a knot K which 
is contained in an unknotted tube U by a further knotting of U. 

CHAPTER I 

1. Derivation in a free group 

In this paragraph we shall give a brief account of the theory of derivation in 
a free group. This concept, which has been introduced by R. H. Fox,5 will be 
used throughout this paper. 

Let G be a multiplicative group, R the ring of integers and RG the integral 
group ring of G. The elements of RG are of the form D-1 rigi where ri e R and 
gi e G. Let o be the homomorphism of RG onto R defined by i rjgj)X = 
Z=ri . 

A derivative in RG is a mapping D: RG -+ RG of RG into itself satisfying: 
(1) D(u + v) = Du + Dv 
(2) D(u.v) = D(u).v0 + u*Dv 

for all u and v in RG. 
Let X denote the free group generated by a finite set of symbols xi, * , xv. 

For each index there is a unique derivation 0/Oxj in RX satisfying (1) and (2) and 

(3) fXk = a k 
O0xj 

This is called the derivative with respect to x; . If X 3 w = aoxja* a,. ak X 
where pi = ?1 and a0, a1, ***, ak are words not involving the generator x;, 
then: 

9 
k 

- = E ei(ao/i a, ail)xAe'- ). 
Oxi ill 

It can be proved that, for any derivation D in RX, 

Du = Ej a - Dxj u e RX. 

In particular u u - u? is a derivation. Hence: 
BAN .. _ .? _ vCIAt 

ogous to the procedure used by Seifert in his proof [8], one can prove that properties 1' 
and 2', given below, suffice to characterize the polynomial 2(t), obtained by substituting t 
for ti (i = 1, ... * *,) in A(t1, * * *, t,,). 

1.' There exists a -, & (mod. 2) such that A(t) = (- 1)taZ(1/t). 
2.' Av(1) = 0 if MA> 2, and I A(1) I = I 11 if IA= 2, where 1 is the linking number of 

the components of K. 
6 A complete account will appear in a paper "Free Differential Calculus" in these An- 

nals. 
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The row vector (O,/Oxi, I,/O9x, *. * * X/2X) may be denoted by du. From (1) 
and (2) we get: 

(5) d(u + v) = du + dv 
(6) d(uv) = du v0 + u dv. 
Every group G is the image of some free group X under some homomorphism 

G. U is therefore determined by the generators x1, X2, ... of X and by a set of 
elements (relations) u1(x), u2(x), -.. of X whose consequence U (smallest 
normal subgroup containing ul, u2, .-) is the kernel of 4. We shall call 
x1, x2, ... /U1, U2, - } = {x/u} a presentation of G. All groups considered in 

this paper will be finitely presented; i.e., they will be given by a finite number 
of generators and relations. 

There are two types of operations on a presentation which do not alter the 
group presented. They are the Tietze operation of first kind: adjoin to the relations 
u1 I U2,- - any element v of U, i.e. any consequent relation, and the Tietze opera- 
tion of the second kind: adjoin to the generators xl, x2, ... a new generator y 
and simultaneously adjoin to the relations ul(x), u2(x), . a new relation y[g(x)]-' 
defining y in terms of the old generators. The Tietze operations are complete in 
the sense that, given two finite presentations of a group G, it is possible to pass 
from one presentation to the other by a finite sequence of the Tietze operations 
and their inverses [7]. 

In order that an invariant of finite presentations be a group invariant for all 
finitely presented groups, it is necessary and sufficient that it be invariant under 
the two Tietze operations. 

To any finite presentation xl, I * , x/u1, u, uI } of a group G we associate 
the matrix 11 (,ui/Oxj)" 11 . The equivalence class of this matrix is an invariant 
of G. Matrices over a group ring are equivalent if- one can be obtained from the 
other by a finite sequence of the following operations and their inverses. 

1. M - (M) where the new row - is a left-linear combination of the rows of 
M. 

2. M (M ?), * denoting an arbitrary row vector. Operations 1 and 2 

correspond to the Tietze operations of the first and second kind respectively. 
0 ~~0 

Let RX RU RG- RH -- R, where H is the commutator quotient group of 

G, and i, is the natural homomorphism of RG onto RH. The equivalence class 
of 11 (oui/oxj)it 11 are of 11 (oui/Oxj)?*' 11 and invariants of G. (The latter matrix 
is a relation matrix for the abelian group H. The former determines G modulo 
its second commutator subgroup.) 

For any matrix M over a commutative ring RH define: The elementary ideal 
of column deficiency k = the ideal in RH generated by the minor determinants of 
order n - k, where n is the number of columns of M. 

The elementary ideals of a matrix over a commutative ring are invariants of 
the equivalence class of the matrix. But they are not necessarily invariant under 
automorphisms of RH. 
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2. Calculation of the group G of a knot K [6] 

Let K be a knot of multiplicity g in E3. Let G be the group of K, i.e. the funda- 
mental group 11(E3 - k) of E3 - k, where k is a representative of K. We 
shall describe here a method for calculating G. 

Consider a representative k of K whose components X1, ***, X, are simple 
closed polygons. A central projection of k is called regular if all projecting rays 
meet at most two segments of k. A regular projection has only two-fold multiple 
points (double points or crossings), and it has only a finite number v of them. We 
normalize the projection by denoting which of two segments that determine a 

e2e 

e24 
FIG. 1 

%p~~~~~~~D-o 

p1 ,,'pw e 

(a) (b) 
FIG. 2 

double point crosses underneath the other (we shall do this as indicated in fig. 
1). A normalized projection consists of a finite number v of disjoint oriented 
simple polygonal arcs (fig. 1). Let us denote them by 

eij(i= 1, = 1,* . 
where e i *, e 2 es, , are the arcs corresponding to Xi (i , ,u), as 
they are read off from the projection by going along Xi in the positive direction 
(fig. 1). Then the group G is generated by {xij} (i 1, * * * , A; j = 1, * ... * M 
where xi1 is represented by a loop xij which, starting from above the plane of 
projection, goes around eij piercing the plane to the left of eij and emerging to 
the right of eii (fig. 1). There is a defining relation corresponding to each crossing, 
and it is of the form rpq = xp~q~x qx7l ' lN or rpq = X-pq'XpqXp'q'Xplq+1 accord- 
ing as the crossing is of type (a) or (b) (fig. 2). In this presentation the number 
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of generators is equal to the number of relations. But any one of the relations is 
a consequence of the others, therefore G is given by v generators {xij} and 
v - 1 of the relations {rij} (i = 1, * * ,4; j = 1, * * *, i) 

3. The Alexander Polynomial 

Now we are in a position to define the Alexander polynomial of K. Let { xij/rpq I 
be the above mentioned presentation of G. The commutator factor group H will 
be the abelian group generated by the {xjj with the abelianized rela- 
tions {rpq = xpqxpq+1} which express the equality of the generators { xij 
(j = 1, ... ,Ji) corresponding to Xi (i = 1, * * *, ,u). Therefore H is free abelian 
in ,A generators t1, **. , t, , where ti is represented by each one of the loops 
{Iij } (j = 1, * ) ,i) 

Consider the matrix M(t1, ... , t) = (arpq/axij) 11 over the ring RH of 
polynomials in ti,* , t, ; t1, *, t1. The matrix M(t1, *, t) is called the 
Alexander matrix of K. In order that two knots of multiplicity JA belong to the 
same knot type it is necessary that their matrices have the same elementary 
ideals in RH, because the basis t1, * * *, t, of H is uniquely determined by the 
fact that ti(i = 1, * * *, ,u) is the element of H which is represented by a loop 
whose linking number lik(k = 1, * , A) with Xk is 6ik * 

We define the Alexander polynomial A(t,, *** , t,) of K to be the greatest 
common divisor of the minor determinants of column deficiency = 1 of the 
Alexander matrix M(t,, * **, t,). A(t1, *..., t,) is an invariant of the group 
G of K and therefore an invariant of the knot type of K, and is determined up 
to units in the ring RH. 

The following theorem shows how to calculate A(t1, * , t,) from a properly 
chosen minor of M(t, , , t,). 

THEOREM. Let M(ti, * , t,) be an Alexander matrix of a knot K of multiplic- 
ity ,u. Let v be the number of columns and v - 1 be the number of rows. Denote by 
Aj(j = 1, **. , v) the determinant of the minor of M(t1, * **, t,) obtained by de- 
leting the jth column. There exists an clement A e RH such that 

Al- 1 
JitlA (j=l, ,v) ifu=l 

and 
Aj = 4(x* - 1)A (j= 1, *, v) ifjA > 2, 

where xj is the generator of G corresponding to the jth column. 
PROOF.6 Denote by {j the jth column of M(t., * , t,), j = 1, ... , v. By for- 

mula (4) we have, E - 1) = 0, hence 

-j (Xk 1) = (Ai, A 
- 1), ... 

6 jnhpof- we uehnta * mn deletion of * 
= (-) (1, ** * tj~, +- 1)* **, k X {)=(1 Aks (Xj-) 

In the proof we use the notation meaning deletion of t. 
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Therefore x* -1 divides Ai * (x - 1) for k = 1, * , js, and therefore it must 
divide Ai -a where a is the greatest common divisor of (x x-1, * * , - 1), 
hence 6 = g.c.d.EH I{t - 1}. But 

(-1)i Ai = ak (k 1, ., v). 
X00- X0(( 1)Vk 

Denote the common value of (-1)' (AkS/4' -1) (k = 1, *., v) by A. 
Then Ai = (-1)'j (4i - 1/6) -A. 

The statement of the theorem follows from the observation that 6 = 1 if 
- ? 2andd = t - 1if A = 1. 

Note: In the case 1A = 1, the matrix M(t) can be interpreted as follows: 
Let G be the group of K, corresponding to each subgroup G' of G there is a 

covering space of E3 - k whose fundamental group is isomorphic to G'. Let 
WI be the covering corresponding to the (commutator) subgroup Go of G formed 
by the elements of G which are represented by loops whose linking numbers with 
k are zero. The first homology group H1(I) of 91 can be given as a group with 
operators, with a finite number of generators {bil and relations {r,}, where the 
domain of operators is the ring of integral polynomials in t and Ul, where t is 
the generator of the commutator quotient group H of G. It can be proved that 
M(t) is the coefficient matrix of the relations in the above mentioned presentation 
of H1(). This interpretation of M(t) was given by Alexander [1]. 

4. Seifert's projection of a knot 
We are going to describe a special type of projection of a knot. It was first 

described by Seifert [9] in the case of a knot of multiplicity 1, and his method 
can be immediately generalized to the case 1A > 1. 

Let K be a knot of multiplicity 1A in E3, and let X1, * , X, be its components. 
Let F be an orientable surface, whose boundary is K, and let h be the genus of 
F. The surface F can be deformed (the type of the knot is thereby unchanged) 
into a disc to which there have been attached 2h + 1A - 1 bands 
B1, ... , B2h+,l1, which are distributed around the disc as shown in fig. 3. The 
corresponding projection of K will be called a Seifert projection. The possibility 
of such a deformation of F is illustrated in fig. 4 which represents the normal 
form of a surface F of genus 2, whose boundary has 3 components. One of the 
components is the union of the arcs on the corners, the other components have 
been represented by circles in the interior, there have been drawn 2 canonical 
pairs of curves, and the dotted lines represent the boundary after the deforma- 
tion. 

In fig. 3 a simple closed curve ai has been drawn along each Bs . a,, * a* , 
are the canonical curves which were used to direct the deformation, they are 
such that a2k-1 crosses a2k(k = 1, * * *, h) from left to right. The curves 

a2h+l, a2h+2, ***, a-A+,-l 

7A procedure for spanning a knot of multiplicity 1 by an oriental surface is given by 
Seifert [8] and [91, and the same procedure can be applied'in the case ;& > 1. 
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are disjoint and am+,, separates the corresponding component Xk from X1, 
the exterior boundary of F. We shall refer to B1, ***, B2 as canonical bands 
and to B2,,+1, *, +,, as extra bands. 

13.2~~~~~~~~ ~2- . 4b f' . 

000 ~ ~ * 

Xi, 

0.D 0~~~~~~~~~0 

FIG. 3 

illustrated in fig. 5.~~~~~~~~~~~~~~ll 

O~~~~~~D 

FIG. 4 

We may suppose that in the projection only one face of F is visible, for if a 
band is twisted (fig. 5(a)), the number of twistings must be even, because F 
is orientable, and for each pair of twistings we can perform the deformation 
illustrated in fig. 5. 
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Finally let us define crossing numbers. Let vii, be equal to the number of times 
that aj crosses over as from left to right minus the number of times that aj 
crosses over ai from right to left. The numbers {viiA (i, i = 1, * * , 2h + ,-1) 
are called the crossing numbers of the bands. 

It is clear that if as and aj are disjoint, the crossing number vij is equal to the 
linking number of ai and aj, and therefore vii = vji. If ai intersects aj, i.e., if 
i = 2k - 1 and j = 2k(1 ? k < 2h), then we can lift a2k-1 in a neighborhood 
of the intersection, obtaining a curve a'2k1 which does not intersect a2k, and the 
linking number of a'2k_1 and a2k will be equal to V2k-1,2k and equal to V2k,2h-1 + 1. 
Therefore: V2ki1,2k = V2k,2k-l + 1(0 < k < h) and vi = vji otherwise. 

(a) ( b) 
FIG. 5 

FIG. 6 

In fig. 6 various stages of a deformation of a simple knot into a Seifert pro- 
jection are illustrated. In the case illustrated by fig. 6, we have: 

Vil = 1, V12 = 0) V13 = 

V21 = - 1, V22 = 1,) V23 = 

V31 = ?, V32 = 0, V33 =0 

CHAPTER II 

1. Let K be a knot of multiplicity ,u > 1 in E 3, and let A (t, * ,t be the 
Alexander polynomial of K. We shall prove: 

THEOREM 1. There exists an integer n such that 

A (t2 .. * t) = (_1)AtnA(llt, .. * 1/t), 

where A (t, * ,t) is the polynomial obtained by substituting t for ti(i =1, **,,u) 
in A (t, I..., t,,. 

PROOF. Let F be an orientable surface of genus h whose boundary is K, and 
consider a Seifert projection of K obtained by using F (fig. 3). We are going to 
use this projection to compute the group G of K. 
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Let s be the graph formed from the { ak by retracting the central disk of F 
to a point P and retracting the bands to lines (fig. 7). Let us denote by ail, ... * 

aij,(i = 1, * 2h + u - 1) the edges of the projection of s as they are read 
off from the projection by going along ai in the positive direction, the edges all, 
a2l, ***, a2+,l being the edges indicated in fig. 7. 

.F'G., 7s* 

* 0 

* S 
. : , ' 

/ .0 L5 

x - * 

FI. . 8 

* 

v 

t . . 

FIG. 7 

FIG. 8 

Corresponding to each edge ai, there are two edges xi, and X$, of the projec- 
tion of K (fig. 8), where xii is the edge which has a similar orientation to the 
orientation of aij, and lies to the right of it. Let us denote also by xij and 

xsi= 1, * 2h + jA1 j =j,** i) 

the generators of G which correspond to the edges of xij and x'j respectively. 
For each crossing of a, over as we have two defining relations Rij and Sij of 

the form: 
Rj = (x j(xp-xvq)-i,+ 

Sij = (X'pq Xpq) X'ij(XpQ Xpq) Xi j+l 
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Xjo+#d 
- X ~-. 4, di,jwf X ty'.', 

- f d, * - dxpq 

j 
Y~~~~x''~ 

Xjj X,7 dqg Xi1 qi dig ij 
FIG. 9 

where E = :1 according as a, crosses ai from left to right or from right to left 
(fig. 9). Besides these relations we have the relations: 

T21-1 = X21-1,X21,1 

T21 = X21,1X21-1 j21-1 k) 
T21-1 = X2l-1,j211X2l12( 

T21 = X2l j2 X21+1,1 

and 

Qt = tjxt+ll (t = 2h + 1, *,2h + -2) 

Qt' X t'lxt',jt (t = 2h + 1, ... 2h + -1) 

(see figures 10 and 11). Therefore the group G has the presentation: 

(I) G: {xij, xX j ,Rij Sij , (j < ji) T21-1, T21, T1_1, 21, Q Q 

j = 1,} K/i y- 

1 =1, ,k 

t =2h + 1,*** , 2h + -2 

t' =2h + 1,*** , 2h + -1 

This presentation of G differs from the presentation we described in Chapter I, 
in that we have eliminated the generators corresponding to the edges which are 
under the bands. We have suppressed also the relation X2h+;,_l,j2h+,-_xl-1 which, 
as we know, is a consequence of the other relations. 

Let us introduce generators aij(i = 1, ***, 2h + A - 12 j = 1, ***, ji) de- 
fined by means of the relations A' = Xi, xija-ij. Using Aij we obtain from 
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x , + B~~~~~zz 

'Ak 'A 

0011~/ 

FI. ,0 
22-t2J~ % 

t4 I 

I 

FIG. 10 

'Ij 

_11~~IG 11 

r9^, 

%t,4R,.1 T1 1 ?1 

S. ""Jt\ \ 1 

Rij and Sij the relations, Rj = a ia and S$j = apqxijaTpxi$j+ re- 
spectively. 

It is clear that Rij is a consequence of R j and Aij, and similarly Sij is a conse- 
quence of S'j and Aij . Therefore we have: 

(II) G: {Xij, Xt;, aijlR'j, S'j, T'j-1, T'i, T21-1, T21, Qt, Qt , ) } 

From R$j, S'j, Ai, and Aij+l we obtain the relation rij = a ajjapladj+j 
(i = 1, ... , 2h + ,u-1; j = 1, * , ji). Introducing the relations { rij } we can 
suppress the relations { Sj },since S'j is a consequence of R' , , A ,ijandA ,j+1. 
Each generator X4j (i = 1, * , 2h + ,u- 1; 1 < i < ji) appears only in the 
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relation Aij = x, 7xija.j1 which defines x'j in terms of xii and aij ; therefore we 
can eliminate the generators Xij and the relations Aii (i = 1, ... , 2h + -1; 
1 < j < ji). The generator xi, appears only in the relations Ril and Rd2, Rs = 
a!q'xiialq'x71 - defines xi2 as the transformed a qIxiia IpI = X12 of xil by a I 

?1 T1 ~-1 If we substitute this expression of x12 in Ri2 = aP 'q,,xi2ap',q,,xia we obtain 
?1 ?1 :F1 T 1 - 1 ?1 

ap" q,,apqxilapq',apIq"xi3 , which expresses xi3 as the transformed by a~ P,,, a lI 
of xi,. Introducing this expression, we can eliminate the generator xi2 and the 
relations Ri, and Ri2 . By iteration of this process we can eliminate the generators 
xi2, xi3, ., xji- and the relations R$l, R/2 R$',ii- introducing the 
relation Ri = wi(a)xi1wtj1(a)x-i'Ji (i = 1, * * *, 2h + u- 1), where wi(a) is the 
word in the {aij} which is read off from the projection of s by going along a, 
in the positive direction. For each crossing of an edge ap, over ai, there is an 
appearance in w(a) of the generator ai or its inverse al according as the crossing 
is from left to right or from right to left. Therefore, we have: 

G: {xil , Xij ; xil, I ; ai,/ri., R;, A,, Ai, IT1-1, T2 

T21-1, T21 , Qt , Qt } 

Each generator x11-, (1 = 1, * , k) appears only in the relations 

21-1 = x211,X21x and A2121,1 = x2 

From T'1_ we have xI1 = x211, and substituting in A2u1 we obtain the rela- 
tion U211 = x1,1x2iiai-il . Analogously, from T21-1 = X21.1,f, 1-2X1,f,2 and 

= 21 , we obtain U21 = xhL1,,,,..1x21, , a1i',, . From 
T21 = X2iX21..i2 21_ and A21,1 = X2xuX2i,1a2l, , which are the only relations in- 
volving X2 1,1 we obtain x2ii,,211 x2/-aI2i, from this and 

A21_1, i21_1 x21_1,, ,1_,X21-J,_ ,js a2l 1-, j21 - 
-1i1-1 -1ztjt 

we have a2 lx2lx2ii,,1 s1a-Li,1211 = V21 . From Q1, = xI z'e, and Asw1 = 
xvixtwiavi we have xt, j, xt 1at l, and from this and Ag't,; = x',1jtgextgetajt , 
we obtain Wt, = avixt, 1xt dt aels (t' = 2h + 1, , 2h + ,u - 1). There- 
fore, we have the following presentation of G. 

(IV) G: {xi, , xiji , aii/rij , Ri , U21-1 , Y21, V21, Wt, IT21, Qt}. 

where rij = ap, ai, apq ai l+i 

Ri = wi(a)xii wi'(a)xT=,2+ 
-1 -1 i = 1* 2h + , 

U21-1 = X21,l X21..X2-l2l a21 J2.,. 

V21 = 
a21,1 X21,1 

X21-,:2l,_ a2;.1,2 
l 

=1 1 -1 a 1, 2h + 1, 2h + 
= at'1 Xtji xt'jt' at j'+ 

= x~i,,21x;-A1i~i t =2h+1,) ,2h+/L-2 
T21 =X212I X21+1,1 

Qt =xtjt Xt+iti 
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From Wt = at jxt jx jt atwj,, and Rt, = w(a)xtw'Wtjxt7j,' we obtain the 
relation R' = wt(a)xeqwtY"(a)at j,'at'x7t'1i (1 = 2h + 1, * . , 2h + I - 1), 
and Rj, is a consequence of We, and R'V . From the relations 

-1 -1 -1 -1 
U21-1 = x21,1x21.1,1 a21-..1,1 and V2 = a21,1 x21,1 x2 1.1, j21 la21-1,j21-l 

we obtain a21,la2l-llX2x-ll X2l-lj21-.ai1L1,j21.l.2 , and from this and 
R2 1-1 = w2...1(a)X21..1,1 W2 I1- (a)x211,j2 1- I 

we have R2.11 = W21-1(a)X2i-1,1w2-L(a)a21i 1j2 -.a2ija2-,X2iL1,i (1 = 1, k), 
and R21-1 is a consequence of R'1_1, V21 and U21_1. From 

-1 -12-1V-1 U21 = x21..1,j21-.x21,j21a21,j21 and V21 = a21,1X21,1x21.1,j21_-a2 -,j21_ 

we have a21,lx2,l X2 1, ja21aj,,a21-.1,,j,_. , and from this and 

R21 = W2,(a)X21,1 W21 X2 l 

we obtain the relation 

R = w2(a)x21,1w21(a)a21,j, a2iL., 21._1 a21,1x2, (I = 1, ., 

and R21 is a consequence of R1, U21 and V21. Therefore G is given by: 

()G: Ixii, xiji, aijlrij, Ri, U21-1) U21, V21, We I T21 I Qf I) 

where 

FW2l.1(a)X2l1.1,1W2l. .(a)a2l1- 1, ,i2 , a21,ja21..1,1 X2 1-1,1 (i = 21 -1) 
-1 1 -1 ~ ~ ~ - 

w21(a)x21,1w2 1 (a)a-2, ai-i.,2 1 a2l,1 x21,1 (i = 21) 

wt,(a)xt,'wVt,(a)at,l>, at,,xYi (i =t = 2h + 1, ... , 2h + -1). 

Let us define a homomorphism 0: RH >-* T[t, t' ] of the group ring RH onto 
the ring Tlt, t-1] of integral polynomials in t and t' as: 0(tt') = tt' (i = 1, * , 

Let (a lax)" II be the Alexander matrix corresponding to a presentation of 
G, and let M(t) be the matrix M(t) = j j (dtu/d4) I. 11 We know that the Alexander 
polynomial A(t, * . , tI) of K is the g.c.d. of the minor determinants of 
11 ( 1/Ox)* jj of column deficiency 1. Therefore the polynomial A(t, * , t) will 
be the g.c.d. of the minor determinants of M(t) of column deficiency equal to 1. 

We are going to proceed to the calculation of the matrix M(t) which corresponds 
to the last presentation of G. 

Observe, first of all, that O/(xii) = 40(xsii) = t, and /4(aij) = 1 (i = 1, **, 
2h + A - 1, j = 1, * I* ji). Therefore c4'0w4(a) = 1 for every word w(a) in 
the {aij}. 

Let us study the contributions made to M(t) by the various types of relations. 
(From now on, all the derivatives will be considered to be evaluated in 9[t, U1]). 

1. rij- ap= aap aij+l 
the only non-zero contributions are: 

arj _ 1 and Ori=, 
Oaij 9a, jf 
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2. (a) R' = wi(a)xilw7'(a)a-'ai+i,,aij xj,i (i = 21 - 1) 
the only possibly non-zero contributions are: 

iR' - Owt(a) (1 t) if apq # i , aj+1,1 ai-,1 Oapq dapq 
aR' - 

-i(1 
- )-1 R' _ wi(a) d = Ow (a) ( t) -t; d = Oa (1 -t) +t; 

Oaij i Oai; iai+l,, dai+ 
OR, = dwt(a) (1 -t) + t 
Oa,1 Oa~1 

(b) R' = w(a)xw1(a) (i = 21) 
ORk - wi(a) Oap = aq (1 - t) if apq $ ai1, aij;, iai-,ji- 
dOap, aap, 

=_ _ (1 --t) -t; OR' - Owt(a) (1 -t) -t; 
Oaij; i aij i 49aj_ ,j_, 4 dai-ij ;_1 

aRk _dwi(a) _ 
- - ~~(1 t) + t 

49aii 4aii 

(c) R'i = wj(a)xiwj(a)a-iJjajix- (i = t') 
ORs - awi(a) (1 t) if apq $ aij,1 aii 
Oapq Oapq 

aR~ _ wia) aR _ Owi(a) d~i = dw~a) (1 t) -t; aR= wa)( - t) + t. 
49aiji 49aiji 49aii 8ai 

-1 -1 3. U2... = X2jljxjjja21 1 l 
the only non-zero contributions are: 

49 U 1-1 -1 4 U 21- 1 __9 
_____ 1 

dU___ = _t-1, -U~g_1= t=U and 
49X21,1 aX21-1.1 d9t- 

4. U21 = x21,,1x21.1,ja2lil,1 

the non-zero contributions are: 

9U21 - _l U21 = GI U21 
i- 

= ax_,,,, - -"2 
= 

dX21-1.j21-1 - X21,>2 a 

5. V21 = a2l,lX21l,,lX2ll,j21..1a2l-l,j21.- 

__V21 = 1 V21 t-1 aV21 = a9 V21 
=a2,1 * X21,1 dX21-142 1- -* =a2 -1421-1 . 

6. wt' = av'xtxh',,l i'a7-'it 

Wt' 1; -=-t = t; Wt 
49ap, 49xv, 49xvi", idaj~j, 
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7. T21 = X21,j21X2-1+1, 

aT21 = T21 - 1. 
= 1 and=-l 

8. Qt = xt:xtt+i,i 
-Q = 1 and 

- 1. 
axtj, (Oxt+i.i 

Consider the submatrix Bi of M(t), corresponding to the generators ail, 
at,... , aiji and the relations ril, ... , r1jjl. Observe that all elements in 
the same rows and outside Bi are zero. Consider any element g outside Bi and 
in the column corresponding to aij. If we sum to the row to which g belongs, 

ail ai2 a,-3 .. ar 

ril1 1 0 0 
ri2 0 1 -1 0 

ri3 0 0 1 0 

rij, 0 0 0 1 

the rows corresponding to r rij+i, , rij, multiplied by -g, we obtain a 
matrix in which the element appears in the column corresponding to aiji . There- 
fore, applying this process for every element below Bi (i = 1, * , 2h + ,s-1), 
we obtain a matrix M'(t) equivalent to M(t) in which the only elements different 
from zero below Bi are in the columns corresponding to aiji (i = 1,*., 
2h + o - 1), and this element will be the sum of the elements of the original 
matrix which are in the same row and in the columns corresponding to ail, 
as?, ...*, a i.j . 

Let us study the elements of M'(t) in the rows corresponding to R' (i = 1, **, 
2h + -1). 

(a) The elements different from zero in the row corresponding to R21-1 
(I = 1, ... , h) are Eq~'P(Owil(a)/Oapq)(1 - t) in the column corresponding to 
aprp, if 

p $ 21 

and ,Eil(aw2ul(a)/aa2,q) (1 - t) + t in the column corresponding to a2l,521 
(see above). 

(b) The elements different from zero in the row corresponding to R2I 
(I = 1,..., h) are Eqi(Ow2i(a)/aapq)(1 - t) in the column corresponding to 
apjp Xif p # 21 - 1, and E2 1 (0w21(a)/a21-l.,q)(1 - t) - t in the column 
corresponding to a21-1 i2 -, (see above). 

(c) The elements different from zero in the rows corresponding to R't, 
(I' = h + 1, ,2h + ,u- 1) are Pi (awt,(a)/capq)(1 - t) (p = 1, 
2h + ju-1). (See above 2). 

In M'(t), the only element different from zero in the column corresponding to 
aij (i = 1, , 2h + A -1; j = 1, ,ji - 1) is in the row corresponding to 
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ri and its value is 1, therefore it is clear that M'(t) is equivalent to 

(i= 1, ...2h + -i) 
aij(j < ji) alija2j2 Xi 

,h+ip-I Xil, xii 

rj E 0 0 

R. || 0 A 0 

M"(t) = __ _ __ _ 

w 
v C B 
T 
Q 

where E is a unit matrix. 
The matrix M"(t) has one column more than rows, therefore for calculating 

A(t) we may use the theorem in ?3, chapter I. (1 - t)A(t) will be equal to the 
determinant of the matrix M"'(t) which is obtained from M"(t) by deleting the 
column corresponding to X2h+,,lj2+,,_l ; therefore: (1 - t)A(t) = I A I B' j, 
where B' is a submatrix of B in M"'(t). B' is of the form, (see opposite page) 
which, clearly, is equivalent to a unit matrix. Therefore, (1 - t)A(t) = | A j, 
where A is the matrix corresponding to the generators ais (i = 1, 

- 1) and to the relationsRt (i = 1,** ,2h+ -1). Now, since 

D'=l2(aWp(a)19aqj = Vpq (p = 1, . , 2h + , 1- 1, q = 1, ... , jp) 

(see the definition of wp(a) above, and the definition of the crossing numbers v,, 
in ?4, chapter I), we have: (see last paragraph of Chapter I, page 64). 
Multiplying each row by t'1, transposing, making use of the relations between 
the crossing numbers (?4, chapter I) and multiplying the rows by -1, we obtain 

(-,ys-1)t 
( (1 - _-t)A(t) = (1 - t')A(t'), or A(t) =( )t # A(t ) 

which completes the proof of Theorem I.8 
2. THEOREM 2. There exist integers vP, * , VA , such that, A(t1, t2, * , t,Q) = 

(-1)~tt * * t,4 A(t7', * , 4k1). Theorem 2 is an immediate consequence of the 
following two lemmas: 

LEMMA 1. -Let A(tn1, * , to) be the polynomial in t, obtained by substituting 
tnifor tj (i = 1, * * * , ji) in A(t1, .., t,), where ni, * * * , n, are arbitrary positive 
integers. Then, there exists N, such that: A(tn,, ... ,tn#) = (- l),,tg (t-n, ... ,t-n,). 

LEMMA 2. If an integral polynomial P(t1, . , t,,) in t1, * ..., t. has the property 
that for arbitrary positive integers n1, , n,, the polynomial 

-~~~~~~~~ Q(t) = p (tn I tn,,) 
8 The genus of h a knot K is defined to be the genus of a surface of minimum genus which 

can span K. As a corollary of Theorem 1 we have: 2h + A - 2 > 00A(t), where 00A(t) is 
the degree of A(t). Therefore, 90A(t) + 2 - u is a lower bound for h. 



Xul X21 Xi1l X2jI ... X2h-1,1 X2h.Z X2h-I1.i2h-i X2h.3gk XV4+1l, XZI+1. i+l * X2h+p-I 

U t- -t' 0 0 .0 0 0 0 0 0 0 0 
V2 0 t-' t-' 0 0 0 0 0 0 0 0 * 
U2 0 0 -t-' t-1 ... 0 0 0 0 0 0 0 0 
T2 0 0 0 1 -1 0 0 0 0 0 0 0 

B' = 

U2h-I | 0 0 0 0 * t -t 0 0 0 0 0 
V2h 0 0 0 0 0 * -t l t 0 0 0 0 O * 
U2h 0 0 0 0 0 O -t-' t-0'0 0 0 O 
72h 0 0 0 0 0 0 0 1 -1 0 0.. O 

W2h+. | | -t' t-' ... 
Q2h+I | | 0 1 -1 0 

0 
W2h+,-.I 0 0 t-' t- t' 

aj,1 a2,2 ... a2h1.fl,4h a2AJ,1 a2h+li.+, ... a2h+p-I i2h+,-1 
0 

1 z RI v11 (- ), v12(1 - t) + t ... V2A.2l(l - t), V,2h(l - t) V,2h+l(l - t) ... VLe2h^+-l(l - t) O 
R. 210 v(1 - t) - t, v22(1 - t) ... v2 2hl(l - t), V22h(l - t) V2,2h+l(1 - t) V2,2h+p-.(I - t) 

R2h.. V2h1,1(1 - t), V2h-1,2(l - t) * * 2h-, 2h-1- t), V2h., 2h (1 -t) +t V2h.1,2h+.(l - t) * V2h-1,2h+p_,(l - t) 
(I - t)A(t) = R |h V2h,1(l - t), V2h,2(l - t) * * 2h.2h_1(l - t) -t, V2h,2h(l - t) V2h,2h+l(l - t) V2h,2,+p.1(l - t) 

R2h+1 V2h+1,1(l - t), V2h+l,2(l - t) ... V2h+1, 2h.1(l - t), V2h+1,2h(l - t) V2h+1,2h+l(l - t) *- V2h+1 2t+p_1(- t) 

R2^h+M-| V2h+-1,2(l - t), V2h+A-1,2(l - t) ... V2h+_1.2h-i(l - t), V2h+H-1,2h(l - t) V2h+H-1,2h+l(l - t) ... V2h+p_1.2h+p_,I t) 

,A 
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I 
&'. I Xtij. 

FIG. 12 

U1 

FIG. 13 

is8such that there exists N for which Q(t) = (-1)t. Q(1/t). Then, there exist 
integers vi , ... , P,, such that, P(t1t, *, t,,) = (-1)ytl *. t,,#P(t1, , 

PROOF OF LEMMA I. Let {xij/rij} be a presentation of G obtained from any 
projection of K, where xij (i = 1, * * *, ,u; j = 1, * * *, ji) denotes the generator 
corresponding to the edge xij belonging to the projection of Xi, and rij (i = 1, 

* ,; j = 1, * , jk) denotes the word x?1 :T1 x1 which is the rela- 
tion corresponding to a crossing of X over Xi (fig. 12). Consider the matrix 
M(t1, ***, tu) = (Or',q/xij)*" 11, in which we have suppressed a row corre- 
sponding to a relation which is a consequence of the other relations. We know 
that the minor determinant obtained by suppressing, in M(t1, * *, t,), the col- 
umn corresponding to xij is 

-4 (t 
. 

) A (t ). . . 
Y Q ) 

* 
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FIG. 14 

We are going to construct a knot Kn I... now of multiplicity n, + n2 + * + n, 
associated to the projection of K, where ni, , n,, are arbitrary positive in- 
tegers, as follows: 

Let us surround each Xi by a tube Us (i = 1, A, ,) in such a way that the 
central line of Us coincides with Xi (fig. 13), and U,. n Uj = 0 if i $ j. Consider 
in each Ui, ni copies X , Xin) of Xi, in such a manner that the projection 
of XiK+l) is always on the left side of the projection of XIK) (k = 1, * * , ni - 1) 
(fig. 14). Let K,...,il be the knot whose components are X(P) (i - 1, IA; , 

p 1, i). 
We shall proceed to the computation of the group G' of Knl,. () . 
Corresponding to each generator xij of K, we have ni generators xiJ, * e 

xi, ) of G'. Where xfP) (p = 1, ., ni) is the generator corresponding to the 
edge xi?) which belongs to the projection of XiP). 

Corresponding to each relation rij = x j'x?1 x at +1 of G, we have ni rela- 
tions r8') = (x )> j ) xi,+1 (p = 1, , ns) (fig. 
15). Therefore G' has the presentation 

p =n,** i 

Let us introduce generators Xii defined by means of the relations Rij =x(}) 
Xni-) *... X ] 1, ; ji). From r8 and Ri j, we obtain 
8n~?) (X1, x(i 

= = 
1,~)_ 

) = X+1, ~Xi 'X51j i 1 (p= 1, * . , ni), and rP) is a consequence of Ri j 
and s8P). From the relations s(', , sj'n) we obtain Xil xin') ... Xi9XV' 
(x~$i ,*x~i?+Y1)-1 and using Rij and R, j+1 we have uij = Xi, 
(i = 1, **, ; j = 1, ,ji). Each relation Rijl & = 1 jXii) is a conse- 
quence of the preceding Rij and s8') (p = 1, * , ni), therefore we can delete 
the relations Rij (j > 1). The relation s~i) expresses x(2) as a transformed of 
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* in) () em} 

LJ 

Xi,,J+I )?itfw )i pit 

(2) ~ ~ ~ s 
X.. ~ ~ X~ 

FIG. 15 

il) and si2) expresses x(3) as a transformed of xs2), therefore, using JPl) and 
%, 2) we can express x ) as a transformed of x( l), and introducing this expression 

we can eliminate the generator xs.2) and the relations s! l) and s!,2) . Repeating 
this process, we can eliminate the generators , X (,3, y , X , and the 
relations s , *, s (i = 1,* , a), by introducing a relation QzP) = wt(X) 
xil)uwT '(X)xi )-', where wi(X) is the word in the 1Xij2 which is read off from the 
projection of Xi by going all the way along Xi from xi, to xi, . For each crossing 
of Xj over Xi, from left to right, there is an appearance of a generator Xi, in 
wi(X), and for each crossing from right to left there is an appearance of X7J . 

It is clear that from the relations uil, . , ui ji we obtain wi(X)Xiw7'(X)Xi1', 
and from this and Ril and Q8'), QII), * , Q( i4) we obtain Q8'i). Therefore we 
can delete Q~?i) (i = 1, ... , , Finally, since the relation uij = I i 
X;'+, has the same form as the defining relation rij = xei, xijxTl"'xi j+l of G, 
and we know that any of the { rijI is a consequence of the others, then any of 
the I u ij I will be a consequence of the others, and we can delete it from the presen- 
tation of G'. Therefore G' is given by: 

(II) atG': {Xij; x'~l/uij; Rl; Q(P) ii 

and one of the {uijI is deleted. 
The commutator factor group H' of Kn nA..., is generated by {tip} (i = 1, 

Au; p = 1, *., ni), where tip = 04(x4xp)). Therefore i/'4(Xij) = ..* ti, 

Let us calculate the Jacobian matrix M' corresponding to the presentation 
(II) of G', (Page 77). 



xii x ~ ) x (2) ... z (m) 
x(1) x(2) ... x(n 

) ... x(I) xpl) ... x l) 

uii | | M(l) 0 0 0 

Rn Vil V12 ... V1nR 0 0 0 0 0 ... 0 
R21 0 0 0 O V21 V22 ... t2n2 | 0 0 0 * 

C 
Rja l l0 0 ... 0 0 0 0 ... v, , u2 . . Zn 

I I -.. 0 0 0 0 0 0 0 
Q(2) 0 fb1-i... 0 0 0 ... 0 ... 0 0 0 Q(I) 0 0 I i.. O 0 0 ... 0 ... 0 0 0 Z 

Q2I) 0 0 ... 0 0 ... 0 ... 0 0 

Q(2 0 0 ... 0 0 W2- 1 ... 0 ... 0 0 ... 0 

* * * * * * . * * ~ ~~ ~~~~~~~~~~* z 
Q(a2-i) o 0 ... 0 0 0 1O 0 0 ... 0 0 

1~21) 1 . 10 I I 

QQi) 0 0 ... 0 0 0 ... 0 ... if- 1 o 0 0 
Q(2) 0 0 ... 0 0 ... 0 ... 0 wb-1. 0 

Q(a-) 0 0 0 0 0 0 0 0 iOO- 1 0 
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where M(l) is obtained by substituting li = tilti2 = .. tiri for ti (i = 1, ,A) 
in M(t1, , Idt) (see ?3) vip (i = 1, , A; p = 1, ni) is a unit of RH', and 
vi = 4/'4(wi(X)) (i = 1, u, i), and A is a submatrix whose form we do not 
need to discuss. 

The matrix M' has one row less than columns, therefore (1 -t11t12 . - tini) 
a' = I M" 1, where A' is the Alexander polynomial of Knl n, and M" is the 
matrix which is obtained by deleting the column corresponding to Xi, in M'. 
Therefore (1 - t11t12 . . . tini)A = M*(l) I B 1, where M*(l) is the matrix which 
is obtained from M(l) by deleting the column corresponding to Xi,, and there- 
fore I M*(l) I= (1 - t11t12 * * *tlnl)A(l1 X 12, * * *, l), where A(11 , , l,) is the 
polynomial obtained from A(ti , * , to) by substituting li for ti (i = 1, ,. 
B is the submatrix corresponding to the generators {x P) I and the relations {R} 
and {Q P)1. Therefore it is clear that I B = vJJI=J (wi- 1)ni1, where v is a 
unit of RH'. Therefore: A' = fI$. (w, - 1)ni-A(l1, , 

If we substitute t for tip (i = 1, , ; p= 1, , n) we have: '(t) = 

Ito ( -1)?ilA(tnl, , te), where Si (i = 1,) , ) is a monomial in t.9 
By Theorem 1, we have 

11=i (i- 1)n -1A(tn,, , t) no) 

- (-l )n1+- +nJLtN JrJ 1 (.-1 - 1)nlA(t-n . -n, 

or A(tni, ... , t ll) - (1)MtN'A(nt-1, 
n , F,), which completes the proof of 

Lemma 1. 
Lemma 2 is a particular case, for P = (-1)P' of the following. 
LEMMA 3. If two integral polynomials P(ti , , t,.) and P'(t1, , t,.) in 

ti , * , t,t have the property that for arbitrary integers ni , . * , no the polynomials 
Pnl,..,n;)= p(tn1, ... , ton) and P'n1,...n, (t) = P(tn, ...I , tl) are such that 
there exists an integer N(ni, , n,,) for which Pn1 ,; (t) = t 
Pn ...n, (A ). Then, there exist integers Pi , *, I, such that 

P(tl, . Qo = tl . . . t.. 'U,** h 

PROOF. We shall prove this lemma by induction on the number ,u of indeter- 
minates. 

If u = 1 the lemma is obviously true. If ,u > 1, 

P(tl,** to) = Ort(tl X .. *4- Xt_1) + Or+i(tl, * Ax) +** 

+ 0 (t, X I ** tool) tM, , 
and 

PI (t,***, to) = 4/p(tl, * ** tall U + 4~~ At,*** ,_l o+ 
+ 46qJtl X ti) tfq 

where cr+i and 4/ip+j are polynomials in t1, , tax, and Or I 08 X pp 4Iq are dif- 
ferent from zero. 

9 It is clear that a projection of K can be taken such that wi 1 (i = 1, , ,u) 
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Let us choose integers al, ... , aj1 such that 

'Or (gal . . . g all-,), <>(tal, . . . g ab_% *pgo(gal . ... g all-l) Ad4" (gal1 . . . gbl 

are different from zero. Let us denote by fi(t) the polynomial 

,,i (tal, .. * tall - 1 ) (i = r, r + 1, .. * 8 ) 

and by s,(t) the polynomial # (tal, ... , tal1) (j = p, p + 1 q). 
Let us denote by ci and 9' the degrees of fi(t) and sj(t) respectively, and by 

ti and S' the degrees of the terms of minimum degree in fi(t) and ikj(t) respec- 
tively. Let a, be larger than 2 sup. (ar, , * ; 'pX, aq). We have, 

Pa ,...,a. (t) = fr(t)tras + ~r+i (t)t(r+l)aP. + + _ (tta, 

Pali..-,a (t) = 7p(t)tPaP + a,+1(t)t(P+l)aP + + _ 

Therefore: 

(1) +r(t)traP, + + + (t)t8a = tN(al . ,a-d) [+ (t-i)t-paP + + /q (t_1)t-qa,] 

It is clear that, if i < i', the degree of each term of i(t)tiaP is larger than 
the degree of every term of i(t)tiaP, and therefore the degree and the min- 
imum degree of the left hand side of (1) are 68 + saM and ar + raM respectively. 
Analogously, the degree and minimum degree of the right hand side are 
N(al,* **, a,) -p - pa, and N(al, * * , a,,) -9 - qau respectively. We 
have: 

c8 + sa= N(a, a. , a S)-p-pay 

and 

Sr + ra N N(al,**, a,,) - lq - a,, , 

therefore 

Os - Sr + a,-3 = a.(q - p + r -s) 

and 2 sup (or C, * ; 1 . . . * * )S r + I) a as+Ias Iq-p + 
r - s 1, so we have q - p = s -r. 

Now let ni . * *, n.,1 be arbitrary, and let us denote by fi(t) the polynomial 
,,i(tnlx *... * tn-1) (i = r, * *, s) and by sj(t) the polynomial t,(tn,, ... , tn,.- ) 
(j= P, . ,g). 

Let ci and 9, be the degrees of fi(t) and sj(t) respectively, and let As and 6' 
be the minimum degree of fi(t) and sj(t) respectively. And let nM be larger than 
2 sup (ar aX , a' X , am). We have, 

(2) f (t)trnT + ... + of, - xt& = tN(nln,,) [% p(t- )t + ... + sQ (t )t ] 

As before we have 

3) Sr 
I 
rn, = N~n.. n....... . - 

Atq 
- en 
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Let a + in, be the degree of a term of fi(t)ttny (r < i < 8); that term cancels 
against a term of degree N(ni, * * *, n,,) - ijn,, which belongs to tN(n1.n, 

A i(t-1)t-j'jn (p 5 ji 5 q). Therefore 

(4) a + in,, = N (ni,** n,,)--jn, 

From (3) and (4), we have 

br- a + - 3= n, (ii + i- r - q) 

and 2 sup (61, 1 * 1 .. * 8 p 1a)> ar- + I 61 - > n. I ji + i 

r - q 1, therefore 

(5) i+ ji=r+q; 

that is, every term of fi(t)tin, cancels against a term of tN(n1, -,n)ji(t-,)t-j1n. 

where ji is given by (5). 
Thus Xi(t)tinp = tN(nl, ,n))%,(t-1)t-jjnj or 

(6) ~i =t t N(nl ,- -,n,.)-in ;-^in, jj(t1). 

By the induction hypothesis, there exist integers Pi', Yt 2, P*ji,,- such that 

(7) it,**,t,,_0 = tl t2i . .. t;ti -o,(ti-l .. t~g-, ) 

from (6) and (7) we have 

N(n1 , * , n,) = 'il1n + Pi2n2 + * + Pi,,,-ln,,-l + (i + ii)nr, 

or 

N(n1 , * , n,,) = Panin + Pi2n2 + * + Pi,,,-, n-l + (r + q)nl, 

for i' $ i we have 

N(n, . * * , n,) = zja,1n1 + Pi'2n2 + * + Pi._i,X-,n8- + (r + q)n, 

then n1('i -Pia1) + * + n,-, ( - ,,,- -Pi',,,-,) = 0, since this holds for arbi- 
trary n1, , n,,_, we must have 

Psi= Pi', I * ,# = 

and we may write 

N(ni , ** , n,) = Pin, + '2n2 + * + n.-lnP.- + ,n,, 

where the {I Pi} are independent of i, and P, = r + q. 
Therefore, from (7), we have 

P~t1,ttst,,) 

-= tj ( tA~j Z~ i )t'K , tI1)tA = t- j ttP .(t .. It 4)ti 
- I tA 1 s jf(A ,t,1) 

- .;'*t Ejp- itl . . , Wljt = t"' . . . P't,...t) 
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and the lemma is proved. 
3. THEOREM 3. Let A(t1, ***, to) be the Alexander polynomial of a knot K of 

multiplicity A, let X1, * * *, X,, be the components of K, and let A(t1, * * *, t,-,_) be 
the Alexander polynomial of the knot K' obtained by removing X, from K. Then, 
if 1 = 2, A(t1, 1) = (t- 1A(t1)/t1 - 1), where 1 is the linking number of the 
components of K, and if 1A >2, A(t1, *.,t,,_., 1) = (tltl2..t tal - 1) 

(t * *...*, tt,,-), where li (i = 1, ... , *, - 1) is the linking number of X, and Xi. 
PROOF. Consider any projection of K, and let {xij/rij1 be the presentation of 

the group of K obtained from the projection, where xi1 , ... , xi,ii(i = 1, .* , 
are the generators corresponding to Xi , and rij = x xiT, i xil corresponds 
to a crossing of Xi, , over Xi. Consider the Jacobian matrix 

M(t, ***.. , t,.) = || (Orpq/Oxij) 0 11. 

We know that the minor determinant Di obtained by deleting the column cor- 
responding to a generator xij is (ti - 1) A(ti X ... * t,). Therefore if we make 
t;;= 1in M(ti 2.. 2t,,) the value ofDi will be (ti - 1) A(tlx 2 ..2t;-_1 ) if 
i # is. The generators {x,,j} appear in the relations rj, = x ? x T1x7+,, 1+1 which 
correspond to crossings of Xp over X,,, and in the relations 

rpq = X,:PlXpqXpl Xplq+l 

corresponding to crossings of X,, over Xp . 
Let us see which are the contributions of these relations to the matrix 

The contributions of rj, are: (rj/Oxr,,)0 = 0, (Orj8x,/j)1) = t?1 if F6 r, 
(d~r,,jdx,,j)g = 1 if 1A = r, and (Ory j/Ox,,c1) j+-) -1. The contributions of 
rpq are, (Orpq/Ox,a)e,1 = i (1 -tp), (Orpq/Oxpq) t1 = 1 and 

(Orpq/Oxp q+i)g,,1 = -1 if p $4; 

the case p = ,u has already been considered. Therefore, M(t, , tall , 1) is 

xii(i X A),,l X02 ... xAj 
rij 

(i 1)A B 
MA(t, , tai.1, 1) = 

rg get -1 0 0 

r,,2 0 tt 2 -1 0 
0 1 

r,, j. -1 0 0 

in the submatrix of the lower right corner, there is an appearance of tti for each 
crossing of Xi over X. (i = 1, A, ,), and ei = 1 or-1 according as Xi crosses 
over X. from left to right or from right to left. Therefore, the determinant of the 
matrix in the lower right corner is t1t 2 .* * l - 1. 
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The submatrix A is equivalent to the Jacobian matrix M'(t1, * *, t,-,) of the 
knot K'. Therefore, the determinant D1 obtained from M(t1, -*, tl1, 1) by 
removing a column corresponding to a generator xii(i $ p), is 

Di = (tll .. *;.; * ti-1 1 A'i 

where A' is the matrix obtained from A by removing the column corresponding 
to xij . 

If s = 2, 1 A' = A(ti), and if it > 2 A' = (ti- 1) A(ti, * t,,-). There- 
fore, if s = 2 
(1) (4o-1) A(ti - 1) = (t41 1) A(t,), and if A > 2 

(2) At,*- ol )_(tll @,ta 1) A (tl,*- ti) 

which completes the proof. 
If we make t, = 1 in (1), we obtain 

A(1, 1) = 41, 

and if we maket, = * t,,_ = I in (2) we have A(1, ,1) = O.there- 
fore we have proved Theorem 4. 

If A(t, .** , t,,) is the Alexander polynomial of a knot K of multiplicity I, 
then if j = 2 A(1, 1) =1, where 1 is the linking number of the components of K, 
and ifM > 2 A(1, * , 1)=O. 

CHAPTER III 

Let C be a circle in euclidean 3-dimensional space, and let T be the torus whose 
central line is C (fig. 16). The closure of the interior of T is a tube T. The closure 
of the exterior of T, together with the point at a, is a tube, and it will be de- 
noted by E. 

Denote by b the circle determined by the intersection of T and the plane of 
C. Let a be a meridian circle on P. Let us orient a and b in such a way that a 
crosses b from left to right (fig. 16). 

Consider a knot K' of multiplicity 1 in E3. Let us surround K' by a torus P; 
whose central line is K' (fig. 17). The closure of the interior of T' is a tube T' 
which contains K'. 

Let K be a knot of multiplicity Li, with components Xi, * , X,,, contained 
in the interior of T (fig. 16). Denote by li the linking number of a and 
Ki(i = 1,*. , ). 

Let , be a homomorphism of T onto T', such that the linking number of K' 
and the image b' = +(b) of b is zero. 

The image +(K) = K", of K under 4, is a knot of multiplicity ji contained in 
the interior of T', (fig. 19). We shall prove: 

THEOREM 5. The Alexander polynomial A"(t4, * , t;,) of K" is: 

All(t. * 4t.) = 'AI(tlt * t'P ~t @ 
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FIG. 16 

it~~I 

- S - 
FIG. 17 

where A(t1, * Q, t,) is the Alexander polynomial of K, and A'(tf 1. tfr) is the 
polynomial obtained by substituting t' t'2 * * to for g in the polynomial A'(1z) of K'. 

PROOF. There is no loss of generality in supposing that the projection of b' 
is parallel to the projection of K', except in a segment S of T' in which 1/ and K' 
are braided (see fig. 17). 
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Consider a segment S' of S containing two consecutive crossings of K' and 
b' (fig. 20(a)). It is clear that by applying the deformation illustrated by fig. 
20 to each segment of T' containing two consecutive crossings of b' and K', we 

FIG. 18 

FIG. 19 

obtain a projection of T' for which the projections of K' and b' are parallel (fig. 
18). Such projection will be used to compute the group G" of K". 

We are going to compute separately the groups 1,(T' - K") and 111(E3 - T'). 
Clearly, 1,1(T' - K") is isomorphic to 1,1(T - K), and since T - K is homeo- 
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morphic to S3 - (K u e), where e is a circle isotopic to a in E, the group 

II,(T' - K") 

is isomorphic to the group of the knot K u e. 
Let us orient e in such a way that its projection crosses over the projection 

of b from right to left (fig. 16). From the projection of K u e we obtain a presenta- 
tion {xi, yi/rk) of II,(T' - K"), where the {xi} are the generators corresponding 
to the projection of K, and the {yj} are the generators corresponding to the pro- 
jection of e, and the number of relations is one less than the number of generators 
(see ?2). 

The group II1(E3 - T') is isomorphic to the group G' of K'. Let us orient K' 
in such a way that a' (the image of a under o) crosses over K' from right to left. 
From the projection of K' we obtain a presentation {u/g,,} of G', in which the 

S 

5=Xase-) -K--3sb 

(d) (I') 
FIG. 20 

FIG. 21 

number of relations is one less than the number of generators. The generators 
(u,), interpreted as generators of 111(E3 - T'), are represented by paths which 
go once around T' (fig. 17). 

The group G" is the direct productof thegroups 111(T' - K") and II,(E3 -T'), 
with identification of the elements which are represented by the same generators 
of 11(Pl) [13]. 

II1(P') is generated by a and A which are represented by a' and b' respectively. 
a' represents w(x) in 111(T' - K"), where w(x) is the word in the {Jxd which i8 
read off from the projection of K u e by going once along e in the positive direc- 
tion. w(x) is represented by a loop which is homotopic to e in E3 - (K u e) (see 
fig. 21; in the case illustrated by the figure w(x) = xi73 Xi2Xi,). In II(E3 -T') 
a' represents a generator u,, and by relabeling the { u% I we can make a' represent 
ul . b' represents yi in II1(T' - K") (fig. 16), since yi is represented by a path 
homotopic to b in E3 - (K u e). b' represents W(u) in II,(E3 - T'), where W(u) 
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is the word in the {uI which is read off from the projection of K by going once 
along b' in the positive direction. 

Therefore G" is given by: 

G" = {xi, yj, u/rk, qp, w(x)u', W(u)yl A. 

Let t1, * , t,, be the generators of the commutator factor group of G", where 
tj is the image (xi) + of a generator xi corresponding to the component 

Xj~j = 1, .. * *, ) 

of K. 
The image [W(u)]4' of the word W(u) is 1, since the linking number of b' 

and K' is zero. From the relation W(u)yY1 we have [W(u)]+ = (yi)+ - 1, and 
therefore (yj)"+ = 1 for all j. By the definition of w(x) we have 

[WX]+= t11t12 . . .It [w(x)]1V = 2 tt ) 

and from the relation w(x)uT' we have (ul) * * * t,", and therefore 

= t1 ... . 

for all v. 
The matrix M (t1, ***, tQ) corresponding to the presentation of G" will be: 

A 1 It2 ... X1 X2 ... Y1 Y2 ... 

q MI'(t) 0 0 
q2 

r,9 0 M(tl, ,t,,, 

w 1~Y (aw(x)j41 WZU_ -1 0 . .. 0d()* 

W(x)yY' (dw(u) Y 0 -1 0 . 

which is a square matrix. M'(t) is the matrix obtained by substituting 

t = tl t2 .. 

for u in the matrix M'(u) corresponding to G'. M(t1, * , t,, 1) is the matrix 
obtained by substituting 1 for t,+1 in the matrix M(t1, * , t,, t,,) correspond- 
ing to the group of K u e, where t,+1 is the generator of the commutator factor 
group of H11(E3 - (K u e)), corresponding to e. 
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Adding to the column corresponding to ul the columns corresponding to the 
remaining { u, } (v > 1 }, we obtain: 

Ul U2 ... X1 X2.. Yi Y2. 

q o M'(t) 0 0 
q2 

(a) MI(T, * .. *, to) 

0 0 M(t, 

w()ul| -1 (aw(x) )P 

W(U)yY1 0 (aw(u) Y 0 -1 0 ... 

since (aw(u)/au.) = 0, for if (aw(u)/au,) is evaluated in the group ring cor- 
responding to K', we have Z, (aw(u)/Ou) (u - 1) = 0 (formula (4)), and 
since u - 1 is not a divisor of zero, we have E (aw(u)/au,) = 0, and 

E2 (aw(u)/au')" = El, (Ow(u)/Ou')U t = 0. 

M'(t) is a matrix whose determinant is A'(t). From (a) it is clear that: 

U2 U3 .. X1 X2 *.** Yi Y2 

qi M'(t) 0 0 

(b) ~ ~ ~ ~ ~ r ?IQ ,~l *** t4 ) q2 
(b) M'(Vl, * 4' 1) 

w(u4)y71 (aw(u)j 0 0 

Consider the matrix: 

MQ(a) 0 0 ? 
T(t, *--,t) =to 

0 M(tl4, ,tj,1) 

O 
,WN)) (1-t) 0 -(1-t) O *.. 

which is obtained by multiplying the last row of b) by 1-t. 
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As a consequence of the relations Iq, I we have the relation 

q W(U)UW-1(U)U-1 

whose derivatives are Oq/au, = (Ow(u)/Ou,)" (1 - t) for v > 1, and as a 
consequence of the {rk we have r = w(x)yjw-'(x)y7', whose derivatives are 
Or/Oxj = 0 and Or/Oyl = t - 1. Therefore, each row of T(t1, * * *, tQ) is a linear 
combination of the other rows, and the ideal of column deficiency 1 will be gene- 
rated by the minor determinants which are obtained by deleting one column 
in the matrix obtained from T(t1, ***, t,) by deleting any row. In partic- 
ular if we delete the last row, we 
have: 

M"Q) 0 

0 M(ti .. I to), 1) 

and by Theorem 3 we have: the elementary ideal of column deficiency 1 of 
T(t1, * *, t,) is generated by 

{(1 -ti) (t - 1 Al(t) A(tl, * ,t,}( ,*** if > 1. 

Therefore, the elementary ideal of column deficiency 1 in M"(t1, ***, t,) is 
generated by {(1 - ti5) A( a(t1, , to)I (i = 1, ., ), and: 

to, ) = A'(tl t2 tk,)A(t1, . 

which completes the proof of Theorem 5 in the case 1s > 1. 
If i = 1, the matrix M(t1, , t* , I 1) is of the form: 

X1 X2 .. Y1 Y1 ... 

M(t) * 0 

0 0 ?I 0 0 

I 0 0 0 - 

where M(t1) is the matrix corresponding to K, and * denotes a possibly non-zero 
element. 

Therefore, if in M"(t1) we add to each row the last row multiplied by an ap- 
propriate factor, we obtain: 
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U2 U3 ... X1 X2 ... Yi Y2 

M'(t) 0 0 0 
M"() 

M(ti) 0 0 

-1 0 .. 0 
a i - 1 0 

0 0 .i 

0 0 -1 

Ow(u) (1 t) 0 -1 0 

where A is a certain matrix whose form we do not need to discuss. It is clear that 

ATI(t) 0 0 

M(ti) 0 

M "(t1) o -1 0 
a 

0 - 

0 - 
hence: A"(t1) = A'(tf) A(t1).10 
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