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Introduction 

The algebraic theory of torsion developed here takes values 

in the absolute Kl-grou p KI(A) of a ring A, with ~ torsion invariant 

T(f) e KI(A) for a chain equivalence f:C ~D of finite chain complexes 

of based f.g. free A-modules with zero Euler characteristic. 

Whitehead [24] defined the torsion T(C) ~ KI(A) of a 

contractible finite chain complex C of based f.g. free A-modules, 

assuming (as we do here)that A is such that f.g. free A-modules have 

well-defined rank; The algebraic mapping cone C(f) of a chain 

equivalence f:C ;D of finite chain complexes of based f.g. free 

A-modules is a contractible chain complex, so that the torsion 

T(C(f)) ~ KI(A) is defined. However, the expected sum formula for the 

composite gf:C ~D ~E of chain equivalences f:C ~D, g:D ~E 

T(C(gf)) = T(C(f)) + T(C(g)) 8 KI(A) 

only holds in general on passing to the reduced Kl-grou p 

KI(A) = coker(Kl(~ ) )KI(A)) = KI(A)/{T(-I:A >A)} 

The reduced torsion of the algebraic mapping cone 

T(f) = T(C(f)) e Kl(A) 

is the torsion invariant usually associated to a chain equivalence f. 

In particular, the Whitehead torsion T(f) ~ Wh(~) (~ = ~I(X)) of a 

homotopy equivalence f:X ~Y of finite CW complexes is the image of 

T(f:C(X) • )C(Y)) ~ Kl(~[z]) in the Whitehead group 

Wh(~) = Kl(~[~])/{iz}. The theory Of tOrs~ion developed here can be 

used in certain circumstances to lift the Whitehead torsion to an 

absolute torsion invariant T(f) ~ KI(~[~]) , which enters into product 

formulae for Whitehead torsion. 

The Euler characteristic of a finite chain complex C of 

f.g. free A-modules is defined as usual by 

X(C) = ~ (-)rrankA(Cr) ~ 
r=O 

The complex C is round if 

x ( c )  = o e 7z 
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The assumption on A that f.g. free A-modules have well-defined rank 

ensures that KO(~) ~ Ko(A) is injective, so that the Euler 

characteristic may be identified with the absolute projective class 

x(C) = [C] C ~ = KO(~)~ Ko(A) 

The absolute torsion of a chain equivalence f:C ~D of 

round finite chain complexes of based f.g. free A-modules is defined 

in §4 by a formula of the type 

T(f) = ~(C(f)) + BT(-I:A >A) G KI(A) 

with the sign term B : 0 or 1 depending only on the ranks (mod 2) of 

the chain modules of C and D. It is quite reasonable that a Kl-Valued 

invariant should only be defined when Ko-valued obstructions vanish! 

Actually, the absolute torsion is also defined if C,D are such that 

the Euler characteristic is O(mod 2). For contractible C,D the torsion 

of f is just the difference of the torsions of C and D 

T(f) = T(D) - T(C) e KI(A) 

The main result of Part I is the iQgarithmic property of 

absolute torsion with respect to composition 

T(gf:C )D >E) = T(f:C >D) + T (g:D dE) ~ KI(A) 

As such this is not very p~epossessing. The applications of absolute 

torsion are more interesting, but will be dealt with elsewhere. 

Parts II and III will deal with products and lower K-theory. Some 

of the applications to L-theory are contained in a forthcoming joint 

paper w~th Ian Hambleton and Larry Taylor on "Round L-theory". 

The following p~eview of the applications of the absolute 

torsion to topology may help to motivate the paper. 

Define a connected finite CW complex X to be round if 

x(X) : O C ~ and the cellular f.g. free ~[~l(X)]-module chain:complex 

C(X) of the universal cover X is equipped with a choice of base in the 

canonical class of bases determined by the cell structure of X up to the 

multiplication of each base element by ±g (g e ~I(X)). Thus C(X) is a 

round finite chain complex of based f.g. free ~[[l(X)]-modules. 

The absolute torsion of a homotopy equivalence f:X )Y of round finite 

CW complexes is defined by 

T(f) = T(f:C(X) >C(Y)) C KI(~[~I(X)]) , 

and is such that the reduction T(f) C Wh(~I(X)~ is the usual Whitehead 

torsion of f. A round finite structure on a topological space X is an 

equivalence class of pairs 
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(round finite CW complex K , homotopy equivalence f : K >X ) 

under the equivalence relation 

(K,f) ~ (K',f') if T(f'-if:K ~ X >K') : O 8 KI(~[~I(X)]) . 

For example, the mapping torus of a self map %:X ~ X of a finitely 

dominated CW complex X 

T(<) = X × [O,l]/{(x,O): (~(x) ,i) ]x~ X} 

has a canonical round finite structure, by a generalization of the 

trick of Mather [9], with T(f~g:Y >Y) a round finite CW complex in 

the round finite homotopy type of T(%) for any domination of X 

( Y , f : X >Y , g : Y >X , h : gf = 1 : X ~X ) 

by a finite CW complex Y. (Furthermore, if X = M is an infinite 

cyclic cover of a compact manifold M with ~:X -}X a generating 

covering translation then the projection T(%) ~M is a homotopy 

equivalence such that the Whitehead torsion T 8 Wh(~I(M)) is the 

obstruction of Farrell [3] and Siebenmann [20] to fibering M over S I, 

giving M the finite homotopy type determined by a handlebody 

decomposition and assuming dim(M) ~ 6). The product structure theorem 

is that the product F × B of a finitely dominated CW complex F and a 

round finite CW complex B has a canonical round finite structure, 

such that the absolute torsion of a product homotopy equivalence is 

given by 

T( f x b : F x B )F' x B' ) = [F]~T(b) 

Kl(~[Zl(F xB)]) : KI(~[zI(F)]®~[~I(B)]) , 

with [F] = IF'] C KO(~[~I(F)]) the absolute projective class and 

T(b) ~ KI(~[~I(B)]) the absolute torsion. The circle 

S 1 = T(id. : {pt.} ~{pt.}) 

has the canonical round finite structure in which the base elements 

c(sl) i = ~[TI(SI)] : ~[z,z -I] (i = O,i) are such that 

d(~l) = ~O _ z~O 

For any finitely dominated CW complex F the product round finite 

structure on F × S 1 = T(I:F ~F) agrees with the mapping torus round 

finite structure. Ferry [4] defined a geometric injection 

S 1 S 1 ) 
: KO(~[~]) ~ ) Wh(~x~) ; IF] , ~T(I x -I:F x ) F x 

for any finitely presented group ~, with [F] e Ko(~[z]) the Wall 

finiteness obstruction of a finitely dominated CW complex F with 
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~l(F) = 7. The image of B' consists of the elements T8 Wh(z × ~) 

invariant under the transfer maps associated to the finite covers of S I. 

The map -I:S 1 >S 1 reflecting the circle in a diameter has absolute 

torsion 

T(-I:S 1 ~S l) = T(-z:~[z,z -I] - ~[z,z-1]) C Kl(~[z,z-l]) , 

so that by the product structure theorem B' is given algebraically by 

B' = -~T(-z) : KO(~[~])> > Wh(~ × ~) ; 

[P]j ~(-z:P[z,z -I] >P[z,z-l]) 

with [P] the reduced projective class of a f.g. projective ~[z]-module P. 

Thus B' does not coincide with the traditional algebraic injection of 

Bass, Heller and Swan [2] 

= -®T(z) : KO(~[~])) ~ Wh(~ × ~) ; 

[P] J ~ ~(z:P[z,z -I] >P[z,z-l]) 

The recent algebraic description due to L~ck [8] of the transfer map 
1 

pi:KI(~[~I(B)]) ~KI(~[~I(E)]) induced in the Kl-groups by a 

Hurewicz fibration 

P 
F > E - ~B 

with finitely dominated fibre F allows the product structure theorem 

to be extended to the twisted case: the total space E of a fibration 

with finitely dominated fibre F and round finite base B has a canonical 

round finite homotopy type, and if 

f 
F ~F' 

e 
E >E' 

p p' 

b 
B > B '  

is a fibre homotopy equivalence of such fihrations the homotopy 

equivalence e:E- >E' has absolute torsion 

I 

T(e) = pi(Y(b)) e KI(~[~I(E)]) 
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The absolute torsion of a round finite n-dimensional geometric 

Poincar6 complex B is defined by 

T(B) = T([B] n -:C(B) n-* >C(B)) ~ KI(ZZ[zI(B)]) , 

satisfying the usual duality T(B)* = (-)nT(B). The Poincar6 complex 

version of the twisted product structure theorem is that the total 

space of a fibration F >E P >B with a round finite n-dimensional 
• p 

Polncare base B and a finitely dominated m-dimensional Poincar6 fibre F 

is an (m+n)-dimensional Poincare complex E with a canonical round finite 

structure, with respect to which the torsion of E is given by 
I 

T{E) = pi(v(B)) ¢ KI(ZS[~I(E)]) 

In particular, for the trivial fibration E = F xB this is a product 

formula 

T(F xB) = [F]®T(B) C Kl(2Z[Zl(FXB) ]) 

The torsion of the circle S 1 with respect to the canonical round finite 

structure is 

-i -i 
7 (S I) : T (-z:ZZ[z,z -I] ~ ZZ[z,z ]) ~ KI(ZZ[~I(SI)]) = KI(~[z,z ]) , 

SO that for any finitely dominated m-dimensional Poincar6 complex F 

T(F × S I) = [F]®~(S I) : [F]DT(-z) = B' (IF]) 

-i 
KI(ZZ[~ × 2Z]) = Kl(TZ[z] [z,z ]) (~ = ~I(F)) 

with B':Ko(ZZ[z])> ~Kl(~[~] [z,z-l]) ; [P]~ ~Y(-z:P[z,z-l]----~P[z,z-l]) 

the absolute version of the injection B':Ko(2Z[~])~ >Wh(~×ZZ) 

described above. More generally, the mapping torus T(¢) of a self 

homotopy equivalence ¢:F ) F is the total space of a fibration over S 1 

P S 1 F >T(¢) > 

such that ~I(T(~)) = ~× ~Z (~= %, : ~- >~) and T(~) is an 
C~ 

(m+l)-dimensional geometric Poincar~ complex with a canonical round 

finite structure with respect to which 

! z-i T(T(~)) = plT(S l) = T(-z~:C(F)~[z,z -I] ~C(F)<~[z, ]) 

-1] 
KI(ZZ[~×<ZZ]) : Kl(2Z[~]~[z,z ) 

(gz = z~(g) (ge ~) , "~ : ~,C(F) >C(F)) 
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The algebraic theory of surgery of Ranicki [17] has a version 

for round finite algebraic Poincar6 complexes, corresponding to the 

variant L-groups of Wall [22] in which only based f.g. free modules of 

even rank are considered (cf. the joint work with Hambleton and Taylor 

mentioned above). In particular, the round L-theory shows that the 

algebraic injections of Ranicki [16] 

: L~(z)~ ~L k n+l(Z × ~) ((j,k) = (h,s) or (p,h)) 

do not coincide with the geometric injections 
. 

B' : LJ(~)~ ~L ; >o,((f,b)xl:MxS 1 ~XxS ±) n +i (Z × ~) o~((f,b):M--~X)L k 

of Shaneson [19] (for (h,s)) and Pedersen and Ranicki [14] (for (p,h)). 

The algebraic expression for B' is given by product with the round 

finite symmetric Poincar6 complex of S I, defined using the canonical 

round finite structure on S I. 

This paper is a sequel to the algebraic theory of the Wall 

finiteness obstruction developed in Ranicki [18]. As there we work with 

chain complexes in an arbitrary additive category ~, although the case 

= {based f.g. free A-modules} for a ring A is the one of main interest 
_iso 

In §i the isomorphism torsion group K 1 (~) of an additive 

category ~ is defined by analogy with the automorphism torsion group 
kaut 
1 (R) = KI(~) , using all the isomorphisms in~. ~2 is devoted to 

the isomorphism torsion properties o~ the permutation isomorphisms 

M~N } N~M ; (x,y)~--~(y~x). ~3 deals with the torsion of contractible 

chain complexes. In ~4 there is defined the torsion T(f) 8 K~s°(A) of a 

chain equivalence f:C ~D of finite chain complexes in ~which are 

round, that is [C] = [D] = 0 8 KO(A). In ~5 it is shown that if ~t is 

such that stably isomorphic objects are related by canonical stable 

isomorphisms then KI(R) is canonically a direct summand of K~S°(A). 

In particular, such is the case for ~ = {based f.g. free A-modules}, 

allowing the definition of the absolute torsion T(f) ~ KI(~) = KI(A) 

for a chain equivalence f:C }D of round finite chain complexes of 

based f.g. free A-modules. 

I am grateful to Chuck Weibel for a critical reading of an 

earlier version of the paper, and for several suggestions of a 

categorical nature (such as the use of permutative categories to 

avoid potential problems with coherence isomorphisms). 

Contents 

~i. The isomorphism torsion group K~S°(A) 

§2. Signs 

~3. Torsion for chain complexes 

~4. Torsion for chain equivalences 

~5. Canonical structures 
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~i. The isomorphism torsion group K~S°(~) 

In order to define the torsion of a chain equivalence it is 

necessary to first define the torsion of an isomorphism. To this end we 
iso 

shall now define the isomorphism torsion group K 1 (~) of an additive 
aut 

category, by analogy with the automorphism torsion group K 1 (J~) = KI(~). 

Let then ~ be an additive category, with direct sum @. 

isomorphism K~S°(~) 
is the abelian The torsion group .aut(~) 

automorphism K 1 

l isomorphism f:M } N 
group with one generator T(f) for each in ~, 

tautomorphism f:M------~M 

subject to the relations 

i) (T(gf:M ~N >P) = T(f:M >N) + T(g:N ~ P) 

(gf:M >M > M) : T(f) + T(g) , T(ifi-l:M'---~M )M >M') = T(f) 

ii)~T(f@f':M@M' ~N@N') = T(f:M ) N) + T(f':M' )N') 

T(f@f':M@M' ~M@M') = T(f:M >M) + T(f':M' > M') 

.aut The automorphism torsion group ~] (~) is just the Whitehead 

group of 0~ in the sense of Bass [i,p.348] . There is defined a forgetful 

map 
aut iso 

K 1 (A) ) K 1 (J]0 ; <(f)~ ~T(f) 

which in certain circumstances (investigated in §5 below) is a split 

injection. 

Remark: In order to avoid having to keep track of the coherence 

isomorphisms (M@N)@P ~M@(N@P) in K~S°(~) we shall assume that A is 

a permutative caffegory, so that (M@N)@P = M@(N@P) . There is a standard 

procedure for replacing any symmetric monoidal category by an equivalent 

permutative category (cf. Proposition 4.2 of May [i0]) . 

[] 

Let now ~ be an exact category. The torsion grou_] 2 KI(~) 

was defined by Bass [i,p.390] to be the abelian group with one 

generator T(f) for each a~tomorphism f:M ~M in ~, subject to the 

relations 

i) T(gf:M ~M) = T'(f:M ~M) + T(g:M >M) 

ii) T(f":M". ~M") = T(f:M ~M) + T(f':M' > M') for any 

automorphism of a short exact sequence in 
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i j 
0 )M )M" ~.M' )0 

0 ~ M > M" > M' ) 0 

An additive category ~ can be given the structure of an 

exact category by declaring a sequence in St 

i j 
0 >M 

to be exact if ji = 0 : M 

k : M' }M" such that 

i) jk = IM, : M' 

ii) (i k) : M@M' 

• M" > M' ) 0 

)M' and there exists a morphism 

)M' 

>M" is an isomorphism. 

We shall always use this exact structure. 

Weibel [~3] showed that the torsion group KI(A) of an 

additive category ~ with the above exact structure agrees with the 

case i = 1 of the general definition Ki(~) = Zi+l(B~-l~) (i~O) due 

to Quillen (Grayson [6]) oi- the algebraic K-groups of an exact 

category ~. 

Proposition i.i (Bass [i,p.397]) There is a natural identification 

of torsion groups " aut ~i (.~) = KI(~) for an additive category ~. 

Proof: In order to verify that the natural abelian group morphism 

kaut 
1 (~) ~ KI(~) ; T (f) i > T (f) 

is an isomorphism it suffices to show that for any morphism e:M' 

in,the elementary automorphism 

. aut 
is such that T (f) = 0 e ~i (A). The automorphisms 

g = 0 i : M~M'@M '%M~M'~M 

0 0 

O 

1 (00) 
h = O I O : M@M'@M >M@M'@M 

O e i 

are such that 

>M 
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f@l M = ghg-lh -I : M@M'@M *M@M'@M 

(a particular example of a Steinberg relation). It follows that 

-i -i .aut 
~(f) = T(f@IM) = ~(ghg h ) = 0 ~ ~i (A) 

[] 

Example Let A be an associative ring with 1 such that f.g. free 

A-modules have well defined rank (e.g. a group ring ~[~]). Let~be the 

additive category of based f.g. free A-modules and A-module morphisms. 

The automorphism torsion group of ~ is just the usual Whitehead group 

of A 

E~ut(A) = Kl(~) = El(A) = GL(A)/E(A) 

The isomorphism torsion group KSS°(A)± contains KI(A) as a direct 
_iso,^, 

summand, with the natural map KI(A) )~i ~) split by the surjection 

K~S°(A) )) KI(A) ; T(f:M ) N) ! ~ T((fij)) 

sending the isomorphism torsion y(f:M )N) e K~S°(A) to the torsion 

T((fij)) e KI(A) of the invertible n × n matrix (fij) e GLn(A) 

(n = rankAM = rankAN) t~presenting f. 

[] 

The isomorphism torsion group K~S°(~) of an additive category 

~is considerably larger than the automorphism torsion group KI(~), and 

is introduced here for the sole purpose of providing a home for the 

T(f) ~ K~S°(A) of a chain equivalence. torsion 

§2. Signs 

In dealing with the torsion of chain complexes and chain 

equigalences we shall be making frequent use of the following elements 

in K~S°(J{). 

The sign of an ordered pair (M,N) of objects of A is the 

isomorphism torsion 

0 IN I iso e(M,N) = ~< : M@N ~NeM) e K 1 (A) 
1M 0 

Example Let ~ = {based f.g. free A-modules}. The sign of objects M,N 

in ~ is given by 

e(M,N) = rankA(~)rankA(N)~(-l:A >A) 8 KI(A)c K~S°(~) , 

depending only on the parities of the ranks of M and N. 
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Proposition 2.1 The sign function (M,N)~ 

properties, for any additive category ~ : 

i) s(M@M',N) = ¢(M,N) + E(M',N) e ZilS°(A), 

ii) s(M,N) = e(M',N) e K~S°(J~) if M is isomorphic to M', 

iii) c(M,N) = -E(N,M) C KlS°(/[) , 

iso -- 
iv) c(M,M) = ~(-IM:M ~M) ~ K 1 (J~ . 

Proof: i) For any objects M:M',N of~ 

e(M~M',N) : T( 1M 0 0 

0 IM, O 

0 O i N , 
IM~ <IM, i0 N) <IM 0 >@l M 

: M@M'@N ~ M@N@M' > N@M~M' ) 

t(M,N) + e(M',N) e K~S°(A) 

ii) Let f:M ~.M' be an isomorphism in~, and let N be an object. 

It follows from the commutative diagram of isomorphisms in 3q 

M~)N ~ NSM 

f ~ l  N 

\ 1M , 0 / 
M ' @N > N@M ' 

that 

e(M',N) - e(M,N) = T(IN@f) - Y(f@l N) 

= T(f) - T(f) = 0 e KIs°(/[) 

iii) For any objects M,N in ~q 

: N~M > M~N) 

1M 1N 

= "r( = [ M @ N  : M ~ N  • > M ~ N )  

i N 0 i M O 

: 0 £ mls°(o%) 

)c(M,N) has the following 
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iv) It is immediate from Proposition i.i and the identity 

that 

~(M,M) : Y( 0 : M@M ~M@M) = 7(-l:M ,M) C K I (A) 
1 

[] 

The isomorphism class group KO(~) of an additive category J~ 

is defined as usual to be the abelian group with one generator [M] for 

each isomorphism class of objects M in~, subject to the relations 

[M~N] = [M] + [N] e KO(A) 

Example The projective class group of a ring A is the isomorphism class 

9roup of the additive category ~,= {f:.g. projective A-modules}, 

Ko(A ) = KO(P) 
[] 

Example The isomorphism class group KO(A) of the additive category 

= {based f.g. free A-modules} is such that there is defined an 

isomorphism 

KO(~) ) ~ ; [M]I ~rankA(M) 

(assuming as always that the rank of a f.g. free A-module is well 

defined). 

[] 

Proposition 2.2 Sign defines a symplectic form on the isomorphism 

class group KO(A) of an additive category J% taking values in the 

isomorphism torsion group K{S°(~) 

: KO(~)®Ko(~) ) K~S°(~) ; [M]®[N]I ). e(M,N) c 

Proof: Immediate from Proposition 2.1. 

[] 

The reduced isomorphism torsion group of J{ is the quotient 

- i s ° ( J ' i )  d e f i n e d  b y  group of K 1 

~iso,--, 
1 (~) = c°ker(~:Ko(~)®Ko(A) > K~ s°(A)) 

~iso Example The reduced isomorphism torsion group ~i (~) of 

~ {based f.g. free A-modules} contains the reduced torsion group 

KI(A) = coker(Kl(~) )KI(A)) = KI(A)/{m(-I:A )A)} as a direct 

summand, with the natural map KI(A) ~so(~) ; ~(f)i ~(f) split by 

~so(~) ~KI(A) ; ~(f:M )N)I > ~((fij)) 

(i (i,j ~ n : rankA(M) = rankA(N)) . 
rl 
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§3. Torsion for chain complexes 

Let iso(~) denote the set of isomorphisms in an additive 

category ~, and let K be an abelian group. A function T;iso(~) ~ K 

is logarithmic if for all (f:M }N),(g:N )P) 8 iso(~) 

T(gf) = T(f) + ~(g) 8 K 

A function T:iso(~) ~K is additive if for all (f:M ~N), 

f':M'-----~N') ~ iso(A) 

T(f~f') = T(f) + ~(f') C K . 

The isomorphism torsion function 
iso 

T : iso(~) ~ K 1 (A) ; fL • T(f) 

is both logarithmic and additive, by construction, and is universal 

with respect to functions with these properties. 

We shall now define logarithmic torsion functions 

T:iso(~) )K for various additive categories ~of chain complexes in 

an additive category ~ (with morphisms either chain maps or chain 

homotopy classes of chain maps), such that K is one of the Kl-groups 

of ~ considered in $§i,2. In general these torsion functions will not 

be additive. 

We refer to Ranicki [18] for an exposition of the chain 

homotopy theory of chain complexes in an additive category ~, adopting 

the same terminology and sign conventions. 

Let ~(~) be the additive category of finite chain complexes 

in~ 
d d 

C : ... > O • C n >Cn_ 1 > ... >C 1 ------>C O 

and chain maps. 

The torsion of an isomorphism f:C ~ D in ~(~) is defined 

by 

• (f) [ (-)r~(f:c r = ~D r) e K so(~) 
r=O 

Proposition 3.1 The torsion function 

r : iso(~(A)) ~K~S°(~) ; f I )r(f) 

is logarithmic and additive. 

Proof: Immediate from the logarithmic and additive properties of 
.iso 

• :iso(A) ~l (~)" 
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The torsion of a contractible finite chain complex C in 

is defined by 

T(C)  : T(d+F = I d 0 0 "'" 1 r d 0 ... 

0 r d ... 

: Cod d = CI@C3@C5@... ~C 
even 

e KlS° (J~) , 

= C0@C2@C4@...) 

using any chain contraction r:o = l:C >c of c. The morphism 

d+r : Cod d %Ceven is an isomorphism since there is defined an 

inverse 

F 1 0 ... 0 r d ... 

(d+r)-i = 0 ~2 1 ... 0 0 r .... 

If r':o = l:C 

defined by 

are such that 

: Ceven = Co@C2@C4@... %Cod d = CI@C3@C5@... 

yC is another chain contraction of C the morphisms 

>Cr+ 2 (r ~ O) A = (r' - r F : c r 
Cr+ 1 (r ~ O) Ad - dA = r - r ; C r 

(defining a homotopy of chain homotopies A:F = F':O = I;C ~ C). 

The simple automorphisms 

I 
i 0 0 

A i 

heven = 0 A 

: C 

1 

A 

hodd : 0 

Ol° "" ° 1 

= C0@C2@C4 @ . . .  even 

O O ... \ 

1 O 

£ 1 

: Cod d = CI@C3~C5@... 

are such that the diagram of isomorphisms 

• C = C0@C2@C4@.. .  l even 

Cod d = CI~C3@C5@... 
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d+F 

Cod d > Ceven 

h°dd ] d+F' [ heven 
Cod d ~Ceven 

commutes up to a simple automorphism of the type 

(d+F)-lh -I 
even 

1 O O "'" 1 ? 1 O ... 

(d+F')hod d = ~ ? 1 ... 

\ • 

: Cod d = Ci@C3@C5@... )Cod d : CI@C3@C5@... 

As usual, simple means x = O. It follows that the torsion of C is 

independent of the choice of chain contraction F, with 

iso 
T(C) = T(d+F:Cod d ) Ceven) = x(d+F':Cod d ) Ceven) ~ K 1 (~) 

Example For ~ = {based f.g. free A-modules} the component of the 
iso 

isomorphism torsion T(C) ~ K 1 (~) in the automorphism torsion group 
.aut 

is the torsion T(C) ~ ~i (~) = KI(A) originally defined by 

Whitehead [24], with C a contractible finite based f.g. free A-module 

chain complex. 

[] 

Proposition 3.2 The torsion of an isomorphism f:C ~D of contractible 

finite chain complexes in an additive category A is given by 

T(f) : T(D) - ~(C) C K~S°(~) 

Proof: Given a chain contraction Fc:O ~ I:C ,C of C define a chain 

contraction of D by 

-i 
F D = fFcf : O = 1 : D )D . 

There is then defined a commutative diagram of isomorphisms in 

dc+F C 

Cod d = CI@C3@C5@... 

fodd = fl~f3~fs@''" 1 
Dod d = DI~D3~D5~... 

dD+r D 

) Ceven = C0@C2@C4@... 

I feven = fo@f2~f4 ~''" 
) Deven = Do~D2~D4~... 

so that 
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y(D)- T(C) = T(dD+FD:Dod d >Deven) - T(dc+Fc:Cod d ~Ceven) 

= ~(feven:Ceven ~Deven) T(fodd:Codd >Dod d) 

= ~(f) e KIS°(J~). 

[] 

The intertwininq of finite chain complexes C,D in ~ is 

the linear combination of signs defined by 

iso (~1 
8(C,D) = [ (~(Czi,D2j) ~(C2i+I,D2j+I)) ~ K 1 

i>j 

This invariant plays an important role in quantifying the failure of 

the torsion of chain complexes to be additive. Note that B(C,D) is 

the difference of the torsions of the permutation isomorphisms 

(C@D)even > Ceven@Deven and (C@D)odd ) Codd~Dodd" 

Proposition 3.3 The torsions of contractible finite chain complexes 

in an additive category ~ appearing in a short exact sequence 

i j 
O > C ~ C" > C' > O 

are related by the sum formula 

T(C") = T(C) + T(C') + [ (-)rT((i k) :C @C' 

With {k:C' 
r 

jk = 1 : C' 
r 

isomorphism. 

Proof: Consider first the special case 

(i) ,C" = C ~C' 
i = O : Cr r r r ' 

j = (O i) : C" = C ~C' )C' , 
r r r r 

k = (O) c ' l  : r ~C" = C @C' , r  r r 

)c") + 8(c,c') 
r r r 

r=O 
iso 

m I (,2-) , 

• C r l r  ) , 0 }  a n y  s e q u e n c e  o f  s p l i t t i n g  m o r p h i s m s  s u c h  t h a t  

~C' (r >zO) and each (i k) :C @C' ~C" (r ~O) is an 
r r r r 

so that 

d "  = : C" = C @C' 
0 d' r r r ) C~_ 1 : Cr_I@C~_I 

'------~C (r ~i) such that de + ed' = O for some morphisms e:C r r-I 

Given chain contractions of C and C' 

F : 0 -- 1 : C >C , F' : O -- 1 : C' )C' 

define a chain contraction of C" 

F" : O-- 1 : C" >C" 
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by 

= ,, = Cr+l@Cr+ 1 F" : C : C @C' ~C~+ 1 ' 
F' r r r 

There is then defined an isomorphism of short exact sequences in 

todd ]odd 
0 > Cod d ~ C'~d d ) C'odd > 0 

ieven Jeven 
0 ) C > C" > C' > 0 

even even even 

so that 

T(C") = T(d"+F":C'od d }Ceven) 

= T(d+F:Codd---->Ceven) + T(d'+F':C'odd > Ce~en)' 

+ T((ieven keven) : Ceven@Ceven >Ceven) 

- T((iod d kod d) : Codd@Cod d ~ Cod d) 

-- ~(C) + ~(C') + B(C,C') ~ KlS°(A) , 

verifying the sum formula J n the special case. 

In the general case let 3" be the finite chain complex 

defined by 

-i 
(i k) d" (i k) 

d" : c" = C ~c' > c" ~c" r r r r r-I > Cr-l~Cr-i = Cr-i 

so that there are defined an isomorphism of chain complexes 

(i k) : C" > C" 

and a short exact sequence of contractible finite chain complexes 

7 
o >c >c" >c' >o 

with 

T = : Cr ~C'r = Cr@Cr ' 

= (o l) : ~" : c ~c' ~c' 
r r r r 

By the special case 

iso, ^, T(C") = T(C) + T(C') + 8(C,C') e K 1 (Oi) 

and by Proposition 3.2 
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, iso 
T(C") T(C") = ~ (-)r~ ((i k) :CreC r ~C'~) e K 1 (~) 

r=O 

The sum formula in the general case follows. 

[] 

~iso 
The reduced torsion ~(C) ~ K 1 (~) of a contractible finite 

chain complex C in ~ is the reduction of the absolute torsion 
.iso 

T(C) ~ ~i (A). The intertwining term B(C,C') in the sum formula of 

Proposition 3-,3 vanishes in the reduced torsion group, so that 
f 

r:O 

Remark For ~ = {based f.g. free A-modules} the sum formula for 

reduced torsions in KI(A) was first obtained by Milnor [ll], and the 

sum formula for absolute torsions in KI(A) was first obtained by 

Fossum, Foxby and Iversen [5]. 

[] 

Let ~f(~) be the additive category of finite chain complexes 

in ~ and chain homotopy classes of chain maps, i.e. the derived category. 

The isomorphism set iso(~f(~)) consists of the chain homotopy classes 

of chain equivalences. The appearance of the intertwining term B(C,C') 

in the sum formula of Proposition 3.3 implies that it is not in general 

possible to extend the universal isomorphism torsion function 

_iso 
T : iso(~) > K I (A) ; f I >T(f) 

to an additive function 
I 

.iso 
T : iso(If(A)) . ~  >K 1 (A) 

such that for every contractible finite chain complex C in~ 

.iso 
T(O-----~C) = z(C) e K 1 (A) 

If there were such an extension, and if C,C' are contractible finite 
.iso 

chain complexes in ~ such that 8(C,C') / 0 8 K 1 (A), then 

(0 • ~ C@C') = T(C~C') 

= T(C) + ~(c') ÷ 8(c,c') 

iso 
T(O ~C) + T(O )C') e K 1 (A) , 

a contradiction. 
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Example Let 4q = {based f.g. free A-modules} for some ring A (such as 

a group ring ZZ[~]) for which 2Z ~A ; l~ ~i induces an injection 

KI(ZZ) = 2Z 2) ~KI(A) ; ~(-I:z~ ~ZZ)~ ~ ~(-I:A ,A) 

The contractible finite chain complexes in J~ defined by 

1 
C : ... > O ) A > A :: > O 

1 
C' : ... >O 90 ) A > A 

. iso 
are such that ~(C,C') ~ O C K 1 (Jr) , with automorphism torsion 

component 

. aut 
8(C,C') = T(-I:A )A) / O ~ K1 (~) = KI~A)- 

iso 
(On the other hand 8(C',C) = O e K 1 (J{)) . 

[] 

In ~4 below we shall define a logarithmic torsion function 
iso T : iso (~r (3;[)) > ~i" (Jl) on a certain full subcategory ~r(o~)c~f(~). 

We shall be making frequent use of the following properties of B. 

iso Q~) 
Proposition 3.4 The intertwining function (C,D) I. ) 6(C,D)~K 1 

is such that 

i B (C~C' ,D) = 6.(C,D) + B (C' ,m) , 

ii B(C,DeD') = B(C,D) + 8(C,D') , 
co 

iii B(C,D) -8(D,C) + [ (-)re(Cr,Dr) 
r=O 

= e ( C e v e n , D e v e n )  e ( C o d d , D o d d  ) , 

i v )  B(C,SC) + ~ ( - ) r e ( C r , C r _ l )  = e ( C e v e n , C o d d )  w h e r e  SC = C r=O r r-l' 

v) 8(SC,C) = e(Codd,Ceven) , 

vi) 8(SC,SD) = -B{C,D) , 

vii) 8(C,D) = 8(C',D') if C is isomorphic to C' and D is isomorphic 

to D'. 

Proof: These properties of B follow from the properties of the sign 

function (M,N) I % e(M,N) obtained in Proposition 2.1. 

[] 
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§4. Torsion for chain equivalences 

The algebraic mapping cone of a chain equivalence f:C %D 

a contractible chain complex C(f) . The torsion T(f) e KiS°(A) is will 

now be defined in the case when C and D are finite complexes such that 

[C] = [D] = O 8 KO(A), as the sum of the torsion T(C(f)) and a sign 

term. 

The algebraic mapping cone C(f) of a chain map f:C ~D 

in ~ is the chain complex in J~ defined as usual by 

dc(f) = dc 

: C(f) r = Dr@Cr_ 1 ) C(f)r_ 1 = Dr_l@Cr_ 2 

A chain map f is a chain equivalence if and only if C(f) is chain 

contractible. 

A chain homotopy in ~ 

g : f -- f' : C >D 

determines an isomorphism of the algebraic mapping cones 

h : C(f) > C(f') 

with 

h : : C(f) r : D ~C ~ C(f') r 
0 r r-i 

(The sign convention is that dDg + gd C = f' f : C r 

= D @C 
r r-i " 

~D ). 
r 

Proposition 4.1 The algebraic mapping cone C(f) of a chain equivalence 

f:C- *D of finite chain complexes in ~t is a contractible finite 

complex C(f) in 0~ such that the torsion T(C(f)) 8 K~S°(~) is a chain 

chain homotopy invariant of f, with T(C(f)) = T(C(f')) for chain 

homotopic f,f':C YD. 

Proof: Given a chain homotopy g:f = f':C >D apply Proposition 3.2 

to the isomorphism h:C(f) >C(f') defined above, to obtain 

T(C(f')) - T(C(f)) = T(h) 
co 

= ~ (-) rT (h :C (f) r-----~C (f ' ) r ) 
r=O 

= 0 e K~S°(A) 

[] 



218 

The following results determine the behaviour of the 

torsion T(C(f))~KlS°(}~) under the composition and 
i 

addition of chain 

equivalences. 

Proposition 4.2 i) The torsion of the algebraic mapping cone C(gf) of 

the composite gf:C )D )E of chain equivalences f;C ~D, 

g:D ~E of finite chain complexes in ~ is given by 

T(C(gf)) = T(C(f)) + T(C(g)) + 7(C,D,E) e KlS°(J%) , 

with the sign term y defined by 

y(C,D,E) = 8(E,SC) - B(D,SC) - 8(E,SD) 

+ (e(Deven,Cod d) e(Dodd,Ceven )) 

+ (6(Deven,Eeven) - e(Dodd,Eod d)) 

+ (C(Codd,Eeven) - e(Ceven,Eodd)) 

+ (E(Deven,Dod d) E(Deven,Deven)) 

iso 
e im(e : K O(J~)®K O(~) ~ K 1 (~)) 

ii) The torsion of the algebraic mapping cone C(f~f') of the sum 

f~f' :C@C' ~ D6~D' of chain equivalences f~C ~D, f' :C' > D' of 

finite chain complexes in /L is given by 

T(C(f@f')) = T(C(f)) + T(C(f')) + 8(D@SC,D'@SC') 
co 

+ ~ (-)re(Cr-i 'D')r e Kl-is°(A) 
r=O 

iii) For a chain equivalence f:C. >D of contractible finite chain 

complexes in J{ 

_ iso (~) 
T(C(f)) = T(D) - T(C) + B(D,SC) e K 1 

iv) The torsion of the alqebraic mapping cone C(1) of the identity 

chain map I:C ) C on a finite chain complex C in ~ is given by 

. iso (•) 
T(C(1)) = 8(C,SC) + r(Codd,Codd) - C(Ceven,Cod d) e K 1 

Proof: i) Given a chain complex C let ~C be the chain complex 

defined by 

d~c = d C : ~C r = Cr+ 1 ) ~Cr_ 1 = C r 
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Given chain equivalences f:C 

chain complexes in ~define a chain map 

by 

~D , g:D ~E of finite 

h : ~C(g) >C(f) 

IO -i 1 h = : ~C(g) = Er+I@D ~ C(f) r = D @C 
0 0 r r r r-i 

The algebraic mapping cone C(h) is a contractible finite chain complex 

which fits into two short exact sequences of such complexes 

i j 
0 ~C(f) ) C(h) ~C(g) ~0 

i' j' 
O ) C(gf) ~ C(h) ~ C(-ID:D >D) >O 

with 

i = I~l - C(f)r ~C(h)r = C(f)r@C(g)r , 

j = (O I) : C(h)r = C(f)r@C(g)r ,)C(g)r , <! o II 
i' = : C(gf) = E @C "C(h) 

O r r r-i 

f 

: D @C r r r-l@Er@Dr-i 

J' (l o 0 o) 
0 -f 0 1 

: C(h) r = Dr@Cr_l@Er~Dr_ 1 ) C(-i D) r = Dr@Dr-i 

The morphisms j,j' are split by the morphisms 

I ° ) k = : C(g) 
1 r 

%C(h)r = C(f)r@C(g)r , 

• C(-ID) r = Dr@Dr_l ~ )C(h) r = Dr@Cr_l@Er@Dr_ 1 
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and 

O I : C(f)r@C(g) r 
i 

~C(h) = C(f)r@C(g) r ) .  . . . = O r " r 

T((i' k') I 
O O i O 1 
O 1 O O 

1 O O O 

O f O 1 

: C(gf)r@C(-iD) r : Er@Cr_l@Dr@Dr_ I 

C(h) r = Dr~Cr_l@Er~Dr_ I) 

is°(~ 0 
= S(Er@Cr_l,Dr) + C(Er,Cr_ I) @ K 1 

Applying the sum formula of Proposition 3.3 twice 

T(C(h)) = T(C(f)) + T(C(g)) + ~ ( - ) r T ( ( i  k ) : C ( f ) r @ C ( g )  r 
r=O 

~C(h) r ) 

+ 8(C(f) ,C(g)) 

= T(C(gf) + T(C(-ID) ) + 8(C(gf),C(-ID)) 

+ ~ (-)r~((i' k') :C(gf)r@C(-1m) r ~C(h) r) 
r=O 

. i s o  
e ~i (&) 

Eliminating T(C(h)) substituting the values obtained above for 

• ((i k)), T((i' k') and also 

~(C(-iD) ) = e ( D e v e n , D e v e n )  - ~ ( - ) r e ( D r , D r _  i ) , 
r=O 

T(C(f) ,C(g)) = B(D@SC,E@SD) , 

T(C(gf),C(-1m)) = B(E~SC,D@SD) e K~s°(A) 

.iso 
leads to the required expression for T(C(gf)) C K 1 (~). 

ii) The algebraic mapping cone C(f@f') of the sum f@f':C@C' ~D@D' 

of chain equivalences fits into a short exact sequence of contractible 

finite chain complexes 

i j 
O > C(f) ) C(f~f') ~ C(f') ) O 

with 
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i = 

ll°l 0 0 

0 1 

0 0 

: c(f) 
r 

= Dr@Cr_ 1 ~C{f@f') r : Dr@Dr@Cr_l@Cr_ 1 , 

o o) 
O 0 O 1 

: C(f@f') r = mr@m'@Cr-l@C'-iLr C ( f ' ) r  : Dr@C;-1 " 

Define a splitting morphism for j by 

with 

k = 

T((i k) 

/°°l 1 0 

O 0 

0 1 

: c(f') r = Dr~Cr_ 1 9C(f@f')r = Dr@Dr@Cr_I@C;_ 1 , 

< oo O 1 0 1 0 

1 O O 

O 0 1 

: C(f) r@C(f ') r = Dr@Cr-l@Dr@C'r-I 

C(f@f')r = Dr@Dr@Cr_l@Cr_ I) 

, .iso 
= e(Cr_l,Dr) £ K 1 (~) 

It is now immediate from the sum formula of Proposition 3.3 that 

T(C(f@f')) = T(C(f)) + T(C(f')) + B(D~SC,D'@SC') 

+ [ (-)r~(Cr_i,D r) e K~s°(~) 
r=O 

iii) Set E = O in the composition formula i). 

iv) set f = 1 : c )D = C , g = 1 : D = C ~E = C in the 

composition formula i). 
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The reduced torsion of a chain equivalence f:C ,D of 

finite chain complexes in ~ is defined by 

~(f) = ~(C(f)) e ~s°(A) 
t 

iso(~ of the that is the reduction of the absolute torsion T(C(f)) e K 1 

algebraic mapping cone C(f). 

Example For J~,= {based f.g. free A-modules} the automorphism 

component ~(f) £ KI(A) of the reduced torsion is just the torsion 

of a chain equivalence f:C ,D in the sense of Whitehead [24] and 

Milnor [Ii]. 

[] 

Proposition 4.3 i) The reduced torsion function 

: iso(~f(~)) )K~S°(A) ; f; ~{f) 

is logarithmic and additive. 

ii) The reduced torsion of an isomorphism f:C )D is the reduction 

• Dr) ~ K~ sO(~) , that is of the absolute torsion T(f) = (-)rT(f:Cr 
r=O 

~(f) = ~ (_)r~(f:Cr~Dr) ~ ~so(~) 
r=O 

iii) The reduced torsion of a chain equivalence f:C )D of 

contractible finite chain complexes is the difference of the reduced 

torsions of C and D 

~iso (~) 
?(f) = ~(D) - ~(C) e -i 

Proof: i) Immediate from the formulae of Proposition 4.2, since all the 
~iso sign terms vanish on passing to the reduced torsion group K 1 (~). 

ii) Define an isomorphism of contractible finite chain complexes 

iOf : C(f) , C(I:D )D) 

and apply Proposition 3.2. 

iii) Apply the logarithmic property of T given by i) to the composite 

f : C > O ~ D 

(up to chain homotopy). 

[] 



223 

The class of a finite chain complex C in A is the element 

of the isomorphism class group of ~ defined by 

[c] [ (-) r = [Cr] = [Ceven] - [Codd] e KO(A) , 
r=O 

a chain homotopy invariant of C. 

Example For ~ = {based f.g. free A-modules} the class of a finite 

chain complex C is just the Euler characteristic of C 

[C] = x(C) = ~ (-)rrankA(Cr) C KO(A) = 
r=O 

[] 

A finite chain complex C in ~ is round if 

[C] = O 8 KO(A) 

In particular, a contractible finite chain complex is round. 

The torsion of a chain equivalence f;C ~D of round 

finite chain complexes in ~ is defined by 

iso 
y(f) : T(C(f)) - B(D,SC) e K 1 (~) 

.iso 
Remark This formula can be used to define the torsion ~(f) ~ ~i (A) 

of a chain equivalence f:C ,D of any finite chain complexes in ~, 

but the resulting function T:iso(~f(~)) ,k~s°(A)- is neither 

logarithmic nor additive (cf. Proposition 4.2, and the Example just 

before Proposition 3.4). There does not appear to be a reasonable 

way to define either a logarithmic or an additive torsion function 
iso 

T:iso(~f(~)) ~ K 1 (A) in general. 

[] 

Let ~r(~) be the additive category of round finite chain 

complexes in ~ and chain homotopy classes of chain maps, a full 

subcategory of the derived category ~f(2) • 

Proposition 4 4 i) The torsion function 

T : iso(~r(~)) ~K~S°(A) ; f, }T(f) 

is logarithmic, that is ~(gf) = T(f) + T(g) . 

iso 
ii) The torsion function T:iso(~r(~0) ~K 1 (~) is not additive in 

general, with the torsion of a sum f~f':C@C' e D@D' given by 

T(f@f') = T(f) + T(f') 8(C,C') + B(D,D') ~ K[S°(A) 

iii) The torsion of an isomorphism f:C ~D of round finite chain 

complexes agrees with the previous definition 

.iso 
T(f) = (-)rT(f:C r ~D r) e K 1 (A) 

r=O 
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iv) The torsion of a chain equivalence f:C ~ D of contractible 

finite chain complexes is the difference of the torsions of C and D 

T(f) = T(D) - ~(C) C KlS°(/t) 

v) The torsion of a chain equivalence f:C ~D of round finite chai 

complexes which fits into a short exact sequence 

f g 
O ) C )D >E ) O 

is related to the torsion of the contractible finite chain complex E 

by the formula 

iso 
T(f) = T(E) + ~ (-)rT((f h) :C ~E ~m ) + B(C E) 8 li I (J%) , 

r= 0 r r r ' 

*E Ir>/0}. with {h:E r -~Drlr >/0} splitting morphisms for {g:D r r 

Proof: i) For round C,D,E the sign term y(C,D,E) in the composition 

formula of Proposition 4.2 i) is given by 

. iso 
y(C,D,E) = B(E,SC) - B(D,SC) - $(E,SD) £ ~i (J%) 

ii) By the sum formula of Proposition 4.2 ii) 

T(f@f') = T(C(f~f')) - $(D@D',SC@SC') 

= T(C(f)) + T(C(f')) - B(D@D',SC@SC') 
co 

,D') + B(D@SC,D'@SC') + [ (-)re(Cr-i r 
r=0 

: T(C(f)) + T(C(f')') - B(D,SC) - 8(D',SC') 

- B(C,C') + B(D,D') 

(by Proposition 3.4) 

iso 
= T(f) + T(f') - ~(C,C') + 8(m,m') ~ K 1 (51) 

iii) Given an isomorphism f:C ~D of round finite chain complexes 

in 2L define an isomorphism of contractible finite chain complexes 

f' = l@f : C' = C(f) > D' = C(ID:D ~m) 

By Proposition 3.2 

T(D') - T(C') = ~ (-)r%(f':C' ~D r) 
r= 0 r 

oo 

= r~0T (-)rT(l(~f:Dr@Cr-i ~ Dr@Dr_l ) 

= ~ (-)rT(f:Cr_l ~Dr_ I) 
r=0 

co 

= -( [ (-)rT(f:C ~D )) ~ KIS°(J%) 
r=0 r r 
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By the logarithmic property of torsion proved in i) 

T (f) = • (f) - T (i D) 

: (T(C') - 8 (D,SC)) - (T (D') - B (D,SD)) 

: ~(C') - ~(D') 

co 

(-) rT (f:C ~-D ) ~ . iso 
= a r r ~<i (A) 

r=O 

iv) Immediate from the logarithmic property of T applied to the 
. iso 

composite O:C f )D •O, noting that T(C 70) = -T(C) 8 •i (]%)" 

v) Apply the sum formula of Proposition 3.3 to the short exact sequence 

of contractible finite chain complexes 

i j 
0 ;C(I C) > C(f) • E ~ O 

with (f 0] 
i = : C(l c) = C @C ---------+C(f) r r r-i 0 1 r r r-i = D $C , 

j = (g O) : C(f) r = Dr$Cr_ l >E r 

to obtain 

T(C(f)) = T(C(1c)) + T(E) + r=0 - rT. :Cr$Cr_l(~Er ~Dr$Cr_ 1 ) 

+ B(C(Ic),E) 

= B(C,SC) + T(E) + ~ (-)r(T((f h) :C SE 
r r 

r=0 

+ B(C@SC,E) e K~S°(~) 
I 

It follows that 

)D r) + ¢(Cr_l,Er)) 

T(f) = T(C(f)) - 8(D,SC) 

= T(E) + ~ (-)rT((f h) :C SE > D + ~ (C,E) 
r= 0 r r r 

+ (~(sc,E) B(E,s¢) + [ ( )re - (Cr_l,Er)) ~ K so(}{) 
r=0 

By Proposition 3.4 iii) 

8(SC,E) -8(E,SC) + ~ (-)r~(Cr_l,E r) 
r=0 

= ~(Codd,Eeven) - ~(Ceven,Eod d) 

_ iso 
= O C K 1 (~) (since C,E are round). 

[] 
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An element x ~ KO(~D is even if 

e(x,y) = O e KO(~) , 

for every y~ KO(~). The even elements of KO(~) define a subgroup, 

the kernel of the adjoint map of the sign form of Proposition 2.2 

iso 
KO(A) ~Hom~ (Ko(~) ,m I (A)) ; 

[M] , > ([N][ > e(M,m)) 

Example For ~ = {based f.g. free A-modules} the isomorphism 

KO(A) > ~ ; [M] - [N]~ > rankA(M) - rankA(N) 

sends the subgroup of even elements in KO(~) to the subgroup 2~C ~ of 

even integers. 

[] 

A finite chain complex C in ~ is even if the class [C] e KO(~) 

is even. In particular, a round finite complex is even, since O~ KO(~) 

is an even element. 

Let ~e(~) be the additive category of even finite chain 

complexes in ~ and chain homotopy classes of chain maps. Thus ~e(~) is 

a full subcategory of ~f(~), and ~r(~) is a full subcategory of ~e(A). 

The torsion of a chain equivalence f:C >D of even finite 

chain complexes in ~ is defined in exactly the same way as for round 

complexes, by the formula 

T(f) = T(C(f)) 8(D,SC) e K~S°(~) 

iso~ 
Proposition 4.5 The torsi6n function T:iso(~e(ua0) ~ K 1 ~j 

has all the properties stated for T:iso(~ r (~)) ~kls°(,~) in 

Proposition 4.4, in particular the logarithmic property. 

Proof: The proof of Proposition 4.4 depended on the sign properties 

of round complexes which are the same for even complexes. 

[] 
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Given an object A of d~and an integer n ~0 define the 

elementary contractible finite chain complex in 

1 
A(n,n+l) : ... ~ O ~ A >A ) O >... 

concentrated in degrees n,n+l. For any finite chain complex C in Jk 

the inclusion 

i : (~) : C >COA(n,n+l) 

is a chain equivalence such that 

T(C(i)) = T(C(Ic)) + (-)n(c(Cn_l,A) - C(Cn,i) + e(Cn+l,A) ) 

_iso,_, 
im(c:Ko(A)®Ko(A) ~i t~U) , 

and such that for round finite C 

iso 
T(i) : [ (-)re(Cr,A) C m I (A) 

r>n+l 

Working exactly as in Whitehead [24] (the special case 

= {based f.g. free A-modules}) it can be shown that the reduced 

torsion ~(f) K~S°(A) of a chain equivalence f;C ~(C(f)) ~m of 

finite chain complexes in ~ is such that ~(f) = O if and only if 

there exist elementary complexes Ai(mi,mi+l) (i ~ i~ p), Bj(nj,nj+l) 

1 (j ~q) such that the chain equivalence 

P q 

f@O : C' = C~i=l ~ Ai(mi'mi+l) ~D' = D~j~IBj (nj,nj+l) 

Is chain homotopic to an isomorphism f':C' ~ D' such that 

-iso 
~(f':C' ,D~) = 0 e K 1 (A) (r >0) 

r 

There does not appear to be a corresponding interpretation of the 

vanishing T(f) = O of the absolute torsion T(f) £ K~S°(A) of a chain 

equivalence f:C >D of round finite chain complexes, except in the 

trivial case when the classes [Cr], [D r]e KO(A) (r ~O) are all even 

and the sign terms vanish. 
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~5. Canonical structures 

isomorphism torsion group K~S°(~) is too large (and The 

insufficiently functo[ial) for practical applications, as compared to 

the automorphism torsion group K~ut(A)_ = KI(~). We shall now investigate 

structures on an additive category J~ which ensure that the natural map 

KI(3~ >K~s°(~) is a canonically split injection, with a splitting 
.iso 

map il (~) ~KI(~) allowing an automorphism torsion component 

aut C K 1 _ iso (A) to be split off from any isomorphism torsion T~ K 1 (A). 

A canonical structure ~ on an additive category ~is a 

collection of isomorphisms {~M,N:M ~N}, one for each ordered pair 

(M,N) of isomorphic objects in ~, such that 

= i) CM,M 1 : M >M , 

ii) ¢M,P : ~N,P~M,N : M • N ) P , 

iii) %M@M',N@N' = ¢M,N@~M',N ' : M@M' >N@N' 

Example Let A = {based f.g. free A-modules}, assuming (as always) that 

A is such that f.g. free A-modules have well defined rank. Based f.g. 

free A-modules M,N are isomorphic if and only if they have the same 

rank, n say, in which case there is defined a canonical isomorphism 

n n 

~M,N : M > N ~ r=l[ arXrl >r~l sty r (m r C A) 

with (Xl,X 2 ...... Xn) , (yl,y 2 ..... yn) the given bases of M,N. 

The collection ~ = {%M,N } defines a canonical structure on ~ . 

[] 

Proposition 5.1 A canonical structure ~ on an additive category 

determines a splitting of the natural map KI(A) ) K~S°(,P0 

K~S°(~) >> KI(A) ; ~(f:M > N) j ) T(%N,Mf:M >N >M) , 

iso 
so that K 1 (A) = KI(~)@? 

Proof: Trivial. 

In fact, canonical stable isomorphisms are sufficient 

to split KI(~t) )k~s°(]~), as follows. 

[] 
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A stable isomorphism between objects M,N in an additive 

category./~ 

[f] : M • N 

is an equivalence class of isomorphisms f:M$X >N@X under the 

equivalence relation 

(f:M@X >NSX) - (g:MSY ) NSY) if the automorphism 

f$1y 1N@ (~ X 1oY ) g-l$1 X 

h : MSX@Y ) NSXSY ~ NSY@X >M@YSX 

MSXSY 

Although the stable category M s is not additive it is 

possible to define the sum of stable isomorphisms [f]:M 

[f'] :M'-------+N' to be the stable isomorphism 

ff]$[f'] = [f"] : MSM'- ~NSN' 

represented by the isomorphism 

f" : M$M'$X$X' 

~N, 

IM$ IM, $ix , fef ' 

)MSXSM'$X' 

NSN ' @X@X ' 

N@XSN'$X' 

f$1y INS <O x ~Y) g$1 X 

e : MSXSY > NSXSY ) NSYSX ~- PSYSX 

) PSXSY 

is Simple, that is T(h) = 0 C KI(~) - 

Proposition 5.2 Stable isomorphisms are the morphisms of a category 

~s, with the same objects as~. 

Proof: The composite of the stable isomorphisms 

If] : M > N , [g] : N ) P 

is the stable isomorphism 

[g] [f] = [e] : M )P 

represented by the isomorphism 
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The torsion of a stable I is°m°rphism [f]:M ~ N 

[ automorphism [f]:M >M 

is defined by 

I _iso(A ) ~([f] = T(f:M@X ,N@X) 8 il 

.aut 
T ([f] = T (f:M~X ~M@X) e ~i (~) ~ KI(A) ' 

using any representatlve isomorphism f. In both cases 

T([g] [f]') = T([f]) + T([g]) , T([f]@[f']) = T([f]) + T([f']) 

A canonical stable structure [%] on an additive category 

is a collection of stable isomorphisms { [%M,N] :M ~ N}, one for each 

o[dered pair (M,N)of stably isomorphic objects in ~, such that 

i) [%M,M ] = [i M] : M . ~M , 

ii) [~M,p] = [~N,m] [~M,N] : M ~ N ) P , 

iii) [%M@M,,N@N,] = [%M,N]@[%M,,N,] : M@M' ~N@N' 

Thus [%] is a canonical structure on the stable category~ s. An actual 

canonical structure ~ on ~ determines a canonical stable structure [%] 

on ~ with 

[%M,N] = [%M@X,N@X ] : M ) N 

for any objects M,N,X in~ such that M@X is isomorphic to N@X. 

Proposition 5.3 A canonical stable structure [%] on an additive 
.iso 

category ~ determines a splitting of the natural map KI(~) > ~i (~) 

K~S°(A) YKI(A) ; T(f:M ,N)! ~T([%N,M] [f]:M ~m >M) , 

so that K[s°(A) = KI(A)@?. 

Proof: Trivial. 

[] 

An additive category A which is equipped with a sufficiently 

additive "Eilenberg swindle" has a canonical stable structure, as 

follows. 

A flasque structure {~,o,p] on an additive category 

consists of 

i) an object ZM for each object M of ~, 

ii) an isomorphism OM:M@ZM ,ZM for each object M of~ , 

iii) an isomorphism 0M,N: Z(M@N) ~ZM@EN for each pair of 

objects M,N in~, such that 
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IM@N@QM,N 

OM@ N : M@N@Z(M@N) %M@N@ZM@ZN 

IM~ i N ~N °M~°N PM,N 

) Me~M@N~ZN )ZM@ZN )Z(M@N). 

The terminology derives from Karoubi [7,p.147]. 

An additive category ~ admits a structure {Z,o} satisfying i) 

and ii) (but net necessarily iii)) if and only if KO(~) = O, or 

equivalently if each object M is stably isomorphic to O. The isomorphisms 

OM:M@~M ~ZM represent stable isomorphisms [OM]:M TO. 

Example If J~ is an additive category with countable direct sums then 

KO(~) = O by the original Eilenberg swindle (cf. Swa D [21,p.66]), which 

is incorporated in the flasque structure {Z,O,Q} defined on ~ by 

~I zP = [P = Pep~pe .... 
1 

ii) Op ; P@ZP )ZP ; (x, (yl,y 2 .... ))t ~ (x,Yl,Y2,..) 

iii) @p,Q : Z(PSQ) ) ZP@ZQ ; 

((xl,Yl), (x2,Y 2) .... ): >((Xl,X 2 .... ), (yl,Y2 .... )) 

In particular, ~ = {projective A-modules} is an additive category with 

countable direct sums, for any ring A. 

[] 

Remark In the above example Z can be extended to an exact endofunctor 

Z : ~ %~ such that ~ defines a natural equivalence of functors 

by defining Z(f:P ~Q) to be 

Ef : ZP ) ZQ ; (Xl,X 2 .... )! ~(f(xl),f(x2) .... ) 

It follows that K,(A) = O. A flasque category in the sense of Karoubi [7] 

is in particular an additive category ~ for which there exists an exact 

endofunctor Z:~----~[ such that I~@Z is naturally equivalent to Z. Such 

structures were considered in connection with formal delooping procedures 

abstracting the Bott periodicity theorem. Ir the lower algebraic K-theory 

examples below the fl~sque Structures {Z,~,p} are such that Z does not 

in general extend to morphisms, and the flasque structure only guarantees 

that K0(~) = 0 for the additive categories A in question. 

[] 
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Proposition 5.4 A flasque structure {Z,o,p} on an additiue category 

determines a canonical stable structure [¢] on ~ by 

-i 
[~M,N ] = [ON] [OM] ; M ÷ 0 ~ N  , 

SO that the natural map KI(~)- ~K~S°(A) splits and K~S°(~) = KI(~)@?. 

Proof: The stable isomorphism [¢M,N]:M )N is represented by the 

isomorphism 

~M,N : M@ZMSZN > ZMSZN >ZMeNSZN 

- • N@ZM@ZN 

The conditions i) [~M,M ] = [IM], ii) [#M,p] = [%N,p] [¢M,N] for a 

canonical stable structure [¢] are clear from the definition of the 

stable category A s (Proposition 5.1). As for the additivity condition 

iii) [~MSM,,NSN,] = [%M,N]@[¢M,,N,] this follows on observing that the 

isomorphism 

PM,M'@PN,N ' 
f : £(M@M')~(N@N') >ZM~2M'~ZN@ZN' 

O IZN ) @IzN 
IZM@ IZM , 0 

ZM@ZN@ZM'~ZN' 

is such that there is defined a commutative diagram of isomorphisms 

in 

1M@M,@f 
M~M'SZ(M@M')@E(N@N') ~ M~M'~ZM@ZN@ZM'SZN' 

~M@M' ,N@N' ~M,N@~M ' ,N' 

IN@ N , ~f 
N~)N'~Z (M~M') ~Z (N~)N') > N@N'@ZM~)ZN~ZM' @ZN' 

Thus [~] is a canonical stable structure on ~, and Proposition 5.3 

applies. 

[] 
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Flasque structures arise naturally in lower algebraic 

K-theory, as follows. 

Given a ring A let ~i(A), ~i(A) (i ~ i) be the additive 

defined by Pedersen [12]. The objects of ~i(A) are ~l-graded categories 

A-modules 

M : ~ . M(J) 
J82Z t 

with each M(J) a f.g. free A-module. The morphisms of ~i(A) are the 

A-module morphisms 

f : J,!82zi f(J,K) : M : J~2Z iV M(J) }N =K~2Z i N(K) 

which are bounded in the sense that there exists an integer s ~0 such 

that 

f(J,K) : O : M(J) ~N(K) if J : (jl,J2 ..... ji ) , K : (kl,k 2 ..... k i) 

are such that max{lJr-krl Ii( r { i} >s . 

~i(A) is the idempotent completion of ~i(A), with objects (M,p) the 

projections p p2 = : M ,M in ~i(A), and morphisms 

f : (M,p) >(N,q) 

defined by morphisms f:M >N in ~i(A) such that qfp = f : M )N. 

Also, let ~o(A ) = {f.g. free A-modules}, and let ~o(A) be the 

idempotent completion of ~o(A), so that up to natural equivalence 

~o(A) = {f.g. projective A-modules} 

The main result of [12] is that there are natural identifications 

KI(~i+I(A)) = KO(~i(A)) = K_i(A) (i ~O) 

with K_i(A ) (i ~i) the lower algebraic K-groups of Bass [i]. 
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Example The bounded ~l-graded A-module category ~i(A) (i ~i) admits 

a flasque structure {Z,o,p}, with 

ZM(Jl,j 2 ..... ji ) = i 
O 

Jl-i 

M(k,J 2 ..... Ji ) 
k=O 

"i 

[ M(k,J 2 ..... Ji ) 
k=Jl+l 

if Jl = -1,O 

if jl ~ 1 

if Jl ~< -2 

o M : M(Jl,j 2 ..... ji)@ZM(Jl,J2 ..... Ji ) '-ZM(Jl+l,J 2 ..... Ji ) ; 

. . . . .  i_i ) ..... Xjl (Xjl (Xo,X 1 ,xj ) i % (Xo,X 1 ) if jl/> O 

o M : M(Jl,j 2 ..... ji)~ZM(Jl,J2 ..... Ji ) ~ ZM(JI+I,J 2 ..... Ji ) ; 

(Xjl, (Xjl+l,Xjl+2 ..... X_l)) I 

PM,N : ~(M@N) ~ ~M~N ; s?(xk,Yk ) , 
k 

(Xjl,Xjl+l ..... x_ l) 

~ (~Xk'~Y k ) 

if jl~<-i, 

This flasque structure (for which I am indebted to Chuck Weibel) 

determines by Proposition 5.4 a canonical stable structure [9] °n~i(A) , 

and hence a direct sum decomposition 

Kiso . . . .  aut,~ 
1 [~i (i)) = ~I ~i (h))@? " 

-aut(~i(A)) = Kl_i(A) of the The automorphism torsion component T(C) 8 K 1 

_iso isomorphism torsion T(C) C K 1 (~i(A)) of a contractible finite chain 

complex C in ~i(A) is an absolute version of the reduced torsion 

invariant ?(C) C KI_i(A) (= KI_i(A) for i > i) obtained by Pedersen [13]. 

In particular, for i = 1 the splitting map is given explicitly by 

kiso(~l(A)) )~" aut(~l(A)) : K O(A) ; 
1 ~i 

sT1 ~ s-i 
T(f:M )N) . ~[( [ M(j)) N f-l( [ N(j))] - [ [ M(j)] 

j=-~ j:O j=O 

with s % O a bound for f-l:N ~M, such that 

s 
f-l(N(j)) c [ M(j+k) (j e 2Z) 

k=-s 
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The flasque structure isomorphisms OM:M@ZM )ZM are such that 

C~M( ~ M ( j ) @ Z M ( j ) )  = 2 M ( j ) ,  a n d  OM 1 h a s  b o u n d  s = 1 ,  s o  t h a t  t h e  
j :O j =0 

_ iso.~_ . aut,u 
isomorphism torsion T(gM)eK 1 (~I(A)) has image 0 in K 1 (/~l(A)) =Ko(A). 

[] 

Given a filtered additive, category ~ let ~i(A) (im O) be the 

filtered additive category of ~1-graded objects in A defined by 

Pedersen and Weibel [15], with ~O(A) =~, and let ~i(~) (i~O) be the 

idempotent completion of ~i(~). By the main result of [15] there are 

natural identifications of algebraic K-groups 

Kn+l(~i+l(~)) = Kn(~i(A)) : Kn_i(~O(A)) for n,i> O 

= Kn(~i(][)) for n ~ 1 

= Kn_i(3%) for n-i ~ 1 

with the higher K-groups defined using the split exact structure, and 

the lower K-groups K_j(PO(A)) (j ~i) as defined by Karoubi [7]. 

Example The bounded z~l-graded category ~i(Jl) (i 2wl) admits a flasque 

structure {Z,o,p}, defined exactly as in the previous Example, which 

is the special case ~t= {f.g. free A-modules}. The splitting map for 

kaut~ 7" iso in the case i = 1 is given by 1 K1 

kiso (~i (J%)) _ aut KO (3)0 i --" >sKi (~i (Jl)) = (J~)) ; 

s-i s-i 
T(f:M ~N) ' > [ [ M(j),f-lp +f] _ [ a? M(j),1] 

j =-s N j =O 

with p + the projection 
N 

" N = J = - ~  N ( j )  ~'N ; j = _ o x ( j )  ' ~' j = o x ( J )  PN + 

and s ~O a bound for f-l:N )M, 

s 
f-l(N(j) ) c_ [ M(j+k) (j e ZZ) 

k:-s 

. aut .¢. 
Again, T(jM)eK s°(~l(A)) has image Oem I <ml(J{)). The case i=l is 

the most significant one, since ~i(O~ ) = ~i(~i_i(-4)) for i~l. 

[] 

A more detailed account of the applications of the 

algebraic theory of torsion to lower K-theory will appear elsewhere. 
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