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Abstract. The algebraic K-theory product K(4)® K,(B)— K (A ® B) for rings A4, B is given a chain
complex interpretation, using the absolute torsion invariant introduced in Part I. Given a finitely
dominated A-module chain complex C and a round finite B-module chain complex D, it is shown that the
A ® B-module chain complex C @ D has a round finite chain homotopy structure. Thus, if X is a finitely
dominated CW complex and Yis a round finite CW complex, the product X x Yis a CW complex with a
round finite homotopy structure.
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0. Introduction

The algebraic theory of absolute torsion developed in Part T ([16]) is here applied to
products of chain complexes in algebra, and products of CW complexes in topology.

Given an additive category & and a chain equivalence f: C — D of finite chain
complexes in &/ with [C] = [D] = 0 K4(of) there was defined in Part I a torsion
invariant t( f)e K° (&) in the isomorphism torsion group of &/. Here, we shall only
be concerned with the case of the additive category o of based f.g. free A-modules,
for some ring 4 such that the rank of f.g. free A-modules is well-defined. Thus, the
natural map K,(Z) = Z — K,(A) is injective, and the Euler characteristic of a finite
chain complex C in of

x(C) =X o(—) rank(C,)eZ

is a chain homotopy invariant which can be identified with the class
[CleKy(#) = Z, and also the projective class [C] € Ky(A). Isomorphic objects in &/
are related by a canonical isomorphism, so there is defined a natural split surjection
Kk (of) - K3 (of) = K,(A). Given a chain equivalence f:C — D of finite chain
complexes of based fg. free A-modules such that y(C)= x(D)=0eZ we thus
have an mvariant (f)e K (A), the torsion of f. The definition of 7(f) 1s recalled in
Section 1 below.

The absolute projective class of a finitely dominated CW complex X is defined to
be the projective class of the finitely dominated cellular Z{#,(X)]-module chain
complex C(X) of the universal cover X

[X] = [C(X)]eKo(Z[n,(X)]),

and consists of the Euler characteristic y(X) = 2(C(X)eKy(Z) = Z and the finite-
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ness obstruction [X]e Ky(Z[n,(X)]) of Wall [21]

[X] = (x(X), [X])e Ko(Z[r,(X)]) = Ko(Z) D Ko(Z[,(X)]).
The product of finitely dominated CW ,&)_r/nplexes X, Yis a finitely dominated CW
complex X x Y with universal cover X x Y = X x ¥, such that

Z[my (X x Y)] = Z[r(X) x m,(Y)] = Z[n(X)] ® Z[=,(Y)],

with a natural identification
P

C(X xY)=C(X)® CT).
The projective class product formula of Gersten [7] and Siebenmann [18]
[X x Y] =[X]®[Y]eK(Z[m,(X x Y)])

showed that for a ﬁnite/(l’\//complex g/with #(Y) = 0eZ the product X x Y has Wall
finiteness obstruction [X x Y] = 0e Ky(Z[n,(X x Y)]),and so X x Y has the homo-
topy type of a finite CW complex. This was first proved geometrically by Mather
[12], in the important special case Y = S*.

For any rings A, B there is defined a product in the absolute algebraic K-groups

®:KyA)® K, (B)— K,(4A ® B),

[PI®Uf: Q- Q) t(1®[:PRQ->PRQ),
in particular for group rings 4 = Z[n], B=Z[p], with A®@ B =Z[n x p]. In
general, there is no such product in the reduced K-groups, although if Wh{p) =0
there is a product R, (Z[n]) ® K,(Z[p]) > Wh(r x p). It is therefore quite reason-
able that the absolute torsion should enter into the consideration of finite CW

complexes in the homotopy type of CW complex products X x Y.
Define a finite structure on a CW complex X to be an equivalence class of pairs

(finite CW complex F, homotopy equivalence ¢: F — X)
under the equivalence relation
(Fy, 1) ~ (Fa¢y) if (¢, ¢y Fy = Fy) = 0 Wh(m (X))

The Whitehead torsion 7(f)e Wh(n,(X)) of a homotopy equivalence f: X 5 X' of
CW complexes with given finite structures (F, ¢), (F', ¢') is defined by

(f)=1t(¢p' " 'fp: F > X - X' > F')e Wh(n,(X)).

A finite CW complex F has the canonical finite structure (F, 1).

Ferry [6] proved geometrically that the mapping torus construction of Mather
[12] defines a canonical finite structure on X x §* for any finitely dominated CW
complex X, which is independent of the finite domination used in the construction,
and that the geometrically defined Abelian group morphism

B':Ry(Z[r]) » Wh(m x Z); [X]mt(l x —1: X x §' > X x §') (1= m (X))
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is an injection. Now —1:8'—S' is a simple homotopy equivalence (ie.,
7(—1) = 06 Wh(n,(S')) = Wh(Z) = 0), so that the canonical finite structure on
X x 8! depends on more than just the canonical finite structure on S'. We shall
show that it depends on the canonical ‘round finite structure’ on S*.

A finite chain complex C of based f.g. free A-modules is round if ¥(C) = 0cZ, or
equivalently if [C] = 0 Ky(4). The torsion 1(f)e K,(4) defined in Part I for a chain
equivalence f: C — D of round finite chain complexes has the logarithmic property

gf:C—>D->Ey=1(f:C- D)+ 1(9g: D> E)e K,(A).
In general, absolute torsion is nonadditive
WD COC->DDD)V#1(f:C>D)+1(f:C - D)eK,(A).
A round finite structure on an A-module chain complex C is an equivalence class
of pairs
(round finite chain complex F of based f.g. free A-modules,
chain equivalence ¢: F — C)

under the equivalence relation

(Fi,¢1) ~ (Fy,0,) if T(¢£1¢1:F1 - F,) = 0eK,(4)

The torsion of a chain equivalence f: C — C’ of A-module chain complexes C, C’
with prescribed round finite structures (F, @), (F’, ¢') is defined by

(f)=1(¢' "' fp: F > C—> C' — F)eK,(A).

The main result of the paper is the following chain complex interpretation of the
product Ky(4) ® K((B) - K,(A ® B).

ALGEBRAIC PRODUCT STRUCTURE THEOREM. The product of a finitely
dominated A-module chain complex C and a B-module chain complex D with a round
JSinite structure (F, ¢) is an A ® B-module chain complex C ® D with a round finite
structure C & (F, ¢).

If f: C— C' is a chain equivalence of finitely dominated A-module chain complexes
and g:D — D" is a chain equivalence of B-module chain complexes D, D' with round
finite structures

(f®gCRD->C' QD)= [C]R1(g)eK,(A® B)
with [C] = [C"]e Ko(A) the projective class and 1(g)e K ,(B) the torsion. O

This will be proved in Section 3, and translated into topology in Section 4.

A finite CW complex X with universal cover X and fundamental group (X)) ==x
determines a class of bases for the cellular f.g. free Z[n] -module chain complex
C(X), the elements of which are determined up to multiplication by +geZ[n]
(gen). Define a round finite CW complex to be a finite CW complex X such that the
Euler characteristic y(X) = x(C(X))e Z vanishes, y(X) = Oe Z, together with a choice
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of base for C(X) in the canonical class. The torsion of a homotopy equivalence
f:X - Yof round finite CW complexes is defined by

©f) = «f: CX) - CFNeK(Z[n]) (r=n (X)),

with the image t(f)e Wh(n) the usual Whitehead torsion of f.
A round finite structure on a CW complex X is a round finite structure on C(X), or
equivalently an equivalence class of pairs

(round finite CW complex F, homotopy equivalence ¢: F — X)

under the equivalence relation

(F1, ¢1) ~ (Fay, ¢,) if (5 '¢: Fy = F,) = 0 Ky(Z[m,(X)]).

The torsion t(f)e K(Z[#,(X)]) of a homotopy equivalence f: X — Y of CW com-
plexes with prescribed round finite structures is defined in the obvious manner.

The main topological result of this paper is the following CW complex in-
terpretation of the product Ko(4) ® K,(B) —» K(4 ® B).

GEOMETRIC PRODUCT STRUCTURE THEOREM. The product of a finitely
dominated CW complex X and a CW complex Y with round finite structure (F, ¢) is a
CW complex X x Y with a round finite structure X x (F,¢). If f:X > X' is a
homotopy equivalence of finitely dominated CW complexes and g:Y — Y’ is a homotopy
equivalence of CW complexes with round finite structures then

Wf xg: X xY > X xY)=[X]®ug)eK,(Z[n, (X x Y)]),

with [X] = [X']1e Ko(Z[m(X)]) the projective class and t1(g)e K (Z[n,(Y)]) the tor-
sion. ]

The torsion product formulae of Kwun and Szczarba [10] and Gersten [8] are
special cases of the geometric product structure theorem, with X finite in [10] and
Y =Yin [8]

As already noted in the introduction to Part I ([16]), the algebraic description due
to Liick [11] of the transfer maps induced in the algebraic K-groups

pii K{Z[n(B)]) » K{Z[n,(E)]) (i=0,1)
by a Hurewicz fibration
F-E-LB

with finitely dominated fibre F allows the extension of the geometric product
structure theorem to the twisted case: if the base B is also finitely dominated then so
is the total space E, with projective class

[E] = po([BD)e Ko(Z[n,(E)]),

und a round finite structure on B determines a round finite structure on E, a
variation by te€K,(Z[=,(B)]) in the base lecading to a variation of
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(e K (Z[7,(E)]) in the total space. In the case of a trivial fibration E =B x F
the transfer maps are given by product with the projective class [Fle Ko(Z[7,(F)])

i = —Q [FI:K{Z[=,(B)]]) » K{Z[m,(B x F)]) (i=0,1).

In Section 5 we shall compare the absolute torsion invariant t(f)e K,(Z[n,(X)])
defined by Gersten [8] for a self homotopy equivalence f: X — X of a finitely
dominated CW complex X with f,, = 1:7,(X) - n,(X) with our notion of absolute
torsion, showing that they coincide when both are defined (i.e., when

[X] = 0eKo(Z[, (X))

Finally, in Section 6 we shall show that for a particular choice of round finite
structure £! on §' the product round finite structure X x ! on X x S* for a
finitely dominated CW complex X reduces to the canonical finite structure obtained
geometrically by Mather [12] and Ferry [6]. With respect to this choice

(—1:8' - 81
=1(~2:Z[z,z7 '] > Z[z,z ' Ne K,(Z[=,(S")])
= Ky(Z[z,271]),
so that the geometric injection of [6]
B':Ry(Z[n]) » Wh(n x Z); [X]~1(l x —1: X x St > X x §1)
may be identified with the algebraic injection of Ranicki [22]

B = — ®1(—z2): Ky(Z[n]) » Wh(n x Z);
[Pl 1(—z:P[z,z7Y] - P[z,z " ]).

Thus, B’ is a variant of the algebraic injection defined by Bass et al. [2]

B = —®1(2): Ko(Z[n]) » Wh(xn x Z);
[P]—1(z: P[z,z7 ] - P[z,z"']).

Part III of the paper [17] deals with lower K-theory, including some further
discussion of B and B'.
See [9] for an application of the algebraic theory of torsion to L-theory.

1. Finite and Round Finite Structures

We shall now apply the general theory of torsion developed in Part I for any
additive category to the most important special case & = {based fg. free A-
modules}, for any ring A4 such that the rank of f.g. free A-modules is well-defined. In
the first instance we recall from [15] the abstract chain complex version of the
finiteness obstruction theory of Wall [21], and extend it to round finiteness.

A chain complex over A is a positive chain complex of (left) 4-modules and A-
module morphisms

d d d

Cio o Cpuy = C="mC, g = 5 € =0
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The chain complex C is n-dimensional if C, = 0 for r > n. The chain complex C is
finite if it is a finite-dimensional complex of based f.g. free A-modules, that is if it is a
finite chain complex in the category &/ = {based f.g. free A-modules}. The Euler
characteristic of a finite chain complex C is defined by

2(C) = L2 o(—) rank,(C,)e Z,

and C is round if y(C) = 0e Z.
A finite domination (D, f, g, h) of a chain complex C over A consists of a finite chain
complex D over A, chain maps

f:C—-D, g:D-C
and a chain homotopy
higf ~1:.C—- C.

A chain complex is finitely dominated if it admits a finite domination. It was shown
in [15] that a chain complex C is finitely dominated if and only if it is chain
equivalent to a finite dimensional f.g. projective chain complex

P -0-P,—-P, > > P —>P,

The projective class of a finitely dominated chain complex C is defined using any
such P to be

[C] = [P] = Z2o(=VIP,]e Ko(A).

The projective class is a chain homotopy invariant such that for finite C
[C] = x(O)eim(Ko(Z) - Ko(A)) = Z < Ko(A).

Thus the reduced projective class
[Cle Ro(A) = coker(Ko(Z) - Ko(4)

vanishes for finite C.

PROPOSITION 1.1. (i) A finitely dominated chain complex C over A is chain
equivalent to a finite chain complex if and only if [C] = 0e R(A). Thus [CleK(A) is
the finiteness obstruction of C.

(ii) A finitely dominated chain complex C over A is chain equivalent to a round finite
chain complex if and only if [C] = 0€ K(A). Thus [C]e K(A) is the round finiteness
obstruction of C.

Proof. (i) See [15]. (ii) Immediate from (i). J

The torsion of a contractible finite chain complex C over 4 is defined by

1(CQ)=1d+T =

(=R 9
R O

0
0
d
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Codd:CI@C3@CS®'”_’C :CO®C2®C4@)EK1(A)

even

as usual, with T':0 ~ 1: C — C any chain contraction of C.
The algebraic mapping cone of a chain map f:C — D of finite chain complexes
over A is the finite chain complex C(f) defined as usual (up to sign conventions) by

4 (=y! .
dC(f) = <0D ( ()lz(‘ f> C(f)r = Dl@ Cr‘l - C(j)r—l = Dr"l S Cr*l'

The following signs occur in the composition and sum formulae obtained in Part
[ [16], as recalled in Proposition 1.2 below.
Given based f.g. free A-modules M, N let

e(M, N) = rank (M) rank (N)e Z,,
so that
0 1
T(I 0>:M SN->NEM =M Nr(—1:4 - A)eK,(A)
Given finite ‘chain complexes C, D over A4 let
B(C, D) = Zps (e(Capy Do) + &(Crivy, Dyju ) Z,.
For any 4-module chain complex C let SC denote the 4-module chain complex
with
dye =d.:SC,=C,., > 8C, ,=C,_,.
Given finite chain complexes C, D, E over 4 let
(C, D, E)
= B(E, SC) — B(D, SC) — B(E, SD) +
+ (#D;en) Coga) = E(Dggys Covey)) + (e(D

even? Ecven) - E(Dodd’ Eodd)) +
+ (E(C E ) - S(C E )) + (E(D Dodd) - ‘C’V(Deven’l)even))6 ZZ'

odd> “even even? “odd even?

PROPOSITION 1.2. (i) The torsion of the algebraic mapping cone C(gf) of the
composite gf :C — E of chain equivalences f:C — D, g: D — E of finite chain com-
plexes over A is given by

UClgf)) = «C(f) + T(C(g)) + ¥(C, D, Eye(—1: A > A)e K (A).

(i) The torsion of the algebraic mapping cone CfDf) of the sum
SO COC ->D®D of chain equivalences {: C — D, [':C" = D’ of finite chain
complexes over A is given by

UC(S B [) = UC(f)) + «(C(f) + D S SC, D' B SC)e(~1: 4 — A) +
+(EL=)E(Coey, DY)~ 1: A > A)EK ((A)

Proof. See Proposition 2.5 of Part 1. O
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The reduced torsion of a chain equivalence f: C - D of finite chain complexes over
A is defined by

1(f) = (C(f)e K, (A),
the reduction of T(C(f))e K,(4) in K,(A4) = coker(K,(Z) — K (A)).
PROPOSITION 1.3. The reduced torsion is such that
(@) 1(gf:C—D - E) =1(f) + 1(g)e K(4)

() 1(fOf:COC ->D®D)=1(f) + 1(f)e K (A)
(iii) 7(f:C - D) = 1(D) — t(C)e R (A) if C and D are chain contractible.

Proof. See Proposition 2.6 of Part L. OJ

The rorsion of a chain equivalence f: C — D of round finite chain complexes over
A is defined by

©(f) = 1(C(f) — BD, SC)r(—1: A > A)e K (A).
PROPOSITION 1.4. The torsion is such that

(@) t(gf:C— D - E) =1(f) + 1(9)e K,(4),
i (f@f.cCeC-DDdD)
=t(f) + (/) +
+ (B(D,D') — BIC,C')r(—1: A > A)e K, (A4),
(ii)) 7(f:C— Dy =1(D) — t(C)eK(A) if C and D are chain contractible.

Proof. See Proposition 2.7 of Part 1. O

The reduction of the torsion t(f)eK,(4) is, of course, the reduced torsion

(e Ky(A).
A finite structure on a chain complex C over A4 is an equivalence class of pairs

(finite chain complex F over 4, chain equivalence ¢: F —» C)
under the equivalence relation
(F,¢) ~ (F,¢) if 1(¢' '¢: F - F') = 0e K,(A).

The finite structure set % (C) of a chain complex C over A is the set (possibly empty)
of finite structures on C.

PROPOSITION 1.5. (i) The finite structure set & (C) is nonempty if and only if C is
finitely dominated and [C] = 0e K(A).

(ii) If F(C) is nonempty it is an affine K (A)-set, with a transitive K,(A)-action
defined by

R(AxFO-FC); D)F )~ FDD,¢D0)

with ©(D)e K,(A) the reduced torsion of a contractible finite chain complex D over A. A
choice of base point (F,, po)e F (C) determines an Abelian group structure on F(C)
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with an isomorphism
FO - Ry (F,¢)m1(p™" po: Fo— F).
Proof. Tmmediate from Proposition 1.1 (i). J

Given a chain equivalence f:C — D of chain complexes over A4 with finite
structures (F, ¢)e F (C), (G, 0)e (D) define the reduced torsion

«(f) =10~ fp: F—2 o p o

G)e K (4).

This evidently depends on the choices of finite structures as well as f, with the
reduced torsion 1'(f)eK,(4) determined by different choices (F',¢')eZ (C),
(G',0")eZF (D) such that
) —df) =070 G — G) — U ~'¢": F' > F)e K (A),

by the logarithmic property of reduced torsion.

A fg. free A-module M is even if rank,(M) = O(mod 2). Thus, if either M or N is
even ¢(M,N)=0eZ,.

A finite chain complex C over A is even if each C(r > 0) is an even f.g. free A-
module. Thus, if either C or D is even f(C, D) = 0e Z,.

(Let €°(4) be the additive category of even finite chain complexes over A and
chain homotopy classes of chain maps. The torsion function

1:150(4°(A)) — K (4); [ 1(f) =1"C(f))

is both logarithmic (t(gf) = ©(f) + 7(g)) and additive (z(f @ f') = 1(f) + 7 ),
agreeing with the torsion 7:iso(4"(4)) - K, (A); fr 1(f) defined above for the
additive category 4"(4) of round finite chain complexes over 4 and chain homotopy
classes of chain maps.)

A round finite structure on a chain complex C over A is an equivalence class of
pairs

(round finite chain complex C over A,
chain equivalence ¢: F — ()

under the equivalence relation

(F,¢) ~ (F,¢) if t(¢' "'¢:F > F) = 0e K (A).
The round finite structure set #'(C) of a chain complex C over A is the set (possibly
empty) of round finite structures on C.

PROPOSITION 1.6. (i) The round finite structure set F'(C) is nonempty if and only
if C is finitely dominated and [C] = 0 K(A).
(i) If #7(C) is nonempty it is an affine K (A)-set, with a transitive K (A)-action
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defined by
Ki(A) x F(C)-» F'(C); (z(D),(F,¢))~(FS D, ¢ DO0)

with t(D)e K ,(A) the torsion of a contractible even finite chain complex D over A. A
choice of base point (Fy, ¢o)e F(C) determines an Abelian group structure on F'(C)
with an isomorphism

F(C) - K,(A);  (F,¢)> (@ '¢o: Fo > F).
Proof. By analogy with Proposition 1.5. ]

Given a chain equivalence f: C - D of chain complexes over A with round finite
structures (F, ¢)e F'(C), (G, §)e F(D) define the rorsion

(f) = 1(9*1f¢:F—¢—>C~f—>D o

G)=K,(A).

This evidently depends on the choices of round finite structures as well as f, with the
torsion 7'(f)e K,(A) determined by different choices (F', ¢)e F*(C), (G, 8)e F'(D)
such that

() — 1(f) = (010G - G) — (¢ '¢': F' > F)e K (A)

by the logarithmic property of torsion.

The absolute K;-group K,(4) behaves better under products than the reduced
K ,-group K,(A), so that round finite structures behave better under products than
finite structures. In Section 3 below we shall investigate this behaviour in some
detail, using the following sharper version of the condition y(C) = 0c Z for a finite
chain complex C to be round.

Given a finite chain complex C over A define the integers e(C)=
rank (C,) — rank (C,_,) + -+ +{—)" rank (Co)e Z (r 2 0), uniquely characterized
by

rank,(C,) = ¢ (C) + e,_(C) (r=>0,e_,(C)=0).

If C is n-dimensional, then for » 2 n
e(C) = (—)x(C)eZ.

A finite chain complex C over 4 is rounded if e(C) >0 (r = 0). If Cis n-
dimensional e,(C)e, . ,(C) = —x(C)* >0, so that (C) =0 and C is round. However,
a round finite chain complex need not be rounded, as is clear from the example

Ciov50-4-A4A-0.

PROPOSITION 1.7. (i) A finite chain complex C over A is rounded if and only if
there is defined a contractible finite chain complex C, over A with the same chain
modules {C,|r = 0}

d d d

s A A,
CA:“. - Cr+1 Cr—_"cr—l - CO'
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(ii) For any round finite chain complex C over A there exists a contractible finite
chain complex C' over A such that C® C’ is rounded and

z(<(1)>:c SCO® C’> = 0eK,(A).

Proof. (i) Given a contraction [':0 ~ 1: D — D of a finite chain complex D over A
there are defined stably f.g. free A-modules

E,=kerd:D,—-» D, ;)=imd:D,.,—»D,) (r=0)
and isomorphisms

f:D,->E @E,_; x = dlN(x),d(x)) (r=0)
such that

0 1

faf = (0 0>:Er®Er—1 —E_®E_,.

Now
e (D) =rank (E,) =0 (r=>0),

so that D is rounded.
Thus, if C is such that there exists a contractible finite chain complex C, with the
same chain modules

er(c) = er(CA) > 0 (1’ > 0)>

and C is rounded.
Conversely, if C is a rounded finite chain complex over A define
d,eHom (C,,C,_ )(r > 1) by

d,(kth base element of C,)

_{oEc,_1 if 1 <k <el(C)
|k — &(C))th base elemente €, if ¢,(C) + 1 < k < rank,(C,).

Then C, is a contractible chain complex, with a chain contraction I': 0 ~ 1: C, —» C,
defined by

I"(kth base element of C,)

_ (e 44(C) + kith base elemente C,,; if 1 <k <e,(C)
- 0eC,,; if e(C) <k <rank,(C,,,)

(ii) Let C be n-dimensional, and let {C,|r >0} be a sequence of based f.g. freec 4-
modules with the ranks

rank (C)=¢,(C')+¢,_,(C') (r=>0,e_(C)=0)
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determined by the nonnegative integers

e (C/) _ rankA(Cr—l) + ra’nkA(Cr—3) + o lf r < n
"0 ifr>a

Then {C, @ C,|r > 0} is a sequence of based f.g. free A-modules such that the ranks
rank (C, ® C) = ¢,(C ® )+ e, (CO®C) (r>0)

are determined by the nonnegative integers
e(C D C) = e(C) + e(C)

_ frank,(C,) + rank,(C, ;) + -+ ifr<n
0 ifr>n

By (i) differentials {d.e€ Hom,(C;,C;_,)|r >0} may be chosen such that C' is a
contractible finite chain complex over 4, and in particular such that

7(C") = B(C, C')e K (A).

By the sum formula of Proposition 1.2 (ii)

T(@:cac@c') (18 0:CDO-CDC)
=17(1.C->C)+1(0: 0~ C) — B({C,0) + B(C,C)
= 0eK,(A). 0

2. Change of Rings

In the applications we shall be dealing not only with the algebraic K-groups K¢(4),
K (A) of a single ring A, but also with the morphisms of K-groups induced by a
morphism of rings f: 4 — B. As usual, given such a ring morphism regard B as a
(B, A)-bimodule by

B x Bx A—B; (b,x,a)~ bxf(a),
so that there is defined a functor
fi: (A-modules) — (B-modules)y M~ f{M =B® M

sending f.g. projective (resp. free) A-modules to f.g. projective (resp. free) B-modules.
Given a finitely dominated (resp. contractible finite) chain complex C over A there is
induced a finitely dominated (resp. contractible finite) chain complex f,C = B® ,C
over B, and the induced morphisms of K-groups are such that

fi: Ko(A) > Ko(B);,  [C10[f,C]
Ji:Ky(4) = Ky(B), o(C) = 1(/,0).

We shall be particularly concerned with the case in which f: A — B is an isomor-
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phism, when it is possible to identify the B-module ;M induced by an 4-module M
with the B-module defined by the additive group of M with B acting by

Bx fiM—fM; (b,x)~ f(b)x.
For the inner automorphism of a ring 4
fiA— A, a—~z laz

defined by conjugation by a unit ze A there is defined a natural equivalence of
functors

z: 1~ f,: (A-modules) — (A-modules),
with a natural A-module isomorphism
z2M - M, xmzx

for any A-module M. Thus, for any chain complex C over A4 there is defined an
isomorphism

2:C— f,C; x> zx.
If C is finitely dominated

AIC] = [/,C] = [C]eK((4).
If C is finite then

T(Z: C - f!C) = :O=O(_)VT(Z: Cr - f'Cr)

= y(C)yt(z: A > A;a — az)e K, (A),

so that if C is contractible finite

Ji7(€) = 1 £,C) = t(C)e K (A).
Thus for an inner automorphism f: 4 — A

Ji = 1: Ko(A) - Ko(4).
fi =1 Ky(4) - K, (A).
A stable isomorphism of fg. projective A-modules [¢]: P - Q is an equivalence

class of isomorphisms ¢: P@® X — Q @ X for f.g. projective A-modules X, defined
exactly as in Section 1 for the additive category of f.g. projective A-modules, with

@P:POX>Q0®X)~0:POY »08Y)
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0 1,
1,0 )
7\, 0

w7 L 0eYeX

h®@ 1,

1, 0O

P@Y@X%P@X@Y)

(P@X@YJ@AHQ@X®Y

1@ 1,

=0e K, (A).
Note that f.g. projective A-modules P, P', Q, Q" are such that
[P]—[Q] =[P]—-[Q1eK4)

if and only if P ® Q’ is stably isomorphic to Q & P’

Define the relative K -group K,(f) of a morphism f: A — B of rings to be the
Abelian group of equivalence classes of triples (P, Q, [¢]) defined by f.g. projective
A-modules P, Q and a stable isomorphism {¢]: f,P - f,Q of the induced f.g.
projective B-modules, under the equivalence relation

(P,Q,[¢]} ~ (P, Q,[¢']) if there exists a stable isomorphism
[61: PD Q' — Q @ P such that

Sie]

, , ey
(P £ M oo pp WIEW)

[P® Q)

=0eK,(B)
with addition by

(P,Q,[¢]) + (RS, [¥]) = (POR, QD S, [¢] ® [Y e K (/).

K (f) is isomorphic to the relative K -group defined by Bass [1]. Note the
logarithmic property

(P, 0, [¢]) + (. R, [y]) = (P, R, [¥y1[d])e K, (f),

so that inverses are given by

—(P,Q,[¢]) = (Q, P,[¢] e K (f).
PROPOSITION 2.1. The relative K (-group K,(f) fits into an exact sequence

KA L K (B K () —T— Ko d) L K o(B)

with

J:Ky(B) > Ki(f); 1(¢: X = X) = (0,0,{o])
0: K,(f) > Ko(4), (P,Q,[¢D) [0 - [P].
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Proof. Trivial. [

Given finitely dominated chain complexes C, D over 4 and a chain equivalence of
the induced chain complexes over B

{:fiC—> fD
there is defined an element (C, D, {)e K,(f) such that
9(C,D,{) = [D] — [C]e Ky(A)

as follows. Choose chain equivalences 6: C — P, y: D — Q to bounded f.g. projective
chain complexes P, Q over A and define a chain equivalence of the induced chain
complexes over B

fo7! 1 { 7D Iy

¢ = (407N f,P fQ.

Using any chain contraction I':0 ~ 1: C(¢) » C(¢) and the isomorphism of fg.
projective B-modules

d + r: C(d))odd = f!Peven @ f!Qodd - C(d))even = f!Podd @ f!Qeven

define an element

(C.D,{) = (P,

cven

@ Qodd’ Podd @ sten’ d + F)EKl(f)

which 1s independent of the choices of 6, ¥, T'. The definition of (C,D,{)e K (f)is a
mild generalization of a construction of Smith [207]. In Section 4 below we shall use
the construction to define a relative K,-theory invariant (X, Y, {)e K,(f) for a map
{: X —> Y of finitely dominated CW complexes which is a B-homology equivalence,
for some morphism of rings f: 4 = Z[n,(Y)] — B. (More generally, there is defined
an invariant (C, D, {)e K,(f) for any chain equivalence

(fICDE— [DBF

with C, D finitely dominated chain complexes over 4 and E, F round finite chain
complexes over B. The element is such that

(C,D,{)=[D] - [C]eKy(4),
and
J:Ky(B) = K(f); t({: E— F)~(0,0,0).

We need only consider (C, D,{)e K,(f) for E = 0, F = 0 here.)

Given two ring morphisms f, g: A —» B define the relative K -group K,(f,g) to be
the Abelian group with one generator (P, [¢]) for each f.g. projective A-module P
with a stable isomorphism [$]:g,P — f,P of the induced f.g. projective B-modules,



130 ANDREW RANICKI

sitbject to the relations
(P, [¢]) = (P, [¢']) if there exists a stable isomorphism
[0]: P — P such that
(g [0] (1" £,[01[61: 9.P — ;P - f;P' > ¢,P' — g, P)
= 0e K, (B),
(P,[¢]) + (P, [¢]) =P O P,[¢]1D[¢'NeK ([, g
PROPOSITION 2.2. The relative K,-group K,(f, g) fits into an exact sequence

j 0 Ji—a

K ()L K (B K \(f, ) ——Ko(4)

Ko(B)

with
Jj:Ki(B) = Ky(f,g); t(¢:B"— B") > (A", [¢]) — (47, [1])
0:Ky(f,9)— Ko(4), (P,[¢])~ [P

Proof. Define K (f,g) to be the Abelian group of equivalence classes of triples
(P, Q, [¢]) consisting of f.g. projective A-modules P, Q and a stable isomorphism of
f.g. projective B-modules

[61:9P @ Q> f[PDgQ
under the equivalence relation
(P,Q,[¢]) ~ (P,Q,[¢7]) if there exists a stable isomorphism
0. PO - P PO such that
(A[017 @ g [0D)([91 D [¢] 1)
gP® fQDgP D [0 > f[PDgQD [P DgQ
-gP® fQDgP @ fQ)
= 0e K (B).
It follows from the logarithmic property

(P,Q,[¢]) @ (Q. R, [¥]) = (P, R, [¥[¢De K\(f. 9)

that inverses are given by
- (P7 Q} [d)]) = (Qa Pa [¢]71)EK11(f7 g)
Now K'(f, g) fits into an exact sequence

Ky(B) L =K (f, ) K4~ K y(B)

K(4)
with

JK(B)— Ki(f,g); t(¢:B">B")~ (0,0,[¢])

0" Ki(f,9) > Ko(4)  (P,Q.[¢])~ [P] - [Q],
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and there is defined an isomorphism of Abelian groups

with inverse
h™1 Ky(f, 9) = Ky(f, 9);

(P.Q, (o)~ (PD® - Q,[¢D) - (@S - 0, [1])
(for any —Q such that Q@ —~Q = 4"

such that kj =j', o'h = ¢. O
In the applications we shall use the isomorphism h: K (f,g)— Kj(f,g9) as an

identification, representing elements of K,(f, g) both as pairs (P,[¢]: g,P — f,P) and

as triples (P, Q,[¢]:g.P @ f,Q — [P D gQ)
(Given ring morphisms f: A — By, f,: A » B, define ring morphisms from A to

the product ring B, x B,

fiA - By X By; awr(fi(a),0),
g:A— B, x By; aw~ (0,f,(a).

For such f, g the exact sequence of Proposition 2.2 can be written as

£
—fzz

Ky(4) —— K(B,) ® K,(B,) 'K (f,9)

fu
Kol4) (‘f)

Ko(B1) © Ko(B,)

and K ,(f,g) is isomorphic to the relative K,-group defined by Casson [3].)
Given a finitely dominated chain complex C over 4 and a chain equivalence of
the induced chain complexes over B for some ring morphisms f, g: A — B

{:9C— f,C
there is defined an element (C,{)e K,(f, g) such that
9(C,{) = [Cle Ky(4)

as follows. Choose a chain equivalence y: C — P to a bounded f.g. projective chain
complex P over A and define a chain equivalence of bounded f.g. projective chain
complexes over B

a¥ ! ¢

¢ = (f)g¥ ") g.P g C——fic-LY s pp.

Using any chain contraction I':0 =~ 1:C(¢) > C(#) and the isomorphism of fg.
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projective B-modules

d + I': C(¢)0dd = g! Peven EB f!Podd - C(d))even = f!Podd @ g! Peven

define an element

(Ca C) = (Pevcn’ Podd’ d + F)E Kl(f9 g)

which is independent of the choices of ¥, I'. In Section 5 below we shall use the
construction to define an invariant (X, {)e K,(1, «) for any self-homotopy equival-
ence {: X - X of a finitely dominated CW complex X, with 4 = Z[n,(X)] and
a: A - A the automorphism induced by {,: n (X) — 7,(X). (More generally, there is
defined an invariant (C, D, {)e K,(f, g) for any chain equivalence

(:gCO® fDOE- f,COyDDF

with C, D finitely dominated chain complexes C, D over A and E, F round finite
chain complexes over B. The element is such that

0(C, D, {) = [C] — [D]e Kq(4),
and
J Ky(B) = Ky(f,g) «({: E—~ F)~ (0,0,0).

We need only consider the case D=0, E=0, F=0 ‘here, with
(C: 0, C) = (Ca C)E Kl(f: g))

3. Products in K-Theory
Given rings 4, B let A ® B, B® A be the product rings, where the tensor product is

taken over Z. The transposition isomorphisms
T:BRA->AR®B, bQar—a®b
U:AQB->BQA;, a®b—~b&a

are inverse to each other.
The product of an A-module M and a B-module N is an 4 ® B-module M @ N,

with A ® B acting by
ARBxMON->M®N,;, @®b x®y)— ax® by,

and the B® A-module N ® M is defined similarly. If M is a f.g. projective A-module
and N is a f.g. projective B-module then M ® N is a f.g. projective 4 ® B-module. If
M and N are f.g. free then so is M ® N, and

rank, g ,(M @ N) = rank,(M)rank,(N).

In dealing with based fg. free modules we adopt the convention that a base
{x;]1<i<m} for M and a base {y;|1<j<nj for N determine the base
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{z,|1 <k <mn} for M ® N defined by
=xQy;, fk=i+m{j-1),
so that
{2123 s Zy ) = X1 ® 1%, B Yy, X, @y, %, B Yy, Xy @ Y, )
The isomorphism of based f.g. free 4 ® B-modules
MAON->T(NOM), xQy—y&x
has torsion
(M®N - T(N®M)) =imm — n(n — )1(—1: AQB—-> A& B)
€K (4 ® B),
the sign of the permutation
{1,2,...,mn} > {1,2,...,mn};
k=i4+mi—-1)k=j+ni-1)1<i<ml<j<n).
Furthermore, for based f.g. free A-modules M, M, M, and based f.g. free B-modules
N, N,, N, the evident isomorphisms of based f.g. free A ® B-modules have torsions
(MON,ON,)>(MON,)DMAN,))=0cK,(AR B)
(M, ®DM,)®N > (M, ® N)D (M, ®N))
=immunin — 1)1(~1: A® B— A Q@ B)eK,(A ® B)
with m, = rank,(M,), m, = rank,(M,), n =rank,(N). The sign is obtained by

considering the commutative diagram of isomorphisms

(M, ® M,)® N——(M, ® N)® (M, ® N)

T(NQ M, @ M) T(NOM,) DN M,)),

and noting that

2(my + my)my +my — Dn(n — 1) —
— gmy(my — Dn(n — 1) — Gmy(my — Dnln — 1)
= Im,;m,n(n — 1).

The product operation on modules is functorial, and as usual there are defined
products in the algebraic K-groups

Ko(A)® Ko(B) > Ko(A @ B); [P1®[Q]~[P® Q]
K(4) ® Ko(B) > K,(4 ® B);
(f:P->P)®[Q]1(f®1:PRQ—PRQ)
Ko(4) ® K (B) > K, (4 ® B,
[PI®1g: 0> Q)~»1(18g:PRQ->PRQ)
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with P a f.g. projective A-module, @ a f.g. projective B-module, and f € Hom (P, P),
geHomgy(Q, Q) automorphisms.
The product of an 4-module chain complex C and a B-module chain complex D
is the 4 ® B-module chain complex C ® D defined by
dC®D: (C® D)r = E:;—oocs ®Dr—s_) (C® D)r—l;
x By x@dy(y) + (=) d(x) B y.
If C and D are finitely dominated, then so is C ® D, and if either C or D is

contractible then so is C ® D, If C and D are finite, then sois C® D, as in DX C,
and the transposition isomorphism of finite chain complexes over A ® B

CRD->T(DR®C), xQyr (=)y®x (xeC,yeD,)
has torsion

(CA®D - T(DRCY
={C,D)(—1: A® B—> A® B)eK (A ® B),
where
{(C, D) = V(CWD) + Yo3a(Chtosa (D) +
+ 2:0=0 20<s<t<r csc!dr—sdr—'te 223
with
¢, =rank,(C,),  d, = rankg(D,),
W(0) = ZZo3¢(c, — 1),
Xoad(C) = ZiZ0Ci+ 1€ L.
(Further below we shall also US€ ¥ ., (C) = Z24¢y€ Z,) If C, C' are finite chain
complexes over A and D, D' are finite chain complexes over B the rearrangement
isomorphisms have torsions
(CRMD@ED)—(CRD)D(CRDY)
= MC,D,D')t(~1: A® B—> A® B)e K (A ® B)
((CHC)RD - (CRD)D (CXDY)
= wC,C,D)(—1: AQ B—> AQ B)e K(A® B)
with 4, p defined by
MC,D,D') = (22 gcsCr NZZ 0didy+ 1),
wWC,C',Dy=AD,C,C) + &CDC, D)+ &C, D)y + &(C, D)e Z,.

For any finite chain complex C over 4 and any chain map g: D — D" of finite chain
complexes over B, the rearrangement isomorphism C(1 ®Rg:CRD->CRD)—
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C® C(g: D - D') has torsion
H{C(1 Q@ g)—» C® C(g)
=MD,SD,Cyr(—1:AQ®B— A® BeK,(4® B).

For any chain map f: C — C’ of finite chain complexes over 4 and any finite chain
complex D over B the rearrangement isomorphism C(f ® 1:C® D — C' ® D) -
C(f:C)—> C)® D has torsion

HC(f ® 1) —» C(f) ® D)
= 4(C', SC,Dyi(—1: A® B> A ® B)eK,(A ® B).

PROPOSITION 3.1. (i) The projective class of the product C® D of a finitely
dominated chain complex C over A and a finitely dominated chain complex D over B is
given by

[C® D] =[C]®[D]eKyAR B).

(ii) The torsion of the product C ® D of a contractible finite chain complex C over A
and a finite chain complex D over B is given by

H(C R D)=1(C)® [D] + 5(C,Dy(—1: AQ B- A QR B)eK,(4A® B)
where [D] = y(D)e Ko(B) and v is defined by
#(C, D) = B(C,CWD) + Z,;, ;,JCBS'D, CRS'D) +
+ %0ad (O toqa (D) € Z 5.

(iii) The torsion of the product C & D of a finite chain complex C over A and a
contractible finite chain complex D over B is given by

(C® D) =[CI® (D) + (D, C) +
+{D,O)(—1:A®B—->AQ BeK, (AR B),
where [C] = y(C)e Ko(A). If C is even the sign term vanishes and
(C® D) = [C] R 1(D)e K,(A ® B).

(iv) The reduced torsion of the product f ® g: C ® D — C' ® D' of a chain equival-
ence f:C — C’ of finite chain complexes over A and a chain equivalence g: D — D’ of
finite chain complexes over B is given by

f ®g)=[C]®(g) + (/)R [D]e K (A Q B),
where
[C]=x(C)eZ = K((A), [D] = x(D)e Z = K(B).

Proof. (i) By the chain homotopy invariance of the projective class it may be
assumed that C and D are bounded positive complexes of f.g. projective modules, in
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which case so is C® D and
[C®D] =Z2Lo(—-)CR®D),]
=220 Zss = (=) C, D]
= L2 0 Zs = (=) [C, B [D,]
= Lo (- VICI® EZo(-)[D])

=[C1®[D]e KA ® B).
(1) If D is O-dimensional, then by definition
(C®D)=1(d+T)® 1:(CB D),y = (CO D), )eK,;(4Q B),

for any chain contraction I':0 = 1: C — C. The rearrangement isomorphisms have
torsions

o((C @ D)y, > C.yy ® Do)
=(Zi> a1+ 1€+ 1)5do(do — D1(=1: AQ B> A @ B),
T((C ® D)even - Ceven ® DO)

:(E,~>jc2ic2j)%do(d0 —1)(—1:A®B—-> A B)cK,(4® B)
and

®
_@rD® - @D, (C®D)

even even?

(d+T)®1: (C® D)y, — C.py ® Do

so that

(C®D)=1(CRD)yyy = Coaa ®Dy) + (d + 1) O 1: C yy ® Dy = C,,, @ Do) —
~ ((C @ D),y = Coven ® Do)
=17(C)® [D] + B(C,Cy(D)r(—1:A®B— A X B)
=17(C)®[D] + #(C,D)yr(—1: A®B - A® B)eK,(A& B).

Assume inductively that 1(C ® D) = «(C) & [D] + #(C, Dyr{ —1) if D is of dimen-
sion <n. If D is n-dimensional, let D’ be the (n — 1)-skeleton, so that there is defined
a short exact sequence of finite chain complexes over B

0-p'— D’ ,5D,~0
with
8"D,),=D, fr=n=0ir#n
Applying C ® - there is obtained a short exact sequence of finite chain complexes

over AQ®B

1®i 1®;
0>COD —.CRD—"

cC®Ss*"D,—0.
By the sum formula of Proposition 2.3 of [16] and the inductive hypothesis
H(CO®D)=1(CRD)+(CR®S"D,) + fCO®D,CRS"D,)(~1:AQB—~ A ® B)
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=1(C)®[D'] + (-y=(C)® [D,]1+
+BICRD,CRS'D,) + npy(C)+ Y BCR®S™D,,,C Q8" D, (1)

m<n

= 7(C) ® [D]+n(C.D)i(—1: A® B~ A ® B)e K, (4 ® B),

establishing the inductive step.
(iii) Using the transposition isomorphisms

T:BROA->AQB, UAX®B-BQA
and the result of (i) we have
(C®D) =T U1 (CRD)
=T (D®C)+nD,Cy(—1:B®A - BR® A))
=T.(D)®[C] + {UD,C) + nD,O))r(—=1: B® A - B® A))
=[CI® D) + (D,C) + n(D,C)(—1: A® B~ A @ B)e K, (A ® B).
LEMMA. For any finite chain complex C over A
B(C,C) = Y(C) + 31000 (C) Heren (C) = 1) + 3203 (C) (104 (C)— 1) € Z,.
Thus if C is round B(C,C) = W(C)e Z,. If C is even
B(C,C) =0 =v(C)+ 3(C)e Z,.

Proof. If C is such that C, = 0 for r # n, both sides of the identity are zero.
If the identity holds for finite chain complexes C,C’ then it also holds for their
sum C D C, since

BIC® C,CDC) — B(C,C) — B(C,C) = BC,C') + B(C’,C)
= gcr Cr F Xeven (C)¥0aa (€) + Zoga (CNeyen (C7)
=(MCBC) + Heren (€ B C)(Yoyon (CB €)= 1) + 3,44 (C B C') (10 (C B C')— 1) —
= O) + Feren (Oeven (€)= 1) + 5204 (C) 0004 (€)= 1) —
~0(C) + Pleren (C) Leven (€)= 1) + 344 (C) (1,4 (C') = 1)) € Z,.

Ignoring boundaries C = C, @ SC, @S*C, & ... ®5"C,, for some 1 >0, so that

ns

the identity holds for all finite complexes C. O
Applying the Lemma we have that for even C
n(D,C) = B(D,D)v(C), eD,C) =v(DpW(C)e Z,
and as D is round f#(D,D) = v(D), so that
7(D,C) + &D,C) = 0¢ Z,.
(iv) Expressing f® g as the composite

e, 12®g

f®gC®D cC'®D C®D
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we have by the logarithmic property of reduced torsion
(f®g)=1(f B 1)+ (1. ®g)e K,(A® B).

The sign terms may be ignored in the reduced K,-group, so that
([ ® 1) =«C(f ® 1,)) = (C(f) ® D)e K{(4 @ B).

By (ii) above

HC(H® D) = 1(C(f) ® [D] + sign terme K (4 & B),
so that

(f®1,) =w(C(f)® D) =1(f)® [D]e K (4 ® B).
Similarly, by (iii)

t(l. ®g) = [C'1®(g) = [C]1®(g)€ R, (4 ® B). O
The product formula of Proposition 3.1(i) was first obtained by Gersten[7]
(although of course well known prior to that for y), and that of Proposition 3.1 (iv)
by Kwun and Szczarba[10]. The topological interpretations are recalled in
Proposition 4.5 below.

Proposition 3.1(i) shows. that the product C® D of a finitely dominated chain

complex C over 4 and a chain complex D over B which admits a round finite
structure is a chain complex over A ® B such that

[CRD|=[C]1R[D]=[C]1®0=0€K,(4®B),
so that C ® D also admits a round finite structure. More precisely:

PROPOSITION 3.2.(i) The product of a finitely dominated chain complex C over A
and a chain complex D over B with a round finite structure (G,8)e #'(D) is a chain
complex CQD over AQB with a canonical product round finite structure
C®(G,0)e F(C®D).

(i) The product f®g:CR®D—>C' ®D" of a chain equivalence f.C—C" of
finitely dominated chain complexes over A and a chain equivalence g: D — D' of chain
complexes over B with round finite structures (G,0)€ F (D), (G',0"Ye F"(D') is a chain
equivalence of chain complexes over A& B with torsion

(f®g) = [C]®1(g)e K (4@ B)
with respect to the product round finite structures
C®(G,0)e F'(CAD), C'R(G,0NeF(C'AD),
where [C] = [C") € Ky(A) and 1(g) € K,(B).

Proof. This occupies the rest of the Section. In (i) we shall define the product round
finite structure C® (D,1)e F'(C® D) for a round finite chain complex D over B.
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Then in (ii) we shall prove the torsion product formula
(f®gCRD->C'RD)=[C]®1(g:D—-D')eK,(4®B)

for any chain equivalence g: D — D’ of round finite chain complexes, with respect to
the round finite structures C ® (D,1)e F'(C® D), C'® (D', 1)e F'(C' ® D").

For any chain complex D over B with a round finite structure (G,0)c #"(D) the
product round finite structure C @ (G,0)e F'(C ® D) can then be defined using
CR(G,1)= (F,.¢)e F'(C R G) to be

C®(G,0)=((1®0)¢p:F>C®G—C®D)e F'(CRD).

(i) It suffices to consider only the case of a rounded finite chain complex D over B,
since by Proposition 1.7(ii) for any round finite chain complex D over B there exists
a contractible finite chain complex D’ such that D ® D’ is rounded and

1((10): D@D D’ - D) = 0 K,(B).

fCRMDBD,1)=(F,p)eF(CRDDD)) is already defined let C® (D, 1) =
(F,(1®(1,0)¢0: F>CQ (DD D)-» C®D)e F'(C® D).

Let then D be a rounded finite chain complex over B. By Proposition 1.7(i) there
exists a contractible finite chain complex D, over B with the same chain modules
(D,|r >0}, and the differentials {d, € Hom, (D,,D,_,)[r > 1} can be chosen such
that

1(D,) = 0e K,(B).

In dealing with the finitely dominated chain complex C over A it is convenient to
work with the idempotent completion P(4) of the additive category of = E(A4) of
based f.g. free A-modules. An object in P(A) is a pair (E, p) consisting of a based f.g.
free A-module E and an A-module morphism pe Hom,(E, E) which is a projection

p*=p:E-E
A morphism in P(A)
f(E p) - (E,p)
is an 4-module morphism f € Hom ,(E, E') such that
pPfp=fE->E"
The additive functor
P(A) - {f.g. projective A-modules}; (E, p) —»im(p: E — E)

is an equivalence of additive categories.
A finite idempotent chain complex over A (E,p) is a finite chain complex in P(4)

d
(E7p): v 0> (Empn)_“‘(En*lJpn—l) . (E09p0)'

The chain homotopy theory of finite idempotent chain complexes is defined in the
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obvious way, with a bijection of sets of chain equivalence classes
{finite idempotent chain complexes over 4}

— {finitely dominated chain complexes over A};
(E,p) > im(p: E > E).

See Ranicki [15] for a detailed exposition.
Given a finite idempotent chain complex (E, p) over A and a rounded finite chain
complex D over B define a round finite chain complex over A ® B

F=(Ep®D
by

dF:Frz(E®D)r:2;=0Es®Dr—s_)Fr~l;

x®y = plx) @ dy(y) + (1=p)(x) ® dy(y) + (=) *dy(x) ® y,

with {d, € Hom,(D,,D,_J'r > 1} the differentials of D and {d, € Homg(D,,D,_,)
|[r 21} the differentials of D, (as above). For example, if p=1:E— E then
F=F®D. As an unbased chain complex over B

F=im(p) ® D ®im(1 — p)® D,,
and the projection

Foim(p)®D;, x®y—-px)®y

is a chain equivalence (since it has contractible kernel im(1 — p) ® D).
A finite idempotent chain complex (E,p) over A is even if

rank,(E,) = O(mod 2)(r = 0).

For any finitely dominated chain complex C over A there exists a triple (E,p,9)
consisting of an even idempotent finite chain complex (E,p) over A and a chain
equivalence 0:im(p) — C. (Choose a bounded f.g. projective chain complex P over 4
chain equivalent to C, and let {Q,|r >0} be a sequence of f.g. projective A-modules
such that P, ® Q, is a f.g. free A-module of even rank if P, is non-zero and Q, = 0 if
P,=0. Then E = P® Q as an unbased chain complex, with

d, 0
dE:(OP 0>:Er:Pr@Qr_)Er—1=Pr—1@Qr—15

1 0
P=<O 0>:E, =P, ®Q,—-E =P, D@Q,,im(pE— E)=P).

The product round finite structure C® (D,1) = (F,¢)e #"(C ® D) is defined
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using any such triple (E,p,0) by

projection . &1

¢:F=(Ep®D im(p) ® D C®D.

We have to show that (F,¢)e #"(C ® D) is independent of the choice of (E, p,8). If
(E,p,0),(E',p',0") are two such choices the chain equivalence of even idempotent
finite complexes

f=¢"" "9 DO(E,p) — (E.p)
is such that

F,¢)—(F,¢')=1(f®1: F=(E,p)®D~ F' = (E,p)®D)
e K,(A ® B).

We thus have to show that 7(f® 1) = 0e K,(4 ® B). We consider first the special
case of contractible C:

LEMMA If (E,p) is an even finite idempotent chain complex over A such that
P =im(p: E — E) is a contractible chain complex over A then F =(E,p)® D is a
contractible finite chain complex over A ® B with torsion ©(F) = 0 K,(A Q B).

Proof. Choose a chain contraction I': 0 ~ 1: P — P and define an isomorphism of
contractible finite chain complexes over A ® B

h:F->EQ®D,
by the 4 ® B-module automorphisms
h:F,=X{_(E®D,_,—>(E®D,),=%_,E.QD,_g;
x®y—->x®y+ (=) T'p(x)® (d, — dp)(»)(r >0)
so that
F)=tE®D,)—Z2.(—)t(h: (EQD), - (E®D),)e K,(4® B).
As E is even
(E® D,) = [E]® (D) (by Proposition 3.1(ii))
=[E]®0=0eK,(4QB).
The f.g. projective A @ B-modules M,,N,(r > 0) defined by
M,=Z%Z{_oker(d,: P,»>P,_)®D,__,
N, =Z_oker(I: P> P, )®im(l —p: E,-E))®D,_,

are such that

L 1 0
T\ Eeo(m)Y T ®(dy—dy) 1
(E®D),=M,®N,>MON, (r=>0).
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Thus (h,) = 0e K (A ® B), and t(F) = 0e K,(A ® B). u

The algebraic mapping cone of a chain map of even idempotent finite chain
complexes over A

S(E, p)—(E, p")
is an even idempotent finite complex (C(f),q) with

q= (g 2>:C<f), —E,®E,_,~E®E_, (r>0).

The rearrangement isomorphism
(€19 @D - C(f@1: (E,p)&D—(E',p') & D)

has torsion u (E', SE, D)1(—1: AQ B— A® B)e K,(4® B), which is 0 since E and
E' are even. If f is a chain equivalence (i.e. if f|: im(p’) is a chain equivalence) then
im(q) is contractible and

f®1F=(Ep®D-F =(E,p)®D
is a chain equivalence of even round finite chain complexes over A ® B with torsion
W(f® 1) =C(fB 1))
=1((C(f),q9) ® D)
=0€e K,(4 ® B), by the Lemma,
It follows that (F,¢)= (F',¢"Ye #'(C ® D), so that the round infinite structure
defined on C ® D is indeed canonical.

(i) As for (i) it suffices to consider the special case when D and D’ are rounded
finite chain complexes over B. By the logarithmic property of torsion

1®yg ®1

(f®gCO®OD->C' ®D)=1(f®g:C®D C®D C' ® D)

=t(f®LCOD -»C ® D) +

+1(1®g:CO®D>CRD)eK, (AR B).

Let (F,9)e F(C®D), (F',¢')e F'(C'® D) be the product round finite struc-
tures. By definition

o o1 ¢!

W(f® 1) = t(F C®D C'®D F')e K, (A® B).

The proof in (i) above that (F = (E,p) ® D,¢)e #"(C ® D) is independent cf the
choice of (E,p) includes a proof that t1(f® 1) = 0e K,(4 ® B).

We shall prove that t(1®g)=[C]® t(g)e K,(4 ® B) using the following
generalization of the product formula of Proposition 3.1(iii), which is the special case
D =0.
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LEMMA. The product F =(E,p)® D of an even finite idempotent chain complex
(E,p) over A and a contractible finite chain complex D over B is a contractible finite
chain complex over A ® B with torsion
(F) = [im(p)] ® (D) e K (4 ® B).
Proof. Choose chain contractions
ry0~1:p-D, I,:0~1:D,>D,,
and use them to define a chain contraction
[=p®I,+(1-p&I,:0~1:F-F.
If E is O-dimensional the rearrangement isomorphisms are such that
H((E® D), > E;c®D,,)=0,7((E® D)4y > E; ®D,,,) =0€ K,(4 ® B),
so that
T(F)=1(dr+ I'p: Foyq= (E® D)oy Feren = (E® D),,,)
- =t(p®Ep+T) +(1 = p)®(d,+T): Eg® D yy— E,® D,,..)
t(p®p+Tds+T) ™' +(1 - p®1: E,® D, —» E,® D)
(since t(dy + I'y: D yy— D,,.,) = T(D,) = 0e K,(B))
[m(p)]® t((dy + Tp)(ds+ To) " Deyen = D)
= [im(p)]® 7(dp + I'p: Doyy > Deyen)
= [im(p)] ® 1(D)e K,(4 ® B).
Assume inductively that 7(F)=[im(p: E - E)]® t(D)e K,(A® B) if E is of
dimension <n, and that the dimension of E is n. Let E’ be the (n — 1)-skelton of E,

so that there is defined a short exact sequence of finite idempotent chain complexes
over A

0~ (E',p)— = (E.p) '~ (S"E,.p,) 0.
Applying — ® D there is obtained a short exact sequence of finite chain complexes
over A® B

i®1 i Q
Pl L Epep L

0 (E,p)®D (S"E,,p,) ® D - 0.

By the torsion sum formula of Proposition 2.3 of Part I and the inductive hypothesis
©((E,p) ® D) = t((E',p') ® D) + «(S"E,,p,) ® D)
(the sign term vanishes since E is even)
= [im(p")] ® ©(D) + (~)"[im(p,)] ® (D)
= [im(p)] ® 1(D)e K (4 ® B).
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The algebraic mapping cone of a chain equivalence g: D — D’ of round finite chain
complexes over B is a contractible finite chain complex C(g) over B, so that

©((E,p) ® C(g)) = [im(p)] ® 1(C(g)) € K (4 ® B)

by the Lemma. The round finite complexes (E,p) ® D, (E,p) ® D' over A ® B are
constructed using any contractible chain complexes D,,D) over B with the chain
modules of D,D’ respectively, and such that

©(D,) = t(D}y) = 0e K{(B).
Now C(g) has the chain modules of D' ® SD, but
1(D, ® SD,) = B(D', SD)(—1: B > B)e K,(B)

so that C(g), cannot in general be chosen to be D, ©@ SD,. We shall construct
(E,p) ® C(g) using the acyclic finite complex

Clg) = Dy, ® D,

with D), defined as follows. Choose an automorphism « e Homy (D}, D;) of a chain
module D), of D’ such that

(@) = B(D",SD)i(—1: B > B)e K,(B).

Define Dj, by
dy r#nntl
dy=<dya D, -D,_ | if $ r=n
od, r=n+1,

so that there is defined an isomorphism of contractible finite chain complexes over B
h: D}, — D,
with

h={;:D;—>D; if{”én

r=n
The torsion of h is given by
t(h) = 1(Dy) = (—=)'1(®) = (D', SD)r(—1: B > B)e K,(B)
and
1(C(g)y) =7(D'y)+ ©(SDy) + B(D', SD)1(—1: B > B)
=0€ K(B).
The isomorphism of contractible finite chain complexes over A ® B
k: (E,p)® C(g) > C(1® g: (E,p)® D —(E, p)® D’);
x®(y,7) = px)@(y,y) + (L = p)x) (¥, )
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has torsion

(k) = 1(C(1 ®g)) — ©((E,p) ® C(g))
=22 (=)tlk (E, p)® C(g)), » C(1® g),)
(by Proposition 1.2(iii))
=3 (=Yt :E_,®D,>E_ ®D.,;
x®y = px)@y" + (1 = p)x) @ h(y")
=X (=V[im(l - p: E,_,—>E _,)]®t(x: D, - D)
= [im(p)] ® B, SD)t(—1: B> B)e K,(4 ® B).
Thus

(I®g:CRD->CROD)Y=1(1Rg:(E,p)® D —(E,p)Q D)
=1(C(1 ¥ g))
= t((E, p)® C(9)) + [im(p)] ® (B(D', SD)z(—1: B — B))
= [im(p)] ® (z(C(g)) + p(D’, SD)r(—1: B —> B))
= [C]® 1(g)e K,(A® B). 0

In the special case when f: C— C' = C,g: D - D' = D the product formula of
Proposition 3.2(ii) agrees with the product formula obtained by Gersten [8] (cf.
Proposition 5.2 below).

4. Torsion for CW Complexes

Let X be a regular cover of a CW complex X with group of covering translations .
The cellular chain complex of X is the free chain complex over Z[x]

CR): =€ (BB (R) o o Col)

defined in the usual manner, with
C(X) = H(X",X~D) (r >0)

a free Z[n]-module with one generator for each r-cell of X.

We shall be mainly concerned with connected CW complexes X, with X the
universal cover and 7 = 7,(X) the fundamental group. A geometric base for X
is a base for the free Z[n]-module T2,C,(X) such that each base element
is the Hurewicz image ¢,[e']eC(X) of a fundamental class [e'}=
t1eH/(e",0e") = Z under a lift §:(¢',de") > (X, X"V) of a characteristic map
¢:(e",0¢") - (X, X"~ 1). Geometric base clements are unique up to mulitplication
by +g(gen). A geometric base for a finite CW complex X determines a finite chain
complex C(X) over Z[x].

A map of (connected) CW complexes f: X —Y induces a morphism of fundamen-
tal groups

fe=amX)=n->n,(Y)=p
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which 1s unique up to composition with inner automorphisms if base points are
ignored. The universal cover Y of Y pulls back to a cover f*¥ of X such that f lifts
to a p-equivariant map f: f*Y - X inducing a chain map over Z[p]

f:C(f*Y) = a,C(X) - C(Y).
The map f: X —Y is a homotopy equivalence if and only if «: & — p is an isomor-
phism and f: a,C(X) —» C(Y) is a chain equivalence.

A finite domination (Y, f, g, h) of a CW complex X consists of a finite CW complex

Y, maps

[ XY, gY->X
and a homotopy

hgf~1:X - X.

A CW complex X is finitely dominated if it admits a finite domination.

Let X be a connected CW complex with universal cover X and fundamental
group 7,(X) = = A finite domination (Y, f, ¢, h) of X and a choice of geometric base
for Y determine a finite domination of the chain complex C(X) over Z[x]

(CF), 7: C(X)— C(¥), g: C¥)» C(X), h: § ] ~ 1: C(X) - C(X)),

where ¥ =g*X is the pullback cover of Y. The projective class of a finitely
dominated CW complex X is defined by

[X] = [C(X)]e Ko(Z[x]).
This is a homotopy invariant which can be expressed as
[X] = (1(X),[X])eKo(Z[r]) = Ko(Z) ® Ro(Z[n]),

with 7(X) = x(C(X))e Ko(Z) = Z the Euler characteristic of X and [X]e Ko(Z[n]
the reduced projective class.

PROPOSITION 4.1 (Wall [21]). (i) A CW complex X is finitely dominated if and
only if n,(X) = = is finitely presented and C(X) is finitely dominated.

(i) A finitely dominated CW complex X is homotopy equivalent to a finite CW
complex if and only if [X] = 0e Ko(Z[x]), i, if and only if C(X) is chain equivalent
to a finite complex. The reduced projective class [X]€ Ko(Z[n]) is the finiteness
obstruction of X. O

The Whitehead group of a group = is defined as usual by
Wh(n) = K(Z[z])/{£=} .

If X is a connected finite CW complex with ; (X) = 7 and C,C’ are the finite chain
complexes over Z[n] defined by the cellular chain complex C(X) of the universal
cover X and two different choices of geometric base then

(1: C - C)e {xn} < K,(Z[xr]),

and so has image 0€ Wh(mn).



THE ALGEBRAIC THEORY OF TORSION. II: PRODUCTS 147

The (Whitehead) torsion of a homotopy equivalence f:X —Y of finite CW
complexes is defined as usual by

1(f)=t(f: C(X) > C(Y))e Wh(n)

with f: X — Y any lift of f to a n-equivariant map of the universal covers, identifying
7w =ny(X) with 7 (Y) via the isomorphism f,:7n,(X)— n(Y), with any geometric
bases for C(X) and C(Y). The element t(f)e Wh(n) is independent of the choices
made in its definition.

A finite structure on a CW complex X is an equivalence class of pairs

(finite CW complex F, homotopy equivalence f: F — X)
under the equivalence relation
(E Sy~ (FLf) il o(f 7 frF > F')= 0e Wh(n) (m ==, (X))

The finite structure set (X ) of a CW complex X is the set (possibly empty) of finite
structures on X.

PROPOSITION 4.2.(1) #(X) is nonempty if and only if X is finitely dominated and
[X]=0e Ro(Zlx]).

(ii) If #(X) is nonempty there is defined a transitive Wh(n)-action Wh(n) x #(X) -
F(X);

(t(g: G = F),(F, /)~ (G, fg: G — X).

A choice of base point (F, fy) determines an abelian group structure of F(X ) with an
isomorphism

F(X)>Wh(n); (F,f) > 1(f ! fo: Fo = F). O

A (Whitehead) finite structure on a Z[n]-module chain complex C is an equival-
ence class of pairs

(finite Z{n}-module chain complex F, chain equivalence ¢ F—- ()
under the equivalence relation
(F,@) ~ (F',¢') if (¢~ "¢:F > F’) = 0 Whin).

The (Whitehead) finite structure set F¥*(C) of a Z[n]-module chain complex C is
the set (possibly empty) of Whitchead finite structures on C. The evident analogue of
Proposition 1.6 holds with Wh(m) and #*"(C) in place of K,(A) and F(C).

PROPOSITION 4.3. The finite structure set #(X) of a CW complex X is in natural
bijective correspondence with the finite structure set F "8 (C(X)) of the cellular Z[n]-
module chain complex C(X) of the universal cover X, withn = 1 {X). If the sets are
nonempty there is defined a natural isomorphism of affine Wh(n)-sets

F(X) > FCR); (F, f:F > X)~(C(F), J: C(F) - C(X)). ]
A finite CW complex X is round if
¥(X)=0e7
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and there is given a choice of geometric base for C(X), so that C(X) is a round finite
Z[r]-module chain complex. As usual, X is the universal cover of X and 7 = 7, (X)
is the fundamental group.

The torsion of a homotopy equivalence f: X —Y of round finite CW complexes
(meaning a homotopy equivalence of the underlying finite CW complexes) is defined
by

©(f) = (f: C(X) > C(¥)) e K,(Z[x])
using any lift of f to a m-equivariant map f: X — Y of the universal covers, so that
S C(X) - C(Y) is a chain equivalence of round finite Z[n]-module chain complexes

and torsion is defined as in Section 1, using the isomorphism f,: 7,(X) = 7 — n,(Y)
as an identification. Any other lift of fis given by

xx )y
for some ge n, and
1(fg: C(X) - () = 1(g: C(X) » CX)) + 1(F: C(X) - C(¥))
= t(g®: Z[n] - Z[x]) + 1(f)
= 1(f)e K{(2[x]).

Thus the torsion 7 ( f )e K, (Z[n]) is independent of the choice of lift f: X — Y.

By the logarithmic property of torsion (Proposition 1.4(i)) the torsion of the
composite gf: X - Z of homotopy equivalences f: X —» Y, g: Y — Z of round finite
CW complexes is given by

t(gf) = ©(f) + ©(g)e K, (Z[x]),
using the isomorphisms f,:7,(X) =7 - n(Y),g,: 7,(Y) > n,(Z) as identifications.
If X;X’ are round finite CW complexes with the same underlying CW complex
the identity map has torsion
(11 X > X")e {£n} < K,(Z[x]),

measuring the difference between the two geometric bases. Thus, the image of
(f: X > Y)e K, (Z[x]) in Wh(n) is just the usual Whitehead torsion t(f)e Wh(n).
A round finite structure on a CW complex X is an equivalence class of pairs
(round finite CW complex F, homotopy equivalence f: F — X)
under the equivalence relation
(F,f)~(F, f) ift(f ' fiF>F)=0eK(Z[n]) (n=mn,(X)).
The round finite structure set F'(X) of a CW complex X is the set (possibly empty)

of round finite structures on X.

PROPOSITION 4.4. (i) #"(X) is nonempty if and only if X is finitely dominated and
[X] = 0eKy(Z[x]).
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(i) If #"(X) is nonempty there is defined a transitive K (Z[n])-action
K((Z[n]) x F"(X) > F"(X);
(t(g: G = F),(F,/) (G, Jg: G~ X).

A choice of base point (Fg,fo)€ F(X) determines an Abelian group structure on
F(X) with an isomorphism

F'(X) - K(Z[x]); (F.f)—=o(f " fo: Fo— F).

(ill) F"(X) is in natural bijective correspondence with the round finite structure set
F(C(X)) of the cellular Z[n]-module chain complex C(X). If the sets are nonempty
there is defined a natural isomorphism of affine K (Z[n])-sets

F(X)—» F(CX); (F, f: F > X) > (C(F), J: C(F) > C(X)).

The product X x Y of connected CW complexes X, Y is a connected CW complex
with fundamental group

T (X xY)=m(X) x 7, (Y),
so that
Z[n (X xY)] = Z2[n(X)]1® Z[n,(Y)].

The universal cover of X x Y is the product X x ¥ of the universal covers X,¥ of
X,Y, with cellular chain complex over Z[7n (X x Y)]

CX xY)=CX)® ).

The product formulae obtained for chain complexes in Section 3 above can thus be
translated directly into product formulae for CW complexes.

PROPOSITION 4.5. (i) (Gersten [7], Siebenmann [18]) The product of finitely
dominated CW complexes X,Y is a finitely dominated CW complex X x Y with pro-
jective class

[X x Y] =[X]® [Y]eK(Z[n,(X x Y)]).

(i) (Kwun and Szczarba[10]) The Whitehead torsion of the product
Sxg X xY—- X' xY' of homotopy equivalences of finiter CW complexes
[ X > X, g:Y Y is given by

S x g) = (NY) + (X)t(g) € Wh(my (X x Y)).

Proof. (i) Immediate from Proposition 4.1(i).
(i) Immediate from Proposition 4.1(iv). O

In particular, the product X x Y of a finitely dominated CW complex X and a
round finite CW complex Y has projective class

[X x Y] =[X]1®[Y] =[X]® «¥) = [X]®0 = 0 Ko(Z[x,(X x Y)]),
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so that X xY is homotopy equivalent to a round finite CW complex. More
precisely:

PROPOSITION 4.6. (i) The product X x Y of a finitely dominated CW complex X
and a round finite CW complex Y has a canonical product round finite structure.

(ii) The product f x g: X xY - X' x Y' of a homotopy equivalence f: X — X' of
finitely dominated CW complexes and a homotopy equivalence g: Y — Y’ of round finite
CW complexes is a homotopy equivalence of CW complexes with canonical round
finite structures. The torsion of fx g with respect to the canonical round finite
structures is the product

(fx g) = [X]1®1(g)e Ki(Z[m (X x Y)])

of the projective class [X]=[X"1eKyZ[n(X)]) and the torsion
1(g)e K((Z[n,(Y)].

Proof. Immediate from Propositions 3.2, 4.4. O

The case Y = S! of Proposition 4.6 is particularly interesting, and will be dealt
with separately in Section 5 below.

In the special case when f: X — X’ is a homotopy equivalence of finite CW
complexes the product formula of Proposition 4.6(ii) agrees with the product
formula 7 (f x g) = x(X)t(g)e Wh(zn,(X x Y)) given by Proposition 4.5(ii).

In the special case when f: X - X = X’,g: Y »Y =Y’ are self-homotopy equiva-
lences such that f, = 1: 7, (X) - n,(X), g, = 1: 7, (Y) = m;(Y) the product formula
of Proposition 4.6(ii) agrees with the product formula for the torsion of self-
homotopy equivalences obtained by Gersten{8], which we shall recall in
Proposition 5.2 below.

Given a map ¢: X — Y of finitely dominated CW complexes, let « denote the
induced morphism of fundamental groups

o= ¢,y (X) 7 (Y),
and let 4 = Z[r,(Y)], so that there is induced a chain map of finitely dominated
chain complexes over A

$:0,C(X) - C(Y)

with X,Y the universal covers of X,Y. If f: A » B is a ring morphism such that
¢:X »Y is a B-coefficient homology equivalence, then by the construction of
Section 2 there is defined an invariant

(X,Y,¢) = (4, CR),CF), £ p)e K, (f)
with image
AX,Y,¢) =[Y] — [ X]e Ko(4).

If ¢: XX =Y is such that o = 1: 7, (X) » n,(X) = ny(Y) there is defined an
elemgnt t(fi¢: [C(X) - f,.C(X)) e K,(B) (see Section 5 below for details) with image
jlAd) = (X.X,¢9)e Ky(f).
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EXAMPLE. Letf: Z[z,z '] —» P~ * Z[z,z™ '] be the localization map inverting the
multiplicative subset P = {p(z)e Z[z,z '] |p(l)= +1e€Z} of Z[z,z *]. This has
the property that a finite chain complex C over Z[z,z '] is such that fC = P~!C
is contractible if and only if Z® ,, -, C is contractible (see Proposition 7.9.2 of
Ranicki[14] for a proof). For any locally flat n-knot k:S" < $""2? the knot
complement

X = closure of (S""2 — regular neighbourhood of k(S"))

is such that the generator le H'(X)=[X,S']= Z is represented by a Z-
coefficient homology equivalence ¢: X — S*. The element

(X, 8", ¢)e K (f) = coker (fy Ky(Z[z,27']) > K (P ' Z[z27'])

is the Reidemeister torsion of the knot k. O

5. The Torsion of a Self Equivalence

We shall now compare the notion of torsion 1(f)e K,(4) defined in Section 1 for a
chain equivalence f: C » D of round finite chain complexes over A with the torsion
T(f)e K(4) defined by Gersten [8] for a self-chain equivalence f: C —»C of a
finitely dominated chain complex C over A. This was applied in [8] to define the
absolute torsion 7( f)e K,(Z[n,(X)]) of a self-homotopy equivalence f: X — X of a
finitely dominated CW complex X such that f, = 1:7,(X) - 7,(X). In Section 6 we
shall need to deal with self-homotopy equivalences f: X — X (notably —1: S* - §1)
such that f, # 1, so we shall consider the general case here.

In dealing with self-chain equivalences it is convenient to modify the sign
conventions for the algebraic mapping cone. The modified algebraic mapping cone

A

C(f) of an A-module chain map f: C — D is the A-module chain complex defined by

—d; 0
(7 )

C(f)r:Cr~l@Dr_)C(f)r—l:Cr—Z@Dr—l (VEZ).

PROPOSITION 5.1. (i) The modified algebraic mapping cone C(f) of a chain
equivalence f: C — D of finite chain complexes over A is a contractible finite chain
complex over A such that

(C(f)) — «C(S))
= (}oqq (C) + 2, rank,(C,_ )rank,(D,))t(—1: 4 — A) e K, (A).

(i) For any chain equivalences f: C — D,g: D — E of finite chain complexes over A
the composite chain equivalence gf: C — E is such that

(Clgf))
=1C(f)) + 1(C(g) + BSC D SD,D D Eyr(—1: A — A) e K, (A).

(ii) For any chain equivalences f:C'» D, f': C' > D’ of finite chain complexes over
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A the sum chain equivalence {@ f:C® C' — D D D' is such that
(C(fD 1)
=t(C(f) + «(C(f")) + (BD ® SC,D' D SC') +
+ X, rank, (C,- Jrank, D, )i(—1: A - A)e K, (A).

Proof. (i) Apply Proposition 2.2 of Part I to the isomorphism of contractible
finite chain complexes

g:C(f) - C(f)
defined by

0 _y—1 )
g=<1 (0) ):C(f)r:Dr@Cr—1—>C(f),=Cr_1@Dr r > 0).

(ii) and (iii) Translate the formulae of Proposition 1.2 (i) and (ii) using (i) above.
U

It follows from the formulae of Proposition 5.1 that for any finite chain complex
C over 4

7(C(1: C - C)) = 0e K,(4),
and that for any chain equivalence f: C — D of round finite chain complexes over A
1(f) = «C(f)) + BSC, C® Dy(—1: A - A)e K,(A).

In particular, for a self-chain equivalence f:C —D = C of a round finite chain
complex C over A the sign term vanishes and

©(f) = uC(f) e Ky(A).

Following Gersten [8] define the rorsion of a self-chain equivalence f: C — C of a
finitely dominated chain complex C over A by

1(f) = UCle) € K,(4)

with e the composite self-chain equivalence of a finite chain complex D over A given
by

@D i~1
el cec- b

e:D—i—>CEBC’

for any finite chain complex D such that there exists a chain equivalence
i:D— C®C' with C’' a finitely dominated chain complex, and any such i. (For
example, if (D, /7, ¢, ') is a finite domination of C, then D = D’ is such a finite
chain complex, with C’ = C(f": C - D) a finitely dominated chain complex and

i=<‘Z,>:D—>c®C'
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a chain equivalence, where ¢': D — C’ is the inclusion.) If C is a finite chain complex
it is possible to choose C'=0,i=1:D=C — C, so that e = f:C — C and
1(f) = «C(f)) € K (A).

Note that ©(f)e K,(4) is independent of the base in C. Also, if C is round finite this
is the torsion t(f)e K(A4) previously defined in Section 1, by the argument above.
The torsion of an automorphism f:C - C of a bounded fg. projective chain
complex C over A4 is given by

U f)=Z2o(=)1f: C.— C)e K (A4).

Still following [8] define the torsion of a self-homotopy equivalence f: X — X of a
finitely dominated CW complex X inducing f, = 1: n,(X) - n,(X) by

©(f) = f: CX) - C(X)e K,y (Z[7,(X)]),

with f: C(X) — C(X) the induced self-chain equivalence of the finitely dominated
cellular chain complex C(X) over Z[7,(X)] of the universal cover X.

PROPOSITION 5.2 (Gersten [8]). (i) The torsion of self chain equivalences of
finitely dominated chain complexes over A is logarithmic and additive, with

wgf:C->C)=1f:C->C)+1(g: C— C)e K,(A),
fRf:COC>CBC)=1(f:C>C)+1(f:C' - C)eK,(A).
(i) The product f ®g:COD—>CQ®D of self-chain equivalences f:C — C,
g: D > D of finitely dominated chain complexes C, D over A, B (respectively) is a self-
chain equivalence of a finitely dominated chain complex C ® D over AQ B with torsion

(f®g)=[C1®(g) + (/) ® [D] e K,(A ® B).

(iii) The product f x g: X xY - X x Y of self-homotopy equivalences f: X — X,
g:Y =Y of finitely dominated CW complexes X, Y such that fo = Ly (X) - (X)),
gp = Lim (Y) > n(Y) is a self homotopy equivalence of a finitely dominated CW
complex X x Y such that

(f x9), = faXge=Lm (X xY)=n,(X) x 71(Y) = my(X) x 7y(Y),
with torsion
f ®g=[X]®g) +(f)®[Y]e K, (Z[n (X x Y)]). O

A self-homotopy equivalence f: X — X of a finitely dominated CW complex X
induces an automorphism of the fundamental group

fe=unm(X)=n—->n

and, hence, a chain equivalence of finitely dominated chain complexes over Z[n]
f:0,C(X) - C(X).

If [X] = 0e Ky(Z[n]) and there is given a round finite structure (F, ¢)e F'(C(X))
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(=F"(X), by definition) there is defined a torsion

T, ¢)(f )

— 2 Fa o, F—20 o OB (B S F)e K, (Z[R)).

However, if o # 1 this will in general depend on the choice of round finite structure
(F, ¢):
PROPOSITION 5.3. The torsions associated to two different round finite structures
(F, ¢), (F', ¢") e F'(X) differ by

Tr, ¢ (f) — Tr ¢ (f)
= (1 —a)t(¢p " '¢: F > F') e Ky(Z[n]).

Proof. Consider the commutative diagram of chain complexes over Z[n] and
chain equivalences

o F ¢ fug F
051¢ ¢~1
wo g n o)L )
SN
%
OC!FI ¢,‘1fa!¢, \F/

and apply the logarithmic property of torsion to the chain equivalences of round
finite chain complexes on the outside. I

Given a ring A4 and an automorphism «: 4 — A denote the relative K -group
K (1: 4— A, a: A —> A) of Section 2 by K (A, ), so that there is defined an exact
sequence

1—o

Ky (A2 K (4) o K (4, 0) — 2 Ko d) =5 K o(A).

K,(A4, ) is isomorphic to the relative K;-group defined by Siebenmann [19].

Given a finitely dominated CW complex X and a self-homotopy equivalence
fiX—>X, let : A— A be the automorphism of the group ring A = Z[n,(X)]
induced by f,: n,(X) — m;(X). Applying the construction of Section 2 to the induced
chain equivalence of finitely dominated chain complexes over 4

JiaC(X) - C(X)
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there is defined an element

(X,f)=(CEXLNeK (4,
such that

OX,f)=[X]€e Ky(A).
If [X]=0eKyA4) a choice of round finite structure (F, ¢)e F(X) = F"(C(X))
determines an element 7, » (/)€K (4) such that

Jteg(f) = (X, /)€K (4, 0).
Proposition 5.3 describes the effect on 7. ,, ()€ K,(4) of a different choice of round
finite structure, in precise accordance with the identity

im(l — a: K,(A4) = K (A)) = ker(j: K(A4) - K,(4, @)

given by the above exact sequence.
For o = 1: A — A there is defined a natural isomorphism

Ky(4, 1) =» K((A) @ Ko(4); (P, Q,[¢]: PO Q— P D Q) (([¢]), [P] - [Q])

If f: X — X is a self homotopy equivalence of a finitely dominated CW complex X
such that f, = 1:7,(X) » n,(X) and A = Z[n,(X)] the element (X, f)e K,(4, 1) has
image (z(f), [X])€ K(4) @ Ky(A) under this isomorphism, with t(f)e K,(4) the
torsion defined by Gersten [8].

The circle S'=1[0,1]/0=1)=¢°Ue’ is a finite CW complex such that
x(8') = 0€ Z, with fundamental group 7, (S') = Z and universal cover §' = R. Let z
be the generator

z=(1:8' > 8Yexr,(SY,

so that 7,(S') = {z"|ne Z} and there is a natural identification of Z[,(S*)] with
the Laurent polynomial extension ring of Z

Z[w,(SY] = Z[z z"'].

Define the canonical round finite structure X' = (D,w)e F'(S8') by w = 1:
D = C(@8) - ¢S, with

D=CEY):2[z 2| — " 7[zz ']

The geometric base clements are oriented lifts °, é' = §! of the cells €°, et = !
such that é° < &%

The tensor product of a ring 4 and Z[z,z7'] is the Laurent polynomial ring
of 4

A® Z[z,z7'] = Alz,z71].

The tensor product of a chain complex C over 4 and D = C(S') is the modified
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algebraic mapping cone chain complex over A[z,z 7]
CRD=C(l —zCl[z,z7 '] > C[z,z"]).

For finite C this is an identity of round finite chain complexes. For finitely
dominated C Proposition 3.2 gives the canonical product round finite structure

COL'=(F,p)eF(CRID)
as defined by

projection . 6® 1
—_—

¢:F=(E,pp®D im(p)® D C®D

for any projection p = p?: E —» E of an even finite chain complex E over A with a
chain equivalence 8: im(p) = C, and with

i = < —d, 1 0 >:
Pop®d,+ (1 —p)®d,y de®1
F,,,=E®D ®E, ®Dy—>F,=E,_ QD QE ®D,
for any differential d, e Hom,, ,-1,(Dy, D) such that D, is a contractible finite
chain complex over Z[z,z '] with
1(D,) =0e K,(Z[z,z*]).
Making the obvious choice
dy=1:D,=12[z,z7']->Do=2[z,z7 ]
note that
p®dy + (1 -p) ®d,
=l =2p+10-p
=1—-2zp
E,®D,=E][z,z '1]>E ®Dy=E,[zz '],
and so
F=0C( —zp:E[z,z ']> E[z,z7']),

with

(f)-——<0p 0 >:F,=Er_1[z,z"1]@E,[z,zgl]a(C®D)r
0 ©6p
= Cr—-l[Zaz—I]@Cr[ZaZ_l]'

For any connected CW complex X the product CW complex X x S' has
fundamental group

T, (X xSY)=mn(X)x Z
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and there is a natural identification of rings
Z[my (X x 8] = Z[n(X)][z,2 '],

so that the cellular chain complex of the universal cover X x S* = X x §! can be
expressed as

—— ~ ~ ~ ~
CX xSH=CX x8§Y)=CcX)®c@ShH
=C —z:CX)[z,z7 '] > CX)[z,z 1]
For finitely dominated X define the canonical round finite structure on X x S! by
X xZ'=CX)® (D, 0)e FI(X x $') = F(C(X x S)).

In Section 6 below we shall identify the reduction of X x £!in # (X x S!) with the
canonical finite structure defined geometrically on X x S' by Mather [12] and
Ferry [6].

The self-homeomorphism of S* = [0,17/(0 = 1)

—1:81 8 so1—-s5 (0<s<1])
is such that

(—1:S'>SYHY =z"ten,(SY),
and induces the automorphism

(=1, =a:n, (S > n,(SY); z'mz7 "

PROPOSITION 5.8. (i) The torsion of —1:S* — S* with respect to the canonical
round finite structure £ e F'(S1) is given by

ta(—=1) =1(—2:Z[z,z7 '] > Z[z,z7*]) e K4(Z[z, 2z~ ']).

) If X is a finitely dominated CW complex the torsion of
I x —1:X x §' - X x S' with respect to the canonical round finite structure
X x Z'e F'(X x S1) is given by

Txxptl X =1) = [X]® t(—2)€ Ky (Z[7,(X)][z,z']).

Proof. (i) The induced chain equivalence (ff); oD — D is the isomorphism of
round finite chain complexes over Z[z,z7 ']

O‘!Dl = Z[Zazil]
ody =1—2z""1

Dy =17z z71]

dp=1-z

—Z

oDy =2Z[z,z71] Dy=17Z[z,z7].
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A direct application of Proposition 2.7 (iii) of Part I gives
Ty(—1:8' > 81
=1(—z:2[z,z ' 1> Z[z,z ']) —t(1: Z[z,z Y] > Z[z,z !])
=1(—2eK,(Z[z,z"*]).
(i) Substituting the result of (i) in the product formula of Proposition 4.6 (ii)
Tyl x =1 X xS'> X x S
=[X]®1l(—1:5' > S
=[X1®u—z)e K (Z[r(X)][z,z7*]). O
A noncanonical round finite structure (D', ') e #'(S') differs from the canonical
structure X' = (D, w) by
(D, w) — (D', )
=10 w:D—-D)eK(Z[z,z"])
={t(+z" Z[z,z"*] > Z[z,z ']ineZ} (=ZDL,),
say (D, w) — (D', ") = (£ z"). The torsion of —1: S* — S* with respect to (D, w’) is
given by Propositions 5.3 and 5.4 to be
(=1 =154 (1) + (1 —w)r(0" ')
=1(—2) + (1 — a)r(£2")
=t(—z""" e K (Z[z,z *]).
It follows that for any finitely dominated CW complex X
Tyop.e (1 X —1:X x ST =X x §t) -
—Tyepel X —1: X x ST > X x S1)
=[XT® (rp. (1) = 7o,y (= 1))
= [X]1®1(z"") e Ky(Z[n,(X)] [z, 271 ]).

6. The Mapping Torus in Algebra and Topology

Actually, we shall start with the topology.
The mapping torus of a map f: X — X of a space X to itself is the identification
space

T(f) = X x [0,11/{(x,0) = (f{x), Dlxe X }.

PROPOSITION 6.1. (i) A homotopy e:f ~f':X — X induces a homotopy
equivalence

S(e: T(f) =T
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(i) For any maps f: X -Y, g:Y — X the maps
S(£g)Tf: X > X)>T(fg:Y > Y); (x,5) > (f(x), 9)
Sg.f): T(fg:Y->Y) > T(gf: X - X); (3, 1) = (g), 1)

are inverse homotopy equivalences.
Proof. (i} Regard the mapping torus of f: X - X as the adjunction space

T(f) = (X x [0,3]) wy(X x [3,1]),
with the adjunction map defined by
g: X x {0,3} > X x [3,1];
(X, 0~ (f(x), 1), (x,3) = ()
A homotopy e: f =~ f': X —» X determines a homotopy of adjunction maps
hig~g: X x{0,3} > X x [4,1]
and, hence, 2 homotopy equivalence of the adjunction spaces
S(e)y =1u,1: T(f)
= (X x [0,7]) vy (X x [3,1])
ST =X x [0,7]) v (X x [3, 1),

since the pair (X x [0,7], X x {0,3}) has the homotopy extension property. There
is no direct formula for S(e), which is only determined up to homotopy.
(i) Given a map f: X — X define a map

UH:T) - T [x e [f(x),t]
and a homotopy

e U(N) =1 T(f) - T(f)
by

e T(f) xI-T(f) (xs]1)r~

[f),s+1t] if s+t<1
[x,s+t—1] if s+t>1

(s,tel =[0,1]).
Now for any maps f: X - Y, g: Y — X the composites of
SS9 T@f) =TS9,  Sg.f):T(f9)— Tlgf)
are given by
S, 9)8(9, 1) = Ulfg): T(fg) - T( fg)
S(g, NIS(f, 9) = Ulgf): Tgf) -~ T(gf),
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so that S(f, g) and S(g, f) are inverse homotopy equivalences. OJ

We shall only be concerned with the mapping torus T(f) when X is a CW
complex and f: X — X is a cellular map, so that T(f) is a CW complex with two r--
cells " x {0}, ¢" x {3} and two (r + 1)-cells " x [0,3], & x [3, 1] for each r-cell &’
of X. If X is a finite CW complex, then T(f) is a finite CW complex such that
7(T(f)) = 0€ Z, and so admits a round finite structure. We shall show that for any
(cellular) map f: X — X of a finitely dominated CW complex X the mapping torus
T(f) has a canonical round finite structure.

PROPOSITION 6.2. (i) For a finite CW complex X a homotopy e: f~ f': X - X
induces a homotopy equivalence S(e): T(f)}— T(f'} of finite CW complexes which is
simple, that is

1(S(e) = 0 Whi(m, (T(f)).

(i) For finite CW complexes X, Y and maps f: X -V, g:Y—> X the homotopy
equivalence S(f, g): T(gf)— T(fg) of finite CW complexes is simple, that is

US(f,9)) = 0 Wh{zn,(T(g /)

Proof. This may be deduced from the material on mapping cylinders and
deformations in Section 5 of Cohen [4]. O

Given a finitely dominated CW complex X and a map {: X — X define a finite
structure (T (fg),0)eF(T()) for any finite domination (Y,f:X -V,
g Yo X, h:gf~1:X - X)of X by

¢ = SChS(g, /)
T(flg:Y - Y)>T(gf: X > X)-> T X - X).
PROPOSITION 6.3. The finite structure (T{(f(g), d)e F(T({)) is independent of the
choice of finite domination (Y, f, g, h) of X.

Proof. The finite structures (T( f(g), ), T(f'{g’), ¢") on T({) determined by any
two finite dominations (Y, f, g, h), (Y, f', ¢’, ') of X are such that up to homotopy

@' 1o =S(f"Chg") " S(f"Lg. f9")S(fh'g):
T(flg)— T(fg'f'lg) =~ T(f"Cafq) > T(f'Lg'),

a composite of simple homotopy equivalences by Proposition 6.2. Tt follows that
(¢’ ~'¢) = 0e Wh(n(T(())), and so

(T(fLg), §) = (T(f'Lg'), ¢") e F(T (). O

Call (T(flg), p)e F(T(()) the canonical finite structure on T({). In the case
¢ =1:X — X this is the finite structure on T(1) = X x S' defined by Mather [12]
and Ferry [6].
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EXAMPLE. Let M be a compact n-manifold with a finitely dominated infinite
cyclic cover M, and let {: M — M be a generating covering translation. Then the
projection p: M — M induces a homotopy equivalence of CW complexes with finite
structure

q: T() - M; (x,5) p(x)

such that t(g) € Wh(n, (M)) is the obstruction of Farrell [5] and Siebenmann [19] to
fibering M over ' (assuming n > 6). O

In order to compare the geometrically defined canonical finite structure on
X x §* with the algebraically defined canonical round finite structure of Section 5,
we shall use the following algebraic analogue of the mapping torus.

Given a ring 4 and a morphism o: A — A define the a-twisted polynomial ring of
A, A% ,[z,z7"] to be the quotient ring of the free product A Z[z, z~ ] given by

Ax,[z,27 1 = A% Z[z,z7']/{z" " az = w(a)lae A}
There is defined a morphism of rings
A Axfz,27'); ama

under which « becomes conjugation by z, which is injective if and only if o is
injective. If a1 4 — A is an automorphism A*,[z,z7'] = A4,[z,z7'] is the usual a-
twisted polynomial extension ring of A, which in the untwisted case a = 1: 4 — A is
the Laurent polynomial extension ring Az, z 1].

Let then A be a ring, «: 4 — A a ring morphism, and for some chain complex C
over 4 let f:%C — C be a chain map. The algebraic mapping torus of f is the chain
complex over A = [z, z~ 1] defined by

T(f) = C( — zf:i,C - iC),

using the modified algebraic mapping cone C of Section 5

-d 0 : .
dT(f) = ((1 — 2f) d>:T(f)r =iC,_, @ §C, > T(f), -y

=iC,_, §iC,_,.
If C is finite T(f) is round finite. If « = 1: 4 — A there are natural identifications
Ax 22 = Alz,27 '] = A® 22,27 ']
and for any chain complex C over A T
T(1:C—->C)=C®CESYH,

which for finite C is an identity of round finite chain complexes over Afz,z 1],
using the canonical structure T'e #"(C(S")).
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By analogy with Propositions 6.1, 6.2
PROPOSITION 6.4. (i) 4 chain homotopy e:f >~ {": 0,C — C induces an isomorphism
of the algebraic mapping tori
S(e): T(f) = T(f")-
For finite C
7(S(e) = 0e K (A*,[z,z71])

(i) Let a: A — B, f: B — A be morphisms of rings, and let f: ,C - D, g: B,D — C be
chain maps for some chain complexes C, D over A, B respectively. Then there are
defined an isomorphism of rings

k: A*ﬁm[zaz_l:' —*B*mﬁ[zaz_lj
and a chain equivalence of chain complexes over Bx 4[z,z" 1

S(f.9): ki T(gpif: (P} C = C)
- T(fug: (@f)D — D).

If C, D are finite
©(S(f,9) = 0e K (B¥4[z,27']).

Proof. (i) The isomorphism S(e): T(f) — T(f”) is defined by

so-(L )

T, =iC,_,®i,C, > T(f"), =1C,_, DiC,.
(1) Let
it A— Axg[z,27'], jiB o Bxz,27']
be the canonical ring morphisms. The isomorphism of polynomial rings
ki A%glz,z27 '] > Bxlz,27']; arafa),zoz
has inverse
k™ :Bxfz,27 1> Axp[2,27'); b zBb)z™ 22,

and there is defined a commutative square of rings and morphisms
i _
A-—sAxglz,27]
o k

B——Bx,[z,z'].
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The chain maps of chain complexes over Bx 4[z,z7']

S(f.9): kT(gB, f) — T(fug)
S(g, f): T(fo, g) = kT(gP,f)

defined by

st = (] S furans,

=jouC, 1 @ C, —» T(fu,g),
=j!Dr—1 EBjIDr

g 0

S,(gxf) - < >: T(fOl! g)r

0 zog

=jD,_, éBszr = kT(gB f),
= jo,C,_; D jo,C,

are chain homotopy inverses, with chain homotopies

0 1
e= <0 0>: T(gh /),

=juC, 1 ®jC, = joC, ®jaC, .y,

01
e, = <0 0> T(fOC!g)r

=jD,-1 @j!Dr - D, ®szr+ 1

Define a chain contraction of C(S(f, g))
0~ 1: C(S(f, 9)) = C(S(f, 9)

by

¢ 0
- ((—)’S'(g, 1) e>- C(S(S, 9

= T(fou9), kTGP )1 = T(f9)+1 © kT(gB, [,

163

Thus, if C, D are finite S(f, g): K T(gB, f) — T( fa,g) is a chain equivalence of round

finite chain complexes over B % «s[2, 2~ 1] with torsion

©(S(f, 9) = «(C(S(f, 9)))
=1(d + T CS(S, 9oaa = CS(S: Dheven)
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_ d+e  S(f,9)\,
- T((-—S’(g, f) d+e ) T(f%g)oa 82 kTGP, feven

- T(fO(, g)even EB k! T(gﬁ' f)odd>

1 —d S 0
d 1 —zfag 0 S
=1
—z0,g 0 1—zgBf d
0 —zo,g —d 1
1 0 0 O 1 0 0 O
d 1 00 010 f
“\-zag 0 1 0f) |0 0 1 d
0 0 0 1 00 01
1 0 0 I —d f 0
0 i 0 0o 1t 00
0 0 0 0 10
0  —zog —d 1 0 0 1
13Dt D JiDeven D J104C g5 @ jitC oy

= J1Dygq @ ji Dy @ 1ot C o Do C,

even ven )

=0eK,(Bf[zz"'].

ANDREW RANICKI

O

Given a finitely dominated chain complex C over aring A and achain map {: 0 C — C
for some morphism «: A — A define a round finite structure (T(f{ag).¢)€ FTL))
for any finite domination (D, f: C »D,g:D - C,higf ~1:C > C)of C by

¢ = S(ouh)S(loyg, )
T(floyg:ooD = D) = T{Loy(gf ): o C ~ C)
- T((:0,C — C).

The round finite structures (T(f{xg), ), (T(f'{ong’), ¢')€ F1(T({)) determined by
two finite dominations (D, 7, g, h), (D', f', ¢’ h’) of C are such that up to chain

homotopy

@' "t = S(f'Loy(hg) 1SS Leng, f9)S (fh'Cong):
T(fCog)— T(fg'f'Lng) = T(f'Lmlgfg"))
= T(f'{og),
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a composite of chain equivalences with 1 = 0e K,(4 *,{z,z~!]) by Proposition 6.4,
and so by analogy with Proposition 6.3

(T(fLng), ) — (T(f'Lg’), &)
=’ T1¢) =0eK,(Ax,[z,27']).

Thus the round finite structure
(T(flng), #) = (T(f'Coug"), ¢ )e F(T(L))

is independent of the finite domination of C; we shall call this the canonical round
finite structure on T({). In particular, fora = 1: A - A, { = 1: o,C = C - C we have:

PROPOSITION  6.5. The canonical round finite structure (T(fg),¢)e
F'(T1:C-C) on T(1)=CQ® CS*) determined by any finite domination
(D, £, 9, h) of C coincides with the canonical product round finite structure

(T(f9),¢) = COZ e F(CRCES).

Proof. Let C' = im(p: E — E) be the image of a projection p = p? of an even finite
chain complex E over A such that there exists a chain equivalence

0:C' - C.
The canonical product round finite structure is defined by
COZ! =(T(p), y)e F7(C ® C(SY)),

with

0
V= (oq gq>: T(p), = E,_1[2,2 11 @ E,[z,27 ] > (C ® CSY),
=C,_4[z,z7']®C,[z,27],

where q:E — C'; x —~ p(x) is the projection.
Let I': 0 >~ 1: C(A) — C(0) be a chain contraction of the modified algebraic map-
ping cone, so that

oo A A

r= (k _h>: CO), = C;- @ C,— CO)+, = C,DC,,,

with 6": C —» C’ a chain map, h, b’ chain homotopies
h:00~1:.C-C, h:00 ~1:.C'- C,

and k such that

ho — Oh' = dk — kd': C, - C, . ,.
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Use T to define a finite domination (D, f, g, h) of C by

q' = inclusion

9!
f=40:C »C’ +E=D

g = projection 0

>’ »C

g=0qg:D=E
higf =00~1:C—-C.
The canonical round finite structure

(T(fg), ) F'(C ®CESY)
is defined by

o=ssa =4 )¢ °)- (2 °)

T(fg), =E,_[z,z" '1®E,[z,z7"]
>(C®CEY), =C._[z,z7'1DC,[z,z71].

The chain homotopy
e=qh'q:fg=q0q~qq=p:E—~E

determines an isomorphism of round finite chain complexes
S(e): T(fg) > T(p)

with

10
S(e) = (ze 1>: T(fg), = E,-1[z,27 ' 1®Elz,z" 1> T(p),

=E,_[z,z ']®E[z,z""],
and

©(S(e)) = 0€ K,(A[z,27"]).

The diagram of chain equivalences

T(fg)

C®CSYH)

is chain homotopy commutative, with a chain homotopy

jiySle) = ¢: T(fg) > COCESY
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defined by

zk O

0 0
j=< >5 T(f9). =E, [z ']1®E,[z,27"]
> (C®CE"), =C, [z ' 1DC,[22 ']

Thus
(T(f9). ¢) — (T(p), ¥) = t(S(e)) = 0 K (A[z,z27']),
and
(T(f9), ¢) =(T(p)¥)e F(C D CS")). O
Given a group 7 and a morphism o: 7 — 7, define the group
nx, L =1*Z/{z" gz =a(g)|gen},
denoting the generator 1€ Z by z. There is then a natural identification of rings
Zin+,Z] = Z[n])* Jz,z7*]

and the canonical morphism of rings i:Z[zn] —»Z[n]+,[z,z""]is induced by a
canonical morphism of groups

Lnmonx,Z; grg.
There is also defined a morphism of groups
jimx Z > Z; g1,z 2"
which is onto, and induces a morphism of rings
JiZr]*,[z,z7'] - Z[z,z7 ']
which is also onto. If «: 7 — 7 is an automorphism n%,Z =n x ,Z is the a-twisted
extension of x by Z, with an

{1} S x L Jz {1},

and

Z[n],[z,z7"] = Z[n],[2,27"]

is the a-twisted polynomial extension of Z[z]. On the other hand, if am)={l}cn
then i(m) = {l} S n*,Z and the morphisms j:n*,Z —Z, j: Z[n]*,[z,z" 1] -
Z[z,z~ '] are isomorphisms.

PROPOSITION 6.6 (i} Let f: X — X be a cellular map to itself of a connected CW
complex X with universal cover X, and let f, = wn, (X) > =, (X). Then the mapping
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torus T(f) is a connected CW complex with fundamental group
n (T(f)) = my X)*, Z,
and the cellular chain complex over Z[7,(T(f))] of the universal cover T(f) is given by
C(T(T) = C( — zI'i,C(X) - i C(X))
= the algebraic mapping torus T(f) of the
induced chain map T. oc!C(f() -CX
over Z[7,(X)].

(i) A homotopy of maps e:f ~ {": X — X induces a homotopy equivalence of mapping
tori S(e): T(f) — T(f") and also a chain homotopy & f ~ f": oc,C(X) — C(X), such that

—~—~— —_— ~

S(e) = 8(&): C(T(f) = T()) > C(T(f') = T(}").
(i) Let [ X -»Y, g:Y - X be maps, and let

Jo = Z[ny(X)] = Z[7,(Y)],
g = B: 2[n,(Y)] - Z[7,(X)],
[0CX) » CF), §:pCEF)— C(X).

—

The homotopy equivalence S(f, g): T(g f) — T(fg) induces the isomorphism of rings

S(f.9) = k: Z[my(T@f )] = Z[m,(X)]*p,[2,27"]
= Z[n(T(fg)] = ZIm\(Y)]#,0z,27"]

aroa),zez
and the induced chain equivalence is such that

S(1,9) = S(7,4): kC(T@r) = kT@BT)
> C(T(9) = TT@d).

Proof. (i) The expression for n,(T(f)) is the version of the Van Kampen theorem
appropriate to the mapping torus construction, and the expression for C(T(f)) is the
corresponding version of the Mayer—Vietoris presentation.

(ii) & (iii) follow from (i) and Propositions 6.1 and 6.4. O

Define the canonical round finite structure on the mapping torus T'({) of a self map
{: X - X of a finitely dominated CW complex X to be the canonical round finite
structure on  the chain complex C(T({) = T(T: 0,C(X) - C(X)) over
Z[n(TQ)] = Z[r,(X)]*,[z,z7"], with o= {7 (X)—n,(X), using the cor-
respondence between the algebraic and the geometric mapping torus of Pro-
position 6.6. A finite domination (Y,f,g,h) of X determines a (round) finite
CW complex T(f{g:Y —Y)and a homotopy equivalence

¢ = 8({h)S(g. f): T(fLg) = T ),
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such that the induced finite domination (Z[7(X)] ®Z[n1m] C¥), f.d,h) of C(X)
determines the (round) finite chain complex C(T(f¢ T(fZ3) and the chain
equivalence

¢ = SCWSC.7): (79— T,
so that (T(fZg),$)e F'(T()) = F#'(T({)) is the canonical round finite structure. We
have proved:

PROPOSITION 6.7 The geometric canonical finite structure (T(flg), ¢)e F(T() is

is
the reduction of the algebraic canonical round finite structure (T(f7§), §)e F'(T(D)).
O

In particular, for { = 1: X — X Propositions 6.5 and 6.7 identify the geometric
canonical finite structure on T(1) = X x S* of Mather [12] and Ferry [6] with the
reduction of the canonical product round finite structure X x Z!'e (X x S).
Thus if (F, ¢)e F(X x §1) is the canonical finite structure the Whitehead torsion of
the composition homotopy equivalence of finite CW complexes

¢ 1 x »1)¢:F—¢~>X wst X7l oy

18 given by Proposition 5.8 (i) to be the reduction of
Tyl x =10 X xSP > X x §')
= [X]1® t(—2)e Ky(Z[n(X)][z,27']),
that is
(711 x —1)¢) = [X] ® 1(—z)e Wh(n,(X) x Z)

with [X]e Ky(Z[7,(X)]) the Wall finiteness obstruction. The geometrically defined
injection of Ferry [6]

B': Ko(Z[n])>> Wh(n x Z);
[X]et(@ ™ 1 x —1)¢: F > F) (n,(X)=n)
1s thus given algebraically by the variant
Ko(Z[n])> Wh(n x Z);
[Pl [P]®t~z)=1(—2z: P[2,z" '] > P[z,z"}])
of the original algebraic split injection of Bass, Heller and Swan [2]

B: Ry(Z[n]) Wh(n x Z);
[P1~[P]®1(z) = t(z: P[z,z '] = P[z,z"']).

It is B’ rather than B which is geometrically significant. (See Ranicki [22]).
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For example, the trivial S*-bundle transfer maps
¢y H'(Z,; Ro(Z[x])~> A" Y(Z,; Wh(n x Z))

on the Tate Z,-cohomology groups of the duality involutions which appear in the
appendix of Munkholm and Ranicki [13] are induced by B’ not B.
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