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Abstract. The algebraic K-theory product Ko(A ) | KI(B ) ~KI(A | B) for rings A, B is given a chain 
complex interpretation, using the absolute torsion invariant introduced in Part I. Given a finitely 
dominated A-module chain complex C and a round finite B-module chain complex D, it is shown that the 
A | B-module chain complex C | D has a round finite chain homotopy structure. Thus, if X is a finitely 
dominated CW complex and Yis a round finite CW complex, the product X x Yis a CW complex with a 
round finite homotopy structure. 
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O. Introduction 

The algebraic theory of absolute torsion developed in Part I ([16]) is here applied to 

products of chain complexes in algebra, and products of CW complexes in topology. 
Given an additive category d and a chain equivalence f :  C ~ D of finite chain 

complexes in d with [C] -- [D] = O~Ko(d  ) there was defined in Part I a torsion 
invariant ~(f)~ Ki~ ~  in the isomorphism torsion group of d ,  Here, we shall only 

be concerned with the case of the additive category d of based f.g. free A-modules, 
for some ring A such that the rank of f.g. free A-modules is well-defined. Thus, the 

natural map Ko(Z ) = ~ ~ Ko(A ) is injective, and the Euler characteristic of a finite 
chain complex C in d 

)~(C) = Zr% o (_)r  rank(Cr) e Z 

is a chain homotopy invariant which can be identified with the class 

[C] e K o ( d )  = 7/, and also the projective class [C] e Ko(A). Isomorphic objects in d 
are related by a canonical isomorphism, so there is defined a natural split surjection 

Ki~~ = KI(A).  Given a chain equivalence f ' . C ~ D  of finite chain 
complexes of based f.g. free A-modules such that z (C) - - - z (D)=  0 e 2  we thus 

have an invariant z ( f ) e K l ( A ) ,  the torsion of f The definition of r ( f )  is recalled in 
Section 1 below. 

The absolute projective class of a finitely dominated CW complex X is defined to 
be the projective class of the finitely dominated cellular ;v[~i(X)]-module chain 
complex C(X) of the universal cover 

I X ]  ~-- [ C ( X ) ] e K o ( ~  7 [ ~ l ( x ) ] ) ,  

and consists of the Euler characteristic z(X) = z(C()())e K0(Z ) = 7/ and the finite- 
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ness obstruction [-~] eRo(7 / [n l (X)] )of  Wall [211 

[X]  = (z(X), [)(])  ~ Ko(Z [xI(X)]) = Ko(7/) �9 Ko( 7] [x,(X)]). 

The product of finitely dominated CW complexes X, Yis a finitely dominated CW 

complex X x Y with universal cover X x Y = )~ x Y, such that 

/717~1(X x Y)] = 7 / [~1 (X)  x 7~1(Y)] = 7] [77;1(X)] (~ 7/[TLI(Y)] , 

with a natural identification 

c(x x Y) = c (2 )  | c(?). 

The projective class product formula of Gersten [7] and Siebenmann [181 

IX x Y] = IX] @ [Y]eKo(7/[~l(X x Y)]) 

showed that for a finite CW complex Ywith z(Y) = 0e ,7/the product X x Yhas Wall 

finiteness obstruction [X x Y] = 0 e / (o(7/ [~l (X x Y)]), and so X x Y has the homo- 

topy type of a finite CW complex. This was first proved geometrically by Mather 
[12], in the important special case Y = S 1. 

For any rings A, B there is defined a product in the absolute algebraic K-groups 

|  Ko(A) | KI(B) ~ KI(A @ B), 

[P]| | f : P |  P| 

in particular for group rings A = 7][~], B = 7][p], with A |  = 7/[~ • p]. In 

general, there is no such product in the reduced K-groups, although if Wh(p) = 0 

there is a product /(o(7][~z]) | Kl(7/[p]) ~ Wh(Tc x p). It is therefore quite reason- 

able that the absolute torsion should enter into the consideration of finite CW 

complexes in the homotopy type of CW complex products X x Y. 

Define a finite structure on a CW complex X to be an equivalence class of pairs 

(finite CW complex F, homotopy equivalence 4): F --, X) 

under the equivalence relation 

(F1,  ~)1) ~ (F2,  (~2) if "((~b21(~l : F 1 -~ F2)  = 0 E W h ( T c l ( X ) ) .  

The Whitehead torsion z(f)~WhOh(X)) of a homotopy equivalence f :  X A X' of 
CW complexes with given finite structures (F, qS), (F', qS') is defined by 

z(f) = z ( r162  F --* X ~ X'--* F ' )e  Wh(zcm(X)). 

A finite CW complex F has the canonical finite structure (F, 1). 
Ferry [6] proved geometrically that the mapping torus construction of Mather 

[12] defines a canonical finite structure on X x S 1 for any finitely dominated CW 
complex X, which is independent of the finite domination used in the construction, 
and that the geometrically defined Abelian group morphism 

B':Ko(7/[~])~Wh(Tc x 7/); [X]  ~,z(1 x - I : X  x S j ~ X  x S 1) (g = /~I(X)) 
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is an injection. Now - I : S I ~ S  1 is a simple homotopy equivalence (i.e., 

z ( - ] . )  = 0_~Wh(na(S1))= Wh(7])= 0), so that the canonical finite structure on 
X x S 1 depends on more than just the canonical finite structure on S 1. We shall 

show that it depends on the canonical 'round finite structure' on S ~. 
A finite chain complex C of based f.g. free A-modules is round if z(C) = 0e ;Y, or 

equivalently if [C] = 0_~ Ko(A ). The torsion z(f)_~ K I(A) defined in Part I for a chain 
equivalence f :  C ~ D of round finite chain complexes has the logarithmic property 

z(9f : C ~ D ~ E) = z(f :  C ~ D) + z(g: D --* E)6KI(A ). 

In general, absolute torsion is nonadditive 

z ( f  �9 f ' :  C G C' ~ D �9 D') va z ( f  : C ~ D) + z(f ' :  C' ~ D')~ K~(A). 

A round finite structure on an A-module chain complex C is an equivalence class 
of pairs 

(round finite chain complex F of based f.g. free A-modules, 
chain equivalence 4b:F ~ C) 

under the equivalence relation 

(F1,  (~1) ~ (F2,  (~2) if "C((~2 lq~1 : F 1 ~ F2 )  = 0 E K I ( A  ). 

The torsion of a chain equivalence f :  C ~ C' of A-module chain complexes C, C' 
with prescribed round finite structures (F, q$), (F', ~b') is defined by 

z(f)  = z(q$'-if(b: F -+ C -+ C' ~ F')e KI(A ). 

The main result of the paper is the following chain complex interpretation of the 
product Ko(A ) | KI(B) -~ KI(A | B). 

ALGEBRAIC P R O D U C T  STRUCTURE THEOREM. The product of a finitely 
dominated A-module chain complex C and a B-module chain complex D with a round 
finite structure (F, ~b) is an A | B-module chain complex C | D with a round finite 
structure C | (F, dp). 

I f  f :  C ~ C' is a chain equivalence of finitely dominated A-module chain complexes 
and 9: D ~ D' is a chain equivalence of B-module chain complexes D, D' with round 
finite structures 

r ( f  | 9: C | D ~ C' | D') = [C] | z(g)~_ K~(A | B) 

with [C] = [C']~ Ko(A ) the projective class and z(g)~ KI(B ) the torsion. [] 

This will be proved in Section 3, and translated into topology in Section 4. 
A finite CW complex X with universal cover )~ and fundamental group ~ ( X )  = ~z 

determines a class of bases for the cellular f.g. free ;~[n] -module chain complex 
C()2), the elements of which are determined up to multiplication by _+9~_ Z[n] 

(g-~ ~). Define a round finite C Wcomplex to be a finite CW complex X such that the 
Euler characteristic z(X) = z(C()f))_~ ~ vanishes, z(X) = 0~ Z, together with a choice 
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of base for C(X) in the canonical class. The torsion of a homotopy equivalence 
f :  X ~ Yof round finite CW complexes is defined by 

~(f)  = ~(y: c(2)--, C(? ) )~K, (~ [~ ] )  (~ = ~zl(X)), 

with the image ~(f)~Wh(r0 the usual Whitehead torsion o f f .  
A round finite structure on a CW complex X is a round finite structure on C(J?), or 

equivalently an equivalence class of pairs 

(round finite CW complex F, homotopy equivalence ~b: F ~ X) 

under the equivalence relation 

(El, 4)1) ~ (F2, 42) if Z(~zlq~l: F 1 ~ F2) = 0~KI(Y[~I(X)]).  

The torsion z(f)eKI(Y_[~I(X)]) of a homotopy equivalence f :  X ~ Y of CW com- 
plexes with prescribed round finite structures is defined in the obvious manner. 

The main topological result of this paper is the following CW complex in- 

terpretation of the product Ko(A) | KI(B) ~ KI(A | B). 

G EOMETR IC  P R O D U C T  STRUCTURE THEOREM.  The product of a finitely 
dominated C W  complex X and a CWcomplex Ywith round finite structure (F, c~) is a 
C W  complex X x Y with a round finite structure X x (F, (a). I f  f : X - - * X '  is a 
homotopy equivalence of finitely dominated CWcomplexes and g: Y ~ Y' is a homotopy 
equivalence of C W  complexes with round finite structures then 

r ( f  x g : X  x Y ~ X' x Y ' )=  IX] |  x Y)1), 

with IX] = [X']  e Ko(Z[=I(X)]) the projective class and ~(9)~ K I(ZDzl(Y)]) the tor- 

sion. [] 

The torsion product formulae of Kwun and Szczarba [101 and Gersten [81 are 
special cases of the geometric product structure theorem, with X finite in [10] and 

Y' = Yin [81. 
As already noted in the introduction to Part I ([161), the algebraic description due 

to Liick [-11] of the transfer maps induced in the algebraic K-groups 

p~: K~(Z[~I(B)]) ~ Ki(7/[Th(E)] ) (i = 0, 1) 

by a Hurewicz fibration 

P F ~  E ,B 

with finitely dominated fibre F allows the extension of the geometric product 
structure theorem to the twisted case: if the base B is also finitely dominated then so 

is the total space E, with projective class 

[E] = p'0([B]) e Ko(Z [~1 (E)3), 

land a round finite structure on B determines a round finite structure on E, a 
variation by zeKl(7/[~l(B)l)  in the base leading to a variation of 
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pl(z)-KI(TZ[rCl(E)]) in the total space. In the case of a trivial fibration E = B x F 

the transfer maps are given by product with the projective class [F1 e K0(;v[~z1(F)]) 

p~ = - | [F]: Ki(~_[rcl(B)] ) ~ Ki(2~E~I(B x F)]) (i = 0, i). 

In Section 5 we shall compare the absolute torsion invariant z ( f ) e  Kl(77[nl(X)] ) 
defined by Gersten [8] for a self homotopy equivalence f : X  ~ X of a finitely 

dominated CW complex X with f .  = 1" ~1 (X) ~ ~I(X) with our notion of absolute 
torsion, showing that they coincide when both are defined (i.e., when 

I X ]  : 0_~ Ko(77 [~1 (X)1)). 
Finally, in Section 6 we shall show that for a particular choice of round finite 

structure Y~ on S 1 the product round finite structure X x ~1 on X x S ~ for a 

finitely dominated CW complex X reduces to the canonical finite structure obtained 
geometrically by Mather [12] and Ferry [61. With respect to this choice 

r( - 1: S I ~ S 1) 

='C(--Z: 7/[Z, Z- 11 --~ 7/[Z, Z-1])~ KI(TZ[rq(S1)]) 

= K~(77[z, z - q ) ,  

so that the geometric injection of [6] 

B': Ko(77 [Tr]) --, Wh(Tr x 77); [X] ~ z(1 x - I : X  x S 1 ~ X x S 1) 

may be identified with the algebraic injection of Ranicki [22] 

B' = - |  Ko(77Dz]) --* Wh(Tr x 77); 

[P] ~ T ( - z :  P[z,  z -1] ~ P[z ,  z -  1]). 

Thus, /~' is a variant of the algebraic injection defined by Bass et al. [2] 

/? = - | go(77[~])  --' W h ( ~  x 77); 

[P] ~z(z:  P[z,  z -  1] _, P[z,  z -  1]). 

Part III of the paper [17] deals with lower K-theory, including some further 
discussion of/3 and/3' .  

See [9] for an application of the algebraic theory of torsion to L-theory. 

1. Finite and Round Finite Structures 

We shall now apply the general theory of torsion developed in Part I for any 
additive category to the most important special case sd = {based f.g. free A- 

modules}, for any ring A such that the rank of f.g. free A-modules is well-defined. In 
the first instance we recall from [15] the abstract chain complex version of the 
finiteness obstruction theory of Wall [21], and extend it to round finiteness. 

A chain complex  over A is a positive chain complex of (left) A-modules and A- 
module morphisms 

d d d 
C : ' " ~  C~+1 ,C~ 'C~-1 ~ " " ~  C1 'Co. 
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The chain complex C is n-dimensional if C~ = 0 for r > n. The chain complex C is 
finite if it is a finite-dimensional complex of based f.g. free A-modules, that is if it is a 
finite chain complex in the category d = {based f.g. free A-modules}. The Euler 
characteristic of a finite chain complex C is defined by 

z(C) = ZrG0(--)r rankA(C~)~ ;7, 

and C is round if z(C) = 0~ Z. 
A finite domination (D,f, 9, h) of a chain complex C over A consists of a finite chain 

complex D over A, chain maps 

f : C ~ D ,  g : D ~ C  

and a chain homotopy 

h:gf  ~- l : C ~ C .  

A chain complex is finitely dominated if it admits a finite domination. It was shown 
in [151 that a chain complex C is finitely dominated if and only if it is chain 
equivalent to a finite dimensional f.g. projective chain complex 

P : " " - + O ~  P ~  P.-1  ~ "'"-~P1 -+ Po. 

The projective class of a finitely dominated chain complex C is defined using any 
such P to be 

[C] = I n ]  = Z~=o(-)~EP~J~-Ko(A). 

The projective class is a chain homotopy invariant such that for finite C 

[C] = z(C)_~ im(Ko(7/) ~ Ko(A)) = 2_ c Ko(A). 

Thus the reduced projective class 

[C] _=/~o(A) = coker(Ko(2) --, Ko(A)) 

vanishes for finite C. 

P R O P O S I T I O N  1.1. (i) A finitely dominated chain complex C over A is chain 
equivalent to a finite chain complex if and only i f [C]  = 0-~/~o(A). Thus [C]e/~o(A) is 
the finiteness obstruction of C. 

(ii) A finitely dominated chain complex C over A is chain equivalent to a round finite 
chain complex if and only if [C] = O~-Ko(A). Thus [C]_~ Ko(A) is the round finiteness 
obstruction of C. 

Proof. (i) See [151. (ii) Immediate from (i). [] 

The torsion of a contractible finite chain complex C over A is defined by 

~ ( c )  - -  ~(d + r = 

( 00d 0 ) 
F d 
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Cod d = C 1 @ C 3 @ C 5 ( ~  " ' "  --+ C . . . . .  = Co @ C2 @ C4 O '" ")eKI(A ) 

as usual, with F: 0 -~ 1 : C --+ C any chain contract ion of C. 
The  algebraic mapping cone of a chain m a p  f :  C ~ D of finite chain complexes 

over A is the finite chain complex C(f) defined as usual (up to sign conventions)  by 

= : c ( f ) r  = Dr | C,._ t -~ C ( f ) r _ i  = Dr-1 | C 2. 
dc 

The  following signs occur in the composi t ion  and sum formulae  obtained in Par t  
I [16], as recalled in Propos i t ion  1.2 below. 

Given based fig. free A-modules  M, N let 

e(M, N) = rankA(M ) rankA(N)c E2, 

so that  

(0 ;) 
r 1 : M | 1 7 4  ). 

Given  finite chain complexes C, D over A let 

fl(C, D) = 2 i >  j(E(C2i  , D2j ) + a(Cxi + 1, Oxj+ t))e Z 2. 

For  any A-module  chain complex C let SC denote  the A-module  chain complex 
with 

dsc=dc:SC~=Cr_l - - - ,SCr  , = C~_2. 

Given finite chain complexes C, D, E over A let 

7(C, D, E) 

= ~(E,  S C )  - ~(D, s c )  - ~(E, SD) + 

§ (e(De . . . . .  Codd) -- g(Dodd' Ceven)) § (g(De . . . . .  Eeven) - -  ~ ( D o d d ,  Eodd)) § 

+ (e(Cod d, Ee~e~) - e(C e ..... Eo~)) + (e(D .... Doad) - e(D~ .... D~, ) )e  77 2. 

P R O P O S I T I O N  1.2. (i) The torsion of the algebraic mapping cone C(gf) of the 

composite gf : C ~ E of chain equivalences f :  C --, D, g: D ~ E of finite chain com- 
plexes over A is given by 

~(C(gf)) = r(C(f)) + r(C(g)) + 7(C, D, E ) r ( - 1 :  A --, A)eK~(A). 

(ii) The torsion of the algebraic mapping cone C( f  G f ' )  of the sum 

f G j " :  C 0  C' ~ D �9 D' of chain equivalences f :  C ~ D, f ' :  C' -* D' of finite chain 
complexes over A is given by 

z (C( f |  f ' ) )  = z(C(f)) + z(C(f')) + fl(D G SC, D' @ SC' )z ( -  1: A ~ A) + 

+ (52,( - )"a(Cr_ 1, D'r))~c( -- 1 : A ~ A) e K x(A). 

Proof See Propos i t ion  2.5 of Par t  I. [ ]  
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The reduced torsion of a chain equivalence f :  C ~ D of finite chain complexes over 
A is defined by 

z ( f )  = ~(C(f))~ F, i(A), 

the reduction of z (C( f ) )~  K I ( A  ) in / ( i (A)  = coker(Ki(7/) -~ Ka(A)). 

PROP OS I TI ON 1.3. The reduced torsion is such that 

(i) z ( g f  : C ~ D ~ E) = z ( f )  + "c(g) ~ / (I (A ) 
(ii) ~ ( f  @ f':  C �9 C' -~ D �9 D') = ~(f)  + z ( f ' ) e / s  

(iii) z ( f :  C -~ D) = z(D) - v(C)=_Ri(A ) if C and D are chain contractible. 

Proof  See Proposition 2.6 of Part 1. [] 

The torsion of a chain equivalence f :  C ~ D of round finite chain complexes over 

A is defined by 

�9 ( f )  = ~(C(f)) - fl(D, SC)~( - 1: A ~ A) ~_ K I(A). 

PROP OS I TI ON 1.4. The torsion is such that 

(i) r(gf:  C ~ D ~ E) = r ( f )  + ~(g)eKl(A) ,  

(ii) r ( f  O f '  : C G C' -~ D @ D') 

=z ( f )  + ~(f') + 
+ (fl (D, D') - fl(C, C'))w( - 1 : A ~ A) e K 1 (A), 

(iii) z ( f  : C ~ D) = z(V) - z(C)-~Ki(A) if C and D are chain contractible. 

Proof  See Proposition 2.7 of Part I. [] 

The reduction of the torsion z ( f )~ -Kl (A)  is, of course, the reduced torsion 

z ( f )~-Ki(A) .  
A finite structure on a chain complex C over A is an equivalence class of pairs 

(finite chain complex F over A, chain equivalence (b: F ~ C) 

under the equivalence relation 

(F,(~) ,,~ (F',d)') if z ( ~ ' - ~ b : F  ~ F ') = O~_KI(A). 

The  finite structure set ~ ( C )  of a chain complex C over A is the set (possibly empty) 

of finite structures on C. 

PROP OS ITI ON 1.5. (i) The finite structure set ~ ( C )  is nonempty ~and  only if C is 

f initely dominated and [C] = 0e/{o(A ). 
(ii) I f  ~'(C) is nonempty it is an affine Ki(A)-set ,  with a transitive Kl(A)-action 

defined by 

/(I(A) x ~-(C) ~ J (C) ;  (z(D), (F, 4)) ~ (F �9 D, 0 �9 O) 

with z(D)~ K i (A )  the reduced torsion of  a contractible finite chain complex D over A. A 

choice o f  base point (Fo, ~bo)e~(C ) determines an Abelian group structure on ~ ( C )  
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with an isomorphism 

~-(C) -, /~l(A); (F, ~b) ~ T((b-lq5o: F o --* F). 

Proof Immediate from Proposition 1.1 (i). 

123 

[] 

Given a chain equivalence f :  C ~ D of chain complexes over A with finite 
structures (f ,  4))=~.~(C), (G, O)e~(D) define the reduced torsion 

~(f) ,(O-*f(a F-  r , C ~ D  0-~ = . ,G)e~2i(A). 

This evidently depends on the choices of finite structures as well as f ,  with the 
reduced torsion T'(f)~/~l(A ) determined by different choices (F',qS')e~-~(C), 
(G', O')e~(O) such that 

r ' ( f )  - ~(f) = z(0-10': G' --, G) - z(r F' ~ F)e/( i(A),  

by the logarithmic property of reduced torsion. 

A fig. free A-module M is even if rankA(M ) - 0(mod 2). Thus, if either M or N is 
even e(M, N) = 0e 7/2. 

A finite chain complex C over A is even if each C~(r >~ 0) is an even f.g. free A- 
module. Thus, if either C or D is even fl(C, D) = Os 77 2. 

(Let Ne(A) be the additive category of even finite chain complexes over A and 

chain homotopy classes of chain maps. The torsion function 

z: iso(rge(A)) --+/I(A); f ~ ~( f )  = z(C(f))  

is both logarithmic (z(gf) = ~(f) + ~(g)) and additive (T(f @ f ' )  = T(f) + T(f')), 
agreeing with the torsion ~:iso(eg~(A))-~Ki(A); f ~ r ( f )  defined above for the 
additive category cg~(A) of round finite chain complexes over A and chain homotopy 
classes of chain maps.) 

A round finite structure on a chain complex C over A is an equivalence class of 
pairs 

(round finite chain complex C over A, 

chain equivalence r F ~ C) 

under the equivalence relation 

(F, q~) ~ (F', r if T(r ~ F ' )  = O~=KI(A ). 

The round finite structure set ~ ( C )  of a chain complex C over A is the set (possibly 
empty) of round finite structures on C. 

PRO P OS ITI ON 1.6. (i) The round finite structure set ~ ' (C)  is nonempty if and only 
if C is fni tely dominated and [C] = 0~ Ko(A ). 

(ii) I f  ~r(C) is nonempty it is an affine Ki(A)-set , with a transitive Kl(A)-action 
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defined by 

KI(A ) x ~r(C) --. ~-r(C); (z(D), (F, ~b)) ~ (F �9 D, 0 �9 0) 

with r ( D ) s K I ( A  ) the torsion of  a contractible even finite chain complex D over A. A 

choice of  base point (Fo, qSo)~-r(C) determines an Abelian group structure on ~Jr(C) 

with an isomorphism 

~ ' r ( c )  ~ K 1 (A); (F, q~) ~ "r(q~ -10o :F  o ~ F). 

Proof  By analogy with Proposition 1.5. [] 

Given a chain equivalence f :  C --, D of chain complexes over A with round finite 

structures (F, q~) e J'r(C), (G, 0) ~ ~-~(D) define the torsion 

z ( f )  z ( O - l f O : F - O  >C f ~ D  0 -1 = ,G)~KI (A  ). 

This evidently depends on the choices of round finite structures as well as f ,  with the 
torsion "c'(f)e K dA)  determined by different choices (F', ~ ')e ,o~"(C), (G', O')~ ~ 

such that 

z'(f) - r ( f )  = "c (0 -10 ' :  G '  ---) G) - -  z-(q~-lq~t: F ' ~  F ) e K I ( A  ) 

by the logarithmic property of torsion. 
The absolute Ka-grou p Kj(A)  behaves better under products than the reduced 

Kl-group/( I (A) ,  so that round finite structures behave better under products than 
finite structures. In Section 3 below we shall investigate this behaviour in some 
detail, using the following sharper version of the condition z(C) = 0~ ~ for a finite 

chain complex C to be round. 
Given a finite chain complex C over A define the integers er(C)= 

rankA(Cr) - rankAG_ 1) + " "  + (--)r rankACo) e 7/ (r >1 0), uniquely characterized 

by 

rank~(Cr) = er(C ) + G_I(C) (r >~ 0, e_l(C ) = 0). 

If C is n-dimensional, then for r >~ n 

G(C) = ( - ) rx(C)s  Y. 

A finite chain complex C over A is rounded if G(C)>IO (r>/0). If C is n- 
dimensional en(C)en+ 1(C) = - z (C)  z >/" 0, so that )~(C) = 0 and C is round. However, 
a round finite chain complex need not be rounded, as is clear from the example 

C : . . . --. O --* A -* A --* O. 

PROP OS I TI ON 1.7. (i) A finite chain complex C over A is rounded if and only if 

there is defined a contractible finite chain complex C a over A with the same chain 

modules {Crlr >~ 0} 

d a dA da 
CA:"" - '  C~+1-- >Cr ->C,.-1 -> "'" )Co. 
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(ii) For any round finite chain complex C over A there exists a contractible finite 
chain complex C' over A such that C | C' is rounded and 

| 

Proof (i) Given a contract ion F: 0 --- 1: D --+ D of a finite chain complex D over  A 

there are defined stably f.g. free A-modules  

E~ = ker(d: D~ --+ D~ 1) = im(d: Dr+ 1 --+ D,) (r >~ 0) 

and i somorph i sms  

f : D ~  Er @ E~_I; 

such tha t  

N o w  

x ~ ( d r ( x ) ,  d(x)) (r >1 O) 

(0 ~ 
f d f  1 =  0 :  ~ @ E ' - I ~ E ~ - I @ E ~ - 2 "  

e~(D) = rankA(E~) >~ 0 (r >~ 0), 

so that  D is rounded.  

Thus,  if C is such that  there exists a contract ible finite chain complex  C A with the 
same chain modules  

er(C) = e~(CA) >1 0 (r > 0), 

and C is rounded.  

Conversely,  if C is a rounded finite chain complex  over  A define 

dAeHOmA(Cr, C~_I)(r >~ 1) by 

dA(kth base element of C~) 

f 0  e C~_ 1 if 1 --< k -.< er( C) 

( (k  - e~(C))th base e lementeC~_ 1 if e,(C) + 1 ~ k ~< rankA(Cr). 

Then C A is a contract ible  chain complex,  with a chain cont rac t ion  F: 0 _~ 1: C A --* C A 
defined by 

F(kth  base element of C~) 

= ((er+l(C) + k)th base e lementeC~+ 1 if 1 ~< k ~< e,(C) 
(0eC, .+  1 if e~(C) -.<k ~<rankA(C~+ 0. 

(ii) Let C be n-dimensional,  and let {C'~[ r > 0} be a sequence of based f.g. free A- 
modules  with the ranks  

rankA(C') = e,(C') + e,_ l(C' ) (r >~O,e_l(C') = O) 
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determined by the nonnegative integers 

~rankA(Cr_l) + rankA(Cr_3) + ' "  if r ~< n 
e,(C') = (O i f r > n .  

Then {C, | C',I r >/0} is a sequence of based f.g. free A-modules such that the ranks 

rankA(Cr �9 C',) = e,(C • C') + e ,_l(C G C') (r >1 O) 

are determined by the nonnegative integers 

e,(C �9 C') = e,(C) + e,(C') 

J'rankA(C~) + rankA(C,_z) + ""  if r ~< n 

(0 if r > n .  

By (i) differentials {dc,6 HOmA(C'r, C~_l)lr >1 0} may be chosen such that C' is a 
contractible finite chain complex over A, and in particular such that 

~(c') = ~(c, C')~K~(A). 

By the sum formula of Proposition 1.2 (ii) 

= -c(t: c --, C) + -c(0:0 ~ C') - / ~ ( c ,  0) + /~(C,  C') 

= O~_KI(A ). [] 

2. Change of Rings 

In the applications we shall be dealing not only with the algebraic K-groups Ko(A ), 
K~(A) of a single ring A, but also with the morphisms of K-groups induced by a 
morphism of rings f :  A ~ B. As usual, given such a ring morphism regard B as a 
(B, A)-bimodule by 

B x B x A ~ B ;  ( b , x , a ) ~ b x f ( a ) ,  

so that there is defined a functor 

f,: (A-modules) ~ (B-modules); m ~ f~m = B @ A M  

sending f.g. projective (resp. free) A-modules to f.g. projective (resp. free) B-modules. 
Given a finitely dominated (resp. contractible finite) chain complex C over A there is 
induced a finitely dominated (resp. contractible finite) chain complex f ,C = B | A C 
over B, and the induced morphisms of K-groups are such that 

f,.: Ko(A) ~ Ko(B); [C] ~ If., C] 

f,: KI(A ) --+ KI(B); z(C) ~ "c(f,C). 

We shall be particularly concerned with the case in which f :  A ~ B is an isomor- 
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phism, when it is possible to identify the B-module f.,M induced by an A-module M 

with the B-module defined by the additive group of M with B acting by 

B x f , .M~f , .M;  ( b , x ) ~ f - l ( b ) x .  

For the inner automorphism of a ring A 

f:A---~A; a ~ z - X a z  

defined by conjugation by a unit z 6 A  there is defined a natural equivalence of 

functors 

z: I~--'f,: (A-modules)~ (A-modules), 

with a natural A-module isomorphism 

z : M  ~ f ,M; x ~  zx 

for any A-module M. Thus, for any chain complex C over A there is defined an 
isomorphism 

z : C ~  f,C; x ~ z x .  

If C is finitely dominated 

f.,[C] = [f.,C] = [C] mKo(A ). 

If C is finite then 

~,tz: c ~ f , c )  = XT=o(-) r~(z :  c r  ~ f, c r )  

= z(C)v(z: A ~ A; a ~ az)~K~(A), 

so that if C is contractible finite 

f, ~(c)  = ~(f, c )  = ~(c) ~ K I(A). 

Thus for an inner automorphism f :  A ~ A 

= l : / ( o (A)  -~ K0(A). 

f, = 1: Ka(A ) ~ Ks(A ) . 

A stable isomorphism of f.g. projective A-modules [~b]: P ~ Q is an equivalence 

class of isomorphisms ~b:P �9 X ~ Q �9 x for fig. projective A-modules X, defined 
exactly as in Section 1 for the additive category of f.g. projective A-modules, with 

( $ : P O  X - - + Q O  X) ~ ( O : P O  Y ~ Q O  Y) 
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if 
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r P O X O Y  r ~ Q O X |  lx o > Q O Y |  

0 1| x > P Q Y G X  1y o > P O X O Y )  

=OEKI(A). 

Note that f.g. projective A-modules P, P', Q, Q' are such that 

[ P ]  - [ Q ]  - -  [ p ' ]  - [ Q ' ]  m Ko(A) 

if and only if P ~) Q' is stably isomorphic to Q �9 P'. 
Define the relative K1-grou p Kl( f )  of a morphism f :  A ~ B of rings to be the 

Abelian group of equivalence classes of triples (P, Q, [qS]) defined by f.g. projective 
A-modules P, Q and a stable isomorphism [qS]: f,.P ~ f~Q of the induced f.g. 
projective B-modules, under the equivalence relation 

(P, Q, [~b]) ~ (P', Q', [q~']) if there exists a stable isomorphism 

[0]: P �9 Q' ~ Q @ P' such that 

z ( fPG I~Q '  f,[o] , f Q |  [+3-1@[~ ' ] , f p @ f Q , )  

= OeKI(B ) 

with addition by 

(P, Q, [qS]) + (R, S, [0]) = (P Q R, Q O S, [~b] �9 [~])e  K~(f). 

Kl ( f )  is isomorphic to the relative Kl-grou p defined by Bass [1]. Note the 
logarithmic property 

(P, Q, [r + (Q, R, [0]) = (P, R, [~3 [~b])eK~(f), 

so that inverses are given by 

- (P, Q, [~b]) = (Q, P, [qS] -1)eKl( f ) .  

P R O P O S I T I O N  2.1. The relative Kl-grou p Kl( f )  fits into an exact sequence 

Ka(A) f~ ,KI(B) j , K a ( f ) ~ K o ( A  ) f~ ,Ko(B ) 

with 

j: KI(B) --* Kl(f);  z(r X ~ X) ~ (0, O, [q~]) 

0: Ka(f) -~ Ko(A); (P, Q, [~b]) ~ [Q] - [P]. 
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[] 

Given finitely dominated chain complexes C, D over A and a chain equivalence of 

the induced chain complexes over B 

~: f,.C---* f!D 

there is defined an element (C, D, ~)~ Kl(f) such that 

O(C, D, ~) = [D] - [C]eKo(A ) 

as follows. Choose chain equivalences 0: C ~ P, 0: D ~ Q to bounded f.g. projective 

chain complexes P, Q over A and define a chain equivalence of the induced chain 
complexes over B 

r = (f,O)~(f,O-~):f.,n f,O-' f , C ~ f ,  D f~O +f,Q. 

Using any chain contraction F :0  ~-1: C ( r  C(r and the isomorphism of f.g. 
projective B-modules 

d + F: C(~))odd = ~Peven @ fc. Qodd - - *  C ( ~ b ) e v e n  = ~Podd G f.,Q .... 

define an element 

(C, D, ~) = (/:)even (~ Qodd, /~ (~ Q ..... d + F ) e K l ( f )  

which is independent of the choices of 0, 0, F. The definition of (C, D, ~)eK~(f) is a 

mild generalization of a construction of Smith [20J. In Section 4 below we shall use 
the construction to define a relative K,- theory invariant (X, Y, ()e Kt(f)  for a map 

~: X ~ Y of finitely dominated CW complexes which is a B-homology equivalence, 
for some morphism of rings f :  A = ?7[nl(Y)] --, B. (More generally, there is defined 
an invariant (C, D, OeKl( f )  for any chain equivalence 

~: f~C @ E--> f D  @ F 

with C, D finitely dominated chain complexes over A and E, F round finite chain 
complexes over B. The element is such that 

(C, D, ~) = [DJ - [C] ~ Ko(A), 

and 

j: KI(B) ~ Ka(f); z(~: E ~ F) ~(0,  0, ~). 

We need only consider (C, D, ~)e Kl( f )  for E = 0, F = 0 here.) 

Given two ring morphisms f, g: A --+ B define the relative Kl-grou p Kl(f, g) to be 
the Abelian group with one generator (P, [r for each f.g. projective A-module P 
with a stable isomorphism [q~]:g~P ~ f P of the induced f.g. projective B-modules; 
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subject to the relations 

(P, [~b]) = (P', [qS']) if there exists a stable isomorphism 

[0]: P ~ P' such that 

z(g,[0]-114]- ~f~[0][~b]: g~P ~ f,.P ~ f~P' ~ g,P' --, g~P) 

= 0~KI(B), 

(n, [~b]) + (n', [q~]) = (P @ n', [q~] | [~b'])(~ gl(f~ g). 

PROPOSITION 2.2. The relative Kl-grou p Kl( f ,  g)fits into an exact sequence 

K,(A) f~-g~ ,K,(B) j >Kl(f,g) a ,Ko(A) f , -g ,  ,Ko(B) 

with 
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j ':KI(B)--~KI(f,g); z(O:B"--~B")~ (0,0,[~]) 

a': K'~(f,g) ~ Ko(A); (P, Q, [q~]) ~ [P] - [Q], 

j: KI(B) -~ K1(f, g); z(~b: B" --, B")  ~ (A", [q~]) - (A", [ i ] )  

a: Kl ( f ,  g) -* K0(A); (P, [~b]) ~ [P]. 

Proof. Define K'I( f ,  g) to be the Abelian group of equivalence classes of triples 
(P, Q, [~b]) consisting of f.g. projective A-modules P, Q and a stable isomorphism of 
f.g. projective B-modules 

[0]:  g~P G f,.Q ~ f~P G a,Q 

under the equivalence relation 

(P, Q, [qS]) ~ (P', Q', [q~']) if there exists a stable isomorphism 

[0]: P G Q' --+ P' G Q such that 
~((f,[o] -1 | g~[O])([4] | [r 

g~P @ f,.Q @ g~P'@ f,.Q'-~ f,.P @ g,Q @ f,.P' @ g,O' 

g,P | f,.Q | g,P' @ f,Q') 
=Om KI(B ). 

It follows from the logarithmic property 

(n, (2, [q~]) @ ((2, R, [0]) = (P, R, [O][~b])~ K',(f, g) 

that inverses are given by 

- ( P , Q ,  [~b]) = (Q,P, [q~] ' ) e K i ( f , g  ). 

Now K'l(f, g) fits into an exact sequence 

f, - a, ,KI(B) J ~ K , ( f , g )  a' ,Ko(A) f ' -  g' KI(A) ,No(B) 

with 
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and there is defined an isomorphism of Abelian groups 

h: Kl ( f ,  g) ~ K'l(f, 9); (P, [q~]) ~ (P, 0, [qS]) 

with inverse 

h- 1: K'~(f, g) --. K~(f, g); 

(P, Q, [~b]) ~ (P �9 - Q, [~b]) - (Q G - Q, [1]) 

(for any - Q  such that Q G - Q  = A") 

such that hj = j', 8'h = 8. [] 

In the applications we shall use the isomorphism h: Kl ( f ,  g) --* K'l(f,g ) as an 
identification, representing elements of KI( f, g) both as pairs (P, [q~]: 9~P ~ f., P) and 

as triples (P, Q, [~b]: g~P | f,Q ~ f,.P | g~Q). 
(Given ring morphisms f l :  A ~ B x, f2: A --* B 2 define ring morphisms from A to 

the product ring B1 x B 2 

f : A ~ B  1 x B2; a~(fl(a),O), 
g: A - ~  B 1 • B2; a ~ (0,f2(a)). 

For  such f ,  g the exact sequence of Proposition 2.2 can be written as 

-f2~ j 
KI(A ) > KI(B1) �9  KI(B2) >K~(f,g) 

( i,,] 
>K0(A) >Ko(B1) G Ko(B2) 

and Kl(f ,  9) is isomorphic to the relative Kl-group defined by Casson [3].) 
Given a finitely dominated chain complex C over A and a chain equivalence of 

the induced chain complexes over B for some ring morphisms f ,  g: A ~ B 

~:g~C-> f,C 

there is defined an element (C, ~)~ Kl(f ,  g) such that 

8(C, ~) = [C] E Ko(A ) 

as follows. Choose a chain equivalence ~s: C --> P to a bounded f.g. projective chain 
complex P over A and define a chain equivalence of bounded f.g. projective chain 
complexes over B 

0 = (f~)~(g,~-l):g,p g , q - 1  > g , C ~ f , C  f,4~ >f,p. 

Using any chain contraction F: 0 -~ 1: C(qS) ~ C(~b) and the isomorphism of f.g. 
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projective B-modules 

d + F: C(~))odd = g!eeven O ~Podd --* C(~b)even = ~Podd (~ g, Peven 

define an element 

(C, ~) = (Pc .... Poad, d + r )  �9 Kl(f ,  g) 

which is independent of the choices of r F. In Section 5 below we shall use the 
construction to define an invariant (X, ( ) �9  A, ~) for any self-homotopy equival- 
ence ~: X ~ X of a finitely dominated CW complex X, with A = 7717c1(X)] and 
c~: A ~ A the automorphism induced by ~,: x l (X ) -~ xl(X). (More generally, there is 

defined an invariant (C, D, ~)�9 KI( f ,  g) for any chain equivalence 

(:g~CO f, DOE--> f , .COg~DOF 

with C, D finitely dominated chain complexes C, D over A and E, F round finite 
chain complexes over B. The element is such that 

a(C, D, ~)= EC] - [D] �9 

and 

j: KI(B ) -* Kl(f ,  g); ~(~: E ~ F) ~ (0, 0, ~). 

We need only consider the case D = 0, 

(C, O, ~) = (C, ~)e K l( f  , g)). 
E = 0 ,  F = 0  here, with 

3. Products in K-Theory 

Given rings A, B let A | B, B | A be the product rings, where the tensor product is 

taken over 77. The transposition isomorphisms 

T : B | 1 7 4  b | 1 7 4  

U : A | 1 7 4  a | 1 7 4  

are inverse to each other. 
The product of an A-module M and a B-module N is an A | B-module M | N, 

with A | B acting by 

A |  x M | 1 7 4  ( a | 1 7 4 1 7 4  

and the B | A-module N | M is defined similarly. If M is a f.g. projective A-module 
and N is a f.g. projective B-module then M | N is a f.g. projective A | B-module. If 

M and N are f.g. free then so is M | N, and 

rank~ | B(M | N) = rankA(M) rankB(N). 

In dealing with based f.g. free modules we adopt the convention that a base 
{xil 1--<i-<<m} for M and a base {Yjl 1--<j--<n} for g determine the base 
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{zkl 1 ~< k < ran} for M | N defined by 

zk = xi | y; i f k = i + m ( j - 1 ) ,  

so that 

{Z1, Z2," �9 ", Zmn} = {X1 | Yl ,  X2 | Yl ,  "" ", Xm | YI,  X1 | Y2 . . . . .  Xm | Yn}" 

The isomorphism of based f.g. free A | B-modules 

M |  T , ( N |  x | 1 7 4  

has torsion 

z (M | N ~ T,(N | M)) = lm(m - 1)n(n - 1)z(- 1: A | B --, A | B) 

e K l ( A  | B), 

the sign of the permutation 

{1,2,. . . ,ran} ~ {1,2,. . . ,mn}; 

k = i + m ( j - 1 ) ~ k ' = j + n ( i -  1 ) ( l < i < m ,  1 < j < n ) .  

Furthermore, for based f.g. free A-modules M, M1, M 2 and based f.g. free B-modules 
N, N 1, N 2 the evident isomorphisms of based f.g. free A | B-modules have torsions 

r(M | (g i  @ N2) --~ (M | g~) if3 (M | g2) ) = O~K~(A | B) 

z((M~ if3 M2) | N ~ (M 1 @ N) @ (M 2 | g)) 

= �89 - 1 )z ( - l :A  |  ~ A  |  |  

with ml = rankA(M1), m2 = rankA(M2), n = ranks(N). The sign is obtained by 
considering the commutative diagram of isomorphisms 

(M 1 @ M2) @ N ,(M 1 @ N) G (M 2 @ N) 

T,.(N | (M~ if3 M2))----~ T,((N | Mr) G g | M2)), 

and noting that 

l(m 1 + m2)(m 1 + rn 2 - 1)n(n - 1) - 

- l m l ( m  1 - 1)n(n - 1 ) -  �88 2 - 1)n(n - 1) 

= �89 - 1). 

The product operation on modules is functorial, and as usual there are defined 
products in the algebraic K-groups 

Ko(A ) | Ko(B ) -* Ko(A | B); [P] | [Q] ~ [P | Q] 

KI(A) | 

~(f: P 
Ko(A) | 

re] | 

Ko(B ) ~ KI(A | B); 

P) | [Q] ~ , ( f  | I : P |  Q ~ P |  Q) 

KI(B) ~ KI(A | B); 

"c(g: Q ~ Q)~ ' c ( I  | g: P | Q ~ p | Q) 

133 
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with P a fig. projective A-module, Q a f.g. projective B-module, and f s  HomA(P, P), 
g ~ Hom~(Q, Q) automorphisms. 

The product of an A-module chain complex C and a B-module chain complex D 
is the A | B-module chain complex C | D defined by 

dc | D" (C | D) r = Z~% _ ~ C~ | Dr-~ ~ (C | D)r_ 1; 

x | y ~" x | dz)(y ) + (-)r-~dc(x) | y. 

If C and D are finitely dominated, then so is C |  and if either C or D is 

contractible then so is C @ D. If C and D are finite, then so is C Q D, as in D | C, 
and the transposition isomorphism of finite chain complexes over A | B 

C |  T~(D| x | 1 7 4  (x~C~,y~Dt) 

has torsion 

z(C | D --+ T.,(D | C)) 

= ~(C, D)-c(- 1: A | B ~ A | B)e K~(A | B), 

where 

with 

~(C, D) = v(C)v(D) + Zodd(C)Zodd(D) + 

+ Xr%0 ZO<~<t<~ csctd~-~d~- t~ 7-2, 

cs = rankA(C~), d, = rankB(D,), 

v(C) --- Z2=o�89 - 1), 

)/odd (C) = Xi~ o c2, +, e ;7 2. 

(Further below we shall also use Z .... (C) = ZiZocz~e ;Ca.) If C, C' are finite chain 
complexes over A and D, D' are finite chain complexes over B the rearrangement 

isomorphisms have torsions 

z(C | (D @ O') ~ (C | D) G (C | D')) 

= ~(C, D, D')-c(- 1: A | B ~ A | B)6Ka(A | B) 

x((C Q C') | D -~ (C | D) G (C | D')) 

= t.t(C, C', D)x(-  1: A | B ~ A | B)~ Kx(A | B) 

with ~,/ t  defined by 

2(C, D, D') = (Z~~ o c~cs+ 1)(Z~= od, d~+ 1), 

#(C, C', D) = 2(0, C, C') + e(C @ C', D) + e(C, D) + e(C', D)E Z 2. 

For  any finite chain complex C over A and any chain map g: D -~ D' of finite chain 
complexes over B, the rearrangement isomorphism C(1 | g: C | D ---, C | D') 
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C | C(g: D ~ D') has torsion 

~(c(1 | g) -~ c | C(g)) 

= 2(D', SD, C)z ( -  1: A | B --+ A | B)~KI(A | B). 

For  any chain map f :  C ~ C' of finite chain complexes over A and any finite chain 
complex D over B the rearrangement isomorphism C(f  | 1: C | D ~ C' | D) 
C( f  : C) ~ C') | D has torsion 

z(C( f  | 1) -~ C(f) | D) 

= #(C', SC, D)z( -  1: A | B ~ A | B)~KI(A | B). 

P R O P O S I T I O N  3.1. (i) The projective class of the product C | D of a finitely 
dominated chain complex C over A and a finitely dominated chain complex D over B is 
given by 

[C | D] = [C] | [D]e  Ko(A | B). 

(ii) The torsion of the product C | D of a contractible finil:e chain complex C over A 
and a finite chain complex D over B is given by 

z(C @ D) = r(C) | [D] + tl(C , D)z( -  1: A | B ~ A | B)e KI(A | B) 

where [D] = z(D)e Ko(B ) and t 1 is defined by 

~t(C, D) = fl(C, C)v(D) + Z,>jfl(C | SiDi, C | SJDj) + 

+ Zoad(C)Zoad (D) e ~-2. 

(iii) The torsion of the product C | D of a finite chain complex C over A and a 
contractible finite chain complex D over B is given by 

z(C | D) = [C] @ z(D) + (q(D, C) + 

+ if(D, C))~(- I :A | B ~ A @ S)e Ka(A | U), 

where [C] = z(C) ~ Ko(A). I f  C is even the sign term vanishes and 

z(C | D) = [C] | ~(D)e K~(A | B). 

(iv) The reduced torsion of the product f | g: C | D ~ C' | D' of a chain equival- 
ence f :  C --* C' of finite chain complexes over A and a chain equivalence g: D ~ D' of 
finite chain complexes over B is given by 

z( f  | g) = [C-] | z(g) + z(f) | [D]e  KI(A | B), 

where 

[C] = z ( C )~ -  ~ Ko(A), [D] = z(D)~_ ~ Ko(B ). 

Proof (i) By the chain homotopy invariance of the projective class it may be 
assumed that C and D are bounded positive complexes of f.g. projective modules, in 
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which case so is C @ D a~d 

[C @ D1 = $;r~o(-)r[(C | D)r] 

= ZT= 0 Zs+ ,= , ( - ) s+ ' [Cs  | D,] 
s+t = Z.GoZs+,=r(-) [C~@ [D,] 

= (yGo( - )~[G]  | (Z#o ( - ) ' [ o , ] )  
= [C] | [D] c Ko(A | B). 

(ii) If D is 0-dimensional, then by definition 

z(C @ D) = z((d + F) | 1: (C | D)oda ~ (C @ D)ew)eKI(A | B), 

for any chain contraction F: 0 ~- 1: C ~ C. The rearrangement isomorphisms have 

torsions 

"c((C | D)odd --> Cod d | Do) 

=(Zi>sai+lCzj+l)�89 - 1)r ( -  1: A | B ~ A | B), 

T((C | D)eve n ~ Ceven | Do) 

= (2i>jc2icaj)�89 o - 1)~(-  I ' A  | B --o A | B ) e K I ( A  | B) 

and 

(d + F) |  
{d + F) | 1: (C | D)od d --+ Cod a @ D O ' C .... | D O -~ (C | D) ..... 
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so that 

r(C | D) = z((C | D)odd ~ Cod a | Do) + "c((d + F) | 1: Cod a | D O ~ C .... | D o ) -  

- z((C | D)ovo. --, Gvon | Do) 

= z(C) | [D] + fl(C, C)v(D)v(- l: A @ B --* A | B) 

= "c(C) | [O1 + rl(C, D ) z ( -  1: A @ B ~ A | B)e KI(A @ B). 

Assume inductivdy that z(C | D) = z(C) @ [D1 + ~/(C, D)~(-  1) if D is of dimen- 
sion < n. If D is n-dimensional, let D' be the (n - 1)-skeleton, so that there is defined 

a short exact sequence of finite chain complexes over B 

0 ~ D '  i j , D ~ S n D .  ---" 0 

with 

(S"D,)r=D . i f r = n , = 0 i f r C n .  

Applying C | - there is obtained a short exact sequence of finite chain complexes 

over A | B 

O - - . C |  l|  l |  , C |  , C |  

By the sum formula of Proposition 2.3 of [161 and the inductive hypothesis 

,z(C| = ~(C | D') + z (C |  + [ 3 ( C | 1 7 4 1 7 4 1 7 4  
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= v(C) | [-D'] + ( - ) ' z (C)  | [Dn] + 

+ (fi(C | D', C | SnD,~) + .nZoda (C) + ~, fl(C | S'nD,~, C | SnD,))z( - t) 
m<n 

= z(C) | ro ]  +tl(C,D)z(- l: A | B ~ A | B) e Kt (A | B), 

establishing the inductive step. 

(iii) Using the transposition isomorphisms 

T : B | 1 7 4  U : A | 1 7 4  

and the result of (ii) we have 

z ( C |  = T,U,z(C|  

= ~ (z(D | C) + ~(D, C)~:(- 1: B | A -~ B | A)) 

= T, (z (D) | [C] + (~(D, C) + r/(D, C))~(- I :B | A --, B | A)) 

= [C] | z(D) + (~(D, C) + tl(D, C))z(-  l: A | B ~ A | B)e KI(A | n). 

LEMMA. For any finite chain complex C over A 

1 C #(c ,  c)  = ~(c) + ~-z .. . .  ( ) (Z~ve~ (C) -- I )  + �89 (C) (Zo~ ( C ) -  I )  e ;Z ~. 

Thus if C is round fi(C,C) = v(C)6 7/2. I f  C is even 

#(c ,  c )  = 0 = v(c)  + �89 e z 2 .  

Proof If C is such that C~ = 0 for r # n, both sides of the identity are zero. 
If the identity holds for finite chain complexes C, C' then it also holds for their 

sum C G C', since 

fl(C r C', C | C') - #(C, C) - #(C',C') = #(C, C') + #(C', C) 

: 2 crCtr 2V )~ . . . .  (C)•odd (C;) ~" •odd(C)z . . . .  (C;) 
/, 

= (Y(C G C r) ~- 1 z . . . .  (C ~ C')(  Z . . . .  (C �9 C ' ) -  1) --~ 1Zodd (C ~ C')(Zodd (C ~ C ' ) -  ~ ) -  

1 
- (y(C) -}- 2Z . . . .  (C)(z . . . .  (C) - 1) "-~ lZodd (C)(Zodd (C) --  1)) --  

1 C '  1 , t - ( v (C ' )  + yZ .... ( )(Z .... ( C ' ) - I )  + ~Zo~d(C )(Zoad(C ) - l ) )e  7/2. 

Ignoring boundaries C = Co @ SC1 Q S2C2 @.. .  @ S'C,,, for some n >~0, so that 
the identity holds for all finite complexes C. [] 

Applying the Lemma we have that for even C 

tl(D,C) ~ fl(D,D)v(C), e(D,C) = v(D)v(C)e 7/2 

and as D is round fl(D,D) = v(D), so that 

~l(D,C) + e(D,C) = O~ 22. 

(iv) Expressing f |  g as the composite 

f(g)g:C| fQlD , C ' |  lc' |  , C ' |  
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we have by the logarithmic property of reduced torsion 

~(f | g) = r ( f  | 1~) + r(1 c, | g) e ~21(A | B). 

The sign terms may be ignored in the reduced Kl-group, so that 

r ( f  | lo) = r(C(f  | 1D) ) = z(C(f) | D) e/~I(A | B). 

By (ii) above 

"c(C(f) @ D) = z(C(f)) | [D] + sign term~ K~(A | B), 

so that 

r ( f |  lo) = z(C(f) | D) = z(f) | [D] s/~I(A @ B). 

Similarly, by (iii) 

z(1 c, | g) = [C'] | ~(g) = [C] | ~(g) ~ R~(A | S). [] 

The product formula of Proposition 3.1(i) was first obtained by Gersten[7] 
(although of course well known prior to that for Z), and that of Proposition 3.1 (iv) 
by Kwun and Szczarba[10]. The topological interpretations are recalled in 
Proposition 4.5 below. 

Proposition 3.10) shows that the product C | D of a finitely dominated chain 
complex C over A and a chain complex D over B which admits a round finite 
structure is a chain complex over A | B such that 

[ C |  [ C ] |  = [ C ] | 1 7 4  

so that C | D also admits a round finite structure. More precisely: 

PROPOSITION 3.2.(i) The product of a finitely dominated chain complex C over A 
and a chain complex D over B with a round finite structure (G, O)~ ~S*(D) is a chain 
complex C |  D over A | B with a canonical product round finite structure 
C | (G, O) e ~r(C | D). 

(ii) The product f | g: C | D ~ C' | D' of a chain equivalence f: C ~ C' of 
finitely dominated chain complexes over A and a chain equivalence g: D ~ D' of chain 
complexes over B with round finite structures (G, O)e ~ ( D ) ,  (G', 0')~ ~ is a chain 
equivalence of chain complexes over A | B with torsion 

T(f |  g) = [C] | "c(g) e K,(A | B) 

with respect to the product round finite structures 

C | 1 7 4  C ' | 1 6 2 1 7 4  

where [C] = [C'] ~ Ko(A) and ~(g)e KI(B). 

Pro@ This occupies the rest of the Section. In (i) we shall define the product round 
finite structure C | (D, 1)~ ~>(C | D) for a round finite chain complex D over B. 
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Then in (ii) we shall prove the torsion product formula 

~ ( f |  9: C | D ~ C' | D') = [C] | z(g: D ~ D') ~ KI(A | B) 

for any chain equivalence g: D ~ D' of round finite chain complexes, with respect to 
the round finite structures C | (D, 1) ~ ~-r(C | D), C' | (D', t) e ~-r(C' ~) D'). 

For any chain complex D over B with a round finite structure (G,0)~ ~-r(D) the 
product round finite structure C | (G,O)~ ~ ( C  @ D) can then be defined using 
C |  (G, 1)= (F,~b)~ ~ r ( C |  to be 

C| = ((1 | ~ C | 1 7 4 1 7 4  D). 

(i) It suffices to consider only the case of a rounded finite chain complex D over B, 
since by Proposition 1.7(ii) for any round finite chain complex D over B there exists 
a contractible finite chain complex D' such that D | D' is rounded and 

~((10) :DOD'  ~ D )  = OsKI(B ). 

If C |  (D OD' , I )  = (F, qS)~o~(C| (D OD'))  is already defined let C |  (D, 1) = 
(F, (1 | (1, 0))~b : F---, C |  (DO D ' ) ~  C |  D)e ~-~(C | D). 

Let then D be a rounded finite chain complex over B. By Proposition 1.7(i) there 
exists a contractible finite chain complex D A over B with the same chain modules 
(D~[r >~0}, and the differentials {daeHom ~ (Dr,D,_I)Ir >~ 1} can be chosen such 
that 

z(Da) = 0~ KI(B ). 

In dealing with the finitely dominated chain complex C over A it is convenient to 
work with the idempotent completion P(A) of the additive category d = F(A) of 
based fig. free A-modules. An object in P(A) is a pair (E, p) consisting of a based f.g. 
free A-module E and an A-module morphism p ~ HomA(E,E ) which is a projection 

p2 = p: E ~ E. 

A morphism in _P(A) 

f :  (E, p) ~ (E', p') 

is an A-module morphism f ~  Homa(E , E') such that 

p'fp = f :  E ~ E ' .  

The additive functor 

P(A) ~ {f.g. projective A-modules}; (E,p) ~ im(p: E ~ E) 

is an equivalence of additive categories. 

A finite idempotent chain complex over A (E,p) is a finite chain complex in P(A) 

d 
(E,p): . . . -40~(E, ,p , )  (E,_~,p,_~)--,... ~(Eo,Po). 

The chain homotopy theory of finite idempotent chain complexes is defined in the 
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obvious way, with a bijection of sets of chain equivalence classes 
{finite idempotent chain complexes over A } 

{finitely dominated chain complexes over A}; 

(E, p) ~ im(p:  E ~ E). 

See Ranicki [15] for a detailed exposition. 

Given a finite idempotent chain complex (E,p) over A and a rounded finite chain 
complex D over B define a round finite chain complex over A | B 

f = (E, p) | D 

by 

dF;F~ = (E |  = Z~=oE s |  F,-1;  

x | y ~ p(x) | do(y ) + (1 -p)(x) | dA(y ) + (--)r-SdE(x) |  

with {d o �9 Hom e (Dr, D~_ ~)~r >/1 } the differentials of D and {d A e Hom~(D,, D,_ a) 
Ir>~l} the differentials of D A (as above). For  example, if p =  I :E-- ,E then 
F = F | D. As an unbased chain complex over B 

F = ira(p) | D @ im(1 - p) @ D A, 

and the projection 

F ~ i m ( p ) |  x | 1 7 4  

is a chain equivalence (since it has contractible kernel im(1 - p) | D~). 
A finite idempotent chain complex (E,p) over A is even if 

rankA(Er) = O(mod2)(r >~ 0). 

For any finitely dominated chain complex C over A there exists a triple (E,p,O) 
consisting of an even idempotent finite chain complex (E,p) over A and a chain 
equivalence 0: ira(p) ~ C. (Choose a bounded f.g. projective chain complex P over A 
chain equivalent to C, and let {Q~Jr >10} be a sequence of f.g. projective A-modules 
such that P, @ Qr is a f.g. free A-module of even rank if P, is non-zero and Qr = 0 if 
P, = 0. Then E = P @ Q as an unbased chain complex, with 

0) 
0 

p = ( 1 0 0 0 ) : E , = P ,  O Q , ~ E , = P r G Q r , i m ( p : E ~ E ) = P ) .  

l 'he product round finite structure C | (D, 1) = (F,O)e..~r(C | D) is defined 
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using any such triple (E,p,O) by 

projection 0 | 1 
d p : F = ( g , p ) |  ~im(p) |  , C |  

We have to show that  (F, qS)e .~ r (C  | D) is independent  of the choice of (E,p, 0). If  

(E, p, O),(E',p',O') are two such choices the chain equivalence of even idempoten t  
finite complexes 

f =  ~b'- 1 ~b G 0:(e ,p)  -~ (E',p') 

is such that  

(F, q~) - (F', 4)') = r ( f |  1 : F = (E, p) | D ~ F '  = (E', p') | D) 

KI(A | B). 

We thus have to show that  r ( f |  1) = 0 e  KI(A | B). We consider first the special 
case of contract ible C: 

L E M M A  I f  (E,p) is an even finite idempotent chain complex over A such that 
P = im(p :  E ~ E) is a contractible chain complex over A then F = ( E , p ) |  D is a 
contractible finite chain complex over A | B with torsion ~(F) = 0 ~ K I(A | B). 

Proof Choose  a chain contract ion F:  0 ~ 1 : P ~ P and define an i somorphism of 
contract ible  finite chain complexes  over A @ B 

h : F ~ E |  A 

by the A | B-module  au tomorph i sms  

hr: Fr = E~=oEs | Dr_s~(E  | DA) ~ = E~=oE, | Dr_s; 

x |  --' x @ y  + ( - y - S r p ( x )  @ (dA -- dD)(Y))(r >~ O) 

SO that  

z ( f )  = z(E | Da) - Zr%0 ( - ) r z ( h /  (E | D)r ~ (E | D)~) e KI(A | B). 

As E is even 

z(E | DA) = [E l  | v(DA) (by Proposi t ion  3.1(ii)) 

= [E] G 0  = OeKI(A  |  

The  fg. projective A | B-modules  M~,Nr(r >/0) defined by 

Mr = 2~=0kcr(de:  Ps ~ P~-I) | Dr-s, 

N r = 22]= o (ker(F: P~ -o p~+ 1) �9 im(1 - p: E s ---, E~)) | D~_~ 

are such that  

,r 01) 
: ( E |  (r >~ 0). 
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Thus z(h r) = 0e  KI(A | and r(F) = 0e  KI(A | B). [] 

The algebraic mapping cone of a chain map of even idempotent finite chain 
complexes over A 

f : (E, p) --* (E', p') 

is an even idempotent finite complex (C(f),q) with 

q= : C ( f ) r = E ' O E r _ l ~ E ; @ E r _ l  (r>~O). 

The rearrangement isomorphism 

(C(f),q) | D --, C(f  | 1: (E,p) | O ~ (E',p') | D) 

has torsion p (E', SE, D)r(-  1: A | B ---, A | B)s KI(A | B), which is 0 since E and 

E' are even. I f f  is a chain equivalence (i.e. if f I: im(p') is a chain equivalence) then 

im(q) is contractible and 

f |  1: F = (E,p)| O ~ F' = (E',p')| D 

is a chain equivalence of even round finite chain complexes over A | B with torsion 

r ( f |  1) = r ( C ( f |  1)) 

= r((C(f),q) | D) 

= OeKI(A | by the Lemma, 

It follows that (F,~b)= (F ' ,4 ' )e~r(C | D), so that the round infinite structure 

defined on C | D is indeed canonical. 
(ii) As for (i) it suffices to consider the special case when D and D' are rounded 

finite chain complexes over B. By the logarithmic property of torsion 

r ( f | 1 7 4 1 7 4 1 7 4 1 7 4  l| , C |  f |  ,C ' |  

= z ( f |  I : C | 1 7 4  D')+ 

+ r(I | 1 7 4  D ~ C |  D')eKI(A | B). 

Let (F,~b)~ ffr(C | D), (F',~b')s ~-r(C' @ D) be the product round finite struc- 
tures. By definition 

q~ f |  ~b' 1 
z ( f |  , C |  ,C ' |  ,F ' )~Ka(AQB).  

The proof in (i) above that (F = (E,p) | D,~)) e ~ ' (C  | D) is independent of the 

choice of (E,p) includes a proof that z ( f |  1) = 0 e  KI(A | B). 
We shall prove that r(1 |  [C] | 1 7 4  ) using the following 

generalization of the product formula of Proposition 3.1(iii), which is the special case 
D = 0 .  
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L E M M A .  The product F = (E,p) | D of an even finite idempotent chain complex 

(E,p) over A and a contractible finite chain complex D over B is a contractible finite 
chain complex over A | B with torsion 

r(F) = [im(p)] @ v(D)e KI(A | B). 

Proof Choose  chain contract ions 

F o : 0 - ~  I : D ~ D ,  Fa: 0 ~ 1: DA ---, DA, 

and use them to define a chain contract ion 

F e = p |  o + ( 1 - p ) |  I : F - - * F .  

If E is 0-dimensional the rearrangement  isomorphisms are such that 

r(((E | D)eve n ~ Eo @ D .... ) = 0,~((E @ D)oa~ --, E o | Dodd) =Oe KI(A | B), 

so that  

"c(F) = r(d e + FF: Foda= ( E |  D)oaa-* F .... = ( E |  D) .... ) 

= r ( p |  (d o + Fo) + (1 - p)@ (d a + ra) :  E o | Do~a~E o | Oeven ) 

= r(p | (do + Fo)(d a + Fa)-  1 + (1 - p) | 1: E o | D . . . .  ~ Eo | Deven) 

(since v(da + Fa: D o a a ~ D  .... ) = r(D~) = 0 e  KI(B)) 

= [ira(p)] | ~((d o + Fo)(d a + F 9 - 1 :  D .... ~ Deve,) 

= J im(p)]  | r(d D + FD: Ooda~O .... ) 

= Jim(p)]  | r (D)e  KI(A | B). 

Assume inductively that r ( F ) =  [ i m ( p : E ~ E ) ] | 1 7 4  ) if E is of 

dimension < n, and that the dimension of E is n. Let E '  be the (n - 1)-skelton of E, 
so that  there is defined a short  exact sequence of finite idempotent  chain complexes 
over A 

o~(E',p') ~,(E,p) ; ,(s"E,,p~ 

Applying - | D there is obtained a short exact sequence of finite chain complexes 
over A | B 

O ~ ( E ' , p ' ) |  i@1 , (E ,p) |  j |  ,(SnE,,p,) | D ---, O. 

By the torsion sum formula of Proposi t ion  2.3 of Par t  I and the inductive hypothesis 

r((E,p) | D) = "c((E',p') | D) + "r((S"E,,,p,,) | D) 

(the sign term vanishes since E is even) 

= [im(p')3 | ~(D) + ( - ) " [ i m ( p , ) ]  @ ~(D) 

= Jim(p)] | r(D) ~ KI(A | B). 

[ ]  
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The algebraic mapping cone of a chain equivalence g: D ---> D' of round finite chain 
complexes over B is a contractible finite chain complex C(g) over B, so that 

"c( (E,p) | C(g)) = Jim(p)] N "r(C(g)) ~ KI(A N B) 

by the Lemma. The round finite complexes (E,p) |  D, (E,p)N D' over A | B are 
constructed using any contractible chain complexes DA,D'~ over B with the chain 

modules of D,D' respectively, and such that 

Z(DA) = z(D~) = 0 ~ KI(B ). 

Now C(g) has the chain modules of D' �9 SD, but 

z(D' A G SD~) = fl(D', SD)z(-  1: B -~ B) ~ KI(B) 

so that C(g) A cannot in general be chosen to be D' A G SD A. We shall construct 

(E,p) @ C(g) using the acyclic finite complex 

C(g)~ = D' A, @ D A 

with D'~, defined as follows. Choose an automorphism c~ e HomB(D' n, D'n) of a chain 

module D'n of D' such that 

z(cQ = fi(D',SD)z(- l: B ~ B)e  KI(B ). 

Define D~, by 

d A, = d~cx-l: D;~D'~_ t 

t ~d~ 

t r C n ,  n + l  
if r = n 

r = n + l ,  

so that there is defined an isomorphism of contractible finite chain complexes over B 

! t 

h: D A -~D A, 

with 

i,{:+n:n 
The torsion of h is given by 

z(h) = z(D~,) = ( - )%(a)  = fl(D', S D b ( -  1" B --* B)~ K~(B) 

and 

z(C(g)~) =z(D'A,)+ z(SDA) + fl(D', SD)z ( -  1: B ~ B) 

= 0 e K I ( B ) .  

The isomorphism of contractible finite chain complexes over A | B 

k: (E, p) | C(g) -* C(1 | g: (E, p) | D ~ (E, p) | D'); 

x @ (y', y) ~ p(x) | (y' ,y) + (1 - p)(x) | (h(y'),y) 
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has torsion 

~(k) = z(C(1 0 g)) - ~((E,p) | c (g) )  

= Z~Zo(-)rz(k~: (E, p)| C(g))~ ~ C(1 | g)r) 

(by Proposition 1.2(iii)) 

= Z~_. (-)~z(k r E~_., | D',, ~ E~_. @ D'.," 

x | y' ~ p(x) | y' + (1 - p)(x) | h(f)) 
o O  r " ! = Z~=, ( - )  [lm(1 - p: E~ , -~ E~ ,)] | z(ct: D, -> D'~) 

= [im(p)] | fl(D', SD)z(-  1: B ~ B)~ KI(A @ B). 

Thus 

z(1 |  C | 1 7 4  

145 

z(1 | g: (E ,p) |  D ~ ( E , p ) |  D') 

~(C(I | g)) 

z((E, p) | C(g)) + [im(p)] | (fl(D', SD)z( - 1: B ~ B)) 

Jim(p)] | (z(C(g)) + fl(D', S D ) z ( -  1: B ~ B)) 

[C] | z(g)e K~(A| B). IN 

In the special case when f "  C ~ C' = C,g: D ~ D '  = D the product formula of 
Proposition 3.2(ii) agrees with the product formula obtained by Gersten [8] (cf. 
Proposition 5.2 below). 

4. Torsion for CW Complexes 

Let 3~ be a regular cover of a CW complex X with group of covering translations ~z. 
The cellular chain complex of )( is the free chain complex over Z[rr] 

C ( X ) : ' "  ~ C r + l ( X ) ~ C r ( X  ) d )Cr_l(~)---~... ---+ C o ( ~  ) 

defined in the usual manner, with 

Or(X) = Hr(X(r),s (r-l)) (r ~ O) 

a free zr~zJ-module with one generator for each r-cell of X. 

We shall be mainly concerned with connected CW complexes X, with )( the 
universal cover and z =Th(X ) the fundamental group. A geometric base for X 

is a base for the free ~[7~]-module Z ~r:oCr()() such that each base element 
is the Hurewicz image ~,[-erJeCr()() of a fundamental class [e r] = 

+_ leHr(e~,Oe ~) = ~ under a lift ~: (e~,~e ~) -~ ()~(n)~u-1)) of a characteristic map 
r (er0e .) _~ (Xu),X(r-1)). Geometric base elements are unique up to mulitplication 
by +_g(g ~ z). A geometric base for a finite CW complex X determines a finite chain 
complex C()~) over Z[u]. 

A map of (connected) CW complexes f" X -+ Y induces a morphism of fundamen- 
tal groups 

f ,  = CZ: 7r I ( X )  = TC --> TCl(Y ) = fl 
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which is unique up to composition with inner automorphisms if base points are 
ignored. The universal cover Y of Y pulls back to a cover f *  ~z of X such that f lifts 
to a p-equivariant map f :  f * ~" --+ )( inducing a chain map over 7/[p ] 

71": C ( f * Y )  = c~,C(2) ~ C(Y). 

The map f :  X ~ Y is a homotopy equivalence if and only if ~: 7: --, p is an isomor- 
phism and J': ~ ~C(2) --, C(Y)is a chain equivalence. 

Afinite domination (Y, f ,  9, h) of a CW complex X consists of a finite CW complex 
Y, maps 

f " X --+ Y, g : Y---, X 

and a homotopy 

h:gf~- I : X  ~ X. 

A CW complex X is finitely dominated if it admits a finite domination. 
Let X be a connected CW complex with universal cover J~ and fundamental 

group nl (X) = 7:. A finite domination (Y,f, g, h) of X and a choice of geometric base 
for Y determine a finite domination of the chain complex C(Jf) over 7717:] 

(C(Y), f: C()() ~ C(~'), g: C(Y) ~ C(X), h! 0 f  -- I: C(X) -~ C(X)), 

where ~ '=  g*J~- is the pullback cover of Y. The projective class of a finitely 
dominated CW complex X is defined by 

[X ]  = [C(~Y)] e Ko(7717:]). 

This is a homotopy invariant which can be expressed as 

[X] = (z(X), [X])  m lo(7/[7:]) = Ko(7/) G Ko(77 In]), 

with z(X) = x(C(X))~ Ko(7/) = 77 the Euler characteristic of X and [X] ~/(o(7/[7:] 

the reduced projective class. 

PROP OS I TI ON 4.1 (Wall [21]). (i) A CW complex X is finitely dominated if and 
only if 7:1(X) = n is finitely presented and C(X) is finitely dominated. 

(ii) A finitely dominated CW complex X is homotopy equivalent to a finite CW 
complex if and only i f [ X ]  = 0s/(o(7717:]), i.e., if and only if C(X) is chain equivalent 
to a finite complex. The reduced projective class [XJm/(o(77[n]) is the finiteness 
obstruction of X. [] 

The Whitehead group of a group n is defined as usual by 

Wh(u) = K 1 (7/[7:])/{ +_ n} 

If X is a connected finite CW complex with 7:1(X) = 7: and C,C' are the finite chain 
complexes over 7/[7:] defined by the cellular chain complex C(X) of the universal 
cover 2 and two different choices of geometric base then 

z(l: C ~ C ' )e  {_+7:} ___ 11(77 [7:]), 

and so has image 0 e Wh(7:). 
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The (Whitehead) torsion of a homotopy equivalence f :  X ~ Y of finite CW 
complexes is defined as usual by 

r ( f )  = r(.f: C(X) + C(~')) e Wh(rr) 

with f :  )f --* ~" any lift o f f  to a r~-equivariant map of the universal covers, identifying 
= ~I(X) with ~Zl(Y) via the isomorphism f , : ~ l ( X ) - ,  nl(Y), with any geometric 

bases for C(J() and C(Y). The element ~(f)  E Wh(n) is independent of the choices 
made in its definition. 

A finite structure on a CW complex X is an equivalence class of pairs 

(finite CW complex F, homotopy equivalence f :  F --* X) 

under the equivalence relation 

( F , J ) ~ ( F ' , f ' )  , i f r ( f ' - ~ f : F ~ F  ' )=  0~Wh(7c) (r~=rcl(X)). 

Thefinite structure set ~ ( X )  of a CW complex X is the set (possibly empty) of finite 
structures on X. 

PROPOSITION 4.2. (i) ,~(X) is nonempty if and only if X is finitely dominated and 
[x3 = 0 E  R o ( ~ [ ~ ] ) .  

(ii) l f  ~ ( X )  is nonempty there is defined a transitive Wh(~)-action Wh(Jz) • i f (X)-*  
~ - ( x ) ;  

(z(g: G - ,  F) ,(F, f ))  --, (G,fg: G -~ X). 

A choice of base point (Fo,fo) determines an abelian group structure of J~(X) with an 
isomorphism 

~(X)  --+Wh(Tz); (F, f )  ~ r ( f  - ' Jo: Fo ~ F). [] 

A (Whitehead)finite structure on a 2[lr]-module chain complex C is an equival- 
ence class of pairs 

(finite Z{n}-module chain complex F, chain equivalence qS:F~ C) 

under the equivalence relation 

(F, q~) ~ (F', ~b') if ~(q~,- i q~: F --, F') = 0 ~ Wh(n). 

The (Whitehead)finite structure set ff'wh(c) of a 2[~r]-module chain complex C is 
the set (possibly empty) of Whitehead finite structures on C. The evident analogue of 
Proposition 1.6 holds with Wh0r) and ~-v~h(C) in place of KI(A ) and if(C). 

PROPOSITION 4.3. The finite structure set ~ ( X )  of a C W  complex X is in natural 
bijective correspondence with the finite structure set ~"Wh (C(X)) of the cellular Z[n]_ 
module chain complex C(Y2) of the universal cover X,  with ~ = ~I(X). I f  the sets are 
nonempty there is defined a natural isomorphism of affine Wh(n)-sets 

if(X) ~ ~"Wh(C(~,Y)); (F, f :  F --. X) --~ (C(F),)~: C(F) ~ C(X)). [] 

A finite CW complex X is round if 

z ( x )  = o e 
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and there is given a c, hoice of geometric base for C(X), so that C(Jf) is a round finite 
Z [n]-module chain complex. As usual, 2 is the universal cover of X and n = rc 1 (X) 
is the fundamental group. 

The torsion of a homotopy equivalence f :  X ~ Y of round finite CW complexes 
(meaning a homotopy equivalence of the underlying finite CW complexes) is defined 
by 

"c(f) = ~ C(J~) ~ C(f'))~ KI(Z[n]) 

using any lift of f to a n-equivariant map .f: )f ~ ~" of the universal covers, so that 
J': C()~) ~ C(~') is a chain equivalence of round finite ?7 [n]-module chain complexes 
and torsion is defined as in Section 1, using the isomorphism f , ' n ~ ( X )  = n ~ nl(Y ) 
as an identification. Any other lift of f is given by 

~g:2 o ,X" y ,~ 

for some g e n, and 

-~(~g: c(J?) ~ c ( f ) )  = ~(g: c(2) --> c(:i)) + ,~(y: c(2) --, c(%) 

= .c(gz(X): 7/[n] ~ 7/[n]) + z ( f )  

= ~(f)~ KI(7] In]). 

Thus the torsion ~ ( f ) e  KI(;~ [hi) is independent of the choice of lift J': 3~ --* ~'. 
By the logarithmic property of torsion (Proposition 1.4(i)) the torsion of the 

composite gf: X --* Z of homotopy equivalences f :  X ~ Y, g: Y --* Z of round finite 

CW complexes is given by 

z(gf) = "c(f) + r(g).e K1 (7/In]), 

using the isomorphisms f , :  rc 1 (X) = n ~ nl(Y),g,: nl(Y ) ~ nl(Z ) as identifications. 
If X;X '  are round finite CW complexes with the same underlying CW complex 

the identity map has torsion 

r  ~ X ' ) e  {+n} c K~(7][n]), 

measuring the difference between the two geometric bases. Thus, the image of 
z(fl" X--+ Y)e K1 (7][n]) in Wh(n) is just the usual Whitehead torsion r ( f ) e  Wh(n). 

A round finite structure on a CW complex X is an equivalence class of pairs 

(round finite CW complex F, homotopy equivalence f :  F --* X) 

under the equivalence relation 

( F , f ) . . . ( F ' , f ' )  i f z ( f ' - l f : F ~ F  ' ) = O e K , ( 7 / [ n ] )  (n=nl (X)) .  

The round finite structure set ~-r(X) of a CW complex X is the set (possibly empty) 
of round finite structures on X. 

PROPOSITION 4.4. (i) f i r (X)  is nonempty if and only if X is finitely dominated and 

[X] = O~ Ko(7]En]). 
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(ii) I f  g r ( X )  is nonempty there is defined a transitive Kl(Y_[~z])-action 

K1(7][~]) x f i r ( X ) ~  ~,~r(X); 

(z(g: O -~ F), (F,f)) --, (G,fg: O ~ X). 

A choice of base point (Fo,Jo)r  determines an Abelian group structure on 
~ r ( X )  with an isomorphism 

f f ' ( X )  ~ Kl(~-[Tt']); (F,f)  ~ r ( f - i f 0 :  F o ~ F). 

(iii) ~-r(X) is in natural bijective correspondence with the round finite structure set 
fir(C()()) of the cellular 2_[n]-moduIe chain complex C(f~). I f  the sets are nonempty 
there is defined a natural isomorphism of affine Kl(7][7~])-sets 

~-r(X) ~ ~-r (C()()); (F , f :  F ~ X) -* (COb), ~7: C(F) ~ C(X)). 

The product X x Y of connected CW complexes X, Y is a connected CW complex 
with fundamental group 

nl (X x Y) = Ul(X) x ul(Y), 

so that 

z [ n l ( x  x Y)] = z [ = l ( x ) ]  | z [ = , f f ) ] .  

The universal cover of X x Y is the product J( x f of the universal covers 3~, ~" of 
X,Y,  with cellular chain complex over 2~[~zx(X x Y)] 

c(2 x % = c(2) | c(?). 

The product formulae obtained for chain complexes in Section 3 above can thus be 
translated directly into product formulae for CW complexes. 

P R O P O S I T I O N  4.5. (i)(Gersten [7], Siebenmann [18]) The product of finitely 
dominated CW complexes X, Y is a finitely dominated CW complex X x Y with pro- 
jective class 

IX x Y] = [X] | [Y]eKo(7][nl(X x Y)]). 

(ii) (Kwun and Szczarba[10]) The Whitehead torsion of the product 
f x g:X x Y - ,  X ' x  Y' of homotopy equivalences of finite CW complexes 

f :  X ~ X', g: Y ~ Y' is given by 

r ( f  x g) = z(f)z(Y) + z(X)r(g) e Wh(rCl (X  x Y)). 

Proof (i) Immediate from Proposition 4.1(i). 
(ii) Immediate from Proposition 4.1(iv). [] 

In particular, the product X x Y of a finitely dominated CW complex X and a 
round finite CW complex Y has projective class 

[ X  x Y]  = [ X ]  | [Y ]  = [ X ]  |  = [ X ]  |  = 0m Ko(77[=~(X x Y)]),  
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so that X z Y is homotopy equivalent to a round finite CW complex. More 
precisely: 

PROP OS I TI ON 4.6. (i) The product X x Y of a finitely dominated CW complex X 
and a round finite CW complex Y has a canonical product round finite structure. 

(ii) The product f • 9: X • Y ~ X'  • Y' of a homotopy equivalence f :  X ~ X'  of 
finitely dominated CW complexes and a homotopy equivalence g: Y ~ Y' of round finite 
CW complexes is a homotopy equivalence of CW complexes with canonical round 

finite structures. The torsion of f x g with respect to the canonical round finite 
structures is the product 

~(f x g) - [X2 | z(g)e Ki(2[E~l(X x Y)3) 

of the projective class IX] = EX'] e K0(/7[rci(X)]) and the torsion 
z(g) e Ki (~  [nl(Y)] ). 

Proof. Immediate from Propositions 3.2, 4.4. [] 

The case Y = S 1 of Proposition 4.6 is particularly interesting, and will be dealt 

with separately in Section 5 below. 
In the special case when f :  X ~ X' is a homotopy equivalence of finite CW 

complexes the product formula of Proposition 4.6(ii) agrees with the product 
formula ~ ( f  x g) = z(X)z(g)e Wh(rh (X x Y)) given by Proposition 4.5(ii). 

In the special case when f :  X ~ X = X', g: Y -* Y = Y' are self-homotopy equiva- 

lences such that f ,  --- 1: 7zi(X ) --* tel(X), g ,  = 1: Ztl(Y)~ rci(Y) the product formula 
of Proposition 4.6(ii) agrees with the product formula for the torsion of self- 
homotopy equivalences obtained by Gersten[8] ,  which we shall recall in 

Proposition 5.2 below. 
Given a map ~b: X ~ Y of finitely dominated CW complexes, let c~ denote the 

induced morphism of fundamental groups 

= r  lrl(X) ~ ni(Y ), 

and lct A = 71[~1(y)], so that there is induced a chain map of finitely dominated 

chain complexes over A 

~: ~ c(~) -~ c ( h  

with )~, ~" the universal covers of X, Y. If f :  A ~ B is a ring morphism such that 
r  ~ Y  is a B-coefficient homology equivalence, then by the construction of 
Section 2 there is defined an invariant 

(X, Y, qS) = (a~ C()(), C(Y),f, ~) e K 1 ( f )  

with image 

a(X,Y,r = [Y] - a,[X] e Ko(A ). 

If ~b:X ~ X = Y is such that a = l : n l ( X  ) ~ n i ( X  ) = ~zi(Y) there is defined an 
element z ( f !~  :f! C()() ~ f !  C(.~))e KI(B ) (see Section 5 below for details) with image 

jz(f,~)) = (X ,X , r  K i ( f ) .  
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EXAMPLE. Let f :  ~ [z, z-  ~ ] ~ P -  1 7/[z, z -  1 ] be the localization map inverting the 
multiplicative subset P = {p(z)e 77[z,z -13 ]p(1)= _+1 e Z} of Z [z , z - l J .  This has 

the property that a finite chain complex C over 7/[z,z-~] is such t h a t f C  = p -1  C 
is contractible if and only if 77 | ~Ez, _11 C is contractible (see Proposition 7.9.2 of 
Ranicki[14~ for a proof). For any locally fiat n-knot k : S ' c  S "+2 the knot 
complement 

X = closure of (S ~+2 - regular neighbourhood of k(S')) 

is such that the generator I ~ H I ( X ) =  [ X , S  ~] = ;7 is represented by a 77- 
coefficient homology equivalence 4): X --, S ~. The element 

(X, S ~, q5 )~ K~ ( f )  = coker (f~: K~(Y_[z, z-~]) ~ Kt(P-1  Z [z ,z-  ~])) 

is the Reidemeister torsion of the knot k. [] 

5. The Torsion of a Self Equivalence 

We shall now compare the notion of torsion z ( f ) ~  KI(A ) defined in Section 1 for a 

chain equivalence f :  C ~ D of round finite chain complexes over A with the torsion 
z ( f ) ~  KI(A ) defined by Gersten [8] for a self-chain equivalence f :  C ~ C  of a 
finitely dominated chain complex C over A. This was applied in [8] to define the 

absolute torsion z ( f )  E K 1( 27 [Ul(X)]) of a self-homotopy equivalence f :  X -~ X of a 
finitely dominated CW complex X such that f ,  = 1: ua(X) ~ zh(X ). In Section 6 we 
shall need to deal with self-homotopy equivalences f :  X ~ X (notably - 1: S 1 ~ S 1) 
such that f ,  ~ 1, so we shall consider the general case here. 

In dealing with self-chain equivalences it is convenient to modify the sign 
conventions for the algebraic mapping cone. The modified algebraic mapping cone 
• f )  of an A-module chain map f :  C --, D is the A-module chain complex defined by 

( - d c 0 

f dD): dr 
\ 

C ( f ) , = C ~ - I O D ~ C ( f ) ~ _ l = C , . _ 2 Q D ~ _  1 (r~Z).  

P R O P O S I T I O N  5.1. (i) The modified algebraic mapping cone C(f)  of a chain 
equivalence f :  C-+ D of finite chain complexes over A is a contractible finite chain 
complex over A such that 

z(C(f)) - z(C(f)) 

= (Zodd (C) + 2r rankA(Cr- 1)rankA (Dr)), ( - 1: A --* A) ~ KI(A ). 

(ii) For any chain equivalences f :  C ~ D, g: D -~ E offinite chain complexes over A 
the composite chain equivalence gf : C ~ E is such that 

"c( C(gf ) ) 

= z(C(f)) + "c(C(g)) + fi(SC �9 SD, D �9 E)z ( -  1: A ~ A) ~ KI(A ). 

(iii) For any chain equivalences f :  C ~ D, f '  : C' -~ D' of finite chain complexes over 
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A the sum chain equivalence f �9 f ' :  C G C' --+ D | D' is such that 

z ( d ( f  @ f ' ) )  

= z(d( f )  + z(d( f ' ) )  + (fi(D | SC, D' @ SC') + 

+ E~ rank A (C" _ ~ ) rank A Dr)z ( - 1: A ~ A ) e K 1 (A). 

Proof (i) Apply Proposition 2.2 of Part  I to the isomorphism of contractible 
finite chain complexes 

g: C(f)  --+ C(f)  

defined by 

g =  : C ( f ) ~ = D  r O C  r _ I - - + C ( f ) , = C ~ _ ~ O D  r (r>~0). 

(ii) and (iii) Translate the formulae of Proposition 1.2 (i) and (ii) using (i) above. 
[] 

It follows from the formulae of Proposition 5.1 that for any finite chain complex 

C over A 

~((~(1 : C --~ C)) = 0 ~ KI(A), 

and that for any chain equivalence f :  C ~ D of round finite chain complexes over A 

z( f )  = "c(C(f)) + fl(SC, CG D ) , ( -  1: A -o A) ~ KI(A ). 

In particular, for a self-chain equivalence f :  C ~ D = C of a round finite chain 

complex C over A the sign term vanishes and 

r ( f )  = r (d ( f ) )e  KI(A ). 

Following Gersten [81 define the torsion of a self-chain equivalence f :  C ~ C of a 

finitely dominated chain complex C over A by 

~(f) = ~(C(e)) e Kj(A) 

with e the composite self-chain equivalence of a finite chain complex D over A given 

by 

i C' f-G1 C' i-* e 'D  ~ C O  - -  ,CO ,D 

for any finite chain complex D such that there exists a chain equivalence 
i: D--+ C @ C' with C' a finitely dominated chain complex, and any such i. (For 

example, if (1)', f ' ,  g', h') is a finite domination of C, then 1) = 1)' is such a finite 
chain complex, with C' = C(f ' :  C -+ D) a finitely dominated chain complex and 

i =  " D ~ C G C '  
e ~ 
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a chain equivalence, where e': D ---, C' is the inclusion.) If C is a finite chain complex 

it is possible to choose C' = 0, i = 1: D = C ~ C, so that e = f : C  ~ C and 

z(f)  = ~(C(f)) ~ KI(A ). 

Note that z ( f ) ~  Ks(A ) is independent of the base in C. Also, if C is round finite this 
is the torsion , ( f ) ~  Kt(A ) previously defined in Section 1, by the argument above. 
The torsion of an automorphism f :  C-~ C of a bounded f.g. projective chain 
complex C over A is given by 

"c(f) = Z2= o ( - ) r z ( f :  Cr ~ Cr) E Ks(A ). 

Still following [8J define the torsion of a self-homotopy equivalence f :  X -~ X of a 
finitely dominated CW complex X inducing f ,  = 1: Tq(X)~ us(X ) by 

"c(f) = z ( f :  C(X) ~ C(X)) E Ks(Y [~1 (X)]), 

with 57: C(X) ~ C()~) the induced self-chain equivalence of the finitely dominated 
cellular chain complex C()f) over 7][us(X)] of the universal cover _~. 

PROP OS ITI ON 5.2 (Gersten [8]). (i) The torsion of self chain equivalences of 
finitely dominated chain complexes over A is logarithmic and additive, with 

z(gf : C--* C) = ~(f: C ~ C) + z(g: C-~ C)~ Ks(A), 

* ( f O f ' :  C G C'--* C �9 C') = , ( f : C  ~ C) + z ( f ' :  C'--* C ' )~Ks(A ) . 
(iJ) The product f | g: C | D --+ C | D of self-chain equivalences f :  C --* C, 

g: D --* O of finitely dominated chain complexes C, D over A, B (respectively) is a self- 
chain equivalence of a finitely dominated chain complex C | D over A |  B with torsion 

z ( f  | g) = [C] | ~(g) + r ( f )  | [D] 6 KI(A | B). 

(iii) The product f x g: X x Y --* X x Y of self-homotopy equivalences f :  X ~ X, 
9 : Y ~  Y of finitely dominated CW complexes X, Y such that f ,  = 1: ~ s ( X ) ~  nl(X), 

g ,  = 1: ~I(Y) ~ ~s(Y) is a self homotopy equivalence of a finitely dominated CW 
complex X x Y such that 

( f  x g),  = f ,  x g ,  = 1: us(X x Y) = us(X ) x us (Y )~rq (X)  x rq(Y), 

with torsion 

z ( f  | g) = IX] | z(g) + r ( f )  | [Y] e Ks(Z[~s(X x Y)]). [] 

A self-homotopy equivalence f :  X ~ X of a finitely dominated CW complex X 
induces an automorphism of the fundamental group 

f ,  = ~:  ~ s ( x )  = ~ - ~  

and, hence, a chain equivalence of finitely dominated chain complexes over 77[x] 

57: ~,c(2) --, c(2). 

If IX] = 0~ Ko(Tl[n]) and there is given a round finite structure (F, qS)e ~"(C(2))  



154 ANDREW RANICKI 

( = f f ' ( X ) ,  by definition) there is defined a torsion 

z(v, +)(f) 

b-~ _~F)E K1(7] [g]) ' 

However, if ~ # 1 this will in general depend on the choice of round finite structure 

(F, 4): 
P R O P O S I T I O N  5.3. The torsions associated to two different round finite structures 
(f, dp), (V', d~')~ .~'(X) differ by 

Z(e',e'l (f)  - r(e,~/(f) 

= (1 - ~,)r(qS'- i~b: F ~ F')  ~ Kl(~En]). 

Proof Consider the commutative diagram of chain complexes over Y[n] and 

chain equivalences 

c~,F 

J ~!q~' 

~!F' 

, F  

c ( 2 ) ~ ' -  ' 4 
- [ 

~'-%~' ~-~ 

and apply the logarithmic property of torsion to the chain equivalences of round 

finite chain complexes on the outside. [] 

Given a ring A and an automorphism c~: A--~ A denote the relative K~-group 
K~(I: A ~ A ,  a: A ~ A) of Section 2 by K~(A,c~), so that there is defined an exact 

sequence 

Ks(A) 1-c~! ~KI(A) j ,KI(A, o O ~ K o ( A )  1-o~! ,Ko(A)" 

KI(A , c~) is isomorphic to the relative Ki-grou p defined by Siebenmann [191. 
Given a finitely dominated CW complex X and a self-homotopy equivalence 

f :  X- - , X ,  let ~: A ~ A  be the automorphism of the group ring A = 7/I-hi(X)] 
induced by f ,  : ~zi(X) ~ ~z~(X). Applying the construction of Section 2 to the induced 
chain equivalence of finitely dominated chain complexes over A 
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there is defined an element 

( X , f )  = (C(X), f)  ~ K~(A, o:) 

such tha t  

a ( x , f )  = [ x ]  e Ko(A ). 

If I X ]  = Oe Ko(A ) a choice of round  finite s tructure (F, q~)m o ~ ( X ) =  ~'~(C(J()) 
determines an element r(F, r ( f )  m K I (A)  such that  

Jr ( f )  = ( X , f ) e  Ki (A , o:). 

Propos i t ion  5.3 describes the effect on "qF, 4) ( f )E  K I(A) of a different choice of round  
finite structure, in precise accordance with the identity 

ira(1 - ~ '  Ka(A) --, KI(A)) = ker( j :  K~(A) --, K~(A, cO) 

given by the above  exact sequence. 

For  c~ = 1: A --* A there is defined a na tura l  i somorph ism 

KI(A, 1) --+ Kl (A ) @ Ko(A); (P, Q, [4)1: P �9 Q ~ P �9 Q) ~ (z([(b]), [P]  - [Q]) 

If f :  X --, X is a self h o m o t o p y  equivalence of a finitely domina ted  C W  complex X 

such that  f .  = 1' rfl(X) --, rcl(X ) and A = 7/[rq(X)] the element ( X , f ) e  KI(A , 1) has 

image (z ( f ) ,  IX])  e KI(A ) �9 Ko(A ) under  this i somorphism,  with r ( f )  e KI(A ) the 
torsion defined by Gers ten  [81. 

The  circle S 1 =  [0,1]/(0 = 1 ) - - e ~  1 is a finite C W  complex  such that  

z(S 1 ) = 0 s 7/, with fundamenta l  group ~1 (S I) = 7 /and  universal  cover  ~1 = R. Let z 
be the genera tor  

z = (1: S 1 ~ S ~) e ~1(S~), 

so that  rq(S 1) = {z" [ n e  7]} and there is a na tura l  identification of 7/[rq(S1)] with 
the Lauren t  po lynomia l  extension ring of 7] 

7][7~I(SI)] = 7][z, z - 1 1  . 

Define the canonical round finite structure Z I = ( D ,  co )e~ - ' (S  l) by ~o=  1: 
D = C(~; ~ ) ---, C(S1), with 

D = C ( ~ l ) .  y [ z , z _ l l  i - z  ,7][z,z 11 . 

The geometr ic  base elements are oriented lifts yo  ~l c ~a of the cells e ~ e I c S ~ 
such tha t  yo c U.  

The  tensor  p roduc t  of a ring A and 7] [z, z - 1 ]  is the Laurent  po lynomia l  ring 
of A 

A @  7][z, z - I  ] = A [ z , z - 1 1  . 

The  tensor  p roduc t  of a chain complex C over  A and D = C(S l) is the modified 
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algebraic mapping cone chain complex over A [z, z -  ' ] 

C | D = C(I - z: C[z, z - i ]  ~ C[z, z-1]). 

For finite C this is an identity of round finite chain complexes. For finitely 
dominated C Proposition 3.2 gives the canonical product round finite structure 

C |  = ( F , q ~ ) � 9 1 7 4  

as defined by 

4 ) : F = ( E , p ) |  projection , im(p ) |  o |  * C |  

for any projection p = p2 : E ~ E of an even finite chain complex E over A with a 

chain equivalence 0: ira(p) ~, C, and with 

d r = (  - - d E |  0 ) 
p |  v +  ( 1 - p ) |  d e |  : 

Fr+ I = E r |  I |  I @ D  o ~ F ~ = E , _  I | 1 7 4  r @ D  o 

for any differential d~�9 Hom~[z,z-, ] (D1,Do) such that D A is a contractible finite 
chain complex over Y[z,z -1] with 

r(Da) = 0 �9 K1(7/[z, Z-l]).  

Making the obvious choice 

d~ = 1: D 1 = 7?[z, z -1] --, D O = 2[[z, z -1] 

note that 

p |  + (1 - p) |  

= (1 - z)p + (1 - p) 

= 1 - z p  

: E r |  1 ] ~ E r |  

and so 

with 

F =  C(1 - z p : E [ z , z  1]----~E[z,z-1]), 

For any connected CW complex 

fundamental group 

zq(X x S ~) = ~l(X) x 7/ 

= :F~ = E~_I[z,z -1] OE~[z,z -I]  ~ (C | 
Op 

= C r - i [ z ,  z - i ]  (9 Or[z, z - i ] .  

X the product CW complex X x S 1 has 
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and there is a natural  identification of rings 

z [Th(x  x s 1)] = z [ ~ ( x ) ]  [z, z -1 ] ,  

so that  the cellular chain complex of the universal cover X x S 1 = Jq x ~i can be 
expressed as 

c(~  x s ~) = c (2  x ~')  = c(2) | c(~ l) 
= C(1 - z: C(X) [z, z - 1 ]  --+ C(X) [z, z -1]). 

For  finitely dominated  X define the canonical round finite structure on X x S ~ by 

X x Z 1 = C(2)| co)e~r(X x S 1) = , ~ r ( c ( ' x  X s l ) ) ,  

In Section 6 below we shall identify the reduction o f X  x Z1 in ~" (X x S l) with the 

canonical  finite structure defined geometrically on X x S ~ by Mather  [121 and 
Ferry [6]. 

The se l f -homeomorphism of S 1 = [0, 11/(0 = I) 

-I'Si--+S1; s ~ l - s  ( O < s < l )  

is such that  

( - I : S I ~ S 1 ) = z  1 e ~l(S1), 

and induces the au tomorph i sm 

( - 1 ) .  = ~: ~Zl(Sl)-, rq (Sb  ; z " ~ z - "  

P R O P O S I T I O N  5.8. (i) The torsion of -1:  $ 1 ~  S 1 with respect to the canonical 
round finite structure ~ l e ~r(S i) is given by 

T~,(-  1) = "c(-z: ZEz, z - l l  --, Z[z, z - 1 ] ) e  Kl(ZEz, z-Z1). 

(ii) If  X is a finitely dominated CW complex the torsion of 
1 •  x S I ~ X  • S 1 with respect to the canonical round finite structure 
X x Z l e ~ - r ( X  x S l) is given by 

"Cx x z '(  1 x -- 1) -= I X  1 | "c(--z) ff Kl(2~[Tz1(X)1 [z, z - 11). 

Proof. (i) The induced chain equivalence (-~-'1): ~D--+ D is the isomorphism of 
round finite chain complexes over 2 [z, z -  11 

c~!d D = 1 - z -1 

1 

~'D1 i 7/[z,z 11 ,D 1 fdD= l_  - I ]  

c~!D ~ _ -  / 7 [Z , )_ l ]  --Z *Do = 7/[Z,Z_l].  
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A direct appl icat ion of Propos i t ion  2.7 (iii) of Pa r t  I gives 

~ z l ( -  1: S 1 ~ S  1) 

= z ( - z :  7/[z, z -1 ]  ~ 7/[z, z - l ] )  - r ( l :  ]g[z, z -1 ]  ~ 7/[z,z l ] )  

= v ( - z )  e KI(Y [z, z - i ] ) .  

(ii) Substi tuting the result of (i) in the produc t  formula  of Propos i t ion  4.6 (ii) 

�9 x• x - I : X x S  I ~ X x S  l) 

= [ X J @ z z l ( - l :  S 1 --~S 1) 

= [X]  | z ( - z )  e K I ( Z [ ~ I ( X ) ]  [z, z - i ] ) .  [ ]  

A noncanonica l  round  finite structure (D', co')e ~- ' (S 1) differs f rom the canonical  
s tructure Z 1 = (D, co) by 

(D, co) - (D', co') 

= ~(co'-lo~: D --+ D' )e  KI(Y-[z, z - l j )  

={z(+z":Z[z,z-~]-~ Z[z,z-~])ln ~ }  (=~| 

say (D, ~o) - (D', co') = -c( _+ z"). The  torsion of - 1: S 1 _~ S 1 with respect to (O', ~o') is 

given by Propos i t ions  5.3 and 5.4 to be 

v(mo;)(-1) = ~(D,o.)(--1) + (1 - c~,)~(co' i(o) 

= ~ ( - z )  + (1 - ~ ) ~ ( + z " )  

= r (_z2 ,+  1)e K1(7/[z, z -  1]). 

It  follows tha t  for any finitely domina ted  C W  complex  X 

VX| X - - I : X  x S 1 ~ X  x $1) - 

--'CX| X - - I : X  >< S1--+X • S 1) 

= [ X ]  Q (~(.',oJ)( - 1) - V(D,~o) (--  1)) 

= I-X] @ T(Z 2n) @ K1(77 [7c1(X)] [z, z -1 ] ) .  

6. The Mapping Torus in Algebra and Topology 

Actually, we shall start  with the topology.  
The  mapping torus of a map  f :  X ~ X of a space X to itself is the identification 

space 

T( f )  = X x [0, 1]/{(x, 0) = ( f ( x ) , l ) l x ~  X} .  

P R O P O S I T I O N  6.1. (i) A 
equivalence 

S(e): T ( f )  ~ T ( f ' ) .  

homotopy e: f ~- f '  : X --+ X induces a homotopy 
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(ii) For any maps f :  X ~ Y, g: Y ~ X the maps 

S(f, g): T (g f  : X ~ X) ~ T(fg: Y-*  Y); (x, s) ~ (f(x),  s) 

S(g,f): T(fg: Y--* Y) ~ T(gf  : X ~ X); (y, t) --, (g(y), t) 

are inverse homotopy equivalences. 

Proof. (i) Regard the mapping toms of f :  X ~ X as the adjunction space 

T ( f )  = (X x [0,�89 ug(X x [�89 1]), 

with the adjunction map defined by 

g : X  x {0,�89 ~ X  x [�89 1]; 

(x, 0) ~ (f(x), 1), (x, �89 ~ (x, �89 

A homotopy e : f  ~- f ' :  X ~ X determines a homotopy of adjunction maps 

h :g  ~_g ' :X  • {0 , �89  • E�89 

and, hence, a homotopy equivalence of the adjunction spaces 

since 
is no 

(ii) 

and a 

by 
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S(e) = 1 • hl: T( f )  

= ( X  x [0,�89 x [�89 

~, T( f ' )  = (X x [0, �89 wg,(X x [�89 1]), 

the pair (X x [0, �89 X x {0, �89 has the homotopy extension property. There 
direct formula for S(e), which is only determined up to homotopy. 
Given a map f :  X ~ X define a map 

U(f): T( f )  ~ T(f);  [x, t] ~ If(x), t] 

e: T ( f )  x I ~ T(f);  ([x,s],t) 

[ f ( x ) , s + t ]  if s + t - < < l  

[ x , s + t - 1 ]  if s + t > ~ l  

(s, t e I =  [0, 11). 

Now for any maps f :  X -* Y, g: Y ~ X the composites of 

S(/; g): T(g f ) -~  r ( fg ) ,  S(g,f): T( fg) - - ,  T(gf )  

are given by 

S(f,  g)S(g,f) = U(fg): T( fg)  - .  T( fg)  

S(g , f )S( f ,  g) = u(g f ) :  T (g f )  --, T(gf),  

homotopy 

e: U(f) ~- l :  T(f)---, T ( f )  



160 ANDREW RANICKI 

so that S(f,  g) and S(g,f)  are inverse homotopy  equivalences. [ ]  

We shall only be concerned with the mapping torus T ( f )  when X is a CW 

complex and f :  X ~ X is a cellular map, so that T( f )  is a C W  complex with two r -  
cells e r x {0}, e r x {�89 and two (r + 1)-cells e r x [0, �89 e r x [�89 1] for each r-cell e r 

of X. If X is a finite C W  complex, then T(f )  is a finite C W  complex such that 

z (T( f ) )  = 0 E Z, and so admits a round finite structure. We shall show that  for any 

(cellular) map  f :  X - ,  X of a finitely dominated CW complex X the mapping  torus 

T( f )  has a canonical  round  finite structure. 

P R O P O S I T I O N  6.2. (i) For a finit.e CW complex X a homotopy e: f ~- f ' :  X --* X 
induces a homotopy equivalence S(e): T ( f )  ~ T ( f ' )  of finite CW complexes which is 

simple, that is 

z(S(e)) = 0 E Wh(~r 1 (T(f)) .  

(ii) For finite CW complexes X, Y and maps f :  X ~ Y, g: Y ~  X the homotopy 
equivalence S(f,  g): T(gf)  ~ T(fg) of finite CW complexes is simple, that is 

z(S( f , g)) = 0 e Wh(~l ( T(g f ))). 

Proof. This may be deduced from the material on mapping  cylinders and 

deformations in Section 5 of Cohen [4]. [ ]  

Given a finitely domina ted  C W  complex X and a map ~: X- - ,  X define a finite 

structure (T(f~g),O)e~-(T(O) for any finite dominat ion  (g , f :  X -~ Y, 

g: Y ~ X, h: gf  ~_ l: X --. X) of X by 

(9 = S(~h)S(~g,f): 

r ( f~g:  Y ~ Y) ~ r(~gf: X ~ X) ~ r(~: X ~ X). 

P R O P O S I T I O N  6.3. The finite structure (T(f~g), (9) ~ ~-(T(~)) is independent of the 

choice of finite domination (Y, f , g, h) of X. 
Proof. The finite structures ( r ( f~g) ,  (9), r(f '~g') ,  (9') on r(~) determined by any 

two finite dominat ions  (Y,f,g,  h), (Y ' , f ' ,  g', h') of X are such that  up to homotopy  

(9' 1(9 = S( f ' ~hg ' )1S ( f ' ~g ,  fg')S(fh'~g): 

T(f~g) ~ T ( f g ' f ' ~ g ) ~  T(f'~gfg')--, T(f'~g'), 

a composite of simple h o m o t o p y  equivalences by Proposi t ion  6.2. It follows that  

z((9'-1(9) = 0~ Wh(nl(T(~))), and so 

(T(f~g), (9) = (T(f'~g'), (9') ~ ~ ( T ( 0 ) .  [ ]  

Call ( T ( f ~ g ) , ( 9 ) ~ ( T ( O )  the canonical finite structure on T(~). In the case 
= I : X  ~ X this is the finite structure on T(1) = X x S 1 defined by Mather  [12] 

and Ferry [6]. 
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E X A M P L E .  Let M be a compac t  n-manifold with a finitely domina ted  infinite 

cyclic cover  3A, and let ~: ~ t  ~ ~ be a generat ing covering translation. Then the 

project ion p: M ~ M induces a h o m o t o p y  equivalence of C W  complexes with finite 
s t ructure 

q : T ( ~ ) ~ M ;  ( x , s ) ~  p(x) 

such that  T(q)e W h ( n l ( M ) ) i s  the obstruct ion of Farrell  [5] and Siebenmann [19] to 
fibering M over S 1 (assuming n >/6). [ ]  

In order  to c o m p a r e  the geometrical ly defined canonical  finite structure on 

X x Si  with the algebraically defined canonical  round  finite s tructure of Section 5, 

we shall use the following algebraic analogue of the mapp ing  torus. 

Given a ring A and a morph i sm a: A - -  A define the a-twisted polynomial ring of 
A, A * ~[z, z -  1 ] to be the quot ient  ring of the free product  A �9 77 [z, z -  1 ] given by 

A*~[z,z -1] = A* Z[z , z -a] / {z  - '  az = a(a)la~ A}. 

There  is defined a morph i sm  of rings 

i :A--rA*~[z , z -1];  a ~ , a  

under  which a becomes conjugat ion by z, which is injective if and only if a is 
injective. If  a: A ~ A is an au tomorph i sm A �9 ~[z, z -  1 ] = As[z ' z -  1 ] is the usual a- 

twisted polynomia l  extension ring of A, which in the untwisted case a - 1: A ~ A is 
the Laurent  po lynomia l  extension ring A[z, z -  1]. 

Let then A be a ring, c~: A -0 A a ring morphism,  and for some chain complex C 

over  A let f :  a, C ~ C be a chain map.  The algebraic mapping torus o f f  is the chain 
complex  over  A �9 ~[z, z - 1 ] defined by 

T ( f )  = C(1 - zf: i~C ~ i~C), 

using the modified algebraic mapp ing  cone C of Section 5 

dT(f ) - =  ( - d ( 1  - zf) O d ) : T ( f ) r = i ' C r - l O i ' C r ~ T ( f ) ' - l ,  " " 

-= i!C~_ 2 G,,i,C~_ I. 

If C is finite T( f )  is round  finite. If e = 1 : A --+ A there are na tura l  identifications 

A,~[z , z  -1] = A [ z , z - ~ ] =  A |  ~_[z,z -1] 

and for any chain complex C over A 

T(I: c - ~  c) = c |  c(g~), 

which for finite C is an identity of round  finite chain complexes over  A[z, z l], 
using the canonical  s t ructure 2 1 e  ~r(C($1)).  
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By analogy with Propositions 6.1, 6.2 

PROPOSITION 6.4. (i) A chain homotopy e: f "~ f': ~,C ~ C induces an isomort~hism 
of the algebraic mapping tori 

S(e): T ( f ) ~  T( f ' ) .  

For finite C 

�9 (S(e)) = Oe KI(A *~[z,z- ']) 

(ii) Let ~: A ~ B, fi: B ~ A be morphisms of rings, and let f: ~C ~ D, g: fl!D ~ C be 
chain maps for some chain complexes C, D over A, B respectively. Then there are 

defined an isomorphism of rings 

k: A * ~ [ z , z  - I ]  --, B* ~[z ,z  -~] 

and a chain equivalence of chain complexes over B * ~B[z, z -1]  

S ( f  ,g): k, r(gfl, f : (fl~)~ C ~ C) 

T ( f  ~,g: (~fi)!D ~ D ). 

I f  C, D are finite 

~(S(f,  g)) = Oe KI(B �9 ~[z, z- 1]). 

Proof. (i) The isomorphism S(e): T ( f )  ~ T ( f ' )  is defined by 

S (e )= (  lze 01): 

r(f)~ = i~Cr-1 �9 i, Cr ~ r ( f ' ) r  = i, Cr- ~ �9 i~Cr. 

(ii) Let 

i : A ~ A , ~ [ z , z - 1 ] ,  j : B ~ B , ~ [ z , z  -1] 

be the canonical ring morphisms. The isomorphism of polynomial rings 

k: A , ~ [ z , z  -1] -~  B*~[z , z -1 ] ;  a ~ o t ( a ) , z ~  z 

has inverse 

k - l : B , ~ [ z , z  - 1 ] ~  A * ~ [ z , z - 1 ] ;  b ~ z f l ( b ) z - l , z ~ z ,  

and there is defined a commutative square of rings and morphisms 

i 
A )A*s -1] 

k 

i B ----~ B , ~a[z, z - l ] .  
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The chain maps  of  chain complexes  over B �9 J z ,  z -  1 ] 

S(f, g): k~T(gfl~f) --. T(fc~g) 

S'(g, f ) :  r(fo~ g) ~ lq T(gfl,f) 

defined by 

S ( f , g ) = ( f  Of):k~T(gfi~f)r 

= j, ot~Cr_ 1 @ j!o~!C~ - ,  T(fo~g)~ 

= j~Dr_ 1 @j~D~ 

S'(g, f)  ( z ; g  O )  = : T(fa, g), zc~ g 

=j~D~-I @j~D~ --, k~r(gfl, f)~ 

= j!a!Cr_ 1 @ j!~z!C~ 

are chain homotopy  inverses, with chain homotopies 

= j!~!Cr_ 1 @j~a!Cr ~jF~C~ @ j ~  C~+ 1, 

= j!D,_ 1 @j!D~ ~j!D~ @j!D,+ 1. 

Define a chain contraction of C(S(f, g)) 

F: 0 - 1: C(S(f, g)) ---. C(S(f, g)) 

by 
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(e' Oe) r = (-)rS'(g, f )  : c ( s ( f ,  g))r 

= r(fc~g)r G l~r(gfl~f)r_ 1 ~ r(fc~,g)~+l G k,r(gfl~f) r. 

Thus, if C, D are finite S(f, g): I~T(gfi!f) ~ T(fa!g)  is a chain equivalence of round 
finite chain complexes over B �9 ~p[z, z - 1 ] with torsion 

r  g)) = r g))) 

= r + r :  C(S(f, g))o~ ~ C(S(f, g)).oD 
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/ /  d' + s(f, 
= ~ , ~ , - S ' ( g , f )  d + e }: T(fc~g)~ �9 k~ T(gfl~ f )  . . . .  

T(fa, g) . . . .  | k, T(gfl, f)odd "~ 
/ 

1 

= z ( _  d 

zcq g 

0 

- d  f 

1 - zf~g 0 

0 1 - zgfl! f 

- z ~ g  - d  

d 1 0 1 0 f 

--zc~!g 0 t 0 I. d 

0 0 0 0 0 1 

0 1 

- zc~!g - d  

0) 
f 
d 

1 

) 
-d  f 

1 0 

0 1 

0 0 

: j!Dod d O j!D .... G j!c~!C od d G j!o~!C .... 

--+ j!Dod d @j,D .... (~J!~!Codd GJ!a!Ceven) 

= O~ Kl(B*~[z,z-1]).  [] 

Given a finitely dominated chain complex C over a ring A and a chain map ~: c~ C ---, C 
for some morphism c~: A ~ A define a round finite structure (T(fr~asg),dp)~ ~'r(T(~)) 

for any finite domination (D, f :  C ~ D, g: D --* C,h: g f  ~- 1: C --, C) of C by 

4) = S(~c~, h)S(~o~ g, f ) :  

T(f~o~!g:o:!D ~ D) --+ T(~o~!(gf): ~,C --+ C) 

-~ T(~: ~, C ~ C). 

The round finite structures (T(f~e!g), ~b), (T(f '~e!g'),  qb')e ~ ( T ( ~ ) )  determined by 
two finite dominations (D,f,  g, h), (D', f ' ,  g', h') of C are such that up to chain 

homotopy 

4 / -  10 = S( f'~cr (hg')) -1S(f '{o~g,  f g')S ( fh'~o~,g): 

T(f~e, g) ~ T ( fg '  f '  ~r162 g) ---' T(f'~c~, (afg')) 

- ,  T(f'r 
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a composite of chain equivalences with z = 0 s  K ~ ( A , ~ [ z ,  z - ~ ] )  by Proposition 6.4, 
and so by analogy with Proposition 6.3 

(T(f~c~g),  4)) - (T(f '~c~!g'),  ~)') 

= z(~b'-lqS) = Oe K l ( A , ~ [ z , z - ' ] ) .  

Thus the round finite structure 

( T ( f ~ ! g ) ,  dp ) = ( T(  f ' ~a~g'), dp ') ~ ffr(T(~)) 

is independent of the finite domination of C; we shall call this the canonical  round 

f in i te  s tructure  on T(0.  In particular, for ~ = 1: A ~ A, ~ = 1: c~C = C ~ C we have: 

P R O P O S I T I O N  6.5. T h e  canonical round f in i te  s tructure (r(fg) ,4~)e 

~ - ' ( r ( l :  C ~ C ) )  on T(1) = C |  C(S 1) determined by  any f in i t e  dominat ion 

(D, f ,  g, h) o f  C coincides with the canonical  product  round f in i te  s tructure 

( r ( fg ) ,  q~) = C | :C ~ e Y" (C  | C(~)) .  

Proof. Let C' = ira(p: E --+ E) be the image of a projection p = p2 of an even finite 
chain complex E over A such that there exists a chain equivalence 

O: C ' - ,  C. 

The canonical product round finite structure is defined by 

C | E ~ = ( r (p ) ,  ~) e ~ ( C  | C(S1)), 

with 

o) 
= : T(P)r = Er - 1 [z, z - 1 ] G E r  [z, z - 1 ] ~ (C | C(S 1))r 

Oq 

= C r _ ~ [ z , z  -1 ]  | C ~ [ z , z - 1 ] ,  

where q:E  ~ C';  x ~ p(x) is the projection. 

Let F: 0 -~ 1: C(0) ~ C(0) be a chain contraction of the modified algebraic map- 
ping cone, so that 

(: 0) 
F =  h : O(O), = C;_  ~ | C ,  ~ r I = C; | C,+ I 

with 0': C --* C'  a chain map, h, h' chain homotopies 

h : O ' O ~ - I : C ~ C ,  h ' : O 0 ' ~ - I : C ' ~ C ' ,  

and k such that 

hO - Oh' = dk - kd'  : C'~ - ,  C,+ 1. 
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f = q'O':C 
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Use F to define a finite domination (D, f ,  9, h) of C by 

q' = inclusion 
~C' mE = D 

q=projection .~C' 0 ~C 
g = O q : D = E  

h : g f  = 0'0 ~ 1: C ~ C .  

The canonical round finite structure 

(T ( fg ) ,  r  .~r(C | C(S')) 

is defined by 

0 g 

r ( f g ) .  = E~_ 1 [z, z -1 ] @ E,[z,  z -1 ] 

. - , (C @ C(S1))r ~--- Cr_ I[Z,Z -1 ] ~]~ Cr[Z,Z-I"]. 

The chain homotopy 

e = q'h'q: f g  = q'O'q ~- q'q = p: E ~ E 

determines an isomorphism of round finite chain complexes 

S(e): r ( f o )  ~ r ( p )  

with 

and 

S(e) = : T ( fg)r  = E ,_  t [z, z - 1 ] �9 E,  [z, z - 1 ] ~ T(p.)r 
ze 

= Er_ l [ z ,  z -1]  G E r [ z , z - 1 ] ,  

z(S(e)) = 0 e K I ( A [ z  , z -  1]). 

The diagram of chain equivalences 

s(~) 

c | c(~ ~) 

is chain homotopy commutative, with a chain homotopy 

j :  ~S(e) ~- r T ( f g )  ~ C | C(S 1) 

ANDREW RANICKI 
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defined by 

( 0  
J= zk 

Thus 

and 

2 ) :  T(fg),.=E, l [z , z -1]GE~[z ,z  -I] 

____~(C@C(~l))r _~ Cr_I[Z ,Z-1]  @Cr[z ,  Z 1]. 

( T U g ) ,  O) - (V(p) ,  O) = r = O e K~(A[z ,  z - ~ ] ) ,  
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and 

2[[-7~]ct[Z ,Z -1] = ~[7~]~[-Z,Z-11 

is the a-twisted polynomial extension of Z[n]. On the other hand, if a(n) = {1} _~ n 

then i(n) = {1} _~ n%Z and the morphisms j : n % Z  ~ ,  j::Z[n]%[z,z -1] 
2[ [z, z -  ~ ] are isomorphisms. 

P R O P O S I T I O N  6.6 (i) Let f : X ~ X be a cellular map to itself of a connected CW 
complex X with universal cover X, and let f, = cr (X) ~ gl(X). Then the mapping 

(T(fg), O) = (T(p), ~k)~ ~"(C | C(SI)). [] 

Given a group z and a morphism ~: ~ ~ ~z, define the group 

�9 ~ 2[ = zr* 2 [ / { z -  ~ g z  = ~ ( g )  [ g e ~ }, 

denoting the generator i c 2[ by z. There is then a natural identification of rings 

~[~,o2[j = 2[[~],jz, z -13 

and the canonical morphism of rings i : Z [ z ] - - , Z [ z r ] , , [ z , z - ~ ]  is induced by a 
canonical morphism of groups 

/: g --+ ~,~2[;  g~--,g. 

There is also defined a morphism of groups 

j : ~ * ~ Z  --* Z; g ~ l , z " ~ z "  

which is onto, and induces a morphism of rings 

j: z D ] , s  -~] --, z [ z , z - ' ]  

which is also onto. If a: r~ --,g is an automorphism u , ~ Z  = u x :Z is the a-twisted 
extension o fu  by Z, with an 

i j {1}~ .  ,~ •  -,~-,(1}, 
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torus T ( f )  is a connected CW complex with fundamental group 

~l(T(f)) = ~1(X),~7/, 

and the cellular chain complex over 7/[~l(T(f)) ] of the universal cover T( f )  is given by 

C(T(f))  = C(1 - zT:itC(~2) ~ i,C(X)) 

= the algebraic mapping torus T ( f )  of the 

induced chain map "f: cgC(X) ~ C(X) 

over 7/[rq (X)]. 

(ii) A homotopy of maps e: f -~ f': X ~ X induces a homotopy equivalence of mapping 
tom S(e): T ( f )  --, T( f ' )  and also a chain homotopy 6: f ~- f '  : cgC(X) ~ C(X), such that 

S(e) = S(Y): C(T(f))  = T ( f )  --~ C(T(f ' ) )  = T( f ' ) .  

(iii) Let f: X ~ Y, g: Y ~ X be maps, and let 

f ,  = ct" 77[hi(X)] --, 7/[~zl(Y)], 

g ,  = fl: 77 [rcl(Y)] ~ 7/[~l(X)], 

y: ~,c(2) ---, c(%, .4: # , c ( ~ )  ~ c(2). 
The homotopy equivalence S(f, g): T(g f ) ~  T(fg) induces the isomorphism of rings 

S(f ,  g) ,  = k: 7/[~1 (T(gf))] = 7/E~I(X)] *r z, z - ' ]  

77 Ire, (T(fg))] = /7 [~l (Y)] *~[z,  z -1  ] 

a ~ c~(a), z ~ z 

and the induced chain equivalence is such that 

S(f,g) = S(~ g): k~ C(T(gf)) = k~ T(O(flj)) 

c(r( fg))  = T~(e,O)). 

Proof (i) The expression for ~ l (T ( f ) )  is the version of the Van Kampen  theorem 
appropria te  to the mapping torus construction, and the expression for C(T(f))  is the 

corresponding version of the Mayer -Vie tor i s  presentation. 
(ii) & (iii) follow from (i) and Proposi t ions 6.1 and 6.4. []  

Define the canonical round finite structure on the mapping torus T ( 0  of a self map 
~: X --, X of a finitely dominated  CW complex X to be the canonical  round  finite 
structure on the chain complex C(T(~)) = T(~: gC()~) ~ C(J?)) over 
Y [ n l ( r ( o ) ] = 7 / [ g l ( X ) ] % [ z , z - i ] ,  with c ~ = ~ , : r h ( X ) ~ T h ( X ) ,  using the cor- 

respondence between the algebraic and the geometric mapping torus of Pro-  
position 6.6. A finite dominat ion (Y,f,g,h) of X determines a (round) finite 
CW complex T(f~9" Y ~ Y) and a homotopy  equivalence 

(~ = S(~h)S(~g,f): T(f~g)--,  T(O, 



T H E  A L G E B R A I C  T H E O R Y  O F  T O R S I O N .  II: P R O D U C T S  169 

such that the induced finite domination (Z[~I(X) 1 (9~r~ tr17 C(Y), f 0, i) of C(X) 
determines the (round) finite chain complex C ( T ( f ~ ) ) =  r ( f ~  O) and the chain 
equivalence 

= S(fl'~)S(~O,7): T ( f ~ g ) ~  T((), 

so that (T~f$.O), r = ~'(T(~)) is the canonical round finite structure. We 
have proved: 

PROPOSITION 6.7 The geometric canonical finite structure (T(f~g), 4))e o~(T(~)) is 
the ,'eduction of the algebraic canonical round finite structure (T(f~O), (~)eo~(r(()). 

[] 

In particular, for ( =  I : X  ~ X Propositions 6.5 and 6.7 identify the geometric 
canonical finite structure on T(1) = X • S 1 of Mather [121 and Ferry [6] with the 
reduction of the canonical product round finite structure X x Z xe ~-~(X x S~). 
Thus if (F, q~)6 o~(X x S ~) is the canonical finite structure the Whitehead torsion of 
the compositio n homotopy equivalence of finite CW complexes 

q S - l ( l x - 1 ) ~ b : F  r X x S  1 1 •  , X •  1 q5 1 

is given by Proposition 5.8 (ii) to be the reduction of 

rx• x --1: X x S I ~ X  x S 1) 

= I X  1 @ 17(--z) �9 Kl(?'/[Tel(X)] [z, z -13)  , 

that is 

~(q5-1(1 • -1) r  = IX] | v ( - z ) � 9  Wh(=l(X) • Z) 

with [X] �9 Ro(PT[=l(X)]) the Wall finiteness obstruction. The geometrically defined 
injection of Ferry [6] 

B" K0(Y[~])>-, Wh0z x 2[); 

[ X ] ~ ( r  x -1)qS:F-~F)  (n l (X)==)  

is thus given algebraically by the variant 

B': Ko(>f[~])>--~ Wh(~ x 7/); 

[P] ~ [P] (9 z( - z) = z( - z: P [z, z - 1 ] __,, p [Z, Z - 11) 

of the original algebraic split injection of Bass, Heller and Swan [2] 

B: Ko(77[=])>--+ Wh(= x 77); 

[P] ~ [P] (9 ~(z) = v(z: P[z, z -  1] .._+ P[z, z - 11).  

It is B' rather than B which is geometrically significant. (See Ranicki [22]). 
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For example, the trivial Sl-bundle transfer maps 
[ , A n 

q~H. H (~2, go(~[~]))'-'/~"+1(~2; Wh(~ x ~)) 

on the Tate 7]2-cohomology groups of the duality involutions which appear in the 
appendix of Munkholm and Ranicki [13] are induced by B' not B. 
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