ANNALA oF MATHEMATICS
Vol. 53, No, 1, January, 1951
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One of the most urgent problems of maodern topology is to devise methods
for the computation of the homotopy groups of topological spaces. This paper
ig an attack on one phase of this general problem.

The homotopy groups resemble the homology groups in many respects.
However the homology groups are computable for any triangulable space,
while the homotopy group of such simple spaces as spheres have not yet been
computed. This difference is undoubtedly related to the fact that the homology
groups satisfy the so-called exeision ariom, while the homotopy groups do not.
The excision axiom may bhe stated as follows: Suppose that the topological
space X is the union of two closed subspaces A and B, X = A u B. Then under
fairly general circumstances the inclusion maps

it (A, AnB)— (X, B)
it (B, An B} = (X, A)

induce isomorphisms of the relative homology groups in all dimensions. Simple
examples show that this need not be true for the relative homotopy groups,
even when X is a finite connected simplieial complex, and 4, B, and A n B
are connected subcomplexes. The new homotopy groups defined in this paper
are a measure of the amount by which the excision axiom fails to hold for rela-
tive homotopy groups. The precise meaning of this statement will be clear later.

One special case for which it is particularly important to determine the extent
of the validity of the excision axiom for relative homotopy groups is the follow-

ing: Let K be a cell complex” and let K*,» = 0,1, 2, - - - , denote the n-gkeleton.
Denote the closed n-cells of K by of , a3 , -+ - , their boundaries by a1 , 67, -,
and set

8” = U,‘O’? 3

8“ = U{(‘r;‘ -

Assume that both &" and &" are connected sets; actually, this is not as great
a restriction as might appear at first sight. Then the inclusion map

it (8, &) — (K", K™™)

1 Presented to the American Mathematical Society April 30, 1949. Some of the results of
this paper were announced without proof in the Proceedings of the National Academy of
Seiences, Vol. 85 (1949). This paper was written while one of the authors (W.8.M.) was
supported by an O.N.R. Contract. The authors wish to acknowledge the inapiration and
encouragement which they have received from Professors 8. Eilenberg and N. E. 8teenrod.

2 For the definition and properties of a cell complex, see Eilenberg and Steenrod, (3],
or J. H. C. Whitehead, [20].
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162 A. L. BLAKERS AND W, 8. MASSEY

is an excision map. It is important to obtain information about the induced
homomotphisms

in 2 mo(8" &%) — m (K", K™,

for all values of the integers ¢ and n.

J. L. C. Whitehead? [18, 19(th.8), 221 has proved a number of theorems con-
cerning these homomorphisms. Freudenthal's “Einhingung” theorems (8] may
also be interpreted as theorems of this kind, in which K is the n-sphere obtained
by the non-singular adjunction of the upper hemisphere (an n-cell) to the lower
hemisphere (also an n-cell). In the present paper we prove two main theorems
which overlap considerably with the results of Whitehead and Freudenthal;
in a subsequent paper we shall extend these results. Qur methods of proof
differ considerably from those used by Freudenthal and Whitehead. These
latter are almost entirely geometrical and rely heavily on a good geometrical
intuition. We have attempted to avoid this difficulty by extensive use of the
algebraical techniques of the theory of ohstruetions to extensions and deforma-
tions of mappings.

This paper is subdivided into five parts. In the first we describe our notation
and review many well known ideas which are used later. Tn the second we give
several equivalent definitions for the homotopy groups of a triad. The ele-
mentary properties of these groups and their relations with existing homotopy
groups are discussed in part three. The fourth part is devoted $o the statement
and proof of the two main theorems referred to above. The final part contains
some applications of these theorems, among which are the easier cases
of Freudenthal’s “Einhingung” theorems. The more difficult cases of these
theorems (“the critical dimensions™) will be dealt with in a subsequent paper.

PART 1! PRELIMINARIES

(1.1) Notation and Terminology
Let X and ¥ be topological spaces, X, ---, X, subspaces of X, and

Yy, -+, Yi subspaces of ¥. The notation
(1.1.1) XX, X)) > (Y57, -0, Py
means that f is a continuous function defined on X with values in ¥ and satis-
fying the conditions f(X;) € ¥;, 4 = 1, .-, k. The words “map” and “map-
ping” will also be used for “continuous function.” Suppose that A, A,, -- -,
A, are subsets of X, and B, By, ---, B, are subsets of ¥, satisfying the condi-
tions
A, C A4, B; C B, i=1, - ,m,
f(A)CBi f(Ai)CBt') 2:=]-1“')?‘""'-"

! Numbers in square brackets refer to the bibliography at the end of the paper.



THE HOMOTOPY GROUFS OF A TRIAD I 163

Then a map
(112) g:<A;A11"'1Am)_’(B;Bl""1Bm)

is said to be induced by the map f if glz) = f{z) for x ¢ A. In case
XCcV, X, CV¥i,i=1, -,k and f(z) = z for all z ¢ X, we say that the
map fin {1.1.1) is an inelusion map. This is sometimes indicated by the notation

G X, X)) Qs Yy, -, Y

Thus an inclusion map is a map which is induced by the identity map ¥ — X.
Two maps

fﬂifl:(X;le 1Xk)_’(Y; Yl: Tt Y.
are said to be homotopic {written fu ~ f;) if there exists a mapping
(1.1.3) FEXLEXXT - XX D>V, V,, -, V),

(where I = {z |0 £ x = 1} is the closed unit interval), such that

fz,0) = folz)
forall z ¢ X,
[z, 1) = fi(x}
The maps fo , f1 are said to be homotopic relative to a subset A C X (Notation:
fo =~ fi rel A) if the map f in (1.1.3) satisfies the additional condition
flx, £) = f(x, 0} forall zeA, 0=st=21.

The existence of a homotopy {1.1.3) between the maps fa, f1 is often indieated
by saying that there exists a continuous 1-parameter family of maps

Feir (X Xy, oo\ X)) (Y Y., -, Yo, 0=t=1.

The relation of homotopy (1.1.3) is an equivalence relation and consequently
divides the set of all maps (1.1.1) into disjoint homotopy classes. A. similar
statement can be made about homoiopy relative to a subset.

If the sets X;, -+, X, in the preceding paragraph have a non-vacuous
interseetion, X; n---n X; X 0, we call the ordered collection of spaces
(X; X, -, X} a (k + 1)-ad; in particular, a 2-ad will be called a dyad, a

3-ad a triad, a 4-ad a tetrad, etc. We will also use the term pair for an ordered
couple of topolagical spaces (X, A) such that A C X, A dyad is a pair in which
the subspace is non-vacuous. A friple, (X, 4, B), consists of three spaces which
satisfy the condition X D A D B. We shall regard as distinet two (k + 1)-ads
which are obtained by a non-trivial permutation of the sub-spaces X, , -+ -, X, .

If A is a subset of a topologieal space X, the notations Int 4 and Cl A will
denote the interior and closure of A respectively.

Many of the spaces which we shall consider will be subspaces of Cartesian
n-space, C". For convenience, we consider all such spaces C*,n = 1,2, ---, a8
subspaces of infinite dimensional Cartesian space, C*, whose points = are in-
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finite sequences of real numbers (@, 24, -+, Za, -++ ) having the property
that z: = 0 for all but a finite number of integers 1. The real vector space C™
is metrized by the usual distance formula, p(z, y) = ||z — ¥ ||, where [| z || is
defined by

1=11= £ ]

The space C" < € consists of those points (z;, zg, -+ ) for which z; = 0
when ¢ > n. For convenience we often shorten the notation

(@1, y2ay 0,7 )

for points of €™ to {z1, +++ , Za).
The unit n-cell, B, and unit (n — 1)-sphere, 8", of C" are defined as follows:

E" = {zeC™||2}l 5 1)
87 = fzeC"||[z]l = 1%

Any topological space homeomorphic to E* or 8”7 is called an n-cell or (n — 1)-
sphere respectively. If 8" is an n-cell, and ¢: E” ~> &" is a homeomorphism then
the subset 8" = @(8™™") C 8" is called the boundary or bounding sphere of &".
To orient an n-cell 8" means to choose a generator of the (infinite eyclie) in-
tegral homology group, H,.(&", &"). Similarly, an orientation of any (» — 1)-
sphere §*' is given by choosing a generator of the integral homology group
H.(&"™. If &', & are n-cells with orientations wi ¢ H.(& , &),
wy e Ha(87, &) respectively, then there exist orienlation preserving homeo-
morphisms from &' to & ; le, homeomorphisms h: & - & such
that he(wl) = wi , where hs is the induced isomorphism

ho s Ha(E , 67) & HA(8] , £2).

It will be convenient for the later discussion of equivalent definitions for the
triad homotopy groups, and for the definitions of the boundary operators, if
we choose certain definite orientations for the unit n-cell E™ and unit (n — 1)-
sphere 8", n = 1. The orientations which we choose are best described in-
duetively, using the so-called “incidence isomorphisma” of homology theory
(cf. Eilenberg and Steenrod, [5]). We first deseribe some additional notation.
Let

E77" = {268 |z 2 0},
B = (z e8|z = 04, nz 2.

Then 8** = {2z ¢ 8" |z, = 0} = B} nEZ
Let

i 8™ o (87 ERTY,

it 8™ (Sn—l’ Y,

(BT ST o (8™ E™Y,
) s (BRL 8™ o (8™ Y,
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denote inclusion maps; let
3: Ho(E®, 8™™") — H, (8"
denote the homology boundary operation; and let
prt (B3, 87 — (™, 877,
p: (BX, 87 - (EB™, 879,
denote the projection homeomorphisms defined by
Pel@s, < -y Zua, Ta) = (81, *+7 , Tumr, O}
p—(xl-i 11:Nf~'11xﬂ) = (xli s 13'!—110)-
The isomorphisms induced on the integral homology groups by 4., 42, j1, j2,
P4, P, wWill be denoted by 4ie, e, j1e, joo , P4s, P, respectively. First, choose
an. orientation w' ¢ H'(E", 8% as follows: Consider E' as an ordered 1-simplex
whose first vertex is +1 and whose last vertex is — 1. The identity map of E'
onto itself is a singular 1-simplex, which is a relative l-cycle modulo §°. Then
w' is defined to be the homology class of this relative 1-cyele. Assume that the

orientation w™ ™ ¢ H,_.(E™™, 8%, of E"" has been chosen with n = 2. Then
choose the orientation w” ¢ H,(E™, S*™) for E”, such that

p+-j1_‘l1:l'a (wﬂ) . ‘w"_l.

It follows from the definition of the incidence isomorphisms that
Pfreipdw™) = —w"
We now choose the orientation of S** to be that induced by the orientation
of E" i.e., we choose the generator 1w " ¢ H,_((S*"} where
we™ = Aw™).

If n = 1 we use the reduced group Hu(S% (see [5]). In Part 3 we shall need
definite orientations for the (n — 1)-cells B3 and E*'. We define these to
be the generators wi ' ¢ Ho (B3, 8™, w™' ¢ Ha (B2, 877 given by
wi = jaw);  wlT = jPhaw”),
We shall also need to choose orientations for the unit n-cube, I", of C*, defined
as follows:
P={zeC |05 21,02 51,-+,0 =z, 21},
The following notation will be used consistently for certain subsets of It
I = (2 eI"| 2. = 0},
i* =171" — Int I" = boundary of I”,
J = = Int ™Y,
S PP A P 1
I = (gl m =t
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It is readily shown that 1™, J*™, I3, and I2™" are cells, and that [ isan (n — 1)-
sphere. We shall describe an inductive method for giving a definite orientation
to I™, for all n. This method is similar to that used above in describing definite
orientations for the unit cell and unit sphere. Let

it (In—l’ j—n—-l) — (I"n’ Jn—l)
j: jn — (jn’ Jn—l)

be inclusion maps; let ¢ and j. be the corresponding induced isomorphisms of
the integral homology groups, and let a: H,(I* I") — H...(I") denote the
homology boundary operator. Choose an orientation ' for I' = I by consider-
ing I g5 an ordered 1-simplex whase first vertex is 0 and whose second vertex
is 1, and taking the homology class relative to I of the singular simplex which
is defined by the identity map of I onto itself, as was done above for E'. Sup-
pose an orientation »™ already chosen from H,.,(I*%, I"™). Then choose
v> ¢ H (I, I") s0 that
T3 jxd(@™) = v"L

We assume henceforth that I” has this fixed ¢rientation.

Let £” be an n-cell, £” the boundary of 6", and 8" an (n — 1)-cell which is
a subset of 8". Then " is said to be a face of & if and only if there exists a
homeomorphism ¢: E® — £" such that

WET) = &7,
$(EXY) = " — Int 8™\

(1.2) Homotopy Groups and Relative Homotopy Groups

We assume that the reader is familiar with the various possible definitions,
and the basic properties, of the relative and absolute homotopy groups.*

Let (X, A) be a dyad and choose a base point 24 ¢ 4. Then an element of the
relative homotopy group =.(X, A, o), n 2 2, is determined by a homotopy
class of maps '

(8”1 gn, T-’a) - (X,- A; xﬂ)

where &° is an oriented n-cell, " is its boundary, and ps € 4” is a fixed reference
point. In case A consists of the single point zy the group is also defined forn = 1,
and we write the group as w.(X, #,) and refer to it as an ahsolute homotopy
group.

The family of groups m.(X, A, x) for x ¢ A forms a lacal system of groups in
the space A, in the sense of Steenrod [15], and r,(4, xo) is a group of operators
on ma(X, A, 24). If m(4, xa) operates trivially on =.(X, A, %) and A is arcwise
connected, we say that the pair (X, A) is simple in dimension n, or that X 4s
simple relative o A in the dimension n.

‘ For an elementary exposition of the theory of homotopy groups, see Fox (7], or Hu,
(91.



THE HOMOTOPY GROUPS OF A TRIAD I 167

As indicated, the absolute homotopy groups =m.(X, xo) are only defined for
n = 1, while the relative homotopy groups =.(X, A, z.) are only defined for
n = 2. In what follows it will often be convenient to give a meaning to the
symbols mo(X, o) and m(X, 4, za). Let 8° be the unit 0-sphere, and p, the point
(1, 0). Then mo{X, x) is defined to be the set of homotopy classes of mappings
(8, po) — (X, xo). We will not attempt to give this set any algebraic structure.
Tt is clear that it has one element for each arcwise connected component of X.
We shall refer to the element corresponding to the constant map S° — za a8
the “neutral element” or “identity element” and denote it by the symbol Q.
Thus the notation m(X, 22) = 0 will indicate that X is arcwise connected. In
a similar manner we use the symbol m(X, A, £,) to denote the set of all homotopy
classes of maps (E*, E', po) — (X, A, %o}. The “neutral element” of this set is
the class of the constant map E' — x, and is again denoted by 0. The notation
m{X, A, z) = 0 indicates that the set contains only the neutral element. If
X and A are arcwise connected, the condition m(X, 4) = 0 is equivalent to
the condition that the natural homomorphism m(A) — m(X) be a homomor-
phism onto.

In section (3.5) we will make use of the homotopy sequence of a triple (X, A, B),
where B X 0. Choose a base point z, ¢ B, and consider the following sequence
of groups and homomorphisms;

. J‘-—*) 1Tu+1(X, A, Ic) E) Tﬂ(A, B, Zo) E'; 'ﬂ‘n(X-_n B, ZO) ﬂ; 'ﬂ‘ﬂ(Xx Al xﬂ) E’ e

The homomorphisms i+ and j. are induced by inclusion maps 1 and j, while the
boundary operator of the triple, 8, is defined to be the composition of the bound-
ary operator of the pair (X, A4), 8 iwan(X, 4, £3) = m.{4, 70}, and the homo-
morphism ke:r,(4, 20) — w.(A, B, 7o) induced by the inclusion map k. The
homotopy sequence of a triple is exact. This fact may be proved purely alge-
braically, making use only of the most elementary properties of homotopy
groups of pairs, ineluding the exactness of the homotopy sequence of a pair
(cf. Eilenberg and Steenrod, [5], for the case of the homology sequence of a
triple).

Parr 2: TrE Triap Homorory (GROUPS
(2.1) Definition by Mappings of Cubes

Let (X; A, B) be any triad, and choose a base point 2, ¢ A n B. The symbol
F.{X; A, B, ) will denote the function space of all maps
IS 127, Y > (X A, B, )

with the compact open topology. (See Fox [6]). Two elements of F.(X; 4,

B, x) are homotopie if and only if they lie in the same arewise connected com-

ponent of F.(X; 4, B, x;). We introduce an operation of addition in F.(X; 4,

B, zo) for n. > 2, as follows: If f, ¢ € Fo(X; A, B, xo) define h = f + g by
}L(I )__{f(x1121:2xm31"')xﬂ)10émﬁé’fs
P I T g, 2 — L, o, m), S m S L
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It is readily verified that & is a eontinuous map
he(I* 157 127, T = (X5 A, B, 20)

and hence b ¢ F.(X; A, B, x). Further, the operation of addition thus defined
is continuous in the topology of F.(X; A, B, 2,); i.e., the map F, X F, = F,
defined by {f, g) — f + ¢ is continuous. Now let r,(X; A, B, ;) denote the set
of homotopy classes of elements of F..(X; A, B, x.); each element is an arcwise
connected component of F.(X; A, B, x,). It follows from the continuity of the
addition defined above that if f ~ f* and g o ¢ then f + g =~ f' + ¢. Hence
the addition defined in F.(X; A, B, z5) induces an addition in w.(X; 4, B, o).
We could now verify directly that with this definition of addition = (X; A, B, £y
becomes a group. The procedure would parallel that of Fox (see [7]). However
it is easier to proceed as in the following section.

{2.2) The Function-space Definition

Let k, € Fo(X; A, B, z4) denote the constant map I* — x4, p = 2, and con-
sider the (multiplicative) fundamental group m(F, (X; 4, B, z4), kn 1), n = 3.
An element o ¢ m(F,_y, ka-y) 18 an equivalence class of closed paths.

a:(I, 1Y 5 (Fooy, on).
We define a function
@ m(Fo, kua) — 7.(X;5 A, B, 20), n > 2,
as follows: If @ ¢ & ¢ m(Fay, ko), a:(], f) — (FPa_1, ka-1), define a map
I g - (X A, B, 1)

by
f(xl-l e lx"l) = [a(xﬁ)](xltxal e )x")

forx = (x1, -, 2.} € I". This mapping is well-defined since a(z:) is 2 mapping
aley (I 7 127 T = (Xa A, B, 20).

We now define ¢{a) to be the homatopy class of f. It is readily proved that the
function ¢ is 1 — 1 and onto, and that, for any elements a, 8 € m(F.1, ka1,

ela - B) = ola) + «(@).

Since w1(Fn_1, ko) is known to be a group it follows that »,(X; A, B, x4) is
also a group, and that the function ¢ is an isomorphism of = (F._, , kn)} onto
ma{X; A, B, 2,). We call the group 7.(X; A, B, 2} the nt* or n-dimensional
homotopy group of the triad (X; A, B) at the base point x4; it is only defined for
n = 3.

In a similar way we can define isomorphisms

niwm(Fa(X; A, B, 20), ku) 72 wmialX; A, B, x0)

form z 1,n > 1.
Tueorem 2.2.1. The group ma(X; A, B, xo) is abelian for n > 3.
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Proor. This follows at once from the above, since wm(F. , k.)} is abelian when
m > 1.
We shall give examples later to show that =(X; 4, B, 1) need not be abelian.
TaeoreM 2.2.2. 7.(X; A, B, 20) & m.(X; B, A4, xq).
Proor. We shall exhibit a specific isomorphism in terms of mappings of cubes.
Let o e o{X; A, B, xo) and f ¢ o,
FI I I ) = (X A, B, ).
Define a map
I L IR I = (X5 B, A, 20)
by
f‘(xl,xz, !xﬂ) =f(1 — L1, L2, 13:'!)'
Then f* determines an element ¢(a) ¢ 7.(X; B, A, xo) and the function ¢ thus
defined,
eima(X; 4, B, 24) — 7a(X; B, 4, 20},

is readily verified to be a homomorphism. Moreover, one can defing, in a sym-
metric manner, a second homomorphism

40’:1'|'n(X; B; A; xﬂ) - Tn(X; Aa B: Iu),

and obviously ¢’ = 1, ¢'¢ = 1, 50 that ¢ is an isomorphism. If n = 2, ¢ sets
up a 1 — 1 correspondence between the elements of m{X; A, B, Zq) and those
of m(X; B, A, zq).

Just as in the case of the absolute and relative homotopy groups, it is fre-
quently convenient to replace I" by a homeomorphic copy in defining =.(X; 4,
B, x). This leads to a group isomorphic to that already defined, but in order
to obtain a specific isomorphism, one must choose an orientation for the homeo-
morph of I™.

(2.3) Definition by Mappings of Cells

Let E", 8", n 2 2, be the unit n-cell and unit (n — 1)-sphere defined in
part 1, and let

1

Ef = (zeE" |2, 2 0},
Ef = {x e E" |z, < 0},
p = {,0,---,0).
Let Fro(X; A, B, zo) denate the set of all mappings
(E"; E¥', B, p)) — (X; 4, B, ),

and let 1o (X; A, B, z,) denote the set of homotopy classes of these mappings.
We have deseribed in (1.1) an orientation w” ¢ H.(E", 8”7") for E*. Using this
otientation, and the orientation v® e H (I", I") described in (1.1), we can set
up a 1 — 1 correspondence

Yima(X; 4, B, m) - ma(X; A, B, 1)

1
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as follows: Choose a. map
(™ IR I, Y - (BN ERT ERTY, p)
which maps I" — J"" homeomorphically onto E® — p,, and such that,
h (") = w", where
h: Ha(I", I™) — Hu(E", 87
is the isomorphism induced by k. Given f ¢ F/,(X; A, B, 20) define ¢'(f) by

W Nz} = flr@)], z e I".

It is readily seen that the map

'V'F:&(Xl Aa B1 xﬂ) - FN(X; As B1 3:0)
is a homeomorphism onto, and hence induces a 1 — 1 map

Yiru(X; A, B, z0) — mu(X; A, B, xo).
We can now define an addition in 7.(X; A, B, z) in such a way that this
set becomes a group, by requiring that ¢ shall be an isomorphism. It is use-
ful to have a more direct, geometrical definition for the group operation in
7.(X; A,B, x,). First we prove a lemma.

LEMMA 2.3.1. Given any map f ¢ Fu(X; A, B, x,), there exist homotopic maps
', " € Fn , such that f'(Ef) = f"(E}) = .

Before proceeding with the proof we quote two well known lemmas on which
the proof depends.

Lemma 2.3.2, Let K be o complex, L a subcomplez, f3:K — ¥ a continuous
map of K into an arbitrary space Y, fo l L =g¢L =¥, and g, —» Y a ho-
molopy of go. Then there exists a homotopy [ K — Y of f such that f, l L =g,
0=¢t=1.

This is the homotopy extension theorem (cf. Alexandroff and Hopf, [1] p.
501).

Lemma 23.3. Lot £™ be an m-cell, 8" ' an (m — 1)-cell which is a face of
&% fo, 1187 — ¥ two maps of 87 into an arbitrary space Y, and go = fo| 6™,
¢ = f1| 877" Then any homotopy 6™ — Y between do and ¢ can be extended
o a homotopy f:8™ — YV between fy and fi. This lemma depends on the fact
that the space (68" X 0)u (8™ X 1) u (8™ X I) is a retract of 8™ X I.

Proor or (2.3.1). We shall prove only the existence of the map f*; the proof
of the existence of the map f” is entirely analogous. Let

= {2 e 87 2 2 0},
=z e8| 1, £ 0},
= {2 e8| 2 2 0},
B = (e EY ' |20 2 03,
EiT = (z e EX' |z, 2 0},
Eiff' = (x e B |z £ 0},
E?T = {z e EX ' |2, < 0},
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Let 24:5" 2 — A n B be a map defined by f. It is well known (see Eilenberg
13]) that ao is homotopic relative to po to a map ¢;:8" > — A n B such that
a(Er™ = z,. Let 4,:8"" — A n B denote the homotopy between ao and @, .
Let b,:E** — A n B be the map induced by a,, 0 = t £ 1. Next, let

o En—]._)A,
do: En——l — B,
be maps defined by f, and let
Bl — A,
di:E"' — B,
be the constant maps into 2o . Applying Lemma 2.3.3 we obtain homotopies
Bl — A,
d, ' 5B,
such that ¢.| Ef™ = b, d.| B’ = b,. Next, let e E+ — A be defined
by f, and let g.: E1+ u 8" — A be defined by: .| BElT* = ¢, 9¢| 8" = a..
Then g0 = & l (Ef7 u 871, Apply Lemma 2.3.2 to obtain a homotopy
eBt— A,

which is an extension of g:. In a similar manner, if he: EZ "=t B is defined by
f, then there exists a homotopy hiEX" — B of he, such that k| EfT' =
d:,h:l S“_2 = &¢.

Now let. zn El' — X be the map induced by f, and let j: Ef ™ — X be defined
by ji | Eft = ¢, and 3¢| Ef ' =d,. Let 4:Ef —» X be the constant map.
Now apply Lemma 2.3.3 to obtain a homotopy ¢ E' — X which is an exten-
gion of 7, .

Finally, let fo:E™ — X be defined by f and let k.:El' u 8" — X be defined
by: k;l El = 1., k;l EX'=e, ks l E*' = h,. Apply Lemma 2.3.2 and ob-
tain a homotopy fi:E™ — X of fo, which is an extension of k.. Let

B B B2 po) = (X; A, B, 20)

be defined by fi . Then ' has the requlred properties.

We may now define an addition in 7.(X; A, B, x4) directly, as follows: Let.
@, B ena(X; A, B, ;). Chaose maps f, g ¢ P, (X A, B, x;) representing « and
8 respectively, such that

fES) = g(ET) = 2o
Define k ¢ Fo(X; A, B, z) by
k|Br =f|EM, k|Ef=g|E;.

Then « + 8 is the homotopy class of k. It is not difficult to see that this defini-
tion is independent of the choice of the representatives f and g, and that it cor-
responds under the function ¢ to the addition already defined in x.(X; A, B, xq).
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Consequently we shall usually use the symbol =,(X; 4, B, 25) in place of 7.(X;
A, B, 25). The rale played by the definite orientations chosen for E" and I*
was to ensure that ¢ should be a homomorphism rather than an antihomomor-
phism. This has significance in dimension 3 where the triad group need not be
abelian. The choice of the map h was limited by the condition k(") = w",
but the correspondence y was otherwise independent of the choice of h, and
the condition that h map I" — J*™ homeomorphically onto E* — p, was super-
fluous.

If we are given any other n-cell, 8", with a definite arientation u” ¢ H,(&", &™)
chosen, with the boundary £" decomposed into the union of two faces with
disjoint interiors, £" = &7 u 827, and with a base point g € &7 n &°7"
specified, then we can define a group =»(X; A, B, x} by propetly introducing a
group aperation into the set of homotopy classes of maps

(8"; 8-,;'_11 8:—11 qﬂ) - (X: A-) Bi xﬂ):
and the orientations of £” and E” will enable us to set up an isomorphism with
the group m.(X; A, B, x). Consequently we shall regard mappings of §" of the
above type as determining elements of r.(X; A4, B, xq).

As noted above, the group =.(X; 4, B, z¢) is only defined for n > 2; the
symbol =(X; A, B, ;) is used for the set of homotopy classes of maps
(E*; B}, EL, po) = (X; A, B, 25) or for the set of homotopy classes of maps
(' 14, IS, JY) —> (X, A, B, x,), since the function ¢ of (2.3) sets upa 1 — 1
correspondence between these sets, and preserves the class of the constant map
into z, . This class will be denoted by the symbaol 0 and referred to as the “neu-
tral element'” or “identity element.”” The notation (X ; 4, B, z,) = 0 means
that the set x(X; A, B, 2;) contains a single eclass, that of the identity. We
know of no general procedure for introducing a group operation into the set
(X ; A, B, q), although this can be done in special cases. In spite of this the
set plays a useful role in what follows.

Part 3: ELEMENTARY PROPERTIES OF THE TR1AD Homorory Grours
(3.1) Induced Homomorphisms
Let {X; A, B, zs), (¥; C, D, ) be triads with base points
e AnB, yoeCnbD,

and let f:{X; A, B, za} — (¥; C, D, 4) be a mapping. Then f indures homo-
morphisms

fermalX; A, B, ze} > w(V;C, D, ye), n>2.
These are defined as follows: Let a ¢ m.{X; A, B, 1) and let
g:(E™ EX7 B2 po) — (X; A, B, x0)
be a representative of «. Then the composite map

fg:(Eﬂ; E-I’t_lm E:—11 pﬂ) - (Yl C; D) yﬂ)
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is a representative of fi(a) ¢ mu(V; C, D, ys). The function fi thus defined is
independent of the choice of g ¢ «, and is easily verified to be a homomorphism.
If n = 2 the function fx is still defined and carries the neutral element of

f'n"(X; A) Bi xﬂ)

into the neutral element of m(¥; €', D, yo).-In this caze we shall continue to

use the terms kernel of f and image of f for the sets f3'(0) and fo(mo(X; A, B, 21))

respectively.

The following properties of fi are obvious:

(8.1.1) If f is the tdentity map, then f« is the identity homomorphism (function
when n = 2).

(312) Iff(XJ A: B: .'Ea) - (YJ C: D: yﬂ) and g:(Y: C; D: yﬂ) - (Z: Es F: zﬂ)i
then (gf)* = g*f* .

(3.1.3) If two maps

fﬂ rfl:(X; As Bi I'J) - (Y) C} D1 yﬂ)
are homotopic, then fpr = fin.

(3.2) The Case A D B.

In this section we prove the following:

TuroreM 3.2.1. If A O B then the iriad homolapy group wﬂ(X A, B, xy) 18
naturally tsomorphic fo the relative homotopy group w.(X, A, z), n > 2.

Proor, We will consider the elements of ».(X; A, B, zo) to be equivalence
classes of maps (E™:; EF ", E™™, pe) — (X; A, B, 2,) while the elements of
ma(X, A, z) are equwalence classes of maps (E”, 8%, p) = (X, A, z). A
natural function

eima{X; A, B, zg) > w.(X, A, z4), n = 2,

is defined by considering a representative of an element a ¢ m,(X; A, B, 1) as
a representative of an element ¢la) ¢ m (X, 4, xa}. If n > 2 the function ¢ is
clearly a homomorphism. Since every homotopy class 8 e m.{X, A, 24) contains
representative maps g with the property g(E*) = x,, we can set up a function

¢ ma(X, A, z) = 71.{X; A, B, z), nZ 2,
by defining ¢'{8) to be the element of #.(X; 4, B, z4) determined by consider-

ing ¢ as & map
g: (B B3 B2, py) — (X; A, B, x0).
The element ¢'(8) is easily seen to be independent of the choice of g. For if
go,gheh,
g0, 011 (", 87, po) — (X, A, )

with @(E2™) = qi(BZ™") = 10, then any homotopy g, from ¢ to ¢ ean be
modified to a homotopy g: :(E", 8™, po) — (X, A, zo) with gi(EX™) = x,, so0
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that g: actually gives a homotopy between the maps
gos i (E" BXT, BX7, po) — (X5 A, B, z0).

If n > 2, then the function ¢ is a homomeorphism. It follows immediately from
the definitions of ¢, ¢’ that ¢¢’ = 1. To see that ¢'¢ is also the identity we observe
that if f:(E"; B3, E*™", po) — (X; A, B, o) is considered as a map

Jo:(B™; 877, po) = (X, 4, )
and fo(E®, 8", po) = (X, A, 2o) is a homotapy te a map fi:(E", 8", po) —
(X, 4, %o}, with fi(E*™") = z,, then since B < A, f, may be maodified to give

a homotopy f¢ from fy to f,, with the property that f:(E*™) € B Thus f; de-
termines a homotopy between the mappings

f: fl.:(E“; E-:_lx E:_lr pﬂ) — (X: As B: .’Bo)
so that ¢’¢ = 1, and bence ¢ is 2 natural isomorphism from ».(X; A, B, x,) to
ma(X, A, 20),n > 2,
Remarg. If n = 2, ¢ sets up a 1 — 1 correspondence between the set

(X 4, B, 20)

and the group m(X, A, ), which preserves the identity element. Hence in
this case we can define a group operation in 7,(X; A, B, 2.} by requiring ¢ to
be an isomorphism. This group operation could also be defined directly.

(3.3) Effect of Change of Base Point

Let x4, 21 be two base points in A n B, and let 5:7 — A n B be a path from
Zs ta z; in A n B. Then we can define an isomorphism

vaim (X A, B, 2) — 7o{X; 4, B, 21), n > 2,
associated with the homotopy class of the path ¢, in a manner similar to that
used for the relative homotopy groups. With this definition, {x.(X; 4, B, z)
l z ¢ A n B} is a loeal system of groups in the space A n B, in the sense of Steen-
rod [15] and m (A n B, 2} is a group of operators on »w.(X; A, B, z). f An B
is arcwise connected, and the operators from m(4A n B, o) on 7.(X; 4, B, zq)
are all trivial, then we say that the triad (X; A, B) is simple in dimension n.
Since the groups v.(X; 4, B, z), z « 4 n B, are all isomorphic when 4 n B is
arcwise connected, we will frequently omit the base point from the discussion
and write simply r.(X; 4, B} and refer to it as the homolopy group of the triad
(X; A, B).

It should also be noted, in this connection, that the homomorphisms

feimX; A, B, x) - 7.(Y;C, Dy}, n>2,

induced by mappings
fi(X; 4, B, 2) = (Y3 C, D, )

are operator homomorphisms. The same remark will apply to the boundary
operators which will be defined in the next section.
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{3.4) The Boundary Operators
Let the elements of 7.(X; 4, B, x) be defined by maps
(E”; E;_lx E:_l; pﬂ) - (Xx A; B; xﬂ)

where the cells E*, EX™", E*™ have the orientations described in (1.1). We now
define functions

.8+:Tn(X; A: B,- Iﬂ) - IMI(A: An B: .‘.Ca} n=9
Bim (X A, B, 2a) — 1aa(B, A n B, 7y} ="

as follows: Given « e m(X; A, B, za), choose a map f:(E™; B3, E*, po) —

{X; A, B, za) representing «. Then the induced maps

FI BT BT, 87 po) — (4, A n B, )
B2 (B2, 8™ po) — (B, A n B, zo)

determine definite elements #.{a), B_(a) in the groups m..a{A, 4 a B, x),
raa1(B, A 0 B, 1v), respectively. It is not difficult to see that these definitions
for 8, (a) and B_(«) are independent of the choice of the map fin the homotopy
elass o, and that with the chosen orientations for EX™, EX7, E™, if n > 2, 84
is a homomorphism and 8. is an anti-homomorphism. The functions g , 8- will
be called the boundary operators of the friad (X; A, B). The operator 8 will, of
course, be a homomorphism if » > 3, but need not be when n = 3, since the
group m(B, A n B, 20) need not be abelian. It is perhaps worth observing that
far the corresponding boundary operators for the triad (X; B, 4},

Beiwad{X; B, A, 20) = mai(B, A 0 B, zq)
B_iwa(X; B, A, 2¢) = mama(4, 4 n B, za},

B, is again a homomorphism, while 8_ is again an anti-homomorphism. More-
over the function ¢ of Theorem 2.2.2

e:ma(X; A, B, 1) = wa(X; B, A, 2o}
induces a function
¢p1_:'.'r,‘_1(A, An B, :Bu) — ‘Jrn—l(A, An B, In)

which, for n > 2, is the anti-isomorphism which takes each element into its
inverse, and we have commutativity in the following diagram:

1u(X; A, B, 20) 55 maa(A, A 0 B, )
¥ .6 l‘Pl
(X B, A, ) S mama(4, 4 0 B, x0).
If n = 2, 8, and 8_ are simply functions which carry the neutral element of

mo(X; A, B, 2o} into the neutral elements of m(4, 4 n B, zs} and m(B, 4 n B, 4)
respectively. The kernels of these functions are defined in the usual way.
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(3.6) The Exact Sequences of a Triad
In this section we will use the following inclusion maps:
1:(A, A n B, z) € (X, B, x),
12:(B, A 0 B, xy) C (X, A, z).
fi(X;xe, B, z) C(X; 4, B, 1),
Foi(X; A, my, mgy C{X; A, B, 2).
We have seen above that there exist natural isomorphisms
wa(X; 2o, B, 25) 22 ma(X, B, z4),
ma(X; A, 20, 20) & walX, A, zo).

It will be convenient to identify such naturally isomorphie groups.
Let us consider the following infinite sequence:

B51) P r(A, A0 B, z) -1 wa(X, B, 20} s n (X AL B, 2 BEs -

This sequence terminates with the following sets (not generally groups) and
functions (not generally homomorphisms):

352) -2 m(X; A, B, ) 5 m(4, 4 0 B, zg) <5 mi(X, B, o).

All other terms of the sequence are groups, and all other functions are homo-
morphisms. This sequence is called the upper homotopy sequence of the triad
(X; 4, B) af the base point x, . The triad (X; A, B) has a second (lower) homotopy
sequence at z, , namely

(353) - BB, A 0B, 1) - mu(X, A, 20) L m (X A, B, 25) P=s - .

The most important property of the homotopy sequences of a triad is the fol-
lowing:

THEOREM 3.5.4. Each homotopy sequence of a triad is exacl. (i.e., the kernel of
any homomorphism is precisely the image of the preceding homomorphism.)

Before giving the proof we emphasize the following two facts: (a) In the proof
no use is made of the group operation defined in r.(X; 4, B, xy) for n > 2 and
defined in r.(4, 4 n B, x0), 1,(B, 4 0 B, o}, (X, B, 20), (X, A, 2o} forn > 1;
all that one needs is the natural notion of “neutral” element, so that kernels
are well-defined. Hence this theorem could have been stated and proved before
defining the group operation in =,{X; A, B, z,). (b) Exactness of the homotopy
sequence of a triad continues to hold in the lowest dimensions (3.5.2), where
we do not have groups or homomorphisms. In the proof of the theorem we shall
use the language of groups and homomorphisms; it will be clear that the maodifi-
cations needed for the lowest dimensions are simply changes of language.

We remarlc that the exactness of the homotopy sequence of a pair is likewise
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independent of the corresponding group operations, and continues to hold in
the lowest dimensions where no group operation is defined.

The following “commutativity”’ lemma will be of assistance in the proof of
exactness:

Lemma 3.5.5. Consider the various groups and homomorphisms (functions)
indicaled by the following diugram (in which we abbreviate by omitting the base
point):

xat(d, A n B) 5 roi(X, B)
,97 Ve ) //' AN {;'
N yen N
r(X; A, B) r.{X, A B) ro(X; A, B)

AN /‘ N S
BN e N SR
Tn_1(B, An B) _1_'> Tﬂ_l(X, A)
2‘
(Here 43+, fp , %4 , jo are induced by inclusion maps and are, respectively, sue-

cessive terms in the homotopy sequences of the triples (X; A, 4 n B),
(X, B, A 0 B).) Then the following commutativity relationships hold:

@) = Jutw Ty = Jystan .
@) T = Jagas .
(1i1) ipfy = —iuB_.

Proor oF LemMma. (1) is obvious since all maps are inclusions; (ii) follows easily
from the definition of 7, and 74 ; (ii1) follows from the choices of the orienta-
tions of Ef™", EX™, and E* in (L.1).

Proor oF THEOREM 3.5.4. We shall prove exactness only for the upper se-
quence; the praof for the lower sequence is entirely analogous. The proof breaks
up naturzlly into six parts.

(3.) jlti‘:p = (}.
We have, from the lemma abave,
Tt = Jrjate = jz‘ja-‘-’:a- =0

since iz, fp» are successive homomorphisms in the exact sequence of the triple
(X, A, AnB).

(b) 48y = 0.
Again, from the above lemma
3‘1'}3+ = }‘4'1':3' + = —j4‘1'4' _ =0

since 44, jo are successive homomorphisms in the exact sequence of the triple

(X, B, A n B).
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(e) Bije = 0.

Let a e m(X, B, x5). Choose a map f:(E", 8", po) — (X, B, xo) which repre-
sents o and bas the property that f(Ef™) = x,. Then f, considered as a map
(E*; EI7 B2 po) — (X; A, B, 1) represents ji(a), and f | B3, considered

as a map (Ef™, 8" p) — (4, A n B, ) represents 8,ji1.(«) which is clearly
zero,
(d) Kernel 84 C image jis .

Let o e ma(X; A, B, 2;) be represented by a map
f: (Eni E:_lx E:_ly pﬂ) i (X1 A: Bl xﬂ))

and let 8., (a) = 0. This means that the map fo: (EZ ™, 8”7 po) — (4, A n B, x0)
defined by f is inessential. Hence there exists a homotopy

Je(BEY, 877, p) — (4, A B, o)
of fo, such that fitBl™) = x. Consider the induced homaotopy
£ 8"7:(8" po) — (4 n B, zy).
By the homotopy extension theorem, this can be extended to a homatopy
g E*' > B
such that go = f| £, Define
FieS™' 5 AuB

by F.| B = f., F| EZ™" = g,. Apply the bomotapy extension theorem again
to extend F, to a homotopy F3:E, — X, such that Fj — f. Then F, is a family
of maps (E"; B3, B2, po) — (X; A, B, x,), so that F| is a representative of «.
But Pi(EX™") = fi(B2Y = 2 , and hence o is the image under j;» of an element
of 7.(X, B, xa).

(e) Kernel 4 C dmage 8., .

Assume f:(E37, §*7%, p) = (A, A n B, ;) represents an element « ¢ 7a.(A,
A n B, xq), such that {.(a) = 0. This means that there exists a homotopy

FUAEBIT X I, 8 X I, pe X I) — (X, B, 1)

with F(z, 0) = f(z), F(z,1) = 2, for z¢EX". Now the triad (Ef™ X I;
EI X0, (EF' X 1u 8" X I), po X 0) is obviously homeomorphic to the
triad (E™; B2, EX7", po). Let

(B B EX po) > (B X LEF X0, (Bf' X 1u 82X I), po X 0)
be such a homeomorphism with k(z} = z X 0 for 2 ¢ E2 . Define
g: (B BT B2 po) — (X; A, B, x0)

by gz} = F(h(z)), for z ¢ E". Let « e m.(X; A, B, x5) be the homotopy class
of g. Then A (e’) = «, as required.
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{f) Kernel j1« C image 4. .

This part of the exactness is the hardest to prove, but the geometrical idea
involved is actually quite simple. Let « e 7.(X, B, zo) with jis(a) = 0. Then «
may be represented by a map

[t (Sﬂ: 8"1 g} — (X, B, 29)

where &" is any oriented n-cell. For the purpose of this proof we choose & =
E™" X I.Then&" = 8" X Tu E"" X 1. For ¢ choose any point of " X 0
andlet 877 = E"" X 0,8 = 8" X Tu E*" X L. Then js(a)} is represented
by a map

et 88 T 8M, go) = (X5 A, B, 2)
with /(&1 = 2, and js(e) = 0 implies the existence of a map
Fig" X J; 817 X J, 827 X J, g0 X J) — (X; A, B, ),

(where J = [0, 1], the closed unit interval) with

F(z,0) = f'(x), z ¢ &7,

FE" X 1) = 2.
We may further assume, without loss of generality, that the homotopy is con-
stant over the first half interval; that is, F(z, £} = F(z,0),0 = { £ ;. In par-

ticular, F(&877 X [0, 3]} = zo. In order to show that « is in the image of i, we
must exhibit a map

Gi(E" X J, 8" X I, X J)—> (X, B, 70)
such that G(x, 0) = f(z), z ¢ &", and G(&" X 1) C A This will be done as follows:
We shall define a map h:8" X J — &" X J and then define G by setting G{y) =
Flr()] for y < 8" X J. It will then only be necessary to verify that G has the
required properties.
Now& X J = B"" X I X Jisan (n + 1)-cell. Let K = I X J. Then we
may write & X J = E™ X K. We will define a homeomorphism

K —K,
and then define R:E™™ X K — E™ X K by
hiz, y) = (z, g(u)).

The map g is defined by reference to figure 1. Let K denote the boundary of the
square K. We first define ¢ on K as follows:

g(AC) = AB;  ¢(CD} = BC;
g(DE) = CE;  g(EF) = EF;
g(FA) = FA,

Here the notation g(AC) = AB means that the oriented segment AC is mapped
linearly onto the oriented segment AB. This defines a homeomorphism K — K
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which can be extended to 2 homeomorphism ¢:K — K in an arbitrary fashion.
It is now a routine matter to verify that the maps h and & defined by means of
¢ have the required properties. This we leave to the reader.
We conelude this seetion with two remarks:

{a) With the notation of (3.1), we have seen that a mapping f: (X; A, B, x5} —
(¥; C, D, y) induces a homomorphism of the corresponding triad homotopy
groups. Clearly the map f induces maps fi:{4, A a B, zs) — (C, € n D, 1) and
f2:(X, B, 20) — (¥, D, 4}, which in turn induce homomarphisms of the corre-
sponding relative homotapy groups. These homomorphisms commute with the
homomorphisms of the upper sequences of the respective triads. A similar situ-

C D=g'fz,1) £

1T

..B.___(o.lh_\ K

0 1 1

Fia. 1

ation holds for the lower sequences, and commutativity continues to hold in
the Jowest dimensions. We express this by saying that the mapping f induces
homomarphisms of the respective homotopy sequences. In. addition, the induced
homomeorphisms preserve the operators from mi(A n B, 2), m{C n D, 1) in the
following sense. If f induces the homomorphism fi:m(A n B, 25) — m(C n D, o),
and & e (A n B, 25), 8 e 7 ({X; A, B, x,), then

FeladB®)} = Ua(@](fx(8)).

(b} In (3.2) we saw that if A D B then 7.(X; A, B, xy) & 7.{X, A, 20). In addi-
tion we observe that 4 n B = B, so0 that the upper sequence of such a triad be-
comes the well known homotopy sequence of the triple (X, A, B} at z,, while
the lower sequence has every third term trivial, and the remaining terms iso-
morphic in pairs.
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{3.6) Relation to the Excision Axiom

In this seetion we will clarify the statement made in the introduction that
the homotapy groups of a triad are a measure of the extent to which the excision
axiom fails to hold for the relative homotopy groups. Let (X; 4, B) be & triad
with AuB = X. Then the inclusion maps

W4, AnB) — (X, B)
4:(B, AnB) — (X, A)

are both excisions. If we consider the homotopy sequences of the triad (X; A, B),
we see that the homomorphisms 4« and 4 induced by 7, and %, on the relative
homotopy groups, will be isomorphisms onto if and only if all of the triad homo-
topy groups are trivial. Thus if some of the triad homotopy groups are non-
trivial, invariance under execision cannot hold for the relative homotopy groups
in all dimensions.

(8.7) The Non-abelian Character of n3(X; A, B)

We first give an example of a triad (X; 4, B) for which =(X; 4, B} is non-
abelian, Consider the following subsets of cartesian 3-space C3:

Yy = (1101 0): z = (-"11 01 0)1

Ev=(zeC||lz—yll =1},
By ={zeC|llz -z 21},
X-_—'EluEg.

Then X is the union of two 3-cells with a single point in common. et X denote
the boundary of X,

A= {zeX|z: = 0}, B={zeX|x = 0},

and let 2, = (0, 0, 0) be the base point. The homotopy groups of the pair (X, B)
are all trivial because B is a deformation retract of X. It follows from the exact-
ness of the upper homotopy sequence of (X; 4, B) that

8. im(X; A, B, z) > mfd, AnB, x)

is an isomorphism onto. Since the space A is contractible to a point, m(A, .}
and m.(A, xo) are trivial. Hence the boundary operator

d:m(A, A nB, ) — m(A n B, x5

is also an isomorphism onto. But A n B is a “figure 8, and its fundamental
group is the free (non-abelian) group on two generators.

We return now to the case where (X; 4, B) is any triad, and #. e A n B. We
have aiready remarked that the group m(A4 n B, x,) acts as a group of operators
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on ml(X; A, B, 2,). Denote by #(4d n B, x;) the subgroup of m{4 n B, x;) con-
taining only those elements which operate trivially on m(X; 4, B, x). Let

Beim(X; A, B, 23} — m(A, AnB, z) and 9:mfd, A n B, 2;) — m{A n B, z¢)

be the boundary homomorphisms. Then we have the following result:

TueorEM 3.7.1. The subgroup (38.) 'f(A 0 B, x,) of m(X; A, B, xs} is con-
lained in the center of (X, A, B, my).

Proor. The proof is earried out in a similar manner to that of the correspond-
ing theorem about the 2-dimensional relative homotopy group. For if ¥ s any
element of (X ; 4, B), and ¥ is represented by a map

Ji(E EL B, p) > (X; A, B, x)
then 48.(y) is represented (because of our choice of orientations) by f | S
(8, ) — (A n B, z5). Now let v, ys e ;(X; 4, B, #,), withy = 41 + 7., and
suppose that the map f representing ¥, + w2 is in the form obtained by adding
representative mappings of y; and vy, . Let Ry denote a rotation of E°,0 £ 8- 1,
through an angle 78 about the z, axis in the sense which takes p, along E} .
Then the function
fo(B EL BY) > (XA, B)

defined by f.(z) = fR(x), 0 £ ¢ £ 1, z ¢ E, is a homotopy of f in which the

point p, describes a path representing 38 .(y.), while the map
fu (B EY ,EL, p)) — (X; A, B, z)

clearly determines the element v + v e m{X; A, B, x,). It follows from the
definition of the operators that

fg vl + 1) = v+ 7.

Hence, in particular, if v, ¢ (38,) '#1(4d n B, 2;} and v, is any element of
m(X; A, B, ) we get

mt+ryr=r1+ v,

i.e., vy is in the center of m(X; 4, B, xa).

CoroLLaRY 1. If the triad is simple in dimension 3 then #(A nB, 2,) =
mlA n B, xo), and hence m:(X; A, B, zy) 1s abelian. In particular, this is the case
when m(A n B, z) = 0.

ConoLLary 2. A simple extension of the ahove proof shows that if v, , v. are
any two elements of wi(X; A, B, 1), then [88+(v)](v2) = — v+ v+ 1.

CoroLLary 3. The group »3(X; A, B, #1) 15 a cendral extenston of [kernel 8]
by ﬁ+1rs(X; A, B, Zq).

Panr 4: Two Main THEOREMS

(4.1) Statement of the Theorems

In order to state these theorems simply, we need some additional definitions.
A topological space X is O-connecled if it is arewise connected. We recall that
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this may be written m{X) = 0. It is n-connected if #{¥) = 0,0 £ { £ n. A
pair (X, A) is said to be n-connected, n > 0, if (A} = 7e(X) = 0 and
if X, A) =0,1 £ 1 = n Atriad (X; A, B} is said to be n-connected, n > 1,
if each of the pairs (4, A n B) and (B, A n B) is 1-connected, and r,(X; A, B} =
0,1 <= n

Let (X*, X) be a pair which satisfies the following conditions:
(a) The space X* — X is a union of disjoint subspaces U, n > 0,

x* - X =uay,

where each QAU is an open subset of X* and is homeomorphic to E* — 8"
(b) Let &7 denote the closure of ALY , and &} = &! n X. Then it is assumed that
there exists a mapping

$(E™ 8™ — (82, 8D

which is a homeomorphism of E* — 8™ onto @ . Under these conditions we
say that X* iz obtained from X by simultaneous adjunction of the cells &; .
The number of cells adjoined may be finite or infinite in number; in case the
number adjoined is infinite, it is assumed that any compact subset of X* inter-
sects only a finite number of the open cells & . Let

Sﬂ = U.Sr, & = U,g:‘

In the remainder of this paper it will be assumed that 8" is are-wise connected.
An important. problem is to obtain information abhout the homomorphisms of the
relative homotopy groups induced by the inclusion map £:(8", &™) — (X*, X).
The following two theorems, combined with the exactness of the homotapy
sequences of the triad (X*; &, X), are often useful in this connection.

TuroreM I, If the pair (X, 8") is m-connected {m = 1, n = 2), then the triad
(X*; 8" X)is (m + n — V)-connected. If m = 1 we must add the hypothesis that
ml X, &) is abelian; if n = 2 we must add the hypothesis that X is simple relative
10 &" in all dimensions <m + n.

Tueorem I1. If the space &8" is m-connected, (m = 1, n = 2) then the boundary
homomorphism

Biimi(X*; 87, X} — milE", &7)
fstrivial for 2 £ i 2 m+n — 1.

In a subsequent paper, we will show that Theorem I is in a certain sense a
“best, passible” theorem; i.e., if the pair (X, &%) is m-conneeted, if 7m(X, 8%) =
0, and if the triad (X*; &", X} satisfies a few additional conditions of a rather
general nature, then w,.(X*; 8", X) X 0. However, it 1s not possible to make

an analogous statement about Theorem II. For exarple, it can be shown that
for the triad (8", Ef, EZ), the boundary homomorphism

ﬁ+:ﬁ'2n—l(sﬂ; E: ’ E:) - rﬂkﬂ(Ei ) Sﬂ-l)

is trivial if » = 2, 4, or 8. Tt would be interesting to extend Theorem II to higher
dimensions to account for such cases.
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The proofs of Theorems I and IT are given in sections (4.9) and (4.10) respec-
tively. Sections (4.2) through {(4.8) contain preliminary lemmas and definitions
which are used in the proofs of these theorems.

(4.2} Further Definitions

We will use the notation | K | to denote the space of a simplicial complex K.
A simplicial pair (K, L) is a finite simplicial complex K together with a sub-
complex L. Given a pair (X, A}, a triangulation T = {t, (K, L)} of (X, A) con-
sists of a simplicial pair (K, L) and a homeomorphism

(K[ L])— (X, 4).

The pair (X, A) together with the triangulation T is called a frianguloted pair.
If a triangulation of (X, A) exists, then we say that (X, A) is triangulable.

If T = {t, K} is a triangulation of a space X, & function f: X — C” mapping X
homeomorphically onto a subset of cartesian n-space €, is called a linear im-
bedding of X in C", with respect to the triangulation 7, if and only if the map
ft:| K| — C" is linear; i.e., if and only if the cartesian coordinates of the point
fi(a) are linear functions of the barycentric eoordinates of the point e e| K |.
A triangulation T = {f, K} of an m-cell 87 is called rectilinear provided that
there exists a linear imbedding f:&™ — (™, with respeet to T, which has the
property that f(§™) is a convex subset of €™. It is known that not every tri-
angulation of £™ is rectilinear if m > 2; however, it is obvious that rectilinear
triangulations of §™ exist, and that suceessive barycentric subdivisions of a
rectilinear triangulation are also rectilinear. In the remainder of this paper we
shall frequently be concerned with triangulations of cells; it will always he
assumed that these triangulations are rectilinear, even though this fact is not
explicitly mentioned.

LEmma 4.2.1. Let P be o closed subsel, of dimension =n — 3, of the n-cell 87,
and assume the existence of a rectilinear triangulation T = {t, (K, L)} of the pair
(8", P). Then & — P is simply connected.

Proor. Let f:8" -— €™ he a linear imbedding of £" in C", with respect to T,
such that f(&") is convex. We will identify each point. x ¢ §" with its image f(z) ¢
C", and thus consider &" as a subset of C", To prove &" — P simply connected it
suffices to prove that any closed polygonal loop in 8" — P can be contracted to
a point in 8" — P, Let 4o, 41, -+, A, , Aq be the suecessive vertices of a closed
polygonal loop @ in 8" — P. Choose a point ¥ in 8" — P which is in “general
position’ with respect to the loop @ and the triangulated space P. This condition
on the point y can be stated more precisely as follows: Let 4,411 be any seg-
ment of @ and ¢° any g-simplex of L, 0 = ¢ = n — 3. Denote the vertices of
¢* by By, -+, B,. Then the points A:, A1, t(Bo), #{BY), -+ - , t(B,} determine
a cartesian subspace of C", whose dimension is at most ¢ + 2 £ # — 1. Then
the point ¥ must not be contained in the union of such subspaces for all ¢ and
for all segments of . We next form the “join" of the point y with the loop ¢
because of convexity this join will lie in §7, and since y has been chosen in general
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position the join will not meet P. Hence we can contract the loop Q in 8" — P
to the point y.

(4.3) Theory of Qbstructions to Extensions of Mappings®

We shall content ourselves with a brief resume of those parts of this theory
which we shall need. Let ¥ be an arcwise connected topological space, and let
(X, A) be a triangulable pair. We assume given a fixed map

fid Y

and wish to determine whether or not it is possible to extend f over all of X.
We shall assume that ¥ is simple in all dimensions £ dim X. Although this
assumption is not essential it will considerably simplify the discussion. Choose
a fixed triangulation T = {{, (K, L)} of (X, A) and define K* = K"U L, where
K" denotes the n-dimensional skeleton of K. For convenience we will identify
each point z¢| K| with its image t(z) ¢ X.

DeFINITION 4.3.1. The map f is said to be n-exfensible if it can be extended
toamap | K" | — Y.

It can be shown that the property of being n-extensible or not is independent of
the choice of the triangulation T of (X, 4).

We now define the obstructions to the extension of f. The n* obstruction to

the extension of f, O"(f), is a subset of H"(X, A, w.1(¥V}} defined as follows:
(a) If the map f is not (n — 1)-extensible, then O"(f) is the empty set.
(b) Assume that the map f is (n — 1)-extensible. Choose an extension
f':) K** | = ¥ of f. The extension f' defines an n-cochain ¢”(f') with coefficients
in wa_1(¥) as follows: Let " be an oriented n-simplex of K. The orientation of
¢" determines an orientation of the boundary ¢ of ¢" in a natural way. The
map f'| " 16" — ¥ determines an element of x...(¥), since ¥ is (n — 1}-simple.
The cochain ¢"(f’) is now defined by assigning to «" the element of 7, (¥) thus
determined. This cochain is readily seen to have zero values on n-simplexes of L.
Moreover, it may be shown te be an n-coeycle. Hence it determines an element
of the relative cohomology group H"(K, L, x..1(¥})}, and hence an element
of the cohomology group H™(X, A, m,1(Y)). The obstruction, O*(f) is defined
to be the set of all such elements obtained by applying this process to all maps
| R | — ¥ which are extensions of . It can be shown that the obstruction O"(f)
does not depend on the choice of the triangulation T.

The following important theorem ean now bhe proved:

TaroREM 4.3.2. The map f is n-extensible if and only if O (f) contains the zero
element of HY (X, A, m.2(Y)).

Suppose next that the space ¥ is m-connected, m = 1. Then ¥ is simple in
all dimensions. Let N = dim K. The following is a direct consequence of Theorem
4.3.2.

5§ For a more detailed aceount of the material of this section, we refer the reader to
raferences [3], [10], and [12].
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TreoREM 4.33. If HP(X, A, 71, u(¥)) = 0form + 1 < p £ N, then any map
fiA — ¥ can be extended over all of X.

(4.4) Theory of Obstructions to Deformations of Mappings®

The theory of obstructions to deformations parallels closely the corresponding
theory for obstructions to extensions. Since no detailed aecount of this theory
has yet appeared in print, we shall summarize the salient features.

The problem to be considered is the following. Suppose that a mapping
fi(X, A) — (¥, B) of one pair into another is given. Does there exist a map
g:(X, A) — (¥, B) such that ¢(X)} C B and g = f? If such a map g exists, we
shall say that the original map f is deformable. If we add the additional condition
that g ~ f (rel. €), where C is a subspace of X, we say that f is deformable rel. C.
The following lemma shows the close connection between these two concepts.

Lemma 4.4.1. Let (X, A) be a triangulable pair. Then a map f1(X, A) — (¥, B)
is deformable if and only of it is deformable tel. A.

The proof is a simple application of the homotopy extension theorem.

Our main concern will be to prove the following two theorems. Let (X, A} be
a triangulable pair and (¥, B) a pair which is 1-connected and for which the
relative homotopy group m(Y, B} is abelian. Let N = dim (X — A}.

THEOREM 4.4.2. If the pair (Y, B) ws p-simple for 2 £ p £ N, and of
HYX, A, x(Y,B)) = 0for 2 = g = N, then any map f:(X, A) — (¥, B) is
deformable. *

TueoreM 4.4.3. If X is l-connected and HY(X, A, = (¥, B)) = 0 for
2 £ g = N, then any map fi (X, AY — (¥, B} iz deformable.

In order to prove these theorems, we will need to develop the general theory
of obstructions to defarmations. With very little additional work, we could
prove a great deal more than is stated in these two theorems. In a subsequent
paper we shall develop and use the theory for the case in which (X, A} is an
arbitrary compaet pair, and (¥, B) in addition to being 1-connected, is a com-
pact ANR.

Let T = (¢, (K, L)} be a definite triangulation of the pair (X, A). We shall
say that the map f:(X, A) — (¥, B) is n-deformable if there exists a
map ¢:(X, A) — (¥, B) such that f ~ g and gt( | K" |) C B. The deformation
inder of f is defined to be the greatest integer n such that f is n-deformable.
The concepts “f is n-deformable rel. C”" and “deformation index of f rel. C,”
where ¢ C X, are defined in an obvious fashion. Since (X, A) is triangulable,
it follows that f is n-deformable if and only if f is n-deformable rel A. It is easily
proved that all these cancepts are independent of the choice of the triangulation
T. Also, 1t is obvious that if fo, fi:1(X, A) — (Y, B) and fo =~ f, then fy is n-
deformable if and only if f; is n-deformable. In other words, the property of
being n-deformable is invariant under homotopies.

4 8ee A. L, Blakers, Bull. Amer. Math. Soe. 54, Abstract No. 413 (1948). This theory
has been described in lectures by W. Hurewiez and should appear in the forthcoming book
of Hurewicz and Dugundji on homotopy theory.
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First, we will develop the theory of obstructions far the case in which the
hypotheses of Thearem 4.4.2 hold, i.e., it is assumed that the operations of m (B}
on n,{Y, B) are trivial for 2 = p = N. Let f:(X, A) — (¥, B), and assume that
fl(] K™ |) € B, where 2 < n < N. Let o” be an oriented n-simplex of
K. Define d(f, ¢"} ¢ =.(V, B) to be the element determined by the map
g:(|a”|,|¢" |} — (¥, B) which is defined by ft. Since (Y, B) is n-simple, it
does not matter how the base points in |¢" | and B are chosen in defining
d(f, «"). We now define an n-cochain d"(f) ¢ C"(K, w.(¥, B}) by assigning to
any oriented n-simplex o” of K the element d(f, ¢"). It is obvious that ¢"(f) has
the value zero on the n-simplexes of L and that if 4"(f) = 0, then f is n-de-
formable.

LemMa 4.4.4. The cochain d"(f} is a cocycle.

Proor. It suffices to show that the coboundary, é4"(f}, vanishes on an arbi-
trary (n + 1)-simplex ¢*** of K. Let the vertices of K be ordered. This induces
an order for the vertices of any simplex of K. Let ¢"™ = <py -+« papa>, and
let afi)' denote the face opposite the vertex p; . Fach face of ¢"* has an orienta-
tion determined by the order of the vertices, and the partial mappings

Fl,, aH el
Fleid el 6l , p) = (Y, B, 4o)

determine elements o € #,(¥, B), which do not depend on the choice of the
vertex p of o(i; . We now have

(Mn(ﬁ)(gn+l) = dn(ﬁ(aan+l)
n+l .
= Z; (—1)"ay.
It now follow from {[2], (12.1.3) and (12.1.i)), since the map f is defined over
the whole of ¢”™, that 2 (—1)%a; = 0, which completes the proof.

We now define the n-dimensional obstruetion, D"(f}, to the deformation
of the map f:(X, 4) — (V, B). It is a subset of the cohomology group
HYX, 4, =¥, B)).

(a) In case the map fisnof (n — 1)-deformable, D™(f) is defined to be the empty
set.

(b} Assume f is (n — 1)-deformable. Then D"(f} is defined to be the set of all
cohomology classes {d"(f'}} for all maps f':(X, A} — (¥, B) such that
UK ) C Bandf .

It follows as a direct consequence of this definition that f is (n — 1)-deformable
if and only if D™(f) is non-empty, and if f is n-deformable, then 9"(f) contains
the zero element. We wish to prove the converse of this latter statement, l.e.,
if 0 ¢« D"(f), then f is n-deformable. This fact is a direct consequence of the follow-
ing lemma.:

Levma 4.4.5. Assume that f is (n — 1)-deformable, and u ¢ D*7'(f). Then given
any n-cocyele d whose cohomology class is u, there exists a map f': (X, A) — (¥, B)
such that f* ~ f, ft(| K" |) € B and ") = d.

Proor. This lemma is proved in precisely the same manner as the correspond-
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ing result in the theory of obstructions to extensions (see (3]). For, let the map
f be (n — 1)-deformable, and let fo, fi:(X, A) — (¥, B) be two maps which
satisfy the conditions fo | K*™ |} C B, fu( | K™™' |) © B, fo =~ fo = f,
ft| | K| = fit | | K**|. Then it is possible to associate with any homotopy
between fy and fi,

X, ) - F, B0,

which has the property that f;(z) = folz} = fi(x) for z e t{| K" | ), a “separa-
tion cochain” ¢* '(f,) e C" (K, L, 7.(¥, B)). This separation cochain satisfies
the equation

59'"_10;) = d"(fo) — d*(fu).

Furthermore, if ¢" " is an arbitrary element of the cochain group
C* K, L, z"(Y, B)), and fo:(X, A) — (¥, B) is an arbitrary map satisfying
the condition fot( | K" |) € B, then there exists a homotopy of fo

X, 4 —~(Y,B),0=r21,

sucP that fi(z) = folz) for z et(| K"7|), (| K*™" ) € B, and g"'{f,) =
A
By making use of this separation cochain, it is easy to prove the lemmma.
COROLLARY 4.4.6. The map f 1s n-deformable if and only if 0 e D).

The proof of (4.4.2) now follows directly from the corollary.

Next, we take up the case in which the hypotheses of Theorem 4.4.3 hold, i.e.,
(Y, B) is l-connected, m(¥, B) is abelian, and X is l-connected, but it is not
agsumed that = (B) operates trivially on the relative homotopy groups of (¥, B).

Let 3 be a base point. in B, and let f: (X, A) — (¥, B) be any map.

Lemma 4.4.7. If f is (n — 1)-deformable, n = 2, then f can be deformed to a map
f1(X, A) — (¥, B) such that f't( | K* |} C B and ft{{1K'|) = y.

Proor. Since K* is simply connected the inclusion map jo:| K'| — | K* | is
inessential, and hence can be deformed by a homotopy 7,,0 £ ¢ £ 1, to a map
41 with 51( | K'|) = ko, where ko is any vertex of the triangulation. The homa-
topy 7: can now be extended to give a deformation 1, of the identity map i,:| K | —
| K | which also satisfies the condition ¢(|K*"]) € |K™"| when n > 2.
Suppose now that f”:(X, 4) — (¥, B} is any (n — 1)-deformation of f. Then
it follows that f* can be deformed by composition with i, to give the map f*
required.

Now let ¢™ be an oriented n-simplex of K, and ¢1:(| 6" |, | 6™ |, ¥) — (¥, B, yo)
the map defined by f*{. Here ¢ is a vertex of ¢". The map ¢, determines an element
alf, ey exa (Y, B, yo} in an obvious way. It follows from the fact that
ft(|K'|) = %o, that it is immaterial which vertex v e ¢* we choose in order
to define d{f’, ¢"). An n-cochain d"(f") ¢ C"(K, r.(¥, B, yo)} is now defined by
assigning the element d(f’, ¢") to the n-simplex ¢". Again it is clear that d"(f")
has the value zero on an n-simplex of L, and that if 4*(f") = 0, then f, {and
hence f) is n-deformable.

Lemuma 4.4.8. The cochain d"(f') is a cocyele.
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The proof proceeds in precisely the same manner as that of (4.4.4}.

We are now in a position to define the n-dimensional obstruction, 0"(f), to
the deformation of a map f:(X, 4) — (¥, B), in a manner analogous to that
used in the previous ease,

(a) In case the map fis not (n — 1)-deformable, D"(f} is defined to be the empty
set.

(b) Assume fis (n — 1)-deformable. Then D"{f) is defined to be the set of all
cohomology classes {d"(f")} for all maps f: (X, 4) — (Y, B) satisfying the con-
ditions f* o~ f, f#( | K*™|) € B, and f't(| K' |} = y . (We have proved that
maps exist satisfying all three conditions.)

We now have the analogues of (4.4.5) and (4.4.6).

LeMMA 44.9. Assume that f is (n — 1)-deformable and u € D" (f). Then given
any n-cocycle d whose cohomology class 1s u, there exists a map f,:(X, 4) — (Y, B)
such thet fi & f, fit( | K" 1) C B, fit( | K" |) = yo, and &*(fi} = 4.

CoOROLLARY 4.4.10. The map f is (n — 1)-deformable if and only if D"(f) 1is non-
empty; the map f is n-deformable if and only if 0 € D"(f).

The proof of Theorem 4.4.3 now follows directly from this corollary.

ReMarEs 4.4.11. Although the definition of the obstruction @"(f) depended
on the choice of a triangulation T for the pair (X, 4), it may be shown that this
definition is actually topologically invariant and independent of the choice of T'.
The definition we have given for ohstructions to deformations could be gen-
eralized by introducing ecohomology groups with local coefficients as was done
by P. Olum (in a recent paper, [12]) for the case of obstructions to extensions.

(4.6) The Inverse Image of a Principal Simplex under a Simplicial Map

Let K and L be finite simplicial complexes, and f: X — L a simplicial map.
Let ¢" be a closed n-dimensional prineipal simplex of L (that is, ¢” is not a face
of a simplex of dimension >#) and let ¥ be an interior point of | ¢” |. Denote
the interior of | ¢" | by V and let P = f™(), U = f (V). According to a lemma,
of Pontrjagin (13} P is a cell complex of dimension £r — #, where r = dim K,
and hence P is triangulable. Also, there exists a homeomorphism onto,

P XV-oU,

such that fi(p, v) = o, for any points p ¢ P, v ¢ V. Now let 7" be a closed n-
simplex contained in V and denote f (") by A. Then 4 is homeomorphic to
P x 1", and sinee it is the product of triangulable spaces, it too is triangulable.
It does not follow that the pair (| K |, 4) is triangulable. However, we have
the following result:

Lemma 4.5.1. It is possible to choase " C V so that the pair (| K|, A) is
triongulable.

This lemma will be an easy consequence of the next lemma.

DEerINITION 4.5.2. Let X and L be simplicial complexes, f: K — L a simplicial
map, and "K, "L, the m™ barycentric subdivisions of K and L. Then the first
barycentric subdivision of f

1 f . 1 K — 1 L
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is defined by mapping the barycenter b, of each simplex s of K onto the bary-
center of the simplex f(s) of L, and extending linearly. The m™ barycentric
subdivision of f,

":"K — "L
is defined inductively. Obviously ™f is a simplicial map, homotopic to f.

Lemma 453, Let f:K — L be a simplictal map, and g: [ "L| — | L | the
canonical homeomorphism between | L | and | "L | (see below). Then there exists a
homeomorphism h: | "K | — | K | such that commutaiivity holds in the following
diagram.:

mpry R
|"K| = | K|
|7 s
"Li—=| L
LI L]
Proor. It is clearly sufficient to prove this theorem for the case m = 1. We

recalt that the vertices of 'K are the barycenters b, of the simplexes s ¢ K; sim-
ilarly for ‘L. The linear homeomorphism

¢g:|'L|—| L]

is defined by taking the unique linear extension of the identity map of the
vertices of 'L into | L | .

Let s be any simplex of K; we will define a certain interior point c, of s as
follows: Under f, s is mapped onto some simplex ¢ = f(s) of L. Let b, denote
the barycenter of ¢. Then s a f'(b,) is a convex cell, linearly imbedded in s.
We define ¢, to be the barycenter of s n f(b,). We now define a complex X, as

follows: The vertices of K; are the points ¢, . A collection of vertices ¢, , * < , ¢,
spans a simplex of K; if for some arrangement, s, , « - - , §, of the corresponding
simplexes, it is true that s; is a face of s;:41,4 = 0, -+ -, ¢ — 1. Then there is

a natural homeomorphism k, :K, — K which maps each vertex ¢, of K; onto
the point ¢, ¢ | | €| K |, and is linear.

We now define a 1 ~ 1 simplicial map k, :'K — K, by setting hu(b,) = o
for any simplex s of K. Then %, is a homeomorphism of | 'K | onto | Ky | . Finally,
we define a simplicial map f, : K, — 'L by setting fi(c.) equal to the barycenter
of the simplex f(s). Now consider the following diagram:

PR |2 | K| K|

A A

'L L]
It follows from the definitions of the various maps involved that commutativity

holds around both the square and the triangle. Define A = Ak . Then h has
the required properties.
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We can now supply the proof of Lemma, 4.5.1. Let *f:"K — L be the second
barycentric subdivision of f, and let h:’K — K, g:’L — L be the homeomor-
phisms of Lemma 4.5.3. Let +” be chosen so that it is the image under ¢ of an
n-simplex of *L. The map A now furnishes the desired triangulation of (| K |, 4).

(4.8) An Extension of the Simplicial Approximation Theorem

Let X* = X u&” be obtained by adjoining an n-cell to X, and suppose a
map fo : K — X* given, where K is a finite simplicial complex.

LemMa 4.6.1. There exists @ map f (K — X*, and a elosed n-cell E contained
in the interior of 8", having the following properties:
(1) The pair (K, L) is triangulable, where L = ' (E).
(2) 1 | L is a map which s simplicial with respect to some triangulation of L and E.
(3) There is a homotopy f. 1K — X* between f, and f, , which has the following
praperties:

(a) f(fi's™ € &%, £ <1
{b) Felx) = falz) if fo(x) € X, 0=st=1

Proo¥. By definition, there exists a map ¢: (E", §*7) — (X*, X) which is a
homeomorphism of E* — §" ' onto X* — X. Choose four real numbers p; , - - -
pyWhere 0 < py < p2 < p2 < ps < 1, and let

Di= {zeE" |||z} gp.-}}

E; = ¢(D)

Then E: C E; C E; C E; C &", and each E, is a closed n-cell. Assume that
F, is triangulated so that E,, E,, E; are subcomplexes. Let I/ = interior of
E., V=X*—-FE, U = ', V' = f" (V). Then {U’, V'} is an open cover-
ing of K. Subdivide K barycentrically so that the mesh of K is less than one
half the Lebesque number of the covering {¥/', V'}. It then follows that the
star of any vertex of K is contained entirely in one or the other of the sets U,
V’; hence the image under fo of the star of any vertex is contained in either
UorV.

Let M be the closed subcomplex of K spanned by all vertices of K whose
stars map into U. It follows easily that

foi(B) D M D [ (Es).

A
A

Choose a simplicial map
q M- E{

which is a simplicial approximation to fo | M; it might be necessary to further
subdivide M in order to define g. Let B2 = fo'(By), ¥ = fo*(X* — Int E;). Then
E:, Y, are closed disjoint subsets of K. Let

oK — [0, 1]
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be a continuous “Urysohn function” such that ¢(z) = 1 for = ¢ E; and o{z) = 0
forz e Y. Let
F:M xI->E,
be the homotopy between fu | M and g. Define a new map
F:M XI-—-E,
by Fi(z, t) = F(z, te(z)). Extend F’ to a map
Fl:EXI—X*

by setting F'{z, t} = fo(z) for x ¢ K — M. Clearly F’ is continuous, and is a
homotapy of fo . Define

fI:K — X*

by filz) = F’(z, 1). Then fi'(E)) = ¢ {(E) = L is a subcomplex of K, and it
is readily seen that all of the conditions of our theorem are satisfied if we take
E=E.

{4.7) Two Important Lemmas
Let (X; ¥, Z) be an arbitrary triad, and let @ ¢ 7,(X; ¥, Z). Choose 2 map
fHESESTLES) - (X, Y, 2)

which represents «. Assume that E* can be decomposed into the union of two
closed sets A and B,

E'=AuB
such that
EYN c A (Y,
E' Cc B Cf(2).
Let C = AnBand W = Y n Z. Then the map f defines maps
(B, C)— (2, W),
Jrc - w.

In this section we prove the following two lemmas.

Lemma 4.7.1. If the map [’ is deformable rel C, then & = 0. (If C is a subcom-
plex of B the condition “rel C can be dropped.)

LemMma 4.7.2. If the map [ can be extended to « map B — W, then 8,.(a) = 0;
here B, is the homotopy boundary operator

Biimy( X3 Y, Z} — we (Y, W).

These simple lemmas are the key to the proof of the main theorems.
Proor oF LEmma 4.7.1. Let

g;:(B, C) - (Z: W): 0

A
A
-P—‘
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be a deformation of f rel C; this means that
p=f ¢|lC=alC pBCW.
We define a homotopy
fo(BG B EEY) - (X3 Y, D), 0

A
lIA
J—‘

by
f‘lA':flA: fliBzgz-
Then f, = f, hence f; =~ f. Also f,(E%) C ¥, and fi{E*™") € W, so that fi is a map
fu(BL B — (Y, W)

and therefore determines an element v of m (¥, W), whose image fiin(y) in
(X, Y, Z), (see (3.5)), is the element «. It now follows from the exactness of
the upper homotopy sequence of (X; Y, Z) that « = 0.

Proor or LEMMA 4.7.2. Let ¢:B — W be an extension of f:1C — W, e,
g l C = f". We define

hE'— Y
by
Rla =514, R|B=g

Let F:(ES™", 87%) — (Y, W) be the map defined by f. Then F is a representa-
tive of 8 (a). Let

G (BE, 877 o (B, 8°7h, 0=t£1,
be a homotopy such that

folz) =z, zeBY

i(x) = 2, zeS87 tel,

WETY < B
Such a homotopy of the inclusion map #:(EY™, 877 — (B §'7") clearly
exists. We now define a homotopy

Fo(BEY, 8T - (Y, W)
by setting
Fyz) = Rliz)], 0<t=1.

Then Fo = F,and hence F) ~ F. But Fi(EY™") C W, and therefore 8.(e) = 0.

(4.8) A Normalization Process for Certain Triad Maps

We wish to apply the two lemmas of the preceding section to prove Theorems
I and II. However, this is impossible in general without first making a homo-
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topic deformation of the triad mapping which represents a given element of the
group m{X*; 8", X). We will call this preliminary homotopic deformation the
normalization process.

In this section we shall use the same notation as in (4.1), X* is the space
obtained from the space X by adjoining the cells &7, 87, --- ;8" = Ug?,
& = Ug? = 8" n X, and &" is assumed arcwise connected. Let « be any element
of 7, (X*; 8" X}, and

f(E% BY ESY) — (X% 87, X)

any map representing o.
By applying Lemma 4.6.1 to each of the cells&l, &7, <+« , we may deform
f into a map

Hi(ES B EET) - (X% 67, X)

having the following properties: For each suhseript 4 there exists a closed n-
simplex E; contained in the interior of 67, such that f1*(E;) is a subcomplex X ; of
E°, and such that f, | K. is a simplicial map. Now we may apply Lemma 4.5.1.
Choose an n-simplex ¢ contained in the interior of E;, such that f1'{e7) is a
subeomplex of K, and henee of E® At this point we introduce some further
notation. Let y: be an interior point of ¢f , and ¥ = Uy, . Then Y is a closed,
discrete subset of X*. Let

P=fi(¥); P =Pas8" Q=f'lUed); @ =005,
A=QUEY, B=CHE'-Q); C=AnB=@nBUCKET — Q).

Note that all of these subspaces of EY are closed in E®. Next, we apply the
lemma of Pontrjagin, mentioned in (4.5), to the simplicial map K; — E; de-
fined by f1 . It follows that P iz a cell complex of dimension £¢ — », and P is
a subcomplex of dimension £¢ — n — 1. Furthermore, there is a homeomor-
phism between the pairs (@, @) and (P X ¢", P’ X ¢"), where ¢” is an n-sim-
plex. This implies that the pair (P, P') is a deformation retract of the pair
(Q, @), and hence (, Q) and (P, P) have the same homotopy type. Finally,
@, @', A, B, and C are all subcomplexes of E*.
Now let

et (X*; 8% X) - (X% 87, X)), 15¢=2,
be a l-parameter family of continuous maps having the following properties:
¢1 = identity,
el X = o] X,
ey = ¥, t=1,2--,
@8 — a7) C 8 — of,
w8 — a7) = &,

e(e?) = &7 .
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It is obvious that such a homotopy of the identity map exists; each simplex
of is allowed to “expand” uniformly keeping ¥ fixed, until it exactly covers
all of &7, and & — ¢! is “contracted” into &" during the process.

Define f{l =t £ 2) by
f t = <0:f1 .
Then f, is a homotopy of fi, and we shall call f; a “normal form” for a repre-
sentative of the homotopy class «. It is not asserted that there is a unique
normal form; any normal form will suffice for the proofs of the main theorems.
(4.9) Proof of Theorem I

Let (X*; &", X) be the triad deseribed in (4.1), satisfying all the hypotheses
of Theorem I, with the pair (X, §") assumed to be m-connected. We will prove
that if & e 7, (X*; &", X) and ¢ < m + n, then a = 0. Let

FHES BT BT — (X% 87, X)
be a representative of a; we assume that we have applied the normalization
process of the preceding section, and f is in normal form. Let P, F, Q, @', 4,

B, C, have the same meaning as in section {4.8). By using the theory of obstruc-
tions to deformations we will show that the map

7':(B,C) > (X, &)

defined by f, is deformable. By Lemma 4.7.1 this will suffice to prove & = 0.
The obstructions belong to the groups H'(B, C, »;(X, &™), 2 2 7 = ¢ <
m + n. We will show that these groups are all trivial. It will then follow from
Theorem 4.4.2 in case n = 2, and from Lemma 4.2.1 and Theorem 4.4.3 in
case n > 2, that the map f' is deformable, as was to be proved.
1t follows from the excision axiom (see Eilenberg-Steenrod, [5]) that

HYB, C, (X, &") ~ HU(E®, 4, »{X, &).

It follows from the exactness of the cohomology sequence of the triple
(B2, A, ESY) that

HYUE®, A) =« H™Y(A, ESH.
Next, using the excision axiom again
H7W4, BT = H7'(Q, @),
and since (@, @), (P, P’) have the same homotapy type
H7YQ, @) =~ H'(P, P').
Combining these isomorphisms, we have
HY(B, C, v{(X, £M) == H\(P, P!, (X, &")).

Since dim P £ ¢ — =, it follows that these groups vanish if § — 1 > ¢ — n;
ie., if > ¢ — n 4 1. They vanish if ; < m, since then the coefficient group



196 A. L. BLAKERS AND W. § MASSEY

is trivial. Consequently if ¢ < m + n, then H(B, C, »#X, 8”)) = 0 for 2 =
J = ¢ and the proof is complete.
{4.10) Proof of Theorem II

Let (X*; £", X} be as in section (4.1), satisfying the hypotheses of Theorem
II. We shall prove that if a € wgqu(X*; 8", X), then 8,(a) = O for
2=gsm+n—1. Let

(B BL B > (X% 87, X)

be a map representing o and in normal form. By Lemma 4.7.2 it suffices to
show that the map

fre—e

defined by f, can be extended to a map of B into °. We shall use Theorem 4.3.3
to show the existence of sueh an extension.
It follows from the argument used in the preceding section, that

HY(B, C, 7;4(8™) =~ HY(P, P!, 7 ia{™).

Because dim P = ¢ — n + 1, it follows readily that the hypotheses of Theorem
4.3.3 are satisfied when ¢ = m + # — 1, which completes the proof.

ParT 5. APPLICATIONS
{b.1) Freudenthal’s Einhéngung Theorems

Consider the triad (8"; EY, EZ) and assume n = 2 (actually, the casen = 2
is uninteresting). Then we may apply Theorem I to this triad. Since m is clearly
equal ta (n — 1), we conclude that the triad (S"; B}, EZ) is (2n — 2)-con-
nected. Therefore, from the exactness of the homotopy sequence, the homo-
morphism

deimg(BE , 8™ = 1g(S”, BN

is an isomorphism onto for 2 £ ¢ £ 2n — 3, and iz a homomorphism onto for

¢ = 2n — 2. This result may be shown to be equivalent to part of Freudenthal’s
results, as follows: Let

Eimpy(8™7) — 75(8")

denote the “Einhingung” homomorphism as defined by Freudenthal. Then
in the diagram

Tp1(8™ ) __‘E‘.'_H, 7, (8

‘T
S T ca WK RS LY L W

the boundary homomorphism 4, and the homomorphism %« induced by the
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corresponding inclusion map, are isomorphisms onto, and the commutativity
relation

1.1- = k*Ea

holds. Thus the homomorphism ¢ 15 equivalent to the Einhingung, and the
statement about i+ above is exactly the content of the easier part of Freuden-
thal’s first two theorems.

(6.2) Some General Remarks on Applying Theorems I and II

In the preceding example, involving the triad (S"; EI, EI), it was quite
obvious how our theorems should be applied. This is not always so, as the
reader will see from subsequent examples. It is the purpose of this section to
llustrate and discuss this point.

Let the space X* be obtained from the space X by adjoining a single cell &7,
as described in (4.1). Suppose we wish to determine the relative homotopy
groups of (X*, X). The boundary, 8", of &" is the continuous image
of an (n — 1)-sphere, but of course it need not be homeomorphic to an (n — 1)-
sphere. It may even consist of a single point. Suppose we choose a closed n-cell,
¢", contained entirely in the interior of &%, and let X’ = ClL(X* — ¢"), ¢" =
X’ n ¢" = boundary of ¢". Then it is readily seen that X is a deformation re-
tract of X’, and that the pairs (X*, X) and (X*, X’) have the same homotopy
type. Thus the relative homotopy groups of (X* X) and (X*, X') are iso-
morphic.

One method of attacking our problem would be to consider the homomor-
phisms

ilc:'.'rq(ﬁﬂ, 8“) - ?rq(X*) X)!
fyeimgla”, &%) — m(X*, X1,

where ¢, and 4; are inclusion maps. This leads naturally to the consideration
of the exact sequences and the homotopy groups of the triads (X*; &8, X) and
(X*; ¢, X") respectively. Now if we wish to apply Theorem I, we have to
consider the hometopy groups of the paws (X, &") and (X', ¢") respectively.
In general, these pairs will nof have the same homotopy groups, and which
pair it is most convenient or useful to consider will depend on the particular
problem at hand.

Naturally, the same kind of disecussion applies to the case where we adjoin
several cells simultaneously to the space X.

(6.3) The Homotopy Groups of a Space Consisting of Several Spheres
with a Paint in Common

Let $; be a connected cell complex consisting of a single vertex ¢ and & #-
cells, 67, -~ , or , where k may be finite or infinite. 8¢ may be regarded as a
spaee consisting of a collection of n-dimensional spheres 8; u 83 u---u 8¢,
intersecting in the unique vertex, ¢°. If the number of spheres, k, is infinite. we
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assume that 8 is topologized so as to become a CW-complex in the sense of
J.H.C. Whitehead, [20]. It is important to determine as much information as
possible about the homotopy groups of 87 for the following two reasons.

(a) If K is an arbitrary CW-complex which. is (n — 1)-connected, then J. H. C.
Whitehead [20] has shown that K has the same homotopy type as a CW-complex
L with the property that the n-skeleton, L*, of L is isomorphic to 8 for some
value of k. Therefore the determination of the homotopy groups of the space
L™ = & is a first step in the determination of the homotopy groups of K. This
point is illustrated by some recent work of J. H. C. Whitehead, [21], in which
he determines the third homotopy group of a simply connected complex, or,
more generally, the (n + 1)® homotopy group of an (» — 1)-connected complex.

(b) Let K be a CW-complex, and K" its n-skeleton. Then, as was remarked
in the introduction, it is important to study the homomorphism

daimg(8", 8") = 1 (K", K™)

where 8” is the union of all the n-cells of K. This requires in particular that
we determine the homotopy groups (6", £"). By applying the process de-
scribed in (5.2), we see that we may modify our problem slightly and assume
that the space &” is a union of homeomorphs of E®, the unit n-cell in C”, all
having a single point in common. Also, §" is a union of (n — 1)-spheres having
a single point in commuon, ie., 8" = 87" for some value of k. Since the space
&" is contractible, it follows that

7,(8", £7) A mp(87).

A necessary tool in the determination of the homotopy groups of the spaces
$; is a general theorem of G. W. Whitehead about the homotopy groups of
the union of two spaces with a single point in common. Let 4 and B be arcwise
connected spaces, ao € 4, b ¢ B, and let A V B denote the subset (4 X by) U
(@0 X B) of A X B. Choose the point a; X by as base point for all hemotopy
groups involving A X Band A V B. Define maps 24 — A V Band po:B —
A4 V Bby m) = (2,b), # (y) = (a0, y) for z € A, y ¢ B. It is an elementary
matter to prove that for » = 2, the homomorphisms

m-:fr,.(A, aﬂ) —* Trn(A- v B))
,u.g-:fr,,(B, bo) — ‘qu(A v B)1

are isomorphisms into, and that the image sub-groups are direct summands
of r.{A v B). Let

dwa{A X B,AV B) a4 v B

denote the boundary operator. Then we have the following:
TaroreM 53.1. If n = 2, then the homomarphism 3 1s an isomorphism wnto,
and wa(A V B) splits up into the direct sum,

#wa(A) + pgewa(B) + dwa{d X B,A V B). ~
For the proof, see [186].
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Nowlet A =8¢, (n > 1,k > 1,k < »),and B = S; . Then we can iden-
tify A Vv B with 87 . Recall that 8;—, is a cell complex consisting of (k — 1)
n-eells, et , <+, apy , and a single vertex, ¢, and consider S¢ as a cell complex
consisting of a single n-cell " and a single vertex, r". Then 8i—; X Si is a cell
complex consisting of (k¢ — 1) cells of dimension 2, af X 77,87 X 77, -+,
oty X " k cells of dimension , af X 7°, -+, gy X 7, &’ X 7", and a single
vertex, @ X 7. Let &, 4 = 1, .-+, k — 1, be a closed 2n-cell (homeomorph
of E*) such that

n n
& Col X 7

in

and such that the boundary of &%, denoted by &7°, meets the boundary of
a? X " in a single point, the vertex ¢° X 7. Let

g = a"u MU .- u B,
g =& uétu - u g,
X*=SJ:‘-1>< S}::

X = ClX* — &),

Then (X*, X) has the same homotopy type as (8i—1 X 87, 81 V S¢). Further-
maore, it is readily seen that & is (2n — 2)-connected, X is (r — 1)-connected,
and hence (X, &) is (n — 1)-connected. Therefore, by Theorem I, the triad
(X*; 8™ X) is (3n — 2)-connected, and by Theorem II, the homomorphism

Brimpaa(X* 87, X) — m, (87, £7)
iz trivial if 2 £ p = 4n — 3. Therefore
“’:‘:"rﬂ(‘ggnl 82") - #p(X*J X)

is an isomorphism onto for p < 3n — 2. If now we apply (5.3.1), we obtain
the following result:

LeMMA 5.3.2. The group m,(S¢) is isomorphic to the direct sum of the three groups
182, T5(SE), and mpa(8%", 87, for 2 < p < 3n — 3. Clearly, 1, (8", &™) &
(82 =2 mo(Sit ).

By using this lemma, we can determine the groups =,(8.') by means of an
induction on k. The final result is stated most neatly in a slightly different form,
which also includes the case where k is infinite. Tet 8 = SPu Sy u -+ u 8¢
as before, where now k& may be infinite. Let

i85 — 8¢
be an inclusion map, and for any two indices ¢, 7, ¢ < j, define 2 map
@{j:s‘ln—l — S]?

as follows: Coonsider $* " as the boundary (E* X E") of the 2n-cell E* X E".
Let

I‘/,;:Em — S:
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be a map such that y(E") = o the single vertex of the complex
87, and a,b,—[ (E® — E") is a hameomorphism of E* — E" onto 8! — «°. Define

vilz), (z,¥) e E" X E",
eiilz, y) = . )
RE)N (x,y) e " X E".
Then we know that

poimg(87) — 7y(8¢)

15 an isomorphism into, and the image group is a direct summand, for all g.
Tt follows from the above discussion that

go"j‘-:‘jrq(.sﬂm_l) —F wq(&:‘)

is an isomorphism into for ¢ £ 4n — 3, and that the image group is a direct
summand for ¢ £ 3n — 3. We now state our result as follows:

Turorem 5.3.3. For g £ 3n — 3, the group =,(8¢) is the (weak) direct sum of
the groups pom (87 and @im (ST for all values of i and §, i < j.

The proof is made first for the finite case, by an induction on %, and then
the infinite case is proved by using the fact that any element a of =,(8¢) has a
representative map

fi8t -8

such that f(S7) is contained in a finite sub-complex of §; .

CorOLLARY 5.3.4. For ¢ £ 2n — 2, the group = {85) i3 the direct sum of the
groups g {S7).

It is clear how these results can be generalized to the case of the union of
spheres of different dimensions all having a single point in common.

In a subsequent paper, we will determine the groups mi,—s(8{) for the case
< w,

(6.4) Extension of Some Recent Results of G. W. Whitehead

It is the purpose of this section to discuss the results in a recent paper of
G. W. Whitehead [17], and to show how the range of validity of some of his
thearems can be extended by one dimension. Using the notation of this paper,
X is an (n — 1)-connected space, n > 1, and A is a set of generators for the
group r.(X). For each & € 4, let E2™ be an (r + 1)-cell with boundary 82 :
let y. be a fixed reference point of S%, zo a fixed reference point of X, and let
fai(8%, 42} — (X, z) be a mapping representing the element a ¢ w,(X). Sup-
pose that U,.., B2*" is topologized so that the cells 2™ are mutually separated,
and let E be the space obtained from U, Eef by identifying all the points
Y¥a to & single point 3o . Let S be the subset of E obtained from U SZ by the
above identification. Then the mappings f. together define a mapping f: (S, yo) —
(X, x5). Let X* be the identification space obtained from E u X by identifying
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each point y e S with its image f(3) ¢ X. Then X may be considered as a sub-
space of X*, and the identificaticn induces a map

F:(E, 8) - (X* X), Fl8s =1

It is easily seen that X* is n-connected. Let E.”" be a cell “concentric” with
and contained in E2*, with E.™ n 82 = vya.; let U BT = B,
Upe B2 = 85 and let X' = CI(X* — F(E"). Then X’ has the same homo-
topy type as X and there exist homomorphisms as shown in the following
diagram,

B, §) ~Lr, (X% X)

en E

(B, 8) 5 mlX*, xh

where F., Fy. are induced by F, j« is induced by an inclusion map, and ¢« is
induced by a homeomorphism ¢:(E', §') — (E, S) which is a “projection”
from the common centers. Moreover, commutativity holds in the above diagram
in the sense that P« = joFepe, and ¢+, j+ are isomorphisms onto. Hence the
homomorphisms Fv and Fys are equivalent. We shall now prove the following
theorem, which is an extension of the result on p. 208 of [17] by one dimension.

TuroreM 5.4.1. (a) F. is an isomorphtsm onto for i < 2n. (b) If i < 2n, then
m(lE', §3 is the weak direct sum of the subgroups pa(mi(E2", S2)), where p* =
FlE.

Proor. We shall prove (a) by showing the corresponding result for Fy. . Let
F(E') = &, F(8) = &. Then since X’ is (n — 1)-connected and § is (n — 1)-
connected, the pair (X!, &) is also (n — 1}-connected. In addition we have the
following homomorphisms from the exact sequence of the pair (X', &):

C s rald) s r(XY) > oK, &) - 0.

Since 4. is clearly onto, it follows that x.(X’, &) = 0, so that (X', &) is n-con-
nected. Now apply Theorem I to the triad {(X*; &, X'); we conclude that this
triad is 2n-connected. It follows that the natural homomorphism

w8, &) — m(X¥, X')

is an isomorphism onto for ¢ < 2n. But F, is a homeomorphism, F,:(E’, 8} —
(6, &), and hence Fy. is also an isomorphism onto for ¢ < 2n. This proves (a).

Since the space E is obviously contractible to a point, it follows that
rin(E, 8) &= mi(8). Part (b) of the theorem now follows by applying Corollary
5.3.4 to the space 8.

It follows from this result that some of the theorems of (17] can be extended
slightly; for example, Theorem 2 is still true for n = 3, and Theorem 4 can be
extended to read, “If n > 2, then H, (7, n} &7 w/2x.
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(6.5) The Generalized Hopf Invariant

In another recent paper, [16], G. W. Whitehead has defined a generalization
of the Hopf Invariant for maps of a sphere onto a sphere. By using our Theorem
5.3.3 applied to the space 87 = 8" V 8", the definition of the generalized Hopf
Invariant can be extended by one dimension, and thus applied to new cases;
in particular, it can be shown that 75(S*) # 0.

An essential part in the definition of the Generalized Hopf Invariant is played
by Theorem 4.17 of [16]; according to this theorem, if n < 3p — 3, then

a(S* V 8) 22 2,(S%) + 7.(S?) + 1 (S

However, from Theorem 5.3.3 above, we see that this isomorphism alse holds
in case n = 3p — 3. Using this fact, the Generalized Hopf Homomorphism,

Hix (§) — n(s‘k_l)

can be defined for » = 3r — 3 by exactly the same method used to define it
for n < 3r — 8 in section 5 of {16]. It can then be verified that Theorem 5.1
of {16] is still true if n = 3r — 3. For the case p = 2k — 3, Corollary 5.14 needs
to be reworded slightly. A general statement of the extended Corollary 5.14,
which is true for all values of p £ 2k — 3 reads as follows: “If @ ¢ 7»(Riy)
and the Einhdngung of w(e) is not zero, then J{a) =< 0.7

In particular, for the case p = k = 3, it is known that m(R,) is infinite eyclic,
wimy(Ry) — x3(S7) is an isomorphism onto, and the Einhiingung of & generator
of #3(S") is not zero. Hence if we chaose @ to be a generator of #35(Ry), it follows
that J{a) is 2 non-zero element of =(S%). Since 7(S') X 0, it follows that
m(S8*} is not a eyclic group, (cf. [11], corollary 6).

ArpEnmix A. Tue Homorosy Groups oF A THIAD

It is reasonable to ask whether or not the concept of a homology group for
triads would have interesting consequences. In terms of singular homology
theory, it is natural to define the n~dimensional singular homology group for
the triad (X; A, B) (where A n B need not be assumed non-vacuous) to be the
group H.(X; A, B) = H,(8(X), 8(A) u §(B)) (see [4]}. The treatment for the
corresponding homotopy groups can be paralleled to define upper and lower
exact sequences for the triad (X; 4, B). The upper sequence is

= H(X; A, By >H, (A, AnB)—> H, (X,B) > H.(X;A,B)—> --- .
In case the homology groups are invariant under the homomorphism induced
by the excision map (4, 4 n B} — (4 u B, B), it ean be shown by a purely
algebraic argument that H.(X; A, B) &= H.(X, A u B) and also that the ex-
cision map (B, A n B) — (4 u B, A) induces an isomorphism of the relative
homology groups. In terms of Cech homology groups (based on finite open
coverings, with X compact Hausdorfi and A and B closed in X) the role of the
n-dimensional triad homology group is played by the corresponding group of
the pair (X, A v B) and is comparatively uninteresting. The singular homology
groups for triads seem to find an essential use in a discussion of cup products
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between the singular homology groups of the pairs (X, 4), (X, B) associated
with an arbitrary triad (X; A, B). These ideas will be taken up in detail in the
forthcoming book of Eilenberg and Steenrod {5].

ArpEnpix B. Tur HoMmorory GROUBS OF AN N-AD

An obvious direction of generalization of the bomotopy groups of a triad
is to attempt to define homotopy groups for an n-ad, (X; X1, Xo, -+, Xa)-
This can be done by generalizing any of the definitions used for triad homo-
topy groups, and homotopy groups «(X; X1, -+, X.1) can be defined for
i = n. These groups are abelian for ¢ > n but need not be so for ¢ = n. They
have many properties which are analogs of the corresponding properties for
the triad groups. In particular, they have operators in the group

‘l'I']_(Xl n X‘j n---nN Xn—l),

and each n-ad has (n — 1) exact sequences, whase homomorphisms are operator
homomorphisms. The first exact sequence is

=X X, - ,Xn.—l)—’n—l(xl;X1ﬂX2,“‘ ;Xlnxn—l)
= r(X; Xy - ’Xn—l)_’frf—l(x;xlaxi‘: v Xa ) > -

and the others are similarly formed. At the present time we know of no useful
applieation for these groups and sequences.

AppENDIX 0. A GENERAL THEOREM ON THE DEFORMATION
oF Trisp MarpiNGs

By exactly the same method as that used to prove Theorem I above, it is
possible to prove a more general deformation theorem.

Let (X*; 8", X) be the triad of (4.1), obtained by simultaneous adjunetion
of the n-cells &, &2, - - -, to the space X, with 8" = Ug!, &" = 8" n X. As-
sume that & is arcwise connected and that the pair (X, £} is m-connected,
m = 1. Let (K; L, M) be a triad consisting of an r-dimensional complex K
and two subcomplexes L, M, and let H*(K, L, 7,(X, §™)) = 0 forp > m. (We
do not need to assume L n M = 0, s0 that (K; L, M) may not be a triad in the
striet sense of our definition in (1.1} above.)

TrooreM. If r < m + n and the pair (X, &%) ts simple in all dimensions = 7,
then any map

for(K; L, M) — (X* 8%, X)
s homotopic o @ map
fi(K; L, M) — (X*; 8%, X)
which satigfies the conditions
fE) c8, filM) C &N
We shall not give the proof since it parallels that of Theorem I at every step.
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As an example of the application of this theorem we shall give an alternate
proof of a lemma of Spanier ([14] lemma (15.1)}. This lemma is the crucial
step in the proof of exactness for the cohomotopy sequence of a pair. Let K
be a finite simplicial complex of dimension < 2n — 1, and denote by K the
join of K with a point P. Then the cohomology groups H*(X) vanish in all
dimensions, since K is contractible.

LEMMma. Given any map

foi(B, K) — (8", E2M)

there exists a homotopic map fy such that fi(K) < EIY and fi(K) < 8". This
lemma is proved by considering f; as a triad map

fo:(B; 0, K) — (8" B2, BZTY,

and applying the theorem above. Spanier’s lemma (15.1) is now a direct eon-
sequence. For we may consider a given map a:(X, K) — (8™, p) as a map
(K, K) — (8", E**YY and apply our lemma.
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