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Introduction

The principal purpose of this paper is to state and prove a rather general
theorem (Theorem I below) about triad homotopy groups. This thearem is a
considerable generalization of the main theorem previously proved by the authors
on this subject [1, Theorem I)*, but its proof is in many respects simpler than
that of the previous theorem.

The notation and terminology of the present paper are the same as in [(1].
For a proper understanding of this paper, the reader should be familiar with
almost all of parts 1, 2, and 3, and the following sections of part 4 from [1]:
Sections 4.1, 4.2, 4.3, 4.4, and 4.7.

The main theorem is stated in Section 1. En Section 2 several necessary lemmas
are proved. The proof of Theorem [ is given in Sections 3, 4, and 5. The remainder
of the paper is devoted to several applications of Theorem I. Among these is
Theorem III, which generalizes Theorem IT of [1].

1. Statement of the main theorem

Let (X; A, B) be a triad which satisfies the following eonditions:

{a) A, B, and A n B are all arc-wise connected.

(b) X = (Int 4) v {Int. B).

{c) (A, A n B) is m-connected, (B, A n B) is n-connected, and m = n = [,
{Clearly, no generality is lost by assuming m = n, since this condition
may always be satisfiled by a proper choice of notation).

{d) In case n = 1 and m > n, we assume either that m(B, 4 n B) is abelian,
or that (4, A n B) is simple in dimension m + 1. In case m = n = 1,
we assume that (B, 4 n B) is simple in dimension 2.

It is clear that condition (d) is satisfied if 4 n B is simply connected.

Toeorem L. If the hypotheses (a)~(d) hold, then the triad (X ; A, B) 45 (m + n)-

connected,

One of the principal tools for the prooi of this theorem is Lemma 4.7.1 of [1].

Before proceeding with the proof, we shall develop several auxiliary lemmas.

2. The supplement of a subcomplex

Let K he a simplicial complex and L a subcomplex. Denote by (K’', L) the
first barveentric subdivision of (K, L).

DerFINITIGN. The supplement of L in K, denoted by K + L, is the subcomplex
of K! spanned by all of the vertices of K — L';i.e., a simplex of K’ belongs to
K + L if and only if none of its vertices is in L.

} Numbers in square brackets refer to the bibliography at the end of the paper.
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It follows that every simplex of K’ that is not a simplex of L' or of K + L,
1s the join [8, p. 202] of a simplex of I/ with a simplex of K + L.

We will identify the spaces | K| and | K'|, and the spaces | L] and | I/ |.
Since every simplex of K’ is the join of a simplex of I/ and a simplex of K + L,
it follows that there exists a homeomorphic imbedding

hi|K|—|L|#|K+ L]

where the symbol “«”" denotes the join operation. By means of this homeomorphic
imbedding we can introduce coordinates in | K | as follows: a point z ¢| K|
has coordinates (x, ¢, y) where x ¢ | L), ye | K + Lland 0 2 ¢ = 1. If £ = 0,
then (z, ¢, y) e| L, whileif ¢t = 1, then (x, ¢, y) ¢ | K+ L.
Let
NL) = [ty e K]0t < 3,

NK+L) =z t,f)e| K[|} <t =1].

Then N(L) and N(K + L) are disjoint open neighborhoods of | . | and | K + L |
in | K [ . Define

N(L) = CIN(L) = {(z, , ) e [ K||0 2t = &,
NK +L)=CINK +L)y={{z,;t, e | K||; =t <1}

Then | K| = N(L) u N(K <+ L). Furthermore, | L | is a deformation retract’
of N(L) and | K + L1 is a deformation retract of N(K + L).
For later use we define a deformation

¢,:|K]—>|K1, 12722
of | K | onto itself, as follows:

x, (2 — 7), ¥),
@0 sy = | BT
{x, 1 — v 4 tr, ¥},
Then ¢, = identity, ¢.(2) = zif 2 ¢ |L|orz e |K + L|, ¢(N(L})) C L, and
¢(N(K + L)) = | K| — | L|. We.will call ¢, the deformation of | K | on itself
toward | L | .
We will make use later of several addltlonal properties of K <+ L. These are
contained in the following lemmas:
LEMMA 1. Let A be an arbitrary subcomplex of K. Then

A+ Aal)y=A40n0(K + L).

Proov. Let K', A’, L' denote the barycentric subdivisions of K, 4, L respec-
tively. Then it is readily seen from the definition of supplement, that a simplex
of K’ belongs ta A + (A n L) if and only if all its vertices are in 4" but not in
L’. But this is precisely the condition that the simplex belong to A n (K + L).

=
liA
I
Lo

L
A
1A
y—

? Throughout this paper we use the term ““deformation retract in the strong sense, i.e.,
points of the retract remain fixed throughout the deformation.
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Let M, denote K =+~ L, and My, = A + (AnkL) = Ana (K + L). Then
NM) C|K|and N(M,) C[A].

Lemma 2. N(My) = | A | n N(M)).

Proor. Let h: | K| — | L1* M, | as before. Then it is readlly seen that the
map k|| A | gives the homeomorphic imbedding of | A | into | 4 n L |*| M, |.
In other words, the coordinate system induced in | A | by that in | K |, agrees
with that defined in | A | in terms of A n L and M, . The lemma now follows at
once from the definitions of N(M,) and N(M,).

Lemma 3. The pairs (N(My), N(My)) and (| My |, | M2 () have the same homo-
topy Lype.

Proor. We define a deformation

4’7 : (-Nr(Ml)l N(Mﬂ)) —* (N(Ml)t N(Mﬁ)t) 0

A
...‘

A
e

by
Uiz, ty) = (@ v+t — i, )

for (z, £, ¥) e_N'(Ml). Then ¢, = identity, ¢.(z) = zif z ¢ | M|, and ¢, is a re-
traction of (N(M,), N(M.) onto (| M, |, | M, 1). Hence (| M, |, [ M,|) is a de-
formation retract of (N(M,), N(M,)) and has the same homotopy type.

Lemma 4. If L contoins the m-dimensional skeleton of K, and dim K = n, then
dm(K -+ L) =n—m— 1.

This follows easily from the definitions.

3. A normaslization process for certain triad maps

Let (X; A, B) be a triad which satisfies the conditions {(a) and (b) of Section
1, and assume that (4, A n B) is m-connected, m = 1. Let & ¢ m{X; A, B),
g = 2, and let

fo: (B EY', BTy = (X; A, B)
represent «. We are going to define a homotopy.
(B BV, BT — (X 4, B), 0=t =2,

of fu, called the normalization process, and f, will be called a representative of &
in normal form. It is not, asserted that this normal form is unique.

Let U = fo'(Int A) and V = f5'(Int B). Then [{U, V! is an open covering
of E* Let ¢ be the Lebesgue number of this covering. Choose a rectilinear tri-
angulation (1, Section 4.2] of the triad (E*; E¥”, EX™) so fine that every simplex
has diameter < &. Let Py be the subcomplex of E° spanned by all the simplexes
contained in U, and let @; be the subcomplex spanned by all the simplexes
contained in V; then E* = Pyu @, . Let

P, = Pou E¥?
Q: QnUEfl
By =Ping
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Consider the map ¢ : (Py, R} — (4, A n B) defined by fy. This map is m-
deformable, since (A, 4 n B) is m-cannected. Let

ge: (Pr, B1) — (4, A n B), 0=t=1,

be a homotopy of go such that g,(z) = zif x ¢ B, , and g(PT) C A n B. Let L,
denote the closed subcomplex of P, consisting of all simplexes & such that.
¢i(0) © An B. Then L D (R, u P). Let M = P, + L, the supplementary
subcomplex of L in P, . Let

¢ P — Py, l=ts2
be the deformation of P, onta itself toward L, as deseribed in Section 2. Define
ge: (P ,R)—> (4, AnB), 1=f= 2,
by .
g: = s, 15552,
and define
fo: (B EY, EX) — (X5 A, B), 0<t=2
by
f¢|P1=g:, 0§§§2,
JelGh = fol @, 0=t=2
From Lemma 4 of Section 2 it follows, since L D PT , that
(3.1) dimM =g —m — 1.

We now define
P = N(M)u ET,
Q@ = Cl[E* — N(M)),
E=Png.
Then Pu @ = B and
ES' C P C 74,
EX' c Q C f3YB).
The map
f=rf(B5ET BT — (X, 4, B)

is the desired normal form for a representative of a.

4, Proof of Theorem I when m = n = 2

In this section we give the proof of the main theorem when m = n = 2. The
meadifications in the proof which are necessary when n = 1 will be deseribed in
the next section.
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We assume, then, that the triad (X; A, B) satisfies the hypotheses {a), (b},
and (¢} of Section 1, and that m = n = 2. Let @ ¢ 7,(X; 4, B), ¢ = m -+ n,
and let '

Fi(EG BT ES) — (X5 A, B)

be a representative of e in normal form. Let P, @, B and M denote the subsets
of E* described at the end of Section 3. Clearly, the spaces ¢ and E* — M have
the same homotopy type. Since dim M = ¢ — m — 1 = ¢ — 3, it follows from
Lemma 4.2.1 of [1] that ¢ is simply connected.

To prove that & = 0, it suffices, by Lemma 4.7.1 of [1], to show that the map

h:(Q, E) — (B, An B)

defined by f, is deformable. We will do this by using Theorem 4.4.3 of [1]. We
need to econsider the cohomology groups HY(Q, R, v;), 2 £ j £ q, where
w; = w;{B, A n B). By the excision axiom,

HY(Q, R) ~ H(E*, P).
It follows from the exactness of the ecohomology sequence of the triple
(E°, P, E{) that
HY{E®, P) ~ HTY(P, EETH),
and by the excision axiom again,
H7Y(P, ESY == HTUN (M), N(M) n EITY.

It follows from Section 2 that the pairs (R (M), N(M) n E=™) and (M, M n EZ™
are of the same homotopy type. Therefore

HJ"‘(N{M), NM)n ESY = H™NM, M n BN,
Combining these isomorphisms, we have,
H(Q R, =) = H'(M, M n E{", x)).

Now H(Q, R, n;) = 0forj = n, because v; = Qforj £ n. If j > ¢ — m, then
H™MM, M a EY', =) = 0 because dim M =< ¢ — m — 1, by (3.1). Hence if
g = m+n H@Q, R, =) = 0for all values of 7, and since  is simply connected
it follows from Theorem 4.4.3 of (1] that A is deformable and therefore that
a = 0.

6. Modifications necessary when n = 1

If m > n =1, and m(B, A n B) is abelian, the proof goes through exactly as
hefore, since all hypotheses of Theorem 4.4.3 of (1] remain satisfied.

We examine next the case where m = n = 1 and (B, 4 n B) is simple in
dimension 2. We can no longer apply Lemma 4.2.1 of [1] to conclude that @ is
simply connected. However it follows that (B, 4 n B} is abelian. Hence we
ean use Theorem 4.4.2 of [1] instead of Theorem 4.4.3, to show that the map
h: (@, B) — (B, A n B) ia 2-deformable, and therefore {X; A, B) is 2-connected.
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Consider, finally, the case where m > n = 1, and it is assumed that (4, A n B)
is simple in dimension (m + 1). By a simple change of notation we may assume
the equivalent hypotheses: n > m = 1 and (B, A n B) is simple in dimension
n + 1. The proof now follows that of the case considered immediately above,
using theorem (4.4.2) of [1].

6. On condition (b) of Theorem I

In many cases in which one actually wishes to apply Theorem 1, there is
given a triad (X; 4, B) such that X = A u B and the conditions (a}, (e}, and
(d) of Theorem I are satisfied, but condition (b} is not satisfied. Then it is not
possible to apply Theorem I direetly. However, it sometimes happens that
there exists a subset A’ < X such that A' D A, the triads (X; A, B)
and (X; A’, B) have isomorphic homotopy sequences, and condition (b) does
apply to the triad (X; A’, B). Then we may apply Theorem I to the triad
(X; A’, B) to conclude that certain of its homotopy groups vanish, and hence
that the homotopy groups of the triad (X; 4, B) vanish in the corresponding
dimensions. One such case is deseribed in the following lemma:

LemMma 5. Let (X A, B) be a triad with X = A u B, with A and B closed
subsets of X, and such that there exisis an open neighborhood Naof An B in B uth
A 0 B a deformation retract of N in the strong sense. Let A’ = A u N. Then the
triad (X; A', B) satisfies condition (b) of Theorem I, and the triads (X; 4, B)
and (X; A’, B) have isomorphic homolopy sequences.

Proor. It readily follows from the hypotheses that A’ and X — A are open
subsets of X, that (X — A) C Int B, and that A’ u (X — 4) = X. Hence the
triad (X; A’, B) satisfies condition (b) of Theorem I.

Next, we observe that our hypotheses imply that 4 is a deformation retract
of A, since the deformation retraction which is defined over N can be extended
to all of A’ in the obvious way. The continuity of this extension follows from
the fact that both A and N are closed in A’. This deformation retraction is a
homotopy equivalence between the pairs (4, 4 n B) and (4’ A" a B), and
therefore the inclusion map (4, 4 n B) — (4, 4’ n B) induces isomorphisms
of the homotopy sequences of these two pairs. Next we look at the homomor-
phism induced by the inclusion map (B, 4 n B) — (B, A’ a B} on the homotopy
sequences of these pairs. Since the homomorphisms (B} — w,(B) and
x,(A n B) — 1,(A’ n B) thus induced are isomorphisms onto in all dimensions,
it, follows from the purely algebraic “five lemma” [2, Lemma 3, p. 435] that the
injection mo(B, A n B) — (B, 4" n B) is also an isomorphism onto. This proof
even goes through with minor modifications to prave that the injection
n(B, A a B} = m(B, ' n B) is 1 — 1 and onto. Another application of the
“five lemma’ to the homotopy sequences of the triads (X; A, B) and (X; 47, B)
enables us to prove that these triads have isomorphic homotopy sequences, as
was to be proved. Here again minor modifications are pecessary in the lowest
dimension.

CoroLLARY. Theorem I remains true when condition (b) in its hypothesis is
replaced by the hypothesis of Lemma 5.
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Obviously, the symmetric statement obtained by interchanging the roles of
A and B in Lemma 5 is also true.

A particular case where the hypothesis of Lemma 5 is satisfied oceurs when
we have a triad (X; 4, B) such that X = 4 u B, 4 and B are closed in X, and
at least one of the pairs (4, A n B) and (B, A n B) is triangulable. For example,
if {B, A n B) is triangulable, we can chaose N = N{(A n B) as defined in Sec-
tion 2.

7. Shrinking a subcomplex to a point

Let (X, A) be a pair consisting of a CW-complex,’ X, and a closed subcom-
plex, A, and let (X, z4) be the pair obtained by identifying all of 4 to a single
point z, ; then X is a CW-complex and zy is a vertex of A. Assume that (X, A)
is m-conmected, m = 1, and that A is n-connected, n = 1, Let ¢ : (X, A) — (X, za)
denote the identification map and ¢, : 7,{X, 4) — =,(X, 24) the homomorphism
induced by 4.

TueoreM I1. ¢, is an isomorphism onto for p < m + n, and is a homomor-
phism onto for p = m + n + 1.

Before proceeding with the proof, we prove a lemma. Let (X, A) be a pair
consisting of a space X and closed subspace A. Let A* be the join of A with a
single point aq, (i.e., the identification space of A X I when all of 4 X 1 is
identified to the single point as) and let X* be the identification space resulting
from X u A* by identifying each point @ X 0 ¢ A* with the corresponding point
a & A. Assume that (X, A) is m-connected, m = 1, and that A iz n-connected,
n =z L

Lemma 6. With the above hypotheses, the triad (X*; X, A*) is (m + n + 1)-
connecled. : _

Proor. Since A is n-connected and A* is contractible, {4* A) is (n + 1)-
connected. Let N € A* be the set (d X [0 £ t < 1]) where n denotes the
identification map 9 : 4 X I — A* Then N is open in A* and A is a deforma-
tion retract of N. Moreover X n A* = A is simply connected and X, A* are
closed in X*. The result now follows from the corollary to Lemma 5.

Proor oF THEOREM II. Let us extend the map ¢ to a map ¢ : (X* A% —
(X, 20), by defining ¢(z) = 1z, for all points = ¢ 4*, 1t is readily verified that ¢
is econtinuous. Let ¢ : X* — X be the map defined by . Since A* is contractible,
it follows that ¢’ is a homotopy equivalence [6, Theorem 12], so that
Ve 1 m,(X*) — (X)) is ap isomorphism onto for all p. Also, the injection
71w X*) — 7, (X* A*) is an isomorphism onto for all p. Consider the follow-
ing diagram:

(X% —d s m(X% 4%
PN y
* N *

To (X N I.u)

i For the definition and properties of a CW-complex, see [6].
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Sinee commutativity holds, it follows that ¢« is an isomorphism onto in all
dimensions. Consider next the following diagram:

Tﬂ(Xj A) —i'_) wﬂ(X*] A*)

AN
¢n\ J’h
(X, zo)

Commutativity again holds. Since ¢4 is an isomorphism onto in all dimensions,
it follows that the injection i, and ¢, , are equivalent homomorphisms. The
theorem now follows from Lemma 6 and consideration of the homotopy sequence
of the triad (X*; X, A*).

8. An application of Theorem II

Let (X: A, B) be a triad such that X = A u B, A and B are closed subsets of
X, and (4, A n B) is a pair consisting of a CW-complex and closed subcomplex.
Let

in i m(4, 4 n B) — 71,(X, B), p=172"
1
denote the injection.

Turorem [I1. If (4, A n B) is m-connected, m = 1, and 4 n B is r-connected,
r 2 1, then i, is an isomorphism tndo for p < m + r, and the tmage subgroup is a
direct summand of (X, B).

Proor. Let (4, x,) denote the pair obtained from {4, A n B) by identifying
all of 4 n B to a single point, 2o, and let ¢ : (4, 4 a B) — (4, z) be the identi-
fication map. Define a map ¢ : (X, B) = (4, z,) by

Za, b - B’
¢(z) =
¢lx), reA.
The map ¢ thus defined is continuous, since A and B are closed subsets of X.
Consider now the following diagram:

r{4, An B) —**— x(X, B)

~ %
ro(A, zo)

Commutativity clearly holds. Tt follows from Theorem II that ¢, is an iso-
morphism onto for p £ m + r, and from this the theorem follows at onee.

The authors wish to acknowledge that the main idea for this proof is due to
P. Hilton [5].

A closely related result is the following:

TaeoreM LI, Let (X, A, B) be a triad such that X = (Int A) u (Int B),
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(A, 4 n B) is m-connected, m = 1, and 4 n B 1s rconnecled, v = 1. Then the
injection

ip 1 ms(4, A n B) — (X, B)

18 an isomorphism {nto, for p = m + r.

The proof of this result is similar to the proof of the main theorem, except
that Lemma 4.7.2 of [1] is used in place of Lemma 4.7.1; cf. the proof given in
Section 4.10 of [1].

It seems prohable that under the hypotheses of Theorem IT1” the image sub-
group is a direct summand of x,(X, B), but the authors are unable to prove this
fact.

4. Geometric proof of an algebraic theorem of Eilenberg and MacLane
For each abelian group IT and integer n = 2, Eilenberg and MacLane (3,

p. 507] have defined an ahstract complex K(TI, n). In a recent paper [4] they have
defined a “suspension’ operation, which is a chain transiormation (raising
dimensions hy 1) of K(Il, n) into K(TI, n + 1), and hence induces homomor-

phisms,
8, : Hy[K(T], n), G = Hyn[K{@, n + 1), G]

of the corresponding homology groups with & as coefficient group. Concerning
these homomorphisms, they have stated a thearem which is equivalent to the
following:

Tueorem IV. The suspension homomarphism, 8, , is an isomorphism onio for
g < 2n, and is a homomorphism ondo for g = 2n.

We shall give a proof this result, based on Theorem L. Let L be a CW-complex
with (L) = Ofor¢ < nand n < i < m, m > 2n, and with r.(L) =3 II. That
this realization is possible follows from a theorem of J. H. C. Whitehead, [7].
Let K., = K(II, n), K,u = K(IT, n + 1}, K; = K(0, n). K; is the complex con-
structed on the group consisting of the identity element only, and is homo-
logieally trivial. It may be considered to be a subecomplex of both K, and K, ., ,
and it is easily seen from the definition of 8, that we might equally well eon-
sider the equivalent homomorphisms induced by the suspension,

S HyK,, Ko) — Hyr1(Koayy, Ko).

Let a vertex p ¢ L be chosen, and let a;, a; be a pair of distinct points. Let
L, = Lx{a,} (the join of L with a;), L, = L#{as}), L = Lyu L., p, = {p}*{ai},
= Ip}wfas}, # = pLu pe. Let L be the space obtained from I by identifying
the segment § to a single point, which we will also denote by p. Since § is con-
tractible, the identification map is a homatopy equivalence [6, theorem 12|, and
induces isomorphisms '

¢ HdT, ) ~ HiL, p)

of the singular homology groups in all dimensions.
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Consider now the homomorphisms indicated in the following diagram (singu-
lar homology groups):

H(SuAL), 82)) 5 HyKo, Ko) ~> Hopr(Boss, Ko) < By Suen(E), S(p))

b T
Hy(L, p) | H (L, p)
ls G
Hon(Ly, L) -5 L HyalLn, Lo p) ~5 Hun(L, Lau p) < Ho (L, 5)

The homomeorphisms «, «’, 3, %’, are defined in [3]. The homomorphisms ¢, 7,
and j are induced by inclusion maps, and 8 is the boundary operator. By apply-
ing Theorem I to the triad (L; L, , L), we find that this triad is 2n-connected.
Hence =i{L) & 7 (L} for i < 2n — 1, and (L) is 2 homomorphic image of
Taa1(L). Therefore #(L) = 0 for £ < n + 1 and n + 1 < ¢ £ 2n,
while 7,.1(L) 2 II. Furthermore, (L) == =) for all ;. Hence 5 and 4 are
isomorphisms onto for all dimensions, « is an isomorphism onto for ¢ < m, and
«' is an isomorphism onto for ¢ + 1 £ 2n, and is onto for g + 1 = 2n + 1.
The homomorphisms 4, ¢, , 42, and § are isomorphisms onto in all dimensions.
It ean be verified that the commutativity relation

&' Wir 8y = Sk
holds. Therefore § is an isomorphism onto for ¢ < 2, and is onto for ¢ = 2n.
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