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Introduction 

The principal purpose of this paper is to prove a rather general theorem about 
the homotopy groups of a triad in what may be called the "critical dimension," 
i.e., the lowest dimension for which the homotopy groups of a triad are non-zero. 
This theorem may be stated roughly as follows. Let (X j A, B) be a triad such 
that X = A u B. If 1I"1'(A, A n B) = 0 for p ~ m and 1I"q(B, A n B) = 0 for 
q ~ n, then the authors have shown previously [2] that ·lIAXj A, B) = 0 for 
r ~ m + n under very general conditions. We now show that 1I"m+>l.H(X; A, B) 
is isomorphic to the tensor product, 1I"mH(A, A n B) ® 1I">l.+,(B, A n B), under 
rather general conditions. Moreover, this isomorphism is defined in a very 
natural manner by means of a generalized Whitehead product. This theorem 
includes as special cases some results we have announced previously without 
prooe The proof which we give below depends heavily on a recent paper2 of 
J. C. Moore, [81. This proof is much simpler than the authors' original, unpub
lished proofs for the previously announced results. 

In sections 2 and 3 we give some applications of our main theorem to some 
problems of current interest in algebraic topology. 

This paper is essentially a continuation of our earlier papers, [1], [2], and [31. 
For the explanation of any terminology or notation that is not contained in the 
present paper, the reader is referred to these previous papers. In general, it is 
assumed that the reader is familiar with the basic properties of triad homotopy 
groups and generalized Whitehead products. 

1. Statement and Proof of the Main Theorem 

Let (X; A, B) be a triad such that X is a CW-complex,l A and Bare sub
complexes, and X = A u B. Let C denote the intersection, A nB, which we will 
always assume to be connected and simply connected. Let 

W: 1I"p(A, C) ® 1I"iB, C) 0........) 1I"p+Q_dXj A, B) 

be the homomorphism which is defined by the generalized Whitehead product,4 
i.e., Well: ® f3) = [0', t3l for any elements 0' {1I"p(A, C) and f3 t 1I"iB, C). 

THEOREM I. If (A, C) is (m - I)-connected, m > 2, and (B, C) is en - 1)
conneded, n > 2, then the homomorphism 

I Cf. (6) and various abstracts in the Bulletin. of the Anwrican Mathematical Society for 
tne years 1949-1951. 

! The authors are indebted to J. C. Moore for allowing them to Bee the manuscript of his 
paper before publication, and for many helpful suggestions. 

'For the definition and properties of a CW-complex, see [13] . 
• For the definition and propertiea of the generalized Whiteliead products, see (3). 

'09 
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W: 1I"m(A, C) ® 1rn(B, C) -----; 1rm+,,-_l(X; A, B) 

is an isorrwrphism onto." 
PROOF. Let (X~ j A o , Bo) be the triad obtained by identifying all of C to a 

single point, and let 

f: (X; A, B) -> (Xo j An , Bo) 

denote the identification map. 
It follows from Theorem I of [21 that the triad (X; A, B) is m + n - 2 con

nected. Note that m + n - 2 > 3. Hence by considering the homotopy sequences 
of the triad (X; A, B), we conclude that (X, A) and (X, B) are 2-connected, at 
least. A similar argument shows that (Xo J Ao) and (Xo, Bo) are at least 2-
connected. 

Next, note that our hypotheses imply that both A and B are simply con
nected. Hence it follows by a well known theorem [9, §52] that X is simply con
nected. By using Theorem II of [2], one can prove in a similar manner that Xo 
is simply connected. 

By the Hurewicz equivalence theorem, Hq(A, C) = 0 for q ~ m-I. By the 
excision property for homology, HQ(X, B) ~ HQ(A, C). Hence Hq{X, E) = 0 
for q ~ m - 1. Similarly, Hq(X, A) = 0 for q ~ n - l. 

Finally, note that the homomorphisms Hq(X, A) ---> HiXo , An) and 

Hq{X, E) ---> Hq(Xo , Bo) 

induced by the identification map are isomorphisms onto in all dimensions. 
We have now verified that all the hypotheses of Theorem 3.5 of [81 hold for 

the case R ring of integers, r = 2. Hence we can conclude that the homo-
morphism 

fli: lI'm+».-dX; A, B) ---> lI'm+n_l(Xo ; Ao , Bo) 

induced by f is an isomorphism onto. 
The proof may now be completed by the same method used to prove Theorem 

I of [3[. 

2. The Relative Homotopy Groups of the Pair (X"', X) 

It is the purpose of this section to prove some theorems about the relative 
homotopy groups of a pair (X"', X) where X'" is obtained from X by the adjunc
tion of cells. The results obtained will be direct applications of Theorem I. 

Throughout this section, X will denote a topological space which is a con~ 
nected CW-complex, and X'" is obtained from X by the adjunction of n-cells, 
as explained in [1, §4.1J. As a prelimLnary step, we first state two lemmas. 

For the statement of the first lemma, let X'" be obtained from X by the ad
junction of an indexed family of open n-cells e)." , A ~ A, and let f). : En ----t er be 
the "characteristic map" by means of which the cell er iB attached to X. Simi~ 

• It would be interesting to extend this theorem to the case m = 2 or n = 2. Note that 
since C is simply connected, 1T,(A, Cl and .... ,(B, Cl must be abelian in this case. 
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lariy, let Y* be obtained from X by the adjunction of n-cells IF): , A € A, and let 
g~ : En _ ux be the characteristic map for the cell IF): • 

LEMMA 1. If fx I E" is Mmotopic in X lA Ux I En jor each A i A, then there exists 
a homotopy equival£nce h: (X*, X) _ (Y"', X) such tlwi. h I X is the identity map. 

This lemma is a trivial generalization of Lemma 5 of [12J. 
For the statement of the second lemm.a, we assnme that X'" is obtained from 

X by the adjunction of the family of open n-cells, ex , A i A, by means of charac
teristic maps, f~ : En _ e;: . Let e: denote the boundary of the cel1 e): . 

LEMMA 2. Assume that there exists a point :to such that Xo ~ e): jor all A { A. Then 
it is possible to choose subsets X c X* and ex C ex , A f A, such that: 

(1) X C X, and X is a deformation retract oj X. 
(2) X and e;: are disjoint. 
(3) X* is obtained from X by the adjunction of the cells ex ,A i A, and the charac

teristic map for the adjunction of each Cllll is a homeomorphism. Hence the closure 
of each cell e): is homeonwrphic to Efl.. 

(4) The inclusion map (X*, X) _ eX*, g) is a /wmotopy equival£nce of pairs. 
(5) The point :to belongs to the boundary of all the Clllls e): ; furthermore the inter

section of lhe boundaries of any two cells consists only of the point Xo . 

We will indicate the main idea of the proof, which is really quite simple. Re
call that E" is the set of all points in R", Cartesian n-space, whose distance from 
the origin is ;;;;;;1. Let a = (1,0, ... ,0) fE". We may assume without loss of 
generality that the characteristic maps, f~ , are chosen so that !x(a) = X<J. Let 
D" denote the subset of E" consisting of all points whose distance from 

(!,O,"',O) 

is <i. Then D" is an open n-cell, and a E fj" 
Define e;: = j~(D"), and 

g = X'" - U~.A e;: • 

Then one readily verifies that the subsets X and e~" have all the required proper
ties. 

For the statement of the next two theorems, we will assume that X* is ob
tained from X by the adjunction of an indexed family of n-cells, ex , AEA. Define 
homomorphisms 

t: 'JI"l'(X) ® 'JI"q(X*, X) - 1fl'+~l(X*, X), 

y..: 1f,,(X*, X) ® 'JI"r(E", S"~l) _ 1fr (X*, X), (r < 2n - 2), 

by 

rea ® (3) = [a, (3], Cl:' fi 'JI"p(X), f3 fi lI'q(X*, X), 

tJ;(a ® (3) = a" (3, a E lI',,(X*, X), (3 E 1fr(E", S"~l), 

where a <> {3 denotes the composition of a and {3 (cL [7, §23]). 
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THEOREM It. If X is m-connected, 1 < m < 11. - 2, then the homomorphisms 

.t: 1I"m+l(X) ® 1I'",,(X*, X) ---7 1I"",+ .. (X*, X), 

1/;; 1I"n(X*, X) ® 1rm+nCE", E") ---7 1fm+n(X*, X) 

are isomorphisms imo, and 1i"m+,,(X*, X) is the direct sum of the two image sub
groups.6 

PROOF. First of all, observe that if (Y*, Y) and (X*, X) are two pairs which 
are of the same homotopy type and this theorem is true for the pair (Y*, V), 
then it is also true for (X*, X). Therefore in proving this theorem, we may re
place the pair eX*, X) by another pair of the same homotopy type, if that is con
venient. We see by Lemma 1 that we may as well Msume that the boundaries 
of all the cells, Ii;: , have a point, Xo.J , in common. Then by Lemma 2 we see that 
we may as well Msume that all the cells are adjoined by characteristic maps 
which are homeomorphisms, and that their boundaries have only the point X(I 

in common. 
With these a.'Jsumptions, let 

en = UJ..}, e)," , 

sn = e" n X = U),.}, e.;: . 

Then s" is a union of (n - I)-spheres having the single point X(I in common. 
Consider the triad (X*; e", X). Obviously, (e", S") is (n - I)-connected; since 
X is m-connected and S" is (n - 2)-connected, it follows that (X, sn) 18 m
connected. Therefore by Theorem I, the homomorphism 

W: 1I'm+l(X, e") ® 1I',,(e", e") _ 1I'm+"(X*; en, X) 

is an isomorphism onto. 
Next, it follows from Theorem ru of [2] that the injection, ip : 1I'p(en, Sn) _ 

1I'p(X*, X) is an isomorphism into for p ~ 2n - 3; in particular, im+" is an iso
morphism into. 

Letj: 1I'm+l(X) -1I'm+leX, Sn), i,,: 1I',,(e", en) _ 1I',,(X*, X), and 

j': 1I'm+,..(X*, X) _1I'm+,,(X*j e", X) 

be injections. It is clear that j and i ... are isomorphisms onto. Furthermore, if 
Cl f 1I'm+l(X) and {J f 1I',,(e", S"), then 

J'[CI, i,,{,!] = [jCl, fl] 

by (3.10) of [3]. Therefore if we denote by 

'): 1I'm+l(X) eEl 1I',,(X*, X) -1I'm-l'l(X, S") ® 1I',,(e", en) 

, It would be interesting to extend this theorem to the case m = 1. 
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the isomorphism onto induced by the isomorphisms j and 1,;"', it follows that 
commutativity holds in the following diagram: 

1!',.,+I(X) ® lI',,(X*, X) ---L lI'",+,,(X*, X) 

I· [l 
1!'",-+dX, ~n ® lI',,(S", 8") -':~ 1I'm+,,(X*; 8", X). 

Since '1/ and Ware isomorphisms, it follows that t is also an isomorphism into, and 
that 1!'",+,,(X*, X) decomposes into the direct sum of the image of t and the 
kernel of j'. But by exactness of the homotopy sequence of the triad (X*; 8", X), 
the kernel of j' is equal to im+,,[lI'm+ ... (S"', 8")1. We will now complete the proof by 
showing that 1/1: 1!',,(X*, X) ® 1!'m+,,(8"', t"') '"-'-4 xm+,,(X*, X) is an isomorphism 
into, and that image 1/1 = image i m+" . 

To this end, consider the following diagram: 

1!'n(8", en) ® 1I'm+,,(E", ]};") -1~ 11'",+,,(8", S") 

I, I· !t" !tm+,. 

1I'n(X*, X) ® 1!''''-+n(E'', En) J'"-'-4 1!' .... +n(X*' X). 

Here 1/1' is defined by means of the composition operation, in a manner similar 
to 1/1; and i~ is induced by i" : 1!',,(8", 8") '"-'-4 1I'n(X*, X). Commutativity holds 
around this diagram; this follows from (23.12) of [71. Now 1/1' is an isomorphism 
onto, because 8" is a union of n-cells with a single point in common, S" is a 
cluster of (n - I)-spheres with a single point in common, and m + n < 2n - 2 
(cL corollary 5.3.4. of [1]). Also, i~ is obviously an isomorphism onto. These 
facts, together with the fact that im+n is an isomorphism into, suffice to prove 
the assertion made at the end of the last paragraph. 

This completes the proof of Theorem H. 
The next theorem takes care of the case m = n - 2. 
THEOREM Ill. If X is (n - 2)_ClJnnected,7 n > 3, then 1I'Zn_2(X*, X) is ge.neratl'.d 

by the. image of the homomorphism 

t: 1!',,_I(X) ® lI',.(X~, X) '"-'-4 'lf~l1.-2(X*, X) 

and the. e.le.me11hi f1 0 a for all a E 1!'2n.-~(En, En) and f1 e 1!',.(X*, X). 
PROOF. By repeating the first part of the proof of the preceding theorem, with 

slight modifications, one can show that 1/'2"_~(X*, X) is generated by the sub
groups (image t) and (image ~n.-2). Of course one can not show that t or i~n-2 
is an isomorphism into, or that we have a direct sum decomposition. 

To complete the proof, one needs to make use of the following facts. Let 

, It would be interesting to extend this theorem to the case 11. = 3. 
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S': 1I",,_1(8n
) €I 'l/"nU·;n, en) --). :ll'"2n_2(S", en) denote the homomorphism defined by 

the generalized Whitehead product: t'(a ® (3) = [a, m. Then from the known 
theorems about the structure of the ,groups :ll'"2,,-3(t") (cf. Theorem 5.3.3. of 
[ID, and the fact that "'~n.--~(t;", In :::::J 1r2n-a(S"), it follows that 1I"~"_1(8n, en) is 
generated by image (' and the elements)' 0 a for all a E 1I'2n.--~(En, En) and 

'Y E :11'",,(8", en). 

Now consider the following diagram: 

1I",,-_I(t") ® 1r,,(S", en) -.l~ '1/"2"_2(8", 8") 

1 1. 
lhn-2 

1I'>t-l(X) ® '1r n(x*, X) .-1_ 1I'2n.--2(X*, X) 

Here the vertical arrow on the left denotes the homomofphisms induced by the 
injections 1I",,_i(8") --). ,,",,_leX) and 11',,(8", en) -+ 1I""CX*, X). It is clear that this 
diagram is commutative. 

The fest of the proof makes use of the same ideas as occur in the last part of 
the proof of Theorem H. The details .are left to the reader. 

ADDENDUM TO ThEOREM Ill. According to §23 of [7], if fh and {12 E 1I"n(X*, X) 
and a c 7r1n_~(E", En), then 

({3t + (32) 0 a = {31 0 a + f12 0 a + [{3t , (3~J 0 H(a). 

It is readily seen that [(31, f12] 0 H(a) is an element of the subgroup (image t); 
cL (3.11) of [3]. Hence one obtains the following stronger statement: 

7r2n_:2(X*, X) 

is generated by the subgroup image s, and the elements f1 0 a, where a ranges 
over 7r2n_2(E", E"), and f1 ranges over a set of generators of 7r,,(X*, X). 

It is clear that 7r,,(X*, X) is a free abelian group, having a set of generators 
in 1-1 correspondence with the cells e/: ,A ~ A. 

3. The Homotopy Groups of a Union of Spheres with a Single Point in Common 

Let ~ = S: u ... u S::' be a space consisting of the union of m distinct n· 
spheres (n > 1) with a single point in common. We will consider S::. as a cell 
complex consisting of the single vertex, (1"0, and a collection of n-cells, (1": , ••• , (1"::' • 
Choose elements LI, ••• , t", ~ 1I",,(S:') such that for 1 ~ P ;:;. m, Lp is represented 
by a map S" _ s::' which has degree ±l on S; and degree 0 on Si for i ~ P 
(this is equivalent to choosing orientations for the spheres SI" , ... , S;). Then 
L1, ... , L ... is a system of free generators for 7r,,(S::'). 

For any positive integer p, we define homomorphisms 

<P;: 7rp(S"") - 7rp(S':::), 

<P;;: 7r p (S2n-l) _ 7rp(S;:')' 

<Pi.,k: 1I"p(sa ... - 2) _ 1I"1l(S;:)' 
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as follows: 

<pi(a) (i <l a, a E 1r,,(S"), 

<p;;(a) = [t;, tj] <l a, a E 'Ir,,(S1t1-t), 

Here i, j, and k are any positive integers ;am. The following facts may now be 
proved: 

(1) <Pi is an isomorphism, and the image subgroup is a direct summand of 
1rp(s.::-). 

(2) <1>" ~ (-1)"<1>1<' 
(3) If p < 4n - 2 and i ~ j, then <Pi; is an isomorphism, and the image sub

group is a direct summand of 1r,,(S';:); for the proof, see §5.3 of [1]. Whether or 
not this statement is true with no restrictions on p is not known. 

(4) If p < 3n - 2, then 'Ir,,(S:') is the direct sum of the subgroups <p,[1rp (S")] 
for 1 ;a i ;a m and <Pij[1rp (S1"--I)] for 1 ;a i < j ~ m. This is Theorem 5.3.3 of [1]. 

THEOREM IV. If i ~ j, then the lwmomorphism <Pijk : 1r3n_2(S3,,-2) -+ 1r3 .. _2 (S:') 

is an isomorphism. The h011Winpy group 1r3 .. _2(S:') is the direct sum of the following 
subgroups: 

(1) <Pi[1r3n-2(S")] for 1 ~ i ;;;; m. This gives m subgroups, each isomorphic in 
'lra,,_2(S"). 

(2) <p,;[1ran_2(S2n-l)]jor 1 ;;;; i < j ;;;; m. This gives (m2 
- m)j2 subgroups, each 

iso11Wrphic to 'lr3n_2(S2,,-1). 
(3) <Pijk['lr3n_1(s3n-2)] for 1 ;;;; i < j ;;;; m and 1 ;;;; k ;;;; j. This gives (m~ - m)j3 

subgroups, each isomorphic in 'Ir~"_2(g"-2). 
PROOF. The proof is made by an induction on m. The theorem is trivial for 

the case m = 1. Assume that we have proved this theorem for S';: ; we wish to 
prove it for S:'+l . We may consider S';:+1 = s,;: u S:'H . Then by a general theorem 
(d. [11], §4), 1r,,(S';:+1) is the direct sum of the images of the following three 
isomorphisms: 

/J.l : 1rp(S:') -+ 'lrp(S'::+d, 

/J.2 : 1rp(8'::+I) -+ 1r,,(s.':;+1). 

a: 1rP+1(s.':; x S':'H, S: u 8:H) -+ 'lrP(S:'+I). 

Here III and /J.2 are injections, and a is a homotopy boundary operator. Now we 
may consider S:. X S':'H as a cell complex of dimension 2n, as described on p. 
199 of [1]. Then s:. X S:'+1 is obtained from S:'+1 by the adjunction of m cells, 
each of dimension 2n. Obviously S:'+1 is (n - I)-connected. We may now apply 
Theorem II to obtain the structure of the group 'lrJOI.-l(S':' X 8':'+1, s.::+1). The 
result is that the homomorphisms 

t: 'lrn(S':'H) ® 1r2n(S:' X 8':'+1, S:'+tJ -+ 'lran_I(S':: X 8'::+1, S:':+d, 

!J-: 1r2"(S;:' X 8:'H , S;:'+d ® 1r3n_l(E2", Eh) -+ 'lr31>-I(S;:' X 8;:'+1 , S:'+1) 
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are both isomorphisms into, and :Ii'",,,_l(S'::' X S'::'i-l, s'::+d is the direct sum of the 
two images. Now 1I"2,,(S';: X 8'::+1, S'::+d is a free abelian group on m generators 
and we may obviously choose a set of generators O!j , , am such that 

i = 1, ... ,m. 

The completion of the induction is now a matter of straightforward calculation. 
The details are left to the reader. It is necessary to use equation (3.5) of [31 and 
equation (23.10) of [71 in the process. 

REMARK 1. Consider the case m = 3 of ths theorem. We then have that 
1I'"3n_~(S:) is the direct sum of certain subgroups, as follows: 

(l) Three subgroups, each isomorphic to 11"3,,_2(8"). 
(2) Three subgroups, each isomorphic to ?i'"3,,_lS2,o-[). 
(3) A free abelian group on eight generators. As generators of this subgroup, 

one may take the triple Whitehead products [[ti, tj], LxI for i ~ j, k = i or k = j, 
and any two of the following three: [[LL, t2], L3], [(L~, L31, Ld, [[t3, Ld, Lzl. 

The fact that we may take any two of these three may be seen by permuting 
the subscripts before applying Theorem IV. ThiB suggests that there must be 
some relation between the three last-named triple Whitehead products. As a 
matter of fact, the authors have been able to prove that these last three triple 
Whitehead products satisfy the Jacobi identity. More generally, if X is a topo
logical space, a f 1I"p(X), (j f 1rq{X), and "1 e 1fAX), where p, q, and r are all > 1, 
then it is conjectured that the following modified form of the Jacobi identity 
holds: 

(_l)(P+l)'[[a, tJ], 'Yl + (-l)(q+l)P[[tl, 'Y], a] + (_l)(rH)o[['Y, a], tJ] = O. 

This conjecture has not been proved as yet, however. 
REMARK 2. Consider the case m = 2 of this formula. The group 1r3,,_Z(Sn is 

the direct sum of certain subgroups as follows: 
(l) Two subgroups, each isomorphic to 1r3n_)(8") 
(2) A subgroup isomorphic to 1I'3)!.-~(s~n-l) 
(3) A free abelian group on two generators. 
Now let S" be an n-sphere, and 8" -7 £2' the map obtained by "shrinking" 

the equator of 8" to a point. This induces a homomorphism 11"3,,_2(8") -711'3>1.-2(Sn. 
By a theorem of Serre [10, chap. V, §§3 and 6], 11'3,,-_2(8") is a group of finite 
order. Hence the image of this homomorphism is contained in the subgroup of 
1r3,,_~(Sn spanned by the direct summands listed under (1) and (2). By project
ing onto the direct summand listed in (2), we obtain a "generalized Hopf homo
morphism," H: 1I"3>1.-2(S") -7 1r3)!.-2(S7>t-l) (cl. [11], [4] and [5]). One can use this 
extended definition to prove that the modified left distributive law, 

({31 + {32) a O! = {31 0 O! + /31 0 a + [th, ,82] 0 H(al (3t, ,82 E 1I"q(X), Of E 1r'p(~), 

holds for p = 3q - 2. 
REMARK 3. From Theorem IV, it readily follows that any unversally defined 

m-ary homotopy construction (for the definition, see [3, §2]) from the dimension 



HOMOTOPY GROUPS OF A TRIAD. IU 4[7 

n to any dimension ~3n - 2 can be obtained by iterated use of Whitehead 
Products and the composition operation. 

Finally, it should be mentioned that partial results on the homotopy groups 
"Irp(S::') for p > 3n - 2 have been obtained by J. C. Moore andJ. P. Serre. These 
results are unpublished as yet. 
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