GROTHENDIECK-WITT GROUPS OF TRIANGULATED CATEGORIES

CHARLES WALTER

ABSTRACT. The basic theory of Grothendieck-Witt groups of triangulated categories with
duality is developed. The main results proven include Localization, Additivity, a Funda-
mental Theorem, and comparison theorems with Grothendieck-Witt groups of forms and
formations in exact categories.

INTRODUCTION

Balmer recently introduced triangulated-category methods into the theory of quadratic
forms on vector bundles, and they have proven quite fruitful. For instance filtrations of the
derived category have been used in work on the Gersten complex for Witt groups (Balmer-
Walter [7]), while duality-preserving equivalences of derived categories can be used to compute
the Grothendieck-Witt groups and Witt groups of projective bundles and of quadrics (Walter
[34][35]). But in preparing the last two articles the author found that a number of basic
results about Grothendieck-Witt groups of triangulated categories still needed to be written
up, and that has led to the current paper.

The main results of the paper are as follows. We work with small triangulated categories
with duality C = (C,*,d,w) composed of a small triangulated category C in which 2 is
invertible, plus a duality functor * and biduality isomorphisms wy : U =2 U**. The duality
may be combined with powers of the translation to produce shifted dualities, and for the
n-th shifted duality we define a triangulated Grothendieck-Witt group GW™(C) similar to
Balmer’s triangulated Witt group W"(C). One of our first main results is that there are for-
getful and hyperbolic maps between the Grothendieck-Witt groups and Grothendieck groups
which fit into exact sequences

awn ) % ko) B ewre) - wre) - 0

(Fundamental Theorem 2.6). Next if D C C is a thick subcategory invariant under the
duality, then there are long exact sequences

GW"(D) - GW"(C) - GW"(C/D) — W™ (D) - W"*(C) — ---

(Localization Theorem 2.4). Next we say (following Bondal) that (Ay, B, A, ) is an admissible
triple of subcategories of C' if they are thick subcategories which together generate C' while
satisfying Home (A, B) = 0, Home(Ay, Ar) = 0, and Home (B, A,) = 0. If the duality on
C fixes B and exchanges Ay and A,, then we have isomorphisms

GW™(C) = GW"(B) x Ko(Ay), w"(C) = W"(B)
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(Additivity Theorem 3.6). The right-to-left isomorphism of Grothendieck-Witt groups is
(1B, 91 [4) — [B, ¢l + [4 & 4%, (L 1)].

In §§4-8 we compare our triangulated category version of Grothendieck-Witt groups with
the versions for categories of chain complexes with weak equivalences and for forms and
formations in exact categories. The methods used are not new, but we still go through all the
details because the literature seems incomplete: it deals mainly with Witt groups and with
categories of projective modules where all exact sequences split. We also look at admissible
subcategories of categories of chain complexes with weak equivalences (§4). This is important
when one wishes to apply the Additivity Theorem in explicit situations.

We return in §9 to the old theme of Witt classes as obstructions to being able to symmetrize
strictly a complex which is symmetric up to quasi-isomorphism. In Theorem 9.5 we describe
when one can strictly symmetrize such a complex while fixing its two ends. We apply this to
strictly symmetric locally free resolutions of subcanonical subschemes (Theorem 9.6).

In §10 we define the derived Grothendieck-Witt groups of a scheme, and we describe
how the deformation invariance of Kervaire semicharacteristics really amounts to having
maps GW* 1(X,L) — H%(Xzar,Z/2) (Theorem 10.2). We then calculate the derived
Grothendieck-Witt groups of the punctured spectrum of a regular local ring (Theorem 11.2).

The main application of this paper will be the calculation of the Grothendieck-Witt and
Witt groups of projective bundles and of quadrics [34][35]. These Grothendieck-Witt groups
include many terms which disappear when one passes to the Witt groups. This was the
motivation to treat Grothendieck-Witt groups in this paper and not just Witt groups.

Thanks are due to P. Balmer for simplifying the proof of the Additivity Theorem.

1. TRIANGULATED CATEGORIES WITH DUALITY

In this section we review some of the basic notions of triangulated duality taken from
Balmer [3] [4] [5] and Balmer-Walter [7].

A triangulated category is an additive category with an automorphism (the translation,
written 7" or X — X|[1]) and a class of ezact triangles satisfying four standard axioms.
A (TR4+) triangulated category is a triangulated category satisfying a slightly enhanced
form (TR4+) of the octahedral axiom (TR4). This axiom was first suggested by Beilinson-
Bernstein-Deligne [9] Remarque 1.1.13. Certain results in this paper which rely on Balmer’s
sublagrangian construction (see Theorem 1.3 below) will include the enhanced axiom among
their hypotheses, but we refer the reader to Balmer [4] §1 for a statement of the axiom. The
standard triangulated categories of chain complexes satisfy (TR4+).

Let § = £1. A covariant §-ezact functor F' : C — D between triangulated categories is an
covariant additive functor which commutes with the translations F'T' = T'F such that if

i p

(1) Z[-1]—— X Y Z,
is an exact triangle in C, then
2) Fzl-1) 2 px I py P Ry,

is an exact triangle in D. A contravariant d-exact functor G : C°? — D is a contravariant
additive functor which commutes with the translations G(X[—1]) = (GX)[1] such that if (1)
is an exact triangle of C, then

0-G(ufl i
(3) ex- 2 ay P Loy 9 ox
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is an exact triangle of D. An ezact functor is one which is either (41)-exact or (—1)-exact.
A morphism of exact functors is a morphism of functors « : F' — G such that ax[1] is given
by

|| covariant | contravariant |

(4) same parity axi) ax[—i
opposite parity | —axyy —ax[_1]
with the signs determined by the variance and relative parity of F' and G.

The translation functor X — X[1] is (—1)-exact. The composition of a d-exact functor
with an e-exact functor is de-exact.

A duality on a triangulated category C' is a triple (*,d,w) with § = +1, with *: C°? —» C
a d-exact functor, and with w : 1¢ = ** an isomorphism of exact functors such that for all
objects X the composition wywx» : X* — X™* — X* is the identity 1x«. The * is the
duality functor or the functor component of the duality, while the wx : X = X™** are the
biduality maps. The biduality maps are an intrinsic part of the structure called a triangulated
category with duality. For instance replacing w by —w changes the transposition operation
u +— u® defined below to u — —u', thereby changing the Witt and Grothendieck-Witt groups.
In practice the ¢ seems generally to be more or less determined by the *, but it appears in
many formulas, and it seems a good idea to insist on identifying it.

A duality-preserving functor (C,*,8,w) — (C',%,§',=') is a pair (F,n) with F : C — C'
an exact functor and with 7 : F o* — %o F an isomorphism of exact functors such that the
lefthand square

(5) FX —27X 5 (X FY*) - (FY):
w’FXl | Jﬂx* Qy* J, Tag,
(FX)i —2 p(X*)h G(Y*) 2 (GY):

commutes for all X € C. An isomorphism of duality-preserving functors « : (F,n) = (G,()
is an isomorphism of exact functors a : F' 22 GG such that the righthand square commutes for
all Y € C. Since 7 and « are morphisms of exact functors, they commute with translation
up to a sign determined above (4) by the parities of * and ¥, or of F and G.

Small triangulated categories with duality containing %, duality-preserving functors, iso-
morphisms of duality-preserving functors, and the natural composition laws and identities
form a strict 2-category TriCatD. There are forgetful 2-functors TriCatD — TriCat —
Cat. We will often abbreviate a triangulated category with duality as C = (C,*, d, w), with
the forgetful 2-functor being C — C.

An equivalence of triangulated categories with duality or duality-preserving equivalence is
a duality-preserving functor which is invertible up to isomorphism in TriCatD. By Balmer-
Walter [7] Lemma 4.3(d) (F,n) : C — D is an duality-preserving equivalence if and only
if F: C — D is an equivalence of categories, i.e. the forgetful 2-functor TriCatD — Cat
reflects equivalences.

A map of the form v : A — B* has a transpose u' : B — A* given by u' := u* o wp.
Morphisms of the form v : A* — B also have transposes. One has u'* = u for all u. A
morphism w : A — A* is symmetric if w* = w. A symmetric object of C = (C,*,6,w) is a
pair (A, w) with w : A = A* a symmetric isomorphism. An isomorphism (A,w) = (B,s) of
symmetric objects is an isomorphism r : A 2 B such that w = r*sr. Symmetric objects and
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their isomorphisms form a groupoid SymODbj(C). A duality-preserving functor (F,n) from
C to C' = (C',1,§',w') induces a morphism of groupoids SymObj(C) — SymObj(C’)
sending w : A = A* to na o Fw : FA = F(A*) = (FA)%, while an isomorphism of
duality-preserving functors induces an isomorphism between morphisms of groupoids. Thus
SymObj : TriCatD — Gpd is a strict 2-functor.

A duality on a triangulated category C = (C,*,d,w) induces shifted dualities C[n] =
(C,*[n], bp, wy) for all n € Z defined by

(6) *[n] = (X — X*[n]), 6 = (=1)"0, wn = (—1)"?1§" .

Thus C and C|n]| refer to the same triangulated category C equipped with different, shifted
dualities. The signs in (6) are characterized by the initial values (dg, @) = (d,w) plus the
recurrence relations 6,1 = —d,, and wy_1 = 0y, - wy,. We therefore have C[n|[m] = C[n +m]
for all n and m, allowing us to deduce conclusions about say the n-th and (n — 1)-st shifted
dualities on the basis of results proven for the 0-th and (—1)-st shifted dualities.

Proposition 1.1 (Periodicity). The translation functor A — A[1] plus the natural identi-
fications of the translated duals A*[1] = A[1]*[2] and A*[2] = A[2]*[4] give isomorphisms of
triangulated categories with duality

(C,*,0,w) = (C,"[2], 62, —w2) = (C,*[4], 04, wa)

Thus shifting a symmetric object A =2 A* in C gives first a skew-symmetric object A[1] =2
A[1]*[2] in C[2] then a symmetric object A[2] & A[2]*[4] in C[4].
An additive category contains % if its Hom groups are uniquely 2-divisible, or equivalently

if the category is Z[1]-linear.
Proposition 1.2 (Balmer [4] Theorem 2.6). Let (C,*,d,w) be a triangulated category with

duality containing % If u : A[-1] — A* is a map which is symmetric with respect to the
(—1)-st shifted duality, then there exists an ezact triangle of the form

—1,,%
(7) Al-1] 54" 2 B %A
with ¢ : B = B* an isomorphism symmetric with respect to the 0-th shifted duality. Moreover,

the symmetric object (B, $) is uniquely determined by (A,u) up to isomorphism

In the situation of Proposition 1.2 we write Cone(A,u) = (B, ¢). A symmetric object is
metabolic if it is isomorphic to a Cone(A,u). The object A* is a Lagrangian of (B, ¢). For
any object A (and fixed duality) there is a hyperbolic symmetric object

mm:m@m(Owﬁzwmmm

waA

A sublagrangian of a symmetric object (P, ¢) is a morphism u : L — B such that u*¢u = 0.
Any sublagrangian can be completed to a commutative diagram with exact rows

(8) M*[-1] ——— L ——— P ——— M*
T*[l]l J{T %Jfﬁ:qf)t T*J/
L [—1] os 1] M " P* = L*

in which all the transposes marked use the signs of the 0-th shifted duality (so d - s*[—1] is the
transpose of s with respect to the (—1)-st shifted duality, cf. the recurrence relations of (6)).
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Theorem 1.3 (Balmer [4] 4.13, 4.20). In a (TR4+) triangulated category containing % with
a §-exact duality, given a sublagrangian and a commutative diagram with exact rows as above
(8), there exists a morphism X : L — L*[—1] such that s*[—1]oXos = 0 and such that, setting
p=r+08-s 1] o\, the triangle

(9) M*[-1] Guben), L rr[-1) W, gy 2

1

t
Yy M*

is exact. Moreover, for any such A and p, if one replaces v by u, one can complete (8) to a
commutative diagram with exact rows and columns

M*[—1] L z P—"— M*

wi-g| o A s :Ltw L*
K
L* _1 * *
[ ] J-St[fl] M ’Ut P ’LL* L
K pt
R — R
—Y=—1
p 0kt

with 1 a symmetric isomorphism such that pyp~'p* = vop~lv* and with (P,¢) L (R, —1p) =
Cone(M*, us).

Proof. The A is that of [4] Lemma 4.13. The corresponding p makes the triangle (9) exact
because that is what a “very good” morphism does ([4] Definition 4.11). The ability to
complete the large diagram symmetrically with piy~1p® = v¢~1o' is [4] Theorem 4.20 (except
that we have changed the sign of %, and we have added in the sign ¢ relating to the parity of
the exactness of the duality; Balmer assumed it was +1). Although the statement of Theorem
4.20 only says that (R,1) is Witt-equivalent to (P, ¢), if one looks at the proof and pushes
the calculations at the end one small step further one finds an exact triangle
(5 %)
M- M5 PeoR—2%% mr

with w = us = rs (and with our — substituted for Balmer’s v). This shows that (P, ¢) L
(R, —) = Cone(M*, us). O

2. GROTHENDIECK-WITT GROUPS OF TRIANGULATED CATEGORIES

We now define triangulated Grothendieck-Witt groups along the lines of Balmer’s trian-
gulated Witt groups, and we prove some basic results including Localization and the Funda-
mental Theorem.

Let C = (C,*,§,w) be a small triangulated category with duality containing 1. Its
Grothendieck- Witt group GW (C) is the quotient of the free abelian group on the isomorphism
classes of symmetric objects in C by the relations of the forms [(A4,a) L (B,B)] = [4, o] +
[B, ] and [Cone(Y, f)] = [H(Y)]. Alternatively, the Grothendieck-Witt group is the set of
equivalence classes of pairs of symmetric objects where ((4, @), (B,f8)) ~ ((4',d), (B',8")) if
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and only if there exist symmetric maps ¢ : C[—1] = C* and d : D[—1] — D* and an object E
such that the two symmetric objects

(10a) (A,a) L (B',B") L Cone(C,c) L H(D) L H(E),
(10b) (A", o) L (B,B) L H(C) L Cone(D,d) L H(E)

are isomorphic. The equivalence class of the pair ((4,a),(B,)) is written [A, o] — [B, A].
Addition in the group is induced by the orthogonal direct sum L.

The Witt group W (C) is the quotient of GW (C) by the subgroup generated by the hyper-
bolic classes. Equivalently, it is the group of equivalence classes of symmetric objects modulo
the relation where (4, @) is equivalent to (B, ) if there exists an isomorphism of the form
(A,a) L Cone(C,c) = (B,B) L Cone(D,d). The Witt equivalence class of (A, «) is written
[A, a.

These groups depend on C = (C,*,§,w) in TriCatD and not just on C. On the other
hand the Grothendieck group Ky(C') depends only on C. The Grothendieck-Witt and Witt
groups for the n-th shifted duality (6) are denoted by

(11) GW™(C) = GW (CIn]), w(C) = W(C[n)).

A duality-preserving functor (F,n) : C — C’ acts on symmetric objects SymObj(C) —
SymObj(C') and preserves cone exact triangles (7). It therefore induces well-defined mor-
phisms of groups GW™(C) - GW™(C') and W"(C) — W™(C’'). We have the following
properties, all of which have already been established for triangulated Witt groups (cf. Balmer
[3] §1.19, Balmer-Walter [7] Lemma 4.1).

Proposition 2.1. Triangulated Grothendieck- Witt groups form functors GW™ : TriCatD —
ADb which send isomorphic duality-preserving functors to the same maps of Grothendieck- Witt
groups. Duality-preserving equivalences induce isomorphisms of triangulated Grothendieck-
Witt groups. The functors are periodic GW™ = GW™*, while the Grothendieck-Witt group
of skew-symmetric objects in C[n] is GW™(C,*,§, —w) = GW"+2(C).

We can verify the usual formulas for calculating inside a Grothendieck-Witt group.

Proposition 2.2. Let C be a small triangulated category with duality containing %

(a) For any symmetric morphism u : A[—1] — A* one has [Cone(A,u)] = [H(A)].

(b) For any symmetric object (P, ¢) one has [P, ¢] + [P, —¢] = [H(P)], and for any object
M one has [H(M)] = [H(M™)].

(c) If Q[-1] = L - A — Q is an ezact triangle, then one has [H(A)] = [H(L)] + [H(Q)]-
Hence there are exact sequences

Ko(C) L agwm(C) - W (C) — 0.

(d) If L — (P, ¢) is a sublagrangian, and (R,)) is the associated “subquotient” of Theorem
1.3, then we have [P, ¢] = [R, ] + [H(L)].

Proof. (a) This follows easily from the definition.
(b) This is because of the isomorphisms (P, ¢) L (P,—¢) = H(P) and H(M) = H(M™*).
(c) We may assume n = 0. Name the maps in the exact triangle u, v, and w, and write

N:(%]vo*)’ Az(wgu&Tz)lu*)'
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If we take the direct sum of the exact triangle and its dual and then make the identification

L@ Q* = Q" ® L™ we get an exact triangle
A (wO (1))_1”*
Qe L -3 Q el™ "~ —AeA HQe L

Hence we have H(A) = Cone(Q @ L*, ), and the formula [H(A)] = [H(L)] + [H(Q)] then
follows. The operation H therefore induces a well-defined morphism Ky(C) — GW(C). Its
image is the subgroup generated by the hyperbolic classes, which is the kernel of the quotient
morphism GW (C) —» W(C).

(d) Theorem 1.3 gives us (Pa ¢) L (Ra _’lp) = Cone(M*,us) and thus |IP1 ¢]] + |[R7 _’(:b]] =
[H(M*)]. Parts (b) and (c) of the current proposition show that [H(M*)] = [H(L)] +
[R, 4] + [R, —%], and the assertion follows. O

The exact sequence of part (c) of the proposition can be extended one step to the left
(Theorem 2.6).

A thick subcategory D of a triangulated category C is a strictly full triangulated subcat-
egory which is closed under direct summands. The multiplicative system S of morphisms in
C with mapping cone in D satisfies the Ore condition, and the quotient triangulated cate-
gory is C/D = C[S™!]. A thick invariant subcategory D = (D,* 6, w) of a triangulated
category with duality C = (C,*,d,w) is a thick subcategory D C C which is invariant
under the duality on C, equipped with the restriction of the duality on C. The duality on
C descends to the quotient category, giving a quotient triangulated category with duality
C/D := (C/D,*,,w). Balmer proved a localization theorem for triangulated Witt groups.

Theorem 2.3 (Balmer [4] Theorem 6.2). Let D C C be a thick invariant subcategory of a
(TR4+) triangulated category with duality containing % Then there is a long exact sequence
of triangulated Witt groups

o WD) = WN(C) - WN(C/D) = WD) -+
We now extend this sequence to include triangulated Grothendieck-Witt groups.

Theorem 2.4 (Localization). The above sequence extends to an exact sequence
GW™(D) - GW"(C) - GW™(C/D) - W™\ (D) - W"}(C) — --- .

For triangulated categories coming from complicial exact categories with weak equivalences
and duality (see §4 below) the sequence could likely be continued to the left if one developed
a higher hermitian K-theory in the style of Waldhausen [32].

To prove Theorem 2.4 we need the following notion. Let S C C be the multiplicative
system of arrows whose mapping cones are in D. An S-symmetric object in C is a pair
(A, ) with @ : A — A* a symmetric member of S. Two S-symmetric objects (A4, «) and
(B, ) are S-isomorphic if there exists a pair of arrows in S with a common source s : C — A
and t : C' — B such that s*as = t*ft.

Lemma 2.5. The group GW(C/D) is isomorphic to the group of classes of pairs of S-
symmetric objects in C modulo the relation where ((4, @), (B,B)) and ((A',d'), (B',B')) are
equivalent if and only if there exist symmetric arrows ¢ : C[—1] — C* and d : D[—1] — D* in
C and an object E such that the two S-symmetric objects (10a) and (10b) are S-isomorphic.

This is an exercise with the calculus of fractions used to define the morphisms of C[S™!] =
C/D. The analogous result for Witt groups is Balmer [4] Proposition 5.5.
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Proof of Theorem 2.4. Shifting the duality if necessary, we may reduce to the case where
n = 0. We then have a commutative diagram

K()(C) _— K()(C/D) — 0

l L

GW(C) — GW(C/D) — WD) —— W' (C) — -~

| I I

!

w(C) —— W(C/D) —— WY{D) — WY{C) — -
!
0

l

0

whose top row is exact by the localization theorem for K, whose bottom row is exact by
Balmer’s Localization Theorem 2.3, and whose columns are exact by Proposition 2.2(c). A
diagram chase shows that the second line of the diagram must also be exact. Thus the
sequence of Grothendieck-Witt and Witt groups is exact at GW (C/D), at W!(D), and at
all places further to the right.

It remains to show that GW (D) — GW(C) — GW(C/D) is exact in the middle. The
composition clearly vanishes. Now suppose that £ = [4,a] — [B, ] € GW(C) maps to 0 €
GW (C/D). By Lemma 2.5 there exist symmetric arrows ¢ : C[-1] - C* and d : D[-1] — D*
in C and an object E such that

(X,u) := (A4,a) L Cone(c) L H(D) L H(E),
(Y,v) := (B,B) L H(C) L Cone(d) L H(E)

are S-isomorphic. This means that there exist morphisms s: Z — X and¢: Z — Y in S such
that s*us = t*vt, and therefore Z — (X, u) L (Y, —v) is a sublagrangian. So we can complete
the diagram of Theorem 1.3, and we will then have [X,u] + [Y, —v] = [R, 9] + [H(Z)] by
Proposition 2.2(d), from which we deduce ¢ = [X,u] — [Y,v] = [R,¥] + [H(Z)] - [H(Y)]. If
we complete ¢t : Z — Y to a triangle Z — Y — U — Z[1], then we get ¢ = [R, ] — [H(U)].
We will complete the proof of the theorem by showing that R and U are in D, and therefore
¢ is in the image of GW (D).

The object U is the mapping cone on t € S and hence is in D.

The object R is constructed using Theorem 1.3, which means that we start by constructing
diagram (8), which corresponds to the middle two rows of the following diagram.

1

gz W ey UV Z
wl-1] i (59) w
MH-1] —7— 7 ®  yey—
r*[—l]l r u o Jr*

(52)
2] o M X @y — 2*
t s* 0
H w ( 1 ) ( 0 t*) H
0 > - (11)

1
Z*[-1] Z* AR A SELETENY &
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The first row is exact, and the top middle square commutes, so by the morphism axiom
(TR3) there exists w : Z — M* in C making all the top squares commute. Since the two
solid arrows between the first and second rows become isomorphisms in C/D, so must the
third. So w and w* become isomorphisms in C/D. Comparing compositions along the second
and third columns gives (_11) whr = (_11) s*us. This implies that w'r = s*us, and therefore
7 also becomes an isomorphism in C/D. Thus all the vertical arrows become isomorphisms
in C /D, while o and §-0*[—1] become 0 in C/D. Hence the morphism y = r+§-0[—1]o \ of
Theorem 1.3 also becomes an isomorphism in C'/D. So y is in S, and its mapping cone R is in
D. We have now proven our claim that U and R are in D, and therefore ¢ = [R, 4] — [H(U)]
is in the image of GW (D). O

The next theorem is a version of a standard theorem in hermitian K-theory (Karoubi [18]).

Theorem 2.6 (Fundamental Theorem). Let C = (C,*,d,w) be a (TR4+) triangulated cat-
egory with duality containing % Then there are exact sequences

forget

Gwm () 22 ko) B awn(c) —» w(C) — 0.

We begin with a lemma extracted from the arguments of Balmer [4] §4. Suppose we have
a commutative diagram with exact rows

C*[_l] 7(5'7'* A* v* B* p C*
3¢ o~ _Utl la [1]
c—"2—B—Y—5aA—"5cCll.

Lemma 2.7. If there ezists an isomorphism ¢ : C — C*[—1] making the diagram com-
mute and such that T*¢~1r[—1] : A[-1] — A* is symmetric, then %(d) + ¢') is a symmetric
isomorphism making the diagram commute.

Proof. That ¢ makes the diagram commute is really two equations @[1]p* = 70 and pp =
§-ott* =4 - wEIO'*T*. The second equation is equivalent to its dual

¢*p* =6 (10 ot =6 (10)* wp =0 - Wel1To-
5 (1]

Since the transpose is ¢* = § - walqﬁ*[— 1], the commutativity of the diagram is equivalent to
the two equations ¢[1]p* = 7o and ¢'[1]p* = 0. Therefore ¢' and (¢ + ¢') also make the
diagram commute.

To complete the proof we show that %((ﬁ—l— #*) is an isomorphism by observing that ¢ and ¢t
are isomorphisms making the diagram commute, and that 7*¢~17[—1] = 7*¢*~17[—1] because
7*¢~17[—1] is symmetric. So by Balmer [4] Lemma 4.6 there exists an x : C — C such that
¢ = (1+z)¢' and z3 = 0. Therefore (¢ + ¢*) = (14 z/2)¢" is also an isomorphism. O

Proof of Theorem 2.6. It is enough to prove the theorem for the shift n = 0. Because of
Proposition 2.2(c), we only need to show that the sequence is exact at Ky(C).

If @« : X =2 X*[—1] is a symmetric isomorphism for the (—1)-st shifted duality, then
Cone(X|[1],) = 0 because it is the mapping cone on an isomorphism. Since the compo-
sition GW ~1(C) — Ky(C) — GW(C) sends

[X,a] = [X] > [H(X)] = ~[Cone(X[1], a)] = 0,

the composition vanishes.
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Now suppose we have a class £ € Ky(C') such that H(¢) = 0 in GW(C). We can write £ =
[L] — [M], and we have [H(L)] — [H(M)] = 0, so there exist symmetric maps ¢ : C[-1] — C*
and d : D[—1] — D* and an object E such that

H(Le D@ E) L Cone(C,c) 2H(M & C & E) L Cone(D,d).
Call this symmetric object (Y,3), and let y = 87!, and L; = L& C ® D* ® E, and M; =
M*® C*® D @ E*. We have exact triangles
-5 02y 5L, M1 M 22y 2o,

with A and g symmetric. Applying the octahedral axiom to the composable morphisms
LieM =Y ®Y" = Y" gives a commutative diagram with exact rows and columns

(7) i . (i) siy=tjy
pP———— Lo M; Y* P[1]

—i*p=vj*q ) (78* j(i) 1 [
Y—>(ﬂ) Yov  —2Y yr O yq
(%) (6%)
LLoM, ——— L, & M,
(st) (p[l]) (—?)[11 73[1]>
q[1]

Pll] ———— Lifl] @ M;[1]

such that the two compositions Y @ Y* - Y* - P[l]Jand Y@ Y* — L; & M; — P[1]
are equal. Here the second row and second column are exact triangles which we have been
allowed to choose, while p, g, s, and ¢ are morphisms which exist because of the axioms, and
they determine the maps P — Y and Y* — P[1] because of the commutativity conditions.
The first row and first column of the diagram above become the second and third rows of the
following commutative diagram with exact rows

(e 5*)

P-1] — Lt M; v+ P
ag 1 1 ae
e () . L gY) siy=tjy :
P———— Lio M Y* P[]

1

133

%(—vi* v3* )J (Z)
— ’ Li®M; — P[]
—yi*p=yj*q (s —t)

while the top row is the dual of the bottom row. The top and bottom rows of this diagram
fulfill the hypotheses of Lemma 2.7 because from the commutativity of the bottom square
of the earlier diagram we calculate that the composition (L1 & M;)[—1] - P = P*[-1] —
LT © Mf is (6\ _0“) which is symmetric. So by Lemma 2.7 there exists a symmetric isomor-
phism P*[—1] & P, and therefore the class [P] = —¢ is in the image of the forgetful map
GW~(C) — Ky(C). This completes the proof of the theorem. O
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3. ADDITIVITY THEOREMS

We now look at Witt and Grothendieck-Witt groups of triangulated categories with duality
with n-tuples of admissible subcategories. These structures, which come from Bondal [10] and
Bondal-Kapranov [11], are an analogue for triangulated categories of semi-direct products in
group theory. The main results are the Additivity Theorems 3.3, 3.4 and 3.6.

Two subcategories of a triangulated category D are orthogonal A 1 B if Homp(A,B) =0
for all A € A and all B € B. The right and left orthogonals of a subcategory A are the full
subcategories A+ and +A with objects

ObA' = {X € D |Homp(A,X) =0forall A € A},
Ob*A ={Y € D |Homp(Y,A) =0 for all A € A}.

An admissible n-tuple (A1, Ao, ..., A,) of subcategories of a triangulated category D is an n-
tuple of strictly full triangulated subcategories which satisfy A; L A; for all 7 < j and which
together generate D. Admissible pairs of categories can be characterized by the following
proposition.

Proposition 3.1 ([10] Lemma 3.1). Let A and B be strictly full triangulated subcategories
of a small triangulated category D with A 1| B. Then (A,B) is an admissible pair of
subcategories of D if and only if any of the following equivalent conditions holds:

(a) A and B generate D.

(b) For every X € D there ezxists an ezact triangle £ X[—1] = raX — X — X with
raX € A and X € B.

(c) The inclusion functor A < D has a right adjoint r4 : D — A, and A+ = B.

(d) The inclusion functor B < D has a left adjoint £g : D — B, and A = 1B.

Admissible n-tuples of subcategories behave well under quotienting (cf. [11] Proposition
1.6).

Proposition 3.2. Let (A1, Ag, ..., A,) be an admissible n-tuple of subcategories of D. Then
for each j:

(a) A; is a thick subcategory of D.

(b) For any i # j, the composition A; — D — D/ A; is fully faithful with essential image
B; = <AZ,AJ)/A]

(c) (B1,...,Bj_1,Bj1,...,B,) is an admissible (n — 1)-tuple of subcategories of D/A;.

Additivity theorems express the Ky, GW™ or W™ of a small triangulated category (with
duality) in terms of admissible subcategories. Additivity for K is well known.

Theorem 3.3 (Additivity for Ky). Let (A1, Ao,...,A,) be an admissible n-tuple of subcat-
egories of a small triangulated category D. Then the direct-sum functor [}, A; — D which
sends (Aq,...,An) = @;_, Ai induces an isomorphism [[;-, Ko(A;) = Ko(D).

Proof. When n = 2 the direct-sum functor A; x Ay — D and the functor (ra,,%4,) : D —
A X As induce inverse isomorphisms of Grothendieck groups. For larger n use induction. [J

For Grothendieck-Witt and Witt groups there are two Additivity Theorems 3.4 and 3.6.

Theorem 3.4. Let (A,C) be an admissible pair of subcategories of a small triangulated
category D containing % with a duality exchanging A and C. In this case:

(a) The duality induces a contravariant equivalence A°® ~ C and hence an isomorphism
Ko(A) = Ko(C).
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(b) There is an isomorphism GW™(D) = Ky(A) given by [X,$] — [raX] with inverse
sending [A] — [H(A)].

(c) The ezxact sequence of the Fundamental Theorem 2.6 reduces to a split exact sequence
0 - GW" (D) —» Ky(D) - GW"™(D) — 0 isomorphic to 0 — Ky(A) — Ko(A)*? —
Ky(A) — 0, and we have W™(D) = 0.

Proof. Shifting the duality if necessary, it is enough to treat the case n = 0. Part (a) is left
to the reader.

(b) The right-to-left map Ky(A) — GW (D) is well-defined because it is the composition
of the map Ky(A) — Ky(D) induced by the inclusion with the map H : Ky(D) - GW (D)
of Proposition 2.2(c).

For the right-to-left map to be well-defined, we need the assignment (X, ¢) — [raX] to be
compatible with isometries and orthogonal direct sums in D (both clear), and we need that
for any symmetric morphism « : Y — Y*[—1] this rule should assign the same image to the
symmetric objects Cone(Y,a) =: (Z,4) and H(Y) = Cone(Y,0). But the inclusion functor
A — D is exact, so its right adjoint r4 is also exact (Bondal-Kapranov [11] Proposition
1.4). So applying 74 to the exact triangle Y[—1] - Y* — Z — Y of (7) gives us an exact
triangle from which we deduce that [raZ] = [raY] + [ra(Y™*)]. So the images of (Z, 1) and
H(Y') are indeed the same, and consequently the left-to-right map GW (D) — Ky(A) sending
[X, ¢] — [raX] is well-defined.

The composition Kyo(A) - GW (D) — Ky(A) sends [A] — [ra(A & A*)]. But since A is
in A, and A* is in C, it follows that 74(A & A*) = A. So this composition is the identity.

The composition GW (D) — Ko(A) - GW (D) sends [X, ¢] — [H(raX)]. But the exact
triangle of Proposition 3.1(b), its dual, and ¢ : X — X* gives part of a commutative diagram
with exact rows which can be completed uniquely according to Exercise 3.5 below.

tpX[-1] —F rax — s x T L px
=~ B[-1] %oz %P %ﬁ
< Skt -1 i . » i
(raX) -1 2 o x) I x T (raX)

Applying the same exercise to similar diagrams containing ¢!, 1x, 1x=, and ¢' in place of
¢, one sees that because ¢ is a symmetric isomorphism, a and 8 must also be isomorphisms
and must satisfy 8 = o. We therefore have (X, ¢) = Cone({pX, ak). This gives [X,¢] =
[H(/pX)], and then using Proposition 2.2(b) and the isomorphism (/gX)* = ra X we get
[X,#] = [H(raX)]. This implies that the composition GW (D) — Ky(A) - GW (D) is also
the identity and completes the proof.

(c) Theorem 3.3 and parts (a) and (b) of the present proposition allow us to identify the
sequence 0 - GW~'D — KyD — GW D — 0 with the sequence

1
(12) 0 — Ko(A) ﬂ Ko(A) x Ko(A) L1 Ko (4) = 0

which is split exact. Moreover, W (D) is the cokernel of Ko(D) — GW (D), so it vanishes. [

In the proof of the theorem we cited the following exercise.
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Exercise 3.5. Suppose one is given a morphism X — Y and two ezxact triangles in a trian-
gulated category D, the rows of the following diagram,

C[-1] A X C
B[-1] D Y B.

such that Homp(A,B) = 0 and Homp(A, B[—1]) = 0. Then there is a unique morphism
A — D making the middle square commute, and a unique C — B making the righthand square
commute, and together they make the entire diagram into a morphism of exact triangles.

Theorem 3.6. Let (A, B,C) be an admissible triple of subcategories of a small (TRA4+)
triangulated category D containing % with a duality exchanging A and C. Then:

(a) The inclusion B — D induces isomorphisms W"(B) = W™(D).

(b) There are isomorphisms GW"(B) x Ko(A) = GW"™(D) given by ([B,f],[A]) —
[B, 5] + [H(A)].

(c) These isomorphisms identify the kernels of the forgetful maps GW™(D) — Ky(D) and
GW™(B) — Ky(B).

Proof. Again we may assume n = 0 to simplify the notation.

(a) By Proposition 3.2 the essential images of A and C in D /B form an admissible pair of
subcategories, and under our hypotheses they are exchanged by the duality. So by Theorem
3.4 we have W*(D/B) = 0 for all i. So in Balmer’s localization sequence (Theorem 2.3)

++= W~I(D/B) » W(B) » W(D) » W(D/B) -

the maps W(B) — W(D) are isomorphisms. These maps are induced by the inclusion
B — D.

(b) The localization sequences for Witt groups and for Grothendieck-Witt groups (The-
orems 2.3 and 2.4) and the Fundamental Theorem 2.6 now give us a commutative diagram
with exact rows and columns

GW 1(B) ——— Ko(B) —— GW(B) —— W(B) —— 0

e )

GW=Y(D) —— Ko(D) —2—— GW (D) —— W (D) —— 0

e

GW~Y(D/B) - Ko(D/B) — - GW(D/B)

We have already established that the map in the fourth column is an isomorphism. The second
column is a split exact sequence by the Additivity Theorem 3.3 for Ky. By Proposition 3.2
the quotient category D /B has an admissible pair of subcategories equivalent to A and C
which are exchanged under the duality on the quotient category. So the bottom row of the
diagram may be identified with the split exact sequence (12) in Theorem 3.4. Therefore the
maps Ko(D) - Ko(D/B) - GW(D/B) may be identified with

Ko(A) x Ko(B) x Ko(4) 001 k() x ko) 00 Ky ()
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The composition may be split by a section (é) which corresponds to the map Ky(A) —

Ky(D) induced by the inclusion A — D. So the map in the third column GW (D) —
GW (D/B) can be identified with a map GW (D) — K(A) which is a surjection split by the

composition Ky(A) — Ky(D) LN GW (D). Moreover, a diagram chase shows that the other
map GW(B) — GW (D) in the third column is an injection. Therefore the third column of
the diagram is actually a short exact sequence isomorphic to 0 - GW(B) — GW (D) —
Ky(A) — 0 with the surjection split by a section which can be identified with the map
Ky(A) - GW(D) given by [A] — [H(A)]. Part (b) follows.

Part (c) follows easily from the identifications of part (b). O

4. CATEGORIES OF CHAIN COMPLEXES

Many common triangulated categories are of the form C[w™!] with C a category of chain
complexes and chain maps and w a class of chain maps which one inverts formally. It is
often more convenient to calculate in C keeping in mind that members of w will later become
invertible rather than to work directly in C[w~!] where the morphisms are harder to control.
We discuss admissible subcategories of such categories. Our basic framework is pretty much
that of Thomason’s complicial biWaldhausen categories ([28] Definition 1.2.11).

An ezact category with weak equivalences (C,w) is an exact category C together with a
class w C Mor C of ‘weak equivalences’ such that: (1) any isomorphism of C is in w; (2) if
f:X —>Yandg:Y — Z are composable morphisms in C, and if two of f, g, and gf are in
w, then so is the third; and (3) if

X' X X"
1 bl
Y’ Y Y

is a morphism of exact triangles of C, and if two of h, h’, and A" are in w, then so is the
third.

A complicial category with weak equivalences (C,w) is an exact category with weak equiv-
alences which is a full subcategory C C Ch(E) of the category of chain complexes over some
additive category E such that (4) C is closed under translations in both directions and under
mapping cones, (5) the admissible exact sequences of C include all sequences in C' which
are degreewise split exact sequences in Ch(E), and (6) the weak equivalences w include all
morphisms of C' which are homotopy equivalences in Ch(E).

A comparison of Keller’s axioms for exact categories ([19] Appendix A) with Thomason’s
definitions ([28] §1.2) shows that an exact category with weak equivalences is the same thing
as an additive saturated extensional biWaldhausen category. A complicial biWaldhausen
category is a complicial category with weak equivalences in which the category of chains E
is abelian, and w contains all morphisms in C' which are homology isomorphisms in Ch(E).
These extra properties do not seem important.

Theorem 4.1. The localization Clw '] of a complicial category with weak equivalences
(C,w) is a (TRA+) triangulated category.

Theorem 4.1 is proven by imitating Verdier’s two-step construction of the derived category.
The homotopy category Ch(E)/~ satisfies (TR4+), and this is inherited by the subcategory
C/~ and the localization C[w~?] created by the Ore calculus of fractions.
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When a complicial category with weak equivalences (C, w) has exact subcategories which
impose a natural filtration on objects of C, the triangulated category C[w~!] may have
admissible subcategories as in §3 above. We start with pairs of subcategories. The lemma is
easy to prove and is left to the reader.

Lemma 4.2. If A and B are full ezact subcategories of an ezact category C such that (i)
A | B, and (ii) any object X of C fits into an exact sequence raX — X — £pX with raX
in A and X in B, thenraX and £pX are unique up to unique isomorphism and functorial
inX, andra:C — A and ¢p : C — B are the right adjoint of the inclusion A — C and
the left adjoint of the inclusion B — C.

For a subcategory A of an exact category with weak equivalences (C,w) we will write
wa = wN A and similarly for other subcategories.

Theorem 4.3. If A and B are full exact subcategories of a complicial category with weak
equivalences (C,w) satisfying (i) and (ii) above and also (iii) A and B are translation-
invariant and (iv) the functors ra and £p preserve weak equivalences, then A['w;ll] —
Clw™Y] and Blwg'] — Clw™] are fully faithful, and their essential images (A, B) form
an admissible pair of subcategories of the triangulated category Clw™1].

Proof. If f : C 5 Aisinw with A € A, thenraf :74C = raA = Aisalso in w by (iv) plus
axiom (1) for weak equivalences. This composition also factors as r4C — C = A because
ra — le is a morphism of functors, so by axiom (2) for weak equivalences r4C = C is in
w. So for any C = A in w with target in A there exists an r4C = C in w targeting C with
source in A. By the calculus of fractions this implies that A[w ,'] — C[w™!] is fully faithful.
A similar argument shows that Blwg'] — Clw™'] is also fully faithful.

The essential image of A[w'] — Clw™!] is the strictly full subcategory A C C[w™] of
all objects isomorphic in Clw ] to objects of A, and B can be characterized similarly. We
will show that (A, B) is an admissible pair of triangulated subcategories of C[w 1]

We first show that A | B by proving that any morphism A — B in C[w™!] with A € A
and B € B vanishes. Such a morphism factors as a fraction A < Y — B with Y = A
coming from w and Y — B coming from C. Since the essential epimorphisms X — ¢pX
are functorial by Lemma 4.2 (they form the unit of an adjunction), we get a commutative
diagram

~

A Y B
0———{¢gY /BB.

Here we have /g A = 0 because A € A, while B = /g B is an isomorphism because B € B. The
functor £p preserves weak equivalences, so £gY — 0 is a weak equivalence. Qur morphism
A — B in Clw™!] therefore factors as A — 0 <~ £gY — £gB = B, and so it vanishes.

We now claim that A = *B. Indeed suppose X is an object such that Homgiyy-1] (X,B)=0
for all B € B. Then X fits into an exact triangle (g X)[—1] = 74X — X — £ X in Clw™]
with 74X in A and with £gX and (/gX)[—1] in B. The third arrow of the triangle vanishes,
so we have an isomorphism r4 X =2 X & ({gX)[—1]. But the projection r4 X — ({pX)[—1]

also vanishes, so we must have (/gX)[—1] 20 and X = r4X. It follows that X is in A. So
we have A = 'B. Thus A is the left orthogonal of a translation-invariant subcategory, and it
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is therefore a triangulated subcategory of C[w !]. A similar argument shows that E_is also
a triangulated subcategory of C[w™!]. Tt now follows from Proposition 3.1 that (A, B) is an
admissible pair of subcategories of Cw™1]. O

Now let C be an exact category with an n-tuple (A;, Ao,..., A,) of strictly full exact
subcategories such that (i') A; L A; for all i < j, and (ii’) any object X of C has a filtration
by admissible monomorphisms

(13) 0=FX—-FX—--- > F_ 1 X—>FRpX=X
with gr, X := F;X/F;_1 X in A; for each i.

Lemma 4.4. In these circumstances the filtration FoX of (13) is unique up to unique iso-
morphism and functorial.

This lemma, is proven by applying Lemma 4.2 to the categories D; and E; for 1 < i <n
where D; C C is the full subcategory of objects Y with filtrations which stabilize after F;

0— FY - FEY=F_,Y=---=Y,

and E; C C is the full subcategory of objects Z with filtrations which are trivial until F;;
0=FRZ=---=FZ— FZ—--— Z.

The lemma gives us functors gr; : C — A;, which allows us to state the following theorem.

Theorem 4.5. Let (A1,...,A,) be an n-tuple of subcategories of the complicial category with
weak equivalences (C,w) satisfying (') and (ii') above and also (iii') the A; are translation-
invariant, and (iv') the functors gr; : C — A; preserve weak equivalences. Let B; be the
essential image of the localized functor A; [w:‘i] — C[w™!] induced by the inclusion A; — C.

Then we have Ai[w:‘i] ~ B;, and (B1,...,By) is an admissible n-tuple of subcategories of
the triangulated category Clw™!].

Proof. Apply Theorem 4.3 first to the subcategories D; L E; of C and then to the subcate-
gories D;_1 1 A; of D;. O

5. GROTHENDIECK- WITT GROUPS FOR CHAIN COMPLEXES

Categories of chain complexes are differential graded categories, so now we consider com-
plicial categories with weak equivalences and a differential graded duality. Our approach
resembles Ranicki’s stable algebraic bordism categories ([27] Definition 3.15). Our notation
for the differential graded Hom in (C,w) with C C Ch(E) is Homg(X,Y).

A covariant d-ezact differential graded functor F : (C,w) — (D,v) between complicial
categories with weak equivalences is a differential graded functor F' : C — D compatible
with the exact sequences and weak equivalences which commutes with translation and such
that for any u : X — Y in C there is an isomorphism of exact sequences in Ch(E)

(14) FY—— C(0- Fu) —» (FX)[1]

|

FY— FC(u) —» F(X
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(cf. Verdier [29] Chap. I, (3.4.3.1)). The letter C' denotes the mapping cone of a chain map.
Such a F localizes to a d-exact functor F : Clw™!] — D[v~!] between the triangulated cate-
gories. Contravariant J-exact functors between complicial categories with weak equivalences
are defined analogously.

A differential graded duality on a complicial category with weak equivalences (C,w) is a
triple (*,0,70) with 6 = %1, with * : (C,w) — (C°,w°P) a contravariant d-exact differ-
ential graded functor and with wyx : X — X™* functorial weak equivalences such that the
composition wywxs : X* — X*™* — X* is 1x» for all X in C. Such a duality induces
a duality on the triangulated category Clw!]. Because * is a differential graded func-
tor, transposition gives isomorphisms Hom%(X,Y™) = Hom%(Y, X*) of differential graded
abelian groups. Then in Hom%k (X, X*) we have not only symmetric chain maps but also
symmetric homotopies and other symmetric cochains. The signs involved in the transposition
Hom';(X,Y™) =2 Hom'; (Y, X*) of cochains of degree n are rather tricky, but they correspond
in the end to the signs in the shifted duality (6). We will write (C,w) = (C,w,*,d,w) and
Clw™'] = (Clw™'],*,6,m).

A symmetric object in a (C,w) containing % is a pair (X, ¢) with X € ObC and ¢ : X
X* a symmetric chain map which is in w. Suppose we have such an (X, ¢), a chain map
f: L — X, and a symmetric cochain h € HomEl(L,L*) satisfying dr«h + hdp, = —f*¢f.
Thus L is totally isotropic up to a specified symmetric homotopy. This gives a commutative
diagram

h
15 R
(15) L X~ L
B

whose top row has a total complex U such that --- — U" = U™l — ... is
—dp, 0 0
(I'8)
hofe—dy

The diagram as a whole represents a symmetric weak equivalence 9 : U = U*. Algebraic
surgery along f : L — (X, ¢) using the homotopy h is the operation which inputs those data
and returns (U, v).

When one applies an algebraic surgery to the zero complex along L[—1] — (0,0) using a
symmetric homotopy h, the homotopy is really a symmetric chain map h : L[—1] — L*, and
the surgery transforms the zero complex into a cone symmetric object Cone(L, h).

The Grothendieck- Witt group GW (C, w) of a small complicial category with weak equiva-
lences and a differential graded duality containing % is the quotient of the free abelian group
on the symmetric objects in (C,w) by three kinds of relations:

(a) for the orthogonal direct sum of two symmetric objects one has [(X,¢) L (Y,9)] =
[X, ¢1 + [Y, ¢],

(b) if (X, ¢) is a symmetric object in (C,w) and « : Y = X is in w, then we have
[X, 4] = [Y,a"¢a], and

____)Ln+1®Xn@(L1—n)* >Ln+2@Xn+1®(L—n)*_)_“.
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(c) if h : L[-1] — L* is a morphism which is symmetric for the (—1)-st shifted duality,
then [Cone(L, h)] = [H(L)].
The Witt group W(C,w) is the quotient of GW (C,w) by the hyperbolic classes. For the
shifted dualities we write GW"(C,w) = GW (C[n],w) and W"(C,w) = W(C|n], w).

Theorem 5.1. If (C,w) is a small complicial category with weak equivalences and a differen-
tial graded duality containing %, then the localization maps from the complicial Grothendieck-

Witt groups to the triangulated Grothendieck-Witt groups are isomorphisms GW™(C, w) =
GW™(Clw ]).

Formulas 5.2. Before proving the theorem we establish a number of formulas in GW (C, w).
First of all, [X,¢] + [X,—¢] = [H(X)] and [H(X)] = [H(X*)] follow from (a) and (b).
Next suppose one has a degreewise split Lagrangian-up-to-weak-equivalence which is strictly
totally isotropic (not just up to homotopy), i.e. a commutative diagram as on the left

K— M L Kr——[M=0(f)] — L
L* M* ——» K* L'—— Cluf) ——> L

in which the lines are degreewise split dual exact sequences, and the vertical arrows are
all in w. The top line is isomorphic to the mapping cone exact sequence of some chain
map f : L[-1] — K, and (M, ¢) is the pullback along a weak equivalence of Cone(L,uf)
(on the right). So relations (b) and (c) give [M,¢] = [H(L)]. Next if L' — L — L"
is a degreewise split exact sequence, then we have [H(L')] + [H(L")] = [H(L)] because
L' ® (L")* is a degreewise split Lagrangian-up-to-weak-equivalence in H(L). We then get
[H(X)] + [H(X[1])] = 0 because in the degreewise split exact sequence X »— C(X) — X[1]
the complex C(X) is contractible. The surgery formula

() for an algebraic surgery along f : L — (X, ¢) using the homotopy A returning the
symmetric object (U, ) of (15) we have [X, ¢] = [U, 9] + [H(L)]
follows from the formulas already established because the total complex on 0 — X — L* is a
degreewise split Lagrangian-up-to-weak-equivalence of (U,v) L (X, —¢). Next
(%) if (X, ¢) and (X, €) are symmetric objects in (C,w) with ¢ and £ chain homotopic,
then we have [X, ¢] = [X,£] in GW(C, w)
follows from the surgery formula, for if ¢ — & = dk + kd, then algebraic surgery along the
diagonal A : X < (X, ¢) L (X, —£) using the homotopy —3(k + k') outputs a symmetric
object weakly equivalent to 0. This gives [X, ¢] + [X,—¢] = [H(X)] and then (xx). A
similar application of the surgery formula shows that if X = Y is a weak equivalence then
[H(X)] = [H(Y)]. Finally one shows that [M, ¢] = [H(L)] and [H(L)] = [H(L")]+[H(L")]
hold even when the exact sequences are not degreewise split by pulling back to degreewise
split exact sequences using mapping cones and cylinders.

Proof of Theorem 5.1. Let ~ denote homotopy equivalence. Lemma 2.5 gives a description
of GW (C[w!]) in terms of equivalence classes of pairs of (w/~)-symmetric objects in the
triangulated category C/~ which makes the check that GW (C,w) — GW (C[w™1]) is an
isomorphism immediate from (a), (b), (c), and (xx). The proof of Lemma 2.5 does not require
that the biduality maps w4 : A — A** be isomorphisms in the category called C (otherwise
a general assumption in §2), merely that they be in the multiplicative system called S. O



GROTHENDIECK-WITT GROUPS OF TRIANGULATED CATEGORIES 19

Two symmetric objects (X, ¢) and (Y,%) in (C,w) are cobordant if there is an algebraic
surgery transforming (X, ¢) L (Y, —1) into a symmetric object weakly equivalent to 0. Cobor-
dism is an equivalence relation (Ranicki [26] Proposition 3.2, or Vogel [30] Lemme 4.3), and
the equivalence classes form a group L(C, w) with respect to the orthogonal direct sum. The
groups for the shifted dualities are L_,(C,w) = L(C|[n],w). Because cobordant complexes
are Witt equivalent by (%) we have a natural map L ,(C,w) - W"(C,w). Arguments
similar to Theorem 5.1 prove the next theorem.

Theorem 5.3. If (C,w) is a complicial category with weak equivalences and a differential
graded duality containing % , then the natural maps between cobordism groups and complicial
and triangulated Witt groups are isomorphisms L _,(C,w) 2 W"(C,w) = W*(Clw™!]).

6. GROTHENDIECK-WITT GROUPS OF EXACT CATEGORIES

We now compare the Grothendieck-Witt groups of an exact category with duality with
the even Grothendieck-Witt groups of its bounded derived category. We begin by reviewing
derived categories of exact categories, for which a good reference is Neeman [23].

An ezact category E is an additive category with a designated class of short exact sequences
satisfying several axioms. The first version of these axioms was given by Quillen. If A is an
additive category and M an abelian category, then examples of exact categories include: A
with split exact sequences, Ch(A) with degreewise split exact sequences, M with all its exact
sequences, and a full additive subcategory E C M which is closed under extensions with the
sequences which are exact in M. Conversely, any small exact category E can be embedded
in an abelian category Lex(E) with the inclusion functor E — Lex(FE) exact and reflecting
exactness and such that E is closed under extensions in Lex(E). If E is semisaturated (see
below), then E is also closed under kernels of epimorphisms in Lex(E). (See Thomason [28]
Appendix A for a nice exposition of the Gabriel-Quillen embedding E — Lex(E).)

An additive category A is semisaturated if every retract in A has a kernel, or equivalently
if for any pair of morphisms p: X — Y and s: Y — X in A such that ps = 1y there exists
an isomorphism of the form X =2 Y & Z which identifies p with the projection Y & Z — Y and
s with the inclusion Y — Y @ Z. Informally, any object Z of an abelian category containing
A which is stably in A is already in A up to isomorphism. Any additive category has a
semisaturation satisfying a universal property; one adds the missing direct summands by a
formal procedure. Passing from a small exact category to its semisaturation with the inherited
exact structure does not change its K-theory (Waldhausen [32] Proposition 1.5.9).

A complex --- — X" 5 X? — X"t — ... in an exact category E breaks up into
short ezact sequences if there exist short exact sequences Z" »—» X" —» Z"tl in E such
that each morphism in the complex decomposes into the epimorphism of one short exact
sequence followed by the monomorphism of the next X* — Z"t! »— X"l A complex is
acyclic if it is a direct summand of a complex which breaks up into short exact sequences.
A bounded complex in E is acyclic if and only if it breaks up into short exact sequences in
the semisaturation of E. So for bounded complexes in semisaturated exact categories the
two notions are equivalent. One may also speak of a bounded complex in E being acyclic
in degrees < s or > t. If E is semisaturated, one can truncate off acyclic ends of bounded
complexes.

A quasi-isomorphism in ChP(E) is a morphism whose mapping cone is acyclic. Let w C
Mor ChP(E) be the class of quasi-isomorphisms. Then (ChP(E), w) is a complicial category
with weak equivalences in the sense of the previous two sections. The localization DP(E) =
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ChP(E)[w '] is a (TR4+) triangulated category called the bounded derived category of E. If
E is a small category, then DP(E) is a small category.

A duality on an exact category E is a pair (*,w) with * : E°®> — E an exact functor
and w : 1g = ** an isomorphism of functors such that for all objects X the composition
wywx : X* = X** — X* is the identity 1x-. A duality on E induces l-exact dualities
on (Ch®(E),w) and DP(E) by letting * and w act on the objects and morphisms of chain
complexes without signs. (Exact functors between exact categories induce l-exact functors
between the derived categories.)

We write E = (E,*,w), (Ch"(E),w) = (Ch"(E),w,*, 1, @), and D’(E) = (D"(E),*,1,w)
for the exact, complicial, and triangulated categories with duality.

Transposes and symmetric and skew-symmetric objects in an exact category with duality
containing % are defined as in a triangulated category with duality containing % If (M, ¢) is
a symmetric object and 7 : L — M a morphism such that ¢ and i*¢ form an exact sequence
L — M — L* then L is a Lagrangian for the metabolic symmetric object (M, ¢), and
the associated hyperbolic object is H(L) = (L ® L*, (0, §))- The Grothendieck-Witt group
GW T (E) is the quotient of the free abelian group on the isomorphism classes of symmetric
objects of E modulo relations [(M, ¢) L (N,v)] = [M, ¢]+ [N, 1] for orthogonal direct sums
and [M,¢] = [H(L)] for a metabolic symmetric object (M, $) with a Lagrangian L. The
Grothendieck-Witt group GW ~ (E) of skew-symmetric objects is defined similarly.

The inclusion E — Db( ) is compatible with symmetric objects, isomorphisms, orthogonal
direct sums, and Lagrangians (Balmer [3] 2.11), so it induces a natural map GW*(E) —
GWO(DP(E)). The inclusion followed by the translation (cf. Proposition 1.1 above)

X X[1]
—

(Ea*a_w) — (Db(E)’*’ la_w) (Db(E),*[2], 1’w2) = Db(E)p]

induces a natural map GW ~(E) — GW?(DP(E)).

Theorem 6.1. If E is a small exact category with duality containing %, then the inclu-
sion induces an isomorphism between the ezact and triangulated Grothendieck-Witt groups
GWT(E) = GW*(D"(E)), and the inclusion-and-shift induces an isomorphism GW ~(E) =
GW?(D*(E)).

The isomorphisms W+ (E) = WO(D"(E)) and W~ (E) = W?(DP(E)) for Witt groups were
established by Balmer [5] Theorem 4.3.

Proof. The inclusion of E in its semisaturation induces an equivalence of bounded derived
categories (Neeman [23] 1.12.3) and an isomorphism of Grothendieck-Witt groups. Hence we
may reduce to the case where E is semisaturated.

The inclusion of the theorem is the composition of the inclusion E < (ChP(E),w) with
the localization (ChP(E),w) — DP(E). Theorem 5.1 showed that the localization induces an
isomorphism of Grothendieck-Witt groups GW (ChP(E),w) = GW (DP(E)). We will show
that the inclusion also induces an isomorphism GW*(E) = GW (Ch®(E), w) by constructing
an inverse.

Suppose that ¢ : X 5 X* is a symmetric quasi-isomorphism in Ch?(E). Let ix : 0 X — X
be the inclusion map for the subcomplex which is the same as X in cochain degrees > 0 but
which vanishes in degrees < 0, and let (sX,s¢) be the symmetric object of (Ch®(E),w)
constructed by algebraic surgery along ix : 0 X — (X, ¢) with the zero homotopy (see (15)
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above for algebraic surgeries). Then sX is the total complex of the double complex

0 0 0 X! X?

(S A N
X—2 X—l XO Xl X2

L N
XZ* Xl* 0 0 0

so sX is acyclic in cochain degrees > 0. Since there exists a quasi-isomorphism s¢ : sX =
(sX)*, and since the duality is exact, sX is also acyclic in cochain degrees < 0. Since E is
semisaturated, and sX is bounded, we may truncate off the two acyclic ends of s X, leaving a
complex concentrated in degree 0 which we call its H°. The chain map s¢ has a compatible
truncation, and the symmetric complex (sX,s¢) is quasi-isomorphic to its H°. We now set

O(X,9) = [H(sX), H(s9)] + S (-1 [H(X')] € GW*(E).
>0
To show that © induces a well-defined map GW(ChP(E),w) - GW(E) we have to
check three conditions. Condition (a) concerning orthogonal direct sums clearly holds. For
condition (c) note that if X is the mapping cone of a symmetric chain map L[—1] — L*, then
the double complex above is of the form

0 0 (LYoL' — -

J |

) E(Ll)*EBL_l >(L0)*EBLO >(L_1)*EBL14>"'

: |

i (L_l)**@(Ll)* 0 0 ey

and ©(X, ¢) reduces to ) jeZ(—l)j [H(L’)]. This class depends on L but not on the choice
of the symmetric chain map L[—1] — L*, as required.

For condition (b) let (X, #) be a symmetric object of (ChP(E), w), andlet a:: Y = X be a
quasi-isomorphism. We compare O(X, ¢) with O(Y, a*¢a). Let (T, 7) be the symmetric object
constructed by surgery along aiy : oY — (X, ¢) (lefthand diagram). Then (sY,s(a*da)) is
the pullback along a quasi-isomorphism sY = T (righthand diagram) of (T, 7).

oY X (eY)* oY Y (aY)*
T T
(cY)* X* (cY)* oY X (cY)*

Consequently T is also quasi-isomorphic to its H, the symmetric objects (H°(T), H°(7)) and
(H°(sY), H(s(a*¢a))) are isomorphic, and we have

O(Y,a"¢a) = [H(T), H ()] + Y _(—1)'[H(Y")]

>0
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The complex T is homotopy equivalent to the total complex of

o -1 ®
oYy — oX

This complex is filtered, with the bottom graded piece the mapping cone on oY — X, the
middle graded piece sX, and top graded piece dual to the bottom graded piece. It thus has
the form

AN (X2)* @ (Y3)* N (Xl)* @ (YQ)* SN (Yl)*
o o @
F— (sX)7? g (sX)~! >> (sX)° (sX)! (sX)2 —— -

® T~, & T~ o

Yl —>X1@Y2TX2@Y3%

The mapping cone on the quasi-isomorphism « : ¥ = X is acyclic, so the bottom row is
acyclic in cochain degrees > 2. By duality the top row is acyclic in degrees < —2, and we
have seen that the middle row is acylic in degrees # 0. Truncating off the acyclic parts, we
see that T is quasi-isomorphic to

(kerd)* —— (Y'1)*
@
HO(sX)
©
Yyl —— kerd

The dual complex and the symmetric quasi-isomorphism can be treated in the same way. So
(H%(T), H'(7)) can be obtained from (H°(sX), H’(s$)) by adding H(Y!) and then removing
the sublagrangian (ker d)* and the corresponding quotient ker d. This gives the equation

[H(T), H (1)] = [H"(sX), H(s)] + [H(Y")] — [H(ker d)]

in GWT(E). We also have [kerd] = > .o,(—1)![Y?] — Zj>1(—1)j[Xj] in Ko(E), and since
H induces a morphism of groups Ko(E) — GW(E), this gives a formula for [H(ker d)].
Putting these formulas together gives us (X, ¢) = O(Y, a*¢a) in GWT(E). So condition
(b) holds. Hence © induces a well-defined map GW(ChP(E),w) — GWT(E), and the
formulas of §5.2 may be used to verify that this morphism is the inverse of the natural map
GW(E) - GW(ChP(E), w), so the natural map is an isomorphism. The skew-symmetric
Grothendieck-Witt groups are treated similarly. O

7. SHORT COMPLEXES

We now look at the odd triangulated Grothendieck-Witt groups of DP(E). A truncation
argument as in the previous section shows that these groups are generated by the classes of
short complexes with only two nonzero objects. We give the relations among these generators,
basing our approach on Pardon’s work on Witt groups [24] (1.10)—(1.21) of short complexes,
which was based on Ranicki’s work with Witt groups of projective modules. Our proof of
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Theorem 7.1 is more general than Pardon’s proof [24] (7.1) for Witt groups of Cohen-Macaulay
modules of given dimension, which used the projective resolutions of such modules.

Let E = (E,*,w) be an exact category with duality containing %, and let ¢ = £1. A short
complez in E is a complex with two objects. The category Short(E) of short complexes has
a duality functor given by

(Ko:0— K 5 Ko —0) = (K::0— K =5 K7 —0)

and biduality maps which componentwise are —w. We use the sign in the duality functor
because it is a duality of complexes with an odd shift, and the sign in the biduality maps
compensates. Then Short(FE) is an exact category with duality and with weak equivalences
(the quasi-isomorphisms). An e-symmetric short compler is a quasi-isomorphism of short
complexes f, : Ko = K such that f! = ef,, i.e. a commutative diagram

k

0 K Ky 0
AT
* —k* *

such that K1 — Ko®K; — K] is an exact sequence. Note that fk : K; — K7 is e-symmetric,
and if f = 1gy, then k is e-symmetric.

An e-symmetric homotopy he : Ko -+ K is an e-symmetric morphism h : Ky — K§. An
e-symmetric homotopy transforms the e-symmetric complex (K., fo) above into a homotopic
complex (Ko, fo + 0(he)) with both occurrences of f replaced by f — k*h.

The graph complex of an e-symmetric morphism v : X — X* is the e-symmetric complex

u

0 X X* 0
—szJVQ EJ/IX*
00— x % x 0

which we will write as I'x ,,. The associated trivial graph complez is T'x o = H(X).
The Grothendieck- Witt group of e-symmetric short complezes in E, denoted GV[/:}'IOTt (E)
or GW .(E) depending on ¢, is the quotient of the free abelian group on the isomorphism

classes of e-symmetric short complexes modulo four types of relations:

(i) the usual relation for orthogonal direct sums [(Ke, fo) L (Lo, ge)] = [Ke, fo]+[Le,ge]:

(ii) homotopic short complexes are in the same class [K., fo] = [Ko, fo + 0(he)],

(iii) if s¢ : He = K, is a quasi-isomorphism, then we have [K,, fo] = [He, 5% foSe],

(iv) a graph complex is in the same class as the associated trivial graph complex [I'x,] =
[H(X)]-

The Witt groups W . (E) and W, ., (E) are the quotients of the Grothendieck-Witt groups

by the classes of the graph complexes.

In the formulas for shifted dualities (6) one has w; = —w and w3 = w when § = 1.
So symmetric short complexes (—e = —1) may be considered as symmetric complexes in
DP(E)[1] concentrated in cochain degrees —1 and 0, while skew-symmetric short complexes
(—& = +1) may be considered as symmetric complexes in DP(E)[3] concentrated in cochain
degrees —2 and —1.
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Theorem 7.1. If E is a small exact category with duality containing %, then the natural maps
from Grothendieck- Witt groups of short complexes to triangulated Grothendieck- Witt groups
are isomorphisms GW _(E) =2 GW!(D®(E)) and GW,, . (E) 2 GW3(D"(E)). The same
is true for Witt groups Wi (E) = WY(D*(E)) and W, __.(E) = W3(D®(E)).

short short

The proof of Theorem 7.1 is nearly identical to Theorem 6.1, but it uses a number of

formulas in GW;lort (E) which we prove for completeness’s sake.

Formulas 7.2. (a) If there exists an e-symmetric isomorphism « : Y & Y* then we have
[H(Y )] = [Cyu] = 0 because I'y,, is quasi-isomorphic to 0. Applying this to ¥ = X @ X*
yields [H(X*)] = —[H(X)].

(b) Given an exact sequence L — M 5N, letv = (0 er"): M®N* — M*@N**. There
are quasi-isomorphisms of the form I'ygn=o, & (Ko, fo) = H(L); essentially one replaces
M@®N* — M*®N** first by L& N* — M* then by L — L*. This gives [H(M)] - [H(N)] =
[Cren= o] = [H(L)].

(c) Let mirror(K,, f,) be the e-symmetric short complex

ft
0 K Ky 0
kJV J/Ek*
—f «
0 Ky K7 0

Pardon [24] (1.16) transforms (K,, f,) L mirror(K,, f,) into I'g, s by a homotopy and a
quasi-isomorphism. So we get [mirror(K,, f.)] = [H(K;)] — [K., fo]. With mirroring we
can apply homotopies and quasi-isomorphisms to the columns of the diagram of (K, f,).

(d) A sublagrangian of an e-symmetric complex (Ko, fo) is a morphism 7, : Ls ~— K, such
that the components of i, and of f,i, are essential monomorphisms, and %} feie = 0. Then
let L = ker(itfo : Ko — L%), and let f, : LE/Le = (LL/L,)* be the induced e-symmetric
quasi-isomorphism.

A sublagrangian of (K., fe) of the form 0 — L; — 0 — 0 corresponds to a sublagrangian
of the mirror of the form 0 — L; — L; — 0, which is quasi-isomorphic to 0. So we have
[mirror(K,, f.)] = [mirror(L} /L., f,)]. Combining this with the mirror formula (c) and
with (b) gives [Ke, fo] = [L&/Ls, fo] + [H(L1)] in this case (cf. Pardon [24] (1.18)).

If (K., fo) has a sublagrangian of the form 0 — 0 — Ly — 0, then (K,, fo) L H(Ly) and
the e-symmetric complex

(Ei’{cft (Z))

0— Ki®Ly—— Ko® Ly — 0

(%) [a
0 —¢ 01
0 —— Ki®Ly— K{®L; ——0

have homotopic mirrors and hence are in the same class. The latter e-symmetric complex
can be reduced to (LE/Ls,f,) by a pair of quasi-isomorphisms. So we have [K,, fo] =
[LE/L., f,] — [H(Lo)] in this case.

For a general sublagrangian 0 — L1 — Ly — 0 one quotients out first by 0 - 0 — Ly — 0
and then by 0 — L; — 0 — 0. We deduce the general sublagrangian formula [K,, f,] =

[Le/Le; fo] + [H(L1)] — [H(Lo)]-
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8. FORMATIONS

Another description of the odd Grothendieck-Witt groups of E can be given using e-
symmetric formations (M, ¢, L1, Ly), which are e-symmetric objects (M, ¢) equipped with
two specified Lagrangians L, — M and Ly — M. Then GW; _(E) and GW,, (E) are the
quotients of the free abelian groups of isomorphism classes of e-symmetric formations (for
e = +1 and € = —1 respectively) by three kinds of relations (Karoubi [17] p. 370):

(I) |[(Ma ¢, Ly, LZ) 1 (MI, ¢Ia Llla M{)]] = |[Ma ¢, Ly, LQ]] + [[Mla ¢Ia Llla LI2]]1
(II) |[M7 ¢7 L17 LQ]] =+ [[Ma ¢a L2a L3]] = |[M7 ¢7 Lla L3]]a
(I1I) if L — (M, ¢) is a common sublagrangian of L; and Lo, then one has [M, ¢, L1, Lo] =

[L+/L,¢,L1/L,Ly/L]. (A common sublagrangian is an essential monomorphism L
M which factors through both lagrangians L — Ly ~— M and L ~— Lo — M.)

Note that relation (II) implies that [M,¢,L,L] = 0 and [M, ¢, L1, L] = —[M, ¢, Lo, L1].

The Witt groups Wi (E) and Wy, (E) are the quotients of the Grothendieck-Witt groups

by the subgroup generated by classes of the form [L & L*,( 2 §), L, L*]. There are maps

(16) {e-symmetric short complexes} ———— {(—¢)-symmetric formations}

(Ko, fo) (Ko ® K5, (5 57) » (§) Ko, (1) K1)

Theorem 8.1. For any small exact category with duality E contammg the above map in-

duces isomorphisms GW (E) = GWy, (E) and GW5  (E) = GWform( ) and similarly
for Witt groups.

It is enough to establish GW,,  (E) = GWform( ) because the other isomorphism then
follows if one changes the sign of the biduality maps in E. We study the map on Grothendieck-
Witt groups induced by (16) by factoring it through two intermediate groups. The first
group GW, (E) has the same definition as GW; (E) except that one imposes that for all
formations (M, ¢, L1, Lo) appearing in the generators and the relations the first lagrangian
L, should be a direct summand of M. There is a corresponding group W, (E).

Lemma 8.2. The map (16) induces isomorphisms GW,, . (E) = GW; (E) and W, . (E) =
W, (E).

Proof. Since (§) Ko is a direct summand of Ko® K¢, (16) induces a map from the set of skew-
symmetric short complexes into GW," (E). We show that it factors through GW, . (E). It is
certainly compatible with (i) orthogonal direct sums, while (ii) if (K,, fo) and (K., foe+0(he))
are homotopic with A* = —h, then applying the automorphism (,11 (1)) to the symmetric object

(Ko® K¢, (24)) and its lagrangians gives isomorphic formations and therefore equalities in
GW (E)

[Ko@ K5, (25), (6)Ko. () K] = [Ko @ K5, (26)
[KOGBKOa(z%(l)),((l))KOa(?)Kg]:[KO@Ka(a(z%(lJ

Because of (IT) the second equation gives [Ko® K3, (2 §), (§) Ko, (})Ko| =0, and then the
first equation gives

[KO@Kga(zg(l))’((IJ)KO’(;Ct)Kl] = [KO@Kga(zoz(l))’(%))KO’(ft-Ilfhk)Kl]'



26 CHARLES WALTER

Since f*+hk = (f —k*h)', this means that (K,, f,) and (K, fo + 9(he)) have the same image
in GW; (E).

Now suppose (iii) that se : He — K, is a quasi-isomorphism. If s, is an epimorphic quasi-
isomorphism, i.e. if sg : Hy — Ky and s1 : Hi - K; are essential epimorphisms, then the
kernel of s, would be a sublagrangian of (H,, s} fese) of the form 0 — L — L — 0. Then L is
a common sublagrangian of the two lagrangians Hy and H; of (HO ®H;, (2 (1))), and relation
(IT1) shows that (H,,s:fess) and (K,, f,) have the same image in GW, (E). In general s,
is not epimorphic, but there exist epimorphic quasi-isomorphisms t, : G4 — H, (on the left)

and ue : Gy = K, (on the right) of short complexes such that sete and u, are homotopic.

(49) (69)

00— H oKy — HyoK; ——0 00— HHoKy — Hyo K1 —— 0

(lﬂ)l l(lo) (51 1)1 l(SOk)

0 Hl H() 0 0 Kl Ko 0

Therefore (Ha,, s} fese) has the same image in GW, (E) as (G, 1555 feSete), a8 (Ge, Ui folls),
and finally as (K., fe)-

For (iv) a graph complex I'x ,, is sent to the formation (X* & X**,(24),(}) X*, (&) X),
which is isomorphic to (X* @ X, (9%),(§) X", (%) X). Applying the automorphism (§ 7*)
of (X*@® X,(9%)) gives an isomorphic formation (X* @ X,(9%),(§) X", (9)X) which is
independent of u. So I'x,, and I'x g = H(X) have the same image in GW (E).

We have now verified that (16) induces a well-defined map GW, . (E) — GW; (E).
Moreover H(X) is sent to (X*® X, (9%),(§) X*,(9) X), so we also have a well-defined map
of Witt groups.

We now construct the inverse map GW, (E) — GW,  (E). Given a symmetric forma-
tion (M, ¢, L1, Lo) with L; a split lagrangian of (M, ¢), then there exists a split lagrangian
complementary to L; giving an identification (M, ¢) = (L1 ® L3, (2 §)). Then Ly is identified
with a lagrangian (ft )Lo of (Ly & L}, (2 })), and we send (M, ¢, L1, Lo) to the class of the

skew-symmetric short complex

k

0 Ly L 0
_ f{ l ;
—k*
0 L L 0

If one chose a different complementary lagrangian, it would be of the form (%)L‘{ for some
skew-symmetric u : LT — L;, and the change from the new splitting to the old one would
correspond to the action of the automorphism (0 ] ) Thus in the new splitting Ly would be

hort(E)
as the short complex above because the mirrors are homotopic (cf. Formulas 7.2(c)). Thus

the reverse map does not depend on the choice of the split lagrangian complementary to L.

The reverse map is (I) compatible with direct summands, and (III) if L; and L, have
a common sublagrangian L, then the natural chain map from 0 — Lo — L; — 0 to
0 - Ly/L — Li/L — 0 is a quasi-isomorphism, and the formations (M, ¢, L1, Ls) and

identified with (k fo )Lg, and the associated short complex is in the same class in GW.
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(LY/L,$,L1/L,Ly/L) are mapped to the same class in GWj . (E) because of the quasi-
isomorphism relation (iii). For (II) calculations show that the formations (M, ¢, L1, Ls) L
(M, ¢, Lo, L3) and (M, ¢, Ly, L3) L (M, ¢, Lo, Ly) are sent to skew-symmetric short complexes
whose mirrors are homotopic (cf. Formula (7.2)(c)), while of course (M, ¢, Lo, Lo) is sent to
the zero class.

Therefore the reverse assignment induces a well-defined map GW, (E) - GW _ (E).
Since a formation (LGBL*, (25, L, L*) is sent to a skew-symmetric short complex isomorphic
to H(L*), we also have a well-defined map of Witt groups. The maps in the two directions
are inverse to each other, proving the lemma. O

The second intermediate group GW," (E) has the same definition as GW; _(E) except that
one imposes that for all formations (M, ¢, L1, Lo) appearing in the generators and the relations
the symmetric object (M, ¢) should have a split lagrangian, and one imposes condition (IIT)
only for sublagrangians common to L, L, and a split lagrangian of (M, ¢). There is a
corresponding group W, (E).

Lemma 8.3. The natural maps GW," (E) — GW,' (E) and W, (E) — W, (E) are isomor-
phisms.

Proof. If (M, ¢) has two split lagrangians N; and N» and two other lagrangians L; and Lo,
then in GW, (E) one has

[M ¢aN1a ] [M ¢7N2a ] [M ¢7N17N2]
for ¢ =1 and 2. It follows that the assignment
(M7 ¢7L15L2) = [Ma ¢7NjaL2] - [Ma ¢a NjaLl] € GW;—(E)

is independent of the choice of split lagrangian N;. This assignment is compatible with
the relations defining GW," (E) and W, (E) and defines maps GW," (E) — GW, (E) and
W,F(E) — W, (E) inverse to the natural maps in the other direction. O

The next two lemmas are adapted from Karoubi [17] Corollaire 2.5 and Théoréme 2.6.

Lemma 8.4. Let (M, ¢, L1, Lo) be a formation, let uy and us be automorphisms of (M, ),
and let u = uT 'uy ‘uyug be their commutator. Then we have [M, ¢, Ly, L] = [M, ¢,u(L1), La]
in GWt (E). The same relation holds in GW," (E) if (M, ) has a split lagrangian.

Proof. We have

[M, ¢,u1u2(L1),L1] = [M, ¢,U1’U,2(L1),U1(L1)] + [M,¢,U1(L1),L1]
- [M, ¢,UQ(L1),L1] + [M, ¢,U1(L1),L1],

i.e. the composition ujus is transformed into a sum. Consequently the commutator u is
transformed into 0, i.e. [M,¢,u(L1),L1] = 0. Since [M, ¢,u(L1), L] = [M,¢,u(L1), L] +
[M, ¢, L1, Lo], this proves the lemma. O

Lemma 8.5. If Ly and Ly are lagrangians of (M, ¢), then we have
[M®* & M9, 4% & (- ¢)%?, (L1 & Ly) ® N1, No & N3]
= [M®? & M®2,4%% © (-=¢9)®?, (L2 ® L1) © N1, N2 @ Ny
in GW, (E) for any lagrangians N1, N2, and N3 of (M %2, $9?).
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Proof. 1t is enough to show that

(M3 @ M ¢ @ (—¢)®%, (L1 ® Lo ® L1) & (N1 ® L), (No ® L) & (N3 & Ly)]
=[MPB oM ¢ () (Ly@dLi®L)® (N, ® L), N2 ® L) ® (N3 @ Ly)].

But since the lefthand side may be obtained from the righthand side by letting a cyclic
permutation of order 3 (thus a commutator of two transpositions) act on the first three
factors of the first lagrangian, this follows from the previous lemma. O

The final stage of the proof of Theorem 8.1 is adapted from [17] Lemme 2.8.

Proof of Theorem 8.1. Because of Lemmas 8.2 and 8.3 it remains only to show that the natu-
ral maps GW,' (E) —» GW;! _(E) and W, (E) — W, _(E) are isomorphisms. To construct
the inverse maps consider the assignment

(Ma d)aLlaL?) — [M ©® M7¢® (_¢)5L1 @ Lo, Loy ® L2] € GWI;F(E)
It is compatible with direct sums (I), and it sends (M, ¢, L1, Lo) L (M, ¢, Lo, L3) to
(M2 @ M%?, 6% @ (—¢)®?, (L1 ® L2) @ (Ly ® L3), (La ® L3) @ (Ly ® L3)].

Because of Lemma 8.5 this class is the same as

(M2 @ M®2, ¢%% @ (—¢)®2, (Lo ® L1) ® (Lo ® L3), (Lo ® L3) @ (Lo ® L3)]
= [M®M7¢® (_¢),L1 @L37L3 @Lf}]

Thus the assignment is compatible with relation (II). If L is a common sublagrangian of L;
and Lo, then L& L is the direct sum of the sublagrangians (1) L and ( ;) L, each of which is
common to L1 @ Lo, Ly® Lo, and to a split lagrangian (1) M or (1) M of (M &M, ¢&(—¢)).
It follows that

Mo M,p& (—¢), L1 & Lo, Ly @ Lo)
=[(L*/L)® (L"/L), ¢ @ (=¢), (L1/L) ® (L2/L), (L2/L) @ (L2/L)].

in GW,"(E). Consequently the assignment is compatible with relation (III), and it induces
a map GW;' (E) — GW,"(E) inverse to the natural map GW," (E) — GWfﬁrm(E). So
the natural map is an isomorphism. Since the hyperbolic classes [L & L*,(2}),L,L*] in
the two Grothendieck-Witt groups correspond under the natural map, this also induces an

isomorphism of Witt groups W, (E) = W, (E). O

9. STRICTLY SYMMETRIC COMPLEXES

We return to the old theme of Witt classes as obstructions to being able to symmetrize
strictly a complex which is symmetric up to quasi-isomorphism. In Theorem 9.5 we describe
when one can strictly symmetrize such a complex while fixing its two ends. We apply this to
strictly symmetric locally free resolutions of subcanonical subschemes (Theorem 9.6).

Let E be an exact category with duality containing %, and let n be an integer. A strictly

symmetric complez in ChP(E)[n] is a pair (C,u) with C € ObChP(E) and u : C = C*[n] a
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chain isomorphism which is symmetric for the n-th shifted duality (*,1,w)[n]. If n is even,
then such a C is chain isomorphic to a complex

Cnj2 _dus
Ar/as /a1 _— T C dnj2-1 C dpj2-2
T Yn/2-2 — 7 “n/2-1 ai% P n/2—-1 ——— Yn/2—2 —

M *
dn/2 Cn/2

n/2

with a: G,y = O /o N isomorphism satisfying o® = (—1)"2q, and if n is odd, then such a

C is chain isomorphic to a complex

dr d; d . d .

(n—3)/2 (n—1)/2 B (n—1)/2 (n—3)/2
’ Cﬁkn—3)/2 — ’ CEkn—l)/Z —— Cn-1)y2 — > Clngyp — -+~
with gt = (—1)!"/2] 8. The sign is the product of the sign (—1)" in the differentials in the
shifted dual complex and the sign (—1) [n/2] appearing in the shifted biduality maps.

Theorem 9.1. If n is odd, then a symmetric object (X, ¢) in DP(E)[n] (i.e. with the n-th
shifted duality) is quasi-isomorphic to a strictly symmetric complex if and only if its Witt
class [ X, ¢] € W™(DP(E)) vanishes.

Proof. If (X, ¢) is quasi-isomorphic to a strictly symmetric complex (C,u), then since (C,u)
has a Lagrangian -+ = 0 = C(;,_1)/2 = C(3)/2 — -+ in the complicial category with weak
equivalences (Ch"(E),w), we have [X, ¢] = [C,u] = 0. This uses the identification of Witt
groups of Theorem 5.3.

Conversely, if [X,#] = 0 in the triangulated Witt group W"(DP(E)), then by Balmer
[4] Theorem 3.5 there exists morphism A : L[—1] — L*[n] which is symmetric with respect
to the (n — 1)-st shifted duality such that (X, ¢) = Cone(L,h) in DP(E)[n]. After making
replacements using the calculus of fractions, we may assume that h is a chain map. The
biduality maps in ChP(E) are isomorphisms, so one sees from (15) that a surgery on a
strictly symmetric complex in ChP(E) yields a strictly symmetric complex. The cone complex
Cone(L, h) is obtained by a surgery on the zero complex, so it is strictly symmetric. O

Before proving the corresponding theorem for even shifts we prove two preliminary results.

Lemma 9.2. Let (C,w) be a complicial category with weak equivalences and a differential
graded duality containing % If (X, ) is a symmetric object in Clw™] andi: L — X is a
morphism in Clw™!] such that i*$i = 0 in Clw™!], then there exists a diagram

P=y*
Y —— Y
J 4 ~ A j
L .___/a o o* g\ L*
4 # )} ........... S y X* i*
p=¢*

in which the solid arrows are morphisms in C, the dotted arrows are morphisms in Clw™!],
the diagram commutes in Clw™?], and j*j =0 in C.
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Proof. With the calculus of fractions we can complete L — X = X* — L* to a diagram

_pt *

M B Z 0:0 7 B M
fl"‘ % g f*TN
L ........................ > i E ......... N X* ........................ N L*
% =gt 7*

of the same sort, with f € w and with —3*08 = dh + hd for some symmetric homotopy
h. Let (Y,1) be the symmetric object of (C,w) constructed by algebraic surgery (see (15)
above) along the composition C(f)[—1] - M — (Z,0) using the homotopy induced by h.
This means that Y is the total complex of the diagram

L*

so L is a subcomplex of Y, and the inclusion j : L <— Y satisfies j*¢j = 0. Since f : M — L
is in w, one passes from Z to Y by adding complexes which are 0 in C[w™!], so Y and Z are
isomorphic in Clw™1]. O

Proposition 9.3. Let (X,¢) be a symmetric object in DP(E)[n], let r < n/2 — 1, and let
i: L — X be a morphism in Db(ﬂ) whose mapping cone is acyclic in chain degrees < r and
such that L vanishes in chain degrees > r. Then (X, ¢) is isomorphic in DP(E)[n] to a
symmetric object coming from a symmetric chain map of the form

Ly 4 Ly Fyy— - —Fy—— L, — Ly — -
1 1 J{:I:f:_i_l JVfT-H wJ{E wJ/%

* * * k%
Lr—l L:: Fr—l—l o Fn—r—l ? L:* ? Lr—l 7

such that © becomes identified with the inclusion of the subcomplez L if and only if i*¢i = 0
in DP(E).

Proof. If (X, ¢) is isomorphic to such a symmetric object with ¢ identified with the inclusion,
then * ¢ becomes identified with a chain map from L to L*. Since there is no degree in which
both L and L* are nonzero, this chain map vanishes, and 7*¢i = 0.

Conversely, if i*$i = 0 in DP(E), then by Lemma 9.2 we may assume that ¢ and i are chain
maps and that i*¢4 = 0 as a chain map. Let (4, a) be the symmetric object of (Ch°(E), w)
constructed by surgery along i : L — (X, ¢). This surgery can be undone up to homotopy
equivalence by another surgery along L*[—1] — (A4, «): the first surgery transforms X into the
total complex of the middle line of the following diagram, and the second surgery transforms
it into the total complex of the entire diagram

L*

1
. (&)
L : X\L*.
(&)
L

¢
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The first surgery constructs A which is the total complex of

L, L,_4
!
= X1 — Xy — Xppr1 Xrs1 Xy Xr—1
A
Ly Ly

It is acyclic in chain degrees < r and, as in the proof of Theorem 6.1, it is therefore also also
acyclic in chain degrees > n — r. The second surgery constructs the total complex of

L7 L, ——I7
l JV dn—’r J/ dr+1
o Ap 1 —— A —— Ap 1 T Art1 Ay A
Lr L'rfl L'rf2

Truncating off the acyclic portions of A and taking the total complex gives a complex quasi-
isomorphic to X which is

- > Ly — Ly — cokerdy,_p = Ap_yp_9 —> -+ — Apyo > kerdry1 = Ly > Ly — -
ifr<n/2—1and
(17) o= Ly = Ly = Hyyp(A) = Ly = Lyg — -+

ifr =n/2—1. One may treat X* and ¢ in the same manner, and we get a symmetric complex
of the required form quasi-isomorphic to (X, ¢). O

Theorem 9.4. For even n any symmetric object (X, $) in D°(E)[n] is quasi-isomorphic to
a strictly symmetric complez.

Proof. After making replacements using the calculus of fractions we may assume that ¢ is a
symmetric chain map. We then apply Proposition 9.3 to the brutal truncation

J [ Y

e —— Xpjoe —— Xpjop1 —— Xpjp —— Xpjp1 —— Xyyjp g —— -+,
giving a symmetric complex as in (17). O
Theorems 9.1 and 9.4 can be combined with Proposition 9.3.
Theorem 9.5. Let n, r, and i : L — (X, ¢) be as in Proposition 9.3. Suppose that i*¢i = 0
in D°(E) and either (i) n is odd, and the Witt class [X,$] € W"(DP(E)) vanishes, or (ii) n
is even. Then (X, ¢) is isomorphic in DP(E)[n] to a strctly symmetric complex of the form

*

oo Ly o Ly Cr =2 Cly = 5 Crpg > Crgpg > Ly = Lo — --- .
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Proof. First apply Proposition 9.3, and then apply Theorem 9.1 or 9.4 to the complex (F, f)
consisting of 0 — Fj,_,_1 — --- = F,11 — 0 and the associated vertical arrows, getting a
strictly symmetric complex (C, u). By the calculus of fractions, there exist quasi-isomorphisms
F & G = C such that the pullbacks of f and u to G are homotopic maps G = G*. Since
C and G are quasi-isomorphic to F, they are acyclic in chain degrees < r and > n — r, so
truncating if necessary we may assume that C and G vanish in those degrees. If we embed
E as a full exact subcategory of an abelian category, then the chain maps induce homology
isomorphisms

coker(Fyyo — Fri1) = coker(Gryo — Griz2) = coker(Cryo — Criq),

and so there is a unique way to push forward and pull back the arrow uniting F' with L so
that L becomes united with G and with C' and the unions are complexes.

Cri — Oy Cri2 Cri1
Gn—r—]_ E— Gn—r—Z o GT‘+2 GT+1
"'—>L:—>Fn—r—1%Fn—r—2 Fr+2 Fr—l—l L'r

Similarly there is a unique way of pulling back to G and pushing forward to C' the arrow
uniting L* with F' so that the unions of L* with G and C' are complexes. Moreover, since
the old attachment arrows were compatible with f : F = F*, the new attachment arrows
are compatible with v : C =2 C*. So (C,u) with L and L* attached is a strictly symmetric
complex. O

We give an application of Theorem 9.5. Let X be a scheme with % € I'(X,0x), and let
Z C X be a closed subscheme of codimension d. We ask: When does Oz have a strictly
symmetric locally free resolution of length d the form

(18) 0 L->FQL—>F0L—---—>TFy—>F, - 0x >0z -0,
i.e. strictly symmetric of length d, with Ox in degree 0, and with a line bundle L in degree d?

In codimension 2 such a resolution has the form 0 — L i> F w—a> Ox — 0z — 0, with
rkF =2, with L = det F, and o : F =2 F* ® L the natural alternating isomorphism. Thus Z
is the zero locus of a section of a rank 2 vector bundle. In codimension 3 the form is

0L g or 25 0 L0, 50

with ¢ alternating. The structure theorem of Buchsbaum-Eisenbud [12] then implies that F
is a vector bundle of odd rank 2n + 1 and that the map ¥ — Ox is the vector of Pfaffians of
order 2n of ¢. Such a Z is called a Pfaffian subscheme, and they have been studied by Walter
[33] and Eisenbud-Popescu-Walter [13] [14].

To answer the question we use several conditions (cf. [13]):

(A) The Ox-module Oz should be of finite local projective dimension.

(B) The subscheme Z should be subcanonical of codimension d. This means:
(i) Z is relatively Cohen-Macaulay of codimension d in X, i.e. Exty, (07,0x) =0
for all ¢ # d, and
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(ii) there exists a line bundle L on X such that the relative canonical sheaf wy, x =
Ext%x((f)z, Ox) is isomorphic to the sheaf of sections of L7!|,.
Condition (B) implies that there is a symmetric isomorphism 7 : Oz = RHome, (0z, L[d]),
so it gives us a derived Witt class [0z,7n] € W%(X, L). Moreover, 1 € T'(X,0) corresponds
toan7 € Ext%x (Oz, L) = Hompg,)(0x, L[d]).

(C) Restriction condition. The composition Ox — Oz i)L[d] vanishes in HY, (X, L) =
Howp (o) (0x, Ld)).
(D) Witt condition. Either (i) d is odd, and [0z,7] € W¢(X, L) vanishes, or (ii) d is even.

Theorem 9.6. Let Z C X be a closed subscheme of codimension d in a noetherian scheme
with 3 € T(X,0x). Then Oz has a strictly symmetric locally free resolution of the form (18)
if and only if conditions (A)—(D) above all hold.

Proof. Condition (A) implies that Oz has a finite locally free resolution, and condition (B)(i)
that the resolution can be of length d. One can always put O x in degree 0, and under condition
(B)(ii) one can put L in degree d. According to Theorem 9.5 the restriction condition (C)
allows one to put Ox in degree 0 and L in degree d simultaneously, and the Witt condition
(D) then allows one to strictly symmetrize the rest of the resolution. O

Conditions (A)—(C) are taken from Eisenbud-Popescu-Walter [13] pp. 428-429. The Re-
striction Condition (C) was mentioned earlier in codimension 2 in Griffiths-Harris [15] Propo-
sition 1.33, Vogelaar [31] Theorem 2.1, and Banicd-Putinar [8] §2.1. The Witt condition
(D) appears first in Walter [33] for codimension 3 subschemes of projective space. (An arbi-
trary ground field is discussed on the bottom of p. 674.) Pardon has also discussed the Witt
condition in codimension 3 ([25] Proposition 0.18).

10. GROTHENDIECK-WITT GROUPS OF SCHEMES

In this section we define the derived Grothendieck-Witt groups of a scheme, and we describe
how the deformation invariance of Kervaire semicharacteristics really amounts to having maps
GW*=YX,L) — H*(Xzar, Z/2) (Theorem 10.2).

Let X be a scheme such that % € I'(X,0x), and let L be a line bundle over X. The exact
category VBy of algebraic vector bundles on X has a (twisted) duality functor & — &7 :=
Homg, (€, L) and biduality isomorphisms wg : € = &% which are the usual evaluation maps.
We write GW™(X,L) = GW™(D*(VBx)," 1,w) and call these the derived Grothendieck-
Witt groups of (X,L). The derived Witt groups are defined similarly. When the duality
is untwisted, i.e. when L = Ox, we often write * instead of %, and we write GW"(X) =
GW™(X,0x) and W™(X) = W™(X,0x). If f: Y — X is a morphism of schemes, then the
pullback f*: DP(VBx) — D”(VBy) can be made into a duality-preserving functor yielding
pullback morphisms f*: W"*(X, L) - W™(Y, f*L).

Stieffel-Whitney classes are defined on GW (X) and so can be (and have been) extended
to the isomorphic groups GW**(X) by periodicity. Two other invariants are the Kervaire
semicharacteristic and the Pfaffian line bundle

semi : GW (X, L) — HY(Xz4:,7Z/2), Pf: GW (X)) — Pic(X).

For the Pfaffian line bundle see Laszlo-Sorger [21] §7. One may see that the line bundle they
associate to a skew-symmetric short complex of vector bundles (for the untwisted duality)
only depends on the class in GW_ __(VByx,*, 1,w) = GW*~1(X).

short



34 CHARLES WALTER

The Kervaire semicharacteristic of a symmetric complex of vector bundles on a scheme
was studied by Kempf [20]. Looking at Kempf’s arguments in light of the current paper, one
sees that they are really based on the calculation of the derived Witt and Grothendieck-Witt
groups of a local ring. The former were computed by Balmer [5] Theorem 5.6, who found:

(19) W%R) = W(R), WYR) =0, W?(R) =0, W3(R) = 0.

Theorem 10.1. The derived Grothendieck-Witt groups of a commutative local ring R in
which 2 is invertible are

GW°(R) = GW(R), GW(R) =0, GW?*(R) = Z, GW?3(R) =17./2

Moreover, if R — S is a morphism of commutative local rings in which 2 is invertible, then
the base change maps GW*(R) — GW*(S) are isomorphisms for i 0 (mod 4).

Thus given X and L and a point z € X there are restriction maps semi, : GW*" (X, L) —
GWn=1(k(z)) = Z,/2Z.

Theorem 10.2 (Invariance of semicharacteristics). For any class v € GW*"~Y(X, L) the
function X — Z /27 given by x — semiy(y) is locally constant in the Zariski topology. Thus
the semi, define a function semi: GW*~1(X, L) — H*(Xzar, Z/2).

Proof of Theorem 10.1. Theorem 6.1 gives GW°(R) = GW(R) and GW?(R) = GW~(R),
and the latter is an infinite cyclic group generated by the class of the hyperbolic plane. The
Fundamental Theorem 2.6 yields

GwW(R) &Y g (R) B Wt (R) » W L(R) — 0.
Since W2n*t1(R) = 0 by (19), and since the forgetful map into Ko(R) = Z measures the rank
of a symmetric bilinear or symplectic module, we get GW!(R) = 0 and GW?3(R) = Z/2. All
the computations except of GWO(R) depend only on ranks and so are invariant under base
change. g

The class in GW*"1(R) = Z/2 of a symmetric object (B, %) in (Ch®(VBRg),w,*, 1, w)[4n—
1] is computed by noting that W4"~1(R) = 0, so by Theorem 9.1 (B, 1) is homotopy equiva-
lent to a strictly symmetric complex

don+2 don+1 B=—p* a3, 11 a3, 40
- — —— Con — C5, —— C5 g —— -+ .

Cont1

Its class is then Y ;0. (—1)![H(C;)], so we can identify [B,%] = Y.,5,,1kC; in Z/2. If
R — F is a morphism to a field, then the rank of 8 ® F is even, and we get [B,]
ZiZZn dimp HZ(B ®RrR F) in Z/Q.

Proof of Theorem 10.2. Let (A, ¢) be a symmetric object of (Ch®(VBx),w’, 1, w)[4n — 1]
such that v = [A, ¢#]. Restricting to the local ring of z € X gives a symmetric complex
(A, ) ® Ox 5 which is quasi-isomorphic to a strictly symmetric bounded complex (B, ;) of
free Ox z-modules. There is some affine open neighborhood U of z where this extends to a
quasi-isomorphism between (A4, ¢) ® Oy and a strictly symmetric bounded complex (By, ¥y)
of free Oy-modules. Since free modules over a commutative ring have a well-defined rank
which is invariant under base change, the semicharacteristic of -y is constant on U. O

Thus when one develops direct images for derived Grothendieck-Witt groups, one will be
able to give algebraic proofs of the deformation invariance of theta-characteristics of alge-
braic curves (cf. Mumford [22]) and of the Atiyah-Rees invariant of rank-two vector bundles
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on P3 with ¢; = 0 (cf. Hartshorne [16]) which follow exactly the natural lines of the ana-
lytic/topological proofs (Atiyah [1] Theorem 1, Atiyah-Rees [2] Theorem 4.2).

11. THE PUNCTURED SPECTRUM OF A REGULAR LOCAL RING

As an application of the Localization Theorem 2.4 we calculate the derived Grothendieck-
Witt groups of the punctured spectrum of a regular local ring. We follow the same general
plan used for Witt groups in Balmer-Walter [7] §9. First we discuss the Gersten complex.

Theorem 11.1 (Purity and the Gersten complex). Let R be an equicharacteristic regular
local ring not of characteristic 2. Then there is an exact sequence
] a9 at a2
0— GW(R) & GW(K) = EB W (k(p), Wr(p)/r,) — @ W (k(p), Wrp)/r,) — =" -
ht p=1 ht p=2

Here K is the quotient field of R, the p are the prime ideals of R, and the k(p) the residue
fields, while 7 is the base-change map for the inclusion R < K, the map 9° is the direct sum of
the second residue maps, and the later 9 are the same maps as in the Gersten-Witt complex
of Balmer-Walter [7] §8. The Witt groups have coefficients in the one-dimensional vector
Spaces Wy(p)/R, ‘= Ext‘;é;nR” (k(p), Ry), the duals of the k(p) as finite-length Ry-modules.

Theorem 11.1 is deduced from the corresponding theorem for Witt groups, see for instance
Balmer-Gille-Panin-Walter [6].

Theorem 11.2. If (R, m, k) is an equicharacteristic reqular local ring of dimension r > 2 of
characteristic not 2, and if U = Spec(R) \ {m} is its punctured spectrum, then we have

CWi () = G’WZ:(R) zfz Zr—1 (mod 4),

GW'(R) @ W(k,w/g) ifi=r—1 (mod4).
Proof. Localization arguments analogous to those used for Witt groups in Balmer-Walter [7]
Theorem 9.1 yield long exact sequences which are now of the form

GW' " (k,wy/r) = GW'(R) = GW'(U) = W' (k,wy g) = WH(R) — -

The first map GW*" (k, wy, /R) = GW'(R) may be calculated explicitly by lifting a symmetric
complex of k-modules to R and tensoring with a minimal free resolution of the R-module
k = R/m. To show that this map vanishes, it is enough to show that the class in GW"(R) of
this minimal resolution vanishes. But the minimal free resolution may be written in the form
of a Koszul complex 0 - A"F — .-+ - F — R — 0, where F is a free module of rank . We
will show that this Koszul complex is metabolic with a lagrangian subcomplex of rank p to
be determined, which implies that its class is the image of p € Z under the hyperbolic map
H:Z = Ky(R) - GW"(R). To show that this class vanishes, it is enough to show that p =0
when 7 is even and that p = 0 (mod 2) when r =3 (mod 4) (cf. Theorem 10.1). But when r
is odd, one may take the righthand half of the com(ple)§/0 S ACDR2E 5. 5 F 5 R0
r—1)/2

as a Lagrangian subcomplex, and its rank p = >, (—1)1(:) is congruent modulo 2 to

ZZ(-T:BI)/Q (:) = 271 If r is even, then write F = R® G with G free of rank r — 1, and one
may take as a Lagrangian subcomplex the righthand part of the resolution plus a Lagrangian
submodule of the middle module 0 — A"™/2G — A"/271F — ... - F — R — 0. Tts rank p is
half the rank of the entire resolution, so we have p = >°7_(=1)'(}) = 0.
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Thus the first map GW* " (k,wy, /R) — GW*(R) in the localization sequence vanishes,

and the fourth map Wi*TH(k,wk/R) — W'(R) vanishes by a similar argument. So the
localization sequences reduce to short exact sequences

0= GWR) = GW'(U) —» W'V (k,wy,/r) — 0.
From Balmer’s calculation (19) we see that the base-change map GW*(R) — GW'(U) is an
isomorphism when i £ r — 1 (mod 4), and the remaining case becomes an exact sequence
0— GW' H(R) = GW" HU) — W (k,wyr) = 0.

In the subcase » # 1 (mod 4) the composite base-change map GW"™ }(R) — GW"™}(U) —
GWT™ }(K) is an isomorphism by Theorem 10.1, so GW™ }(R) — GW" }(U) is a split
injection. For 7 = 1 (mod 4) but r > 1, all the prime ideals p C R of height 1 lie in U,
so the image of the base-change map GW(U) — GWY(K) is contained in ker(GW?(K) —
Dt p=1 W (k(p))) by the same argument as for Witt groups. The composition

GWO(R) — GWO(U) - ker (GWO(K) = @ W(k(y)))

ht p=1
is an isomorphism by Theorem 11.1, so GWO(R) — GW?O(U) is a split injection. In any case
GW™ Y(R) - GW™Y(U) is a split injection when r > 1. O
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