
Proc. Camb. Phil. Soc. (1969), 66, 251 251
With 3 text-figures

PCPS 66-31

Printed in Great Britain

Some cobordism invariants for links

B Y A. G. TRISTRAM

Churchill College, Cambridge

{Received 12 July 1967)

Introduction. The purpose of this paper is to obtain some necessary conditions for
a link in Euclidean 3-space to be spanned by a locally unknotted surface of given
type in one half of 4-space. In particular necessary conditions for two links to be
cobordant are proved.

In section 1 the problem is reduced to one concerning ribbon immersions in 3-space,
in which form it is amenable to an algebraic approach. In section 2 some new algebraic
invariants of link type are introduced. These generalize the signature and nullity,
denned by Murasugi(8). Their relation to the geometric problem and the fact that
they are cobordism invariants are shown. Sections 3 and 4 are devoted to computation
of the invariants in certain cases and to corollaries arising from these computations.
The most important corollaries concern the embeddability of 2-spheres in 4-manifolds
to represent certain homology classes.

The results of section 2 can be improved and expanded in certain cases and this
will be the object of a further paper.

1. Geometry. This section deals with aspects of link geometry. Definitions and
certain proofs are given in some detail in an attempt to create a reference for future
use. All maps and spaces are in the P.L. category and I have used the terminology
introduced by Hudson and Zeeman(4,5,12).

Definition 1-1. If N is a manifold dN will denote its boundary and inti^ will denote
N-8N.

Definition 1-2. If g: M-^-N is a map of manifolds, g is proper if g(dM) <= dN and
g(intM) c intiV.

Definition 1-3. If X is a topological space fi(X) will denote the number of its com-
ponents.

Definition 1-4. A link of n-components is the oriented image in Euclidean 3-space,
71

R3, of an embedding 1: Sn-+R3 where Sn = U S\, & disjoint union of n copies of the

1-sphere. For the purposes of this paper if h: $„->$„ is an orientation preserving
homeomorphism of Sn then l(Sn) and lh(Sn) are the same link. A knot is a link of one
component.

Definition 1-5. Two links are said to be equivalent, =, if they have ambient isotopic
defining embeddings. Little distinction will be drawn between a link and its
equivalence class.
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Definition 1-6. If L is a link defined by I: Sn^-R3 and h: R3->R3 is an orientation
reversing homeomorphism denote by pL the link defined by hi.

Definition 1-7. £ is amphiceiral if L = pL(2).
For the purposes of this and the ensuing sections N denotes a compact, oriented

2-manifold such that every component of N has a non-empty boundary. The genus
of N, h(N) is the sum of the genera of its components. The genus of a connected sur-
face N is %(k(N) + 1 —/i(8N)) where H^N) is free Abelian of rank k(N).

If there exists an embedding g-.N^-B3 such that g(8N) = L (8N inherits an orienta-
tion from N) g(N) is said to span L. Every link is spanned by some orientable surface (2).

Definition 1-8. The genus of a link, h(L), is the minimum integer, m say, such that
L is spanned by a surface of genus m.

Definition 1-9. The degeneracy of a link, d(L), is the maximum integer, m say, such
that L is spanned by a surface with m components.

Definition 1*10. If a link L is spanned by a surface, g(N) say, such that h(N) = 0
and /JL{L) = /i(N) = n say then L is the trivial link and will be denoted by Un.

Definition 1-11. Let L be a link and b: I xI->Ra an embedding, b is said to be
compatible with Lifb(I xl) ft L = b(I x dl) and if the orientations inherited from L on
b(I x 81) induce the same orientation on b(I x / ) . In this case the link

(L-b(Ix8I))\J b(81xl),

its orientations inherited from L, will be denoted by bL. It is clear that the map
bT: I xI^-R3 denned by bT{x,y) = b{y, x) is compatible with bL and that bT(bL) = L.
Compatibility implies that \/i(L) — fi(bL)\ = 1.

Let L± and L2 be links such that Lr n L2 = 0. Put L = Lx U i>2- I* *s possible to
impose restrictions on Llt L2 and b as follows.

(A) b(I x 0) c i j and 6(7 x 1) <= £2.
(B) There exists a 2-plane R2 <= R3 such that i22 n L = 0, Lx and Z<2 are separated

by R2 and 6(7 x / ) n R2 is an arc of R2.

Definition 1-12. If (A) holds define Lx-\-bL2 to be bL.
If (B) holds define L± # 6 i 2 to be bL.
If Ki and K2 are knots then i ^ # K2 = jfiTj # bK2 is independent of the choice of b.

Definition 1-13. A ribbon map of 2^ into R3 is a map, # say, with no triple points
satisfying: the doublepoint set consists of mutually disjoint arcs in i\r which may be
paired (It, I'j) so that g(I{) = g(I'i), with It properly embedded in JV and 1\ contained in
int N, for all i in some finite indexing set. It is also assumed that the self-intersections
of g(N) at g^) = g{I'i) are transverse.

Definition 1-14. g(N) will be called a ribbon of type N and g(8N), denoted by 8(g(N)),
a ribbon link of type N. This generalizes the concept of ribbon disc and ribbon knot ((l),
(2), p. 172, (3)).

In the following definition nB denotes the disjoint union of n copies of the 2-disc,

i.e. U Bv
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Definition 1 • 15. L -»• L' if for some integer n there exists a ribbon map g: nB -+R3—L
such that L' = (...((L + bidB'1) + bt8B'2)...) + bndB^wheveB'i = g{Bt).

Definition 1-16. L is ribbon equivalent to L', denoted by L = L', if there exists a
sequence of links, Lj(j = 1,..., m) say, such that Lx = £, Lm = £ ' and for j = 1,..., m - 1

either i3- -> Li+1 or -£,,•+! -»• 2/,-.
= is an equivalence relation on the set of links which preserves the number of

components.
In what follows R* denotes Euclidean 4-space, a general point w having Cartesian

coordinates (w ,̂ w;2, w3, w>4). R
3 is the subspace { w ^ = 0} of i?4 and R% the subspace

{wl^! > 0}. The general surface, N, will have the same properties as before.
Let giN-^-R^ be a proper simplicial embedding. Put Rf = {w\w1 = i} and

-^ihM = {wl'i ^ wi ^ h}- Let y: R*->R3 be the map denned by

7(w1, w2, w3, w>4) = (0, w2, w3, w4)

and put g(N)t = Rf n g{N), g(N)ltutj = RftiM (\g(N) and Lt = y{g{N)t). I t is now
assumed (cf. (8)) that g has been modified to satisfy the following condition.

Condition 1-17. Lt is either a link, inheriting its orientation from g(N)[t_ ^ or a graph
with a single vertex of order other than two. This order may only be zero or four.

Definition 1-18. Let X0 denote the subset of real numbers {x\Lx is not a link}. Xa is
a finite set. Xa will be called the singular set of g(N) and xeX0 a, singular point.

Let <J be a positive number such that S is less than the difference between any two
members of the set {x | x e X0 or x = 0}. It is easy to show that Lti = Lts if [tlt t2] 0 X° = 0
using the theorem of Zeeman and Hudson that l.u. isotopy implies ambient isotopy
((5), Theorem 2).

Put
Xtt

m = {x\xeX° and Lx has a vertex of order zero}

and X°c = {x\xeXg and Lx has a vertex of order four}.

It is clear that X°m and X°e partition X°. The next step is to examine the relationship
between Lx_s and Lx+S when xeXf^. and xeX9

c.

Proposition 1-19. If xsX°m then the l.u. condition on g(N) implies that
Lx+s = Lx_s u h

where k has one component, is unknotted and is unlinked with Lx_s (that is, k spans
a disc in R3 — Lx_s), or Lx_s = Lx+S u k with the same conditions. In the first case
9(N)[x-s, x+s] is *n e union of fi{Lx_s) annuli, each with a boundary in both R^+s and
R%_s, and a disc with boundary k. A similar situation (upside down) holds in the
second case.

Proposition 1-20. The converse of Proposition 1-19 is true. That is, if La and Lb are
links in R% and R% (a > b) so that y(La) = y(Lb) u k where k spans a disc in R3 — y(Lb),
there is a surface in R%,a\ spanning them of the type described in Proposition 1-19.

Proposition 1-21. If xeX"c then, again using the l.u. condition on g(N), it is possible
to show that Lx+S = bLx_s for some b: I xI->R3, compatible with Lx_s. In this case
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g(N)\x-ts, x+s) is a union of annuli each with a boundary in R%_ s and.fi*+s and a punctured
disc with three boundaries meeting both R%_s and B%+!.

Proposition 1-22. The converse of 1-21 is also true. In this case if Lc and Ld are links
in -ffi* and R% (c < d) such that y(Lc) = by(Ld) for some b then there is a surface in Rfc>d]

of the type described in 1-21 if /i(Ld) = fi(Lc) + 1.
Proofs of these propositions are not given. Fox (2) and Murasugi (8,9) state some

of the results involved and it is easy to supply proofs.
It is necessary to have a further partition of Xs.

Definition 1-23. Define:

X\ to be {x\xe X" and fi(Lx+s) = u(Lx-S) + 1},

Xd to be {x\xeX° and/i(Lx+s) = ^Lx_s)- 1},

Xdl to be {x\xeXd n X% and h(g(N)[0>x_s]) = h(g(N\0,x+s])},

XX to be {x\xeX°dl andM9(N)l0,x-si U R3) = /%(#)«,,*+*] U R3) +1},

and 3£» to be the set of subsets X°m, X°e, X% X% X% X\ of X<>.
It follows from Propositions 1-19 and 1-21 that X% and X°d partition X°.

Definition 1-24. Define the type of xeXg to be the subset of Xa to whose members
it belongs.

THEOREM 1-25. Given a link L in Rz there exists a l.u. proper embedding g: N^R%
such that g{dN) = L if and only if L = L' where L' is a ribbon link of type N.

The proof of Theorem 1-25 depends on lemmas to be stated. The vertices corre-
sponding to points of X° can be regarded as handles in a handle decomposition of
N mod 8N. In this light the points of X°m n X% correspond to 0-handles, the points of
X°m n Xd to 2-handles and those of X9

C to 1-handles. It is possible to carry this analogy
further by ' swapping' handles, the object of the next two lemmas.

LEMMA 1-26. / / xxsXg
m n X% and x2eXa are singular points of g: N^-R% such that

x2 < xx and (a^^i) n X° = 0 then there exists g': N->B% such that:
(1) g{N)[0^_s] = g'{N)[QiXi_S] and flr(JV)tl+,> „, = g'iN)^^.
(2) Xs' has two points yx < y2 in [x2 - 8, xx + S] and yi has the same type as xtfor

i = 1,2.

Proof. If x2eXl then LXi+s = (bL^^) u k, where k spans a disc in R3 — bL!Ci_g. Now
(bL^_s) uk = b{LX2_s U k') where k' spans a disc in Rz-{LXi_s u b(I x I)). So by
propositions 1-20 and 1-22 ̂ (i^)^-^ Xl+slcan ^ e replaced by a surface with the required
properties.

If x2eXm a similar argument can be used.

LEMMA 1 • 27. //X<> is the singular subset ofg:N->R% and xxe Xdl, x2eX<>- {Xa
m n X%)

are such that xx > x2 and (x^x-,) n X° = 0 then there exists g': N->R\ such that g'
satisfies conditions (1) and (2) of Lemma 1-26.

Proof. If x2eX° then LXi+s = b2{bxLXi_s). It is possible to show that there exists
b'2:1xI^-R3, isotopic to b2 (as embeddings compatible with bj^L^^), so that
6 i ( /x J )n6 1 ( /xJ )= 0 .
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Then b^b^L^^) = 62(617>.C!!_j). The isotopy can be constructed by sliding 62(7 x 81)
off 61(d7 x 7) if necessary and pushing intersections of the bands off through 6X(7 x 0).
LXi+s may now be regarded as 6i(62.Z/a.J_4)

 anc* 9i^)ix2s, Xl+s] c a n be replaced by a
surface with the required properties, using two applications of Proposition 1-22. If
x%<eX°m n X°d then 2-13 follows from Lemma 1-26 (upside down).

It is possible to arrange in both Lemmas 1-26 and 1-27 that the embeddings g and g'
are isotopic but this is unnecessary for the purposes of this paper.

LEMMA 1-28. If L is a link in R3 there exists a proper l.u. embedding g:
satisfying Condition 1-17 such that X^, n X% = 0 and g(dN) = LoL is a ribbon link
of type N.

Proof. => : Xg is a finite set of points, xt (i = 1, ...,m) say, such that xt > xi+1 for
all i. The proof is by induction on i. Assume that LXi+s spans a ribbon, Rt say, of type
9(N)[xi+s, °o] in -K3- If xi^X°m then by the hypothesis of the lemma xteX% and therefore
LXi-s = LXi+s U k where k spans a disc in R3 — LXi+s. This disc is ambient isotopic in
R3 — Lxi+S to a disc D with boundary k' say not meeting Rt. Now Lxi_s = Lx(+S u k'
and L^g spans Rt U D, which is a ribbon of type g^)^.^ x]. The existence of
Ri+i = Rt\J D spanning LX(+i+s = Lxi_s proves the inductive step in this case.

If xteX^ then Lxi_s = bLxi+s for some b: I x 7->i?3. It is possible to isotop b so that
6(7x7) meets Rt transversely and 6((int7)x7)n (RfUdR^ = 0 where R* is the
doublepoint set of R{. Then 6(7 x 7) u 7^ is a ribbon of type #(-^0ta-« <o)(b(I x 7) is a
1-handle of the same type as that of g(N) at a^). Putting Ri+1 = 6(7 x 7) u 7?f in this
case completes the induction because Lx +s = 0 and Lx _a = L.

<= : Let gx: L x. I->Rf01] be the proper embedding such that g±{Lx 0) = L and
y{gx{L x 7)) <= L. gx(L x 7) spans a ribbon, 7? say, in R\ denned by g%: N->R{. Let N
be subdivided so that the doublepoint set of g2 is a subcomplex. Let Dt be the second
derived neighbourhood of I\ in N for all i (using the notation of Definition 1-13. Then
g%\(N —\jDt) is an embedding as is g^KUT^)- Let vi be a point of 72+ above (with

respect to wx) g^). Then gt(I x 7) u g2{N- (J Dt) u (U Di) where D\ = v^dD^) is
i i

a l.u. properly embedded copy of N in 72^. It is not difficult to modify this to meet the
conditions of the lemma.

Remark 1-29. For every link L there is a surface N and a l.u. proper embedding
g: N^-R% such that g(dN) = L. This well known result follows from the remark after
Definition 1-7 and Lemma 1-28.

Definition 1-30. Two links L and L' are cobordant if for some N there exists a l.u.
proper embedding g: N^-R% such that Lo = L,Lt = L' and g{N) is a regular neighbour-
hood of g(N)lt>«,] in g(N).

I t is easy to check that cobordism is an equivalence relation on the set of links. The
next step is to show that this equivalence relation is identical to ribbon equivalence.

LEMMA 1-31. 7/7/ and L' are links such that L —> L' then L is cobordant to L'.

Proof. Using the notation adopted in Lemma 1-15 L' = (L\J U ^ O - U ^ - where
i i
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B'J = g{Bt) and g is a ribbon map of U Bts being disjoint 2-discs. ./,• is L n B'j, an arc
oiB). j

Let grx and g2 be proper embeddings,

g^.L'xI^Rf.^, gz:LxI-+RfOilJ

such that 7?i(I'' x s) = L' and yg2(L xs) = L for all 5 e / . Let Dit vt and D'i{vi e int i^0 X])
be defined as in the proof of 1-28 for the ribbon B'^ in R3. By Remark 1-29 g2(L xI)(\R\
spans a l.u. properly embedded surface, JV' say, in -Rfi>CO]- Then the embedded surface

H(gi(L' x I) u (U B) - U A ) U (U A ) U g,(L x I) u N')
i i 3

where H: Ri^Ri is defined by

#(«>!, w2, w>3, w4) = (w1 + l, w2, w3, w4)

satisfies the criteria (t = 2) of Definition 1-30 and L is cobordant to L'.

LEMMA 1-32. / / two links L and L' are cobordant then L = L'.

Proof. Using the notation of Definition 1-30 let N' be gr~1(-K[0,(]), a union of disjoint
annuli. Put g' = g\N', and modify g' to satisfy Condition 1-17.

By Lemmas 1-26 and 1-27 g' may be modified further so that

^ e l ^ n l f , z2eXg'nX§', a , e J f n Z f and z4eX£nX£

implies that xx < x2 < \t < x3 < x4. (Note that for g', X% n X% = Zg't = Zg'2.) It is
now possible to show, using a similar induction to that in the proof of Lemma 1-28,

that Lt ->• Lfy and Lo -> i^(. Thus L = L'. From Lemmas 1-31 and 1-32 the following
corollary can be deduced.

COROLLARY 1-33. I S L ' O L M cobordant to L'.

Proof of Theorem 1-25. If g: N-+R% is a l.u. proper embedding it may be modified,
keeping g{dN) fixed, to satisfy Condition 1-17. Again using Lemmas 1-26 and 1-27
g may be modified, keeping g(dN) fixed so that

implies that x1 < x2 < 1 < x3. Then Lo is cobordant to Lx and jK-AOii, ^ satisfies the

hypothesis of Lemma 1-28. So L = Lo = Xx and i^ is a ribbon link of type N.
This proves one implication of Theorem 1-25. The converse follows directly from

Lemmas 1-28 and 1-33.

2. Algebra. In what follows Zn with any subscript will denote a free Abelian group
of rank n. Z will denote the integers, C the complex numbers and P the ring of integral
polynomials of a single variable t.

Definition 2-1. A bilinear form is a triple (I, Zn, R) where R is a commutative ring
with unit and I is a bilinear mapping I: Znx Zn->R. Where no ambiguity arises the
form will be denoted by I.

Two forms (lv Z%, R) and (l2, Z%, R) are equal, denoted by lx = l2, if there is an
isomorphism i: Zf^-Zg such that I2(i(x),i(y)) = lx(x,y) for all x, y in Z\.
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If Zm is a subgroup of Zn and I a bilinear form on Zn the induced form on Zm will be
denoted by l\Zm.

Definition 2-2. A bilinear form (I, Zn, R) has a well-defined determinant, denoted by
det (I), the determinant of any matrix of I computed from some basis of Zn. The rank
of I is the maximum integer, m say, such that there exists Zm <= Zn with det (l\Zm) 4= 0.
The nullity of I is denned to be n—m and is denoted by n(l).

Definition 2-3. Let (I, Zn, Z) be a bilinear form and w a complex number such that
\w\ = 1 and w =j= 1. Then (wl, Zn, G) denotes the form given by

H(x, y) = i( 1 - w) {l(x, y) - wl(y, x)}

and is Hermitian. (lt,Zn,P) is the form given by V(x,y) = l(x,y) — tl{y,x).
Let wv = exp (2mnil2m + 1) for all odd prime p where p = 2m +1 and let w2 = — 1.

Then crp(l) will denote the signature of wvl for all primes and np{l) its nullity. These are
integral invariants of I.

Definition 2-4. (I, Zn, Z) is proper if the polynomial det (V) evaluated at t = 1 has
modulus 1.

LEMMA 2-5. If(l,Zn,Z) is proper thennp(l) = 0 for all prime p andliva. crp.(l) = o~2(l),
where pt is the sequence of primes in ascending order. 1~*x

Proof. Let f(t) = det(Z'). Then |/(1)| = 1. If, for some prime p, np(l) > 0 then
det (WPI) = 0 for that p. This implies that wp is a root of f(t) = 0. Put

fP(t)=f(t)-f(t2)...f(tv-1).

Then |/j,(l)| = 1 {*)-{wp)
r is a primitive root of unity for all r = 1, ...,p — l. Thus

(1-M-M2... +<p~1) is a factor offp(t) which contradicts (*). The proof of the second
statement of the lemma requires only simple analysis.

There now follows a definition of an equivalence relation between bilinear forms
which is important in the context of later sections.

Definition 2-6. Given two bilinear forms {l1}Z
n, Z) and (l2,Z

m,Z), with m > n and
m = n + 2r for some integer r, write lx -> l2 if there exists a decomposition

Zm ~ Z\@Z\®Z\
such that:

(a) 12\ZI = llt

(b) l2\Zx@Z2 is proper,

(c) 12\Z\ is the zero form, and

(d) I2(x, y) = I2(y, x) = 0ifxeZf and yeZr
2.

Two forms (I, Zn, Z) and (I', Zm, Z) are equivalent, denoted by I = V, if there exists
a sequence of forms I = l0>llt ...,lt = V such that for all i = 1, ...,t either l^^li or
li~>l{-i- This is clearly an equivalence relation and it is easy to prove the following
lemma.

LEMMA 2-7. Ifl = V then o-p(l) = crp(V) and np(l) = np(l') for all prime p.



258 A. G. TRISTRAM

Definition 2-8. (l,Zm+1,Z) is an extension of (l',Zm,Z) if there is a decomposition
zf ©Z1 such that Z|Zf = T.

LEMMA 2-9. / / 1 is an extension of I' then for all prime p either

\<Tp(l)-crp(l')\=l and np{l) = np{V),

or \np(l)-np(l')\=l and <rp(l) = <rp(l').

Definition 2-10. If (lv Zm, Z) and (l2, Z
n, Z) are bilinear forms then {lx@l2, Z

m®Zn, Z)
is defined by:

(a) l1®l2\Z
m = lt and l^l^Z*1 = l2,

(b) I1@l2(x,y) = h®h(y>x) — 0 if xeZm and yeZn.

LEMMA 2-11. If I = 1^1% then

} for all prime p.

The proofs of Lemmas 2-9 and 2-11 are straightforward, requiring only simple
manipulation.

The rest of this section is devoted to definitions and discussion of algebraic in-
variants of link type. These invariants generalize the signature and nullity of links
denned by Murasugi (8).

Let g: N->R3 be an embedding of a connected surface spanning a link L. N is
orientable and can be identified with the subset Nx 0 of Nx/ with Nxl oriented
suitably. There exists an embedding G: Nxl^-B3 such that G(x, 0) = g(x) for all
xeN. G is unique up to ambient isotopy (reljVx 0). This may be proved by the
collaring techniques introduced in chapter 5 of (12).

Let i: g(N) ->B3 — g(N) be the embedding defined by i(g(x)) = G{x, 1).

Definition 2-12. Let x, yeH1(g{N)) be represented by cycles x and y respectively on
g(N). Then define {lg,H^(g(N)),Z) by lg(x, y) = (x,i(y)}, where if a and b are cycles
in B3 (a, b) denotes the algebraic linking number of a and b.lg is a well-defined bilinear
form on H^giN)) and will be referred to as a form for the link L.

LEMMA 2-13. If lg and lg, are forms for equivalent links L and L' corresponding to
embeddings of connected surfaces spanning L and L' then lg = l^.

No proof of this will be given. A proof using projections of links is summarised by
Murasugi in (8). A proof using the above definitions is given in (11).

Definition 2-14. If L is a link spanned by a connected surface g(N) define

<rv{L) to be <rp(la) \ .
!• tor all prime p.

and nP(L) to be np(lg) + 11

LEMMA 2-15. crp(L) and np{L) are well defined. This is a consequence of Lemmas 2-7
and 2-13.

LEMMA 2-16. / / K is a knot then o~p(K) is even and np{K) = 1 for all prime p. Further-
more, \im.(o-p.(K))^-o'2:{K).

t->-00
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Proof. If g(N) spans K then Hx(g{N)) has even rank. The form lg(x, y) — lg(y, x) is
the intersection form for H^giN)) and so is unimodular. Thus lg is proper and the
results follow from Lemma 2-5.

LEMMA 2-17. np(L) ^ d(L) for any link L and all prime p.

Proof. Let d(L) — m+ 1. Then L is spanned by g{N) where g(N) has m + 1 com-
ponents. A connected surface g'(N') spanning L can be constructed from g(N) by
piping components of g(N) together using m pipes. H^g'iN')) has a direct summand
Zm generated by simple closed curves, one on each pipe. Then lg-(x, y) = 0 if xeZm or
yeZm. The result follows immediately.

The following three lemmas are proved by Murasugi in (8), using projections. They
may be proved directly from the above definitions by manipulation of the relevant
spanning surfaces.

LEMMA 2-18. / / L' = pL then there exist forms lg and lg>for L and L' respectively such
that lg. = — lg.

COROLLARY 2-19. ap{L) = - trv{pL)\ for au unks L and
and np(L) = np(pL) ) all prime p.

LEMMA 2-20. / / L = Zx # bL2 there exist forms lg, lffi and lOifor L, Lt and L2 respec-
tively such that lg = lffl®lgt.

COROLLARY 2-21. For all prime p, any two links Lx and L2 and any allowable b

o ^ i # 6^2) = °-P(^I) + <rp{Lt)

and nv{Lx # bL2) = nv{Lx) + np(L2) - 1.

LEMMA 2-22. If L' = bLfor some link L and compatible b then there exist forms lg and
lg-for L and L' respectively such that Ig, is an extension of lg.

COROLLARY 2-33. With L and L' as in Lemma 2-22 it follows from 2-9 that for all
prime p
either \crp(L) - o-p(L')\ = 1 and np(L) = np(L'),

or \np(L)-np(L')\ = l and <rp(L) = <rp{L').

COROLLARY 2-24. It can be deduced at once from Corollary 2-23 and Lemma 2-16 that
for any link L and prime p, np{L) < /i{L).

The following lemma can be deduced from a result of Murasugi (8). It is also proved
in (11).

LEMMA 2-25. IfL and L' are links such that L -*• L' then there exists form lg and l^for
L and L' respectively such that Ig-^lg--

COROLLARY 2-26. It follows from Lemma 2-25 and Corollary 1-33 that if two links L
and L' are corbordant then for all prime p crp(L) = crp(L') and np(L) = np(L').

The main result of this section is the following generalization of a theorem of
Murasugi (8).
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THEOREM 2-27. If g: N->R% is a proper locally unknotted embedding and L = g(8N)
then for all prime p.

This is a consequence of Theorem 1-25 and the following lemma.

LEMMA 2-28. If L spans a ribbon of type N then the inequality (*) holds.

Proof. Let g: N-+R3 be the ribbon map such that 8(g(N)) = L. I t is possible to
embed properly in N arcs Jj(j = l,...,t) where t = /i(L)—/i(N) + 2h{N) with open
regular neighbourhoods N(Jj) so that N— (J N(Jj) is the disjoint union of /i(N) discs.

This is proved by induction on t. I t is possible to ensure at the same time that
\JJj(\\JI'i= 0 (Definition 1-13) and that the intersections of \JJ* with (J It are
i i j i

transverse. This condition implies that g\(N—\J N(Jj)) is a ribbon map. Furthermore,

the closure of g(N(Jt)) is the image of a map by. I x I'->• R3 compatible with

bi_1(bi_2(...(b1L)...)) for each j=l,...,t.

Now d(g(N) - U N(Jj)) is bt{bt_1(...(b1L)...)), L' say. By Corollary 2-23

\<rp(L)-o-p(L')\ + \np(L')-np(L')\^t for all p.

L' is, by definition, ribbon equivalent to U^ for which

< f , ( l ^ ) = 0 and n^Uf/un) = /t(JV).

By Corollary 2-26 <rp(L') = 0 and np(L') = p(N). Therefore

\<rp(L)\ + \np{L)-n{N)\ ^t = /i(L)-/i(N) + 2h(N).
3. Computation. This section concerns the computation of crv and np for certain

types of link. The first result is useful in the study of certain properties of 4-manifolds
and its use is illustrated in section 4.

Definition 3*1. Let Z* be a link, if one of its components and h: S1 x / -»• R3 an embed-
ding such that hiS1 x 0) = K = h(Sx xI)nL. Let K^ = HS1 x J) and K2 = hiS1 x 1)
oriented in ' opposite directions' so that K2 and K induce different orientations on
h(S1xI). Thenthel inkZui?iUif 2 isa(M,£,#)-pai rwhere%= (K2,L} (2-12).

THEOREM 3-2. With the notation of 3-1 and n =j= 0 put L' = L u K1 u K2; then if p\n
<rp{L') = ap(L) and np(L') = np(L) + 2.

Proof. Let g(N) be a connected surface spanning L and let A = hlS1 x [£, /]). Then
it can be assumed without loss of generality that A intersects g(N) in m ribbon inter-
sections where m = \n\ (Figure 1). It is possible to use A and g(N) to create a connected
surface g'(N') spanning L' (Figure 2). It can be seen that k(N') = k(N) + 2m. I t is
possible to choose a regular neighbourhood T of K containing A such that g'(N') and
g(N) coincide outside T and

1. H^giN)) is generated by elements c} (j = 1,..., k(N)) represented by cycles ci on
N in the complement of T\
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2. The cycles oi (i = 1, ...,m) and bt (i = 1, ...,m) (bm+1 = b2) of g'(N') indicated in
Figure 2 are contained in T. Then the totality of elements Cp ai; 6ie/?1(^'(iV')) repre-
sented by c3-, at and fcj respectively, each with an orientation form a basis for H^(g'(N')).
Let Z^Wbe the direct summand of H^g'iN')) generated by cj (j = 1,..., k(N)) and Z2m

the direct summand generated by at (i = 1, ...,m) and 6i(i = 1, ...,ra). Then clearly
ZJZ«M = lg and ^(x, t/) = lg,(y,x) = 0 if xeZ?*™ and ?/eZ2m. It can be checked from
Figure 2 that (with appropriate conventions for orientation and Unking number and
with b0 = bm)

*«.! for all i,j = 1, ...,m.

These formulae define l^
proves that np(L') ^ »j,(i) + 2.

l{bit 6,) = 0

and it is easy to check that np(lg-\Z
2m) > 2 if #|%. This

Fig. 2

If £* = L u Ĉ  where TJX is spanned by a disc in R3 — i it is clear that there is an
embedding b: I x I->R3 compatible with L* (with ends on Uj) such that b(L*) = L'.
nv{L*) = np(L) + l and <rp(L*) = <rp(L). By Corollary 2-23 np(L') < np(L) + 2. There-
fore np(L') = np(L) + 2 and, again by 2-23,

ap{L') = trp(L*) = <rp{L).

Remark. I t is possible to show that if TO = 0 then for all p, np(L') = np(L) + 2 and
crp(L) = <rp(L'). The proof is similar to that given above.
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Definition 3-3. Let Lq r be the link with the projection shown in Figure 3. The shaded
regions of the projection indicate a Seifert surface (2), g[N) say, spanning Lqr r.

LEMMA 3*4. ap{Lq r) ^ q + r—1 for all prime p

and np(Lqr) ^ 2 if p\q or p\r.

q components

K

r components -

1

''A
i I
i i
i i

V//A V//A WA

j i !
! ! !

V/A Y//A
P

Fig. 3

Proof. Let at (i = 1, ...,qr)eH1{g(N)) be those elements represented by the dotted
curves in Figure 3. Then Igifli, a^) = 8^ (with an appropriate convention for linking
number). Also ai(i= l,...,qr) generate a direct summand ZQr of Hx(g(N)) and
k(N) = 2qr-q-r + 1. For attp, <rp(l0\Z

v) = qr. This implies that crp(L) ^ q + r- 1. It
can be shown using this projection of £g_ r and an induction argument that det (Pg)
contains a factor of the form (tq— 1) (tr— 1). This is sufficient to show that np(Lqr) ^ 2
if p\qoi p\r.

This section is concluded with one further result which is easily computed.

LEMMA 3-5. Let Kn be the torus knot determined by the pair of integers (2, 2n+ 1), that
is (2n+l)1inBeidemeister'stable (10;. Then for odd primes \crp{Kn)\ = 2(n — [2n + l/2p])
(where [ ] means' integral part of) and |o-2(^Tre)| = 2n. The sign depends on conventions.

Remark. By 3-5 \Pi<rp.{Kx) - <rp.(Kpi)\ = 2 if i = j , 0 if i < j .

4. Corollaries. This section is concerned with two applications of the results of
section 2.

Definition 4-1. Let SS be the set of cobordism classes of knots. Then it is well known (2)
that ® forms a group under the addition operation.
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Definition 4-2. Let 2°° be the abelian group of infinite sequences of integers, {n{}
say, such that lim nt exists and is finite. Addition is defined by {n{} + {raj = {

i

THEOREM 4-3. There exists an epimorphism ha:
Proof. Let ha{{K}) = {^crpi{K)} where pt is as before the sequence of primes in

ascending order. This is well denned by 2-5 and 2-6 and is a homomorphism
by Corollary 2-21. The remark at the end of section 3 shows that {ap{(Kn)} for
n = 1,..., oo form a generating set for Z00 and so h is an epimorphism.

The inequality of Theorem 2-27 has several simplifications in particular circum-
stances. The one of use in the second corollary follows.

Definition 4-4. L is a weakly slice link(S) if there exists a locally unknotted proper
embedding g: N->R\ such that g(dN) = L and h(N) = 0. Then if L is weakly slice by
2-27 it follows that for all primep \o-p(L)\ +np(L) < fi{L).

The problems to which the following results give partial answers were posed by
Wall and published in ((7), problem 8). Theorem 4-15 is an improvement of a result of
Kervaire and Minor's (6).

Let Q denote the 4-manifold S2 x S2 and let a; be a point of S2. a and b will denote
the generators of H2(Q) represented by S2 x x and xx S2 respectively.

THEOREM 4-5. Given integers q and r there does not exist a locally unknotted embedding
of S2 in Q whose image represents qa + rb in H2(Q) if g.c.d. (q, r) > 1.

Proof. I t can be assumed without loss of generality that q > 0 and r > 0. Let D be
a disc in S2 such that xe int D. Then (S2 x D) U (D x S2), Q' say, is a regular neighbour-
hood of (S2 xx)U(xx S2) in Q and (S2 x x) U (x x S2) is a spine of Q. Let g:S2^-Q be
a locally unknotted embedding such that g(S2) represents qa + rb in H2(Q). q may be
modified isotopically so that g(S2) n (DxD) = 0 and the intersections of g(S2) with
(S2 — D) x x and x x (S2 — D) are transverse (with respect to the product structure on
Q'). Let r + 2nx and q + 2n2 be the number of points of

g(82) n ((S2-D)xx), g(S) n (xx(S2-D))
respectively. Lq> r again denotes the link described in Figure 1 with named components
K and K'. Let Lqr be the link obtained by adding n^(q, Lq r, iQ-pairs and n2

(r, Lq r, i£')-pairs to Lqr in such a way that the embedded annuli used to define each
pair intersect mutually in K, K' or not at all.

Q — (int Q') is a 4-ball and 8Q' a 3-sphere. It is easily shown that the link 8Q' n g{S2),
with orientations inherited from g(S2) (\ (Q — intQ') is equivalent to L'gr or pL'gr.
Without loss of generality it will be assumed to be L'qr. The genus of g(S2) n (Q — int Q')
is zero. This is equivalent to saying that L'g r is weakly slice.

Choose a prime p such that p divides both q and r. By Theorem 3-2 and Lemma 3-4

<rP(L'q,r) = <rP(Lg,r) >

np(L'qir) = np(Lgt r) +

and ML'qr) = q + r + 2nt + 2n2
2.

Thus the invariants of L'g r do not satisfy the inequality of 4-4 and this contradicts
the existence of the embedding g.

17 Camb. Philos. 66, 2
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The drawback to using the above technique if g.c.d. (q,r) = 1 is that 3-2 cannot be
applied. I t is known that locally unknotted embeddings do exist when q or r = 0 or 1.
Using the same technique it is possible to prove the final theorem, also solved by
Kervaire and Milnor (6) in a number of cases.

Note. If c is a generator of H2(CP2) it is not possible to embed a locally unknotted
copy of S2 in CP2 to represent re if \r\ > 3.

To prove this it is necessary to use av and np where p divides r. I t is easy to show
that embeddings do exist when |r| < 3 and this therefore provides a complete solution
to the problem concerning CP2.
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