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On S-Equivalence of Seifert Matrices

H.F. Trotter (Princeton)

Introduction

From the purely algebraic point of view taken in this paper, a Seifert
matrix is simply a square matrix ¥ of integers such that det(V+eV')=+1,
where ¢ is either +1 or —1 and V' is the transpose of V. The relation of
S-equivalence is defined as follows [6]. W is (integrally) congruent to V
if W=PVP for some integral matrix P with det(P)=41. W is a row
enlargement of V, and V is a row reduction of W, if W is obtained by
bordering ¥V with two additional rows and columns in such a way that

00 O
0.1) W=|1 x u|.
0 v VvV

(Here x is a number, v a column vector, and «’ a row vector.) W is a
column enlargement of V, and V a column reduction of W if W’ is a row
enlargement of V’. (The mnemonic idea behind the terminology is that
row enlargement adds a row of zeros.) S-equivalence is then defined as
the equivalence relation generated by congruence, enlargement, and
reduction. It is easily checked that the class of Seifert matrices for a given
value of ¢ is closed under S-equivalence. (Note that x and «' in the matrix
(0.1) can be annihilated by a congruence transformation. Hence the
meaning of S-equivalence is not altered if they are required to be 0,
as in [6].)

The Seifert form determined by a Seifert matrix V is defined as a
(—é)-hermitian form on a certain torsion module Ay over the ring
A=Z[t,t7',(1—N""]. The form takes values in F/A, where F=Q() is
the quotient field of A4 and “hermitian” refers to the conjugation which
interchanges ¢ and t~'. The detailed definition is given in Section 1. The
main result of this paper is the theorem that two matrices determine
isometric forms if and only if they are S-equivalent.

Seifert matrices arise in the study of embeddings of an odd-dimen-
sional sphere S%"~! in S2"+!, Any oriented 2 n-manifold M embedded in
$2"+1 with 0M =8§%""! is called a Seifert manifold for the given em-
bedding. An integer-valued bilinear form 6 is defined on H,(M) by
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setting 6 (, f) equal to the linking number of a cycle representing « with a
translate in the positive normal direction to M of a cycle representing S.
(It is assumed that both $2"~! and $2"*! have given orientations.) The
form 6 vanishes on torsion elements and is therefore well-defined on the
torsion-free part of H,(M), which is a finitely generated free Z-module.
If {b,} is a basis for this module, the form is completely described by the
matrix V with v;;=0(b;, b)), and it can be shown that any such V is a
Seifert matrix, for e=(—1)". A different choice of basis alters V by a
congruence transformation, while adding an n-dimensional handle
produces an enlargement of ¥, so one can not expect the embedding
type of M to determine more than an S-equivalence class of matrices.

These matrices, for n=1, the case of classical knot theory, were
introduced by Seifert [14, 15], who showed that all the known knot-
invariants depending on the homology of cyclic coverings could be
computed from them. The notion of S-equivalence (under the name of
h-equivalence) appeared in [16], but its significance was not then under-
stood. Murasugi [11] actually used the relation (under the name of
s-equivalence) applied to certain matrices defined directly in terms of
the knot diagram, and showed that the S-equivalence class was invariant
under Reidemeister moves, and hence well-determined by the knot type.
A more general and direct proof, showing that surfaces embedded in a
3-manifold can have handles added to make them equivalent under
isotopy if they have the same boundary, has been given by Rice [13].
Recent development of the subject, especially in the higher dimensions,
is largely the work of Levine ([6, 7, 8] and further references to be found
in these). The key fact that S-equivalence is the appropriate relation to
study is established in [6]. More precisely, Levine showed (i) that all
matrices associated with a given embedding are S-equivalent, and (ii)
that S-equivalence is the strongest equivalence relation for which (i)
holds. For n>2, he showed that simple embeddings (those with
m(S?m+1 = §2" Y~ my(S') for i<n) are precisely classified by S-equiv-
alence of their associated matrices.

The Seifert form corresponding to the S-equivalence class of matrices
associated with an embedding has a topological interpretation which
should be mentioned, although it plays no explicit role in the results or
proofs of this paper. Let (X, B) be the manifold with boundary which
results from deleting a tubular neighborhood of §2"~! from $?"*!, and
let (X, B) be its infinite cyclic covering space. Then Z acts as a group of
covering transformations, and the homology groups of the pair (X, B)
are modules over the group ring A,=Z(Z)=Z[t, t~']. The module 4,
of a Seifert form can of course be viewed as a A,-module. It is then
isomorphic to H,(X)~ H,(X, B) for any simple embedding [20]. (For the
case n=1 this result goes back to Seifert’s original paper [14].) Kearton
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[20] has recently shown that the Blanchfield pairing [21] (which is
defined using intersection numbers) leads to a (—¢)-hermitian form
which essentially coincides with what we define as the Seifert form.
Using a topological argument, he goes on to show that for n23, the
module structure of H,(X) and the Blanchfield pairing precisely classify
the simple embeddings. Combined with the work of Levine already
cited, this yields an independent proof that S-equivalence of matrices
is equivalent to isometry of the associated forms. Other references in
which the relation of Seifert matrices to the homology of the infinite
cyclic covering is discussed are [3, 7, 9], and [16].

We conclude the introduction with an outline of the contents of the
paper. Parenthesized numbers such as (2.3) refer to definitions or theo-
rems in the text.

Section 1 gives the basic definitions and notations, and contains the
proof of the easy half of the main theorem (that S-equivalent matrices
have isometric Seifert forms), as well as the fact that it is enough to
consider non-singular matrices.

In Section 2 we observe that the module A, underlying a Seifert
form has no Z-torsion, and can therefore be viewed as a A-submodule of
QA4y=0®;4y. The latter is a module over QA=Q[t, t~*, (1—1)~]
and carries a (— ¢)-hermitian form whose restriction to A, is the original
Seifert form. Define the following (2.2) for any non-singular Seifert
matrix V:

Sy=V+e V') !
L,=Vs,
T,=—eV'V-1,

Then QA, is a vector space over Q with dimension equal to the rank of
V, and (with respect to a certain selected basis) the A-structure is given
by identifying the action of ¢ and (1—¢)~! with multiplication by T,
and I;, respectively (2.5).

By methods similar to Milnor’s [10] we obtain from the Seifert form
a Q-valued e-symmetric bilinear form on QA,, for which ¢ is an isometry
(2.8, 2.9). This rational scalar form has matrix S, with respect to the
selected basis. Isometry of QA4, and QA,y, for non-singular V and W is
equivalent to congruence of ¥ and W over 0 (2.11, 2.12). (Most of what
we have described so far is a reformulation of known results to be found
in [6] or [16].)

Just as with integral quadratic forms [12], integral congruence
classes of Seifert matrices within a rational congruence class correspond
to isometry classes of certain integral lattices in the vector space QA,, .
These admissible lattices are characterized (2.13, 2.14) as those which are
closed under multiplication by (1—¢)~! and unimodular with respect
13+
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to the scalar form. Such a lattice, corresponding to a matrix W, generates
(over A) a A-module isometric to A4,. Two matrices have isometric
Seifert forms if and only if there exist corresponding lattices which
generate the same A-submodules (2.11).

Elementary calculations (2.15, 2.17) show that matrices which are
S-equivalent via a single enlargement-reduction step correspond to
lattices K, L such that (K+L)/(KnL) is the direct sum of two cyclic
groups and (1—t)~! K< L (or vice versa). The proof of the main theorem
then reduces to showing that any two admissible lattices generating the
same A-submodule can be joined by a chain of lattices in which each two
in succession are related as just described.

In Section 3 we consider the p-adic completions, in which the integral
lattices become modules over the p-adic integers Z, embedded in a
vector space over Q,,. It turns out (3.4) that in this context any admissible
lattice L has a canonical direct sum decomposition L,+ L, + L_ such
that AL=Ly,+Q,L,+Q,L_, and that AL=AK if and only if L,=K,.
This analysis allows us to obtain the main theorem in the p-adic situation,
and standard arguments suffice to complete the proof.

Section 4 contains a miscellany of results on the relation between
S-equivalence and congruence, which come out as by-products of the
main theorem. Among them are a proof that matrices of prime deter-
minant are S-equivalent only if they are integrally congruent (4.7), and a
sufficient condition (conjectured to be necessary) for an S-equivalence
class to contain infinitely many congruence classes (4.13).

Section 5 presents some explicit examples illustrating various
possibilities, including a matrix which is not S-equivalent to its transpose
(5.2) and therefore comes from a non-invertible knot.

1. The Form Determined by a Seifert Matrix

We begin with some definitions and elementary generalities.

All rings will be assumed commutative. For a ring R, R" denotes the
free R-module of n-dimensional column vectors (n x 1 matrices) over R.
A square matrix is unimodular over R if it has entries in R and its deter-
minant is a unit (invertible element) in R. A matrix over R is unimodular
if and only if it has an inverse over R. If M is an n x n matrix then MR"
denotes the image of R" under multiplication by M, i.e., the submodule
of R" generated by the columns of M. If R, is a subring of R, then R" is
considered as an R, module containing R}, as a submodule.

A conjugation on a ring R is an automorphism r +— 7 whose square
is the identity. A symmetric module C over a ring R with a conjugation
is a module with an additive automorphism ¢ + ¢ such that (r¢)” =¥¢c
for all reR, ce C. A hermitian (skew-hermitian) form over R with coeffi-




On S-Equivalence of Seifert Matrices 177

cients in a symmetric module C consists of an R-module 4 and a bi-
additive map (a,, a,)+> a, - a, from A x A to C such that

ra,-a,=r(a,-a,)
and
a-a,=(a,-a,)” (hermitian)
or
a,-a;=—(a;-a,)” (skew-hermitian).

Two forms are isometric if there is an isomorphism between the under-
lying modules which preserves the dot-product. A square matrix M
over a ring with conjugation is hermitian if M’'=M, where M’ is the
transpose of M. If M is hermitian then setting a, -a,=a, M a, for a,, a,
in R" defines a hermitian form with coefficients in R. Similarly a matrix M
such that M’ = — M is called skew-hermitian and defines a skew-hermitian
form.

Suppose R is an integral domain with a conjugation, with quotient
field F, and M is an nxn non-singular hermitian (or skew-hermitian)
matrix over R. The quotient form determined by M is a hermitian (skew-
hermitian) form over R with values in the symmetric module F/R. Its
associated module is by definition the quotient module R"/MR", and for
ay, a, in R"/MR", the product a, -a, is defined as b, M~'b, (computed
in F and reduced modulo R) where b, and b, are representatives in R" of
a, and a, . The product is well-defined because if, for example, a, =0 then
b, is in MR, s0 b; =M b, for by, in R" and b, M~'b, =b} b, is in R. The
same is true if a, is 0, in virtue of the assumed hermitian symmetry
(skew-symmetry) of M.

Lemma 1.1. If M, is hermitian (skew-hermitian) and P is unimodular
then M, and M, =PM, P’ determine isometric quotient forms.

Proof. Verify that since P is unimodular (and hence so is P’), multi-
plication by P gives an automorphism of R" carrying M, R" onto M, R",
and induces the required isometry of R"/M, R" and R"/M ,R"

Lemma 1.2. If U and M, are both hermitian (skew-hermitian) and U
is unimodular then M, and
U 0 ]

MF[O M,

determine isometric quotient forms.

Proof. Suppose U is k x k and M, is m x m. Because U is unimodular,
UR*=R¥, so the inclusion R™— R**™ induces an isomorphism of
R™/M, R™ with R**™/M, R**™ (which is obviously an isometry).
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Lemma 1.3. Let A be the module R"/MR", with M any n x n matrix.
Then (detM)a=0 for all a in A.

Proof. For any b in R", Cramer’s rule gives b, in R" such that
(detM)b=M b, and so is in MR".

The following notations will be used for certain subrings of the field
F=Q(?), the field of rational functions in one variable over the rationals.
F and these subrings are considered as rings with the conjugation

characterized by t=¢"1.
Ag=Z[t,t71]

is the subring generated by ¢ and ¢~!, and may be identified with the
group ring of the infinite cyclic group generated by ¢,

A=A, [(1-0)7"]=Z[t,c"",(1-0""]
is the subring generated by ¢, = and (1 —t)~!,

Q4,=Q0®4,=0Q[t,t7'],
Q4=Q®A=Q[t,t~!,(1—-0)""].

All these rings are integral domains having F as field of quotients. We
introduce the notation
z=(1-t)!
and note the identities
Z=—tz=1-z2
which show that A is closed under conjugation and is generated as a ring
byz,z ' and z71.

We are now ready to introduce the forms defined by Seifert matrices.
We assume that ¢ has been fixed as either +1 or —1 and that V is a
2hx 2h matrix of integers such that V+¢V’ is unimodular over Z. (That
the dimension of ¥ must be even can be derived from the fact that V+¢ V",
when viewed as a matrix over the field Z/2Z, is symmetric, non-singular,
and zero on the diagonal.)

The Seifert form determined by V is a form over A (hermitian ife= — 1,
skew-hermitian if = + 1) with values in F/A, and is by definition the
quotient form determined by the matrix

M,=zZV—ezV'=(t—1)"1(tV+eV)

which obviously satisfies the condition M;, = —¢M,. We denote the
module on which the form is defined by

Ay =A2"/My, A

and refer to the form itself as (4,,,").
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Remark. The topological interpretation mentioned in the intro-
duction suggests that one should work over A, and consider the A,-
module B, =A2"/(tV+¢V’) A3" instead of A,. As we shall see, using A
instead of A, makes no real difference. It does, however, reflect a signi-
ficantly different viewpoint. The definition of admissible lattices (2.13)
and many of the subsequent propositions are more natural with A as
coefficient ring, and the decomposition Theorem (3.4) depends on the
factorization of t as —zz~'. The choice of rings makes no real difference
because multiplication by 1—t gives an automorphism of B, so that
multiplication by (1 —¢)~* can be defined on it. In this way B, becomes a
A-module, which is easily seen to be isomorphic to A,. To prove the
italicized statement, let D(t)=det(tV+¢eV’) and note that D(1)=
det(V+eV’)= +1. Now 1 —t divides D(t)— D(1); let ¢(t) be the quotient.
Then for any beB,, ¢(t)(1—-t)b=D()b—D(1)b=—-D(1)b=+b by
Lemma 1.3, so an inverse to multiplication by 1—¢ is given by multi-
plication by either ¢(t) or — ¢ (t), depending on the sign of D(1).

Theorem. The forms (Ay,*) and (Ay,,*) determined by Seifert matrices
V and W are isometric if and only if V and W are S-equivalent.

The proof of the “if” part is almost immediate. If W is integrally
congruent to V¥, so W=PVP' with P unimodular over Z, then
My, =PM, P'. Considered as a matrix over A, P=P and the isometry of
(Ay,*) and (A,*) follows from Lemma 1.1. If W is a row enlargement
of V, as given in Eq. (0.1) then

0 —&z 0
My=|z xZ—exz —ezv'+zu'|.
0 Zv—ezu M,

By Lemma 1.1 we may replace M, by PM,, P’ where

1 0 0
P= —-X 1 0]
ezz7'v—u 0 1
Lemma 1.2 applies to the resulting matrix and gives the desired con-
clusion. The same argument obviously applies to column enlargements.

The proof of the converse will occupy the next two sections. We
begin by taking care of a trivial case.

Lemma 14. A, =0 if and only if every matrix S-equivalent to V is
singular.

Proof. Every enlarged matrix is obviously singular. Conversely, it is
easy to show (see [16], p. 485 for details) that a singular Seifert matrix
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is integrally congruent to one of the form of W in (1.1). Successive reduc-
tions eventually yield either a non-singular matrix or one of the form

00 . . . . .
W= [ 1 x] for which A, is easily found to be 0. This proves the “if”

part of the statement. The converse, which amounts to saying that if V
is non-singular then 4, +0 is a consequence of Proposition 2.5 in the
next section.

2. The Seifert Form with Rational Coefficients

Given a Seifert form (4, -) we can construct a form (QA4, -) over the
ring QA with values in F/QA in an obvious way. We take the underlying
module QA4 to be Q ® A4 and define (¢, ® a,)- (9, ® a,) to be q,9,¥(a, - a,)
where : F/A— F/QA is the quotient map. We call (QA4, +) the rational
Seifert form derived from (4, ). If the given form is (4y,*) determined
by a matrix V' then (by right exactness of the tensor product functor),
QA can be identified with QA%"/M, QA" and it is easy to see that
(QAy,+)is in fact the reduced form over QA determined by M, . Further-
more, the natural map 4, — QA4, which takes a into 1 ® a is induced by
the natural inclusion 42" — Q A%,

The next lemma shows that the rational form provides a framework
for studying the integral form.

Lemma 2.1. The map A, — QA,, taking a into 1 ® a is a monomorphism.

Proof. [1] We need to show that A, is torsion-free as an abelian
group, i.e., that if ma=M,b with meZ, a, be A*", then a=M, b, for
some b,e A*". Let M be the transposed matrix of cofactors of M,,. Then
(Cramer’s rule) (det My)b=MM,b=mMa, so m divides (det M,)b=
(1—r)=2*det(tV+eV')b. A is a unique factorization domain because
Ay is [2], so every 1€ A has a unique representation as (1 —¢)" Ao for some
n (possibly zero or negative) and 1,eA4, and prime to 1 —¢. Now m is
obviously prime to (1—¢)~! and is also prime to det(tV+e¢ V') because
the latter takes the value +1 when t=1. Hence m divides b, and m~'b
is the required b,,.

For a non-singular Seifert matrix V we define the following rational
matrices:

S, =(V+eV)!
2.2) T,=—¢V' V!
L,=VSs,.

Since V is a Seifert matrix, S, is integral (and unimodular) and hence I,
is integral. The identity

(2.3) L=(1-T,)""
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follows from the observation that
(I-T)L=1+eV'V HVS,=(V+eV)S,=1.

If V has rank 2h we define a QA-structure on the vector space Q A2" by
setting

24 [t =T, 7", )v

where feQA is a polynomial in r,t~! and z (Consistency with the
relation z=(1—1)~" follows from (2.3).)

The following proposition is essentially a rephrasing of results to be
found in [6, 9, 16].

Proposition 2.5. If V is a non-singular Seifert matrix of rank 2h then
QAy is a vector space of dimension 2h over Q. If it is identified with Q*"
by a suitable choice of basis, then

(@) the QA-module structure is given by 2.4) sota=T, a,za= I, a.

(b) a,-a,=d, M;' a,(mod QA).

(c) Ay may be identified with the A-submodule generated over A by the
chosen basis.

Proof. Consider Q" as a QA-module via (2.4). The standard basis
of “unit vectors” freely generates Q42" over QA. Hence there is a unique
QA-homomorphism ¢: QA**— Q" taking the standard basis of QA2"
to the standard basis of Q*". The map ¢ is onto and trivial calculation
shows that it carries anything in the submodule M, Q42" into zero. An
inductive proof on the degree of ueQA*" (definable for these purposes
as the maximum exponent of t, 1 ~* or z appearing in any component of u)
can be used to show that ¢ (u)=0 implies ue M, QA%". Hence ker(p)=
M, QA*" and ¢ gives an isomorphism between QA, and Q2*. The
“suitable basis” in QA is simply the image in QA,, of the standard basis
in QA" and of course is mapped by ¢ onto the standard basis of Q2"
The assertion (a) is immediate and (b) and (c) follow from the original
definitions of the Seifert form. (In (c) we are identifying 4, with a A-
submodule of QA4,, as in Lemma 2.1.)

Milnor [10] has exhibited a close connection between certain
hermitian forms and isometries of inner product spaces. To exploit this
connection we introduce the function y described in the next lemma,
which plays the role taken by the trace homomorphism in [10]. The
definition of y is somewhat ad hoc, and was motivated by the desire to
obtain the result of Proposition 2.10 below in the simple form given there.

By the elementary theory of partial fractions, any rational function
has a unique decomposition as a sum of a polynomial and proper
fractions (i.e., rational functions with numerator of lower degree than
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the denominator) with denominators which are powers of distinct
irreducible polynomials. It follows readily that F splits over Q (not over
QA) into the direct sum of QA (polynomials and proper fractions with
denominators powers of t and 1 —t) and the subspace P, which we define
to consist of 0 and all proper fractions with denominator prime to ¢
and 1—t. Then y is defined as the Q-linear map such that

xN)=r1), feP

2.
29) =0, feoA.

(When f'is in P, its denominator is prime to 1 —t¢, so its derivative f’ can
be evaluated at 1.) Since y vanishes on QA4 we may and do consider it also
as defined on F/QA.

Lemma 2.7. If fe F has denominator prime to t and 1 —t and numerator
of degree less than or equal to the degree of its denominator, theny (f)=f"(1).

Proof. Let f satisfy the hypotheses with denominator of degree n
with leading coefficient g+0. Let p (which may be 0) be the coefficient
of " in the numerator. Then f=pq~'+(f—pq~') with pqg~'eQA,
(f—pq~")eP, so x(f)=(f—pq~") evaluated at 1, which is f’(1).

Corollary 2.7a. x(f)= —x(f).

Proof. We may assume feP. Then f is in general not in P, but does
satisfy the hypotheses of the lemma, and f(t)=f(t~') has derivative
—t~2f'(¢7"). Evaluating at t=1 gives the result.

Corollary 2.7b. For feP, x((t—1) f)=f(1).

Proof. The function g(t)=(¢t—1)f () satisfies the hypotheses of the
lemma, and g’'(1)=f(1).

Given a rational Seifert form we define the scalar product [a,, a,]€Q
for a,, a,€QA by

2.8) [a,,a,]=x(a,"a,)

and speak of the rational scalar form (QA,[ ])or the scalar form(A,[ ])
obtained by restriction to 4 viewed as a submodule of QA.

A module isomorphism that preserves dot-products obviously
preserves scalar products. The converse is also true. It is not hard to
show that if y(1a)=0 for all AeA then aeQ4, so the value of g, - a, in
F/QA is determined by knowledge of [1a,, a,]=x(A(q, -a,)) for all 4.
The observation that given a choice of basis, the module structure and
scalar product determine the matrices I' and S (see remarks preceding
Proposition 2.11) and hence V and M,, gives an alternative proof by
direct computation. At any rate, isometry of Seifert forms implies iso-
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metry of scalar forms, and we shall be working with the latter for the
rest of the proof.

The scalar product is obviously bilinear over Q, but is not A-linear.
We have instead

Lemma 29. The scalar product satisfies the identities

(@) [a;,a,]=¢[a,,a,].
(b) [tal,ta2]=[a1,a2].
(0 [zal,azj=[a1,2a2]=[a1,(1—z)a2].

Proof. Immediate from (2.7a) and the identities

a-a,=—¢ela,-a,)",

ta,-ta,=tt(a,-a,)=a,-a, and za,-a,=a, za,.

Proposition 2.10. With the hypotheses and notations of Proposition 2.5,
and the same choice of basis,

[a,,a,]=d,Sa,
fora,,a,eQA.

Proof. We have [a,,a,]=yx(a, - a,)=y(ayM;'a,) by (2.5b). Since
the scalar product is bilinear over Q we need only show that y(M; ')
=8. Now My'=(1—-t)(tV+eV')~L. Since V is non-singular, D(t)=
det(t V+¢ V) is a polynomial of degree 2h with non-zero constant term;
since D(1)=+1, D(t) is prime to 1—t. The entries of (tV+&V’)~! are
rational functions with denominator D(t) and degree at most 2h— 1. By
(2.7b), x(M; ') is given by evaluating (¢t V+¢e V’)~! at t=1, which gives S.

Given a rational scalar form (QA,[ 1) and any basis B={b,, ..., b,,}
for Q4 we can define matrices Sy, I by s;;=[b;, b;], zb;=Y y;;b; and

then define V,=1;S5'. Lemma 2.9 implies Sy=eSz and SyI=(1—1I;) S5,
from which it follows that V=¢S5 I and Sg(Vy + e V) =Spl S5 + T =1.
Hence S and I} can be expressed in terms of ¥, by formulas just like (2.2).
If we also define Ty by th;=) 1,;b;, thensince t=1—z"", Ty=1-1I;'=

—&Vy Vg '. These remarks, together with Propositions2.5 and 2.10
give us

Proposition 2.11. The rational scalar form (QA,, [ ]) determined by
a non-singular Seifert matrix V is isometric to a given rational form
(QA, [ 1) if and only if there exists a basis B for QA with Vz=V. The
scalar form (A,,[ 1) is isometric to (A, [ ) if and only if there exists a
basis B for QA which generates A as a A-module and for which Vy=V.
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Given a basis B and a non-singular matrix P, the elements Y pijb;

form a new basis which we denote by BP. Elementary calculation éives
Iy=PLpp P!, Ty=PT,, P!
Sp=(P~'y Sgp P!
Ve=PV,, P.

As an immediate corollary of the above and Proposition 2.11 we have

Proposition 2.12. Two non-singular Seifert matrices determine iso-
metric rational forms if and only if they are congruent over the rationals.

(This result, for e= —1, is more or less implicit in [16]. A satis-
factory solution to the problem of classifying these rational forms is
known. See [ 10] and references given there to earlier work.)

The matrix V3 is of course not a Seifert matrix for an arbitrary basis B.
By the remarks following (2.2) it is necessary that Sy be integral uni-
modular and that I}; be integral. These conditions are also sufficient
since they imply that V;=I;S5" is integral and V,+¢V,=S;" is uni-
modular. We can express these conditions in a coordinate-free way in
terms of the free abelian group L generated by a basis B, which is a
lattice on QA, in the terminology of [12]. Let us define a lattice L on
(QA,[ 1) to be admissible if

(2.13) (a) zL=L
(b) L is self-dual with respect to the scalar product [ ]

where the self-duality condition means that for a€QA, a is in L if and
only if [a, x]€Z for all xeL.

Lemma 2.14. The matrix Vy associated with a basis B for the rational
vector space QA is a Seifert matrix if and only if the lattice L, spanned by B
is admissible.

Proof. Condition (2.13a) is obviously equivalent to the integrality
of Iy. Equivalence of (2.13 b) with unimodularity of S is also elementary;
see [12], Section 82.

Since any two bases which generate the same admissible lattice are
related by a unimodular matrix P, it follows as above that the associated
Seifert matrices are integrally congruent and hence S-equivalent. The
next lemma gives a condition on lattices under which the associated
matrices are S-equivalent via an enlargement-reduction step, and is
central to our proof of the main theorem. Extending the terminology
of [12], p. 326, we say that two lattices K, L are adjacent (for some integer
k) if all but two of the invariant factors of K in L are equal to 1 and the
remaining two are k™' and k, i.e. if K has an integral basis

{by,b,,bs,...,b,,}
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such that {k='b,, kb,, b, ..., b,,} is an integral basis for L. For K and L
to be adjacent it is obviously necessary and sufficient that K/(K n L)
and L/(K n L) both be isomorphic to Z/k Z for some k.

Lemma 2.15. Let K and L be adjacent admissible lattices on the under-
lying space QA of the rational form (QA,[ 1), and suppose zK < L. Then
there are integral bases B for K and C for L such that a column enlarge-
ment of Vg is integrally congruent to a row enlargement of V., so Vy and V.
are S-equivalent.

Proof.Let B={b,, ..., b,,} and C={c,, ..., c,,} be bases for K and L
such that ¢, =k™'b,, ¢,=kb,, c;=b, for i>2. Such bases exist because
Kand L are adjacent. Since b;e L for i+2 we have k= [b,, b,]=[c,,b;]€Z
for i< 2, so k divides every entry in the first row and column of S p €xcept
for s, and s,,. Since Sy is unimodular, s, , must be relatively prime to k.
Let U=S3"'. Computation of the matrix of cofactors of S, shows that
the second row and column of U are divisible by k except for u,, and u,,
which must be relatively prime to k. The condition z K < L, which implies
zK=KnL because K is admissible, implies that zb; is an integral
combination of b,, ¢,, b, ..., b,,. Hence the second row of I} is divisible
by k, and therefore so is the second row of Vg=I5U. Because of the
self-duality of L, zZK < L if and only if [za, b]e Z for all ae K, be L. Since
[za, b]=[a, zb] and K is self-dual the last condition is equivalent to
ZLcK, and hence ZL=Kn L. Hence zZ¢c, =k~'(1 —z)b, is an integral
combination of by, c,, bs, ..., b,,, so the first column of (1 —1Iy) is divi-
sible by k and the entry in the first column, second row is divisible by k2.
The element v,, in Vy is equal to Y y,;u;,. For i> 1, k divides both y,,

i

and u;,, while k* divides y,,. Therefore k* divides v,,. The element
V12=), 71t For i>1, k divides u;, while y,, =1 (mod k) and u,, is

relatively prime to k. Therefore (v, ,,k)=1. For j>1, Vj;=) Vjity, and k
divides y;; for i=1 and u;, for i>1, so k divides v;,. Putting these facts
together with the earlier observation that k divides the second row of ¥
we see that there exist integers w, x, y, a with a relatively prime to k, and
integer vectors p,q,r,s with 2h—2 entries, and a (2h—2)x (2h—2)
matrix V; such that

’

X a q
Vg=|kw k*y ks'|.
p kr V,
By (2.12),
k*x a kq

/

Ve=|kw y s
kp r V,
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Now take a column enlargement of ¥,

1 0 0 o0
y w ky ¢
0 x a 4 |.
ky kw k?y ks
O r p kr ¥

Since a and k are relatively prime there exist integers g and h such that
ga—hk=1. Let P be the matrix with

/

W=

S O O o

0 -k 0 1
h 0 g 0
a 0 k O
0O 1 0 o0

in the upper left corner, the identity matrix of rank 2h—2 in the lower
right corner and zeros elsewhere. Then P is unimodular and

0 0 o0 o0 o

1 g’x gkx h gq
PWP'=|0 gkx k*x a kq
0 gw &kw y ¢
0O gp kp r V,

is a row enlargement of V.

The converse of Lemma 2.15 is also true, as we show below in 2.17.
The converse is not needed in the proof of the main theorem, but clarifies
the enlargement-reduction process, and is used to obtain several results
in Section 4. The preliminary Lemma 2.16 is a special case of a result of
Levine [8].

Lemma 2.16. Let V be a non-singular Seifert matrix and W a row
reduction of any matrix congruent to a row enlargement of V. Then W is
congruent to V.

Proof. Suppose QUQ' is a row enlargement of W, where U is a row
enlargement of V and Q a unimodular matrix in the form

000 b ¢ u
U=|1 a p|, Q=|d e v|.
0 q VvV w x P

The first row of QUQ’ must be zero, and multiplying by (Q')~! shows
that the first row of QU is zero. In particular, c=0 and ¢ p+u V=0,
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so the non-singularity of V implies u=0. The lower left entry in the
partitioned form of QUQ' is then simply xb, and must be zero because
QUQ' has the form of a row enlargement. Since Q is non-singular, b+0,
and so x=0. Then W, the lower right entry in the partitioned form of
QUQ', is PVP'. Also det(Q)=(be)det(P), so P must be unimodular,
and W is congruent to V. .

Lemma 2.16 can be restated as the assertion that a congruence class
of singular matrices determines a unique congruence class of row reduc-
tions, provided the latter are non-singular. Of course it also determines
a unique congruence class of column reductions. (Apply 2.16 to the
transposed matrix.)

Proposition 2.17. Let U and W be non-singular Seifert matrices such
that a column enlargement of U is congruent to a row enlargement of W.
Then there exist adjacent admissible lattices K and L on the space of a
rational form (QA, [ 1]), such that zZK< L, and K and L have respective
bases B and C such that U=V and W=1V.

Proof. The most general row enlargement of W has the form

00 O
Yo=|1 a p
0 g W

and an obvious congruence makes a and p zero. Since W is non-singular,
there exists a unimodular P such that the first column of WP’ is pro-
portional to ¢, and the same is true for PWP’ and Pq. By performing
elementary column operations on PWP’, not involving the first column,
we can obtain PWP' Q' with all elements of the first row zero except
the first two, where Q' is the unimodular matrix expressing the elemen-
tary operations. Premultiplication by Q does not affect the zeros in the
first row, and QPWP' Q' has its first column proportional to QPq. Then

0 0 0
=1 0 0
0 QPq QPWQ'P

is congruent to Y, and has the partitioned form

0O 0 0 0 O
1 0 0 0 O
Y,=|0 gb kb e O
0 gc kc y ¢
0 gf kf r W,
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We may assume that the proportionality factors g and k are relatively
prime, by letting b, c, f absorb any common factor. The greatest common
divisor of k and e is easily seen to divide det(Y; +¢Y;) and must be 1.
Therefore there exist integers m and x such that me+b=kx. Now add
km times the fourth column of Y, to the third column and gm times the
fourth column to the second, and also perform the corresponding row
operations. Further operations adding multiples of the first row and
column to others allow arbitrary modification in the second row (except
in the first column) and we thus obtain a matrix congruent to Y, in the
form

0 0 0 0 0
1 g’x kgx 0 gq
,=[0 gkx Kk*x a kq
0 gw kw y &
0 gp kp r X

where w=c+my, p=f+mr, ¢ =ms, and a=e+ky is relatively prime
to k. Since g and a are relatively prime to k, so is ga, and there exist
integers u and v such that gau+kv=1. Let R be the matrix which
agrees with the identity except for having

0 k —g 0
v 0 0 -—u
0 au v 0
ga 0 O k

for its upper left corner. Then

0 1 0 0 0
0 wy —uw —uky —us
Y;=RY,R'=[{0 0 X a q
0 —uky kw k?y k¢
0 —ur p kr X

is congruent to Y,.

Now W is a non-singular row reduction of a matrix congruent to Y,,
so by 2.16 it is congruent to

k*x a kq

Wo=|kw y |,
kp r X
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while U is a non-singular column reduction of a matrix congruent to Y,
and is therefore congruent to

’

x a ¢
Up=|kw k*y ks|.
p kr X

An easy reversal of the arguments in the proof of 2.15 gives the existence
of lattices K and L with the required properties and bases B, and C,,
such that U,=V, and W,=1V,, . Since U is congruent to U, and W to
W, the same lattices have bases B and C with U=V, and W= Ve.

3. Localization

We can now reduce the proof of the main theorem to a question
about lattices. By 2.11, two non-singular Seifert matrices that determine
isometric forms will correspond to two admissible lattices K, L in the
underlying space of the same rational scalar form which generate the
same A-module, i.e. satisfy AK=AL. To show that the matrices are
S-equivalent it is sufficient to find a chain of lattices Jo=K,J,,...,J.=L
such that each pair J,_,, J; satisfies the hypotheses of 2.15. We shall
prove the existence of such a chain by showing that if K+ L but AK = AL
then there exists a lattice K such that K, K satisfy the hypotheses of 2.15
and K is “closer” to L than K is. We measure the difference between
K, L by the index of K n L in K + L, which we denote by d(K, L) and call
the discrepancy between K and L. Obviously d(K, L)=1 if and only if
K=L.

Throughout this section we assume that some fixed rational scalar
form is given, and that all lattices are lattices on its underlying vector
space.

Lemma 3.1. For any admissible lattice K,
AK= () z"z-"K.

m20
Proof. Every element of A can be expressed as a polynomial in z times
(zZz)~™ for some m, and zK< K.

We now turn to studying the problem over the p-adic rationals and
integers (denoted as usual by Q, and Z,). With these coefficients, 41K
can be described very simply (Theorem 3.4 below) and we obtain a
localized version of our theorem. Standard arguments are then used to
show that the local result for all primes p implies the global result.

Obviously all the construction and discussion so far applies without
change to the p-adic case. For the remainder of this section we suppose p
to be a fixed rational prime; “integer” will mean “p-adic integer”,

14 Inventiones math., Vol. 20
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“lattice” will mean lattice over Z,, and so on. (Much of what follows
generalizes immediately to any field complete under a discrete rank one
valuation.)

We use || to denote the usual p-adic valuation. Recall that |«|<1
if and only if « is an integer ||=1if and only if « is a unit of Z,, and
|| <1 if and only if « is divisible by p. A finite dimensional vector space
V over Q, has a unique compatible topology. If L is any lattice on V
a non-archimedean norm giving the topology can be defined so that
|v|<1 if and only if ve L. To do so, choose a basis {x;} for L and define
|v|= max |o;] where v—Za x;. For a linear operator A: V-V a norm

|A| can be defined as max ;| where [a; ;] is the matrix of 4 with respect

to {x;}. Then |Av|<|A| |v| and |4|<1 if and only if AL< L. (For full
discussion of this material see [12].)

The following lemma is simply the classical Hensel’s lemma, stated
in more explicit detail than is usual. The result is implicit in the usual
proof. (See, for example, [12, p. 26].)

Lemma 3.2. Let ¢(x) be a monic polynomial with p-adic integral
coefficients, and suppose @ (x)=,(x) @, (x) is a factorization of its reduc-
tion mod p into relatively prime factors over the field Z/p Z. Then there
exist monic polynomials @,,@,, Y, Y, with p-adic integral coefficients
such that =, @5, 91 Y1 + 92 ¥, =1 and ¢y, ¢, reduce to p,, §,(mod p).

Lemma3.3. Let X be an n-dimensional vector space over Q, and
U: X - X a linear map. If there exists a lattice L on X such that UL<L
then X is the direct sum of subspaces X', X" invariant under U and such that

(@) lim U™ x=0 for all xe X";

(b) for any lattice L on X such that ULS L, L is the direct sum of
L=LnX'and L'=LnX",

(¢) for L as in (b), U|L is an automorphism of L.

Proof. Let L be any lattice such that UL< L, and use it to define a
norm as in the paragraph before 3.2. The matrix of U with respect toa

basis of L has integral entries, so ¢(4)=(—1)"det(U Zu Ani

is monic with integral coefficients. Let j be the greatest integer for which
|u;|=1. (We have u,=1 so j=0.) Then reducing modulo p we have

@ (4)=9,(4) @, (2) where @, has degree j and non-zero constant term and
®2(A)=A""J. (The trivial cases j=0, p, =1 and j=n, ,=1 are possible.)
Let ¢y, @5, ,, ¥, be the polynomials whose existence is guaranteed by
Lemma 3.1. Then ¢, has degree j and its constant term is a unit, while
@ has degree n— j and all its coefficients after the first are divisible by p.
Define P=¢,(U) ¢, (U)=1-9,(U)y,(V). Since ¢,(U) ¢,(U)=¢(U)=0,
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P(1-P)=0 and hence P is a projection commuting with U. Hence
X'=PX and X"=(1—-P)X give a direct sum splitting of X into in-
variant subspaces. (Note that X', X" do not depend on L. The existence
of L was used only to show that ¢ has integral coefficients.) The matrix
of P with respect to a basis for L has integral entries; hence PLc LN X'= L
and (1-P)LcLnX"=L'" Since PL+(1—P)L=2L we have L=L+1I".
Hence there is no loss of generality in supposing the chosen basis for L
to be the union of bases for I’ and L. Then U|L=U’ and U|L'=U"
will have integral matrices. U’ and U” have ¢, and ¢, for their charac-
teristic polynomials. The determinant of U’ is (up to a sign) the constant
term of ¢, and therefore a unit. Hence U’ is an automorphism of I. The

n—J

equation ¢,(U")=0 gives (U"y'"/=—} v,(U"y'~/~" with all |v,|<L.
1

Hence |(U”)"J|<1 and lim (U")"=0.

Theorem 3.4. Let V be the underlying space of a p-adic rational scalar
Jorm. Then V splits as a A-module into subspaces V,, V., V_ such that

(@) lim z"v=0 forveV,;
(b) limz"v=0 forveV_,;

(¢) any admissible lattice L is the direct sum of Ly=LN Vy,L, =LAV,
and L_=LnV_,;

(d) multiplication by z is an automorphism on L, and L_;

(¢) multiplication by Z is an automorphism on L, and L, ;

() AL=Lo+V,+V_.

Proof. Apply Lemma 3.3 twice with X=V and U given by multi-
plication by z and Z, getting decompositions Xi, Xi' and X3, X3 respec-
tively. Take V, = X7, V_ =X3 and Vo= X{n X5. (It is easy to show that
V,nV_=0,s0V,, V,, V_ give a direct sum decomposition.) Then (a),
(b), (c), (d), and (e) follow directly from the lemma. Part (f) follows from
Lemma 3.1 since (a), (b), (d) and (e) imply that for any v in V, +V_,
(zz)"v will be in L, +L_ for sufficiently large m, while (zz)™™ L,=L,
for all m.

Corollary 3.4a. If K and L are admissible p-adic lattices then AK = AL
if and only if Ko=1L,.

Lemma 3.5. With the notation of 3.4, V, and V_ are isotropic and both
are orthogonal to V.

Proof. For any v, w we have [v, w]=[2"v, z~"w] for all m. For ve V_
and weV_+V, we have Z"v—0, while z~™w remains bounded as
m— oo, so [v, w]=0. Hence V_ is isotropic and orthogonal to V,. A
similar argument applies to V, .

14*
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Corollary 3.5a. If L is an admissible lattice and {x,, ..., x,} is a basis
for L, ,then{X,,...,%,} is abasis for L_, where X, is the unique element of
V_ such that [x;, X,]=0;; for all j.

Proof. Immediate from 3.5 and the unimodularity of L with respect
to the scalar product.

Lemma 3.6. Let K and L be admissible p-adic lattices. Then either
K, <L, or there exists an admissible lattice K’ adjacent to K such that
zKcK',K,=K{and d(K', L)<d(K, L).

Proof. Let {x,, ..., x,} be a basis for K, such that {p™x_, ..., p™x,}
is a basis for L, and m, =---=m,. Let r be the index such that m, =---
=m,>m, ., and write m for the common value of m,, ..., m,. Let V,, V,
be the subspaces of V, spanned by x, ..., x,and x,, ,, ..., X, respectively.
Fori=1,2writt K;=KnV,,L,=LNV,,s0 p"K,=L, and p" ' K,<L,.
Let B=pK, +K, and note that K, /B is a vector space over Z/pZ with
a basis represented by x,, ..., x,. B&p~™*! L and since zL< L we have
zBep "' LepK,+V,. But zB<zK <K, so zBS(pK,+V,)N
(K;+K;)=B and z induces z,: K, /B— K, /B. Since z"v— 0 for veV,,
z, must be singular (in fact, nilpotent) and there exists a basis {%,, ..., X,}
for K, /B such that im(z,) =span(X,, ..., %,). We can alter Xy, ..., X, DY
unimodular changes so that they represent %, ..., %, in K +/B, and we
suppose that this has been done.

Now define K, as the lattice spanned by px,, x,, ..., x,, that is,
K', =B+span(x,, ..., x,). By construction, zK, <K', and a fortiori,
zK', =K', . Let {X,, ..., X,} be the basis for L which is dual to {x,, ..., x,}
as in Corollary 3.5a, and define K'_ to have the basis {p~* X3 X0, 0y X}y
which is dual to the basis for K’,. Then zK’_ = K’_ by duality because
zK', <K', ,whilezK_=K_cK'_.

Finally take K'=K,+K’, +K'_. We have shown that zK< K’ and
zK'cK'. K’ is obviously adjacent to K and the construction of K’
makes K’ unimodular. Comparing the bases for K and L (note that
{p~™Xx,,...,p~™X,} is a basis for L_) shows that if m>0 then d(K, L)=
p*d(K’, L)>d(K’, L). But m<0 would imply K, <L, , so the lemma is
proved.

Proposition 3.7. Let K and L be admissible p-adic lattices such that
AK=AL. If K+ L then either there exists an admissible lattice K’ adjacent
to K with AK'=AK, zK< K’ and d(K', L)y<d(K, L) or there exists an
admissible lattice L adjacent to L with AL=AL, zL<L and d(K, L)<
d(K, L).

Proof. The condition AK = AL is equivalent to K,=L,. If K, =L,
then by duality K_=L_ and K= L. Otherwise at least one of K, <L,
or L, =K is false, and Lemma 3.6 yields the result.
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As indicated in the remarks at the beginning of this section, the proof
of the main theorem will be complete if we can show that 3.7 holds for
rational rather than p-adic lattices. The necessary arguments are well-
known in the theory of quadratic forms. Given a rational scalar form with
underlying vector space V; it extends to a p-adic form on V,= =0, V.
We consider V as imbedded in ¥, and for any lattice K on Vdeﬁne K,as
the Z,-module it generates in Vp K, is of course a p-adic lattice on V
The followmg facts are obvious or easnly obtained from propositions m
[12, chap. 8]. Here K and L are any two lattices on V.

(3.8) (a) (zK),=zK,, for all p.
(b) K<L if and only if K,sL, for all p.
() K is unimodular if and only if K, is unimodular for all p.
(d) If K<L then L,/K,, is isomorphic to the p-primary part of L/K.
Lemma 3.9. For any lattices K, L in the underlying space of a rational
scalar form
(a) AK=AL if and only if AK,= AL, for all p.
(b) K is admissible if and only if K p is admissible for all p.
(c) Kis adjacent to Lif and only if K p is adjacent to L, for all p.
(d) zK< L if and only if zZK,c L, for all p.
(e) d(K, L)=IT1d(K,, L,).
Proofs. (a) Lemma 3.1 and 3.8a.
(b) The Definition, 3.8a, 3.8b and 3.8c¢.
(c) The remark preceding Lemma 2.15 and 3.8d.
(d) 3.8a and 3.8b.
(e) 3.8d.

Now suppose we have rational lattices K, L with AK =AL and
K+ L.By 3.9a and 3.8b there is some p for which K, and L, satisfy the
hypotheses of Proposition 3.7. By interchanging K and L 1f necessary,
we may assume there exists a K, satisfying the conclusions of 3.7. By
Theorem 81:14 of [12], there exists a lattice K’ such that (K'), =K, for
all g+ p, while (K'),= K/,. By Lemma 3.9, this K’ satisfies the conclusmns
of 3.7 and the proof of the main theorem is complete.

4. S-Equivalence and Congruence

In this section we develop a number of consequences of earlier pro-
positions that shed some light on the relation between S-equivalence and
integral congruence of matrices.

It will be convenient to introduce some more terminology and
notational conventions which will tacitly apply throughout this section.
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We assume a rational Seifert form given, with underlying vector
space X. K and L (possibly with subscripts) will always denote admissible
lattices on X, while M and N denote arbitrary lattices on X. U, V and W
will denote non-singular Seifert matrices.

We write [U] for the integral congruence class of U, and write U < K
to indicate that U=V, (in the sense of Section2) for some integral
basis B of K.

A linear function ¢: X — X is an isometry if o(zx)=zo(x) and
[o(x), o(y)]=[x, y] for all x, y. If ¢ is an isometry and B a basis for K
then ¢ (B) is a basis for ¢(K), and obviously V, = V. Conversely if B
and C are bases of admissible lattices and V3=V, then the unique linear
function ¢ such that ¢(B)=C is an isometry. Thus the correspondence
UK induces a one-to-one correspondence between integral congru-
ence classes of Seifert matrices (belonging to a given rational congruence
class) and isometry classes of admissible lattices (on the space of a
given form).

We call U a row-neighbor of W and W a column-neighbor of U, if for
some U,e[U], U, is a column reduction of some matrix congruent to a
row enlargement of W. A lattice K is a row-neighbor of L (and L a column-
neighbor of K) if K and L are adjacent and zK < L. Note that since K
and L are self-dual, they are adjacent if and only if (K + L)/L is cyclic.
Then Lemmas 2.15 and 2.17 amount to the statement that U is a row-
neighbor of W if and only if U« K and W L for some K and L such
that K is a row-neighbor of L.

For any integer matrix P, let C(P) denote the abelian group of integer
column vectors modulo the subgroup generated by the columns of P.
For a Seifert matrix U with U« K, the quotient module K/zK is iso-
morphic to C(I). Since I;; = USy and Sy, is unimodular, C(I))= C(U).

Levine [8] found a connection between the row-neighbors of a given
U and the group C(U). In fact he established a one-to-one correspondence
between the congruence classes of row enlargements of U and the orbits
of C(U) under the action of a certain group. He could then conclude
that the number of distinct congruence classes of row enlargements and
a fortiori (in virtue of 2.16) the number of congruence classes of row-
neighbors of U is bounded by order(C(U))=|det(U)|. The next lemmas
lead to some refinements of this bound.

Lemma 4.1. For each lattice M satisfying zLSzM <L, there is a
unique admissible lattice K such that M=K+ L and zK< L, and con-
versely.

Proof. The argument involves some calculations using dual lattices,
so we begin by recalling the definition and some elementary facts. On
any rational vector space with a symmetric or skew-symmetric non-
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singular inner product, the dual of a lattice M, denoted by M *, is defined
as the set of all x such that [x, y]eZ whenever ye M. (Note that a lattice
on the space of a Seifert form is self-dual in the sense of 2.13 precisely if
L=I*)M?* isa lattice, and the following relations hold [12, p. 230].

42) (2 M*)*=M,
(b) MSN if and only if N¥ = M*,
(©) MAN)*=M*4+N*,
d M+N)*=M*N*,
For lattices on the space of a Seifert form we also have
() zM<N if and only if ZN* = M*,
() zM<M if and only if zM* =M *.

Here (e) is immediate from 2.9¢ and (f) follows because zM =(1—-2z)M
cM ifand only ifZM = M.

We now claim that given M, the K satisfying the statement of the
lemma is given by

K=(M*+tL)n M

4.3)
=MntL)+M*.

The equality of the two expressions follows from the modular law (that
(A+B)n C=(CnB)+A whenever C2A4) and the fact that M2 L=
L* 2M*. The two expressions are dual to each other by 4.2¢ and 4.2d,
so K=K™*. The hypothesis on M implies LcM <z 'L,sozMcL<M
and hence zM* = M™*. Since z(tL)=t(zL)<tL, each component of the
right side of 4.3 is closed under z, so zZK< K. Hence K is admissible.
Obviously K<M by construction and LS M is given, so K4+ L<M.
Now M <z~ 'L implies ZM =t L and since ZM =(1—z) M =M we have
ZM<cK. Then M=zM+zZMcK+LsoM=K+L.SincezKczMcL,
4.3 defines a K with all the required properties.

Conversely, suppose K is given with zK< L, and M=K + L. The
condition zL=zM <L follows at once. To prove uniqueness we need
to show that the right side of 4.3 does give K when K + L is substituted
for M. Note that (K+L)* =K* n[* =KL, and let K,=((KNnL)+tL)
N (K+L). 1t is sufficient to show K <K, since then K,=K§ cK* =K
and equality must hold. Since zK< L we have zKSKnL and zZK<
zZz7'L=tL. Hence K=zK+zK<(KnL)+tL, so then KcK,, as
required.

Lemma 44. If W L then the row-neighbors of L are in one-to-one
correspondence with the cyclic subgroups of C(W), in such a way that the
trivial subgroup corresponds to L and the whole group C(W) corresponds
to t L (which is a row-neighbor of L if and only if C(W)is cyclic.)
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Proof. With each K satisfying zK< L, we associate the subgroup
zM/zLcs L/zL~C(W) where M =L+ K, which is a one-to-one corre-
spondence by Lemma4.1. The neighbors of L are precisely the K for
which (L+ K)/L~zM/z L is cyclic. The trivial subgroup corresponds to
M =L and K=L while the full group corresponds to M=z"!'L and
K=tL(sinceL+tL=z"'(zL+zL)=z"'L).

Remark. By examining the proofs of 2.17 and 4.1 it is easy to show
that under the correspondence asserted in 4.4, the neighbor of W ob-
tained by enlarging with the vector g (as in the definition of Y, in the
proof of 2.17) and then reducing corresponds to the cyclic subgroup of
C (W) generated by gq.

Lemma 4.5. For any K and integer n, the lattices K and t"K are
isometric.

Proof. Multiplication by ¢ is an isometry, by 2.9b.

Proposition 4.6. The number of congruence classes distinct from the
class of W that are represented by row-neighbors of W is less than or
equal to the number of proper non-trivial cyclic subgroups of C(W).

Proof. If W K then the number in question is equal to the number
of isometry classes of lattices distinct from the class of K that are repre-
sented by row-neighbors of K, which does not exceed the number of
row-neighbors of K distinct from K and tK. The result follows from 4.4.

Corollary 4.7. If |det W | is 1 or a prime every non-singular matrix that
is S-equivalent to W is congruent to W.

If we work over the p-adic integers, all primes other than p become
units, so 4.7 applies unless p? divides det W, Hence,

Corollary 4.7a. If det W is square-free, every non-singular matrix
S-equivalent to W is congruent to W over the p-adic integers, for every p.

The neighbors of a matrix W are particularly easy to describe when
C(W) is itself cyclic, since then its cyclic subgroups correspond to the
divisors of det(W). We shall call a form cyclic if C(W) is cyclic for every
non-singular W in the S-equivalence class of matrices representing it.
(It is not true in general that if C(W) is cyclic for one such W then it is
cyclic for all. An explicit example is given in Section 5.) It turns out that
cyclicity depends only on the rational class of the form, and in fact only
on the Alexander polynomial. Let us call a form p-cyclic if the p-primary
component of C(W) is cyclic for all W representing the form. Obviously
a form is cyclic if and only if it is p-cyclic for all p.

We are working with a fixed rational form on X, so 4, the Alexander
polynomial, and ¢, the characteristic polynomial of I', are the same for
all Seifert matrices  on X. We write d for the constant term of ¢, which is
also the leading coefficient of 4 and equal to det(V) for any V.
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For any prime p we write X? for the p-adic completion of X, and D. ¢4
X?, X% for the direct sum decomposition of X? described in Section 3
w1th sxmllar notation for the components of the completion K? of a
lattice K. We write ¢, for the characteristic polynomial of I |X% and o,
for its degree, which equals the dimension of X% and X” . Note that 6
is the multiplicity with which 0 occurs as a root of ¢, considered as a
polynomial over Z/pZ. We write i, for the exponent of the highest
power of p dividing d (which of course is the highest power dividing the
constant term of ).

Proposition 4.8. A Seifert form is p-cyclic if and only if min (1p, 0, )= 1.

Proof. Recall that C(W)~K/zK where K—W, so the p- primary
component of C(W) is isomorphic to K?/zKP. This of course is trivial if
up =0 and isomorphic to Z/pZ if up,=1. In view of (3.4d), K?/zK’~

K% /zK?% . The quotient is cyclic if 5 =1 since K% and zKP” are then
lattlces on a one-dimensional space.

Conversely, suppose that u,=u>1and 0,>1.Let Wbe a representing
matrix such that C(W) is cyclic. W can be transformed by congruences
so that its first column is divisible by p* and then, as in the proof of 2.17,
further transformed to the form

p**x b p'q
W=|p‘w y &
prr v U

with b relatively prime to p. Working over the field Z/pZ (in which b has
an inverse) this is easily shown to be congruent to

0O 1 0
0O 0 ¢
0 —es U

from which it follows that (modulo p) U is a Seifert matrix, and the
characteristic polynomial of I}, is A(A— 1) times the characteristic poly-
nomial of I;. Thus §,> 1 implies that U is singular (mod p).

Now W is S-equivalent to

-1

q

p**"x b p
V=|p*~'w p*y ps
P r po U |

and since u—1>0 and U is singular (mod p), the nullity of V(mod p) is
at least two. Thus the p-primary component of C (V) cannot be cyclic.
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Remark. 1t is not difficult to show by a similar argument that if the
p-primary component of C(W) has a maximal cyclic subgroup of order
p* but is not cyclic, then W has a neighbor V such that C(V) contains a
cyclic subgroup of order p**!, while C(V) and C(W) have the same
g-primary components for all g = p. It follows that every W is S-equivalent
to some V with C (V) cyclic. The fact seems curious but insignificant and
we omit the proof.

Corollary 4.9. A Seifert form is cyclic if and only if there is no prime p
such that p* divides d and p divides the linear term of ¢.

Remark. The preceding condition is equivalent to requiring that there
be no prime with p? dividing d and p dividing the second coefficient of
the Alexander polynomial.

The criterion of Corollary 4.9 clearly depends only on the rational
equivalence class of a form, so we may speak of a rational cyclic form as
one with the property that some and hence all of its embedded integral
forms are cyclic. Given a cyclic rational form on the space X, let G be
the multiplicative group of positive rationals generated by the divisors
of d. G is a free abelian group with the prime divisors of d as a basis.
Let # be the set of all admissible lattices on X and S the set of equivalence
classes on % under isometry. For geG, Le.%, define g- L to be the
unique admissible lattice K characterized by its p-adic completions as
follows:

rr if 6,=p,=0
KP={Lp+p*LP, +p 12 if 6,=1
LA+ K 1P +27F P =¢7%1F  if pp=1

where, in the last two cases, k =k, is the exponent of p in the prime-power
decomposition of g. Note that the two formulas for K? coincide if
0,=m,=1. K=g- L can alternatively be characterized as the unique
admissible lattice such that K§=1I2 for all p, while, if k is the exponent
of p in g, the index of K in L?, is p* for k>0 and the index of L*, in K7,
is p!*! for k <0. It is obvious that we have defined an action of G on %,
ie. (gh)-L=g-(h-L) for g,heG and Le%. Furthermore o(g-L)=
g+ o(L) for any isometry o, so there is an induced action of G on S. The
correspondence between congruence classes of matrices and isometry
classes of lattices defines an action of G on the latter.

Proposition 4.10. Let .# be the set of integral congruence classes of
matrices belonging to a rational congruence class that defines a cyclic
Seifert form, and let G and its action on # be defined as above. Then the
S-equivalence classes contained in the given rational congruence class are
the orbits of M under G. The subgroup of G generated by d acts trivially.
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Proof. If two elements of .# are in the same orbit there exist associated
lattices K, Lsuch that K =g - Lfor some g. From 3.4(f) and the definition
of g Lit is clear that AK = AL and hence that the given elements of .#
are S-equivalent. Conversely any two S-equivalent congruence classes
correspond to lattices which can be joined by a chain of neighbors. By
interpolating additional lattices in the chain if necessary, we may assume
that for any pair of consecutive lattices K, L in the chain, K is of prime
index p in K+ L. Cyclicity implies that either K=p-Lor L=p- K, and
hence the given lattices are related by an operation of G.

The subgroup generated by d acts trivially because d- L=t"'L for
any L, so d - Lis isometric to L.

Corollary 4.11. If det (W)= + p™ and W determines a cyclic form, then
the number of integral congruence classes in the S-equivalence class of W
is a divisor of m.

Proof. G/(d)is cyclic of order m, and acts transitively on the congruence
classes within the S-equivalence class of W.

Corollary 4.12. If W is the matrix of a cyclic Seifert form then the row-
neighbors of W are the same as its column-neighbors.

Proof. f WesLthen U is a row-neighbor of W if and only if UK
with K adjacent to L and zK < L. Under the hypothesis of cyclicity this
is equivalent to L=g- K for some integer g dividing d. But then K is
isometric to d- K=(d/g)- L, so W is a row-neighbor of U, i.e. U is a
column neighbor of W.

One might conjecture that the conclusion of (4.12) holds for all
Seifert matrices, and the following proposition (which is a strengthening
of Theorem 3 of [8]) tends to support this view. The conjecture is false,
however, as shown by an example in Section 5.

Proposition 4.13. If U and W are S-equivalent and non-singular then
there is a chain U=V, V,, ..., V,=W with V, a row-neighbor of V., for
each i.

Proof. Let UK and We L. Examining the construction given in
(3.6) and (3.7) shows that it gives a chain of the required type if L7, = K%,
for every p. For any p, K, and L, t~™L*, =z" [*, = K?, for sufficiently
large m, by 3.4(a). Since L?, =K?, for all but a finite number of p, we can
take m sufficiently large to give the inclusion for all p. Since t™™L is
isometric to L we have W—t~™ L and the conclusion follows.

Theorem 4.14. If W is a Seifert matrix such that the minimal poly-
nomial of I, has a repeated factor whose constant term is divisible by a
prime p, then the S-equivalence class of W contains representatives of
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infinitely many distinct congruence classes over the p-adic integers (and a
fortiori, infinitely many integral congruence classes ).

Proof. Let W L. The conclusion of the theorem translates into a
statement of the existence of infinitely many lattices K, such that AK, =AL
for all k, but Kf and K? are not isometric (allowing isometries with
coefficients in Q) unless k=j. We shall construct the p-adic completions
K? and define K, by requiring KP =L for all g=p.

We write X?P=X?¥ +X? + X} as usual, and let  be the minimal
polynomial of I'|X%. Any factor of the minimal polynomial of I' for
which p divides the constant term must contain a p-adic factor that
appears in y, so the hypothesis of the theorem implies that  contains a
factor g with m>1. We may further suppose that y, is irreducible
(over Q,) and that m is maximal, i.e. Y *' does not divide y. By the
elementary theory of canonical forms of matrices under similarity, X%
splits as a direct sum of I'-invariant subspaces Y+ Y’ such that I'|Y has
y§ for both its characteristic and minimal polynomial. Furthermore,
Y has dimension rm where r is the degree of Y, and there exists ye Y
such that the vectors y,=I"y=z'y for i=0,...,r m—1 form a basis for Y.
Let M be the lattice generated by the y;. The entries of the matrix of z|Y
with respect to the basis {y;} are all 0, 1 or coefficients in ¥ and hence
all in Z,, so zM =M. Similarly a lattice N can be found on Y’ with
zN € N. By taking a dual basis as in (3.5a) we obtain a lattice M +N on
X* such that KP=I2+M+N+M+N is an admissible lattice on X?
and (by 3.4(f)), AK? = AL” For any sequence M, of lattices on Y satisfying
zM, = M,, we can define K? by the construction above (replacing M
by M,) and so obtain a sequence of admissible lattices with AK, = AL as
required.

Since ¥, is monic, the vectors x;;=z'y,(z) y for 0Zi<r, 0= j<m
also form a basis for M. We define M, as the lattice generated by p* x;,
and x;; for 0<i<r, 1<j<m. It is easily verified that zM, = M,.

To show that none of the K? so constructed are isometric, we use the
observation that for any polynomial f, the isomorphism class of L/f(z)L
depends only on the isometry class of L. We apply this, using f=y7 1.
Since f(z)=z""""(mod p), it acts unimodularly on X% and X”. Hence
Ki/f(2)Ki=Mi/f (z)Mi+ N/f(z)N. Now f(2) Xio=Xi,m-1 and f(2) x;;=0
for j>0, so M,/f(z) M, is the direct sum of rm—r copies of Z, and r
copies of Z/p* Z, and distinct values of k give non-isomorphic Z p-modules
Since N/f(z)N is independent of k we conclude that distinct values of k
give non-isometric lattices Kf, and hence that the matrices W, K, are
not congruent over Z,.

I conjecture that the converse of Theorem 4.14 is also true. Levine [8]
has obtained strong results (for the e= — 1 case) in this converse direction,
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and a more recent result of his (private communication) implies that the
minimal polynomial of I;; must have some repeated factor if the S-equiv-
alence class of W contains infinitely many integral congruence classes.

It was shown in [16], (for e= —1, and with different terminology)
that if U and W are non-singular and S-equivalent with determinant d
then they are congruent over any extension of the integers in which d has
an inverse. In particular they are congruent over Z [d~'], the subring of
the rationals generated by d~!. Levine gave an example in [6] to show
that congruence over Z[d~!] does not in general imply S-equivalence.
The following theorem gives a sufficient condition for the implication to
hold. It is closely related to Theorem (3.1) in [1]. In fact the hypothesis is
easily shown to be equivalent to Crowell’s condition that every prime
dividing the leading coefficient of 4 divide all but the central coefficient
of 4.

Theorem 4.15. Let U and W be non-singular of rank 2h and belong to
the same rational congruence class, with determinant d. If 6,=h for every
prime p dividing d then U and W are S-equivalent if and only if they are
congruent over Z[d™1].

Proof. S-equivalence of U and W implies that one can be converted
to the other by congruence transformations using matrices which are
either unimodular, or diagonal with entries k, k! and 1 on the diagonal,
with k a divisor of d. Hence U and W are congruent over Z[d~!]. Con-
versely, suppose U and W are congruent by a matrix P which is uni-
modular over Z[d~'], and let UK, Wes L. P is unimodular over zZ,
for p not dividing d, so for all such p, K§=KP=[?=1%. But for p divid-
ing d, the hypothesis implies KZ=0=17. Thus Kf{ =17, for all p, so
by 3.4(a) and 3.9(a), AK=ALand U and W are S-equivalent.

5. Examples

In computing examples, it is generally easier to use the technique
implicit in the proofs of (2.15) and (2.17) than to carry out enlargement-
reduction steps according to the basic definition. Suppose the i-th column
of a Seifert matrix W is divisible by k, while the i-th row is divisible by k
except for the entry w;;, and w;; is divisible by k2. Let U be obtained from
W by dividing the i-th row and column of W by k and multiplying the j-th
row and column by k. We say that U is obtained from W by transferring
a factor of k from column i to row j. In the proof of (2.17), U, is the matrix
obtained from W, by transferring k from the first column to the second
row, and the discussion there shows that U, is a row-neighbor of W,.
More generally, the result of transferring a factor from a column to a row
is a row-neighbor of the original matrix. Of course we obtain column-
neighbors by transferring factors from rows to columns.
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Example 5.1. For any integers r, s with r+0 let

0 0-1 0 0 0-r O
1 0 0 er 1 0 0 ¢
W = =
©9=l. 0 o of Y=l o o of
0 —r 1 S 0 -1 1 s

Transferring r from column 2 to row 1 in W(r,s) gives U(r, s). Trans-
ferring r from row 3 to column 4 in U(r, s) gives W(r, sr?). By induction,
W(r, sr*¥) is S-equivalent to W(r, s) for all k=0. By direct computation,
the matrix M=M(r,s)=I>—T—¢rl, where I'=I, ,, is zero except
for m ;= —¢s and m,,=s. If W(r,s,) and W(r,s,) are integrally con-
gruent then M(r, s,) and M(r, s,) are integrally similar, which is possible
only if |s,|=|s,|. Thus if |r|>1 and s+0, the matrices W(r,sr**) for
k=0, 1, ... belong to distinct congruence classes, but are all S-equivalent.
The minimal polynomial of I, ,, 1s (x>*—x—¢r)* so we have here an
illustration of Theorem 4.13. It is also easy to calculate that C(W(r, s)) is
cyclic of order r? if s is relatively prime to r, while C(U(r, s)) is always
isomorphic to (Z/rZ)?, so these S-equivalent matrices have different
C-groups.

It is sometimes feasible to check integral congruence for two given
matrices U and W by elementary calculation. W=PUP’ if and only if
P'Sy P=S8y, and PI;=1,,P. The last condition is linear in P and the
general solution for it is easily found. The first condition may then turn
out to be tractable. This method was used by Rice for an example in [13].
We illustrate it with two examples (previously announced in [18]) of
some interest in knot theory. In both examples, e= — 1.

Example 5.2. Let U= [f 121] and W=U'. Then U and W are not
S-equivalent.

Proof. Since det(U)=53 is a prime, it is sufficient, by (4.7), to show
that U and W are not congruent. It is easily verified that the general
lution of P, =1, P is P=[* "2 2*™] and that P's, P=s, if
solution of PI;=I,, P is _[5x+y —x+2y] and that wP=Syi
and only if det(P)= — 11 x> —3x y—5y?= — 1. Writing det (P) as —8x% —
2y?—=3(x*+xy+y*)< —8x?—2y* makes it obvious that the equation
has no solution in integers.
This example of a matrix not S-equivalent to its transpose settles a
question raised in [16]. A knot with such a matrix cannot be invertible.
This example first appeared in [5].

1 1

Example 5.3. Let U=[ ] and W= —U. Then U and W are
. 0 —367

not S-equivalent.
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Proof. Noting that 367 is prime and proceeding as in (5.2), we find
that S-equivalence of U and W depends on the existence of P of the form

x+y _y . 2 2
d =x"+xy— =-1
[ 367y x] with det(P)=x*+xy—367y Now
x4+ xy—367)*

isthe norm of the algebraic integer x + y w, where w is a root of z2 + z — 367
so that Q(w) is the quadratic field with discriminant 1469. Thus P exists
if and only if Q (w) contains an integer of norm — 1. The question can be
settled by computing the fundamental unit of the field (an algorithm can
be found in Chapter 7 of [19]), and the answer is no. (This example was
in fact found by a computer search.) Alternatively one may note that
1469=(13)(113) and that x=3, y=1 is a solution of 13x2—113y?=4,
and apply the criterion given in [17].

The interest of this example lies in the fact that U and — U are con-
gruent over the rationals and over the p-adic integers for every p. Thus
they cannot be distinguished by any of the “classical” invariants as
given in [4]. To verify the assertion, note that x=1&, y=1is a rational
solution of x?+xy—367y?>=—1 and also a solution in Z, for p#5,
while x=7;, y=5 is a solution in Z.

Examples to illustrate some of the results in Section 4 can be given
by matrices of rank 2. (Some results of systematic investigation of rank 2
matrices are reported in [8].) We first remark that rank 2 matrices are
not very interesting when ¢= + 1. The only even unimodular symmetric

. 01 .
form of rank 2 is represented by [ 1 0] , S0 any V is congruent to one

1 1-
such that V+V'= [(1) 0] and V= [2 0 U] for some v. It is easy to

show that two such matrices are congruent and hence S-equivalent if
and only if they have the same determinant.

For e= —1, any 2-by-2 Seifert matrix is congruent to one of the form
[Z bt 1] , which we abbreviate as V(a, b, ¢). Note that the transpose of
V(a, b, c) is not in the proper form, but is congruent to V(c, b, a). It is easy
to check that PV P’ continues to have this form only if det (P)= + 1. It is
natural to associate the quadratic form ax?+Q2b+1)xy+cy? with
V(a, b, c); the correspondence is one-to-one, and congruence of matrices
corresponds to proper equivalence of forms. The discriminant of the
formis D=1-4d,whered=ac—b(b+1)is the determinant of the matrix.
We call V(a, b, c) positive if a, c and d are all positive; these are exactly
the conditions for the associated form to be positive definite. The classi-
fication of such forms is well-known (for example, see [19]), and translates
into the following classification for positive matrices.
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V(a, b, c) is said to be reduced if 0<2b+1<min(a, c). Every positive
V is congruent to one which is reduced. If V(a,b,c) and V(d, b, ¢') are
both reduced and congruent then b’ =b and eithera'=a,c’=cor2b+1=
min(a, ¢), @ =c, ¢’ =a. V(a, b, ¢) is congruent to its transpose if and only
if it is congruent to V(c, b, a); if it is reduced, the condition is equivalent
toa=cor min(a,c)=2b+1.

Example 5.4. There are 10 distinct congruence classes of positive
matrices of determinant 30, represented by the matrices A =V(1, 0, 30),
B=V(2,0,15), C=V(3,0,10), D=V(5,0,6), E=V(4, 1, 8), F=V(6, 2, 6),
B,C',D',and E'. (A’ is congruent to A and F’ is congruent to F.)

Proposition 4.10 applies. The group G is generated by 2, 3 and 5.
The actions of 2 and 3 are identical and represented by the permutation
cycles (B E'AEB) (C'D'FDC) while the action of 5 is represented by
(EBABE) (D'CFC'D), that is, 2-[B]=[E'], 2-[E']=[A4], etc. Thus
there are two S-equivalence classes consisting of 5 congruence classes
each. The S-equivalence classes are included in distinct rational con-
gruence classes, as may be shown by calculating the Hasse invariant [12]
of the associated quadratic form at the prime 7.

The following example illustrates (4.11), with p=2, m=6.

Example 5.5. There are 12 congruence classes of positive matrices of
determinant 64, represented by A=V(l1, 0, 64), B=V(2, 0, 32), C=
V(4,0,16), D=V(8,0,8), E=V(3,1,22), F=V(6, 1, 11), G=V(5, 2, 14),
H=V(1,2,10), B, C', F and H'. (4, D, E and G are congruent to their
respective transposes.)

The action of 2 is described by the permutation (CAC') (DBB)
(HEH') (FGF') so there are 4 S-equivalence classes, each containing
3 congruence classes. The Hasse invariants at 3 and 5 show that 4 distinct
rational congruence classes are represented.

Finally, we exhibit a matrix of rank 6 which has a row-neighbor that
is not a column-neighbor. There can be no such example of rank 2,
because matrices of rank 2 define cyclic forms. I do not know whether
there is an example of rank 4. We first give some definitions and a lemma
that are needed to reduce the explicit computations to manageable size.

We introduce the notations

A 0 0 4
dg(A, B)= [0 B] and sd(d, B)= [B 0]
where 4 and B are square matrices of the same size. (The notations “dg”
and “sd” are meant to suggest “diagonal” and “skew-diagonal”.) For
any G, define V(G) to be sd(¢G, I — G'). Then V(G)+¢eV(G) =sd(el, I) so
V(G) is a Seifert matrix and I}, ;,=dg(G, I — G'). Note that if H=P~'GP
then V(H)=RV(G)R with R=dg(P~!, P’), so V(H) is integrally con-
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gruent to V(G) if H is integrally similar to G. The following restricted
converse is needed in discussing the example.

Lemma 5.6. Suppose the characteristic polynomials of G and H are
the same and have no common factor with that of I—G'. Then V(H) and
V(G) are integrally congruent only if H and G are integrally similar.

. A B
Proof. Suppose V(H)=RV(G)R’, where R partitions into [ C D]'

Then RS™'R'=5"! where S~'= V(G)+eV(G) =V(G)+eV(HY =sd (e, I).
It follows that RI;, g =TI, 4R, s0 AG=HA and B(I—-G’)=HB. Since
the characteristic polynomials of I —G’ and H have no common factor,
B must be zero. Hence det(R)=det (4) det (D) and 4 must be unimodular
if R is. Then H=A4"'GA and is integrally similar to G.

Example 5.7. Let

0 2 0 2 0 2 0 1 o0
A=|0 0 2|, B=|0 -2 2], C=|/0 0 2]
2 0 o0 0-2 0 4 0 O
0 2 1
D=(-2 0 1].
4 0 0

Then V(A4), V(B), V(C), V(C') and V(D) represent distinct congruence
classes. The row-neighbors of V(A) are represented by V(B), V(C) and
V(D) while the column-neighbors are represented by V(B), V(C’) and
V(D).

We first note that 4 and I— A’ have relatively prime characteristic
polynomials, x*—8 and (x—1)? +8. The group C (V(A)) is isomorphic
to Z/71Z +(Z/2 Z)? and has proper cyclic subgroups of orders 2, 7 and 14.
The subgroups of order 2 are generated by column vectors with 0 or 1
in the first three components and 0 in the last three. Given such a vector v,
let u be the vector consisting of its first three components, and find a
unimodular P such that the first column of AP is equal to 2u. A con-
gruence transformation by dg(P~!, P’) converts V(A) to V(G) where
G=P~' AP, and converts u to P~!u. The fourth column of V(G) is equal
to 2 times the new bordering column. The fourth row of V(G) is the first
column of I — G followed by zeros, and divisible by 2 except for the first
entry. The result of the enlargement-reduction is then given by trans-
ferring a factor of 2 from the fourth column to the first row. The result
has the form V(H) with H rationally similar to G, so the conditions of
(5.6) apply. Because A is invariant under cyclic permutation of rows and
columns, the calculation need be done only for u=(1, 1, 1), u=(1, 0, 0)
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and u=(1, 1, 0). The results turn out to be (congruent to) V(B), V(C) and
V(D) respectively.

The necessary checking of integral similarity is in practice easy. If
H=P~1GP then PH=GP. For given G and H this is a system of linear
equations for the entries of P, and the general solution in integers can be
found. For the cases arising in this example it is then either obvious that
det(P) is divisible by 2 or else a solution with det(P)= +1 is easily found
by inspection. In this way it can be verified that no two of 4, B, C, C'
and D are similar, while A, B and D are similar to 4’, B and D' respec-
tively.

The same remarks apply, mutatis mutandis, to calculating the row-
neighbor class corresponding to the unique subgroup of order 7. It turns
out to be the class of V(A) itself. Neighbors corresponding to subgroups
of order 14 are neighbors of order 2 of neighbors of order 7, and so give
nothing new. Thus the complete list of row-neighbor classes of V(4) is
represented by V(B), V(C) and V(D).

Since A4 is similar to A4, [V(4A)]=[V(4')]=[V(4)] and it follows
that V(B'), V(C’) and V(D') represent the column-neighbors of V(A4).

This work was partially supported by the National Science Foundation under grant
GP-34001.
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